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Abstract. We give a detailed description of the implementation of a
Mølmer–Sørensen gate entangling two 40Ca+ ions using a bichromatic laser
beam near-resonant with a quadrupole transition. By amplitude pulse shaping
and compensation of ac-Stark shifts we achieve a fast gate operation without
compromising the error rate. Subjecting different input states to concatenations
of up to 21 individual gate operations reveals Bell state fidelities above 0.80. In
principle, the entangling gate does not require ground state cooling of the ions as
long as the Lamb–Dicke criterion is fulfilled. We present the first experimental
evidence for this claim and create Bell states with a fidelity of 0.974(1) for ions
in a thermal state of motion with a mean phonon number of n̄ = 20(2) in the
mode coupling to the ions’ internal states.
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1. Introduction

Building a device that is able to carry out arbitrary calculations by exploiting the laws of
quantum physics has been an experimental challenge for more than a decade now. A large
variety of physical implementations have been conceived to meet the requirements for quantum
information processing summarized in [1]. Among these implementations, strings of ions stored
in linear Paul traps and manipulated by laser pulses have proven to be a particularly successful
architecture to realize quantum information processing. Experiments with trapped ions have
shown long relevant coherence times [2]–[4], the ability to faithfully initialize and read-out
qubits [5, 6] and high-fidelity quantum operations [7]–[9]. Current efforts are focused on
scaling up ion-trap experiments to handle many ions, improving the quality and speed of the
basic operations and integrating the various techniques into a single system. Concerning the
basic operations, the realization of universal multi-qubit gates is particularly challenging. Many
different types of gates have been proposed over the last years and several of them have been
experimentally investigated. Gates using a collective interaction [8, 10] between the ions and the
laser field—until recently only applied to qubits encoded in the hyperfine structure (hyperfine
qubits)—were very successful in creating multi-particle entangled states and demonstrating
simple quantum error correction techniques [11].

Recently, we demonstrated the first application of a Mølmer–Sørensen gate operation
to an optical qubit, i.e. a qubit encoded in a ground and a metastable state of 40Ca+ ions,
deterministically creating Bell states with a so far unmatched fidelity of 0.993(1) [9]. Here, we
present a further investigation of this universal gate operation acting on optical qubits and extend
the theoretical and experimental analyses. Particular emphasis is put on the compensation of
ac-Stark shifts and amplitude pulse shaping to reach high fidelities without compromising
the gate speed substantially. The gate characterization is extended further by investigating the
fidelity decay for different input states after up to 21 individual operations.
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Moreover, we report on the first experiments demonstrating a universal entangling gate
operating on Doppler-cooled ions. We derive simple expressions [12] for the qubit populations
under the action of the gate and use these equations to infer the mean vibrational quantum
number n̄ of the axial center-of-mass mode. For ions in a thermal state with n̄ = 20(2), we
obtain Bell states with a fidelity of 0.974(1).

The ability to implement high-fidelity multi-qubit operations on Doppler-cooled ions is of
practical interest in ion-trap quantum-information processing, as the implementation of quantum
algorithms demands several techniques that do not conserve the ions’ vibrational quantum state:
(i) state detection of ancilla qubits as required by quantum error correction schemes [13] can
excite the ion string to a thermal motional state close to the Doppler limit because of the
interaction with the laser inducing the ions to fluoresce, and (ii) experiments with segmented
trap structures where ion strings are split into smaller strings also tend to heat up the ions
slightly [14]. Here, the availability of high-fidelity gate operations even for thermal states may
provide a viable alternative to the technically involved recooling techniques using a different
ion species [15, 16].

2. Theoretical gate description

2.1. Mølmer–Sørensen gate

A two-qubit quantum gate that is equivalent to a controlled-NOT gate up to local operations is
achieved by the action of a Hamiltonian H ∝ σn ⊗ σn, where σn = σ · n is a projection of the
vector of Pauli spin matrices into the direction n [17]. Two prominent examples of this type
of gate are the conditional phase gate [8, 18] and the Mølmer–Sørensen gate [10, 19, 20]. In
the latter case, correlated spin flips between the states |↑〉|↑〉 ↔ |↓〉|↓〉 and |↑〉|↓〉 ↔ |↓〉|↑〉 are
induced by a Hamiltonian

H ∝ σφ⊗σφ, where σφ = cosφσx + sinφσy. (1)

The unitary operation U = exp(i(π/4)σφ ⊗ σφ) maps product states onto maximally entangled
states. In 1999, the proposal was made to realize an effective Hamiltonian [19, 20] taking
form (1) by exciting both ions simultaneously with a bichromatic laser beam with frequencies
ω± = ω0 ± δ, where ω0 is the qubit transition frequency and δ is close to a vibrational mode of
the two-ion crystal with frequency ν (see figure 1(a)). Changing to an interaction picture and
performing a rotating-wave approximation, the time-dependent Hamiltonian

H(t)= h̄�(e−iδt + eiδt)eiη(ae−iνt +a†eiνt )(σ (1)+ + σ (2)+ )+ h.c. (2)

is well approximated by

H(t)= −h̄η�(a†ei(ν−δ)t + ae−i(ν−δ)t)Sy (3)

in the Lamb–Dicke regime where η2xrms � 1 with η the Lamb–Dicke factor and xrms the extent
of the vibrational mode’s wave function. In (3), we use a collective spin operator Sy = σ (1)y + σ (2)y
and denote the laser detuning from the motional sidebands by ν− δ = ε. The Rabi frequency
on the carrier transition is denoted �, and a and a† are the phonon annihilation and creation
operators, respectively. This Hamiltonian can be exactly integrated [21] yielding the propagator

U (t)= D̂(α(t)Sy) exp
(
i(λt −χ sin(εt))S2

y

)
, (4)
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Figure 1. (a) Mølmer–Sørensen interaction scheme. A bichromatic laser field
couples the qubit states |↓↓〉 ↔ |↑↑〉 via the four interfering paths shown in
the figure. Similar processes couple the states |↑↓〉 ↔ |↓↑〉. The frequencies
ω± of the laser field are tuned close to the red and the blue motional
sidebands of the qubit transition with frequency ω0, and satisfy the resonance
condition 2ω0 = ω+ +ω−. The vibrational quantum number is denoted n.
(b) Level scheme of 40Ca+ showing the transitions used for cooling/detecting,
repumping and resetting the state of the ion as well as the qubit transition. The
qubit is encoded in the metastable state |↑〉 =

∣∣D5/2,m =
3
2

〉
and the ground state

|↓〉 =
∣∣S1/2,m =

1
2

〉
.

where α(t)= (η�/ε)(eiεt
− 1), λ= η2�2/ε, χ = η2�2/ε2 and D̂(α)= eαa†

−α∗a is a
displacement operator. For a gate time tgate = 2π/|ε|, the displacement operator vanishes so
that the propagator U (tgate)= exp(iλtgateS2

y) can be regarded as being the action of an effective
Hamiltonian

Heff = −h̄λS2
y = −2h̄λ(1 + σy ⊗ σy) (5)

inducing the same action up to a global phase as the one given in (1). Setting �= |ε|/(4η),
a gate is realized capable of maximally entangling ions irrespective of their motional state.
In the description of the gate mechanism given so far, a coupling of the light field to the
carrier transition was neglected based on the assumption that the Rabi frequency � was small
compared with the detuning δ of the laser frequency components from the transition. In this
case, small non-resonant Rabi oscillations that appear on top of the gate dynamics are the main
effect of coupling to the carrier transition. Since a maximally entangling gate requires a Rabi
frequency �∝ η−1t−1

gate, the question of whether �� δ holds becomes crucial in the limit of
fast gate operations and small Lamb–Dicke factors. Our experiments [9] are exactly operating
in this regime, and it turns out that non-resonant excitation of the carrier transition has further
effects beyond inducing non-resonant oscillations [12]. This becomes apparent by interpreting
terms in the Hamiltonian in a different way: the red- and blue-detuned frequency components
E± = E0 cos((ω0 ± δ)t ± ζ ) of equal intensity may be viewed as a single laser beam E(t)=

E+ + E− = 2E0 cos(ω0t) cos(δt + ζ ) that is resonant with the qubit transition but amplitude-
modulated with frequency δ. Here, the phase φ that determines whether the gate operation starts
in a maximum (ζ = 0) or a minimum (ζ = π/2) of the intensity of the amplitude-modulated
beam has a crucial influence on the gate. This can be intuitively understood by considering the
initial action the gate exerts on an input state in the Bloch sphere picture shown in figure 2.
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Figure 2. Effect of non-resonant excitation of the carrier transition. (a) For ζ = 0,
the gate starts at a maximum of the intensity-modulated beam. In this case, a
Bloch vector initially centered at the south pole of the Bloch sphere performs
oscillations that are symmetric around the initial position. (b) For ζ = π/2, the
gate starts at the minimum of the intensity modulation. In this case, the average
orientation of the Bloch vector is tilted with respect to its initial position.

For short times, coupling to the sidebands can be neglected which justifies the use of a single-
ion picture. The dynamics is essentially the one of two uncoupled qubits. The fast dynamics
of the gate is induced by excitation of the ions on the carrier transition. For ζ = 0, the Bloch
vector of an ion initially in state |↓〉 will oscillate with frequency δ along a line centered on the
south pole of the Bloch sphere. For ζ = π/2, the oscillation frequency is the same; however, the
time-averaged position of the Bloch vector is tilted by an angle

ψ =
4�

δ
sin ζ (6)

with respect to the initial state |↓〉. This effect has a profound influence on the gate action. A
careful analysis of the gate mechanism [12], taking into account the non-resonant oscillations,
reveals that the Hamiltonian (3) is changed into

H(t)= −h̄η�(a†ei(ν−δ)t + ae−i(ν−δ)t)Sy,ψ , (7)

where

Sy,ψ = Sy cosψ + Sz sinψ (8)

and that the propagator (4) needs to be replaced by

U (t)= exp(−iF(t)Sx)D̂(α(t)Sy,ψ) exp
(
i(λt −χ sin(εt))S2

y,ψ

)
, (9)

where the term containing F(t)= 2�/δ(sin(δt + ζ )− sinζ ) describes non-resonant excitation
of the carrier transition. In the derivation of Hamiltonian (7), small terms arising from the
non-commutativity of the operators Sy , Sz have been neglected [12]. The dependence of the
propagator on the exact value of ζ is inconvenient from an experimental point of view. To
realize the desired gate, precise control over ζ is required. In addition, the gate duration must be
controlled to better than a fraction of the mode oscillation period because of the non-resonant
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oscillation. Fortunately, both of these problems can be overcome by shaping the overall intensity
of the laser pulse such that the Rabi frequency �(t) smoothly rises within a few cycles 2π/δ to
its maximum value �gate ≈ |ε|/(4η) and smoothly falls off to zero at the end of the gate. In this
case, the non-resonant oscillations vanish and (6) shows that the operator Sy ,ψ(t) adiabatically
follows the laser intensity so that it starts and ends as the desired operator Sy irrespective of
the phase ζ . For intensity-shaped pulses, the propagator (4) provides therefore an adequate
description of the gate action.

2.2. Ac-Stark shifts

In the description of the gate mechanism given so far, the ion was treated as an ideal two-level
system. Ac-Stark shifts are completely insignificant provided that the intensities of the
blue- and the red-detuned frequency components are the same since in this case light shifts
of the carrier transition caused by the blue-detuned part are exactly canceled by light shifts
of the red-detuned light field. Similarly, light shifts of the blue-detuned frequency component
non-resonantly exciting the upper motional sideband are perfectly canceled by light shifts of the
red-detuned frequency component coupling to the lower motional sideband.

For an experimental implementation with calcium ions, we need to consider numerous
energy levels (see figure 1(b)). Here, the laser field inducing the gate action causes ac-Stark
shifts on the qubit transition frequency due to non-resonant excitation of far-detuned dipole
transitions and also of other S1/2 ↔ D5/2 Zeeman transitions. The main contributions arise from
couplings between the qubit states and the 4p-states that are mediated by the dipole transitions
S1/2 ↔ P1/2, S1/2 ↔ P3/2 and D5/2 ↔ P3/2. Other transitions hardly matter as can be checked
by comparing the experimental results obtained in [22] with numerical results based on the
transition strengths [23] of the dipole transitions coupling to the 4p-states. For suitably chosen
k-vector and polarization of the bichromatic laser beam, these shifts are considerably smaller
than the strength λ of the gate interaction.

Ac-Stark shifts can be compensated for by a suitable detuning of the gate laser. An
alternative strategy consists in introducing an additional ac-Stark shift of opposite sign, which
is also caused by the gate laser beam [22]. This approach has the advantage of making the
ac-Stark compensation independent of the gate laser intensity. In contrast to previous gates
relying on this technique [24], where the ac-Stark shift was caused by the quadrupole transition
and compensated by coupling to dipole transitions, here, the ac-Stark shift is due to dipole
transitions and needs to be compensated by coupling to the quadrupole transition.

For ions prepared in the ground state of motion (n = 0), a convenient way of accomplishing
this task is to perform the gate operation with slightly imbalanced intensities of the
blue- and the red-detuned laser frequency components. Setting the Rabi frequency of the
blue-detuned component to �b =�(1 + ξ) and that of the red-detuned to �r =�(1 − ξ), an
additional light shift caused by coupling to the carrier transition is induced that amounts to
δ(C)ac = 2(�2

r −�2
b)/δ = −8�2ξ/δ. Now, the beam imbalance parameter ξ needs to be set such

that the additional light shift exactly cancels the phase shift φ = δactgate induced by the dipole
transitions during the action of the gate. Taking into account that tgate = 2π/ε and�= |ε|/(4η),
this requires ξ = (δη2/|ε|)(φ/π).

Apart from introducing light shifts, setting ξ 6= 0 also slightly changes the gate
Hamiltonian (5) from Heff = −λS2

y to Heff = −λ(S2
y + ξ 2S2

x ) [25] since the coupling between the
states |↓↓〉 and |↑↑〉 is proportional to 2�b�r = 2�2(1 − ξ 2), whereas the coupling between
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|↓↑〉 and |↑↓〉 is proportional to �2
b +�2

r = 2�2(1 + ξ 2). However, as long as ξ � 1 holds—
which is the case in the experiments described in the next section—this effect is extremely
small4 as the additional term is only quadratic in ξ .

Another side effect of setting ξ 6= 0 is the occurrence of an additional term ∝ Sza†a in
the Hamiltonian. It is caused by ac-Stark shifts arising from coupling to the upper and lower
motional sidebands, which no longer completely cancel each other. The resulting shift of the
qubit transition frequency depends on the vibrational quantum number n and is given by δ(SB)

=

(8η2�2/ε)ξn = (ε/2)ξn. Simulations of the gate action based on (2) including an additional
term ∝ Sz accounting for ac-Stark shifts of the dipole transitions and power-imbalanced beams
show that the unwanted term ∝ Sza†a has no severe effects for ions prepared in the motional
ground state as long as ξ � 1. However, for ions in Fock states with n > 0, this is not the case.
Taking the parameter set ξ = 0.075, ν = (2π) 1230 kHz and ε = (2π) 20 kHz as an example, the
following results are obtained: applying the gate to ions prepared in |↓↓〉|n = 0〉, a Bell state is
created with fidelity 0.9993. For n = 1 the fidelity drops to 0.985, and for n = 2 to even 0.942.
This loss of fidelity can be only partially recovered by shifting the laser frequency by δ(SB), the
resulting fidelity being 0.993 and 0.968, for n = 1 and 2, respectively. For higher motional states,
the effect is even more severe and shows that this kind of ac-Stark compensation is inappropriate
when dealing with ions in a thermal state of motion with n̄ � 1. Instead of compensating the
ac-Stark shift by imbalancing the beam powers, in this case, the laser frequency needs to be
adjusted accordingly (see section 5.2 on the experiments with Doppler-cooled ions).

3. Experimental setup

Two 40Ca+ ions are stored in a linear Paul trap with an axial trap frequency ν/(2π)=

1.232 MHz corresponding to an inter-ion distance of 5µm. The 40Ca+ optical qubit consists
of the metastable state |↑〉 =

∣∣D5/2,m =
3
2

〉
with a lifetime of 1.17 s and the ground state

|↓〉 =
∣∣S1/2,m =

1
2

〉
(see figure 1(b)). These two energy levels are connected via a quadrupole

transition at a wavelength of 729 nm. Laser light at 397 nm is used for Doppler cooling and
state detection on the S1/2 ↔ P1/2 transition with an additional repumping laser at 866 nm on
the D3/2 ↔ P1/2 transition. Fluorescence light is detected by means of a photomultiplier tube.
For two ions, we discriminate between |↑↑〉, |↑↓〉 or |↓↑〉 and |↓↓〉, the populations of which
are labeled by p0, p1 and p2 according to the number of ions fluorescing.

A titanium sapphire laser [26], whose frequency is stabilized to a high finesse Fabry–Perot
cavity [27], is used to excite the quadrupole transition for sideband-cooling, frequency-resolved
optical pumping and performing quantum logic operations. Frequency drifts of maximally
3 Hz s−1 induced by the reference cavity are canceled by an automated measurement routine
referencing about every minute the laser frequency to the optical qubit transition frequency and
detecting the magnitude of the magnetic field at the ions’ location of about 4 G.

The setup for controlling the laser driving the qubit transition is depicted in figure 3. Laser
light of 729 nm is sent to the ions from either of two directions, each beam having a maximum
light power of 50 mW. Only when single-ion addressing is required do we use laser beam 1

4 The additional term S2
x changes the gate operation from U = exp(−i(π/8)S2

y) to Uξ = exp(−i(π/8)(S2
y + ξ 2S2

x )).
A short calculation shows that the minimum state fidelity Fmin = min{ψ}(|〈ψ |U †Uξ |ψ〉|

2) is given by Fmin =
1
2 (1 + cos((π/2)ξ 2)), where we used [S2

x , S2
y ] = 0 and exp(−iγ S2

x )= 1 + 1
4 (e

−i4γ
− 1)S2

X . Thus, for ξ = 0.075, one
obtains Fmin ≈ 1–2 × 10−5.
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Figure 3. Trap geometry and optical qubit light field generation. AOM 1 controls
the overall frequency ωl and the amplitude of the laser beams at 729 nm. AOM 2
is used to switch beam 2 that illuminates both ions simultaneously. When
supplied with two frequencies ωrf ± δ, where ωrf/(2π)= 80 MHz, it creates a
bichromatic light field in the first order of diffraction. AOM 3 switches beam
1 that addresses only one of the ions. Both beams are guided with single-mode
optical fibers to the trap. The geometric alignment of polarizations, trap axis and
magnetic field is as sketched. Radio-frequency signals supplying the AOMs are
indicated as dotted lines.

focused to a beam waist of 3µm at the trap center with a k-vector perpendicular to the trap axis
and a polarization that couples to all possible transitions. All other operations are accomplished
with laser beam 2 whose k-vector encloses a 45◦ angle with the axis of the ion string and
is perpendicular to the quantization axis defined by the direction of the magnetic field. With
a beam waist of 14µm at the trap center, this beam is adjusted to illuminate both ions with
equal intensity. The polarization of this beam is set such that the coupling is maximal for
1m = ±1 transitions, whereas it (nearly) vanishes for all other transitions (we achieve a ratio
of Rabi frequencies �m=1/�|m|6=1 > 50). The amplitude, frequency and phase of both beams
are controlled by the acousto-optical modulator (AOM) 1 that is driven by a versatile frequency
source (VFS). Amplitude pulse shaping is achieved with a variable gain amplifier controlled by
a field programmable gate array. All radio-frequency sources are phase-locked to an ultra-stable
quartz oscillator. By triggering each experimental cycle to the ac-power line, we largely reduce
distortions caused by the 1 mG magnetic field fluctuations at 50 Hz (which are produced by
spurious fields of the ac power line).

The AOMs 2 and 3 are used as switches for laser beams 1 and 2 applied from different
directions. The bichromatic light field with frequencies ω± = ω0 ± δ/(2π) is created by driving
AOM 2 simultaneously with the two frequencies ωrf ± δ, where δ = ν− ε. A frequency
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Figure 4. Effect of amplitude pulse shaping on non-resonant population
transfer caused by a bichromatic light field non-resonantly exciting the carrier
transition. Experimental results are presented for a gate duration of tgate = 25µs.
A comparison of the evolution of the populations p0(N), p1(�), p2(•) for a
square-shaped pulse (a) with an amplitude-shaped pulse (b) shows a suppression
of the strong non-resonant oscillations for the latter case. The slopes are shaped
as a Blackman window with a duration of 2.5µs, the figure inset showing the
definitions of pulse and slope duration. Numerical simulations suggest that the
actual pulse shape is not so important as long as the switching occurs sufficiently
slowly. The solid lines are calculated from (9) and (4). To match experimental
data and simulations, we allowed for a time offset 1t = 0.5 ns that accounts for
the finite switching time of the AOM controlling the laser power.

difference of 2δ/(2π)= 2.4 MHz leads to a diffraction into slightly different directions with
an angular separation as small as 0.025◦ such that the coupling efficiency to the single mode
fiber is reduced by about 15% compared with a single frequency beam where AOM 2 is driven
with ωrf. To generate the collective π/2-pulses needed for analyzing the gate action, AOM 2 is
driven with a single frequency ωrf. A more detailed description of the apparatus is given in [4].

4. Measurement results

The coupling strength of the laser to the qubit is calibrated by recording resonant Rabi
oscillations on the qubit transition. In the case of short gate operations, the large intensities lead
to big ac-Stark shifts and saturation of the gate coupling strength [12] that in turn necessitate a
fine-adjustment of the laser frequency and power.

4.1. Amplitude pulse shaping

The merits of amplitude pulse shaping were studied by observing the time evolution of the
populations pi at the beginning of the gate operation when the population transfer is dominated
by fast non-resonant coupling to the carrier. Figure 4(a) shows the population evolution for
the first 5µs of a 25µs gate operation based on a rectangular pulse shape. Averaging over a
randomly varying phase ζ , we observe strong oscillations with a period of 2π/δ = 0.84µs.
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(b)(a)

Figure 5. (a) Populations p0(N), p1(�), p2(•) after a single gate operation
(tgate = 25µs) where the global frequency detuning of the bichromatic entangling
pulse is varied by scanning AOM 1. A maximally entangled state is achieved
for a global frequency detuning of (2π)37 kHz relative to the qubit transition
frequency due to ac-Stark shifts. (b) Introduction of a beam imbalance ξ = 0.08
shifts the pattern of the populations by the required amount to fully compensate
for the ac-Stark-shift (note the different x-axis offsets in (a) and (b)). The solid
lines are calculated by solving the Schrödinger equation for the Hamiltonian
given in (2) amended by a term accounting for the measured ac-Stark shift.

Figure 4(b) shows that the non-resonant excitations vanish completely after application of
amplitude pulse shaping with a slope duration of 2.5µs corresponding to three vibrational
periods of the center-of-mass mode. The slopes were shaped as a Blackman window [28], where
the form of the shape is chosen such that a shaped and a rectangular pulse of the same duration
have the same pulse area (see inset of figure 4(b)). Different pulse lengths are achieved by
varying the duration of the central time interval during which the laser power is constant. The
solid lines in the figure are calculated from (9) and (4) and fit the data well.

4.2. Ac-Stark shift compensation

The ac-Stark shift caused by bichromatic light with spectral components each having a Rabi
frequency of �/(2π)= 220 kHz (for tgate = 25µs) is measured by scanning the global laser
frequency using AOM 1. The resulting populations after a gate operation are depicted in
figure 5(a). We observe a drop of the population p1 to zero at a detuning of (2π)37 kHz from
the carrier transition. At this setting the ions are maximally entangled. By changing the relative
power of the bichromatic field’s frequency components such that ξ = 0.08 the ac-Stark shift is
compensated. This translates the whole excitation pattern in frequency space as can be seen in
figure 5(b).

A more sensitive method to infer the remaining ac-Stark shift δac after a coarse
precompensation consists in concatenating two gates separated by a waiting time τw in a pulse
sequence akin to a Ramsey-type experiment [29] and scanning τw. This procedure maps δac to
a phase φ = δacτw which is converted into a population change p2 = cos2(φ), p0 = sin2(φ) by
the second gate pulse. For the two ions, the corresponding Ramsey pattern displayed in figure 6
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Waiting time (µs)τw

Figure 6. Population evolution of |↑↑〉(•) and |↓↓〉(N) when scanning the
waiting time between two 25µs gate pulses in a Ramsey-like experiment.
For this scan the detuning ε was set to (2π)40 kHz. In this set of data, the
ac-Stark shift was only partially compensated by imbalancing the power of the
two frequency components. From the sinusodial fits shown as solid lines, we
infer an oscillation period of 258(4) µs corresponding to a residual ac-Stark shift
of (2π)1.94(3) kHz.

shows oscillations of the populations p0 and p2 with a frequency of twice the remaining ac-Stark
shift.

4.3. Gate analysis

A full characterization of the gate operation could be achieved by quantum process
tomography [30]. At present, however, the errors introduced by single-ion addressing and
individual qubit detection are on the few percent level in our experimental setup that renders
the detection of small errors difficult in the entangling operation. Instead, we characterize the
quality of the gate operation by using it for creating different Bell states and determining their
fidelities.

For the Bell state 91 = |↓↓〉 + i|↑↑〉, the fidelity is given by F = 〈91|ρ
exp

|91〉 = (ρ
exp
↑↑,↑↑

+
ρ

exp
↓↓,↓↓

)/2 + Im ρ
exp
↓↓,↑↑

, with the density matrix ρexp describing the experimentally produced state.
To determine F , we need to measure the populations p2 + p0 at the end of the gate operation as
well as the off-diagonal matrix-element ρexp

↓↓,↑↑
. To determine the latter, we apply a π/2 pulse

with optical phase φ to both ions and measure 〈σ (1)z σ (2)z 〉 for the resulting state as a function of
φ. This procedure is equivalent to measuring oscillations of the expectation value Tr(P(φ)ρexp)

of the operator P(φ)= σ
(1)
φ σ

(2)
φ , where σφ = σx cosφ + σy sinφ (see figure 9(b) and (d)). The

amplitude A of these oscillations equals 2|ρ
exp
↓↓,↑↑

| and is obtained by fitting them with the
function Pfit(φ)= A sin(2φ +φ0).

Previous measurements [9] using |↓↓〉 as input state have demonstrated Bell state
fidelities as high as 0.993(1) (see figures 9(a) and (b)) for gate times of 50µs or 61 trap
oscillation periods. By doubling the detuning to ε/(2π)= 40 kHz, we reduce the gate duration
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Figure 7. Bell state fidelities after gate operations applied to the input states
|↓↓〉 (N) and |↓↑〉 (•) for tgate = 50µs. Taking into account the error for state
preparation of the input states |↓↑〉 and a similar error to measure the parity
signal, we conclude that the gate operation works on all tested input states
similarly well. The solid lines reflect a Gaussian decay of the parity fringe
amplitudes as a function of the number of gates and a linear decay in the desired
populations caused by the spectral impurity of the laser. For both input states, the
gate operation implies errors of less than 0.2 after 21 consecutive applications.

to only 31 trap oscillation periods and observe Bell states with a fidelity of 0.971(2), which is
remarkable considering the small Lamb–Dicke parameter of η = 0.044. The detrimental effects
illustrated in figure 4(a) are sufficiently suppressed by amplitude pulse shaping.

Moreover, for a gate time of 50µs, the analysis was extended by applying the gate to the
state |↓↑〉, which is prepared by a π/2 rotation (beam 2) of both ions, followed by a π -phase
shift pulse on a single ion performed with the far-detuned focused beam 1, and another π/2
rotation applied to both ions. This pulse sequence realizes the mapping

|↓↓〉 → |↓ + ↑〉|↓ + ↑〉 → |↓ − ↑〉|↓ + ↑〉 → |↓↑〉 (10)

to the desired input state for the gate. Imperfections of single-ion addressing lead to an error in
state preparation of 0.036(3). For the Bell state analysis, we measure the population p1 to infer
ρ

exp
↑↓,↑↓

+ ρexp
↓↑,↓↑

. Unfortunately, parity oscillations cannot be introduced by a collective π/2 pulse
acting on the state |↑↓〉 + i|↓↑〉. Instead, we transform this state into |↑↑〉 + i|↓↓〉 by repeating
the steps of sequence (10) as for the state preparation and measure again the coherence by
performing parity oscillations.

Figure 7 shows a comparison of the fidelity of the gate starting either in |↓↓〉 or |↓↑〉. The
fidelity of a Bell state created by a single gate starting in |↓↑〉 is 0.95(1). Taking into account the
errors for state preparation and the Bell state analysis, we conclude that the entangling operation
works equally well for |↓↑〉 as an input state. This hypothesis is supported by the observation
that for both states we obtain a similar decay of Bell state fidelities with increasing gate number.

Compared with our earlier results [9], where multiple gate operations were induced by
varying the duration of a single bichromatic pulse, here we applied up to 21 individual
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Figure 8. Fidelity as a function of the global frequency detuning of the
bichromatic light pulse from the carrier transition (here, the sideband detuning
was set to ε/(2π)= 20 kHz). A maximum fidelity of 0.995(4) was found for a
detuning of 500 Hz from the transition center due to a residual ac-Stark shift.
The solid line is obtained by numerically solving equation (2) and taking into
account the ac-Stark shift compensation by different powers of the blue and the
red laser frequency components. At the maximum, the solid line experiences a
second-order frequency dependence of −9.6(3)× 10−9 Hz2.

amplitude-shaped pulses. Splitting up a long pulse into many shorter gate pulses has no
detectable effect on the fidelity of the Bell states produced, and in both cases we obtain a Bell
state fidelity larger than 0.80 after 21 gates.

4.4. Gate errors

As discussed in [9], the two dominant sources of gate errors are laser frequency noise and
variations of the laser–ion coupling strength. Imperfections of the laser’s frequency spectrum
lead to incoherent carrier excitation and thus to a loss in the Bell state fidelity of 2 × 10−3

per gate. Coupling strength variations of δ�/�≈ 1.4(1)× 10−2 are the major cause for the
Gaussian decay of the parity oscillation amplitudes.

An error that was not investigated in detail before is the dependence of the Bell state fidelity
on the global laser frequency detuning from the qubit transition frequency. Experimental results
are shown in figure 8. The solid line fitting the data is calculated by numerically solving the
full Schrödinger equation for different global frequency detunings and evaluating the fidelity.
A second-order frequency dependence of −9.6(3)× 10−9 Hz2 is found from calculations at the
maximum point. This suggests that our laser’s typical mean frequency deviation of 160 Hz
contributes with 3 × 10−4 to the error budget.

A further error source arises when the bichromatic beam couples to both ions with different
strengths. By recording Rabi oscillations simultaneously on the two ions, we conclude that both
ions experience the same coupling strength � to within 4%. From numerical calculations we
infer an additional error in the measured Bell state fidelity of less than 1 × 10−4.
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Another possible error source is heating of the COM-mode during the gate operation since
the gate is not insensitive to motional heating in the parameter regime of our implementation.
Using the calculation performed in [21], we find a fidelity reduction of 1F = 0htgate/2, where
0h is the heating rate of the COM-mode. As in our experiments 0h = 3 s−1, the fidelity is reduced
by 1F ≈ 10−4 for tgate = 50µs.

5. A Mølmer–Sørensen gate with ions in a thermal state of motion

5.1. Formal description of the time evolution

In theory, the Mølmer–Sørensen gate does not require the ions to be cooled to the ground states
of motion since its propagator (4) is independent of the vibrational state for t = tgate. For t 6= tgate,
however, the interaction entangles qubit states and vibrational states so that the qubits’ final
state becomes dependent on the initial vibrational state. Therefore, it is of interest to calculate
expectation values of observables acting on the qubit state space after applying the propagator
for an arbitrary time t . As will be shown below, simple expressions can be derived in the case
of a thermally occupied motional state. For the following calculation, it is convenient to define
V (t)= exp(iγ S2

y), where γ = λt −χ sin(εt). We are interested in calculating the expectation
value of the observable O given by

O(t)= Tr(OU (t)ρM ⊗ ρAU (t)†)

= Tr(ρM ⊗ ρA D̂(−αSy)V
†OV D̂(αSy))

=

∑
n

pn TrA(ρA〈n|D̂(−αSy)V
†OV D̂(αSy)|n〉). (11)

Here, ρM =
∑

n pn|n〉〈n| with pn = [1/(n̄ + 1)](n̄/(n̄ + 1))n describes a thermal state with
average phonon number n̄ and TrA denotes the trace over the qubit state space with ρA being
the initial state of the qubits. For two ions, the state-dependent displacement operator D̂(αSy)

is given by

D̂(αSy)= P0 + P2 D̂(2α)+ P−2 D̂(−2α),

where Pλ is the projector onto the space spanned by the eigenvectors of Sy having the eigenvalue
λ, with P0 = 1 −

1
4 S2

y , and P±2 =
1
8(S

2
y ± 2Sy). This decomposition allows for tracing over

the vibrational states in (11) since 〈n|D̂(α)|n〉 = exp(−|α|
2/2)Ln(|α|

2), where Ln denotes a
Laguerre polynomial. For taking the trace, we note that

∑
n pn〈n|D̂(α)|n〉 is proportional to the

generating function g(x, β) of the Laguerre polynomial [31] given by

g(x, β)=

∞∑
n=0

Ln(β)x
n
=

1

1 − x
exp

(
−
βx

1 − x

)
.

Therefore, ∑
n

pn〈n|D̂(α)|n〉 =
1

n̄ + 1
g

(
n̄

n̄ + 1
, |α|

2

)
exp(−|α|

2/2)= e−|α|
2(n̄+(1/2)). (12)

Using the abbreviation OV = VOV † and (12), the expectation value O(t) is given by

O(t)= TrA(OV{A0 + A4e−4|α|
2(n̄+(1/2)) + A16e−16|α|

2(n̄+(1/2))
}) (13)
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with

A0 = P0ρA P0 + P2ρA P2 + P−2ρA P−2,

A4 = P2ρA P0 + P0ρA P2 + P−2ρA P0 + P0ρA P−2,

A16 = P−2ρA P2 + P2ρA P−2.

For the initial state ρA = |↓↓〉〈↓↓|, one obtains

A0 = (S2
z + S2

x )/16, A4 = −Sz/4, A16 = (S2
z − S2

x )/16

and

O(t)=
1

16
TrA(OV{(S2

z + S2
x )− 4Sze−4|α|

2(n̄+(1/2)) + (S2
z − S2

x )e
−16|α|

2(n̄+(1/2))
}).

To calculate the time evolution of the qubit state populations starting from state |↓↓〉 at t = 0,
use of the relations

e−iγ S2
y Szeiγ S2

y = cos(4γ )Sz − sin(4γ ) 1
2{Sx , Sy},

e−iγ S2
y S2

j e
iγ S2

y = S2
j

yields the following expressions for the qubit state populations:

p2(t)=
1
8(3 + e−16|α|

2(n̄+(1/2)) + 4 cos(4γ )e−4|α|
2(n̄+(1/2)))

p1(t)=
1
4(1 − e−16|α|

2(n̄+(1/2))) (14)

p0(t)=
1
8(3 + e−16|α|

2(n̄+(1/2))
− 4 cos(4γ )e−4|α|

2(n̄+(1/2))).

The formalism presented here could also be used to calculate the contrast of a parity scan for
thermal states of motion. In this case, the parity operator is given by P = S2

z /2 − 1. The π/2
carrier pulses transform this operator into an operator Pφ = (cosφSx + sinφSy)

2/2 − 1.

5.2. High-fidelity Bell states of ions in a thermal state

Although many theoretical papers discussing Mølmer–Sørensen and conditional phase gates put
much emphasis on the possibility of entangling ions irrespective of their motional state by using
these gates, there has not been any experimental demonstration of this gate property up to now.
The reason for this is that independence of the motional state, as predicted by (4), is achieved
only deep within the Lamb–Dicke regime, whereas experiments demonstrating entangling gates
on hyperfine qubits usually have Lamb–Dicke factors on the order of η = 0.1–0.2 [8, 10, 32].
Therefore, all previous experimental gate realizations used laser cooling to prepare at least the
motional mode mediating the gate in its ground state with n = 0.

Figure 9(a) illustrates the population evolution induced by the gate pulse for ground-state
cooled ions initially prepared in the qubit states |↓↓〉; figure 9(b) displays parity oscillations
for the produced Bell state. The corresponding time evolution and parity oscillations for ions
that are merely Doppler cooled to a thermal state with n̄ = 20(2) are shown in figure 9(c) and
(d), respectively. As the coupling strengths on the upper and lower motional sidebands scale as
∝

√
n + 1 and ∝

√
n, non-resonant sideband excitation transfers population much faster from

|↓↓, n〉 into |↓↑, n ± 1〉 and |↑↓, n ± 1〉 as compared with the case of ions prepared in the
ground state with n̄ = 0. After the gate time tgate = 50µs, however, the undesired population p1
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(b)(a)

(d)(c)

Figure 9. Measured population evolution for p0 (N), p1 (�), p2 (•) and parity
oscillations with (a, b) and without (c, d) ground state cooling. In the latter
case, population is transferred faster into |↑↓, n〉 and |↓↑, n〉 as compared with
sideband cooled ions due to the higher coupling strength to the sidebands. In
(c), the solid lines are a fit to the data points using (14) with the mean phonon
number n̄ as a free parameter giving n̄ = 20(2). The parity oscillations for the
ions in a thermal state of motion have an amplitude of 0.964(2). Combining
both measurements, we determine the Bell state fidelity to be 0.974(1). The data
appearing in (a) and (b) are taken from [9]. Here, the deviation of the solid lines
from the data is caused by the ac-Stark shift compensation using ζ = 0.08.

nearly vanishes as in the case of ground-state cooled ions and the Bell state 91 is again created.
In the experiment, we find a population p1 = 0.015(1) in the undesired energy eigenstates. The
parity oscillations have an amplitude of 0.964(2), resulting in a Bell state fidelity of 0.974(1).
The reasons for the somewhat reduced fidelity as compared with ground-state cooled ions are
currently not well understood. In part, the fidelity loss arises from a variation of the coupling
strength on the vibrational sidebands as a function of n caused by higher order terms in η.
However, for a thermal state with n̄ = 20 and η = 0.044 calculations show this effect amounts
only to additional errors of 7 × 10−3.

As mentioned in section 2.2, ac-Stark compensation by unbalancing the power of the red
and the blue frequency components is not applicable to ions in a thermal state. Instead, the laser
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frequency needs to be adjusted to account for ac-Stark shifts δac, a technique that works well
as long as the ac-Stark shifts are smaller than the coupling strength λ of the gate interaction
appearing in (5) (otherwise, in the case δac � λ, small laser power fluctuations give rise to large
phase shifts). Therefore, care must be taken to choose the direction and polarization of the
gate laser such that a favorable ratio λ/δac is obtained. In experiments with a gate duration of
tgate = 50µs, we achieved λ/δac ≈ 3 and needed to shift the laser frequency by about 7.5 kHz for
optimal Bell state fidelity. In future experiments, a further reduction of the ac-Stark shift could
be obtained using a σ +-polarized laser beam incident on the ions along the direction of the
magnetic field. In this geometry, the ac-Stark shift is predominantly caused by the S1/2 ↔ P3/2

dipole transition since the D5/2(m = +3
2) state does not couple to any of the 4p Zeeman states.

From calculations, we infer a reduction of the shift to about 2 kHz without compromising the
gate speed.

Fitting equations (14) to the population evolution data allows us to determine the
mean vibrational quantum number as n̄ = 20(2). This value is consistent with independent
measurements obtained by comparing the time evolution of the ions when exciting them on
the carrier and on the blue motional sideband.

6. Conclusions and outlook

Until recently, entangling gates for optical qubits were exclusively of the Cirac–Zoller
type, which require individual addressing of the ions. Compared with this type of gate the
Mølmer–Sørensen gate gives an improvement in fidelity and speed of nearly an order of
magnitude. The achieved fidelity sets a record for creating two-qubit entanglement on demand
irrespective of the physical realization considered so far. Our results with concatenations of 21
of these operations bring the realization of more complex algorithms a step closer to reality.
The implementation of a gate without the need for ground state cooling is of particular interest
in view of quantum algorithms that require entangling gates conditioned on quantum state
measurements that do not preserve the ions’ motional quantum state.

When considering gate imperfections, two regimes are of interest: on the one hand, in view
of a future implementation of fault-tolerant gate operations, it is important to investigate whether
the gate operation allows, in principle, for gate errors on the order of 10−4 or below. On the other
hand, for current experiments aiming at demonstrating certain aspects of quantum information
processing, errors on the order of 10−2 are not forbiddingly high. For these experiments, the
prospect of carrying out a gate operation using ions that are not in the vibrational ground
state of the mode mediating the internal-state entanglement is appealing as it might allow to
perform entangling gates after having split a long ion string into shorter segments (the splitting
process has been demonstrated to heat up the ions by not more than a single quantum of
motion [33]). Similarly, quantum state detection by light scattering on a cycling transition heats
up the vibrational mode. However, if done properly, the final mean quantum number stays well
below the average of 20 quanta for which we demonstrated entanglement generation. Therefore,
experiments involving gates after splitting and detection operations might profit from a quantum
gate as demonstrated in section 5.2.

For future ion trap experiments in the fault-tolerant domain, the needs are going to be
different. Here, ground state laser cooling will most likely be indispensable to achieve the
highest fidelity possible. Also ac-Stark compensation based on unbalanced bichromatic beam
intensities should be avoided as the technique tends to complicate the gate Hamiltonian and
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to introduce small additional errors. Even though our current experiments are still limited by
technical imperfections, simulations tell us that in principle it should be possible to achieve gate
errors of 10−4 or below with a Mølmer–Sørensen gate on a quadrupole transition. Gates with
ions in motional states are important in this context as no experiment will cool the ions to the
ground state n = 0 perfectly (in current experiments, the ground state is typically occupied with
a success rate of 90–99%). Our simulations indicate that for ions in n = 1, gate errors could still
be as small as 2 × 10−4 so that gate errors of 10−4 or below seem feasible even without perfect
initialization of the motional mode.

The optical qubit as used here is certainly not the best solution for long time storage of
quantum information. Instead, qubits encoded in two hyperfine ground states whose frequency
difference is insensitive to changes in magnetic field are preferable. These magnetic field
insensitive hyperfine qubits can store quantum information for times exceeding the duration
of the gate operation presented here by more than four orders of magnitude [2]–[4]. However,
on such qubit states no high-fidelity universal gates have been demonstrated so far. Hence, our
next experimental efforts will focus on implementing the Mølmer–Sørensen gate using 43Ca+

ions. By mapping between the hyperfine qubit encoded in the ion’s ground states and the optical
qubit, we will benefit from both of their advantages.

Another interesting perspective of this gate is to create multi-qubit interactions between
more than two qubits. A gate collectively interacting with all ions at the same time [21, 34], in
combination with collective spin flips and a strongly focused off-resonant laser beam inducing
phase shifts in individual ions, constitutes a basis set of Hamiltonians that offers the prospect of
realizing complex multi-qubit operations such as a Toffoli-gate and a quantum error-correcting
algorithm [35].
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