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Abstract
Over the last decade quantum information processing (QIP) has exploded into a major
field of physics, studied both experimentally and theoretically with a universal quantum
computer as a long-term vision. Ions stored as strings in linear Paul traps are among
the most promising systems for constructing a quantum device harnessing the computing
power inherent in the laws of quantum physics.

The two most important challenges in trapped ion quantum computing today are to re-
alize and control systems with large numbers of ions, and to improve and integrate the
operations which serve as basic building blocks, in particular universal gate operations.
Quite surprisingly, even after many years of intense research with different atom species,
it is still not evident which ion is best suited for QIP.

This thesis describes the construction of a new experiment built to study a promising
candidate qubit, namely the calcium isotope 43Ca+. Due to its nuclear spin of I = 7/2,
the isotope 43Ca+ exhibits a relatively complicated level structure, compared to other ions
used so far for QIP. This work develops various strategies to successfully control such a
complex level scheme.

Initially we investigated the hyperfine structure of the 4s 2S1/2 ↔ 3d 2D5/2 quadrupole
transition at a wavelength of 729 nm by laser spectroscopy using a single trapped 43Ca+

ion. We determined the hyperfine structure constants of the metastable level as AD5/2
=

−3.893 12(3)MHz and BD5/2
= −4.239(1)MHz. The isotope shift of this transition with

respect to 40Ca+ was measured to be ∆43,40
iso /(2π) = 4 134 711 720(390) Hz.

Armed with this knowledge, we were able to demonstrate ground-state cooling, robust
state initialization and efficient readout of a qubit encoded in the ground-state hyperfine
structure of a 43Ca+ ion. A microwave and a Raman light field were used to drive qubit
transitions, and the coherence times for both fields were compared. Phase errors due to in-
terferometric instabilities in the Raman field generation were not limiting the experiments
on a time scale of at least 100 ms. Even in the presence of magnetic field fluctuations we
found a quantum information storage time exceeding one second.

We implemented a Mølmer-Sørensen type gate operation, entangling ions with a fidelity of
99.3(1)%. The gate was performed on a pair of qubits encoded in two trapped 40Ca+ ions
using an amplitude-modulated laser beam interacting with both ions at the same time.
A robust gate operation, mapping separable states onto maximally entangled states was
achieved by adiabatically switching the laser-ion coupling on and off. The performance of
a single gate and concatenations of up to 21 gate operations were analyzed. Concerning
the fidelity, this result sets a world record for creating two-qubit entanglement on-demand
irrespective of the physical realization considered.





Zusammenfassung
Die Quanteninformationsverarbeitung (QIV) als experimentelles und theoretisches Teilge-
biet der Physik mit dem universellen Quantencomputer als Fernziel entwickelte sich inner-
halb der letzten Dekade geradezu explosionsartig. Für die technische Realisierung einer
Maschine zur Ausnutzung der den Gesetzen der Quantenmechanik eigenen Rechenkraft
gibt es eine Vielzahl an Möglichkeiten. Ionen, die sich in linearen Paul-Fallen wie auf einer
Perlenschnur aufreihen, haben sich dabei mittlerweile als sehr vielversprechenden Ansatz
etabliert.

Die beiden größten Herausforderungen der Ionenfallen-Experimente zur QIV bestehen
gegenwärtig in der Skalierung zu einer Vielzahl kontrollierter Quantenbits und in der
Verbesserung und Integration der bereits demonstrierten Grundbausteine, insbesondere
universeller Gatteroperationen. Überraschenderweise ist auch nach vielen Jahren inten-
siver Forschung unklar, welche Ionen-Sorte zu diesem Zweck am besten geeignet ist.

Die vorliegende Arbeit beschreibt den Aufbau eines neuen Experiments zur Untersuchung
des Calciumisotops 43Ca+ als attraktiven Kandidaten. Aufgrund des Kernspins von
I = 7/2 hat das Isotop 43Ca+, verglichen mit Atomsorten, die bisher für die QIV verwandt
wurden, ein komplizierteres Energieniveauschema. Diese Arbeit diskutiert die daraus re-
sultierenden Möglichkeiten und beschreibt deren experimentelle Realisierung, so dass diese
Komplexität erfolgreich genutzt werden kann.

Zunächst wurde die Hyperfein-Struktur des 4s 2S1/2 ↔ 3d 2D5/2 Quadrupol-Übergangs
bei einer Wellenlänge von 729 nm mittels Laserspektroskopie an einem einzelnen 43Ca+-
Ion untersucht. Die Hyperfein-Konstanten des metastabilen Energieniveaus wurden zu
AD5/2

= −3.893 12(3)MHz, BD5/2
= −4.239(1)MHz bestimmt. Als Nebenprodukt ergab

sich die Isotopieverschiebung auf diesem Übergang bezogen auf 40Ca+ zu ∆43,40
iso /(2π) =

4 134 711 720(390) Hz.

Mit diesem Wissen gelang es einzelne 43Ca+-Ionen nahe an den Bewegungsgrundzustand
einer Mode zu kühlen, sowie 43Ca+-Hyperfein-Qubits mit hoher Güte zu initialisieren und
auszulesen. Die Kohärenzzeiten dieses Hyperfein-Qubits wurden mit einem Mikrowellen-
feld und einem Raman-Lichtfeld gemessen. Trotz der Anwesenheit magnetischer Störfelder
konnte Quanteninformation über eine Sekunde gespeichert werden. Außerdem ergaben
Messungen, dass die interferometrischen Stabilitätsanforderungen der Raman-Lichtfelder,
auf einer Zeitskala von 100ms keine Limitierung darstellen.

Die Arbeit schließt mit der Beschreibung einer Mølmer-Sørensen Gatteroperation, die
verschränkte Zustände mit einer Güte von 99.3(1)% erzeugte. Dieser Gattertyp wurde
erstmals auf einem optischen Qubit mittels eines amplitudenmodulierten Lasers real-
isiert, der an zwei 40Ca+-Ionen gleichermaßen koppelte. Eine robuste Gatteroperation, die
separable in verschränkte Zustände überführt, wurde durch adiabatisches An- und Aus-
schalten dieses Lasers erreicht. Zur Bestimmung möglicher Fehlerquellen wurden bis zu
21 aneinandergereihte Gatteroperationen analysiert. Bezüglich der erreichten Güte stellt
das Ergebnis die momentan beste deterministische Zwei-Qubit-Verschränkungsoperation
aller bekannter Systeme dar.
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1 Introduction

Two of the greatest advances in physics and technology of the twentieth century have
been the discovery of quantum mechanics and the technological revolution based on clas-
sical computing. Quantum computation aims to marry both of these fields, an idea first
conceived by Paul Benioff [1, 2] and Richard Feynman [3, 4] in the early 1980s.

Computations harnessing the laws of quantum physics were mainly considered as a cu-
riosity rather than a high priority of experimental physics. This changed in 1994 when
Peter Shor discovered an algorithm capable of factoring large numbers much faster than
any method known for classical computers [5]. An experimental realization of Shor’s fac-
toring algorithm for large composite numbers would render public key encryption systems
obsolete, and is therefore of importance to the intelligence agencies. Ironically, quantum
mechanics does not only provide an option for eavesdropping but gives a solution for secure
communication using quantum key distribution schemes [6, 7]. In contrast to the classical
encryption techniques, quantum cryptography is not based on unproven assumptions but
has shown to be unconditionally secure.

Another example where a universal quantum computer is more powerful than a classical
computer is the search algorithm for unsorted databases found by Lov K. Grover [8] in
1996. However, the application that most physicists currently think will be first to surpass
a classical computation is the simulation of one quantum system by another. In contrast
to other possible applications, here the break-even point concerning the number of qubits
needed and the complexity of operations is expected to be much relaxed; in particular
if one concentrates on a certain quantum system omitting the high demands needed to
achieve universality. For instance, the simulation of certain quantum systems consisting of
50 qubits is intractable with current computing technology. A quantum computer would
need only 50 qubits to perform this task.

One of the most relevant findings for realizing a large scale universal quantum computer,
was the discovery of quantum error correction protocols by Peter Shor [9] and Andrew
Steane [10]. These protocols allow the implementation of arbitrary long quantum algo-
rithms with finite errors in the presence of perturbations. Even better, Shor found that
analogous to classical information processing there are methods to perform quantum cal-
culations with arbitrarily small errors even if the operations used exhibit small unknown
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imperfections [11]. This technique called fault-tolerant quantum computing requires a
significant amount of computational overhead though. To achieve fault-tolerance it is cur-
rently expected that the error rates should be smaller than 10−2 to 10−4 [12, 13, 14] per
individual operation.

The harsh requirements for a physical system to realize a universal quantum computer
can be summarized as five points, often referred to as the DiVincenzo criteria [15]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, such as
|0000...〉

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. Qubit-specific measurement capability

In order to create quantum networks and establish quantum communication with quantum
computers, two additional demands need to be fulfilled:

6. Ability to interconvert stationary and flying qubits

7. Ability to faithfully transmit flying qubits between specified locations

Besides trapped ions, there have been a number of physical systems under investigation
to meet these requirements, including: nuclear spins [16, 17], quantum dots [18, 19],
superconducting Josephson junctions [20], photons [21], and neutral trapped atoms [22,
23, 24].

Quantum computing with nuclear spins is most advanced in a sense that the most complex
algorithms involving the highest number of qubits were implemented with this technology
[25]. However, it is clear that this technology cannot be scaled to several ten or hundreds of
qubits without a technology to produce pure states. The implementations based on solid-
state devices come with the appealing promise that once we are able to manufacture and
control the basic building blocks, scaling up to many qubits seems to be straightforward
akin to integrated circuits in classical computing. Great progress has been made in this
field over the last decade. Most recently, Bell-states and a controlled-NOT gate were
realized with pairs of Josephson junction qubits [26, 27]. But the biggest challenge in the
solid-state systems remains to improve the coherence time which is at best on the order
of a few microseconds today [28].

The idea to “imprison” charged particles with static electric fields goes back to K. H. King-
don in 1923 [29]. Frans M. Penning pioneered a trap design based on static electric and
magnetic fields in 1936 [30]. In the 1950s radiofrequency ion traps were invented by Wolf-
gang Paul [31, 32] and in 1980 a single atomic ion was trapped and observed by Neuhauser
et al. [33] for the first time. Trapping of single ions had a huge impact on the development
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of atomic physics including laser cooling [34], atomic clocks [35], and mass spectrometry
[36]. Today there are about 25 research groups working with single ions in radiofrequency
traps.

Long before the application of ion traps for QIP was proposed, three out of the five
DiVincenzo criteria had already been demonstrated with trapped ions in the laboratory:
initialization [37], readout [38, 39, 40] and long coherence times [41]. Moreover, laser
cooled Coulomb crystals with many ions that could serve as a quantum register had been
observed [42, 43, 44, 45] and could be interpreted as the first step towards scaling the
system with well characterized qubits.

The possibility of implementing QIP with trapped ions was first described in the seminal
paper by Ignacio Cirac and Peter Zoller in 1995 [46]. They proposed coupling individual
ions of an ion string by their collective motional degree of freedom with a series of laser
pulses acting on each of the ions at the time. They also showed that scalability of this
approach is possible because the required resources scale as a polynomial rather than an
exponential with the number of qubits. In the same year the basic interaction of this
two-qubit gate was demonstrated [47], setting the starting point of experimental quantum
computing. Since then the field has been exploding and a host of theoretical proposals and
experimental demonstrations has pushed to make trapped ions one of the most promising
technical architectures for QIP [48].

Some of the most important experimental milestones in this field are the investigation of
various universal gate operations [49, 50, 51, 52, 53, 54, 55], the first realization of quantum
teleportation with massive particles [56, 57], a quantum error correction protocol [58], the
creation of multi-particle entangled states of up to eight ions [59, 60, 61], entanglement
purification [62] and the implementation of algorithms such as the Deutsch-Josza algorithm
[63] and Grover’s search algorithm [64]. Moreover, ions trapped in separate traps [65, 66]
have been entangled using ion-photon interaction, a so-called decoherence free subspace
[67] was realized. Finally, a nonlinear beam-splitter [68] has been simulated and partial
readout of an entangled quantum register was demonstrated [69] as well as a quantum
gate and a quantum process tomography [70, 71].

This list attests to the rapid progress that has been achieved to date; but the best prospect
for technological applications in the near future is a small-scale quantum computer, de-
signed to carry out a specific task. In contrast to quantum communication and quantum
cryptography, where the applications are clear and first products are commercially avail-
able, the situation with quantum computing is quite different. Most importantly, even after
many years of intense study and research the “killer application” for quantum information
is not yet known, making it a field of fundamental research rather than a commercial
application.
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Today the two most challenging road blocks towards a “quantum computer-science test-
bed regime” are: first, to realize an experimental setup that can handle tens or even
hundreds of ions; and second, to improve all basic building blocks and operations to enter
the regime of fault-tolerant QIP. The first task is pursued in a joint effort by all ion trapping
groups, where miniaturization and integration of segmented ion traps is rapidly progress-
ing. It is strongly supported by U.S. funding bodies coordinating different approaches
and establishing contacts to microfabrication facilities, such as Lucent Technologies and
Sandia National Laboratories.

The second task comes with two major challenges. State initialization, readout and single-
qubit gates have been demonstrated with sufficiently high speed and errors of 10−2 or less,
also coherence times of many seconds have been shown on various systems. Now, these
building blocks have to be integrated into a single machine, run at the same time and
under the same conditions. The most difficult operation in ion trap quantum computing
remains the implementation of an entangling operation. Many schemes have been studied
but only two of them were able to produce the desired state with an error rate of less than
10−1. A major result of this thesis is the demonstration of a scheme that allows one to
produce Bell states with an error of only 7× 10−3.

Quite remarkably, the ion trap community is still undecided on the question of which ion
species to choose for QIP. It seems even possible that different ion species could serve dif-
ferent purposes. It is clear that the best storage of quantum information can be achieved
with atoms exhibiting a hyperfine structure containing energy levels whose frequency split-
ting does not depend on small changes of the external magnetic field. Therefore, the best
candidates today are 9Be+, 25Mg+, 43Ca+, 87Sr+, 111Cd+, 137Ba+, 171Yb+ and 199Hg+.

The ion 43Ca+ seemed to us particularly attractive for a number of reasons. The Inns-
bruck ion trapping group has great experience working with 40Ca+ for many years. So,
the laser technology required to deal with 43Ca+ is well known. The wavelengths of cal-
cium ions are such that all lasers and optical elements are commercially available. The
hyperfine structure splitting of 3.2 GHz is still within the range that can be bridged by
acousto-optical modulators and the ground-state Zeeman levels offer the ability of long
quantum information storage times. The presence of lower lying D-states enables high fi-
delity initialization, readout and the option to also use the metastable states for quantum
information processing as with 40Ca+ ions.

In this thesis a new experiment is described capable of trapping 40Ca+ and 43Ca+ ions,
in order to explore the possibilities to improve on quantum information storage times and
gate fidelities with calcium ions. The main findings are also published in the references
[72, 73, 74].
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This thesis is structured as follows: chapter 2 reviews the main ideas of quantum infor-
mation and introduces the notation. It describes the atomic structure of the 43Ca+ and
40Ca+ ions and the relevant interaction of these ions with the applied electromagnetic
fields. Chapter 3 describes the new setup that has been built consisting of a vacuum
chamber housing the ion trap, nine solid-state laser systems and two PCs with software
for control of the experiment. Chapter 4 explains a few basic experiments necessary to
characterize the apparatus and the experimental steps required to perform QIP experi-
ments with trapped ions. The chapters 5-7 present the main experimental results of this
thesis. In chapter 5 high precision spectroscopy measurements on the 4s 2S1/2 ↔ 3d 2D5/2

quadrupole transition are described that were carried out at a wavelength of 729 nm by
laser spectroscopy using a single trapped 43Ca+ ion. As a result we obtained the hyperfine
structure constants of the D5/2-states and the isotope shift of the 4s 2S1/2 ↔ 3d 2D5/2

transition with respect to 40Ca+ ions. Chapter 6 describes ground state cooling, robust
state initialization and efficient readout of the 43Ca+ hyperfine clock states as qubits. A
microwave field and a Raman light field are used to drive qubit transitions, and the co-
herence times for both fields are compared. Coherence times of more then 1 s have been
observed. Chapter 7 details the first implementation of a Mølmer-Sørensen entangling
gate on optical qubits. The quantum information is encoded in a S1/2 and a metastable
D5/2-state of 40Ca+. Bell states were created and analyzed with an error as small as
7× 10−3. Moreover, we demonstrate the first creation of highly entangled ions in thermal
motion with this method. Finally, chapter 8 gives a short summary and outlook to the
next possible steps and opportunities.





2 Trapped calcium ions as qubits

This chapter quickly reviews the most basic ideas of quantum computing and introduces
some mathematical notation. Further, the calcium energy level structure is described
including shifts of the energy levels caused by external magnetic fields. Then a number of
options for encoding quantum information in calcium ions are discussed. In case of trapped
ions, quantum information is encoded, processed and read out by applying electromagnetic
fields to the quantum system. Two energy splittings are of importance: the optical domain
with a wavelength of 729 nm and the microwave domain with a frequency of 3.2 GHz. For
both cases the possible electromagnetic field interactions with the ions are detailed.

2.1 Quantum bits

In this section a brief summary of quantum computing and its mathematical description
is given. It is strongly inspired by reference [75] which gives an excellent introduction to
the field and points the reader to numerous references for further reading.

Single qubits

Quantum computing requires quantum information to be stored and manipulated in real
physical systems. To get an idea how this can be achieved, let us have a quick look on the
classical case: In classical computing information is often stored in the magnetization (up
or down) of a certain material. Processing is done with highly integrated electrical circuit
elements like transistors that can be either conducting or non-conducting depending on
the state of other circuit elements. Typically, each element is in either of only two states,
logically expressed as 0 and 1. Similar, to store quantum information, one needs at least
two quantum states, here labeled |0〉 and |1〉. The main difference from the classical case
is that the system can take on not only either of the states but also all linear combinations

|ψ〉 = α|0〉+ β|1〉, (2.1)

where α and β are complex numbers. In analogy to the classical case, such two-level
quantum systems capable of storing quantum information are termed quantum bits or
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Figure 2.1: Bloch sphere representation of a qubit state.

qubits. However, we cannot directly measure α and β with a single shot. Instead, each
measurement finds |0〉 with a probability |α|2 or the state |1〉 with a probability |β|2. As
the probabilities have to sum up to 1 (|α|2 + |β|2 = 1), it is convenient to rewrite Eq. (2.1)
as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
, (2.2)

where θ, φ and γ are real numbers and the latter can be set to zero, since it has no
observable effect. Equation 2.2 allows us to visualize the qubit state |ψ〉 by interpreting
θ and φ as polar coordinates of the so called Bloch vector. The available space for this
unit vector is the surface of a sphere usually referred to as Bloch sphere. An example is
depicted in Fig. 2.1. Unfortunately, this intuition is limited because there is no simple
generalization of the Bloch sphere known for multiple qubits.

Multiple qubits

For N qubits, one possible set of basis states is given by the 2N product states of the
individual qubit states |0〉 and |1〉. Basis states are labeled

|n〉 = |iN 〉 ⊗ ..⊗ |i2〉 ⊗ |i1〉,

where ik ∈ {0, 1} and n =
∑N

k=1 ik 2k−1. The vectors |n〉 form the computational basis in
which every N qubit quantum state can be represented as

|ψ〉 =
2N−1∑
k=0

αk|k〉

with state amplitudes αk, satisfying the normalization condition
∑2N−1

k=0 |αk|2. Already for
a few hundred qubits we end up with such a huge number of state amplitudes αk, that no
classical computer will be able to store, let alone process, them.
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To give an example, any arbitrary two-qubit state can be described by

|ψ〉 = α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉,

where the coefficients αk again fulfill the condition
∑3

k=0 |αk|2.

Measurements

An important prerequisite for quantum computation is the ability to make measurements
on the system. For trapped ions we conveniently make use of an auxiliary state that is
strongly coupled by a dipole transition to one of the qubit levels. By scattering light on
this transition the ions’ internal state is projected (i.e. von Neumann measurements) into
a particular internal energy state where it either scatters light or not1. As a consequence,
to obtain an observable M every measurement process causes an irreversible collapse of
the quantum system onto one of the eigenstates of the measurement operator M̂ with
eigenvalues m. With the corresponding projector Pm this reads

M̂ =
∑
m

mPm.

The probability to obtain a certain output m is given by

p(m) = 〈ψ|Pm |ψ〉,

where after the projection the system is left in the well defined state

|ψ̌〉 =
Pm|ψ〉√
p(m)

.

Typically, a natural measurement basis is given by the structure of the physical system in
which the qubits are encoded. For trapped ions this is strongly related to the energy level
structure of the ions used. A change of the measurement basis can be achieved though
by changing the reference frame with appropriate single and two-qubit rotations prior
to the actual projection. One example where this was realized is the measurement with
respect to a basis of entangled states in the quantum teleportation experiment described
in reference [56].

1This can be also understood as a quantum non-demolition measurement since a large number of photons
can be scattered without further perturbing the measurement result.
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Entanglement

An important example for a two-qubit state is the Bell state2 or EPR pair3,

|Ψ〉 =
|00〉+ |11〉√

2
.

Measuring the first qubit state results in two possible outcomes: in fifty percent of the
cases we measure 0 leaving the post measurement state in |00〉 in the other half of the cases
we obtain 1 leaving |11〉. So, a measurement of the second qubit gives always the same
result as the measurement of the first. We say the measurement outcomes are correlated.
Furthermore, it is not possible to decompose |Ψ〉 into a product of any two states |a〉 and
|b〉. To generalize this property:

Any multi-qubit state that cannot be written as a product of states of its
component systems is called an entangled state, all others are termed separable
or product states.

Many experiments have shown that it is not possible to explain entanglement by a classical
model and is a purely quantum mechanical phenomenon. The peculiar behavior resulting
from the existence of entanglement is nicely described by N. D. Mermin in reference [77],
which is addressed to the general reader. Today, entanglement is considered as a physical
resource, like energy, that can be measured, transformed and purified. The entanglement of
two remote quantum systems can be utilized as a quantum channel in order to exchange
quantum information between two sites that are connected only by a classical channel.
This is the basic idea of quantum teleportation and other computational and cryptographic
tasks. An open question in this context still is how strongly the few quantum algorithms
known today that are in principle able to outperform classical computing (i.e. Shor’s
factorization algorithm [5] and Grover’s database search algorithm [8]) rely on quantum
entanglement.

Quantum gates

The quantum circuit model is a bottom up approach to describe changes of a multi-
qubit system. In analogy to classical computers, quantum circuits consist of wires (where
quantum and classical information is carried around in the system), a set of elementary
quantum gates to manipulate the quantum information and measurements with classical
information as outcomes that can be further processed and fed back. A sketch of a simple
quantum circuit is given in Fig. 8.1 (b).

2named after John Stewart Bell
3named after Einstein, Podolsky and Rosen [76]



2.1 Quantum bits 11

In theory, the simplest operation is the identity, where the state of the system is left
unchanged; this implies that the quantum system neither interacts with the environment,
nor that unwanted interactions within the system occur. This sets already high demands
for physical realizations where the suppression of decoherence is a major task. A prominent
example for unwanted interactions within the system is NMR quantum computing where
considerable efforts (still polynomial though) are spent on the cancelation of permanent
interactions between the nuclear spins and so achieve the identity operation.

Interactions with the quantum system that affect only one of the qubits are called single-
qubit operations. They have to act linearly and preserve the normalization condition. As a
consequence, in the Bloch-sphere representation any single-qubit operation corresponds to
a rotation by certain angle around a real unit vector. Mathematically this is conveniently
described in terms of unitary matrices as for example the Pauli spin matrices

Î =

[
1 0
0 1

]
, σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
. (2.3)

Euler’s rotation theorem implies that any arbitrary single-qubit operation can be achieved
by a concatenation of at most three rotations around two linear independent axis. The
general rotations around x- and the y-axis represented in matrix notation as

Rx(γ) = e−i
γ
2
σx =

[
cos γ2 −i sin γ

2

−i sin γ
2 cos γ2

]
, (2.4)

Ry(β) = e−i
β
2
σy =

[
cos β2 − sin β

2

sin β
2 cos β2

]
, (2.5)

shall serve as an example. If we have an arbitrary single-qubit operation available for
each individual qubit, we require only one type of multi-qubit gate in order to construct
all arbitrary operations, in particular all other multi-qubit gates. Multi-qubit gates with
this property are termed universal gates. A prominent example for a universal two-qubit
gate is the controlled-NOT or CNOT gate. One of the two input qubits is known as the
control qubit and is left unchanged by the operation. The other qubit is called target qubit
and is flipped depending on the state of the control qubit. The matrix representation of
a CNOT gate is

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.6)

where the matrix is notated with respect to the basis order {|00〉, |01〉, |10〉, |11〉}. As
for single-qubit gates, multi-qubit gates have to preserve a total measurement probability
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of one, formally expressed by the fact that they are described by unitary matrices with
U †
gateUgate = Î.

There are many other types of universal quantum gates available. An example is the
Mølmer-Sørensen-gate [78, 79], which was experimentally implemented in the framework
of this thesis to create entangled states. Its matrix representation is

UMS =
1− i

2


1 0 0 i

0 1 −i 0
0 −i 1 0
i 0 0 1

 (2.7)

and introduces population changes of both qubit states simultaneously. The details of the
experimental implementation and the underlying theory are given in chapter 7.

With a certain universal set of quantum gates and projective measurements available,
all other complex computations are constructed by concatenation of these basic building
blocks.

2.2 Atomic structure

Two different calcium isotopes were used for quantum information processing in this the-
sis: 40Ca+ and 43Ca+. This section describes the level structure of both isotopes and their
energy level shifts in external magnetic fields. Various ways to encode quantum informa-
tion are discussed. Since 43Ca+ is very similar to neutral cesium atoms, large parts of this
section are directly taken from reference [80] and adapted to calcium.

Gross structure and wavelengths

Single charged alkali earth ions like Ca+ have a single valence electron and therefore an
energy level structure similar to neutral alkali atoms, in particular the hydrogen atom.
The energy level scheme showing the three lowest orbitals available to the valence electron
of a single 40Ca+ ion is given by Fig. 2.2.

Calcium ions have a gross structure with a ground-state S-orbital. The lowest excited
state is the D-orbital, which is metastable with a radiative live time of 1.17 s [81] cor-
responding to a line width of 0.14Hz. The S1/2 ↔ D5/2 transition is accessible via an
electric quadrupole radiation at 729 nm.

The second lowest excited state is a P -orbital with a radiative lifetime of 7 ns [82]. P1/2

is accessible from the ground-state by electric dipole radiation at 397 nm. This transition
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Figure 2.2: Detailed energy level scheme showing all Zeeman sublevels of the three lowest
orbitals of a 40Ca+ ion. Laser light at 397 nm is used for Doppler-cooling, optical pumping
and detection, the lasers at 866 nm and 854 nm pump out the D-states. An ultra-stable laser
at 729 nm is used for spectroscopy on the quadrupole transition, state preparation, optical
shelving and ground-state cooling. For the experiments described in chapter 7 the states
S1/2(mJ=1/2) and D5/2(mJ=3/2) are chosen to form an optical qubit. The wavelengths in
air, natural lifetimes τ and the branching ratios given are taken from references [82, 83, 81],
the Landé factors gJ result from Eq. (2.9).

has a line width of 21MHz. The P -levels exhibit a branching ratio such that one out of 13
decays populates the D-levels. Therefore, the dipole transitions connecting the P and the
D-levels at wavelengths of 866 nm and 854 nm are of importance to clear out the D-states.

Fine and hyperfine structure splitting

Due to coupling between the orbital angular momentum L of the outer electron and its
spin angular momentum S calcium ions exhibit a fine structure splitting with a total
angular momentum J = L + S. The corresponding quantum number J lies in the range
|L − S| ≤ J ≤ L + S where the magnitude of J is

√
J(J + 1)~ and the eigenvalue of Jz

is mJ~.

For the calcium ground-state (42S1/2), L = 0 and S = 1/2, so J = 1/2 and for the lowest
excited state (32D3/2 and 32D5/2) L = 2 and S = 1/2, so J = 3/2 or J = 5/2; similar
for the second lowest excited state (42P1/2 and 42P3/2) we have L = 1 and S = 1/2,
so J = 1/2 or J = 3/2. The meaning of the spectroscopic notation is as follows: the
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Figure 2.3: 43Ca+ level scheme showing the hyperfine splitting of the lowest energy levels.
Hyperfine shifts δhfs of the levels are quoted in MHz (the splittings are taken from [84, 85] and
section 5.1). Laser light at 397 nm is used for Doppler-cooling, optical pumping and detection,
the lasers at 866 nm and 854 nm pump out the D-states. An ultra-stable laser at 729 nm is
used for spectroscopy on the quadrupole transition, state preparation, optical shelving and
ground-state cooling. The Landé factors gF follow from Eq. (2.10).

first number gives the principal quantum number of the outer electron, the superscript is
2S + 1, the letter refers to L (i.e., S ↔ L = 0, P ↔ L = 1, D ↔ L = 2, etc.) and the last
subscript gives the value of J .

In case of 40Ca+, the total nuclear angular momentum I is zero such that each fine
structure level splits into 2J + 1 Zeeman substates labeled by the magnetic quantum
number −J ≤ mJ ≤ J (see Fig. 2.2). When no external fields are present, these Zeeman
states are degenerate (i.e. they have the same energy).

The isotope 43Ca+ is the only stable calcium isotope with non-zero nuclear spin (see
Tab. A.2). It has a total nuclear angular momentum I = 7/2 ~. The coupling between
total electronic angular momentum J and I, to give a total atomic angular momentum
F=J+I, results in a hyperfine structure. The corresponding quantum number F can take
on the values |J − I| ≤ F ≤ J + I. For the ground-state of 43Ca+ (J = 1/2 and I = 7/2)
this gives rise to two hyperfine states with F = 3 and F = 4. The relevant energy levels
are shown in Fig. 2.3.

Compared to the energy shift due to the fine structure splitting which is as large as 6.7 THz
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for the P -states and 1.8THz for the D-states, the hyperfine energy splittings are much
smaller and it is useful to have a formalism describing these shifts.

The Hamiltonian describing the relevant spin-spin interactions is

Hhfs = AhfsI · J +Bhfs
3(I · J)2 + 3

2(I · J)− I(I + 1)J(J + 1)
2I(2I − 1)J(2J − 1)

,

leading to a hyperfine energy shift of

∆Ehfs =
1
2
AhfsK +Bhfs

3
2K(K + 1)− 2I(I + 1)2J(J + 1)

2I(2I − 1)J(2J − 1)
,

where
K = F (F + 1)− I(I + 1)− J(J + 1),

Ahfs is the magnetic dipole constant, and Bhfs is the electric quadrupole constant (the
latter term does not apply to levels with J = 1/2). The hyperfine splitting of the S1/2

ground-state was measured to a high precision by Arbes et al. [84] with a laser microwave
double resonance experiment in which 43Ca+ ions were stored in a Paul trap. They found
the value for the hyperfine splitting of the ground states to be

ωS1/2
/(2π) = 3 225 608 286.4(3)Hz

corresponding to magnetic dipole constant AS1/2
= −806.402 071 60(8) MHz. The values

for the other energy levels are given in Tab. A.5 and Fig. 2.3.

Interaction with static magnetic fields

Each of the hyperfine energy levels (F ) contains 2F +1 magnetic sublevels that determine
the angular distribution of the electronic wavefunction and are labeled mF . In the absence
of external magnetic fields, these sublevels are degenerate. The Hamiltonian describing the
lifting of this degeneracy due to the interaction with an external magnetic field B= Bez

(assumed to be in z-direction) is given by

HB =
µB
~

(gSS + gLL + gII) ·B

=
µB
~

(gSSz + gLLz + gIIz)Bz,

where gS , gL and gI are the electron spin, electron orbital and the nuclear g-factors that
account for various modifications to the corresponding magnetic dipole moments. The
value for gS has been measured very precisely by Tommaseo et al. [86] to be gS =
2.002 256 64(9). The value of gL can be approximated as gL = 1 − me

mnuc
' 1, which is

correct to lowest order in me/mnuc, where me is the electron mass and mnuc the mass of
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the atomic nucleus. The nuclear factor gI accounts for the entire complex structure of
the nucleus, and has been measured to be 2.050 32(1)× 10−4 [87]. If the energy shift due
to the magnetic field is small compared to the fine structure splitting, then J is a good
quantum number and the interaction Hamiltonian can be written as

HB =
µB
~

(gJJz + gIIz)Bz. (2.8)

Here, the Landé factor gJ is given by

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1)

' 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (2.9)

where the second term is an approximation assuming gS ' 2 and gL ' 1. This expression
does not include corrections due to the complicated multielectron structure of Ca+ and
QED effects.

If the energy shift due to magnetic field is small compared to the hyperfine splittings, then
similarly F is a good quantum number and the interaction Hamiltonian becomes

HB = µBgFFzBz,

where the hyperfine Landé g-factor gF is given by

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)
2F (F + 1)

' gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (2.10)

The approximate expression neglects the nuclear term which leads to errors at the level
of 0.1%, because gI is much smaller than gJ .

For weak magnetic fields, the interaction Hamiltonian HB perturbs the zero-field eigen-
states of Hhfs. To lowest order, the energy of the levels shifts linearly according to

E|F,mF 〉 = µBgFmFBz. (2.11)

The splitting in this regime is called the anomalous Zeeman effect. For stronger mag-
netic fields the interaction term dominates the hyperfine energy and Eq. (2.8) gives the
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appropriate description. The resulting energies are then given to lowest order by

E|J,mJ ,I,mI〉 = AhfsmJmI+

+Bhfs
3(mJmI)2 + 3

2mJmI − I(I + 1)J(J + 1)
2J(2J − 1)I(2I − 1)

+

+ µB(gJmJ + gImI)Bz.

The energy splitting in this regime is called the Paschen-Back effect.

For most cases there exists no handy approximation for intermediate fields, so one must
numerically diagonalize

Htot = Hhfs +HB. (2.12)

One exception are the stretched states, defined by mF = ±(I + J) which are eigenstates
of the Hamiltonian (2.12). Their energy changes linearly with the magnetic field as

E|J=1/2,mJ ,I,mI〉 = ∆Ehfs
I

2I + 1
± 1

2
(gJ + 2gII)µBB. (2.13)

Another notable exception is the Breit-Rabi formula [88], which applies to the S1/2 ground-
state manifold:

E|J=1/2,mJ ,I,mI〉 = − ∆Ehfs

2(2I + 1)
+ gIµB(mI ±

1
2
)B ± ∆Ehfs

2

(
1 +

4(mI ± 1
2)x

2I + 1
+ x2

)1/2

(2.14)
with the hyperfine splitting ∆Ehfs = Ahfs(I + 1/2) and x = (gJ − gI)µBB/∆Ehfs. Equa-
tion 2.13 can help to avoid sign ambiguity in evaluating Eq. (2.14). Figure 2.4 shows
the resulting energy dependence of the 43Ca+ 4S1/2 ground level hyperfine structure for
magnetic fields up to 200G.

When it comes to choosing two of the energy levels as a qubit, the sensitivity to external
magnetic field fluctuations is of major importance. In previous experiments with 40Ca+

ions the quantum information was stored in one of the ground-state levels S1/2(mJ =
±1/2) and one of the metastable D5/2(mJ = ±1/2,±3/2,±5/2) states. Since the energy
difference between the qubit states lies in the optical domain, this type of encoding is also
termed optical qubit. Similar to Eq. (2.11) we obtain a differential splitting of the qubit
states

∆ES↔D = µB(mSgS1/2
−mDgD5/2

)Bz.

with a Landé g-factor gD5/2
' 1.2. In the best case the lowest sensitivity one could get

with respect to changes of the magnetic field is 560 kHz/G. A fundamental limitation of
this optical qubit is of course the finite lifetime of the metastable state. If we choose two
ground-state Zeeman levels instead, the spontaneous decay problems are avoided at the
price that sensitivity to external magnetic field fluctuations worsens to 2.8 MHz/G.
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Figure 2.4: (a) 43Ca+ 4S1/2 ground level hyperfine structure in a low external magnetic
field (anomalous Zeeman regime). (b) The two microwave clock states S1/2(F = 4,mF = 0)
and S1/2(F = 3,mF = 0) exhibit only a second order Zeeman shift. The sensitivity to external
magnetic field fluctuations is given by the parabola’s slope of 2.4 kHz/G2×B. For a magnetic
field of 150 G the transition between the states S1/2(F = 4,mF = 1) and S1/2(F = 3,mF = 0)
gets also field independent to the first order. The inset (c) shows the energy splitting for this
transition as a function of the magnetic field. The slope of the parabola is the same as for the
clock states.

For stability under magnetic field fluctuations, 43Ca+ offers an important advantage. From
the Breit-Rabi formula (2.14) we directly obtain that the two mF = 0 sublevels of the two
hyperfine ground states exhibit no first-order Zeeman shift. This property is also useful
when building a clock, hence they are often called clock states. The differential shift of
these two states is given by

∆ω0↔0 =
(gJ − gI)2µ2

B

2~∆Ehfs
B2 ' 2π × 1.2 kHz/G2 ×B2

in a second order approximation of the magnetic field strength. The linear dependence
vanishes completely only for zero fields and increases then linearly with 2.4 kHz/G. Due to
the degeneracy of the magnetic sub-levels at zero field they cannot be resolved spectrally.
Still, for a magnetic field of 1 G the sensitivity is suppressed by more than a factor 230
compared to the optical qubit in 40Ca+.

It is also possible to find field-independent transitions in the ground-state manifold for a
non-zero field. The one occurring for the lowest magnetic field is at 150 G between the
states S1/2(F = 4,mF = 1) and S1/2(F = 3,mF = 0). The second order approximation
for the frequency change around this point is the same as for the clock states. For both
cases the change in transition frequency is plotted over the magnetic field in Fig. 2.4 (b).
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2.3 Single ion coherent operation

The standard circuit model of quantum computing requires a set of universal quantum
logic gates for the implementation of arbitrary quantum operations. An example is a two-
qubit entangling operation in combination with arbitrary single-qubit gates. This section
details atom-field interactions in order to perform single-qubit operations on optical and
hyperfine encoded qubits in 43Ca+ ions by means of microwave and laser radiation. A
two-qubit entangling operation is discussed in chapter 7.

2.3.1 Single-qubit rotation

Any two-level quantum system can be considered as a qubit. For the mathematical treat-
ment it is convenient to exploit the analogy to a particle with a spin of 1/2. We assign
the label |↓〉(|↑〉) to the lower (upper) energy level describing a pseudo-spin. For trapped
ion based quantum bits the frequency difference between the two qubit levels can range
from a couple of kHz (i.e. for two neighboring Zeeman levels) to the optical frequency
domain which is hundreds of THz. The further discussion is restricted to the interaction
of a single ion with these two internal energy levels plus one harmonic oscillator mode that
models the external motion of the ion in the trapping potential. The Hamiltonian in the
absence of interaction with further electromagnetic fields is then given by

H0 =
1
2

~ω0σz + ~ωz
(
a†a+

1
2

)
where ~ω0 denotes for the energy splitting of the qubit levels. Moreover, σz is the Pauli
spin matrix, the energy splitting of the harmonic oscillator level is ~ωz and the creation
(annihilation) operators for this mode is denoted a† (a). The state vector of the system
can be expressed as

|Ψ(t)〉 =
∞∑
n=1

(a↑,n(t)|↑〉+ a↓,n(t)|↓〉) |n〉

with the harmonic oscillators eigenstates |n〉 of energy n~ωz. For the moment we assume
that single photon transitions between the two qubit levels can be achieved through an
electric dipole coupling. The interaction between the applied electromagnetic field E and
the qubit levels is described by the Hamiltonian

HI(t) = −d ·E = −d · εE0 cos(−ωl t+ k z̃ + φ), (2.15)

where d denotes the dipole operator. The field has a frequency ωl, an amplitude E0 at
the ion’s position and a polarization ε. The propagation direction of the field, represented
by the vector k, is assumed along the trap axis in z-direction parallel to the harmonic
oscillator mode. z̃ is the ions displacement from the equilibrium position and φ denotes
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an offset phase of the field. The dipole operator is proportional to σ+ + σ− where σ+ ≡
|↑〉〈↓| and σ− ≡ |↓〉〈↑|. With the creation and annihilation operators, Eq. (2.15) becomes
after a rotating wave approximation

HI = ~Ω
(
eiη(a+a

†)σ+e−i(ωlt+φ) + e−iη(a+a
†)σ−ei(ωlt+φ)

)
, (2.16)

where the coupling strength is given by Ω, also referred to as Rabi frequency. Equa-
tion (2.16) contains all details about the exact interaction of the applied field and the ion.
Moreover, the Lamb-Dicke parameter is defined as η ≡ kz0 = k · ez

√
~

2Mωz
and describes

the ability of the field to couple to the harmonic oscillator mode along z-direction where
M denotes the mass of the ion. It relates the spread z0 of the ion’s wave function to the
wave vector k of the applied field. In the Lamb-Dicke limit defined by η2(2n + 1) � 1
the extension of the ion’s wave function z0 is much smaller than the applied wavelength.
From Eq. (2.16) we then obtain in the interaction frame

HI = ~(Ωeiφ)σ+e−i(ωl−ω0)t
(
1 + iη(ae−iωzt + a†eiωzt)

)
+ h.c. (2.17)

where higher order sidebands were omitted.

2.3.2 Coupling internal and external degrees of freedom

A coupling of the external field to the motion is required for laser cooling and conditional
two-qubit operations. For η > 0 the evaluation of Hamiltonian (2.17) is considered in the
resolved sideband limit with Ω � ω0. Regarding the frequency ωl of the applied field,
HI exhibits three spectral components where the coupling strength Ωn,n′ of the transition
|↓〉|n〉 ↔ |↑〉|n′〉 depends on the population of the harmonic oscillator mode n (n′) of the
involved states:

1. For ωl = ω0 no coupling to the motion is achieved and ∆n = 0. The coupling
strength for these carrier transitions is approximately given by Ωn,n = Ω(1 − η2n)
and the interaction Hamiltonian is given by H(c)

I = ~Ωeiφσ+ + h.c.

2. For ωl = ω0 − ωz each transition |↓〉→ |↑〉 is accompanied by a decrease in the
population of the harmonic oscillator (|n〉 → |n − 1〉). The coupling strength for
these red sideband transitions is approximately given by Ωn,n−1 = η

√
nΩ and the

interaction Hamiltonian is given by H(rsb)
I = ~Ωn,n−1 a e

iφσ+ + h.c.

3. For ωl = ω0 + ωz each transition |↓〉→ |↑〉 is accompanied by an increase in the
population of the harmonic oscillator (|n〉 → |n + 1〉). The coupling strength for
these blue sideband transitions is approximately given by Ωn,n+1 = η

√
n+ 1Ω and

the interaction Hamiltonian is given by H(bsb)
I = ~Ωn,n+1 a

† eiφσ+ + h.c.
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Red sideband transitions can be exploited in order to cool the ions by reducing the pop-
ulation of the harmonic oscillator. Carrier transitions are of particular importance since
they are used for single-qubit spin rotations and state transfers. For the further discussion
we neglect the coupling to the motion by setting the Lamb-Dicke parameter to zero (e.g.
k ⊥ ez). Then the Hamiltonian (2.17) further simplifies to

HI = ~Ω
(
σ+e−i(δω t+φ) + σ−ei(δω t+φ)

)
,

with the detuning δω = ωl−ω0 of the field from the qubit resonance. The solution to this
problem is given by

ċ↑ = −iΩe−i(δω t+φ)c↓

ċ↓ = −iΩei(δω t+φ)c↑,

where cm(t) are the amplitudes of the spin states |↑〉 and |↓〉. In case of a resonant
interaction (δω = 0) the time evolution of the quantum state can be expressed in the
energy basis by |ψ(t)〉 = Û(t)|ψ(0)〉, where

Û(t) =

(
cos(Ωt) −ie−iφ sinΩt

−ieiφ sinΩt cos Ωt

)
= R(θ, φ).

With this interaction at hand, arbitrary single-qubit rotations can be carried out as visu-
alized in the Bloch sphere picture in Fig. 2.1. The direction of the rotation axis is given
by cos(φ)ex + sin(φ)ey and lies within the equatorial plane. When the field is applied for
the first time, φ can be set to zero. For all subsequent pulses the axis of rotation is then
referenced to the first pulse by means of the relative phase of the external field. If we
set for instance φ = π we directly realize the single-qubit rotations around the y-axis as
described by Eq. (2.5). The rotation angle θ is then given by the interaction strength Ω
and the duration t of the interaction.

The next three sections discuss the coupling strengths Ω and the corresponding coupling
to the harmonic oscillator mode η for the three different fields that were experimentally
studied.

2.4 Quadrupole transition

In the experiments extensive use is made of the laser at a wavelength of 729 nm. It can
be used to coherently drive transitions between the S1/2 and D5/2-state manifold, for
instance to initialize the hyperfine qubit. Moreover, quantum information can be encoded
in a metastableD5/2-state and one of the S1/2-states as has been done with 40Ca+ for many
years now. The laser-ion interaction for this optical qubit in 40Ca+ has been discussed
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in detail in the references [83, 89]. Here the results are briefly summarized including
particularities concerning 43Ca+.

2.4.1 Rabi frequency

The transition under consideration is dipole forbidden. Instead the gradient of the laser
field applied couples to the induced electric-quadrupole moment Q̂

HI = −Q̂∇E(t).

The coupling of the laser to the ion can be expressed in terms of the Rabi frequency as

Ω =
∣∣∣∣eE0

4~
〈S1/2, F,mF |(ε · r)(k · r)|D5/2, F

′,m′
F 〉
∣∣∣∣ , (2.18)

where E0 is the electric field amplitude, r is the position operator of the valence electron
relative to the atomic nucleus. For quadrupole transitions the selection rules allow ∆m =
mF −m′

F = 0,±1,±2. In the case of 43Ca+ also ∆F = FS − FD = 0,±1,±2 has to be
fulfilled. The effective coupling strength Ω for a certain transition depends on the atomic
transition properties and the geometry of the magnetic field, the polarization vector ε and
the laser beam direction n = k/|k|. These can be combined into an effective coupling
constant

g̃ ≡

∣∣∣∣∣∣√(2J ′ + 1)(2F + 1)(2F ′ + 1)

{
J J ′ 2
F ′ F I

}
2∑

q=−2

(
F ′ 2 F

m′ q −m

)
c
(q)
ij εinj

∣∣∣∣∣∣
(2.19)

where the term in round (curly) brackets represents Wigner 3(6)-j symbols. The sum over
q is only non-zero for q = m−m′. The second rank tensor4 c(q)ij takes into account both the
radiative pattern and the quantization axis defined by the direction of a small magnetic
field. Equation 2.18 turns then into

Ω =
eE0

4~

√
15
cα

ΓD5/2

k3
g̃

with the fine structure constant α, the speed of light c, the electron charge e and the
spontaneous decay rate ΓD5/2

. Neglecting the geometry and polarization dependence by

4defined as:

c(1) = − 1√
2
(1,−i, 0), c(0) = (0, 0, 1), c(−1) =

1√
2
(1, i, 0)

c
(q)
ij =

√
10

3
(−1)q

1∑
m1,m2=−1

(
1 1 2

m1 m2 −q

)
c
(m1)
i c

(m2)
j
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omitting the factor c(q)ij εinj , the values of the coupling strengths g̃ for 43Ca+ are listed in
Fig. A.1.

Assuming an axial center of mass (COM) mode trapping frequency ωz/(2π) = 1.2 MHz
and an angle between trap axis and laser beam of 45◦ we attain a single ion Lamb-Dicke
parameter of η = 0.06.

2.5 Raman interactions coupling hyperfine structure ground

states

The following section discusses quantitatively the aspects of the light-atom interaction on
the hyperfine structure of the 43Ca+ ground-state with a Raman-type laser setup. Param-
eters like laser power, detuning and geometry have to be set to find a good compromise
between a number of, often contradictory, requirements. The choice of the laser detuning
from the P -levels, for example, is guided by at least three considerations: The spontaneous
emission rate due to non-resonant excitations should be minimal, the light shifts caused
by the Raman beams have to be controlled, and the Raman transition rate has to be suffi-
ciently large. This has been detailed in the references [90, 91] for a number of different ion
species. In the following three sections their results are summarized regarding coupling
strength, light shifts and spontaneous emission that are relevant to the experiments done
with 43Ca+. Parts of the text of this section are taken from reference [92].

2.5.1 Resonant Raman transitions: Rabi frequencies and geometries

The goal of this section is to calculate the properties of Raman transitions in the ground-
state of 43Ca+, i.e. the Rabi frequencies and their dependence on laser frequencies and
polarizations. In preparation, we first consider a generic two-state system |0〉≡|j0,m0〉
and |1〉≡|j1,m1〉 with intermediate state |i〉≡|ji,mi〉 to which dipole amplitudes exist.
The light fields are described as plane waves of the form

E(r, t) = Eε cos(−Fωlt+ k · r + φ),

evaluated at the position of the ion r. We make the rotating wave approximation, and set
the phase φ = 0 for now. Two such light fields E1 and E2 are assumed in the resonant case
where the detuning δR ≡ ω0 + ω1 − ω2 of the lasers is equal to the energy separation ω0

of |0〉 and |1〉. In the regime where Ω � ω0, with Ω being the largest Rabi frequency due
to coupling to the intermediate level, the Hamiltonian of this three-level system can be
written in terms of an approximate, “effective Hamiltonian” that captures the dynamics of
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the system but only acts on the subspace {|0〉, |1〉}. The resulting effective Rabi frequency
is given in terms of the individual Rabi frequencies

Ω1 =
1
2~
E1〈0|d · ε(1)|i〉

Ω2 =
1
2~
E2〈1|d · ε(2)|i〉

as
Ω =

Ω1Ω∗
2

∆
=
E1E2

4~2∆
〈0|d · ε(1)|i〉〈i|d · ε(2)|1〉,

or, with the inclusion of magnetic sublevels,

Ω =
E1E2

4~2∆

∑
mi

〈0,m0|d · ε(1)|i,mi〉〈i,mi|d · ε(2)|1,m1〉

To calculate the Raman coupling strength for 43Ca+ regarding the involved frequencies
we refer to the conventions of Fig. 2.5 (a). In general the two levels are of the two 4S1/2

hyperfine manifolds (F = 3 and F = 4). But in the end we are mostly interested in
the clock states with mF = 0 because of their insensitivity to magnetic field fluctuations.
The Raman Rabi frequency is given by the coherent sum of the couplings via all available
intermediate states. In the case of 43Ca+ ions these are the P1/2 and P3/2 levels including
their hyperfine structure and Zeeman levels. We therefore have to calculate the sum

Ω =
1

4~2

∑
J= 1

2
, 3
2

I+J∑
F=|I−J |

F∑
m=−F

(
E1E2

(∆J + ωhfs(J, F ))
〈0|d · ε(1)|J, F,m〉〈J, F,m|d · ε(2)|1〉

)
(2.20)

where again only resonant transitions (δR = 0) are considered.

The scalar product can be written as

d · ε =
+1∑
s=−1

(−1)sdsε−s,

where ds (and εs) are the spherical components given by

d±1 =
1√
2
(∓dx − idy)

d0 = dz

The conjugated spherical components can be rewritten according

d∗q = (−1)qd−q

ε0 refers to a π-polarized laser field, whereas ε± indicate σ±-polarized fields, respectively.
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Figure 2.5: (a) Sketch of the energy levels relevant for the calculations for stimulated Raman
transitions. Eventually, we are mostly interested in the case where the quantum information
is encoded in two states of the S1/2 ground-state manifold labeled |↓〉≡|F = 4,mF = 0〉 and
|↑〉≡|F = 3,mF = 0〉. The hyperfine splitting of the excited states is not considered in the
calculation. (b) Schematic of a possible beam geometry and polarizations for which the
coupling between laser field and qubit transition is maximized. In this configuration the
Lamb-Dicke parameter is 0.2 for an axial COM mode trapping frequency of ω/(2π) = 1.2 MHz.

Now we can factor out the angular dependence and write the matrix element of Eq. (2.20)
using the Wigner-Eckart theorem as

〈0|d · ε(1)|J, F,m〉〈J, F,m|d · ε(2)|1〉 =

〈0||d||J, F,m〉〈1||d||J, F,m〉(2F + 1)×
1∑

q=−1

(−1)q+F−1+m0

(
F 1 F0

m q −m0

)
ε
(1)
−q

1∑
s=−1

(−1)s+F−1+m1

(
F 1 F1

m s −m1

)
ε
(2)
−s

where the doubled bars indicate that the matrix element is reduced. This expression is
only non-zero if q = mi −m0 and s = m1 −mi.

To obtain a concise expression for the Rabi frequency, we make some additional approx-
imations and substitutions. First, we neglect ωhfs(J, F ) because it is much smaller than
the detunings ∆ used in the experiment. Also, we express the reduced hyperfine matrix
elements that show up in Eq. (2.20) by their corresponding fine structure matrix elements
[80]

〈F ||d||F ′〉 =

(−1)J+I+F ′+1〈J ||d||J ′〉
√

(2F + 1)(2F ′ + 1)

{
J F I

F ′ J ′ 1

}
.

Finally, we introduce the coupling constant gi

gi =
Ei
2~
〈P3/2, F = 5,mF = 5|d · σ+|S1/2, F = 4,mF = 4〉 (2.21)
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with a right circular component of the dipole operator d · σ+. Plugging all of this into
Eq. (2.20), we get the following equation for a resonant carrier Rabi frequency in 43Ca+

between the hyperfine clock states

Ω0↔0 =
1
2
|Λ0,0| g1g2

(
ε
(1)
−1ε

(2)
−1 − ε

(1)
1 ε

(2)
1

) ωF

∆(∆− ωF)
, (2.22)

where ωF/(2π) = 6.7 THz denotes the fine structure splitting of the P -states and ΛmF ,mF ′

is the corresponding Clebsch-Gordan coefficient representing the relative coupling strength
of the possible transition. The explicit values for |ΛmF ,mF ′ | are given in Tab. 2.1.

The polarization dependence tells us important facts about the geometry of the experi-
ment: First of all, π-polarized light (ε(1)0 , ε(2)0 ) does not contribute to the Rabi frequency
as given in Eq. (2.22). This makes sense because for such light, one of the two matrix ele-
ments of each coupling in sum Eq. (2.20) has to be of the form 〈F,mF = 0|z|F,mF = 0〉,
which vanishes because the corresponding 3-j symbol(

F 1 F

0 0 0

)
= 0.

Therefore, both beam polarizations must have a component perpendicular to the quanti-
zation axis.

Furthermore, the two beam polarizations must have components which are mutually or-
thogonal because otherwise the two terms in ε(1)−1ε

(2)
−1−ε

(1)
1 ε

(1)
1 cancel. A possible geometry

for beams with perpendicular k-vectors is given in Fig. 2.5 (b).

We can classify the possible Raman transitions between F = 4 and F = 3 by the change in
the magnetic quantum number ∆m. We find that the following polarizations are required:

∆m polarizations

0 ε
(1)
−1ε

(2)
−1 − ε

(1)
1 ε

(2)
1

+1 ε
(1)
0 ε

(2)
−1 − ε

(1)
1 ε

(2)
0

−1 ε
(1)
−1ε

(2)
0 − ε

(1)
0 ε

(2)
1

±2 — forbidden —

In case the Raman beam difference frequency δR is set to plus (minus) the harmonic
oscillator mode frequency the interaction Hamiltonian (2.17) is valid and oscillations on
the blue (red) sideband can be driven. In the experiment, we use two different geometries
for the Raman beams. For two copropagating laser fields the Lamb-Dicke parameter is
negligible and no coupling to the motional sidebands is obtained. In the other configuration
(see Fig. 2.5 (b) the laser beams’ k-vectors enclose an angle of 90◦ and the resulting k-
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hyperfine ground-state transition (F = 4,mF ) ↔ (F ′ = 3,mF ′)
0↔0 0↔1 1↔0 1↔1 1↔2 2↔1 2↔2 2↔3 3↔2 3↔3 4↔3

2
3

1√
6

√
5
18

√
5
12

√
1
12

√
5
12

√
1
3

1
6

√
7
12

√
7

6

√
7

3

Table 2.1: Clebsch-Gordan coefficients |ΛmF ,mF ′ | representing the relative coupling strength
for the possible Raman and microwave transitions in the 43Ca+ ground state manifold (F =
4,mF ) ↔ (F ′ = 3,mF ′). Coefficients other than the ones listed directly follow from the
relation |ΛmF ,mF ′ | = |Λ−mF ,−mF ′ |

vector of both beams added is parallel to the trap axis. That results in a Lamb-Dicke
parameter η of 0.2 for an axial COM mode trapping frequency of ωz/(2π) = 1.2 MHz.

2.5.2 Numerical evaluation

For now we assume that the two laser fields are equally strong (E1 = E2 ≡ E). Then the
coupling constants g1 = g2 ≡ g can be linked to atomic constants and the field amplitudes
by

ΓP
g2

=
4~ω3

3/2

3πε0c3E2

where ω3/2 is the frequency of the transition S1/2 ↔ P3/2. Here we assumed an equal decay
rate ΓP which leads to a few percent error as the rates are slightly different (Γ(P1/2 →
S1/2) = 1/(7.7 ns) and Γ(P3/2 → S1/2) = 1/(7.4 ns) [83]).

The electric field strength E is linked to the laser power P in the center of a Gaussian
beam with waist size w0 by

E2 =
4P

πw2
0ε0c

If we choose a detuning ∆ = (
√

2−1)ωF where detrimental scattering is largely suppressed
(see below), and assume polarizations such that ε(1)−1ε

(2)
−1 − ε

(1)
1 ε

(2)
1 = 1, we find for the

resonant carrier Rabi frequency on the clocks states

Ω0↔0 =
9
2

c2 ΓP
~ω3

3/2ωF

P
w2

0

= 2π × 0.16 MHz× P
w2

0

×
[
10µm2

1 mW

]
.

The time it takes for a full population transfer is usually referred to as the corresponding
π-time and given by τπ = π/(2Ω).
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2.5.3 Light shifts

The off-resonant light shift of a level |m〉 - also termed AC-Stark shift - due to coupling
with a laser of field strength E to level |j〉 is given by

δ(m) =
|E|2

4~2∆
|〈m|d · ε|i〉|2.

Here the detuning of the laser ∆ is assumed large compared to the intermediate level’s
decay rate ΓP .

In case of 43Ca+, we have to sum over all the intermediate levels and get for the AC-Stark
shift of the level |m〉 of each of the laser beams i

δ(m)(i) =
1

4~2

∑
j

(
E2
i

∆j
|〈m|d · ε(i)|j〉|2

)
.

As with calculating the Rabi frequency, we neglect the hyperfine splitting in the excited
state as an approximation which holds for larger laser detunings ∆. When using the
coupling constants of Eq. (2.21) we obtain for the differential light shift of the clock state
qubit due to both Raman beams

δ0↔0 =
g2
3

(
1

∆ + ω0
− 2

∆− ωF
+

2
∆ + ω0 − ωF

− 1
∆

)
+

+
g1
3

(
1

ω0 −∆
+

2
∆− ωF

− 2
∆− ω0 − ωF

+
1
∆

)
≈− (g2

1 + g2
2)

3
ω0

(
1

∆2
+

2
(∆− ωF )2

)
,

where the approximation holds for ω0 � ∆, ωF . The differential shift is independent from
the polarization of the Raman beams.

2.5.4 Spontaneous photon scattering

While the ion is in either one of the two qubit states, spontaneous decay can be neglected
completely. However, during Raman transitions the ion is off-resonantly excited to the
P -levels, which decay rather quickly. In a two-level system, the average probability for
the ion to be found in the excited state is given by the ratio of the light shift δ and the
laser detuning ∆. A multiplication with the decay rate ΓP of the excited state gives an
estimate of the decoherence rate RSE due to spontaneous decay. This spontaneous decay
limits the coherent operations in a fundamental way since both decay rate and coherent
transition rate scale with g2

i .
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With the approximation ω0,ΓP � ωF , |∆| the average spontaneous decay rate during the
Raman interaction is

RSE =
ΓP
3

(g2
1 + g2

2)
(

1
∆2

+
2

(∆− ωF)2

)
In order to avoid scattering during the coherent operation the ratio

RSE/|Ω| =
(
g2
1 + g2

2

)
ΓP

g1g2(ε
(1)
−1ε

(2)
−1 − ε

(1)
1 ε

(2)
1 )

(
2

∆− ωF
− 1

∆
+

3
ωF

)

has to be minimized. This can be achieved by choosing equal intensities in both Raman
beams and proper polarizations (e.g. ε(1)−1 = ε

(2)
−1 = −ε(1)1 = ε

(2)
1 = 1/

√
2). If we set the

Raman detuning to ∆opt = (1−
√

2)ωF the probability of spontaneous emission PSE during
a carrier π-pulse is

PSE =
2
√

2 π ΓP
ωF

= 3× 10−5.

In order to achieve a π-time of 1µs Raman beams with a waist of 10µm would require
1.6 mW of laser power for this detuning. The differential AC-Stark shift would then be
δ0↔0 = −4

√
2 |Ω|ω0/ωF = −2π × 680 Hz.

In addition to this inelastic scattering also elastic scattering events can occur. It has been
shown though that these will not lead to decoherence [93].

2.6 Microwave transitions

The spontaneous scattering problem is not present when driving microwave transitions on
the 43Ca+ hyperfine ground-state. The magnetic dipole coupling of the ion to electromag-
netic radiation in the microwave domain can be expressed in terms of a Rabi frequency
as

ΩMW =
∣∣∣∣ 1
2~
〈S1/2, F = 4,mF |(µ ·BMW)|S1/2, F

′ = 3,m′
F 〉
∣∣∣∣

with the ion’s magnetic dipole moment µ and the magnetic field amplitude BMW of the
microwave radiation.

Transitions where the magnetic quantum number is not changed (∆m = 0) are driven by a
π-polarized AC magnetic field, whereas for transitions with a change in magnetic quantum
number by one (∆m = ±1) a σ± polarized field is needed. The relative strengths of the
transitions are given by the corresponding Clebsch-Gordan coefficients and are the same
as for the Raman transitions given in Tab. 2.1.
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For typical axial COM mode trapping frequencies of ω/(2π) = 1.2 MHz and the hyperfine
splitting of the ground-state ω0/(2π) = 3.2 GHz, the Lamb-Dicke parameter is ηMW '
10−6. The coupling to the first motional sideband relative to the carrier is suppressed by
that amount, unless large magnetic field gradients are applied [94]. This makes the use of
this coupling impractical. Another drawback concerning the usage of microwave radiation
for QIP is that addressing of single ions cannot be achieved by focusing the radiation
since the wavelength is orders of magnitude bigger than typical ion distances. Despite
the fact that this could be circumvented by applying large magnetic field gradients, such
that transitions of ions at different sites can be spectrally resolved, we discard this as a
impractical solution because at least some of the ions would experience fields where the
transitions become rather sensitive to external magnetic field fluctuations. In addition,
when moving the ions within the trap, phase tracking would be challenging, too.

Although, microwave driven qubit transitions are a valuable tool for example to study
mechanisms of decoherence present for Raman lasers (see section 6.4).



3 Experimental setup

For the experiments reported below a new setup has been constructed consisting of three
major building blocks: the ion trap, the lasers and the computer control. The experiment
was set up on two optical tables, one accommodating the photoionization lasers, the
cooling laser and the repumping lasers as well as their frequency references. The other
optical table carries the trap setup and ion detection, the laser source for the Raman
beams and a titanium-sapphire laser for the quadrupole transition, including its frequency
reference. All laser sources - except the Raman beams - are linked to the ion trap part
of the experiment by single-mode glass fibers. The experiment resides at the Institut für
Quantenoptik und Quanteninformation in Innsbruck, Austria.

3.1 Linear ion trap and radiofrequency drive

One of the big advantages of trapped ions as a physical implementation of QIP is the high
amount of control for initialization, readout and manipulation of internal and external
degrees of freedom by using focused laser beams and microwave radiation. At the same
time these interactions can be switched off almost completely and also environmental
perturbations are strongly suppressed. The latter is usually achieved by suspending the
ions in a trap, which is mounted in an ultra high vacuum environment. Our experiments
are performed either with a single or a pair of calcium ions held in a linear Paul trap
consisting of two tips and four blade-shaped stainless steel electrodes [95, 96]. A picture
and schematic drawings of the trap can be seen in Fig. 3.1. A trap of the same type
has been intensively investigated over the past years in another experiment of the group
and is quite well understood. It has reasonably high trapping frequencies in the radial
and axial direction. This design was chosen because such a structure can be machined
with higher precision than rod-like electrodes which were used in earlier experiments. One
advantage over more modern micro-machined segmented traps is the low heating rate (see
section 4.5) and ease of optical access.

In order to attain large secular frequencies, two of the trap blades are held at ground
while the two others are fed a radiofrequency high voltage Vrf(t). Voltage enhancement is
achieved by the use of a helical resonator with a silver plated helix exhibiting a quality
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Figure 3.1: (a) Picture of the linear Paul trap used for the experiments. The four blade-
electrodes are connected with twisted OFHC copper wires and the DC-electrodes by a Kapton
insulated wire. (b) Schematics of the trap construction. Two of the blade-shaped electrodes
(A) are connected to ground, the other two are supplied with radiofrequency high voltage.
The minimal distance between the radial electrodes and the ions is r0 = 0.8 mm. The two tip
electrodes (B) are connected to high positive voltages of up to 1.5 kV. Moreover, compensation
electrodes (C) are placed close to the trap center such that electric stray fields in radial
directions can be compensated. The minimal distance from these electrodes to the ions is for
the one(s) on the top (side) 7.3 mm (7.7 mm). The top one is also used to guide microwave
and radiofrequency signals close to the ions. All measures of distances and radii are given in
mm.

factor of Q = 300. An input signal with a trap drive frequency of Ωrf/(2π) ' 25.5 MHz is
produced by a frequency synthesizer1and then amplified2 to 5-13W radiofrequency power
which is resonantly coupled into the helical resonator attached to the trap electrodes. By
this means a two-dimensional electric quadrupole field is generated which provides radial
confinement for a charged particle. In case of hyperbolic trap surfaces the time varying
quadrupole potential Φrf in the x, y− or radial plane is given by

Φrf(x, y, t) = Φ0
x2 − y2

2r20
cos(Ωrf t), (3.1)

where r0 = 0.8 mm is the minimal distance from the trap center to the blade-electrodes.
Even though the radial electrodes are rather shaped like blades than having a hyperbolic
form, Eq. (3.1) can serve as a good approximation in particular for small excursions.

In order to confine the ions in axial direction (along ez), two stainless steel tips are
placed L = 5 mm apart in the trap’s symmetry axis and are held at a positive voltage
Utip = 500 − 1500 V. The electrodes are electrically isolated by Macor ceramics spacers
which assure a 20µm tolerance in the positioning of the four blades and the tip electrodes.
Each tip is separately connected such that the ions can be shuttled along the trap axis
by applying different voltages to each of the tips (see section 3.5). Assuming a perfect

1Rohde & Schwarz, SML01
2Mini Circuits ZHL-5W-1 or LZY-1
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quadrupole field and equal tip voltages, the potential imposed by the two tips is given by

Φtip(x, y, z) =
Utip

L
[z2 − 1

2
(x2 + y2)].

In the resulting potential Φ = Φrf + Φtip an ion with charge e experiences the force
F = −e ·∆Φ. This leads to equations of motion for the trapped particles of mass M in
three dimensions that take the form of a Mathieu equation [97]

üi + [bi + 2qi cos(Ωrf t)]
Ω2

rf

4
ui = 0, (3.2)

where u = uxex + uyey + uzez is the position of the ion. The stability parameter q is
defined for ions with mass M as

q ≡ 2eVrf

Mr20Ω
2
rf

and stable solutions occur for 0 < q < 0.908 [98]. The components of q are then defined
by qx = −qy = q and qz = 0.

The components of b are given by

bx = by = −1
2
bz = − e α̃ Utip

ML2Ω2
rf

,

where α̃ is a factor taking into account the actual trap geometry.

In case q, |b| � 1, a first-order solution to Eq. (3.2) is given by

ui(t) ≈ ǔ cos(ωit)
[
1 +

qi
2

cos(Ωrft)
]
. (3.3)

with the amplitude ǔ of the ion motion and a frequency

ωi =
Ωrf

2

√
bi + q2i /2. (3.4)

The solution in the axial direction describes a harmonic motion with a frequency of

ωax = ωz =

√
e α̃ Utip

2ML2
.

For a tip voltage of Utip = 1000 V 43Ca+ ions are confined in a harmonic potential with
an axial COM mode frequency of ωax/(2π) = 1.2 MHz.

In the radial directions the motion exhibits two frequency components. One is given by
the radial components of Eq. (3.4) which can also be written as

ωr = ωx = ωy =

√
(Ωrfq)2

8
− 1

2
ω2
z .
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Thus it is evident that the frequency, characterizing the secular motion is lowered when
the potential along the trap axis is increased.

The second frequency component of the motion along the radial direction is at the trap
drive frequency Ωrf and is termed micromotion. The amplitude of this micromotion is
by a factor of q/2 smaller than the secular motion and usually not of importance for the
experiments.

For our trap parameters we typically obtain secular frequencies of the radial motion be-
tween ωr/(2π) = 2MHz and 4 MHz for calcium ions. From spectroscopic measurements
we infer that the degeneracy of the two radial directions is lifted, so we can resolve two
radial sideband components which are separated by ∆ωr/(2π) ' 40 kHz, with a small
dependence on the tip voltage. This asymmetry is introduced by the fact that only two
of the radial trap electrodes are powered with radiofrequency where the two others are
attached to ground.

In the presence of external electric stray fields, the ions’ equilibrium position is shifted
out of the radiofrequency potential’s node. This leads to an increased amplitude of the
motional component at the trap drive frequency Ωrf termed excess micromotion. The
amplitude of this excess micromotion can be largely suppressed by applying voltages to
compensation electrodes such that the ions are shifted back to the radiofrequency poten-
tial’s node (see section 4.3).

In the experiment we are mostly interested in the regime where multiple ions are aligned
in a linear crystal when sufficiently cold. This is the case for ωr � ωz. The equilibrium
position in the case of multiple ions is then determined by the trapping potential and the
Coulomb repulsion of the ions. For two ions the distances from the center of the trapping
potential in axial direction is given by [83]

∆z =
(

e2

16πε0Mω2
z

)1/3

. (3.5)

For an axial COM mode frequency of ωax/(2π) = 1.2 MHz, two 40Ca+ ions exhibit an
inter ion spacing of 4.9µm. Since the trap frequencies can be measured precisely we use
the knowledge of the associated ion spacing to calibrate the magnification of the imaging
system.

3.2 Laser system and optics

One big advantage of calcium is the fact that today all laser light sources needed can be
derived from commercially available diode lasers. Except for the laser at 729 nm, which
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Figure 3.2: (a) Laser beamline providing light for Doppler-cooling, state detection and
optical pumping at a wavelength of 397 nm. The EOM at 3.2GHz is used to address both
hyperfine ground states of 43Ca+. (b) In order to pump out the D-states, light at wavelengths
866 nm and 854 nm is needed. Both wavelengths are superimposed on a 50:50 beam splitter
before sending them through polarization-maintaining single-mode glass fibers to the experi-
ment. In case of 43Ca+, multiple frequencies of the repumper at 866 nm can help to increase
the fluorescence rate. Two additional frequencies are modulated onto the beam with two extra
AOM’s operated at 145MHz and 245 MHz as sketched.

is a titanium-sapphire laser3 and was already available, all other coherent light sources
are Toptica diode lasers, partially with second harmonic generation. Furthermore, all
lenses, waveplates, glass fibers, electro-optical devices, filters, polarizers, coatings, etc. are
commercially available components.

3.2.1 Lasers for Doppler-cooling and optical pumping and repumping

Laser at 397 nm

For Doppler-cooling, state detection and optical pumping the ions are excited on the
S1/2 ↔ P1/2 dipole transition (see Fig. 2.3) at a wavelength of 397 nm. At the time
when the experiment was set up, there were no laser diodes available at this particular
wavelength with sufficiently low amplified spontaneous emission. Therefore, the light is
produced by second harmonic generation (SHG) from a diode laser at 794 nm4. Approxi-
mately 100µW of the red light is used for frequency stabilization to a reference cavity (see
below). At the output of the doubling cavity we have about 10 mW of blue light, which is

3Coherent, 899 modified by L. Windholz (Graz University) in company with Radiant Dyes;
Pump laser: Coherent, Verdi V-10

4Toptica DL-SHG
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then split into a σ-beam and a π-beam as depicted in Fig. 3.2 (a). Each of the beamlines
has an acousto-optical modulator (AOM) at 220 MHz5 for switching the beams on and
off. Additionally, the σ-beam has an electro-optic phase modulator (EOM)6 in order to
generate sidebands at 3.2 GHz, needed to address both hyperfine ground-state manifolds
of 43Ca+. The beams are then sent through single-mode polarization-maintaining fibers7

to the experiment. Similarly, a second laser system of this type is available where the
wavelength can be tuned between 393 nm and 397 nm. This laser is used to improve on
the 43Ca+ fluorescence rate.

Lasers at 866 nm and 854 nm

For repumping from the 3D3/2 and 3D5/2-states two diode lasers (DL)8 provide light
at 866 nm and 854 nm. As sketched in Fig. 3.2 (b) both beams are switched on and
off with AOM’s operating at 80MHz9. In case of 40Ca+ it is sufficient to work with a
single laser frequency for efficient repumping. For 43Ca+ though it turns out that the
fluorescence that is observed during Doppler-cooling and detection can be increased by
adding two more frequencies with AOM’s to the light at 866 nm. Therefore, the two
AOM’s at 145MHz and 245 MHz10 (see Fig. 3.2 (b)) are turned on only when 43Ca+ is
used. All light fields of 866 nm and 854 nm are collected and sent to the experiments with
two single-mode polarization-maintaining fibers11 to one of the equatorial ports (SE) and
one on the bottom flange. For 40Ca+ one of these ports is sufficient, whereas for 43Ca+ an
increase in fluorescence was observed while Doppler-cooling and state detection when both
ports were used. In addition a diode laser 850 nm is available to investigate alternative
shelving techniques and potentially improve on the 43Ca+ fluorescence rate.

Laser frequency references

Unlike in neutral atom experiments, for the wavelengths needed for ions usually there
are no vapor cells that can be used as laser frequency reference by certain spectroscopy
techniques. Therefore, all the lasers described earlier in this chapter are referenced to
Fabry-Pérot cavities. The design of such a resonator is always a trade-off between a
number of different needs, that partly lead to conflicts. For instance it is hard to obtain
high stability and tunability at the same time. The frequencies of lasers acting on dipole

5Crystal Technology, 3230-120
6New Focus, 4431
7Schäfter + Kirchhoff, PMC-400-4.2-NA010-APC
8Toptica, DL-100
9Brimrose, EF-80-20-866 and Crystal Technology, 3080-120
10Brimrose, EF-145-30-866 and EF-250-30-866
11Schäfter + Kirchhoff, PMC-850-5.2-NA012-3-APC
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Figure 3.3: Cavity setup that is used as a variable, passively stable frequency reference for
the lasers at wavelengths of 866 nm, 854 nm and 794 nm. One curved and one flat mirror are
kept at distance of 100mm by a Zerodur spacer whose length is hardly sensitive to temperature
changes. In order to gain tunability without compromising the stability too much, the curved
mirror is mounted onto two concentric piezo transducers of equal height, interconnected by
ceramic rings. The cavity assembly is kept in vacuum to get a better thermal insulation from
the environment and to prevent changes in air pressure to change the optical path length
between the mirrors. Both vacuum windows are anti-reflection coated and the input port is
slightly tilted to avoid spurious reflections perturbing the error signal.

transitions with a line width on the order of 20MHz should be defined to better than
1 MHz. Therefore, the resonator stability can be slightly compromised by gaining in the
flexibility of frequency tuning. A cavity setup was designed with one flat and one concave
mirror12 with a reflectivity of 99.1% (finesse F ≈ 300). The flat mirror is directly glued13

to a 100mm spacer made of the glass ceramic Zerodur14 and used as input port. The
thermal expansion coefficient of the Zerodur used is specified to be 0±0.02 × 10−6 /K at
room temperature. As sketched in Fig. 3.3 the curved mirror is mounted to the spacer
with two concentric piezo transducers15 of the same height (5mm). The ceramics of the
piezos has a rather high temperature expansion coefficient of 2×10−6 /K. By this assembly
thermal drifts can by largely suppressed while having the flexibility to tune the cavity
over several free spectral ranges (FSR = 1.5 GHz) by applying voltages up to 300 V to the
piezos’ electrodes. After scanning over large ranges, the piezos have to settle. This takes
typically a few minutes. For daily operation this is a minor problem. The 397 nm cooling
laser is the only laser that needs to be tuned over several GHz during operation. In order
to cope with the slow frequency drift while settling, we monitor the amount of fluorescence
during Doppler-cooling and feed this signal back to the cavity piezo voltage. Thus, on
a time scale of minutes, the cooling laser is directly stabilized to the ions’ S1/2 ↔ P1/2

dipole transition.

12Laseroptik Garbsen, radius of curvature 250mm
13Norland Products Inc., UV-glue
14Helma Optics, Dehnungsklasse 0
15Ferroperm, Pz27
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In order to suppress perturbations caused by acoustic noise and changes of the air pressure
and to improve the thermal decoupling of the environment, the whole setup is contained in
a vacuum can. After pumping with a turbo pump for a day the setup was detached from
this pump by means of an all-metal valve, and is pumped using an ion getter pump16. A
steady state pressure of 10−8 mbar was reached after one day. The vacuum in combination
with the Viton-pegs (see Fig. 3.3) provide a good thermal isolation from the environment
and the heat exchange with the environment is dominated by radiation. To avoid gradients
that could change over time, an additional metal enclosure inside the vacuum was installed.
Thermalization within this inner aluminum shield is expected to occur on much shorter
time scales than the radiative heat exchange of this shield with the vacuum can. The whole
setup is enclosed in a metal housing and the temperature is stabilized by resistive heating.
Servo independent temperature measurements reveal that the averaged temperature inside
the box varies by less then ±2 mK within 24 h.

Direct beat note measurements with a referenced laser (see subsection 3.2.2) have shown
that for relaxed piezos the drift rates are well below 100 Hz/s, which accumulates to less
than half the line width of the transitions of interest within a day. The resulting line
width of the lasers referenced to these cavities is mainly limited by acoustic vibrations of
the optical setup to about 100 kHz.

The distance and the curvature of one of the mirrors were chosen such that the frequencies
of the higher order transversal modes are far off from the TEM00-mode. As a result, small
changes in the coupling efficiency of the laser to the cavity have a minor effect to the
error signal and hence to the lock performance. All lasers are locked to the cavities with a
Pound-Drever-Hall technique [99]. The necessary sidebands are directly modulated onto
the light by means of a bias-T that alters the current of the laser diode slightly at a
frequency of 20MHz. Photodiodes with a bandwidth of 125 MHz17 are used for error
signal detection.

16Varian, Star Cell 20 l
17New Focus, 1801



3.2 Laser system and optics 39

3.2.2 Ultra-stable titanium-sapphire laser at 729 nm

With a laser at a wavelength of 729 nm we have the opportunity to excite calcium ions on
the S1/2 ↔ D5/2 quadrupole transition. This offers a large number of possible applications,
including:

• precision spectroscopy on the quadrupole transition

• coherent manipulation of optical qubits

• sideband cooling to the motional ground-state

• state transfer and initialization

• optical shelving for state detection

• frequency resolved optical pumping

The tasks listed here are very demanding with regard to the laser’s line width, its fre-
quency and output power stability. Furthermore, the ability is needed to tune the laser
frequency over 100 MHz within a microsecond and to switch between different transitions
of 43Ca+and 40Ca+differing by several GHz within minutes. The setup of the laser was
part of Gerhard Kirchmair’s Diplomarbeit. A detailed technical description of the laser
system and the frequency stabilization scheme can be found in his thesis [100], here only
the idea is given and the performance is described.

The requirements discussed above are met by stabilizing the laser to a high finesse cavity18

(F = 410 000, line width = 5 kHz, FSR = 2GHz) which is vertically mounted [101] in a
temperature stabilized (±1 mK) vacuum (10-8 mbar) enclosure. Ideally the expansion co-
efficient is zero at a certain temperature Tc and the relative length change is then described
by ∆l/l ∼ 10−9(T − Tc)2. For cavities from the same batch but operated at a different
wavelength the quadratic expansion coefficient was measured by Janis Alnis et al. [102].
They also determined Tc for two different cavities to be 7◦C and 12◦C, respectively. We
assume similar values for our system. The temperature of our cavity setup was stabilized
though by resistive heating to about 30 ◦C. The sensitivity to temperature changes at this
point was measured to be 20 MHz/K. In case we could stabilize the temperature to Tc, a
further suppression in sensitivity of two orders of magnitude can be expected where drifts
induced by the heating of the mirror coatings start becoming important. The typical drift
rates of the Fabry-Pérot cavity we obtained with the ions as reference (see section 4.4) are
3 Hz/s or below. It is quite remarkable that a 1 Hz/s drift is equivalent with a change in
the cavity mirror distance of less than 6 nm per year for this setup.

This stability comes of course at the price that this reference cavity cannot be tuned
since it consists of fixed mirrors optically contacted to a spacer. In order to get the

18Advanced Thin Films, CO, USA
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Figure 3.4: Schematic of the laser setup to provide light at 729 nm. The light intensity of the
laser is stabilized by feeding back the signal of PD1 to the radiofrequency amplitude of AO1.
A high finesse cavity serves as a frequency reference. The feedback to the titanium-sapphire
laser is threefold. A slow feedback is applied to the tweeter and the Brewster plate. A mid
and a high frequency feedback is applied to an intracavity EOM. In total three different beams
can be used on the ions. Each of them is switched on and of by either of AO5-7 and then
guided to the experiment with a short single-mode polarization-maintaining glass fiber.

laser output to any desired frequency a 1.5 GHz AOM19 in double-pass configuration is
used. It has a tuning bandwidth of more than 900 MHz and a diffraction efficiency to the
first order of 14% (single-pass) so that enough light can be provided for the frequency
stabilization. The drive frequency of the AOM is provided by frequency-doubling20 the
output of a synthesizer to which a signal derived from measurements on the ions can be
phase-continuously fed back, such that the cavity drift is compensated on a time scale of
minutes to hours (see section 4.4).

The frequency of the laser is actively locked by means of the Pound-Drever-Hall locking
technique. The necessary sidebands for the locking are phase-modulated onto the light
with an EOM21 operated at 17MHz and the obtained error signal describes the phase
deviation between the light stored in the cavity and the light send to it. The servo
loop consist of three branches and is sketched in Fig. 3.4. For a servo loop bandwidth
of 300 kHz and above, the error signal is sent through a proportional amplifier22, whose

19Brimrose GPF-1500-1000
20Mini-Circuits, FK-3000
21Linos/Gsänger, PM25
22Femto HVA-10M-60-F
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output is connected to one of the intracavity EOM’s21 electrodes. The other electrode of
this EOM receives a feedback signal which is modified by a loop filter (proportional part
and shunted integrator) and amplified by a home-made high voltage amplifier23. With an
amplification of 30 the bandwidth of this branch is about 300 kHz. Slow fluctuations are
corrected by modifying the error signal with a loop filter and feeding back onto the tweeter
(piezo transducer to which one of the laser’s cavity mirrors is mounted to). This part of
the feedback loop is limited by the mechanical resonance of the piezo-mirror assembly
to 10 kHz. In addition, an extra servo loop stabilizes the intensity that is transmitted
through the reference cavity to prevent small variations in laser polarization, fiber coupling
efficiency, etc. from changing the error signal.

The laser output and the reference cavity setup are linked with a single-mode polarization-
maintaining fiber. To prevent acoustical noise coupling into the fiber from compromising
the frequency stability, we introduced an active fiber-noise cancelation [103]. Before send-
ing the laser light through the fiber it is split into two branches by a 50:50 beam splitter
(see Fig. 3.4). The reference arm is directly reflected from a planar mirror to the beam
splitter whereas the other part is frequency shifted by AO3 (80 MHz) and then guided
to the cavity by a single-mode polarization-maintaining glass fiber. The end facet of this
fiber is polished at a right angle such that about 4% of the light is back reflected through
the fiber where it gets frequency shifted again. A photodiode (PD3) with a bandwidth
of 1 GHz24 measures the beat frequency of the reference beam and the laser sent to the
cavity which is then compared with the signal of a highly stable frequency reference25 at
160 MHz. Implementing a phase-locked loop, the frequency of the beat signal is kept in
phase by feeding back to the voltage-controlled oscillator providing for AO3’s input fre-
quency signal. The laser’s frequency spectrum was characterized by recording an optical
beat note with a similar laser, that is situated in a university building. Two 500m long
single-mode polarization-maintaining glass fibers26 are used to sent the light between the
sites, one for each direction. Similar as in the frequency stabilization setup fiber noise
cancelations are installed for both fibers. In order to measure the laser line width, a beat
signal at 10.8 MHz was recorded with a spectrum analyzer27. The relative drift of the two
lasers was compensated for the measurement by implementing a phase-continuous linear
frequency chirp to AO2 (see Fig. 3.4). Figure 3.5 (a) shows the resulting power spectral
density over the frequency for a 4 s integration time and a resolution bandwidth of 1Hz.
A Lorentzian fit yields a full width at half maximum (FWHM) line width of 1.8Hz. As-
suming both lasers having the same frequency spectrum, we infer a line width for each of
the lasers of 0.9 Hz.

23based on Apex, PA98
24New Focus, 1601
25Rohde & Schwarz, SML01
26Laser 2000, custom-made fiber cord
27Rohde & Schwarz, FSP 9 kHz...13.6 GHz
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Figure 3.5: (a) Beat measurement of two remote lasers linked over a 500m glass fiber
with the fiber noise compensated. A Lorentzian fit yields a FWHM of 1.8 Hz, indicating a
sub-Hertz line width for each laser within the measurement interval of 4 s. (b) Power spectral
density of the laser beat where the reference laser is spectrally cleaned by sending it through
a filter cavity. The transmission function of the filter cavity is given as the upper trace. By
referencing the normalized spectrum of the error signal to the beat signal we can conclude
that the measurement is largely limited by the reference laser and measurement sensitivity.
From an integration of the power spectral density we obtain that a fraction of less than 10−4

of laser light power is outside a ±250 Hz interval of the laser’s carrier frequency.

For the experiments described in chapter 7 the spectral purity of the light is of importance.
This quantity is also accessible from the beat measurement. Since the control electronics
of the two lasers are fairly different (e.g. servo oscillation frequencies), we do not expect
them to have the same spectrum. In order to characterize our laser, we spectrally filtered
the reference laser with a clean-up cavity. The transmission function of this clean-up
cavity is given as upper line in Fig. 3.5 (b) and the normalized power spectral density
of the laser beat measurement is plotted as middle trace for a resolution bandwidth of
1 kHz. The characteristics of the locking electronics is clearly visible as “servo bumps”.
By referencing the normalized spectrum of the error signal to the beat signal we can
conclude that the measurement is largely limited by the other laser and the sensitivity of
the spectrum analyzer. From an integration of the power spectral density we obtain that
a fraction of less than 10−4 of laser light power is outside an ±250 Hz interval of the laser’s
carrier frequency.

The output power of the laser is stabilized by diffracting a small amount of the light power
to the first order of AO1. The error signal is derived with photodiode PD128, sent through
a loop filter29, and than fed back to a variable attenuator30 to adjust the radiofrequency
amplitude of AO1. The relative power stability was measured to be about 1%.

28Thorlabs, PDA100A-EC
29SRS, SIM960
30Mini Circuits, ZX73-2500
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3.2.3 Raman beam setup

The purpose of the Raman beams is to manipulate quantum information encoded in the
hyperfine splitting of the ground-state in 43Ca+ by a bichromatic electromagnetic field.
For this, two coherent light fields with a frequency separation of the hyperfine qubit’s
frequency of about 3.2 GHz are needed. In a configuration where the k-vectors of these
two laser fields differ in angle, momentum can be transferred to and from the ions. For
collinear lasers this is largely suppressed. By focusing the laser beams tightly, we have the
ability to address individual ions in a string. Driving qubit transitions demands a fixed
phase relation between the driving field and the qubit transition frequency. Assuming a
fixed qubit frequency for the Raman interaction, this requires the two Raman light fields
to be stable with respect to each other on the optical wavelength scale for the time of each
experiment.

Decoherence by spontaneous scattering can be suppressed by larger detunings from the
atomic level mediating the Raman transition while elastic scattering doesn’t lead to deco-
herence (see subsection 2.5.4). High-speed operations while having large detunings requires
a high amount of laser power. Furthermore, it is important that the output power has low
amplitude noise and is stable over time. Demands regarding frequency stability are quite
relaxed since variations of the absolute frequency of the laser give little effects for large
detunings.

To meet these requirements light at 794 nm of an external cavity diode laser is ampli-
fied by a master-oscillator power-amplifier (MOPA)31. This light is frequency doubled by
second harmonic generation using a LBO crystal in an enhancement cavity. The total
output power is about 50 mW. The frequency of the laser can be set between 393 nm and
398 nm. For mode cleaning the light is then sent through a short single-mode polarization-
maintaining fiber32.

As discussed in section 2.5 there are four different ways to drive the transitions in the
microwave domain, depending on whether the change in the magnetic field quantum num-
ber is zero or ±1 and whether a coupling to the ion motion is needed. Full flexibility is
obtained by the generation of two red detuned and two blue detuned light fields that are
sent to the ions from different directions.

The frequency splitting of 3.2GHz is achieved by sending the laser through a cascade of
AOM’s (see Fig. 3.6). AO1 operating at 1GHz33 splits the laser beam into two beamlines.
The minus first diffraction order starts the red beamline and the zeroth diffraction order the
blue beamline. In the red beamline three AOM’s at frequencies of 300 MHz34 follow, such

31Toptica, TA-SHG
32Schäfter + Kirchhoff, PMC
33Brimrose, QZF-995-20, maximum diffraction efficiency to the first order is 15%
34Brimrose, QZF-300-50, maximum diffraction efficiency to the first order is 70%
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Figure 3.6: Schematics of the Raman beam setup and the generation of the 3.2 GHz fre-
quency separation. AO1 and AO2 run at a fixed frequency of 1 GHz. The drive frequencies
and radiofrequency amplitudes powering AO3 to AO8 are derived from the versatile frequency
source (see section 3.7) in combination with a network of radiofrequency switches. All diffrac-
tion orders of the AOM’s are given in the figure. The signal of the photo diode (PD) monitoring
the light intensity of the fundamental beam of AO2 is fed back to the current powering the
MOPA in order to stabilize the light intensity.

that two beams with a detuning of -1.6GHz from the incoming light can be individually
frequency controlled and switched. The blue beamline consists of another 1 GHz AOM
which is then followed by three AOM’s at 300 MHz. The input of the two 1GHz AOM’s
is provided by a signal generator35 with an amplifier36 and kept constant during the
experiments. The 300 MHz AOM’s are all connected by a network of radiofrequency
switches and amplifiers to the radiofrequency output of the versatile frequency source (see
section 3.7). So any pair of light fields can be accurately switched, amplitude-shaped and
their relative frequencies can be set within an experimental cycle. The output of the setup
consists of two laser beamlines each containing a blue and a red detuned light component
which are then sent through a beam expander and a focusing lens to the ions. Typically,
about 10% of the light intensity sent into AO1 is effectively used as Raman light field.

In order to cope with the high demand of interferometric stability, the whole setup was
put as close to the trap as possible. Additionally, all parts were assembled as near to the
optical table as possible and enclosed to prevent disturbances from air turbulence. To
suppress the sensitivity to acoustical and mechanical noise further, it was built such that
it encloses a possibly small area (∼ 0.04 m2). In case momentum has to be exchanged
between the Raman light fields and the ions, a non copropagating pair of lasers is needed.
These are split such that they can be sent to the ions under an angle of 90◦ with the
differential k-vector pointing along the trap axis. From the point of splitting (AO1) to the
ions these two beams enclose an area of about 0.15m2.

Due to the finite diffraction efficiencies of the AOM’s a large fraction of the light sent
into the frequency separation setup remains in the zeroth order of AO2 (see Fig. 3.6).

35Rohde & Schwarz, SML-01
36Mini Circuits, ZHL-1000 3W
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This light is monitored with a photodiode (PD) and the signal is fed back to the current
powering the MOPA, in order to stabilize the Raman beams’ power.

3.3 Vacuum vessel

The vacuum system housing the ion trap is all made of stainless steel and consists of an
octagon with two conflate flanges (CF200) on top and bottom and eight CF63 flanges in
the equatorial plane. A schematic drawing is given in Fig. 3.7 (c). A six-way cross is
attached to the western CF63 flange and carries an ion pump37, a titanium sublimation
pump38 (TSP), a Bayard-Alpert-Gauge39 and an all-metal valve40. Three of the eight
CF63 octagon flanges are equipped with inverted viewports41. This enables us to bring
lenses close enough to the ions in order to have a good imaging resolution, photon collec-
tion efficiency and the ability to narrowly focus lasers to individual ions while having the
ability to steer or replace the lenses without opening the vacuum can. The other flanges
have regular viewports42 attached. The CF200 flange mounted on the bottom side carries
two CF40 windows and two CF16 electrical feedthroughs to which the calcium ovens are
connected. The CF200 flange atop the octagon provides support for the ion trap. Further-
more, it has two CF40 viewports and also a CF16 flange with four electrical feedthroughs
for the DC-electrodes (trap tips and compensation electrodes).

After baking the system at a temperature of 350 ◦C for one week the turbopump was
detached by closing the all-metal valve. At this time a pressure of 10-10 mbar was measured.
Since then the ion pump runs permanently whereas the TSP is used irregularly about once
per week. The measurement limit of the Bayard-Alpert-Gauge is 2×10-11 mbar. When the
TSP is used every three days, the pressure drops below this limit. Lifetimes of a single
trapped ion of up to 13 days (with all lasers off) have been observed.

3.4 Magnetic field coils and current drivers

To control the magnetic field at the trap center two coil pairs are placed symmetrically
with an angle of 90◦ in the equatorial plane (see Fig. 3.7 (c)). Though the ratio of
their distance (300mm) and their inner diameter (115 mm) doesn’t fulfill the Helmholtz
criterium exactly, we expect low gradients at the position of the ions. The coil pair43

37Varian Star Cell, 20 l
38Varian
39Varian, UHV-24 Gauge
40VAT
41Ukaea, fused silica, anti reflection coating (Tafelmaier, 397 nm and 720-870 nm) on vacuum side only
42Caburn, fused silica, anti reflection coating (Tafelmaier, 397 nm and 720-870 nm)
43Oswald Elektromotoren, copper wire with cross section 2.0× 1.25mm2
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Figure 3.7: (a) Schematic top view onto the trap setup. The quantization axis is provided
by a small magnetic field along SW-NE and most of the laser beams sent to the ions lay
within the equatorial plane. Custom made lenses are placed close to the ions by means of
three inverted viewports (NW, NE, S). This allows us to focus laser beams tightly, and to
achieve a high efficiency collecting the ions’ fluorescence. (b) The side view onto the setup
shows the two beams sent in through the viewports of the bottom flange in a 60◦ angle with
respect to the trap’s symmetry axis. It is a second repumper beam and a laser beam at
729 nm, which typically is used for sideband cooling. (c) Computer aided drawing of the
vacuum setup. The TSP and the ion getter pump are mounted to the six-way cross as seen in
the back. Two large coils (SW, NE) provide for the magnetic field defining the quantization
axis. The other coil pair compensates for external magnetic fields along SE-NW.

defining the quantization axis has 350 windings of copper wire. Sending 1A through both
coils results in a magnetic field of 3.4 G. Perpendicular to these a coil pair of 100 windings
of copper wire each is used to compensate for external magnetic fields. In addition, a single
large coil (diameter 200mm) is used to compensate for stray fields along the direction of
gravity.

To set the magnitude and orientation of the magnetic field, a single 40Ca+ ion was loaded
into the trap. The ambient magnetic field was nulled by applying currents to all coils so as
to minimize the ion’s fluorescence by varying the current through the five coils around the
trap. After that, the amplitude and the direction of magnetic field can be set by changing
the current through the pair of coils defining the quantization axis. All coils are powered
by home-made current drivers having a relative current drift of less than 2× 10−5 in 24 h.
This is achieved by a servo loop with a highly stable resistor44 as reference.

3.5 Optical access and individual ion addressing

Laser light is guided to the ions through seven different viewports (see Fig. 3.7). The light
for Doppler-cooling, repumping, photoionization and sideband cooling is sent to the ions

44Vishay, VCS 302
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Figure 3.8: (a) Arrangement of the lenses in order to focus light at wavelengths 729 nm
and 397 nm through the same focusing lens. A similar setup using a dichroic mirror is used
for the imaging port (S) which is simultaneously used for focusing light at a wavelength of
729 nm. (b) Measurement of the intensity profile of the laser beam at 729 nm entering from the
southern viewport. For the measurement a single ion was moved witch respect to the position
of the laser by changing the tip voltages. At each point Rabi oscillations on a quadrupole
transition were recorded with the same laser power. From the π-time we derived the relative
laser intensity for eleven different tip voltage settings. The ion’s position was measured by
observing the shift on the CCD image.

directly by adjusting the output couplers of the optical fibers such that the light is focused
at the ions’ position. Typical beams waist are about 100-200µm, which is a good trade-off
between high enough intensities for the given laser powers, alignment stability and equal
illumination of ions for multiple ion crystals.

For the four Raman beams and the light at a wavelength of 729 nm that is sent in within
the equatorial plane individual ion addressing should be possible. It is a basic requirement
for quantum state tomography and also needed for certain two-qubit gates. Typically, we
have to deal with ion distances of 4-5µm which requires a laser spot size significantly
smaller, if a Gaussian beam is assumed. For this purpose a lens system was designed
that consists of two telescope lenses in order to expand the beam. This large and almost
collimated beam is then sent through one of the three focusing lenses inside the inverted
viewports (see Fig. 3.8 (a)). Ideally the light is focused down to a diffraction limited spot
size of 1.7µm (2.9µm) for light at 397 nm (729 nm). The focusing lens is also used for
imaging (see section 3.6). In practice it is quite challenging to adjust the optics properly
such that the diffraction limit is obtained. So far, only the beam at 729 nm entering
from the southern viewport has been tightly focused. A single ion was used as a probe
and revealed a FWHM resolution of 3.6µm (see Fig. 3.8 (b)). The ability of single ion
addressing for a two ion crystal is demonstrated in section 4.6.

In order to address different individual ions lined up in a linear chain, we can either steer
the laser beams accordingly or move the ions. In another experiment of the group, the
concept of deflecting a laser was thoroughly investigated. A number of major disadvantages
became evident. First, only electro-optic deflectors have proven to be fast and precise
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enough for the technical implementation. However, these need fast high voltage supply
electronics and one deflector is needed for each beam. Moreover, the maximum deflection
angle is rather small whereas at the same time adjustment and focusing gets more involved
since these deflectors alter the Gaussian modes notably. Last, though the deflectors can
switch within a few microseconds, experiments have shown that it takes a settling time
of more than 200µs until the optical phase is in a steady state. These issues let us
conclude that for an experiment, where in the long run more than a single laser beam
shall be addressed, a shuttling of the ions by quickly adjusting the two tip voltages while
having fixed laser foci seems more attractive. In order to avoid a change of the population
in the harmonic oscillator mode, the relative potential of the two tips preferably stays
constant during this process such that its curvature of the potential doesn’t change. In a
first attempt only an adiabatic movement was considered, where the ion was accelerated
slowly compared to the inverse of the lowest trap frequency such that a transfer of energy
to the ions’ motional mode is expected to be negligible. Technically this was realized
by referencing the electronics providing the differential tip voltages to a high voltage
power supply that provides the axial trapping potential. Analog inputs for setting certain
different axial trapping positions and the logical inputs, to switch among them during a
sequence, are interconnected to the analog and logical output of the experiment control
by means of analog and fast logical optocouplers45. The two high voltage outputs are
connected to the trap tips with low-pass filters in between. These have a time constant
such that full settling is observed after 40µs (see section 4.5), which corresponds to roughly
50 axial oscillations of the ions. On one hand the low-pass filters screen the trap electrodes
from high frequency noise heating up the ions. On the other hand they shield the high
voltage electronics from radiofrequency pick-up by the trap’s tip electrodes.

3.6 Fluorescence detection

Light emitted by the ions at a wavelength of 397 nm is collected by a custom-made objec-
tive46. Consisting of five lenses (see Fig. 3.9 (a)), this objective is corrected and antire-
flection coated for the wavelengths 397 nm and 729 nm. Three of the lenses are mounted
outside the vacuum in inverted viewports with a distance of r = 58 mm (first lens sur-
face on optical axis) to the ions. The spherical abberation induced by the 6 mm fused
silica window corrected by the lens design. The entrance diameter towards the ions is
d = 38 mm. With these parameters we can calculate the collection efficiency of the light
emitted by the ions

dΩ
4π

=
1
2

(
1−

√
1− 1

1 + (2r
d )2

)
≈ 1

40
.

45Todd P. Meyrath, University of Texas at Austin
46Silloptics, Germany

http://george.ph.utexas.edu/~meyrath/informal/optocoupler.pdf
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Figure 3.9: (a) Schematics of the custom-made lens used to collect fluorescence light for
the ion detection with the EM-CCD camera and a PMT. The same type of objective is used
to focus light of the wavelengths 729 nm and 397 nm tightly. (b) Ion crystal of two 43Ca+

ions recorded with the EM-CCD camera. The tip voltage was set to Utip = 1500V which
corresponds to an axial trap frequency of about ωax/(2π) = 1.46 MHz and an ion separation
of 4.2µm (c) After defining a region of interest around a single ion the pixel counts from a
CCD-image were summed up in vertical direction. Small imperfections can be seen on the
left side of the peak. These are attributed to imperfect alignment. A least square fit with a
sinc-function (solid line) to the data points yields a distance of 2.2µm from the first minimum
to the center.

Measurements have shown a 2.2µm imaging resolution (see Fig. 3.9 (c)) at a wavelength
of 397 nm. This enables us to discriminate light emitted from neighboring ions easily
(see Fig. 3.9 (b)). The absorptive loss is 4% by the objective and another 6% by a narrow
bandpass filter47 used to suppress stray light leaking to the detection system. As discussed
in section 3.5 the same lens is used to achieve small laser spot sizes at the position of the
ions for individual addressing.

With a switching box, containing a coated window, a 90 : 10 beam-splitter and a mirror,
we can send the light collected by the objective either to a camera or to a photo-multiplier
tube48 (PMT) or both of them at the time. In the branch of the PMT, at the place of
the image, a variable slit aperture is installed49 to choose a small field of view in order
to suppress stray light detection. The image plane is about 1.5 m behind the lens which
results in a magnification of 24.5. Unless mentioned otherwise in the text, all experiments
were performed with PMT detection. This has foremost the advantage that for state
discrimination the data can be directly read out and processed by acquiring a histogram
and setting a proper threshold. An example is given in Fig. 3.10. From the observed
count-rate, we can distinguish between events, when the ion is projected into the S1/2-
state where it emits light, and events where theD5/2-state is populated and no fluorescence
is observed. By counting the number of events for a total number of measurements N ,
we determine the probabilities p0 and p1 corresponding to |α|2 and |β|2 of Eq. (2.1). The
statistical error in the determination of the state’s population probabilities is also termed

47Semrock, FF01-377/50-23.7-D
48Electron tubes, P25PC, Quantum efficiency = 28% at 400 nm
49Owis, Spalt 40



50 3. Experimental setup

PMT countrate (kcps)

C
o

u
n

ts
p

e
r

0
.5

k
c
p

s
b

in

Threshold for
state discrimination

Figure 3.10: The histogram illustrates the dicrimination of the two electronic states S1/2

and D5/2 of a single 40Ca+ ion by means of a PMT. The ion was prepared in a superposition of
the S1/2(mJ = 1/2) and D5/2(mJ = 5/2)-states. For each data point the average fluorescence
rate was determined over an interval of 5ms. The plot shows a total of 3350 measurement
results. By setting a threshold at for example 10 kcps, we can distinguish between events,
when the ion is projected into the S1/2-state where it emits light, and events where the D5/2-
state is populated and no fluorescence is observed. By comparing the quantities for each of
the cases, we determine the probabilities p0 and p1 corresponding to |α|2 and |β|2 of Eq. (2.1).

quantum projection noise ∆pQPN. It depends on the number of measurement repetitions
as

∆pQPN =

√
pk (1− pk)

N
. (3.6)

This state discrimination scheme works also for multiple ions, where for each set of mea-
surement the probabilities pk to observe k fluorescing ions are estimated.

For experiments with more than one ion the camera brings in the advantage of individual
ion detection. The camera used is a Electron Multiplying Charge Coupled Device (EM-
CCD) camera50. By making use of an extra amplification register this technology offers
single photon detection sensitivity and sufficiently short exposure times (∼5 ms). This
comes at the overhead of additional complexity since the camera is controlled by an ad-
ditional computer which takes care of the communication with the camera and the image
evaluation. This action has to be synchronized with the experiment control computer.

At this stage, the camera was mainly used to determine the number of ions loaded and to
see that they are properly cooled and form a Coulomb crystal.

3.7 Experiment control and radiofrequency pulses

Most of the systems proposed for QIP need modulated electromagnetic waves. In the case
of trapped ions this necessitates the control of the frequency and phase of certain laser

50Andor , Ixon DV885JCs-VP, Pixel size 8 × 8 µm, Quantum efficiency at 397 nm is 37%
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Figure 3.11: The experiment is controlled by a software written in LabView running on two
Windows PCs. One controls the EM-CCD camera (Camera PC) including data acquisition
and evaluation. The other one controls the remaining hardware of the experiment, collects
data from the Camera PC and the PMT and programs the versatile frequency source (VFS)
which is triggered by the AC power line and autonomously provides all radiofrequency and
digital signals in the pulsed mode (see section 4.2) . The sketch shows the different hardware
components and their interconnections with different bus systems.

light fields. This is achieved by the use of AOM’s, which directly transfer frequency and
phase information from the radiofrequency to the optical domain, with a high bandwidth.
In this way, the problem is reduced to the generation of precisely timed digital signals (e.g.
switching of lasers, trap potentials, etc.) and the generation of various phase-coherent and
amplitude-shaped radiofrequency pulses. For this purpose a versatile frequency source
[104, 105] was developed. Its working principle is based on a direct digital synthesis
microchip controlled by a field-programable gate array (FPGA). It has two separate ra-
diofrequency outputs that can deliver up to 16 different frequencies in each experimental
cycle and allows for phase coherent switching between those frequencies. Amplitude shap-
ing of the radiofrequency pulses is achieved by means of a variable-gain amplifier that is
also controlled by the FPGA. Typically, the radiofrequency pulse lengths are in a range
from 1µs up to 100 ms. In addition, the versatile frequency source has 16 logic channels
(TTL) with a timing resolution of 10 ns. These are used in combination with a network
of radiofrequency switches, amplifiers, attenuators and mixers to send the radiofrequency
pulses individually or combined to the double pass AOM controlling the frequency of the
laser at 729 nm, to the AOM’s controlling the frequency difference of the Raman light
fields or as direct microwave source at 3.2 GHz. The frequency output is limited to values
below 310 MHz. Higher frequencies are achieved by proper mixing and filtering. The fre-
quency resolution is about 0.1 Hz. The versatile frequency source runs a Python51-server
and is connected to the experiment control computer by ethernet network cable. It is

51High-level programming language
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programmed before each experimental sequence. The box is armed by a trigger signal of
the experiment computer. Each experiment is then started through a trigger pulse com-
ing from the power line trigger and so every experiment is synchronized to the AC power
line’s phase. Both of these trigger signals are connected to one of the eight logical inputs
of the versatile frequency source that can also be used to branch sequences depending on
an input acquired during each experiment.

The versatile frequency source and the other hardware of the experiment is controlled by a
computer using software written in Labview52. There are a number of different interfaces to
the experimental hardware. Readout of PMT data is performed with a fast counter input
card53. Analog outputs are mainly controlled by a 16 channel analog interface PCI card54

and digital outputs that have not to be switched within a sequence are connected to a fast
digital input and output card55. Some of the signal generators are computer-controlled
via a GPIB-bus56. The high voltage source providing the tip voltage57 is connected by
CAN-bus58 to the control PC. Figure 3.11 shows the different hardware components and
their interconnections.

52Programming language by National Instruments
53National Instruments, PCI 6711
54National Instruments, PCI 6703
55United Electronic Industries, DIO 64
56IEEE-488, short-range, digital communications bus
57ISEG, EHQ F020p, up to 2 kV with ripples < 10−5

58Controller Area Network, serial bus standard
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This chapter explains the fundamental techniques and concepts applied in our experiments
with trapped calcium ions. Some of them such as the compensation of excess micromotion
and the measurement of heating rates are used to further characterize the new experimental
setup. Most others are part of a daily experimental routine or hint at future options. The
topics are arranged in a natural order reflecting their temporal order in the stage of setting
up the experiment.

4.1 Trap loading by photoionization

Loading ions into the trap is one of the most basic experimental requirements. Most ion
trapping experiments have in common that the traps are loaded from a flux of neutral
atoms, which are ionized within the trap volume. Ideally, the atom flux is confined to a
small region, such that the trap electrodes are not contaminated, which could lead to small
changes in the patch potentials. Moreover, an efficient ionization process helps to reduce
the neutral atom flux and associated contaminations. For this particular experiment we
want to choose between loading 43Ca+ and 40Ca+ ions.

These requirements are met by an isotope-selective two-step photoionization [95, 106]. The
first transition from the ground-state 4s 1S0 to the excited state 4p 1P1 in neutral calcium
(line width 2π×35 MHz) is driven by an external cavity diode laser in Littrow configuration
at 423 nm1. Its frequency is monitored by saturation spectroscopy (see Fig. 4.1 (a)+(b))
on a calcium vapor cell held at a temperature of 300 ◦C. The cell was filled once, evacuated
with a roughing pump while heated to about 400 ◦C; then the valve was closed and the
pump was detached. The cell has been in continuous operation for more than two years
now. In order to adjust the frequency for the different isotopes, we use a wavelength meter2

with a resolution of 10 MHz. The second excitation step connecting the 4p 1P1-state to
continuum states requires light with a wavelength below 389.8 nm (see Fig. 4.1 (c)). In our
experiment this is accomplished by a free-running laser diode at 375 nm3. The two beams

1Toptica DL-100, Nichia laser diode, 30mW
2Toptica WS-7
3Nichia, 5mW
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Figure 4.1: (a) Setup of the photoionization lasers and the Doppler-free saturation spec-
troscopy. The calcium vapor cell is kept at 300 ◦C. Two cold apertures prevent the vacuum
windows from being coated with calcium atoms. (b) Typical photodiode signal derived from
the saturation spectroscopy on neutral calcium atoms. The peak in the middle has a width of
about 35MHz. The FWHM of the whole profile is given by the Doppler-broadening of about
2 GHz at 300 ◦C. (c) Energy level scheme for the two step photoionization of neutral calcium
as used in the experiment. The first stage at a wavelength of 423 nm can be used for isotope
selection. The shift for the various isotopes on this transition is given in Tab. 4.1.

are superimposed on a polarizing beam splitting cube4 and then sent through a single-
mode glass fiber5 to the experiment, where the light is focused at the trap center by the
output coupler of the glass fiber. 50µW light power at a wavelength of 423 nm is sufficient
to achieve saturation on the first stage (beam waist ∼100µm). Higher intensities do not
increase the loading rate but instead decrease isotope selectivity due to power broadening.
Thus, the bottle neck of the process is the light power available for the second stage.
Typically, we use 500µW of light power at 375 nm. To demonstrate that a coherent light
source is not required we have also tested a light emitting diode (LED)6 for the second
stage. The LED was emitting about 2 mW light power in a spectrum of 370-390 nm and
provided good loading rates for slightly higher currents as for the laser. Since the emitting
surface and angle are rather large the major challenge with the LED is to get enough light
intensity inside the small trap volume.

The flux of neutral calcium atoms is provided by a home-build oven construction. It con-
sists of an 8 cm stainless steel tube that is connected to the end of an electric feedthrough
of the bottom flange. A tantalum square is spot-welded to the middle of the tube, which
is then connected to another electrical feedthrough. The lower part of the tube contains
metallic calcium granules. By adjusting the electric current over this lower part of the
stainless steel tube, calcium can be easily heated to several hundred degrees Celsius. At
temperatures slightly below 300 ◦C the neutral atom flux through the trap volume is high
enough to achieve loading rates of about one ion per second.

Two of these ovens are built into the vacuum vessel, one of them being filled with natural
metallic calcium granules. It is used to efficiently load 40Ca+ ions. Another oven contains

4Lens Optics
5Oz Optics, QSMJ-A3A-400-3/125
6Roithner Lasertechnik, UVLED380-10, directivity 10◦
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Mass number Natural abundance Enriched source Isotope shift
40 96.9% 12.8% 0 MHz
42 0.647% 0.7% 393.5(2)MHz
43 0.135% 81.1% 611.8(3)MHz
44 2.09% 5.4% 773.8(3)MHz
46 0.004% <0.1% 1159.8(7) MHz
48 0.187% <0.1% 1513.0(4) MHz

Table 4.1: The table shows the fraction of different isotopes for a natural source of calcium
and a 43Ca enriched sample that is used in a second oven. In addition, the isotope shifts
occurring in the first stage of the photoionization scheme are given relative to the transition
of 40Ca [107].

approximately 5 mg of metallic 43Ca+ isotope-enriched metal granules7. Table 4.1 shows
the fractions of different isotopes in each of the ovens and the isotope shift on the first
stage of the photoionization scheme.

At the time when the experiment was set up it was unclear whether the isotope-selectivity
due to the transition frequency differences of the photoionization’s first stage was high
enough to reliably load 43Ca+, which is of higher importance the larger the ion crystals
get. From the relative occurrence of 40Ca and 43Ca in a natural source it was concluded,
assuming a Lorentzian line shape, that the relative loading rate for 43Ca+ ions compared
to other isotopes is only about 50%. Meanwhile it has been shown though, that by the
proper choice of cooling laser frequencies the selectivity from a natural source can be
largely enhanced [106, 108]. A problem that then still remains is isotope replacement
by bombardment with neutral atoms due to charge-exchanging collisions. Therefore, in
particular when larger ion crystals of a rare isotope are needed, it still makes sense to use
an enriched source.

The appearance of ions in the trap is usually monitored by means of the EM-CCD camera
with the experiment operated in a continuous mode where all lasers powers, frequencies,
etc. can be adjusted manually. In case of 40Ca+ ions, only the laser fields at 866 nm
and 397 nm are required to observe a fluorescence signal. We usually set the loading rate
to about one per 20 s. Larger crystals are obtained by waiting for the right number of
ions to appear. It happens often that instead of a single ion two or even three are loaded
simultaneously. Unfortunately, we can only eject all of them at the same time by switching
off the radiofrequency confinement and have to start loading again if we need a smaller
number. After loading the continuous mode is used to optimize the fluorescence signal
and to set proper conditions for Doppler-cooling, detection, etc.

In order to load ions for the first time and to improve on the signal-to-noise ratio of the

7Oak Ridge National Laboratory
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Figure 4.2: Typical sequence of laser pulses for experiments performed in the pulsed mode.
The five building blocks of the pulsed mode are indicated on top. Usually these sequences are
repeated 50, 1000 or 200 times for each setting.

imaging system it is helpful to operate the experiment in a differential mode. Here the
cooling laser at a wavelength of 397 nm illuminates the ions continuously whereas the
laser at 866 nm is switched on and off at a rate of 20 Hz. In the absence of this laser
the ions are immediately pumped into a dark state and stop to fluoresce. By subtracting
the fluorescence signal for the time the laser at 866 nm is off from the signal when it is
on, we are able to get rid of a possible stray light offset caused by the cooling laser at a
wavelength of 397 nm. Light at 866 nm is efficiently filtered and cannot leak towards the
PMT and camera. Ion signals as small as 1000 counts per second have been observed on
a background which was 400 times higher. Moreover, with this method we can directly
optimize the signal-to-noise ratio of the detection by adjusting laser powers, polarizations
and the slit aperture in front of the PMT. For 40Ca+ ions, the signal-to-noise ratio is
typically between 100 and 200. In case of 43Ca+ ions it is ranging between 30 and 70 due to
the higher laser powers required and smaller fluorescence count rate (see subsection 6.1.1).

4.2 Pulsed mode

After the laser frequencies and powers are set properly in the continuous mode, we switch
to a pulsed mode which consist of five basic building blocks. These shall be briefly discussed
for 40Ca+ ions as an example:

1. Doppler-cooling : A slightly red detuned laser on the S1/2 ↔ P1/2 transition (397 nm)
causes the ions to fluoresce and leads to Doppler-cooling. A laser on the transition
D3/2 ↔ P1/2 (866 nm) prevents pumping into a dark state. After 3ms the ions have
a mean vibrational quantum number between about 5 and 20.

2. Optical pumping : A short pulse with a σ+-polarized laser on the S1/2 ↔ P1/2 tran-
sition in combination with light at 866 nm and 854 nm transfers the population into
S1/2(mJ = 1/2).
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3. Ground-state cooling : A certain motional mode can be cooled to the ground-state
by tuning a narrow bandwidth laser to the red sideband of the transition S1/2(mJ =
1/2) ↔ D5/2(mJ = 5/2) (729 nm). For every state transfer from S1/2 to D5/2 one
motional quantum can be taken away from the ions. By simultaneously exciting the
transition D5/2(mJ = 5/2) ↔ P3/2(mJ = 3/2) (854 nm) the population is pumped
to the P3/2(mJ = 3/2)-state from where a decay back to S1/2(mJ = 1/2) takes the
entropy away. After 7 ms enough photons are scattered and the ion is cooled to the
ground state. The small leak of this cooling cycle due to the finite decay probability
from the P3/2-state to the D3/2-state is closed by introducing a few steps of optical
pumping.

4. Laser spectroscopy/quantum state engineering : With the ions prepared in the mo-
tional ground-state and initialized to a distinct electronic state we can start probing
the S1/2 ↔ D5/2 quadrupole transition or implement a pulse sequence to realize a
certain protocol for QIP.

5. State discrimination: Finally, the lasers at 397 nm and 866 nm are switched on for
a few milliseconds and the fluorescence is detected either by a PMT or an EM-CCD
camera. We can discriminate only between the S1/2 and the D5/2 levels in this step.
Population of other levels can be measured by including appropriate transfer pulses
into the step prior to the detection.

The temporal switching of the different lasers involved is sketched in Fig. 4.2. Typically,
such an experimental cycle is repeated between 50 and 200 times with the same setting to
acquire enough statistical significance for the measured probability values. This is what
we refer to as a single measurement or data point. For the observation of Rabi oscillations
on a certain transition, the quantum state engineering would consist of a single laser
pulse whose length is increased for every subsequent data point. An example is given in
Fig. 6.4 (a).

For 40Ca+ ions, a more detailed description of the pulsed scheme can be found in the
references [89, 96]. For 43Ca+ ions, the same five building blocks apply but the laser scheme
used on each of them is quite different and a detailed discussion is given in chapter 6.

4.3 Compensation of excess micromotion

External forces due to electric fields from the environment but also from geometric im-
perfections of the trap construction can shift the ions away from the radiofrequency zero
line. As a result the ions experience an oscillating electric field of the trap drive and start
moving with amplitudes that can easily exceed a wavelength of the cooling laser. This
gives rise to Doppler-shifts leading to a number of negative consequences, among which



58 4. Experimental techniques
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Figure 4.3: Spectrum around the carrier transition S1/2(mJ = −1/2) ↔ D5/2(mJ = −3/2)
with a 6 MHz span and a resolution of 10 kHz recorded at a magnetic field of about 3.5G.
Axial sidebands occur at relative frequencies of ωax/(2π) = 1.2 MHz from the carrier. The
radial sidebands are separated by ωr/(2π) = 2.2 MHz from the carrier. The arrows indicate
these frequency separations. Some of the lines in the spectrum can be identified as higher
order sidebands.

are a decrease in Doppler-cooling efficiency, shortening of the life time of ions in the trap,
second order Doppler-shifts as well as AC-Stark shifts leading to errors in high accuracy
studies, etc. As a driven motion it cannot be cooled.

A steady state solution to the optical Bloch equations taking into account the Doppler-
effect caused by micromotion [97] results in a probability of the upper level populations
of

P ∝ Ω2
∞∑

n=−∞

J2
n(β)

(∆ω + nΩrf)2 + (Γ/2)2
, (4.1)

where Ω is the carrier Rabi frequency for the ion at rest, Γ is the line width of the transition
and ∆ω is the detuning between the laser frequency ωL and the atomic transition frequency.
For the S1/2 ↔ P1/2 cooling transition we are typically in a regime where ΩSP ≤ ΓSP . An
increasing modulation index β effectively broadens the transition line width and leads to
a rise of the Doppler-temperature

TD =
~ ΓSP
2kBωL

where kB is the Boltzmann constant. Particular values of β can even lead to changes of the
line structure such that heating of the ions occurs in situations where cooling is expected.

For the quadrupole transition we have ΩSD � ΓSD. Therefore, with an increase in β the
spectrum develops sidebands at multiples n of the trap drive frequency Ωrf. By probing
the coupling strength of these micromotion sidebands, we have a very sensitive method to
measure the modulation index β.

When spectroscopy on the quadrupole transition was performed in this new experiment for
the first time, neither the magnetic field inside the trap was known well nor was the laser
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Figure 4.4: (a) Measurement of the micromotion modulation index β using a single 40Ca+

ion with a beam entering from the southern viewport. The relative coupling strengths Ω(n)

of spectral components separated by exactly the trap drive frequency Ωrf = 25.483 MHz are
mapped out by driving Rabi oscillations on these transitions with the same laser power. The
result can be understood in a picture of phase modulation caused by the Doppler-effect. Then
the strength of the nth sideband component is described by the Bessel function Jn(β) and a
modulation depth β. A fit with this model given by the striped bars matches the measurement
data and yields a modulations depth of β = 2.335. (b) Measurement of the compensation
voltages in horizontal and vertical direction for different tip voltages Utip. The non-zero y-
intercept of the linear fits are attributed to electric stray fields present at the trap center. The
dependence on the tip voltages is attributed to small geometrical imperfections in the trap
electrode alignment.

frequency exciting the quadrupole transition known precisely enough to address a certain
transition. Even for a single 40Ca+ ion there is a huge number of spectral components,
including the ten carrier transitions and their axial, radial and micromotional sidebands,
and the sidebands thereof (see Fig. 4.3). Since the secular trapping frequencies could only
roughly be estimated at that time the only frequency known exactly was the trap drive
frequency Ωrf, which determines the frequency separation of the micromotion sidebands.
Therefore, in a first set of measurements we recorded excitation spectra of a single 40Ca+

ion over tens of MHz (similar to the one shown in Fig. 4.3) with the beam entering from
the southern viewport (see Fig. 3.7). Driving Rabi oscillations on the strongest spectral
component found and the ones separated by multiples n of Ωrf, we mapped out the coupling
strengths Ω(n). The result is depicted in Fig. 4.4 (a). It turned out that the strongest
spectral component wasn’t actually the carrier but the first micromotion sideband with
n = 1. According to Eq. (4.1) the coupling strength of the nth micromotion sideband
is proportional to the Bessel functions Jn(β), analogous to the modulation implied by
an electric phase modulator to a monochromatic laser beam. A fit for this set of data
yields a modulation index of β = 2.335. In order to reduce β to possibly small values we
first increased the coupling strength on the carrier and then maximized the ratio between
the coupling strength on the carrier with respect to the first sidebands by changing the
voltage applied to the vertical compensation electrode. As a typical result we obtain ratios
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of Ω(0)/Ω(1) = 100, which corresponds to a modulation index of β = 0.02. This procedure
was repeated in order to compensate for the other direction with a beam entering from
the bottom viewport. As a result the amplitude of the ion’s micromotion is reduced to
ǔmm = λβ/(2π) < 2.3 nm. This compares to a

√
~/(2Mωr) ' 6.1 nm radial spread of the

calcium ion’s wave function when cooled to the motional ground state, assuming a radial
COM mode trapping frequency of ωr/(2π) = 3.4 MHz. A possible limitation set to the
compensation of excess micromotion in the radial direction is caused by slightly different
radiofrequency phases on the two blade electrodes. Then the node of the radiofrequency
field shifts as a function of time. As a consequence, there is no point in space where
the radiofrequency field completely vanishes. Along the axial direction, the fact that the
blades have a finite width comes into play and makes the radiofrequency field not truly
two-dimensional but exhibiting a small curvature along the symmetry axis of the linear
trap. A single ion can then still be shifted to the ideal position by unbalancing the tip
voltages, but strings of ions will exhibit micromotion along the trap axis.

Finally, we repeated the compensation at different settings for the tip voltages and found
a slight change of the compensation voltages (see Fig. 4.4 (b)). This dependence can be
understood when a small displacement of the tip electrodes from the trap axis is assumed.
The fact that both fits have a non-zero y-intercept is attributed to electric stray fields that
can change over time for instance by calcium depositions on the electrodes and ceramic
pieces nearby the trap center.

4.4 Referencing the laser at 729 nm to the ions and monitoring

of the magnetic field

The setup of the laser emitting at a wavelength of 729 nm and its spectral properties
are described in subsection 3.2.2. In order to make use of the laser in the context of
quantum computation but also for precision spectroscopy it is necessary to know the
laser’s frequency relative to the atomic transitions involved and compensate for the drift
of the laser’s reference cavity. This has been achieved by taking either 43Ca+ or 40Ca+

ions as a reference. For this purpose we single out two of the many different possible S1/2

to D5/2 quadrupole transitions. By measuring the two transition frequencies and from
the knowledge of the frequency splitting of the involved levels at certain magnetic fields,
we can infer the relative laser frequency and the magnetic field. With this knowledge the
feedback to the laser frequency can be made independent of small variations of the energy
levels caused by the Zeeman effect. In case of 43Ca+ though, the nonlinear behavior of
the energy splitting of the D5/2-states with respect to the magnetic field (see chapter 5)
can lead to ambiguities and poor discrimination. These problems can be easily avoided
by the right choice of transitions probed for a specific magnetic field.



4.4 Referencing the laser at 729 nm to the ions and monitoring of the magnetic field 61

The frequency measurements are realized in the pulsed mode of operation as described in
section 4.2. Usually sideband cooling is omitted and two transitions are probed from the
stretched state which is initialized by optical pumping. The actual frequency measurement
is then achieved by applying a Ramsey scheme. A π/2-pulse creates a superposition of
the two levels that are probed, then a waiting time τR and last another (π/2)φ-pulse are
applied. In a first measurement the last pulse is applied with a phase φ1 = π/2 and
then in a second one with φ2 = 3π/2. After each Ramsey experiment, we determine the
population of the involved Zeeman states by the state discrimination technique described
in section 3.6 and obtain two probability values pφ1 and pφ2 of the D5/2-state population.
Each of these sequences is typically repeated a hundred times.

The frequency difference between laser and the probed transitions of the ion follows from
the measured probability values as

∆ν/(2π) =
1

2π(τR + 2 τπ/π)
arcsin

(
pφ1 − pφ2

pφ1 + pφ2

)
,

where we make use of an effective Ramsey time (see Appendix B) and τπ is the time it
takes to drive a π-pulse with the chosen laser power. Typically τπ is set to values by a
factor 10 smaller than τR. From the frequency difference ν1 − ν2 we first calculate the
magnitude of the magnetic field inside the trap. With the knowledge of the magnetic field
and one transition frequency we then determine the transition frequency at zero magnetic
field as a reference for other transitions.

This measurement procedure including the evaluation is fully automated and the measure-
ment of the two transitions takes about 25 s. Typically, a complete set of measurements is
repeated every one to two minutes using Ramsey times τR between 0.2 and 1 ms, depending
on the magnetic field sensitivity of the transitions involved and the accuracy required.

The squares in Fig. 4.5 (a) represent 378 of these measurements taken over an interval
of more than four hours. Here, a single 43Ca+ ion was initialized to the Zeeman state
S1/2(F = 4,mF = 4) from which the two transitions to the states D5/2(F = 4,mF = 2)
and D5/2(F = 4,mF = 4) were probed with a Ramsey time of τR = 0.2ms. The times
τπ for performing a π-pulse were set to 19µs and 10.6µs, respectively. A linear fit to the
measurement data reveals an average reference cavity drift rate of 0.6Hz/s. In order to
keep the laser frequency output stable over time we estimated the reference cavity’s drift
between the measurements from a polynomial fit to the last couple of data points. We use
this extrapolation as a feedback to the signal generator that controls the high frequency
AOM (AO2 in Fig. 3.4). The circles in Fig. 4.5 (a) represent these predictions. Their
difference to the actual measurements is depicted as histogram in Fig. 4.5 (b). Of the
52 Hz standard deviation of the Gaussian fit shown as solid line 19 Hz are attributed to
quantum projection noise (see Eq. (3.6)) which could be further reduced by increasing the
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(b)(a)

Figure 4.5: Measurement of the frequency drift of the 729 nm laser’s reference cavity relative
to a single 43Ca+ ion. (a) The squares represent 378 measurements taken over more than 4 h
measurement time with Ramsey experiments where the waiting time was set to τR = 0.2 ms.
The circles are our best guess during the experiment for the next measurement outcome derived
from a polynomial fit before each measurement. The difference between the two is plotted
in (b) as a histogram. The Gaussian fit given as solid line exhibits a standard deviation of
52 Hz.

number of the measurements and their accuracy by an increase of the Ramsey times τR.
Here the coherence time of a few milliseconds sets an upper boundary for robust operation.
A further limitation is the actual drift of the laser’s reference cavity. As soon as the cavity
drift becomes nonlinear the predictions start getting poorer.

The measurement outcome for the magnetic field is shown in Fig. 4.6 (a). A linear fit to
the measurement results reveals an average magnetic field drift rate of 64µG/h. Similar
to what is done for the frequency of the reference cavity, we also make a prediction for
the magnetic field expected for the next measurement by a linear extrapolation of the last
couple of data points. These predictions are plotted as circles in the graph. The inset
of Fig. 4.6 (a) shows the difference between the measurements and the predictions as a
histogram. A Gaussian fit with a standard deviation of 53µG describes the distribution
well. Here, quantum projection noise contributes with 16µG to the deviation. At the
moment we do not use the prediction for the magnetic field in order to actively feed back
to the current driver supplying the magnetic field coils. Instead we recalculate all relevant
transition frequencies that are used accordingly.

All Ramsey measurements were carried out with a fixed phase relation φac relative to the
50 Hz AC power line, i.e. each experiment is started by a line trigger pulse. Figure 4.6 (b)
shows the change of the magnetic field at the trap center with the phase φac. Magnetic
field components at 50Hz that have a fixed phase relation to the AC power line exhibit an
amplitude of 1.6mG. Additional tests with a fluxgate magnetometer8 and measurements
of the coils’ current spectrum strongly support the hypothesis that the 50 Hz magnetic

8Stefan Mayer Instruments, Fluxmaster
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Figure 4.6: Measurement of the magnetic field at the trap center by probing two quadrupole
transitions of a single 43Ca+ ion. (a) The squares represent 378 measurements recorded over
more than 4 h. A linear fit results an average drift of 64µG/h. The circles are our best guess
during the experiment for the next measurement outcome derived from a linear fit to the last
few data points before the measurement. The inset (b) plots the difference between the two
as a histogram. The Gaussian fit is characterized by a standard deviation of 53µG. (c) All
experiments are carried out at a fixed phase φac with respect to the 50Hz AC power line.
Changing the phase φac reveals the magnetic field noise components at 50Hz that have a
fixed phase relation to the AC power line. These are most likely caused by transformers and
other parts of the apparatus.

field components are mainly caused by transformers and other lab equipment part of the
apparatus. The results shown in panels (a) and (b) of Fig. 4.6 were taken at a different
magnetic fields. However, both graphs are scaled to have the same spread along the y-axis.
Thus, it becomes immediately obvious, that the magnetic field variations within 20 ms are
much larger than changes over hours when the phase φac is kept constant. As a result
all experiments reported in this thesis are performed with φac being fixed. Since some of
the transitions used exhibit a magnetic field sensitivity as high as 2.8 MHz/G, transition
frequency changes of more than 4.5 kHz have to be taken into account over the course of
a pulse sequence. An active compensation or a passive shielding could help to get rid of
this problem.

4.5 Heating rate, shuttling the ions and motional coherence

A critical parameter of an ion trap is the heating rate of the ions’ motional degrees of
freedom due to electric field noise from the trap electrodes. As most current quantum
gates rely on the coupled motion of two or more ions, the motional quantum state needs
to be controlled to a degree dependent on the actual scheme. Noise in the motion can
degrade this control and lead to a decrease in gate fidelities.

One method to access the heating rate is to cool a single ion close to the motional ground-
state of the axial mode. Assuming a thermal state, the mean population of the axial mode
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Figure 4.7: The heating rate of the axial COM mode at a trapping frequency of ωax/(2π) =
1.2 MHz was measured using a single 40Ca+ ion cooled close to the motional ground-state.
Probing the excitation on the red and the blue axial sideband we infer the population of the
motional mode by the ratio given in Eq. (4.2). By introducing and varying a waiting time
before the probe pulses we can measure a slow increase of the population. The plot shows two
sets of data taken with an 11 month pause in between. A linear fit to both data sets with a
zero y-intercept reveals a heating rate of about one motional quantum in 390(20)ms.

n̄ax can be measured by comparing the excitation of a red sideband prsb with excitation
on the blue sideband component pbsb (see Fig. 6.3 (a)) of the same transition [109]

n̄ax =
prsb

pbsb − prsb
. (4.2)

By introducing and varying a waiting time between ground-state cooling and the measure-
ment of motional state population we have mapped out the increase of n̄ax as a function
of this time (see Fig. 4.7). From a linear fit to the data, we obtain a heating rate of one
motional quantum in 390(20)ms at an axial trapping frequency of ωax/(2π) = 1.2 MHz
which is one of the lowest values ever reported.

In section 3.5 we have discussed the advantages of addressing different individual ions
with various lasers by moving the linear ion crystal along the trap axis. We can quickly
imbalance the tip voltages such that the ions move along the symmetry axis of the trap
without changing the actual axial trapping frequency. As described in section 3.5, our
tip voltage control electronics allows us to add an input voltage signal to one of the tip
voltages and subtract it from the other. By using a signal generator with a rectangular
output pattern of an amplitude of ±10 V we can shift the ions over a distance of 10µm for
an average tip voltage of 1000 V. The shuttling distance was measured by observing the
movement on the EM-CCD camera image. The imaging magnification was calibrated using
the known inter-ion distance of a two-ion crystal where the axial COM mode trapping
frequency was known (see Eq. (3.5)). Camera pictures of the ions were taken with an
acquisition time of 20 ms, which is about three orders of magnitudes larger than the time
the shuttling is expected to take. Setting the signal generator to a frequency of 1 kHz
the single ion occurs at two sites on the EM-CCD image and no fluorescence is observed
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Figure 4.8: (a) Pulse sequence that describes a Ramsey phase experiment where the co-
herence of the two lowest motional quantum states is probed. (b) A superposition of those is
prepared by a π/2-pulse on the carrier followed by a π-pulse on the blue sideband. Then the
ion is moved over a distance of 10µm and a waiting time of 200µs is introduced. Then the
ion is shuttled back and after another waiting time of 200µs the superposition is analyzed by
applying another π-pulse on the blue sideband and a (π/2)φ-pulse on the carrier. Below is a
step-wise illustration of the evolution in the Hilbert space. (c) Measurement results (•) of the
Ramsey phase experiment where the phase φ of the last laser pulse is scanned. Also shown
are the results from a reference experiment (�) were the movement of the ion was omitted.
From the data we can conclude that neither amplitude nor the phase of the fringe pattern is
affected by the shuttling.

from in between. Only if we increased the frequency to above 30 kHz fluorescence was also
observed between the two extremal ion sites. Here, the two low-pass filters prevented the
two tip voltages being interchanged fast enough such that the amplitude of the movement
decreased. Measurements with two 40Ca+ ions have shown that full settling was achieved
after 40µs. This value corresponds to about 50 oscillations of the ions along the axial
direction.

To see if the population of the axial COM mode is affected by this shuttling we performed
a Ramsey phase experiment on the two lowest motional states. A single 40Ca+ ion was
initialized to the motional ground-state of the axial mode by sideband cooling. A π/2-
pulse on the transition from S ≡ S1/2(mJ = 1/2) to the D ≡ D5/2(mJ = 1/2)-state
creates a superposition state of the form (|S0〉+ |D0〉)/

√
2. With an additional π-pulse on

the blue sideband of this transition we mapped the superposition of the electronic state
to the motion and created (|D0〉 + |D1〉)/

√
2. Then we moved the ion over a distance of

10µm along the trap axis. After a waiting time of 200µs we shuttled the ion back and
waited another 200µs. In order to probe the coherence we repeated the first two pulses in
reverse order and scanned the phase φ of the last carrier pulse to observe a fringe pattern.
In addition we recorded a reference measurement where the ion was not moved. The
pulse sequence, a sketch of the Hilbert space and the measurement results are shown in
Fig. 4.8. Within the accuracy of the measurements both data sets reveal the same fringe



66 4. Experimental techniques

amplitude and no phase shift in the Ramsey pattern is observed. This lets us conclude
that the motional coherence is not affected by the movement and that the population of
the motional quantum state is unperturbed by the shuttling.

4.6 Individual ion detection, addressing and addressing error

correction

To get the maximum information out of each measurement when working with more than
one ion, it is necessary to discriminate fluorescing ions from the dark ones. Individual
ion detection can be achieved using the EM-CCD camera by defining a region of interest
around each of the ions’ images. Two reference pictures are taken, one with all ions dark
(omitting 866 nm laser during detection) and another one with all ions fluorescing. For
the actual measurement we collect photons for 5 ms to 20ms, then an evaluation software
on the camera PC compares each ion’s region of interest with the reference pictures and
decides whether it is considered to be bright or dark and sends this information to the
experiment control PC. The whole process is technically quite a bit more demanding than
the PMT detection. Thus, the measurements presented here are more about proving the
basic working principles for the new setup than demonstrating the ultimate performance.

Arbitrary quantum operations with many qubits require that interactions on individual
qubits can be implemented to make the particles distinguishable. In ion trap quantum
computing this is equivalent to limiting the laser ion interaction to one ion at the time
which can be achieved in various ways. One approach is to use micro-fabricated segmented
traps and to shuttle the ions around through different trapping zones. In this scheme larger
ion crystals can be split up into smaller ones and brought to zones where they can interact
with a laser [110]. This requires a very high amount of control concerning the trapping
potentials and only a few experiments have demonstrated the fundamental principles of
these techniques so far [111, 112]. In particular, the splitting of an ion crystal seems to
be a costly operation. If ρ denotes the distance from the ions to the nearest electrodes
the time to split a two ion crystal scales with ρ9/10 [113] for a given trap structure. This
gets compromised by the fact that the heating rate scales approximately as ρ−4 [109, 114].
Another way to talk to individual ions when using larger ion crystals is to focus light
so strongly, that only one of the ions is illuminated. Assuming a Gaussian beam shape,
this requires a beam waist at the ions’ position ideally much smaller than the inter-ion
distances of a few micrometer. However, even for perfect optical components we expect
residual coupling Ωres on the neighboring ions caused by the tail of the Gaussian beam
profile and diffraction due to finite apertures. The ratio εae ≡ Ω/Ωres defines the relative
addressing error. In reality it turns out to be quite challenging to adjust the optics properly
and reduce this addressing error to a few percent level.
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Figure 4.9: (a) To induce a qubit rotation on a single ion of a two-ion crystal we strongly
focus a laser beam. For a single pulse we expect an error on the neighboring ion that scales
with the square root of residual laser intensity on this ion. By splitting the single pulse into
two an introducing a π-rotation around the z-axis by AC-Stark shift the error is reduced to
≤ πε2 and scales linear with the residual laser intensity on the second ion. In case the relative
addressing error is known a further reduction of the error is obtained by adapting the phases
of the second an the third pulse accordingly. Optionally the residual phase acquired on each
ion can be taking into account for the following pulses or a fourth pulse can be used to revert
this phase back. For this scheme panel (b) shows a Bloch sphere representation of the two
ions after the second pulse. The normal vector n of the plane spanned by the two Bloch
vectors lies within the equatorial plane and serves as rotation axis for the third pulse.

Fortunately it is possible to relax the demands concerning the optics quite a bit by a
technique termed addressing error correction. Let us consider a simple scenario with two
calcium ions trapped and both initialized to the south pole of the Bloch sphere. We want
to implement a single-qubit rotation R(1)(θ = π,φ = 0) on the first ion and leave the
second ion unaffected with R(2)(0, 0). Since the coupling strength Ω is proportional to
the square root of the laser intensity, a residual laser intensity of only 2% on the second
ion leads already to a relative addressing error Ω1/Ω2 as high as 14%. Instead of a single
pulse we can use three pulses (see Fig. 4.9 (a)) where the first is equivalent to a rotation
R(1)(π/2, π) on ion 1. This excites also ion two to about 7%. Also the second pulse acts
primarily on the first ion but now we detune the laser frequency so far from the transition
frequency, that populations do not get exchanged and only a phase shift is introduced due
to the AC-Stark effect. In the Bloch sphere representation this is equivalent to a rotation
around the z-axis, noted Rz(ψ), where the rotation angle ψ is proportional to the pulse
duration and laser intensity of the pulse. For ψ = π on ion 1, we expect a rotation of only
π/50 for ion 2. The third pulse again is similar to the first with R(1)(π/2, 0). It flips ion
1 completely up to the north pole of the Bloch sphere, where the second ions is almost
completely rotated back towards the south pole. For this simple example the addressing
error is reduced from πεae to about πε3ae. A measurement result for this scheme is given
in Fig. 4.10.
In general with this scheme the actually acquired addressing error is dependent on the
state of the neighboring second ion. In the worst case, when the second ion’s state is near
the equatorial plane of the Bloch sphere, the error can get as large as πε2ae such that the
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(a) (b)

Figure 4.10: (a) Exciting mainly one ion of a two ion crystal with the laser at a wavelength
at 729 nm. The camera detection was used to discriminate between the states |SD〉 and |DS〉
such that individual ion excitations of ion 1 (•) and ion 2 (�) were measured. The ratio
between the wanted coupling strength on ion 1 and the erroneous coupling strength on ion 2
is about 7. (b) In case the individual pulse was replaced by a composite pulse the excitation
on the second ion can be largely suppressed.

maximum error is given by the ratio of the laser intensities on the neighboring ions. One
major advantage of this scheme is that it works irrespective of whether εae is a known
quantity or not.

In the experiment εae is usually a known quantity on the order of 5% for the nearest
neighbors. Moreover, we can tune the laser beam such that both neighboring ions exhibit
the same addressing error. Armed with this knowledge the effective addressing error is
further reduced by modifying the previous scheme. Now the length of the second pulse
is adjusted such that the Bloch vectors of ion 1 and ion 2 span a plane with a normal
vector n being in the equatorial plane after the z-rotation (see Fig. 4.9 (b)). This is the
case for a rotation angle of ψ = π/(1− ε2ae). Then a rotation R(1)(π/2, π/(1− ε2ae)) brings
ion 2 exactly back to the south pole and ion 1 up to the north pole. Finally, the single-
qubit phases can be either taken into account for the subsequent pulses or one additional
rotation around the z-axis R(1)

z (−π/(1−ε2)) on ion 1 can make them vanish. Furthermore,
this scheme works for arbitrary input states and angles θ and φ. Here, the residual error
is no longer given as a function of εae but instead by the balancing of this residual light
intensity on the neighboring ions and by the precision of the relative coupling strengths.
Thus, addressing error correction relaxes the demands on laser spot sizes by at least an
order of magnitude.
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This chapter describes the hyperfine structure investigation of the 4s 2S1/2 ↔ 3d 2D5/2

quadrupole transition at 729 nm by laser spectroscopy using a single trapped 43Ca+ ion.
We determine the hyperfine structure constants AD5/2

and BD5/2
of the metastable level

and the isotope shift ∆43,40
iso of this transition with respect to 40Ca+. Moreover, the ex-

istence of transitions that become independent of the first-order Zeeman shift at nonzero
low magnetic fields is demonstrated. These transition’s abilities to serve as an optical
frequency standard or qubit are briefly discussed and one of them is used as a probe for
the spectroscopy laser’s line width and phase stability. The main findings of this chapter
were also published in reference [72].

5.1 Measurement of the hyperfine constants of the 43Ca+ D5/2

energy level

In recent years, optical frequency standards based on single trapped ions and neutral atoms
held in optical lattices have made remarkable progress [115, 116, 117] towards achieving
the elusive goal of a fractional frequency stability of 10−18 [35]. In 199Hg+, 27Al+, 171Yb+,
115In+, and 88Sr+, optical frequencies of dipole-forbidden transitions have been measured
[115, 118, 119, 120, 121]. Among the singly-charged alkali-earth ions, the odd isotope
43Ca+ has been discussed as a possible optical frequency standard [122, 123] because of its
nuclear spin I = 7/2 giving rise to transitions 4s 2S1/2(F,mF =0) ↔ 3d 2D5/2(F,mF =0)
that are independent of the first-order Zeeman effect. Our major motivation for precision
spectroscopy comes from the fact that our scheme to utilize the 43Ca+ hyperfine clock
states for QIP requires the a precise knowledge of the quadrupole transition frequencies.

From earlier measurements and calculations of the isotope shift [124] and the hyperfine
splitting of the S1/2 [84] and the D5/2 [85, 125, 126] states, the transition frequencies
on the quadrupole transition in 43Ca+ are known to within 20 MHz with respect to the
transitions in 40Ca+. This enabled us to unambiguously identify the lines observed in
spectra of the S1/2 ↔ D5/2 transition as a starting point.
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Figure 5.1: Pulse sequence used to measure the different frequencies of the quadrupole
transition of 43Ca+and 40Ca+. Each start of a sequence is triggered to the AC power line.
Doppler-cooling and optical pumping to a designated Zeeman state is followed by state prepa-
ration which can have a different number of pulses and vary in length. To start the Ramsey
experiment always at the same phase with respect to the AC power line phase a pause was
introduced accounting for variations of the state preparation time.

5.1.1 Measurement scheme and results

In order to set the magnetic field precisely, we used a single 40Ca+ ion to determine
the field strength by measuring the frequency splitting of the two transitions S1/2(mJ =
+1/2) ↔ D5/2(mJ = +5/2) and S1/2(mJ = +1/2) ↔ D5/2(mJ =−3/2). Stray magnetic
fields oscillating at multiples of 50 Hz changed the magnitude of the field by less than
2 mG over one period of the power line frequency (see section 4.4). Spectroscopy on the
quadrupole transition was implemented in the pulsed mode of operation (see section 4.2).
By synchronizing the experiments with the phase of the power line, magnetic field fluc-
tuations at multiples of 50 Hz were largely eliminated as a source of measurement error.
The duration of a single experimental cycle (see Fig. 5.1) was on the order of 10ms, such
that this procedure slightly slowed down the repetition rate of the experiments.

In a first series of measurements after Doppler-cooling the ion was prepared in the state
S1/2(F = 4,mF = +4) by optical pumping with σ+-polarized light (see subsection 6.1.1).
There are fifteen transitions to the D5/2 levels allowed by the selection rules for quadrupole
transitions. Spectra were recorded on all of them with an excitation time of 500µs in a
magnetic field of about 3.40 G. In a second measurement series, after pumping the ion into
S1/2(F =4,mF =−4) another fifteen transitions were measured. To obtain the hyperfine
constants of the D5/2-state, we fitted the set of 30 transition frequencies by diagonalizing
the Hamiltonian (2.12) taking the hyperfine constants AD5/2

, BD5/2
, the magnetic field

and a frequency offset as free parameters. The hyperfine constant AS1/2
, the g-factors gI

and gS1/2
were taken from other references (see Tab. A.5), gD5/2

= 1.2003(1) was measured
by us in an experiment with a single 40Ca+ ion. For this set of data (see Fig. 5.2 (a))
a fit yields AD5/2

= −3.8931(2)MHz and BD5/2
= −4.241(4)MHz, where the standard

deviation of the determination is added in parentheses. The average deviation between
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Figure 5.2: (a) Hyperfine and Zeeman splitting of the 43Ca+ D5/2-state manifold calculated
for hyperfine constants measured in our experiment. Filled circles (•) and crosses (x) mark
states that were probed starting from the S1/2(F = 4,mF =±4)-states. The vertical dashed
line indicates the magnetic field used for measuring the frequency shifts in the experiment. (b)
Result of a Ramsey frequency scan over 5 kHz with τR = 200µs on the transition S1/2(F =
4,mF = 4) ↔ D5/2(F = 5,mF = 4). The solid line is a sinusoidal fit with the maximum
indicating a deviation of −433(28)Hz from what was expected during the experiment from
theoretical calculations based on previous measurements of AD5/2 and BD5/2 .

the measured and the fitted frequencies is about 1 kHz. If gD5/2
is used as a free parameter,

we obtain gD5/2
= 1.2002(2) and the fitted values of the hyperfine constants do not change.

Also, adding a magnetic octupole interaction [127] to the hyperfine Hamiltonian does not
change the fit values of the hyperfine constants.

In a second attempt we probed all D5/2 levels that are accessible from the S1/2(F = 4)
manifold. The single 43Ca+ ion was first initialized in the S1/2(F = 4,mF = 4)-state by
optical pumping. Then the ion is prepared by a series of π-pulses on the quadrupole
transition into the desired starting level of the ground-state manifold. Subsequent to
the state preparation the frequency measurement was performed by a Ramsey frequency
experiment. For this purpose a first light pulse created a superposition between the two
states probed. Then a waiting time τR is introduced before a second light pulse. For each
transition two sets of measurements were taken, one with a Ramsey time of τR = 50µs
to avoid ambiguities and another one with τR = 200µs, limited by the magnetic field
sensitivity of the most sensitive transition probed. At the end of the experimental cycle,
the ion’s quantum state is detected. This measurement cycle is repeated fifty times before
setting the probe laser to a different frequency and repeating the experiments all over
again. The laser power was set such that the time for a π/2-pulse was between 5 and
20µs. A sine-curve was fitted to the resulting fringe pattern. The location of maximum
determines the frequency difference between the expected transition frequency and the
one measured. A typical result is shown in Fig. 5.2 (b). Before each of these experiments,
the two transition frequencies of S1/2(F =4,mF =4) ↔ D5/2(F =4,mF =2) and S1/2(F =
4,mF =0) ↔ D5/2(F =4,mF =2) were measured also with τR = 200µs. From these the
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magnetic field during the measurement of the transition could be determined from the
Zeeman splitting of the S1/2-state manifold solely using the g-factor and the hyperfine
constant AS1/2

, which are known with high precision. By introducing small waiting times
dependent on the duration of the transfer pulses for state initialization we assured that all
frequency measurements occurred at the same phase with respect to the AC power line.

The result of these measurements for the 45 different levels probed is given in Fig. 5.3 and
Tab. A.6. With the knowledge of the magnetic field for each data point, the level shifts
were recalculated with respect to the mean magnetic field of all measurements which was
3.045 524G. All of these corrections were below 1 kHz.

We obtain the hyperfine constants of the D5/2-state from fitting 41 transition frequen-
cies by diagonalizing the Hamiltonian (2.12) and using the hyperfine constants AD5/2

,
BD5/2

and a frequency offset as free parameters. In the meantime another experi-
ment in the group revealed a more accurate measurement of metastable state’s g-factor
gD5/2

= 1.200 334 0(3) by probing a single 40Ca+ ion [128]. As a result of the fit we obtain
the values

AD5/2
= −3.89312(3)MHz,

BD5/2
= −4.239(1)MHz,

where the statistical error (1σ) of the determination is added in parentheses. The average
deviation between the measured and the fitted frequencies is below 600 Hz now and the
results are consistent with the ones obtained earlier. If gD5/2

is used as a free parameter,
we obtain gD5/2

= 1.200 36(4) and the fitted values of the hyperfine constants do not
change.

5.1.2 Limitations of the measurement

There is a number of effects that can systematically disturb the precise determination of
the transition frequencies. First of all the whole measurement is limited by the ability to
stabilize the spectroscopy laser relative to the ion. For the second set of measurements
the laser was referenced to the two transitions S1/2(F =4,mF =4) ↔ D5/2(F =4,mF =4)
and S1/2(F = 4,mF = 4) ↔ D5/2(F = 4,mF = 2) with a scheme described in section 4.4.
The Ramsey time was set for both transitions to τR =200µs and the times τπ were set to
∼15µs. The whole measurement took about 500min during which a total of 664 service
measurements were taken. The difference between these service measurements and the
predictions is given in Fig. 5.4 (a) as a histogram together with a Gaussian fit. We obtain
a standard deviation of 60Hz. This sets a boundary to the accuracy of all transition
frequency measurements. The evaluation of the magnetic field measurement is given in
Fig. 5.4 (b). The standard deviation describing the Gaussian fit to the histogram is 54µG.
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(b)(a)

Figure 5.4: Automated service measurements as described in section 4.4 referenced the
spectroscopy laser to the 43Ca+ ion during the spectroscopic measurements. In total 664
of these service measurements were taken over a measurement time of 500 min. (a) The
histogram shows the frequency deviation between the measurements and our predictions. A
Gaussian fits well to the data which exhibit a standard deviation of 60 Hz. (b) From the same
set of measurement we also obtain values for the magnetic field. The histogram shows the
deviation from the extrapolation together with a Gaussian fit with a standard deviation of
54µG.

Transitions to the stretched states come with the highest sensitivity of 2.8 MHz/G which
would then lead to an error in frequency estimation of 150 Hz.

Another error source are the radiofrequency currents that supply two of the four trap
blades with high voltage Vrf(t). The trap drive frequency Ωrf is determined by the helical
resonator and the capacity of the trap structure. During these measurements the frequency
was set to Ωrf/(2π) = 25.466 MHz. This comes fairly close to the hyperfine splitting of
the D5/2(F = 6) and D5/2(F = 5)-states. In particular, for the given magnetic field the
difference between the transition frequency D5/2(F =6,mF =−1) ↔ D5/2(F =5,mF =−1)
and the trap drive frequency Vrf(t) is as small as ∆td/(2π) = 14.6 kHz and a magnetic
dipole coupling exists. Comparing the model with the measurements of these levels shows
for each of them a shift of approximately δacB/(2π) ≈ 6.7 kHz in opposite direction. If we
neglect the coupling to other levels for the moment we can calculate the coupling strength
ΩDD by

ΩDD ≈
√
δacB(δacB + ∆td) = 2π × 12 kHz.

Similarly, we have ∆td = −270 kHz for the level pair D5/2(F = 6,mF = −2), D5/2(F =
5,mF =−2) and observe a shift of about 1.3 kHz in the opposite direction. For this reason
these levels were not taken into account for the determination of the hyperfine coefficients
AD5/2

and BD5/2
. Other inter-level frequency differences deviate more from Ωrf and we

expect these shifts to be less than 1 kHz. In principle we could investigate the polarization
and the exact coupling strength of these AC magnetic fields by varying the static magnetic
field such that certain of these transitions become resonant. This has not been done so
far.
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As discussed in Appendix B for the method of separated oscillatory fields, AC-Stark shifts
from other transitions can lead to an additional phase in the observed fringe pattern and
hence lead to an error in the frequency determination. For the coupling strength used here
the contribution of neighboring dipole transitions is estimated to be less than a few Hertz.
Coupling to other levels in the D5/2 and S1/2 manifold strongly depends on the Zeeman
splitting of the neighboring levels and can lead to much larger shifts. At a magnetic field
of 3 G, the Zeeman splitting is larger than 1MHz for most of the levels and so the error is
also on the order of a few Hertz. One exception is the level D5/2(F =3,mF =−2) which is
separated by only 73 kHz from the level D5/2(F =3,mF =−1). Probing the level from the
ground-state S1/2(F =4,mF =0) led to an error of 4 kHz in frequency determination due
to the AC-Stark shift. When instead the D5/2(F =3,mF =−2)-state was probed from the
S1/2(F =4,mF =−4) ground-state a coupling to the close by D5/2(F =3,mF =−1)-level
is forbidden by the selection rules and the obtained value deviates only by -2 Hz from
the model. An exact analysis would require the summation over all possible couplings to
neighboring transitions including sidebands due to the motion of the ion.

An AC-Stark shift can also be caused by spurious light fields that couple to the levels under
investigation. Already small amounts of light at the dipole transitions from S1/2 ↔ P1/2,
P3/2 and P3/2 ↔ D5/2 can cause large shifts. The light fields at wavelengths of 397 nm
and 854 nm are needed though within the experimental cycle for detection and repumping.
Usually these lasers are switched off by single pass AOM’s in front of a single-mode glass
fiber which typically gives an extinction ratio on the order of 10−5. In order to investigate
possible light shifts caused by imperfect laser switching additional mechanical shutters
were installed to shut these lasers completely off. The largest shift due to residual laser
light observed in a series of measurements using different transitions in 43Ca+ and 40Ca+

by a direct comparison was about 10 Hz (see next section).

The D5/2-state’s atomic electric quadrupole moment interacting with residual electric
quadrupole fields gives rise to frequency shifts of a few Hertz [129]. Several series of
measurements were performed for different voltages on the tip electrodes of the trap. No
effect was observed within the accuracy of the measurements which was about 10Hz.

Other deteriorating effects due to residual micromotion, black body radiation, higher order
AC-Stark shifts, etc. are all expected to contribute less than a few Hertz and are also not
considered for the evaluation.

Taking all the above error sources into account, deviations from the model of a few hundred
Hertz are expected. The measurement results shows a mean deviation of 600 Hz with
maximum deviations of up to 1.5 kHz. In order to make use of these transitions for QIP
this level of accuracy is sufficient. Due to variations of the magnetic field of up to 2 mG
within 20 ms we determine each transition frequency depending at which particular point
of the sequence we use it anyway.
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Figure 5.5: For the measurement of the isotope shift on the S1/2 ↔ D5/2 quadrupole
transition between the ion species 40Ca+ and 43Ca+ we make use of two independent ion trap
experiments. One of them is located at the IQOQI and described in chapter 3. The other
experiment and a frequency comb referenced to a cesium fountain is located at the university
[130]. We transfer light of our spectroscopy lasers between the two sites over 500m long
single-mode polarization-maintaining glass fibers. Both experiments continually measure the
frequency deviation between their spectroscopy laser and the atomic transition and feed the
signal back onto AOM’s in order to stabilize the output frequency of the lasers relative to
the ion. Fiber-noise cancelations are installed on all fibers except the ones leading to the ions
since here we have to switch the laser on and off quickly.

5.2 Measurement of the isotope shift

One goal pursued by our group is the precise determination of the absolute frequency of
the 40Ca+ S1/2 ↔ D5/2 transition [128]. The frequency of our spectroscopy laser was
measured by means of an optical frequency comb referenced to a mobile cesium fountain
as absolute frequency standard. As a result we obtained for the transition frequency a
value of

ω40
S↔D/(2π) = 411 042 129 776 393.2(1.0) Hz.

By an intensive study of the apparatus and the systematic effects we were able to achieve an
inaccuracy as low as ±1 Hz. A detailed description of the apparatus located at a university
building, the measurements and its limitations is given in Michael Chwalla’s thesis [130].
The new experimental setup described in chapter 3 assisted these measurements. As a
byproduct we were able to determine the isotope shift ∆43,40

iso on this quadrupole transition
between 40Ca+ and 43Ca+ ions.
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5.2.1 Measurement scheme and results

A sketch of the different components of the measurement setup and their location is given
in Fig. 5.5. Similar to what was described in section 4.4 a laser system at 729 nm is
referenced to calcium ions at the experiment in the university building. The lasers of both
experiments are sent to a frequency comb1 which can simultaneously measure the absolute
frequencies of both light fields referenced to a mobile cesium fountain2. In addition, light
of the spectroscopy laser is sent from the university building to the IQOQI where an
optical beat measurement was recorded to determine the frequency difference between
both lasers. When both lasers are referenced to 40Ca+ ions this beat signal was about
30 MHz. In case a 43Ca+ ion was used at the IQOQI a beat frequency of typically 5.4 GHz
was recorded with a fast photo detector3. In both cases the optical beat frequency was
mixed down4 to around 10.7MHz where it was counted with a frequency counter5. The
beat measurement typically takes data over many hours (see Fig. 5.6 (a)) which was not
the case for the frequency comb. A comparison between the two measurements has shown
though that the transfer of the lasers over the 500 m glass fiber does not impose changes to
the laser frequency on a Hertz level when the fiber-noise cancelation (see subsection 3.2.2)
is used. On the IQOQI side all relevant radiofrequency sources, the frequency counter and
spectrum analyzer were referenced to an ultra-stable quartz which is locked to the global
positioning system signal on a long time scale6. All computers recording measurement
data are synchronized to within 10 ms by having a common internet time basis.

In a first set of measurements we had both experiments running automated frequency
measurements on a single 40Ca+ ion. On both experiments we repeatedly probed the two
transitions S1/2(mJ = +1/2) ↔ D5/2(mJ = +1/2) and S1/2(mJ = −1/2) ↔ D5/2(mJ =
−1/2) with a Ramsey time of τR = 1ms and feeding back the signal to acousto-optic
elements as described in section 4.4. The magnetic field in the university experiment
was set to 3.4 G and the excitation times were τπ = 400µs at the experiment located
at the IQOQI the values were 0.55G and τπ = 12µs respectively. Simultaneously we
measured the beat note of the two spectroscopy lasers at a frequency of about 29 MHz
as seen in Fig. 5.6 (a). With a gate time of 1 s we acquired in total 8605 frequency
measurements. After subtracting the mean value these data are displayed in a histogram
(Fig. 5.6 (b)) where a Gaussian fit with a standard deviation of 21.1 Hz describes the
distribution of the data well. The center is determined to better than 1 Hz. Since both
lasers were independently referenced to an atomic transition of known transition frequency

1Menlo Systems, FC 8003
2The cesium fountain was provided and operated by Michel Abgrall, Daniele Rovera, Philippe Laurent
and Giorgio Santarelli (LNE-SYRTE, Observatoire de Paris)

3photodiode: Hamamatsu, G4176; bias-tee: Miteq, 40 GHz BT 4000; amplifier: Miteq, AFS42-00101200
4Rohde & Schwarz, SMA 100 A; Miteq, D80118LA2
5Stanford Research Systems, SR-620
6Menlo Systems, GPS 6-12
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beat at 28962046 Hz
std = 21.1 Hz
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Figure 5.6: (a) Optical beat note at about 29MHz between the two spectroscopy lasers at
a wavelength of 729 nm recorded with a frequency counter. The gate time was set to 1 s and
we had a dead time of about 0.3 s between the measurements. Both lasers were referenced to
a single 40Ca+ ion in different experiments. (b) The standard deviation of the beat frequency
from the mean value is 21 Hz and a Gaussian fits well to the histogram. (c) By plotting
the Allan deviation we see the expected drop with τ−1/2 after 120 s, indicating the time
constant of our feedback loops. (d) In total 562 measurements were taken on the IQOQI
site over an interval of 4 h. Comparing these with the beat data reveals 13(2) Hz offset of the
transition base line compared to the experiment located at the university. (e) A large fraction
of this difference can be attributed to AC-Stark shifts caused by residual light intensity at
wavelengths of 397 and 854 nm. These were eliminated in a set of 113 measurements were
mechanical shutters were used in addition. Here a standard deviation of 21Hz and a relative
shift between the two experiments of 5(2)Hz was found.
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this measurement can also be seen as the comparison of two atomic clocks. An estimate
of the statistical measurement uncertainty versus the measurement duration is given by
the Allan deviation

σ(τ) ≡
√

1
2
< (yn+1 − yn)2 >

as shown in Fig. 5.6 (c). Here yn denote the normalized frequency departure, averaged
over sample period n, and τ is the time per sample period. To be exact, the data have
to be collected without a dead time in between which was not the case for this particular
measurement. Nevertheless, we can obtain from the graph an important time constant
of about 120 s after which the expected drop of the Allan deviation with τ−1/2 occurs.
This time constant is caused by the accuracy and the rate at which our measurements for
the feedback occur. The value could be significantly reduced if a cavity of lower drift was
used.

About every one to two minutes on the experiment located at the IQOQI we took data on
the same transitions where the lasers at wavelengths of 397 nm and 854 nm were closed with
a mechanical shutter7 for the time of the Ramsey experiment. The mechanical shutters
have a closeing/opening time of about 5 ms with a maximum rate of 10 Hz such that their
use slows down experiments significantly. Over a total measurement time of three hours
we recorded 562 sets of measurements without use of mechanical shutters and only 113
measurements where shutters were used. Only the measurements without shutters were
taken to reference the laser to the ion. In order to compare the measurement results
we interpolated the data of the beat measurements to the ones taken on the ion. Both
measurement results are displayed as histograms in Fig. 5.6 (d)+(e). Gaussians fit well
to both distributions and we find standard deviations of 16 Hz and 21Hz respectively.
The mean value of the measurements taken without shutter is shifted by 13.5(7) Hz from
the line center determined from the university setup. With the shutter we still find a
difference of 5(2)Hz. This difference cannot be explained yet and further investigations
on the experiment located at the IQOQI would be required.

With the confidence that our measurement technique is accurate to a few Hertz, we re-
peated these measurements with the spectroscopy laser at the IQOQI referenced to a
single 43Ca+ ion. All experimental conditions were chosen to be equal as for the hyperfine
structure measurement described earlier in this chapter. For the determination of the
isotope shift we probed only 8 of the 45 available D5/2-states, all of them starting from
S1/2(F = 4,mF = 0). These measurements allow us to determine the line center of the
D5/2-state with an 1σ statistical error of ±390 Hz. The individual measurement results
are given as difference to what was expected from the model by values in brackets depicted
in Fig. 5.3. Parallel to the measurements we recorded a beat note of the spectroscopy laser
with the laser coming from the university which again was referenced to a single 40Ca+

7Densitron



80 5. Precision spectroscopy

ion. The optical beat note had a frequency of 5 464 355 931 Hz. From these results we infer
an isotope shift on the S1/2 ↔ D5/2 transition between the species 40Ca+ and 43Ca+ of

∆43,40
iso /(2π) = 4134711720(390)Hz.

with a relative error of 9.4 × 10−8. This value is in good agreement with a previous
measurement that determined the value to ∆43,40

iso /(2π) = 4129(18) MHz [84]) and our own
previous result of ∆43,40

iso /(2π) = 4134.713(5)MHz [72] which was obtained without the use
of a second experiment and derived by the precise knowledge of the free spectral range of
our reference cavity.

5.2.2 Limitations of the measurement

The major limitation to the accuracy of this measurement is given by the precise determi-
nation of the 43Ca+ D5/2-state’s line center. The uncertainty of the hyperfine constants
AD5/2

and BD5/2
contribute with an error of at least 62Hz and 26Hz to the determination

of the line center. In addition the same errors as described earlier for the determination
of the hyperfine constants contribute to these measurements. In order to get a better con-
fidence in our result we took a few more data using other sets of transitions. The values
obtained for the isotope shift ∆43,40

iso all lay in a range of −268 Hz and +301 Hz of the
above given value. In these measurements we again investigated the effects of mechanical
shutters for the lasers at 397 nm and 854 nm with about the same result as for 40Ca+.
Moreover, we made series of measurements where the magnetic field was changed between
0.5G and 5 G, the tip voltage of the trap set to values between 500 and 1500 V and the
radial trapping frequency between 2.4 MHz and 4.2 MHz. For none of these measurements
we have observed a significant shift caused by the change of these parameters.

5.3 Magnetic field independent transitions

With a precise knowledge of the hyperfine structure constants at hand, the magnetic
field dependence of the D5/2 Zeeman states is calculated by diagonalizing the Breit-Rabi
Hamiltonian (see Fig. 5.2 (a)). It turns out that several transitions starting from one of
the stretched states S1/2(F =4,mF =±4) become independent of the first-order Zeeman
shift at field values of a few Gauss (see Fig. 5.7 (b)). Transitions with vanishing differential
Zeeman shifts at non-zero fields have been investigated in experiments with cold atomic
gases [131] to achieve long coherence times and with trapped ions [132] for the purpose
of processing quantum information. These transitions are also potentially interesting for
building an optical frequency standard.
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Figure 5.7: (a) Frequency dependence of the S1/2(F = 4,mF = 4) ↔ D5/2(F = 4,mF =
3) transition frequency for low magnetic fields. The transition frequency becomes field-
independent at magnetic fields of 3.38G and 4.96G with a second-order Zeeman shift of
∓16kHz/G2. The measured data are not corrected for the drift of the reference cavity which
may lead to errors in the shift of less than 2 kHz. To match the data with the theoretical curve
based on the previously measured values of AD5/2 , BD5/2 , an overall frequency offset was ad-
justed. (b) Calculated shift of the fifteen allowed transitions starting from S1/2(F =4,mF =4).
The thick line shows the transition to the state D5/2(F = 4,mF = 3). (c) Frequency scan
over the transition S1/2(F =4,mF =−4) ↔ D5/2(F = 4,mF = 3) with an interrogation time
of 100 ms. A Lorentzian fit (solid line) reveals a width of 16Hz which is dominated by the line
width of the spectroscopy laser at 729 nm.

To experimentally confirm our calculations we mapped out the field-dependence of the
transition S1/2(F = 4,mF = 4) ↔ D5/2(F = 4,mF = 3), which experiences the lowest
second-order dependence on changes in the magnetic field. We measured the change
in transition frequency for magnetic fields ranging from one to six Gauss as shown in
Fig. 5.7 (a). The solid line is a theoretical calculation based on the measurement of the
hyperfine constants described earlier in this chapter. For the data, the frequency offset is
the only parameter that was adjusted to fit the calculated curve. Both, the experimental
data and the model show that the transition frequency changes by less than 400 kHz
when the field is varied from one to six Gauss. The transition frequency becomes field-
independent at magnetic fields of 3.38 G and 4.96 G with a second order magnetic field
dependence of ∓16 kHz/G2, which is six times less than the smallest coefficient for a clock
transition based on mF =0 ↔ mF =0 transitions at zero field. Another advantage over the
transitions with mF =0 is that state initialization into the stretched states can be easily
achieved by optical pumping (see subsection 6.1.1). Moreover, the clock states ideally
have to be probed at zero magnetic field which makes state initialization and detection
even more challenging since the Zeeman states are then degenerate. In addition, to serve
as an optical frequency standard, the hyperfine structure of the D5/2 energy levels and
possible systematics of measurement errors have to be studied in more detail as it was
done here. The fact that the hyperfine frequency splitting of the D5/2-states is close to
the typical frequencies used to drive Paul traps might be a major disadvantage for this ion
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species to serve as an absolute frequency reference since systematic errors can be large.
The benchmark here is currently set by the frequency ratio measurement of two optical
atomic clocks (single 27Al+ and 199Hg+) with a fractional uncertainty of 5.2×10−17 [117].

As an application we used the field-independence of this transition for investigating the
line width of our spectroscopy laser. We set the magnetic field to 3.39 G and recorded
an excitation spectrum of the transition by scanning the laser over the line with an in-
terrogation time of 100 ms. Each data point consists of 50 measurements. The result is
depicted in Fig. 5.7 (c) where the solid line is a Lorentzian least square fit revealing a line
width of 16 Hz. The observed line width is neither limited by the D5/2-state’s life time
(τ = 1.17 s) nor by the chosen interrogation time. Line broadening caused by magnetic
field fluctuations can be also excluded on this transition. For the small laser powers AC-
Stark shifts are expected to play only a minor role. During the measurement the drift of
the spectroscopy laser’s reference cavity was measured to be 1.5 Hz/s and fully compen-
sated. Therefore, the observed line width is attributed to the emission spectrum of the
spectroscopy laser.

The levels comprising these transitions are certainly attractive candidates to serve as an
optical qubit leaving the remaining limitation of these to laser stability and spontaneous
decay from the metastable state. From the different measurements of the laser line width
we obtained the following results:

acquisition line widthmeasurement method
time ∆νFWHM/(2π)

power spectral density of beat note (see Fig. 3.5 (a)) 4 s ∼ 1 Hz
field independent transition (see Fig. 5.7 (c)) 150 s < 16 Hz

beat note frequency measurement (see section 5.2) > 4 h < 50 Hz

Assuming a simple noise model where the laser frequency is constant over each experi-
mental cycle but varies from shot-to-shot according to a Gaussian distribution (see Ap-
pendix B) we expect a coherence time on the order of 10 ms. We tested the phase co-
herence with a Ramsey phase experiment at a magnetic field of 4.99 G on the transition
S1/2(F =4,mF =4) ↔ D5/2(F =4,mF =3). For two different Ramsey waiting times τR of
3 ms and 5 ms the results are given in Fig. 5.8 (a)+(b). Each data point consists of 100
measurement repetitions with the statistical errors indicated. The weighted least square
fits with the function A/2 sin(φ+φ0) reveal fringe amplitudes A = 0.99(1) and 0.81(2). In
the simple noise model these results correspond to laser line width ∆ν∗FWHM/(2π) of 18 Hz
and 49 Hz and are consistent with our previous measurements listed in the table above.
For longer Ramsey times a rather wide scatter of data points is observed which cannot be
explained with the simple noise model. Measurements taken using a single 40Ca+ ion with
the apparatus at the university building which has a magnetic field shielding and active
magnetic field noise compensation give a similar reduction of Ramsey fringe contrast after
a few milliseconds.
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(a) (b)

Figure 5.8: The optical qubit’s phase coherence was measured by probing the transition
S1/2(F = 4,mF = 4) ↔ D5/2(F = 4,mF = 3) with Ramsey phase experiments using waiting
times of τR = 3ms (a) and 5 ms (b). The magnetic field was set to 4.98 G. Each data point
consists of 100 measurements with the statistical errors indicated. The sinusoidal least square
fits give as solid lines reveal amplitudes of A = 0.99(1) and 0.81(2).

We conclude that even with the considerable resources of a narrow bandwidth laser and
the use of a magnetic field insensitive transition (or alternatively a magnetic field noise
shielding and active compensation) it seems challenging to further increase the coherence
time of the optical qubit significantly. Since an entangling gate on the optical qubit takes
only 50µs in our setup it makes sense though to consider the optical qubit as processing
qubit and the hyperfine clock states as quantum memory. Here 43Ca+ ions offer the
advantage that we can benefit from the best of both worlds.





6 Quantum information processing with a

single 43Ca+ ion

There are many ways to encode quantum information in the 43Ca+ level structure. An
optical qubit with vanishing first-order dependence on magnetic field fluctuations was
proposed in chapter 5. Here, we consider the hyperfine ground-state manifold depicted in
Fig. 2.4 where the energy splitting between the F =3 and F =4 manifold is 3.2 GHz. For
low magnetic fields, the two states |↓〉 ≡ S1/2(F =4,mF =0) and |↑〉 ≡ S1/2(F =3,mF =0)
(hyperfine clock state qubit) exhibit only a weak linear Zeeman effect and are therefore
attractive as a robust quantum information carrier. Doppler-cooling, the initialization of
external and internal degrees of freedom, state discrimination and the measurement of the
qubit’s phase coherence are demonstrated on a single 43Ca+ ion in this chapter. The main
findings of this chapter were also published in reference [74].

6.1 Initialization of the hyperfine clock state qubit

Similar to classical computing, also QIP devices need to be initialized. For our experi-
ments using 43Ca+ ions the initialization step comprises Doppler-cooling, optical pumping,
cooling to the motional ground-state and state transfer to |↓〉.

6.1.1 Doppler-cooling and optical pumping

For Doppler-cooling and fluorescence detection, the ion is excited on the S1/2 ↔ P1/2 dipole
transition with two laser beams. The beam entering from SE (see Fig. 3.7) is π-polarized
and slightly red detuned from the transition S1/2(F =4) ↔ P1/2(F =4). The second beam
is σ+-polarized and sent through an electro-optic phase modulator producing sidebands
at 3.2 GHz containing about 20% of the carrier intensity. With this beam the ions are
excited from the S1/2(F = 3) and S1/2(F = 4) to the P1/2(F = 4) manifold. Coherent
population trapping is avoided by lifting the degeneracy of the Zeeman sub-levels with
a magnetic field. To avoid population trapping in the D3/2 manifold, repumping laser
light at 866 nm is applied. The repumping efficiency was improved by tuning the laser
close to the D3/2(F =3) ↔ P1/2(F =3) transition frequency and providing two additional
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Figure 6.1: (a) The population in the stretched state S1/2(F = 4,mF = 4) is plotted
as a function of the duration of optical pumping. An exponential fit (solid line) reveals a
time constant of 1.4µs. After 10µs, the population is in the desired state in 98% of the
measurements. (b) The inset shows a histogram of the success rate of 100 measurements each
containing 100 experiments when two π-pulses on the quadrupole transition are applied and
an additional intermediated optical pumping interval is used. This enhances the fidelity of
the process to above 99.2%. (c) Sideband cooling on the quadrupole transition involves using
the stretched states. For each cooling cycle one phonon can be taken away from the ions and
the entropy is carried away by the photon emitted at 393 nm. The same states are also used
to enhance the quality of optical pumping.

frequencies shifted by -150 MHz and -395 MHz such that all hyperfine D3/2 levels are
resonantly coupled to one of the P1/2(F =3, 4) levels. We observed a maximum fluorescence
count-rate of 24 kcps per 43Ca+ ion on the PMT for magnetic fields ranging from 0.2 to
5 G. This is about 45% of the count-rate we observe for 40Ca+ ions. We tried various other
laser polarizations and the use of additional lasers at wavelengths of 393 nm, 397 nm and
850 nm in order to further increase the fluorescence rate. Only when we replace the EOM
sideband by an independent laser at 397 nm we see a small improvement on the order of
5%. It is not yet clear what the bottleneck for the produced photon flux is. Moreover, for
loading 43Ca+ ions into the trap we found that the configuration where the laser at 397 nm
is tuned to the S1/2(F =3) ↔ P1/2(F =4) transition and the polarization of the blue laser
beam entering from SW is switched to linear works much more efficiently. However, the
maximum net count-rate in this configuration is only about 14 kcps per 43Ca+ ion.

After switching off the π-polarized laser beam, a single 43Ca+ ion is optically pumped into
the state S1/2(F =4,mF =4). This state’s population is then measured with two consecu-
tive π-pulses exciting the population to different Zeeman states of the D5/2 manifold and
subsequent fluorescence detection (see section 6.2). Figure 6.1 (a) shows the dynamics
of optical pumping and illustrates that the stretched Zeeman state of the ground-state
manifold is already strongly populated during Doppler-cooling. A least-square exponen-
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Frequency deviation from carrier (kHz)

Figure 6.2: (a) Excitation spectrum of the red and blue axial sideband of the quadrupole
transition S1/2(F =4,mF =4) ↔ D5/2(F =6,mF =6). The excitation on the red sideband is
strongly suppressed when sideband cooling is on (�) compared to when it is omitted (�). By
comparison with the excitation after sideband cooling on the blue sideband (•) we obtain a
mean population of the axial mode of n̄ax = 0.06. (b) Rabi oscillations on the blue sideband
(ωax/(2π) = 1.18 MHz) of the transition S1/2(F = 4,mF = 4) ↔ D5/2(F = 6,mF = 6) after
ground-state cooling. The solid line is a least square fit assuming a thermal state. It yields a
mean occupation of the axial mode of n̄ax = 0.06.

tial fit to the data points yields a time constant of 1.4µs. After 10µs, the desired state is
populated in 98% of the cases.

The pumping efficiency can be improved by transferring the population after this first step
with a π-pulse to the D5/2(F = 6,mF = 6)-state and repeating the optical pumping. By
applying another π-pulse on the same transition, the populations in S1/2(F = 4,mF = 4)
and D5/2(F = 6,mF = 6) are exchanged. On average 98% should now be in S1/2(F =
4,mF = 4) and the rest in the D5/2-state. Finally the two populations are combined
by switching on the 854 nm laser for a short time to clear out the D5/2-state via the
P3/2(F = 5,mF = 5)-state from where it can decay only into the desired stretched state.
For this scheme the same states are involved as for sideband cooling (see Fig. 6.1 (c)).
The inset Fig. 6.1 (b) shows a histogram built from 100 measurements each comprising
100 experiments indicating a lower bound of the pumping efficiency of 99.2%.

After Doppler-cooling and optical pumping, an average population n̄ax = 10(5) of the
axial mode is inferred from measuring the decay of Rabi oscillations on an axial sideband.
The average number of quanta is heavily dependent on the laser detunings and powers.

6.1.2 Sideband cooling on the quadrupole transition

Cooling the ions to the motional ground-state is mandatory in order to maximize quantum
gate fidelities. In our experiment, it has been implemented with a scheme analogous to
the one demonstrated with 40Ca+ ions about ten years ago [133]. In order to obtain a
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Figure 6.3: Mean excitation on the red sideband of the quadrupole transition S1/2(F =
4,mF =4) ↔ D5/2(F =6,mF =6) after Raman sideband cooling where the relative frequency
of the Raman light fields is scanned over the red sideband. Close to the red sideband resonance
we observe a drop of excitation indicating a reduction of the mean phonon number of the axial
mode.

closed cooling cycle (see Fig. 6.1 (c)), the frequency of the laser at 729 nm is tuned to
the red sideband of the transition S1/2(F = 4,mF = 4) ↔ D5/2(F = 6,mF = 6). An
additional quenching laser at 854 nm is required to increase the spontaneous decay rate to
the energy level S1/2 by coupling the D5/2(F =6,mF =6) to the P3/2(F =5,mF =5)-state.
Spontaneous decay to the stretched state takes the entropy away from the ion. In each
cycle, one motional quantum can be removed.

The residual occupation of the motional mode was inferred from the ratio of the red and the
blue sideband excitation (see Fig. 6.3 (a)) using Eq. (4.2). Alternatively, Rabi oscillations
on the blue motional sideband of the transition S1/2(F =4,mF =4) ↔ D5/2(F =6,mF =6)
can be observed to measure the average population of the axial mode (see Fig. 6.3 (b)).
The solid line is a fitted model function [89] with the average population of the axial mode
n̄ax as a free parameter. From both methods, we consistently obtain n̄ax = 0.06.

6.1.3 Raman sideband cooling

A second option for ground-state cooling that has been only briefly studied so far is to use
a Raman laser detuned from the S1/2 ↔ P1/2 dipole transition to implement cooling in
a similar fashion as demonstrated for beryllium ions [134]. This technique is expected to
have a number of advantages over the method exploiting the quadrupole transition. First,
since the Lamb-Dicke parameter is larger by about a factor of four, the Raman method
should be faster. Moreover, no narrow bandwidth laser stabilized to the ion transitions is
required but the relevant frequency is directly determined by setting a microwave signal
generator appropriately. In a first attempt we tested a continuous scheme where the
phonons are taken out by transferring population on the red sideband of the transition
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S1/2(F = 4,mF = 4) ↔ S1/2(F = 3,mF = 3) with a non-copropagating Raman light field.
Spontaneous scattering, induced by the light fields as set for optical pumping, transfers
entropy away from the ions. In Fig. 6.3 a first shot result is given where subsequently
to the Raman sideband cooling the red sideband of the quadrupole transition S1/2(F =
4,mF =4) ↔ D5/2(F =6,mF =6) was probed while the detuning of the two Raman light
fields was varied. Close to the resonance of the red sideband the excitation drops to a
lower value indicating a significant reduction of the harmonic oscillator mode population.
Since the excitation does not vanish completely we have to improve the scheme by a more
careful analysis of the used laser detunings and powers. In addition, a pulsed scheme can
be tested where optical pumping and driving the red sideband with the Raman field are
applied alternately.

6.1.4 Transfer to the hyperfine clock states

Ground-state cooling on quadrupole transitions requires a closed cooling cycle which can
only be achieved efficiently when working with the stretched hyperfine ground states
S1/2(F = 4,mF = ±4). For this reason, methods are needed that allow for a transfer
from these to the qubit state |↓〉. Ideally, this process should be easy to implement, robust
to its input parameters, fast, should not cause heating, and should be applicable to one
or many ions at the time. Four different techniques were under consideration:

Optical pumping on the S1/2 ↔ P1/2 transition

The state |↓〉 could be populated by optical pumping with π-polarized light fields exciting
the transitions S1/2(F = 4) ↔ P1/2(F = 4) and S1/2(F = 3) ↔ P1/2(F = 4) within a few
microseconds. However, the many scattering events required to pump the population to
the desired state are likely to heat up the ion from the motional ground-state. Moreover,
the efficiency of the optical pumping would probably be fairly poor as small polarization
imperfections of the beams and repumping via the S1/2(F =4) ↔ P1/2(F =3) transition
are likely to occur.

Raman light field

Transferring the population can also be achieved with a Raman light field detuned from
the S1/2 ↔ P1/2 dipole transition at 397 nm. In the simplest scenario, a sequence of four
π-pulses would be used to populate the state |↓〉 starting from S1/2(F = 4,mF =±4) by
changing the magnetic quantum number in units of ∆m = ∓1. Use of copropagating
beams with properly set beam polarizations can help to suppress unwanted excitations of
motional sidebands and transitions to other Zeeman states.
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(a) (b)

Figure 6.4: (a) Pulse length scan of the second transfer pulse on the transition D5/2(F =
6,mF =2) ↔ |↓〉 to initialize the hyperfine qubit. A weighted least square fit with Eq. (6.1) re-
veals a fringe amplitude of 1.004(5) consistent with one. (b) Transfer probability measurement
of an amplitude-shaped laser pulse on the transition S1/2(mF =1/2) ↔ D5/2(mF =3/2) of a
single 40Ca+ ion as a function of the coupling strength Ω. Data were taken for four different
pulse lengths τ and frequency chirp spans ∆c as given in the plot legend. The lines indicate
our theoretical predictions. With enough laser power available, the transfer probability hardly
changes over a wide range of Rabi frequencies.

Microwave

Instead of a Raman light field, also a microwave field can be used to transfer the ions in
a four-step process to |↓〉. An additional advantage here is that the field’s wavelength is
huge compared to the distance of the ions and therefore an equal coupling of all ions to
the field is guaranteed.

A limitation for the methods based on Raman light fields and microwave radiation, is the
small Clebsch-Gordan coefficient (see Tab. 2.1) on the transitions S1/2(F =3,mF =±3) ↔
S1/2(F =4,mF =±2). That makes the whole process either slow or necessitates a larger
frequency separation of the Zeeman levels in order to suppress non-resonant excitation of
neighboring transitions.

Transfer via quadrupole transition

State transfer based on a laser operating on the quadrupole transition S1/2 ↔ D5/2 re-
duces the transfer process to two steps since the selection rules allow for ∆m = ±2. The
duration of a π-pulse can be as short as a few microseconds, and only a single laser beam
is needed that can be either focused to a small region or illuminate the whole trap volume.
If the D5/2(F =4) is chosen as intermediate state, a good compromise is achieved between
the quadrupole coupling strength of the involved transitions and the frequency separation
of the neighboring D5/2-state Zeeman levels. The latter is by a factor 1.6 larger as for
the ground states. In particular for low magnetic fields this method is expected to work
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better than a transfer with Raman or microwave fields.
With the precision laser for the quadrupole transition acting on a single 43Ca+ ion, the
implementation of state transfer is straightforward. With two consecutive π-pulses we
achieved a transfer success probability of more than 99% for a single ion. Rabi oscilla-
tions on the second transfer transition (here D5/2(F = 6,mF = 2) ↔ |↓〉) are depicted in
Fig. 6.4 (a). A weighted least square fit with the function

f(t) =
A

2
cos(π t/τπ) + y0 (6.1)

reveals a fringe amplitude A = 1.004(5) consistent with one.

However, assuming Gaussian laser beams, we cannot expect equal light intensities on all
ions for larger ion crystals, unless one is willing to waste most of the laser power by making
the beam size very large. As variations of the coupling strengths may also arise from other
technical imperfections, a more robust scheme seems to be desirable. Inspired by refer-
ence [135], we introduce amplitude-shaping and a linear frequency sweep of the transfer
pulses to demonstrate a transfer technique less sensitive to changes in the laser intensity.
Figure 6.4 (b) shows the demonstration of this technique using a single 40Ca+ ion. The
transfer probability from the S1/2(mJ = 1/2) to the D5/2(mJ = 3/2)-state is plotted as
a function of the Rabi frequency Ω for four different pulse durations τ . The intensity of
the laser pulses had a cos2-shape over the pulse duration. The frequency of the laser was
linearly swept over a range ∆c centered on the transition frequency. The measurement
data coincide well with the predicted evolution given as lines and demonstrate that the
transfer probability is hardly affected over a broad range of Rabi frequencies for the dif-
ferent parameters. Of course, this technique can also be used with microwave and Raman
fields.

6.2 State discrimination

For efficient state detection of the 43Ca+ hyperfine qubit states we make use of the electron
shelving technique first introduced by Hans G. Dehmelt in 1975 [136]. The discrimination
between the |↓〉 and |↑〉 states is achieved by scattering light on the S1/2 ↔ P1/2 transition
after having shelved the |↓〉 state to the D5/2 metastable state. In our experiment, the
same light fields are used as for Doppler-cooling but with slightly more power. With this
method, not only |↑〉 and |↓〉 can be discriminated but the other Zeeman levels in the S1/2

and D5/2-state manifolds, too. The quality of the transfer pulses sets a limitation to the
state discrimination. Again, pulse shaping and frequency sweeping can help to increase the
robustness with respect to intensity variations of the shelving laser. In addition, instead
of using a single π-pulse excitation to a certain Zeeman state in the D5/2-state manifold,
the first π-pulse can be followed by a second one, exciting any population still remaining
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in |↓〉 to a different D5/2-Zeeman state. Assuming an error smaller than 1% for each of the
pulses, one expects a shelving error of less then 10−4. The final detection fidelity will then
be limited by spontaneous decay from the D5/2-state during the detection which depends
on the signal-to-noise ratio and signal strength. For the experiments reported here, the
detection time was set to 5 ms. The error due to spontaneous decay is estimated to be
0.5% on average for the |↓〉-state.

6.3 Coherent state manipulation on the 43Ca+ hyperfine qubit

Once external and internal degrees of freedom are initialized, quantum information needs
to be encoded into the ions, stored and manipulated. This is achieved with a driving field
tuned to the qubit’s transition frequency. Two different driving fields were investigated.

6.3.1 Microwave

From an experimental point of view, quantum state manipulation by microwave radiation
is simple and robust. There is no alignment required and stable frequency sources are
readily available with computer-controlled power, frequency and phase.

At first we determined the polarization of the microwave photons. After initializing a
single 43Ca+ ion in |↓〉 we recorded Rabi oscillations on the three allowed transitions to
the S1/2(F = 3) manifold using the same microwave power. As a result we obtained the
times to perform a π-pulse:

F = 4

F = 3

m = 0F

m = 0F

m = -1F

m = 1F

94 µs
106 µs

44 µs

Taking into account the transitions’ relative coupling strengths (see Tab. 2.1) we see
the radiation is almost linear polarized where the part of the π-polarization is slightly
dominating the σ±-component. With this type of field all possible transitions can be
efficiently driven. To further characterize the microwave properties on the ion we induced
Rabi oscillations on the transition S1/2(F = 4,mF = 4) ↔ S1/2(F = 3,mF = 3). For each
experiment the ion is initialized into S1/2(F =4,mF =4) by means of optical pumping on
the S1/2 ↔ P1/2 transition. The microwave is then turned on with a power of about 24 dBm
for a variable amount of time. The two states are then discriminated by transferring
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Figure 6.5: (a) Rabi oscillations on the transition S1/2(F =4,mF =4) ↔ S1/2(F =3,mF =
3) mediated by direct microwave application where the dots represent the measurements (à
50 cycles) and the solid line is a sine with full contrast and a π-time set to τπ = 34.3µs.
Thus, even after more than 150 state transfers the fringe amplitude is still close to unity.
(b) Rabi oscillations on the 43Ca+ hyperfine qubit (|↓〉 ↔ |↑〉) mediated by a microwave field
after 0, 50 and 100 ms. Each data point represent 50 individual measurements. The solid line
is a weighted least square fit with Eq. (6.1) which results y0 = 0.490(3), τπ = 520.83(3)µs
and A = 0.974(11). Since the amplitude of the Rabi oscillation is still close to unity after
200 state transfers the microwave can serve as a reference to the Raman light field regarding
power and phase stability. (c) Rabi oscillations on the transition D5/2(F = 4,mF = 3) ↔
D5/2(F =5,mF =3) mediated by direct radiofrequency application where the dots represent
the measurements (à 50 cycles) and the solid line is least square fit using the same function
as above. Here we obtain y0 = 0.499(3), τπ = 763.3(5)µs and A = 0.973(8).
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the population remaining in S1/2(F = 4,mF = 4) with a π-pulse to D5/2(F = 6,mF =
6). A typical result is given in Fig. 6.5 (a). Each data point represents 50 individual
measurements. The solid line is given by Eq. (6.1) with A = 1, y0 = 0.5 and τπ set to
34.3µs. We see that even after about 150 state transfers the fringe amplitude is close to
unity.

An example for Rabi oscillations on the clock state qubit |↓〉 ↔ |↑〉 is given in Fig. 6.5 (b)
recorded at a magnetic field of 3.4 G. After initializing the ion into |↓〉, a microwave signal
of 3.226 GHz is turned on for a variable amount of time followed by state detection. The
resulting Rabi oscillations are depicted at instances of 0, 50 and 100ms. The solid line
represents a weighted least square fit based on Eq. (6.1) where y0 = 0.490(3), τπ =
520.83(3)µs and A = 0.974(11). About 200 state transfers are observed over a time of
100 ms with hardly any decrease in fringe amplitude A. In both cases the subsequent
decay of the fringe amplitude for more oscillations indicates a limitation due to small
fluctuations of the microwave power.

Today, there are a number of different ideas to implement two-qubit gates with 43Ca+. One
of them working on the ground-state hyperfine qubits [137] relies on a Raman-light field
that is slightly detuned from the quadrupole transition. It is technically quite demanding
to create such a laser field and therefore it can be helpful to study the situation differently
by encoding the quantum information in two of the D5/2-states. By proper choice of states
and magnetic field, this qubit is insensitive to magnetic field fluctuations and in contrast to
the ground-state encoding the frequency difference is only a couple of MHz. Using AOM’s
it is technically easy to create a phase-coherent Raman light field to drive this qubit. In
this context a direct radiofrequency drive can also be an attractive reference to characterize
the phase coherence of the light field and may also be used for spin echos. To test this
idea a single 43Ca+ ion was optically pumped into S1/2(F = 4,mF = 4) and initialized
into D5/2(F = 4,mF = 3) with a π-pulse. Then a radiofrequency pulse (∼19 MHz, 2 W)
was applied for a variable amount of time to drive the transition D5/2(F =4,mF =3) ↔
D5/2(F =5,mF =3). State discrimination was achieved by transferring the population in
D5/2(F = 4,mF = 3) back to S1/2(F = 4,mF = 4) and subsequent fluorescence detection.
The resulting Rabi oscillations are depicted in Fig. 6.5 (c). The dots are the measurement
results and the solid line represents a weighted least square fit with Eq. (6.1) resulting in a
fringe amplitude of A = 0.973(8). Coherence is preserved for tens of milliseconds making
D5/2-encoded qubits an attractive test bed for new gate schemes.

Unfortunately, microwave and radiofrequency fields do not couple motional and electronic
states unless strong magnetic field gradients are applied [94] and they cannot be focussed
to a single qubit location. Nevertheless, microwave excitation turns out to be a useful
reference for investigating the phase stability of Raman excitation schemes to be discussed
in the next paragraph.
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6.3.2 Raman light field

In contrast to the microwave excitations the interaction region of the Raman field detuned
from the dipole transition S1/2 ↔ P1/2 is as small as the diameter of the involved laser
beams. The coupling to the motional mode along the trap axis is described by the Lamb-
Dicke parameter (see section 2.5). For copropagating lasers the Lamb-Dicke factor is
negligible whereas it is maximized for lasers counter-propagating along the motional mode
axis.

We characterize the Raman interaction on a single ion by driving Rabi oscillations on the
hyperfine qubit with copropagating beams from NW that are detuned from the S1/2 ↔
P1/2 transition frequency by -10 GHz. Figure 6.6 (a) shows Rabi oscillations for excitation
times of up to 4 ms with a π-time set to τπ = 65.3(1)µs. The first few oscillations
have a fringe amplitude of A = 0.97(1) which is reduced to 0.80(2) after more than
50 state transfers. Shot-to-shot variations in Raman light intensity contribute to a loss
symmetrically to the average excitation. In addition, the fringe center dropped from
y0 = 0.479(5) to y0 = 0.428(7) due to non-resonant scattering introduced by the Raman
light field.

The ability to couple electronic and motional states by the Raman excitation was tested
by comparing Rabi frequencies on the carrier and on the first blue axial sideband with
non-copropagating beams (from NW and NE) illuminating an ion initially prepared in the
motional ground-state. The two Raman beams enclose a 90◦ angle such that the differential
k-vector is collinear with the trap axis to optimize for the momentum transfer with the
motional mode in axial direction. From the ratio of the Rabi frequencies Fig. 6.6 (b)+(c),
we directly infer the Lamb-Dicke parameter to be η = 0.216(2) in good agreement with
the theory.

Finally we measured the dependence of the π-pulse duration to the Raman detuning ∆ and
the coupling strength to the Raman light power. Both measurement results are depicted in
Fig. 6.6 (d)+(e). As expected for Raman detunings much smaller than the fine structure
splitting of the P -states, both data sets are well reproduced by the linear fits given as
solid lines.

6.4 Coherence properties of the 43Ca+ hyperfine qubit

Applying the methods described before, we investigated quantum information storage
capabilities of the 43Ca+ hyperfine qubit. Limitations to the coherence time arise from
both, scattering events and dephasing. For the hyperfine qubit, spontaneous decay is
negligible since the lifetime of the involved states can be considered as infinite for all
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Figure 6.6: (a) Rabi oscillations on the 43Ca+ hyperfine qubit induced by a collinear Raman
light field. Each data point represents 50 individual measurements. As for the microwave
excitation, we fitted a sinusoidal function to the data set from 0 to 600µs which yields a fringe
amplitudeA = 0.97(1), a π-time of τπ = 65.3(1)µs and a fringe center at y0 = 0.479(5). Fitting
to the data points beyond 3.4 ms a small offset phase had to be introduced and τπ adjusted
to 63.8(2)µs indicating a slow increase of the Raman light power during the measurement.
The amplitude reduces to A = 0.80(2) and the fringe center dropped to y0 = 0.428(7). A
comparison with microwave excitation reveals imperfections caused by spontaneous scattering
and laser amplitude fluctuations. (b)+(c) Direct comparison of Rabi oscillations on the
carrier and on the blue axial sideband. From the ratio of the times τπ we find a Lamb-Dicke
parameter η = 0.216(2). (d) The pulse duration to achieve a π-pulse is linearly dependent
on the detuning of the laser to the P1/2 energy level. (e) The Rabi frequency is linearly
dependent on the light power/intensity of the Raman light fields. For this measurement the
Raman detuning was set to 58 GHz.
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Figure 6.7: Measurement of the |↓〉-state population probability after a variable waiting
time τd. Single photon scattering events induced by residual light at 397 nm lead to a transfer
of population from the |↓〉-state to other Zeeman states in the ground-state manifold. The
solid line is an exponential fit with a decay time constant of 410 ms.

practical purposes. Scattering can be induced though by imperfectly switched off laser
beams. To judge the importance of this effect, we prepared a single 43Ca+ ion in the state
|↓〉. After waiting for a time τd, we transferred the population with two subsequent π-
pulses to D5/2(F =6,mF =0) and D5/2(F =4,mF =2). Ideally no fluorescence should be
observed. Figure 6.7 shows the decrease of an initial |↓〉-population probability of 0.97 with
increasing waiting time τd. An exponential decay fit yields a time constant of 410 ms. This
observation can be explained by imperfect switching off the cooling laser at a wavelength
of 397 nm by one single-pass AOM only. For every blue photon that is scattered the ion
will be lost from the state |↓〉 with a high probability by decaying to one of the other S1/2

Zeeman states. This complication was avoided by using a mechanical shutter completely
switching off the Doppler-cooling laser in all Rabi and Ramsey experiments lasting for
50 ms and longer similarly as we have done for the measurement of the isotope shift (see
section 5.2).

Decoherence due to phase errors does not alter the state occupation probabilities. Instead,
the phase information between driving field and the qubit gets lost. A powerful method
to characterize this effect consists in measuring fringe amplitudes in Ramsey phase exper-
iments. Here, a superposition of the two qubit states is created by a π/2-pulse. After a
waiting time τR, during which the qubit evolves freely, a second (π/2)φ-pulse is applied. By
scanning the Ramsey phase φ of the second pulse, a sinusoidal fringe pattern is observed
whose fringe amplitude is a measure of the maintained coherence.

For the Raman light field, the relevant phase is not only determined by the radiofrequency
devices supplying the AOM’s creating the 3.2 GHz splitting but also by the relative optical
path length of the red and the blue beamlines. In general, the absolute phase is not of
interest as long as it does not change during the experiment. The experimental setup (see
subsection 3.2.3) can be considered as an interferometer whose sensitivity is also dependent
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Figure 6.8: Ramsey phase experiments on the 43Ca+ hyperfine qubit at a magnetic field of
3.4G with a Ramsey waiting time τR set to 100 ms. The data were taken with three different
driving fields. (a) Microwave drive with τπ = 19µs, (b) copropagating Raman light field
with τπ = 20µs and (c) non-copropagating Raman light field where τπ = 23µs. The fringe
amplitudes are determined by weighted least square fits with Eq. (6.2) (solid lines). This yields
values of A = 0.886(17), 0.879(16) and 0.922(13) respectively. Dephasing by interferometric
instabilities is not limiting the experiments on these timescales. For Ramsey times beyond
100 ms we observed a further decay of the fringe amplitude.

on its size. For non-copropagating Raman beams, the enclosed area is about four times
larger than for the copropagating beams. In order to see whether the experiment would
be limited by this effect, we investigated three different configurations.

Figure 6.8 shows the resulting Ramsey fringe patterns when driving the hyperfine qubit
with (a) a microwave, (b) a copropagating Raman field and (c) a non-copropagating Raman
field. The Ramsey waiting time τR was set to 100ms, the π/2-pulses had a duration of
about 20µs. Each data point represents either 50 or 100 measurements. The error bars
indicate the statistical errors (1σ) and are used as weights when fitting the function

g(φ) =
A

2
sin(φ+ φ0) + y0 (6.2)

to the data in order to determine the fringe amplitude A. The parameters y0 and φ0 are
also free fit parameters but not further considered. For the different excitation schemes,
we find fringe amplitudes of 0.886(17), 0.879(16) and 0.922(13) respectively. From this we
conclude that errors introduced by interferometric instabilities in generating the Raman
beams do not limit our experiment on time scales up to 100ms. For longer Ramsey times,
we observed a further decay of the fringe amplitude which we attribute to dephasing.
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Figure 6.9: Ramsey phase experiments on the 43Ca+ hyperfine qubit with microwave ex-
citation at a magnetic field of 0.5 G. The fringe amplitudes are determined by weighted least
square fits based on Eq. (6.2) (solid lines) with a amplitude A and offset phase free. (a)
A scan with τR = 50µs results in an amplitude of 0.976(4) and demonstrates the ability of
state initialization, manipulation and readout at low magnetic fields. (b) For a Ramsey time
τR = 200 ms the amplitude is 0.962(11). (c) For a Ramsey time of τR = 1 s a fringe amplitude
of 0.847(21) was measured. Here the measurement time was about 90 min. The reduction of
the amplitude is attributed to the residual sensitivity of 1.2 kHz/G to ambient magnetic field
fluctuations.

These measurements were performed at a magnetic field of 3.4 G. For small magnetic
fields, the residual qubit sensitivity to magnetic field fluctuations increases linearly with a
slope of 2.4 kHz/G2. Therefore, we reduced the magnetic field to 0.5 G and repeated the
measurement with the microwave field. The resulting fringe patterns for three different
Ramsey times τR are depicted in Fig. 6.9. A short waiting time of τR = 50µs (a) results
in a fringe pattern amplitude of 0.976(4). This demonstrates the ability of reliable state
initialization, readout and single-qubit gate operation for the 43Ca+ hyperfine qubit also
for low magnetic fields. For a Ramsey time of τR = 200 ms (b) we still obtain a fringe
amplitude of 0.962(11). A drop in amplitude to 0.847(21) is observed only after increasing
the Ramsey waiting time to τR = 1 s (c). For the last measurement data points were taken
in a random order over an interval of about 90min.

Comparing the measurements at 3.4G and 0.5 G, we conclude that the main limitation to
the coherence time comes from the residual sensitivity of the qubit at finite fields. Further
improvements can be made by means of active magnetic field stabilization and passive
shielding. In addition, rephasing can be achieved by an intermediate spin-echo pulse that
exchanges the populations of the two qubit levels. Typically, the coherence time is defined
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as the Ramsey time for which the fringe amplitude A has dropped to a value of 1/e.
Extrapolation of our measurements would lead to a coherence time on the order of 6.0 s
when assuming an exponential decay and 2.5 s for Gaussian decay.

It is experimentally demanding though to develop and confirm a particular noise model.
Moreover, in practice we are mostly interested in keeping the fringe amplitude close to
one for as long as possible rather than in the exact behavior of the fringe amplitude decay
between 0.9 and 1/e. The numbers stated above as coherence times certainly do not give
a good guess for the number of operations possible when comparing them with the gate
times for instance. Since we are now entering a regime where all basic building blocks
can be performed with errors below 1% it makes sense to quote a relevant coherence
time T itg which relates to the time it takes to lose 10−i in fringe amplitude and where tg
corresponds to time needed to perform the slowest basic gate operation in this particular
system. This number enables an easy comparison between different systems and does not
require measurements in a regime which is not of interest nor requires a sophisticated noise
model. In our case this relevant coherence time is estimated to be

T 2
0.1ms ≈ 100 ms,

if we assume the two-qubit entangling operation described in the next chapter operating
on the 43Ca+ optical qubit and a mapping between the hyperfine qubits and the optical
qubits1. Therefore, in theory the quantum memory time becomes limiting after about 1000
basic operations only. However, in reality there are a few other hindrances to make use of
these long storage times. One major limitation will come from the concatenation of two-
qubit operations. Even when using the two-qubit gate producing entangled state with the
lowest errors so far (see chapter 7), we acquire an error of 20% of the produced entangled
states after 21 repetitions. Moreover, it will be interesting to investigate the scaling of
this coherence time with the number of ions involved. On the one hand a significant
shortening can be expected for instance when N -ion Greenberger-Horne-Zeilinger-states
of the form (|↓↓↓ ...〉+ |↑↑↑ ...〉)/

√
N are involved since for these states the susceptibility to

relative frequency fluctuations scales with N [138]. On the other hand, with a high fidelity
entangling gate quantum information can be stored in a decoherence-free subspace given
by a pair of entangled ions (|↓↑〉+ |↑↓〉)/

√
2 as demonstrated in reference [67, 139]. This

can help to suppress sensitivity to external magnetic field fluctuations by several orders of
magnitude. In summary the quantum information storage times will certainly not limit
our system in the near future.

1We already have experimental evidence that this is indeed a good assumption!



7 Entangled states with high fidelity

One of the most difficult operations in ion trap based QIP is to perform a universal multi-
qubit gate operation. At present only very few of these operations can be applied in series
without compromising the error rate of the computation too much. Their quality is the
major restriction for scaling ion trap QIP systems up to more complex algorithms. This
chapter quickly reviews the different gate operations that have been used for creating
entangled states and the progress that has been made here over the last decade. Then
a theoretical description of the Mølmer-Sørensen gate applied to optical qubits is given.
Furthermore, the experimental realization of such a gate on two 40Ca+ ions is described
which is a major result of this thesis. Finally, possible error sources are discussed and
the creation of highly entangled ions in thermal motion is demonstrated for the first time.
The main findings of this chapter were also published in reference [73].

7.1 Review of entanglement creation in ion traps

When it comes to scaling ion traps to large systems a set of universal gates is needed that
operates with low errors to realize large quantum computations. It has been shown [140]
that the combination of arbitrary single-qubit rotations and a single entangling two-qubit
gate fulfills this demand. As in classical models of computation, quantum error correction
techniques enable rectification of small imperfections in gate operations, thus enabling
perfect computation in the presence of noise. For fault-tolerant computation [11], it is
believed that error thresholds ranging between 10−4 and 10−2 [12, 13, 14] will be required
- depending on the noise model and the computational overhead for realizing the quantum
gates - but so far all experimental implementations have fallen short of these requirements.

In contrast to single-qubit gates, which have been realized now for many years with such
low errors, the best two-qubit gate so far had an error as high as 3(±2)% [53]. One reason
is that the typical length scale of state-dependant interactions between neighboring ions
in ground or low-lying excited states is small compared to the inter-ion distances caused
by the repulsive Coulomb force. In the experiments that have created entangled ions
[53, 51, 54, 141, 55] the state dependent interaction was mediated by one or more laser
light fields and a vibrational degree of freedom of the ion string. These gate operations
fall into two categories [142]:
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Figure 7.1: The graph shows some of the results of entangling state production in ion traps
over the last decade with different multi-qubit gates [143, 49, 53, 51, 70, 144]. The duration
of the entangling operations are given as the number of trap oscillations of the mediating
mode. In 1998 two ions were entangled for the first time by using a geometric phase gate
on hyperfine qubits (�). The Cirac-Zoller gate has been used so far only on optical qubits
(•) where it is comparatively slow. Furthermore, it is experimentally more demanding and
hence the obtained fidelities are lower compared to the bichromatic gates. The solid and the
dash-dotted arrow indicate for each type of gate operation a reduction of errors of about a
factor of two every two years, similar to the trend found by Gordon E. Moore in 1965 for
the history of classical computer’s hardware [145]. Assuming that the measured Bell state
infidelity is a good estimate for our gate infidelity we find our gate to be the first below a
threshold required for fault-tolerant quantum computing [14].

1. Quantum gates induced by a laser beam that interacts with a single ion at a time
as originally proposed in the seminal paper by I. Cirac and P. Zoller [46] and later
realized by the Innsbruck ion trapping group [51]. In these gates, a single ion is
entangled with a vibrational mode [47] of the ion string and the entanglement is
subsequently transferred from the vibrational mode to the internal state of a second
ion. This concept brings the advantage that it can act on any two ions in a string
that share a motional mode leaving the other ions unaffected. The downside is that
it relies on a pure quantum state in the mediating motional mode which is difficult
to achieve with low errors. Also individual ion addressing is needed and so far all
implementations were rather slow.

2. Quantum gates induced by a bichromatic laser that collectively interacts with two
or more ions. Here, a vibrational mode becomes transiently entangled with the
qubits before getting disentangled at the end of the gate operation, resulting in an
effective interaction between the qubits capable of entangling them. Gates of this
type were first proposed by G. Milburn [146, 147], A. Sørensen, K. Mølmer [148, 79]
and E. Solano [149], and subsequently realized by ion trapping groups in Boulder,
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Ann Arbor and Oxford [53, 54, 55]. Here the demands concerning the purity of the
mediating motional mode are far more relaxed. Furthermore, these schemes can be
applied to many ions at the time and can be much faster compared to the Cirac-
Zoller-gates. But in order to address a particular set of ions these schemes require
techniques of hiding the other ions into unaffected internal states or trap areas.

Even though both classes of gates are applicable to hyperfine qubits as well as optical
qubits, current experiments with optical qubits have used the former and experiments with
hyperfine qubits have used the latter type of interaction. This is illustrated in Fig. 7.1
which shows the results of entanglement creation in ion traps over the last decade on
beryllium and calcium ions. Entanglement was created deterministically for the first time
in 1998 by Q. A. Turchette et al. [143] with hyperfine qubits in ion traps. For both classes
of gates we see a rapid progress towards lower errors with an improvement rate of about a
factor of two every two years. Up to now bichromatic gates on hyperfine qubits performed
significantly better compared to Cirac-Zoller-gates on optical qubits regarding error and
speed. Today, the two major goals are to further improve on the fidelity and to speed
up the process. Here, a natural limitation to the gate speed is given by the periodicity
of the mediating vibrational degree of freedom. To make a comparison between different
implementations easier the gate durations indicated in Fig. 7.1 are given as the number
of trap oscillations of the mediating motional mode.

For the sake of completeness, we would like to mention that there exist other ideas for
entangling gates of which some have been realized [150, 50]. With strong laser pulses as
outlined in reference [151] it might be possible to overcome the speed limit set by the trap
periodicity. And two ions can also be entangled without any laser-ion interactions at all
but with resonant magnetic fields in the presence of strong static magnetic field gradients
[94]. However, the latter two proposals have not been experimentally implemented so far.

7.2 The Mølmer-Sørensen interaction on the optical qubit

A detailed theoretical description of the Mølmer-Sørensen gate operation on optical qubits
is given in reference [142]. Here, only the facts relevant for understanding the performed
experiments shall be recapitulated briefly.

7.2.1 Laser-ion-interaction

A Mølmer-Sørensen gate inducing collective spin flips is achieved by the use of a bichro-
matic laser field with frequencies ν± = ν0 ± δ, with ν0 the qubit transition frequency
and δ close to the vibrational mode frequency ω (see Fig. 7.2 (a)). For optical qubits,
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Figure 7.2: (a) A bichromatic laser field with frequencies ν+, ν− satisfying 2ν0 = ν+ +
ν− is tuned close to the upper and lower motional sideband of the qubit transition. The field
couples the qubit states |SS〉 ↔ |DD〉 via the four interfering paths shown in the figure, n
denoting the vibrational quantum number of the axial COM mode. Similar processes couple
the states |SD〉 ↔ |DS〉. (b) For the experiments described in this chapter, the qubits are
encoded in the ground state S1/2(m = 1/2) and the metastable state D5/2(m = 3/2) of 40Ca+

ions and manipulated by a narrow bandwidth laser emitting at a wavelength of 729 nm (see
also Fig. 2.2). (c) The amplitude modulated laser beam, the trap axis and the magnetic field
are all aligned in the same plane with 45◦ degree angles in between as depicted.

the bichromatic field can be a pair of copropagating lasers which is equivalent to a single
laser beam resonant with the qubit transition and amplitude-modulated with frequency δ.
For a gate mediated by the axial COM mode, the Hamiltonian describing the laser-qubit
interaction is given by

H = ~Ωe−iφS+(e−i(δt+ζ) + ei(δt+ζ))eiη(ae
−iωt+a†eiωt) + h.c. (7.1)

Here, Sj = σ
(1)
j +σ

(2)
j , j ∈ {+,−, x, y, z}, denotes a collective atomic operator constructed

from Pauli spin operators σ(i)
j acting on ion i, and σ

(i)
+ |S〉i = |D〉i. The operators a, a†

annihilate and create phonons of the COM mode with Lamb-Dicke factor η. The optical
phase of the laser field (with coupling strength Ω) is labeled φ, and the phase ζ accounts
for a time difference between the start of the gate operation and the maximum of the
amplitude modulation of the laser beam. In the Lamb-Dicke regime, and for φ = 0, the
gate operation is very well described by the propagator [142]

U(t) = e−iF (t)SxD̂(α(t)Sy,ψ) exp(−i(λt+ χ sin(ω−δ)t)S 2
y,ψ). (7.2)

Here, the operator to the right describes collective spin flips induced by the operator
Sy,ψ = Sy cosψ + Sz sinψ, ψ = 4Ω

δ cos ζ, and λ ≈ η2Ω2/(ω − δ), χ ≈ η2Ω2/(ω − δ)2.
With α(t) = α0(ei(ω−δ)t − 1), the displacement operator D̂(β) = eβa

†−β∗a accounting
for the transient entanglement between the qubits and the harmonic oscillator becomes
equal to the identity after the gate time τgate = 2π

|ω−δ| . In order to realize an entangling
gate of duration τgate described by the unitary operator Ugate = exp(−iπ8S

2
y) (matrix

representation see Eq. (2.7)), the laser intensity needs to be set such that ηΩ ≈ |δ− ω|/4.
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7.2.2 Amplitude-shaped laser pulses

Our experiments are performed in the limit of short gate operations, where Ω � δ no
longer strictly holds. Here, the Hamiltonian (7.1) becomes sensitive to the phase ζ and
the operator e−iF (t)Sx with F (t) = (2Ω/δ)(sin(δt+ φ)− sinφ) describes fast non-resonant
excitations of the carrier transition. Non-resonant excitations are suppressed by intensity-
shaping the laser pulse such that the Rabi frequency Ω(t) is switched on and off smoothly.
Moreover, adiabatic switching makes the collective spin flip operator independent of ζ as
Sy,ψ → Sy for Ω → 0. To achieve adiabatic following, it turns out to be sufficient to switch
on the laser within 2.5 oscillation periods of the ions’ axial COM mode. When the laser
is switched on adiabatically, Eq. (7.2) can be simplified by dropping the factor e−iF (t)Sx

and replacing Sy,ψ by Sy.

7.3 Measurement results

Two 40Ca+ ions are loaded into the trap at a magnetic field of 4G. The qubit is encoded
in the levels |S〉 ≡ S1/2(m = 1/2) and |D〉 ≡ D5/2(m = 3/2), and the mediating laser
(linear polarized) targets the ions orthogonal to the magnetic field (see Fig. 7.2 (b)+(c) and
Fig. 2.2 for a detailed level scheme). For these settings we measured a qubit coherence time
of 3ms. The COM mode secular trapping frequencies are set to ωax/(2π) = 1.23 MHz and
ωr/(2π) = 4 MHz. After Doppler-cooling and frequency-resolved optical pumping [129] the
two axial modes are cooled close to the motional ground-state (n̄com, n̄stretch < 0.05(5)).
Both ions are now initialized to |SS〉 with a probability of higher than 99.8%. Then the
subsequent gate operation is carried out, followed by an optional carrier pulse on both ions
for analysis. Finally, we measure the probability pk of finding k ions in the |S〉-state by
detecting light scattered on the S1/2 ↔ P1/2 dipole transition with a photo-multiplier for
3 ms. The error in state detection due to spontaneous decay from the D-state is estimated
to be less than 0.15%. Each experimental cycle is synchronized with the frequency of the
AC power line and repeated 50 to 200 times.

The laser beam performing the entangling operation is controlled by a double-pass AOM
which allows setting the frequency νL and phase φ of the beam (AO4 in Fig. 3.4). By
means of a variable-gain amplifier, we control the radiofrequency input power and hence
the intensity profile of each laser pulse. To generate a bichromatic light field, the beam
is passed through another AOM (AO7 in Fig. 3.4) in single-pass configuration that is
driven simultaneously by two radiofrequency signals with difference frequency δ/π. Phase
coherence of the laser frequencies is maintained by phase-locking all radiofrequency sources
to an ultra-stable quartz oscillator. We use 1.8 mW average light power focused down to a
spot size of 14µm Gaussian beam waist illuminating both ions from an angle of 45◦ with
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Figure 7.3: Dynamics induced by the bichromatic laser light field at short time scales. The
probabilities p0 (•), p1 (�), and p2 (N) for observing 0,1,2 ions in the |S〉-state are displayed as
a function of the duration a bichromatic pulse was applied. For both plots the trap frequency
was set to ωax/(2π) = 1.233 MHz and (ωax−δ)/(2π) = 40 kHz. Each data point represents the
average over 200 individual measurements. The phase ζ was not controlled and is assumed
to be random for each measurement. (a) In the case of instantly switching the laser on
we observe fast dynamical processes on the carrier transition with a periodicity given by
τ = 2π/δ. (b) Pulse shaping of the laser intensity of 2.5µs with a Blackman-shape suppresses
these oscillations almost completely and so the sensitivity to ζ is also strongly reduced. The
solid lines are predictions calculated with the propagator (7.2) averaged over different values
of ζ. The inset (c) shows the definitions of the pulse and the slope length.

equal intensity to achieve the Rabi frequencies Ω/(2π) ≈ 110 kHz required for performing
a gate operation with (ω − δ)/(2π) = 20 kHz and η = 0.044.

7.3.1 Amplitude-shaping and the compensation for AC-Stark shifts

Figure 7.3 illustrates the use of amplitude-shaping in order to make the Mølmer-Sørensen
gate operation robust against fluctuations in the phase ζ between the blue- and the red-
detuned laser beam component. At the time when these experiments were carried out we
were not able to control ζ and it took random values for each experiment. To see pro-
nounced non-resonant carrier oscillations, we set the detuning to (ω − δ)/(2π) = 40 kHz
corresponding to a gate time of τgate = 25µs. With an axial COM mode frequency of
ωax/(2π) = 1.233 MHz, a complete gate operation is carried out within Nt = 31 trap
oscillations and a product Ntη = 1.36 close to 1 indicates a non-resonant coupling to
the carrier of the same order as to the sidebands relevant for the gate interaction. The
dynamics of the populations pk is depicted in Fig. 7.3 at short time scales when the bichro-
matic beam is turned on. Switching the laser pulse on instantly leads to fast dynamical
processes on the carrier transition with a periodicity given by τ = 2π/δ. To make the
bichromatic laser pulses independent of the phase ζ, the pulse is switched on and off by
the use of Blackman-shaped pulse slopes of duration τr = 2.5µs (defined in Fig. 7.3 (c)).
As illustrated in Fig. 7.3 (b) the laser intensity pulse shaping suppresses non-resonant
carrier oscillations almost completely and with them the sensitivity to the phase ζ. For
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(b)(a)

Figure 7.4: (a) Measurement of the AC-Stark shift induced by the bichromatic light field by
recording the population p1 as a fuction of the laser detuning f . For equal coupling strengths
(•) of the blue and the red beam component Ω+/Ω− = 1 the expected dip of the population
p1 is shifted by about 7 kHz. This shift was compensated (�) by slightly unbalancing the Rabi
frequencies Ω+/Ω− = 1.094. The solid line is a numerical evaluation of the propagator (7.2).
The dashed line is equivalent to the solid line shifted by 7 kHz. (b) Measurement of the
Bell state coherence by applying a second bichromatic pulse where the global laser phase φ
is scanned. Here, the fringe amplitude can be obtained from the bare average photon counts
without setting discrimination thresholds. The average photon counts for the states |SS〉
(bright) and |DD〉 (dark) were independently measured and are indicated as horizontal lines
as a reference.

the experiments carried out with (ω − δ)/(2π) = 20 kHz a pulse shaping time τr = 2.0µs
turned out to be sufficient.

The red- and the blue-detuned frequency components ν± of the bichromatic light field
cause AC-Stark shifts by non-resonant excitation on the carrier and the first-order side-
bands that exactly cancel each other if the corresponding laser intensities I± are equal. The
remaining AC-Stark shift due to other Zeeman transitions and far-detuned dipole transi-
tions were mapped out by measuring the qubit transition frequency first with a Ramsey
type experiment. Then a bichromatic pulse was applied where the global frequency was
changed for each data point. Figure 7.4 shows the population p1 after a pulse length of
τgate = 50µs as a function of the global laser frequency detuning f ≡ (νL − ν0)/(2π).
For equal intensities I+ and I− the measured pattern is shifted by about 7 kHz from the
qubit frequency from what a numerical evaluation of the propagator (7.2) for gates with
(ω−δ)/(2π) = 20 kHz predicts. This shift could be compensated by using an additional far-
detuned light field [152] or by properly setting the intensity ratio I+/I−. We utilize the lat-
ter technique which makes the coupling strengths ΩSS↔DD ∝ 2

√
I+I−, ΩSD↔DS ∝ I+ + I−

slightly unequal. However, the error is insignificant as ΩSD↔DS/ΩSS↔DD − 1 = 4 × 10−3

in our experiments.
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Figure 7.5: (a) Evolution of the populations p0 (•), p1 (�), and p2 (N) induced by a
Mølmer-Sørensen bichromatic pulse of duration τ . The Rabi frequency Ω(t) is smoothly
switched on and off within 2µs and adjusted such that a maximally entangled state is created
at τgate = 50 µs. The dashed lines are calculated for n̄com = 0.05 from the propagator (7.2),
neglecting pulse shaping and non-resonant carrier excitation. The solid lines are obtained
from numerically solving the Schrödinger equation for time-dependent Ω(t) and imbalanced
Rabi frequencies Ω+/Ω− = 1.094. (b) A (π

2 )φ analysis pulse applied to both ions prepared in
Ψ1 gives rise to a parity oscillation P (φ) = sin(2φ) as a function of φ. A fit with a function
Pfit = A sin(2φ+ φ0) yields the parity fringe amplitude A = 0.990(1) and φ0/π = −1.253(1).
The precise value of the phase φ0 is without significance. It arises from phase-locking the
frequencies ν0, ν+, ν− and could have been experimentally adjusted to zero.

7.3.2 Measurement of the fidelity

In order to assess the fidelity of the gate operation, we adopt the strategy first applied
in references [49, 53] consisting in measuring the fidelity of Bell states created (Ψ1 =
|SS〉 + i|DD〉, see Eq. (7.4)) by a single application of the gate to the state |SS〉 (see
Fig. 7.5 (a)). The fidelity

F = 〈Ψ1|ρexp|Ψ1〉 = (ρexp
SS,SS + ρexp

DD,DD)/2 + Imρexp
DD,SS , (7.3)

with the density matrix ρexp describing the experimentally produced qubits’ state, is in-
ferred from measurements on a set of 42 400 Bell states continuously produced within a
measurement time of 35 minutes. Fluorescence measurements on 13 000 Bell states reveal
that ρexp

SS,SS+ρexp
DD,DD = p2+p0 = 0.9965(4). The off-diagonal element ρexp

DD,SS is determined

by measuring P (φ) = 〈σ(1)
φ σ

(2)
φ 〉 for different values of φ, where σφ = σx cosφ+σy sinφ, by

applying (π2 )φ-pulses to the remaining 29 400 states and measuring p0 + p2 − p1 to obtain
the parity 〈σ(1)

z σ
(2)
z 〉. The resulting parity oscillation P (φ) shown in Fig. 7.5 (b) is fitted

with a function Pfit(φ) = A sin(2φ+ φ0) that yields A = 2|ρexp
DD,SS | = 0.990(1). Combining

the two measurements, we obtain the fidelity F = 99.3(1)% for the Bell state Ψ1.

In a similar set of measurements where the speed of the entangling gate operation was
doubled ((ω−δ)/(2π) = 40 kHz, τgate = 25µs), we obtained a fidelity of the produced Bell
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state of F = 98.7(8)%. Since the non-resonant oscillations are not suppressed completely
(see Fig. 7.3 (b) recorded with the same parameters), we expect further improvements
here once we are able to control the phase ζ.

Alternatively to the method described above, the coherence of the Bell state can be inferred
by applying a second bichromatic pulse of length τgate to both ions and scanning its
relative phase φ [60]. This way the Bell state is transferred back into a superposition of
α|SS〉 + β|DD〉 where the corresponding probabilities |α|2 and |β|2 are a function of φ.
Since the average fluorescence count-rate is a direct measure of the probability of finding
the ions in the |S〉-state, the photon counts can be used to infer the amplitude of the
oscillation instead of setting thresholds and determining the probabilities pi first. An
example is given in Fig. 7.4 (b) where the number of average photon counts for the states
|SS〉 (bright) and |DD〉 (dark) were independently measured to serve as a reference.

Instead of varying the phase φ of the second pulse, we can also scan the waiting time
between the two pulses. This is a sensitive method to detect the frequency detuning f

between the laser and the atomic transition frequency [153]. We make use of this scheme
in order to determine residual AC-Stark shifts and compensate for them.

7.3.3 Multiple gate operations and errors and sources for gate infidelities

Multiple application of the bichromatic pulse of duration τgate ideally maps the state |SS〉
to

|SS〉 τgate−→ |SS〉+ i|DD〉︸ ︷︷ ︸
Ψ1

τgate−→ |DD〉 τgate−→ |DD〉+ i|SS〉 τgate−→ |SS〉 τgate−→ ... (7.4)

up to global phases. Maximally entangled states appear at instances τm = m × τgate

(m = 1, 3, . . .). A similar mapping of product states onto Bell states and vice versa also
occurs when starting from state |SD〉.

A wealth of further information is obtained by studying the state dynamics under the ac-
tion of the gate Hamiltonian. Starting from state |SS〉, Fig. 7.6 depicts the time evolution
of the state populations for pulse lengths equivalent to up to 17 gate times. The ions are
entangled and disentangled consecutively up to nine times, the populations closely follow-
ing the predicted unitary evolution of the propagator (7.2) for ζ = 0 shown in Fig. 7.6 as
solid lines.

To study sources of gate imperfections we measured the fidelity of Bell states obtained
after a pulse length τm for up to m = 21 gate operations. The sum of the populations
p0(t)+p2(t) does not return perfectly to one at times τm as shown in Fig. 7.7 but decreases
by about 0.0022(1) per gate. This linear decrease could be explained by resonant spin flip
processes caused by spectral components of the qubit laser that are far outside the laser’s
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Figure 7.6: Observation of the entanglement and disentanglement dynamics of the Mølmer-
Sørensen interaction. Starting from state |SS〉 for a detuning of the bichromatic laser from the
sidebands set to (ω− δ)/(2π) = 20 kHz, the figure shows the time evolution of the populations
p0, p1, and p2 denoted by the symbols (•), (�), and (N), respectively. The length of the pulse
is equivalent to the application of up to 17 gate operations. Maximally entangled states are
created whenever p0(τ) and p2(τ) coincide and p1(τ) vanishes. The solid lines represent the
predicted unitary evolution of the propagator (7.2) for ζ = 0.

line width of about 20 Hz (see Fig. 5.7 (c)). A beat frequency measurement between the
gate laser and a similar independent laser system that was spectrally filtered indicates that
a fraction γ of about 2× 10−7 of the total laser power is contained in a 20 kHz bandwidth
B around the carrier transition when the laser is tuned close to a motional sideband. A
simple model (see Appendix C) predicts spin flips to cause a gate error with probability
pflip = γπ2/η2. This would correspond to a probability pflip = 10−3 whereas the measured
state populations shown in Fig. 7.7 would be consistent with pflip = 2 × 10−3. Spin flip
errors could be further reduced by two orders of magnitude by spectrally filtering the laser
light and increasing the trap frequency ω/(2π) to above 2 MHz where noise caused by the
laser frequency stabilization is much reduced.

A bichromatic force with time-dependent Ω(t) acting on ions prepared in an eigenstate of
Sy creates coherent states α(t) following trajectories in phase space that generally do not
close [154, 142]. For the short rise times used in our experiments, this effect can be made
negligibly (< 10−4) small by slightly increasing the gate time.

Imperfections due to low frequency noise randomly shifting the laser frequency νL with
respect to the atomic transition frequency ν0 were estimated from Ramsey measurements
on a single ion showing that an average frequency deviation σ(νL−ν0)/(2π) = 160 Hz oc-
curred. From numerical simulations, we infer that for a single gate operation this fre-
quency uncertainty gives rise to a fidelity loss of 0.25% (an infidelity of 10−4 would require
σ(νL−ν0)/(2π) = 30 Hz). In our parity oscillation experiments shown in Fig. 7.5 (b) and
Fig. 7.7, however, this loss is not directly observable since a small error in the frequency
of the bichromatic laser beam carrying out the gate operation is correlated with a similar
frequency error of the carrier (π2 )φ-pulse probing the entanglement produced by the gate
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Figure 7.7: Gate imperfections as a function of the bichromatic pulse length τm = mτgate
given by the equivalent number of gate operations m. The upper curve shows a linear decrease
of the state populations p0 + p2 with a slope of 0.0022(1). All errors given are 1σ statistical
errors. The lower curve represents the magnitude of the coherence 2ρDD,SS measured by
detecting parity oscillations and fitted by a Gaussian decay function that accounts for low-
frequency noise of the laser-ion coupling strength Ω. Combining both measurements yields the
Bell state fidelity Fm shown as the middle trace. For m = 21, the fidelity is still F21 = 80(1)%.
Similar results are achieved when replacing the entangling pulse of length τm by m amplitude-
shaped pulses each of which realizes an entangling gate operation.

so that the phase φ of the analyzing pulse with respect to the qubit state remains well
defined.

In an experimental approach to measure the frequency sensitivity we determined the
fidelity of the produced Bell states as a function of laser frequency deviation f . The
result is illustrated in Fig. 7.8. In a second order approximation with a weighted least
square fit of the function g(f) = F0 + a (f − foff)2 to the data points we obtained for
the free fit parameters: F0 = 0.992(2), an offset frequency foff = 106(94) Hz and a slope
a = −7.8(5) × 10−9 Hz−2. For an average frequency deviation of σ(νL−ν0)/(2π) = 160 Hz
this leads to an error of 2× 10−4 of our Bell state fidelity measurement.

Figure 7.7 also shows the amplitude of parity fringe pattern scans at odd integer multiples
of τgate similar to the one in Fig. 7.5 (b). The Gaussian shape of the amplitude decay
is consistent with variations in the coupling strength Ω that occur from one experiment
to the next. These variations in the coupling strength δΩ induced by low-frequency laser
intensity noise and thermally occupied radial modes were inferred from an independent
measurement by recording the amplitude decay of carrier oscillations. Assuming a Gaus-
sian decay, we find a relative variation of δΩ/Ω = 1.4(1) × 10−2. For m entangling gate
operations, the loss of fidelity is approximately given by 1 − F = (πm2 )2(δΩ/Ω)2 and
contributes with 5 × 10−4 to the error of a single gate operation. For the multiple gate
operations shown in Fig. 7.7, this source of noise explains the Gaussian decay of the parity
fringe amplitude whereas laser frequency noise reduces the fringe amplitude by less than
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Figure 7.8: The fidelity of the produced Bell states were measured as a function of the
laser-qubit frequency deviation f . From a weighted least square fit with a parabola g(f) we
obtain for the free fitting parameters a maximum fidelity of F0 = 0.992(2), an offset frequency
foff = 106(94) Hz and a parabola slope of a = −7.8(5)× 10−9 Hz−2.

1% even for 21 gate operations. In combination with error estimates for state prepara-
tion, detection and laser noise, the analysis of multiple gates provides us with a good
understanding of the most important sources of gate infidelity.

7.3.4 Entangled ions in thermal motion

According to the original proposal by Mølmer and Sørensen the amount of control needed
over the ions’ motion is largely relaxed. Up to now nobody has observed this in an
experiment. On the contrary, most experiments performed ground-state cooling of all
axial motional modes as we have done for the results shown earlier in this chapter.

Here, we demonstrate for the first time the application of a Mølmer-Sørensen gate to ions
in thermal motion. Experimentally this was done by simply omitting sideband cooling
and by the application of the bichromatic pulse directly after Doppler-cooling and opti-
cal pumping. At first we mapped out the evolution of the population as illustrated in
Fig. 7.9 (a). Since the coupling terms increase with the square root of the mediating mode
population (see subsection 2.3.2) we observe a different pattern of the population evolu-
tion. For the ions in thermal motion the intermediate states |SD, n± 1〉 and |DS, n± 1〉
get much faster populated and only shortly before the end of the gate time τgate = 50µs
the population probability p1 returns to a value close to zero again.

We assume a thermal state, where the mode population probabilities are given by

p̃n =
1

n̄+ 1

(
n̄

n̄+ 1

)n
.
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Figure 7.9: Measurement results for the same experimental parameters as for the plot given
in Fig. 7.5 but without sideband cooling. (a) Evolution of the populations p0 (•), p1 (�), and
p2 (N) induced by a Mølmer-Sørensen bichromatic pulse of duration τ on two ions in thermal
motion. The Rabi frequency Ω(t) is smoothly switched on and off within 2µs and adjusted
such that a maximally entangled state is created after τgate = 50µs. The solid lines are least
square fits based on the Eq. (7.5) resulting in a mean occupation of the axial COM mode of
n̄com = 16.7(1.5). (b) A (π

2 )φ analysis pulse applied to both ions prepared in Ψ1 gives rise
to a parity oscillation P (φ) = sin(2φ) as a function of φ. A weighted least square fit with a
function Pfit = A sin(2φ+ φ0) yields a parity fringe amplitude of A = 0.949(4).

Disregarding the non-resonant carrier oscillations, one finds the following expressions for
the qubit state populations [155]:

pSS(t) = p2(t) =
1
8

(
3 + e−16|α|2(n̄+ 1

2
) + 4 cos(4γ)e−4|α|2(n̄+ 1

2
)
)

pSD(t) + pDS(t) = p1(t) =
1
4

(
1− e−16|α|2(n̄+ 1

2
)
)

pDD(t) = p0(t) =
1
8

(
3 + e−16|α|2(n̄+ 1

2
) − 4 cos(4γ)e−4|α|2(n̄+ 1

2
)
) (7.5)

with α(t) and γ(t) = λt− χ sin(εt) containing the time dependent terms.

From a least square fit based on this set of equations we obtained a mean population of
the axial mode of n̄com = 16.7(1.5). The fit data are given as solid lines in Fig. 7.9 (a).
Similar to the analysis above we also measured the fidelity of the created Bell states after
a single gate operation. Now, about 2.5% of the population are left in the undesired states
|SD〉 and |DS〉, leaving a state population p0 + p2 of 0.975(3). The fringe amplitude
was determined from the parity oscillations illustrated in Fig. 7.9 (b) to be A = 0.949(4)
resulting in a Bell state fidelity of Fhot = 96.2(4)%.

This result is particularly encouraging for the work towards quantum error correction.
Some of the proposed schemes distribute the quantum information of a certain qubit over
a set of ancilla qubits that are measured at a certain stage [75]. The measurement outcome
is then used to eventually rectify errors on the qubit by the application of conditional
multi-qubit gates. However, in ion trap quantum information experiments, state detection
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typically requires many photon scattering events on a dipole transition that would leave the
ions’ motion in some thermal state. This makes a subsequent multi-qubit gate operation
challenging. One solution to this problem is to introduce a sympathetic cooling step
after the state detection. However, this comes at the additional overhead of at least one
additional ion (typically a different species) and hence the need of further laser light fields
and their control. Our results could help to reduce these technical demands and the
control complexity significantly. From the experience with the different types of two-qubit
gate operations we have already learned that the technical simplicity of a scheme strongly
correlates with the achieved fidelity.

7.3.5 Conclusion

The observed Bell state infidelity of 7 × 10−3 indicates that the gate operation has an
error below the threshold required by some models of fault-tolerant quantum computation
[12, 13, 14] (an indication to be confirmed by full quantum gate tomography [70] in future
experiments). However, further experimental advances will be needed before fault-tolerant
computation will become a reality as the overhead implied by these models is consider-
able. Nevertheless, in addition to making the implementation of quantum algorithms with
tens of entangling operations look realistic, the gate presented here also opens interesting
perspectives for generating multi-particle entanglement [78] by a single laser interacting
with more than two qubits at once. For the generation of N-qubit Greenberger-Horne-
Zeilinger-states, there exist no constraints on the positioning of ions in the bichromatic
beam that otherwise made generation of these multi-qubit entangled states beyond N = 6
so difficult in the experiment with hyperfine qubits described in reference [60]. While the
bichromatic force lacks a strong spatial modulation that would enable tailoring of the gate
interaction by choosing particular ion spacings [58, 62], more complex multi-qubit interac-
tions could be engineered by interleaving entangling laser pulses addressing all qubits with
a focussed laser inducing phase shifts in single qubits. Akin to nuclear magnetic resonance
techniques, this method should allow for refocussing of unwanted qubit-qubit interactions
[25] and open the door to a wide variety of entangling multi-qubit interactions.



8 Summary and outlook

In this thesis, the construction of an experiment was reported that enabled us to inves-
tigate the isotope 43Ca+ as a new qubit candidate. Our scheme makes intensive use of
the laser driving the quadrupole transition at 729 nm. Therefore, a precise study of the
hyperfine structure splitting in an external magnetic field was required at first. The hy-
perfine structure of the D5/2 level in 43Ca+ was precisely measured by observing frequency
intervals of the S1/2(F = 4) ↔ D5/2(F = 2 . . . 6,mF ) transitions at a non-zero magnetic
field. These measurements yielded values for the hyperfine constants AD5/2

, BD5/2
as

well as a determination of the isotope shift of the quadrupole transition with respect to
40Ca+. With the apparatus available, the accuracy of both measurements could be further
improved by a more detailed investigation of possible error sources. For the purpose of
quantum computation though the measurement results obtained are ample.

Different experimental schemes were discussed in order to use the hyperfine clock states
of 43Ca+ as quantum information carrier. With a single 43Ca+, we demonstrated side-
band cooling close to the motional ground-state by driving a motional sideband of the
quadrupole transition. Initialization of the electronic state was achieved by optical pump-
ing and two state transfers on the quadrupole transition. A microwave field and a Raman
light field were used to drive qubit transitions on the hyperfine clock states, and the coher-
ence times for both fields were compared. Phase errors due to interferometric instabilities
in the Raman field generation were not limiting the experiments on a time scale of 100 ms.
We found a quantum information storage time of many seconds for the hyperfine qubit.
With the possibility of shelving different hyperfine ground states to the metastable D5/2-
states we have demonstrated a versatile tool to discriminate between the different Zeeman
states in the S1/2 and D5/2 manifolds. Here, theoretical simulations could help to find
the cause for the smaller fluorescence rate of 43Ca+ relative to 40Ca+ ions which could
reveal means to improve. Moreover, a time resolved fluorescence detection would allow a
significant speed up and a reduction of state discrimination errors [156]. As the setup gets
more mature we expect to improve on all experimental steps and target error probabilities
for each operation of 10−4 in the long run. For this purpose it is desirable to find efficient
ways to quantify such small errors quickly in order to be able to adjust experimental tech-
niques and parameters accordingly. Developments in this direction are already underway
[157]. In parallel, we need to learn how to deal with strings of multiple 43Ca+ ions and to
demonstrate that the schemes proposed in this thesis really work robustly when applied
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to many ions at the same time. Since the quantum computer is an analog device, we
need to have control over the input parameters with sufficient precision. For some of the
parameters (e.g. pulse timing) this can be achieved already whereas for other parameters
(e.g. laser intensity) this seems challenging even for the future. It is therefore important
to develop methods to achieve the basic operations with a much lower sensitivity to certain
input parameters. The pulse amplitude-shaping and frequency chirp used in chapter 6 for
the state transfer serve as a simple example for such methods.

Finally, we implemented a Mølmer-Sørensen type gate operation entangling ions with a
fidelity of 99.3(1)% on the optical qubit encoded in two 40Ca+ ions. We analyze the
performance of a single gate and concatenations of up to 21 gate operations. The result
marks the best on-demand entanglement production of all physical realizations today.
Assuming that the measured Bell state infidelity is a good estimate for our gate infidelity
we find our gate to be the first undercutting one of the harsh thresholds for fault-tolerant
quantum computing. Compared to previous implementations it exhibits nearly half an
order of magnitude lower errors and it is the fastest in terms of the number of trap
oscillations. Meanwhile, the Mølmer-Sørensen interaction has also been applied on the
optical qubit of two 43Ca+ ions and the entanglement was mapped to the hyperfine clock
states with a high success rate. In the future we want to apply the operation to multiple
ions and generate different Greenberger-Horne-Zeilinger states to investigate the scaling
of the fidelity with the number of ions.

Once we are able to use the Mølmer-Sørensen interaction with multiple ions, we need to
address the question how a more complex algorithm can be implemented. It turns out
that two laser beams, one addressing all ions simultaneously and the other one address-
ing individual ions, are sufficient to perform arbitrary operations on multiple qubits (see
Fig. 8.1 (a)). It is important to note that phase stability between both laser fields is
not required. The concept is very similar to NMR quantum computing where spin-spin
interactions happen all the time and unwanted interactions need to be canceled out by
complicated pulse sequences. A major difference though is that in our case the global
interaction is only switched on when needed whereas in NMR quantum computing a con-
siderable effort is spent on the cancelation of unwanted interactions. These ideas were
investigated in Volckmar Nebendahl’s Diplomarbeit [158]. One of his results is a scheme
depicted in Fig. 8.1 (b) consisting of 11 laser pulses which implements a quantum Toffoli
gate with three ions. Assuming single qubit rotations with Rabi frequencies of a few MHz
and an entangling operation time of 50µs the whole scheme would take no more than
150µs. The Toffoli gate is particularly interesting since it is a major building block of
some quantum error correction schemes.

So far, most ideas of future developments in ion trap QIP assume hyperfine qubits that are
manipulated by laser fields containing multiple frequencies detuned from an optical dipole



117

global
laser

Mølmer-Sørensen
global single qubit

rotations R( , )� �

addressed
laser

individual single
qubit Z-rotations

string of three ions

=

1

2

3

=

1

2

3

(a)

(b)

shuttle ion crystal

YY XXXX
2

Z
���

Z Z
��� ���

�
�

�
�

�
�

X
2

�
�

�
�

X
2

�
�

�
�

�
�

Figure 8.1: (a) Three ions aligned in a string can be subject to interactions with two
different laser beams. One is used on all ions simultaneously inducing single-qubit rotations
and Mølmer-Sørensen interactions. The other beamline serves to make the ions distinguishable
by applying slightly detuned laser pulses to effectively achieve rotations around the z-axis in
the Bloch sphere picture. Phase stability between both beams is not required. (b) With a
series of the indicated 11 laser pulses, a quantum Toffoli gate can be implemented. For typical
experimental parameters this would take about 150µs.

transition. These schemes are currently limited by spontaneous scattering due to a lack of
laser power allowing for larger detunings. Moreover, the most successful entangling gate
schemes are not applicable to the qubits that are magnetic field insensitive. Our results give
rise to think towards a new direction where the external field for single qubit rotation could
consist of a bichromatic Raman laser field slightly detuned from a quadrupole transition.
Reasonably high Rabi frequencies for the laser powers available at the place of the ion
today can be expected. One proposal for the realization of a universal gate in this scheme
is to directly apply multiple frequencies of light at 729 nm to the hyperfine clock states as
suggested in reference [137]. Alternatively, we can map the hyperfine qubit of the target
ions to the optical qubit (this could also be a field insensitive transition) and use the
Mølmer-Sørensen interaction as universal multi-qubit entangling gate operation. After
this global laser pulse the ions are mapped back to the hyperfine structure where the
quantum information is stored for a long time.





A Calcium physical and optical properties

and hyperfine measurement data

speed of light c 2.99792458× 108 m/s (exact)
permeability of vacuum µ0 4π × 107N/A2 (exact)

1/(µ0c
2) (exact)permittivity of vacuum ε0 = 8.854 187 817 ...10−12 F/m

Planck’s constant h = 2π~ 6.626 0693(11)× 10−34 J s
elementary charge e 1.602 176 53(14)× 10−19 C
Bohr magneton µB 927.400 949(80)× 10−24 J/T

atomic mass unit u 1.660 538 86(28)× 10−27 kg
electron mass me 5.485 799 094 5(24)× 10−4 u

fine structure constant α 7.297 352 568(24)× 10−3

Bohr radius a0 0.529 177 2108(18)× 10−10 m
Boltzmann constant kB 1.380 650 5(24)× 10−23 J/K

Table A.1: Fundamental physical constants relevant to the experiment (2002 CODATA
recommended values [159]).

isotope decay mode half life time nuclear spin, I
41Ca electron capture 103, 000 a 7/2
43Ca stable - 7/2
45Ca β− emitter 162.7 d 7/2
47Ca β− emitter 4.536 d 7/2
49Ca β− emitter 8.72 min 3/2
51Ca β− emitter 10 s 3/2

Table A.2: Calcium isotopes with non-zero nuclear spin and half-lives greater than 1 s [160].

atomic weight 40.078
atomic number 20
melting point 839 ◦C
boiling point 1484 ◦C

specific gravity 1.55 g/cm3 at 20 ◦C
specific heat 0.63 J/g K

thermal conductivity 2.00 W/cm K

Table A.3: Calcium physical properties.
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transition λair (nm) IS (MHz) reference
S1/2 ↔ P3/2 393.366 713(31) [124]
S1/2 ↔ P1/2 396.847 706(42) [124]
S1/2 ↔ D5/2 729.147 4134.711 720(390) section 5.2
S1/2 ↔ D3/2 732.389 4145(43) [124]
P3/2 ↔ D3/2 849.802 −3462.4(2.6) [85]
P3/2 ↔ D5/2 854.209 −3465.4(3.7) [85]
P1/2 ↔ D3/2 866.214 −3464.3(3.0) [85]

Table A.4: 40Ca+ wavelengths in air (λair) (taken from the NIST database [161]) and the
corresponding isotope shifts (IS) between 40Ca+ and 43Ca+.

isotope quantity value reference
40Ca+ 4S1/2 ↔ 3D5/2 transition frequency 411 042 129 776 393.2(1.0) Hz [128]
40Ca+ P -state fine structure splitting 6682.22 GHz wavelengths
40Ca+ D-state fine structure splitting 1 819.599 021 504(37) GHz [162]
40Ca+ life time (3D3/2) 1.20(1) s [81]
40Ca+ life time (3D5/2) 1.168(7) s [81]
40Ca+ life time (4P1/2) 7.098(20) ns [82]
40Ca+ life time (4P3/2) 6.924(19) ns [82]
40Ca+ gJ(4S1/2) 2.002 256 64(9) [86]
40Ca+ gJ(3D5/2) 1.200 334 0(3) [128]
40Ca+ quadrupole moment Q(3D5/2) 1.83(1)ea2

0 [129]
43Ca+ hyperfine constant A(4S1/2) −806.402 071 60(8) MHz [84]
43Ca+ hyperfine constant A(4P1/2) −145.4(0.1) MHz [85]
43Ca+ hyperfine constant A(4P3/2) −31.0(0.2) MHz [85]
43Ca+ hyperfine constant B(4P3/2) −6.9(1.7) MHz [85]
43Ca+ hyperfine constant A(3D3/2) −47.3(0.2) MHz [85]
43Ca+ hyperfine constant B(3D3/2) −3.7(1.9) MHz [85]
43Ca+ hyperfine constant A(3D5/2) −3.893 12(3)) MHz section 5.1
43Ca+ hyperfine constant B(3D5/2) −4.239(1)MHz section 5.1
43Ca+ nuclear quadrupole moment Q −40.8(8)mb [163]
43Ca+ nuclear g-factor gI 2.050 32(1)× 10−4 [87]

Table A.5: Calcium atomic properties.

http://physics.nist.gov/PhysRefData/ASD/index.html
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Figure A.1: Coupling strength g̃ (see Eq. (2.19)) for the 43Ca+ quadrupole transitions
S1/2(F =4,m) ↔ D5/2(F ′,m′) with ∆m = m′ −m neglecting the geometry and polarization
dependence by omitting the factor c(q)ij εinj .
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sensitivity correction measured model delta
F m F ′ m′

F (MHz/G) (Hz) (MHz) (MHz) (Hz)

4 0 2 2 1.9851 169 37.682177 37.682425 247.5
4 0 2 1 -0.6073 -50 32.245023 32.245066 42.7
4 0 2 0 0.3668 15 34.456625 34.456012 -613.7
4 -4 2 -2 2.9556 -44 38.116136 38.116636 500.8
4 -3 2 -1 2.0780 15 36.372196 36.372168 -27.4
4 0 3 2 0.3185 40 25.991071 25.990850 -221.1
4 0 3 1 -1.3596 -98 23.276546 23.276575 28.9
4 0 3 -1 -0.7849 -29 22.493793 22.493612 -181.0
4 2 3 0 -1.7937 470 22.636769 22.636754 -15.2
4 4 3 3 0.7253 -362 29.474775 29.474820 45.6
4 -4 3 -3 1.1409 74 22.752164 22.752472 308.9
4 -4 3 -2 0.8923 22 22.566618 22.566615 -2.4
4 0 4 2 0.3333 110 12.228975 12.228201 -774.7
4 0 4 1 -0.5001 -138 10.153826 10.153631 -195.3
4 0 4 0 -1.0184 -213 8.460164 8.460244 80.1
4 0 4 -1 -1.3374 -273 7.067254 7.067394 139.6
4 0 4 -2 -1.5418 -305 5.898093 5.898417 323.8
4 4 4 4 1.2625 -643 17.411124 17.410458 -665.5
4 4 4 3 0.0130 -8 14.666808 14.666456 -352.0
4 -4 4 -4 -0.3780 -21 4.022361 4.023172 811.7
4 -4 4 -3 -0.2807 -23 4.896428 4.896924 496.0
4 0 5 2 0.6649 230 -6.602169 -6.602450 -281.0
4 0 5 1 -0.0784 -21 -8.717575 -8.717884 -309.6
4 0 5 -2 -1.8305 -544 -14.366945 -14.368385 -1440.1
4 2 5 0 -1.4390 479 -10.712478 -10.712596 -117.8
4 4 5 5 1.9874 -948 0.478488 0.478325 -162.4
4 4 5 4 1.0008 -436 -2.001504 -2.001663 -158.7
4 4 5 3 0.0886 -32 -4.362923 -4.363359 -436.1
4 -4 5 -5 -1.6657 -260 -19.154682 -19.156556 -1874.0
4 -4 5 -4 -1.2965 -237 -17.639476 -17.640944 -1467.8
4 -4 5 -3 -0.8880 -73 -16.046653 -16.047827 -1173.3
4 -3 5 -1 -0.2679 -6 -12.599459 -12.593171 6288.9
4 0 6 2 0.9190 312 -31.593282 -31.593820 -537.8
4 0 6 1 0.1774 48 -33.790214 -33.790629 -414.9
4 0 6 0 -0.5327 -118 -35.940081 -35.940603 -522.2
4 0 6 -2 -1.8622 -575 -40.104837 -40.103771 1065.8
4 4 6 6 2.7988 -579 -22.329680 -22.330245 -565.1
4 4 6 5 1.9300 -625 -24.716975 -24.717668 -692.9
4 4 6 4 1.0924 -352 -27.056890 -27.057522 -631.5
4 4 6 3 0.2866 -116 -29.348315 -29.349560 -1244.4
4 -4 6 -6 -2.7988 -599 -47.919541 -47.918950 591.7
4 -4 6 -5 -2.2516 -356 -46.026198 -46.025413 785.2
4 -4 6 -4 -1.6811 -240 -44.093296 -44.092722 574.4
4 -4 6 -3 -1.0857 -127 -42.119985 -42.119338 647.0
4 -3 6 -1 -0.1626 -3 -38.037507 -38.044619 -7111.3

Table A.6: In order to determine the hyperfine constants of the 43Ca+ D5/2-state we
probed all 45 available levels (F ′,m′

F ) from the S1/2(F = 4,mF ) manifold (corresponding
quantum numbers are given in columns 1-4). The fifth column contains the magnetic field
sensitivity of the probed transitions. With the knowledge of the magnetic field for each
transition measurement we applied small corrections (column 6) to our measurement such
that all results (column 7) are consistent with a magnetic field of 3.045 524 G. The expected
values and the difference between these and the measurement are given in the right most
columns.



B Method of separated oscillatory fields

In order to probe an atomic transition frequency with a laser there exist a variety of
different methods. One option is to use a single laser pulse of fixed duration and power,
and sweep the frequency to record an excitation spectrum. It has been shown though that
in many applications it is favorable to split the single pulse into two with a waiting time
in between. It was Norman F. Ramsey who invented this method of spatially separated
oscillatory fields in 1949 [164] for which he received the Nobel prize in physics only 40 years
later. Since its invention the method was applied in many precision experiments and has
been further developed. In the experiments described in this thesis we use a variation of
the method termed time-separated oscillatory fields for instance to reference the laser at
a wavelength of 729 nm to calcium ions, and to measure the hyperfine structure of 43Ca+

and the isotope shift, and to investigate the phase coherence of our qubits.

B.1 Errors in frequency determination

As an example we consider two levels as sketched in Fig. B.1 (a). With a laser pulse of
frequency νL and a duration of τπ/2 we create a superposition of the two atomic levels
labeled S and D. In case the laser is detuned from the atomic transition by δ = νL−ν0, the
relative phase of the superposition state changes by φ0 = δ τR during a Ramsey waiting
time τR. The phase φ0 is then probed by a second pulse of equal length but variable phase
φ (Fig. B.1 (b)).

This model is correct in the limit where τR � τπ. In case the two laser pulses have a
finite length we see that also during these pulses a small phase is acquired. Omitting ~
the Hamiltonian describing the laser ion interaction on the Bloch sphere is given by

H =
1
2

(
δσz + Ω̃σx

)
with a coupling strength1 Ω̃ and the Pauli operators σx and σz (see section 2.1). This
interaction leads to a time evolution that can be described by the general rotation

R̃(θ) = exp(iHτ) = exp(i
θ

2
(nxσx + nzσz)) = cos

θ

2
+ i sin

θ

2
(nxσx + nzσz)

1Here it is convenient to use the Rabi frequency defined such that Ω̃ = π/τπ.
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Figure B.1: (a) An atomic system comprised of the levels S and D with an energy splitting
of ~ν0 is probed with a laser (frequency νL) (b) Pulse sequence of a Ramsey type experiment
using time-separated oscillatory fields.

where we set the pulse length to τ = θ0/Ω̃ and used the the replacements

θ = θ0

√
Ω̃2 + δ2

Ω̃
, nx =

Ω̃√
Ω̃2 + δ2

, nz =
δ√

Ω̃2 + δ2
.

If we split the overall rotation in three different parts

R̃(θ) ≡ Rz(α)Rx(β)Rz(α),

where

Rz(α) = cos
(α

2

)
+ i sin

(α
2

)
σz

Rx(β) = cos
(
β

2

)
+ i sin

(
β

2

)
σx,

we can show that

α = arg tan
(
nz tan

(
θ

2

))
β = 2arg tan

(
nx tan

(
θ

2

))
.

For δ � Ω̃ and θ0 = π/2 we find nz = δ/Ω̃, nz = 1 and θ ≈ θ0, so that we obtain as a
good approximation

α ≈ nz tan
θ

2
≈ δ

Ω̃
.

With that the acquired phase is given by

φ′ = φ0 + 2α = δ

(
τR + τπ

2
π

)
,

where the last term in brackets can be considered as the effective Ramsey time.
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Driving the two π/2-pulses in the Ramsey scheme can also lead to AC-Stark shifts of the
levels probed by coupling of the laser to other levels in the system. These shifts δac cause
an additional phase shift

φac = δac τπ
2
π

= 2
δac

Ω̃
.

The total acquired phase adds then to

φtot = δ

(
τR + τπ

2
π

)
+ φac.

If not considered, these AC-Stark shifts δac lead to an error in the estimation of the
transition frequency

∆ν =
φac(

τR + τπ
4
π

) .
Considering the S1/2 ↔ D5/2 quadrupole transition of calcium ions the major contribu-
tions arise from the dipole transitions and transitions on other Zeeman levels. For the
experiment located at the university these shifts were precisely determined [152]. For our
experiment we expect to have the same contribution for the coupling to far detuned dipole
transitions which is given by

δdac = b
Ω̃2

2

with a constant b = 0.112(5)/(2π)(MHz)−1. For typical values of excitation times this
leads to shift of a couple of Hz. The contributions of the neighboring Zeeman transitions
strongly depend on the frequency differences between the levels and hence the magnetic
field and also on the laser geometry and polarization. These effects have not yet been
investigated in this experiment and are certainly a major contribution to the error budget
of the measurements described in chapter 5.

B.2 Ramsey contrast and phase coherence

Apart from the precise determination of a transitions frequency we make use of Ramsey
experiments to explore the phase coherence between an external field (e.g. microwave or
a laser) and an atomic two-level system. A perfect operation of the π/2-pulses in the
Ramsey sequence is assumed, which is the case when the relative frequency deviations are
small in comparison with the inverse of the duration of these pulses. Averaging over many
experiments where we measure the probability PD denotes the qubit being in the D-state,
we expect a fringe pattern described by

PD =
1
2

(A cos(φ+ φ0) + 1)
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with an amplitude A and an offset phase φ0. Perfect phase coherence corresponds to
A = 1. In a simple noise model we assume that every single experiment is carried out at
a fixed frequency detuning δ = νL − ν0 of driving field and atomic resonance. Therefore,
in a single Ramsey experiment we will accumulate an extra phase δ τR during the waiting
time τR. For simplicity we further assume that the detuning δ is a fluctuating parameter
with a Gaussian distribution

P (δ) =
1

σ
√

2π
exp

[
− δ2

2σ2

]
.

where the FWHM ∆νFWHM of the frequency fluctuations is linked to the standard devia-
tion σ by

σ =
∆νFWHM

2
√

2 ln 2
.

The fringe pattern observed in an experiment will be given by the average over an ensemble
of single experiments with fluctuating δ. Thus A is obtained by calculating the average
over the phase factors:

A(τR) = |〈exp(iδτR)〉| =
∣∣∣∣∫ +∞

−∞
dδ P (δ) cos(δτR)

∣∣∣∣ = exp
[
−
σ2τ2

R

2

]
.

In case we measure the fringe amplitude A∗ for a certain Ramsey time τ∗R, we obtain an
effective transition line width

∆νFWHM =
4
τ∗R

√
− lnA∗ ln 2.

In general the coherence time T2 is defined as Ramsey waiting time where the fringe
amplitude has decreased to 1/e. This noise model predicts for a particular measurement

T2 =
4
√

ln 2
∆ν∗FWHM

=
τ∗R√
− lnA∗ .

In case an exponential decay is expected for the fringe amplitude we calculate for the same
data a coherence time of

T2 =
τ∗R

− lnA∗ .



C Spin flip errors during the

Mølmer-Sørensen interaction

The implementation of a Mølmer-Sørensen gate operation described in chapter 7 is carried
out with a laser of high spectral purity. Nevertheless will residual spectral components
separated by ±δ from the laser frequency νL lead to an excitation on the carrier transition.
The following calculations estimate the contribution of this effect to the infidelity of the
produced Bell states.

As an example we consider two levels as sketched in Fig. B.1 (a). The Schrödinger equation
for the problem reads then

i ċD = Ω∗f(t)e−iν0 tcS

i ċS = Ωf(t)eiν0 tcD,

with state amplitudes cS , cD, coupling strength Ω and a function f(t) describing the time
evolution of the laser-ion coupling. The solution to this problem is given by the integration

cD = −iΩ
∫ t

0
dt′ f(t′)e−iν0 t

′
cS

' −iΩ
∫ t

0
dt′ f(t′)e−iν0 t

′
, (C.1)

where the approximation holds for short times t with cS ' 1.

The electric field of the laser is now considered in a bandwidth B as a decomposition of
discrete frequency components given by

f(t) =
1√
N

N∑
k=1

cos(ν̃k t+ ϕk) (C.2)

with a random phase ϕk and ν̃k = ν0 + νk, where νk = −B
2 + B k

N . Plugging Eq. (C.2)
into Eq. (C.1) and evaluating the integral we obtain

cD =
Ω

2
√
N

N∑
k=1

e−iνk t − 1
νk

e−iϕk
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such that the excitation of the upper state pD evolves as

pD(t) = |cD(t)|2 =
Ω2

4N

N∑
k=1

∣∣e−iνk t/2 − eiνk t/2
∣∣

ν2
k

=
Ω2

4N

N∑
k=1

sin2(νk t/2)
ν2
k

. (C.3)

For a continuous spectrum (N →∞) the sum in Eq. (C.3) turns into an integral as

pD(t) =
Ω2t

B

∫ B/2

−B/2
dν

sin2(ν t/2)
ν2

=
Ω2t

2B

∫ Bt/4

−Bt/4
dx

sin2 x

x2

' π

2
Ω2 t

B
, (C.4)

where we set x = νt/2 and the approximation holds for large Bt. Equation C.4 describes
the spin flip probability for a light source spectrally spread over an interval B and centered
on the atomic transition frequency. An equivalent amount of light power provided as
monochromatic resonant light source would give rise to a Rabi frequency Ω.

In case of the Mølmer-Sørensen interaction, the Rabi frequency is given by Ω = (ωax −
δ)/2η. During the gate operation only the part of the spectrum contained in a bandwidth
B = (ωax − δ) centered on νL ± δ gives rise to carrier excitations. The coupling strength
of this part of the spectrum is assumed to be by a factor γ less as for νL. Moreover,
for the Mølmer-Sørensen interaction we have to take into account the red and the blue
detuned frequency component and both ions can experience a spin flip. The spin flip error
probability for a single gate operation is then given by

pflip = pD(τgate) = γ

(
π

η

)2

.

From the measurement displayed in Fig. 3.5 (b) we see that at a frequency δ/(2π) '
1.2 MHz the emitted laser intensity is reduced by a factor 3 × 10−9 with respect to the
carrier for a resolution bandwidth of B̃/(2π) = 1 kHz. At this particular part of the
spectrum our laser exhibits a “servo bump” from the fast feedback branch. Thus, the
actual ratio is strongly dependent on the parameters of the laser frequency stabilization.
We take γ = 2×10−7 as a conservative estimate for the ratio in the relevant bandwidth of
B/(2π) = 20 kHz and calculate a spin flip probability of pflip = 10−3 per gate operation.
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Today, ion traps are among the most promising physical systems
for constructing a quantum device harnessing the computing
power inherent in the laws of quantum physics1,2. For the
implementation of arbitrary operations, a quantum computer
requires a universal set of quantum logic gates. As in classical
models of computation, quantum error correction techniques3,4

enable rectification of small imperfections in gate operations,
thus enabling perfect computation in the presence of noise. For
fault-tolerant computation5, it is believed that error thresholds
ranging between 10−4 and 10−2 will be required—depending on
the noise model and the computational overhead for realizing the
quantum gates6–8—but so far all experimental implementations
have fallen short of these requirements. Here, we report on a
Mølmer–Sørensen-type gate operation9,10 entangling ions with
a fidelity of 99.3(1)%. The gate is carried out on a pair of
qubits encoded in two trapped calcium ions using an amplitude-
modulated laser beam interacting with both ions at the same
time. A robust gate operation, mapping separable states onto
maximally entangled states is achieved by adiabatically switching
the laser–ion coupling on and off. We analyse the performance of
a single gate and concatenations of up to 21 gate operations.

For ion traps, all building blocks necessary for the construction
of a universal quantum computer1 have been demonstrated over
the past decade. Currently, the most important challenges consist
of scaling up the present systems to a higher number of qubits
and raising the fidelity of gate operations up to the point where
quantum error correction techniques can be successfully applied.
Although single-qubit gates are easily carried out with high quality,
the realization of high-fidelity entangling two-qubit gates11–16 is
much more demanding because the inter-ion distance is orders
of magnitude bigger than the characteristic length scale of any
state-dependent ion–ion interaction. Apart from quantum gates of
the Cirac–Zoller type2,12, where a laser couples a single qubit with
a vibrational mode of the ion string at a time, most other gate
realizations entangling ions have relied on collective interactions of
the qubits with the laser control fields11,13–15. These gate operations
entangle transiently the collective pseudospin of the qubits with the
vibrational mode and produce either a conditional phase shift17

or a collective spin flip9,10,18 of the qubits. Whereas the highest
fidelity F = 97% reported until now13 has been achieved with
a conditional phase gate acting on a pair of hyperfine qubits
in 9Be+, spin-flip gates have been limited so far to F ≈ 85%
(refs 11,14). All of these experiments have used qubits encoded
in hyperfine or Zeeman ground states and a Raman transition
mediated by an electric-dipole transition for coupling the qubits.
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⎥DD,n〉

⎥SS,n〉

⎥SD,n〉

⎥SD,n–1〉

⎥DS,n+1〉
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⎥DS,n–1〉

δ

ω

δ

ν
ν

–

ω+ ω+

ω+ ω+
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ω– ω–

D
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Figure 1 Gate mechanism. a, A bichromatic laser field with frequencies ω+, ω−
satisfying 2ω0 = ω+ +ω− is tuned close to the upper and lower motional sideband
of the qubit transition. The field couples the qubit states |SS〉 ↔ |DD〉 through the
four interfering paths shown in the figure, n denoting the vibrational quantum
number of the axial COM mode. Similar processes couple the states |SD〉↔ |DS〉.
b, The qubits are encoded in the ground state S1/2 (m= 1/2) and the metastable
state D5/2 (m= 3/2) of 40Ca+ ions and are manipulated by a narrow bandwidth
laser emitting at a wavelength of 729 nm.

Whereas spontaneous scattering from the mediating short-lived
levels degrades the gate fidelity owing to the limited amount
of laser power available in current experiments19, this source of
decoherence does not occur for optical qubits, that is, qubits
encoded in a ground state and a metastable electronic state of an
ion. In the experiment presented here, where the qubit comprises
the states |S〉 ≡ S1/2(m = 1/2) and |D〉 ≡ D5/2(m = 3/2) of the
isotope 40Ca+, spontaneous decay of the metastable state reduces
the gate fidelity by less than 5×10−5.

A Mølmer–Sørensen gate inducing collective spin flips
is achieved with a bichromatic laser field with frequencies
ω± = ω0 ± δ, with ω0 being the qubit transition frequency and
δ close to the vibrational mode frequency ν (Fig. 1). For optical
qubits, the bichromatic field can be a pair of co-propagating
lasers, which is equivalent to a single laser beam resonant with
the qubit transition and amplitude-modulated with frequency
δ. For a gate mediated by the axial centre-of-mass (COM)
mode, the hamiltonian describing the laser–qubit interaction is
given by H = h̄Ωe−iφS+(e−i(δt+ζ)+ei(δt+ζ) )eiη(ae−iνt +a†eiνt )+h.c. Here,
Sj = σ

(1)

j + σ
(2)

j , j ∈ {+,−, x, y, z}, denotes a collective atomic
operator constructed from Pauli spin operators σ

(i)
j acting on ion
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Figure 2 High-fidelity gate operation. a, Evolution of the populations p0 (filled circle), p1 (open diamond) and p2 (filled triangle) induced by a Mølmer–Sørensen bichromatic
pulse of duration τ. The Rabi frequencyΩ (t ) is smoothly switched on and off within 2μs and adjusted such that a maximally entangled state is created at τgate = 50μs. The
dashed lines are calculated for n̄COM = 0.05 from the propagator (1), neglecting pulse shaping and non-resonant carrier excitation. The solid lines are obtained by numerically
solving the Schrödinger equation for time-dependent Ω (t ) and imbalanced Rabi frequenciesΩ+/Ω− = 1.094 (see the Methods section). b, A (π/2)φ analysis pulse applied
to both ions prepared inΨ1 gives rise to a parity oscillation P(φ )= sin(2φ ) as a function of φ. A fit with a function Pfit = A sin(2φ+φ0 ) yields the parity fringe amplitude
A= 0.990(1) and φ0/π= −1.253(1). The precise value of the phase φ0 is without significance. It arises from phase-locking the frequencies ω0,ω+ ,ω− and could have
been experimentally adjusted to zero.

i, and σ
(i)
+ |S〉i = |D〉i. The operators a, a† annihilate and create

phonons of the COM mode with Lamb–Dicke factor η. The optical
phase of the laser field (with coupling strength Ω) is labelled φ, and
the phase ζ accounts for a time difference between the start of the
gate operation and the maximum of the amplitude modulation of
the laser beam. In the Lamb–Dicke regime, and for φ = 0, the gate
operation is very well described by the propagator20

U (t)= e−iF(t)Sx D̂(α(t)Sy,ψ)exp(−i(lt +χsin(ν−δ)t)S2
y,ψ

). (1)

Here, the operator to the right describes collective spin
flips induced by the operator Sy,ψ = Sy cos ψ + Sz sin ψ,
ψ = (4Ω/δ) cos ζ, and l ≈ η2Ω 2/(ν − δ), χ ≈ η2Ω 2/(ν − δ)2.
With α(t) = α0(ei(ν−δ)t − 1), the displacement operator
D̂(β)= eβa†−β∗a accounting for the transient entanglement between
the qubits and the harmonic oscillator becomes equal to the
identity after the gate time τgate = 2π/|ν− δ|. The operator
e−iF(t)Sx with F(t) = (2Ω/δ)(sin(δt + φ) − sinφ) describes fast
non-resonant excitations of the carrier transition that occur in
the limit of short gates when Ω � δ no longer strictly holds.
Non-resonant excitations are suppressed by intensity-shaping the
laser pulse so that the Rabi frequency Ω (t) is switched on and
off smoothly. Moreover, adiabatic switching makes the collective
spin-flip operator independent of ζ as Sy,ψ → Sy for Ω → 0. To
achieve adiabatic following, it turns out to be sufficient to switch
on the laser within 2.5 oscillation periods of the ions’ axial COM
mode. When the laser is switched on adiabatically, equation (1) can
be simplified by dropping the factor e−iF(t)Sx and replacing Sy,ψ by
Sy . To realize an entangling gate of duration τgate described by the
unitary operator Ugate = exp(−i(π/8)S2

y), the laser intensity needs
to be set such that ηΩ ≈ |δ−ν|/4.

Two 40Ca+ ions are confined in a linear trap21 with axial
and radial COM mode frequencies of νaxial/2π = 1.23 MHz
and νradial/2π = 4 MHz, respectively. After Doppler cooling and
frequency-resolved optical pumping22 in a magnetic field of 4 G,
the two axial modes are cooled close to the motional ground
state (n̄COM, n̄stretch < 0.05(5)). Both ions are now initialized to
|SS〉 with a probability of more than 99.8%. Then, the gate
operation is carried out, followed by an optional carrier pulse for

analysis. Finally, we measure the probability pk of finding k ions
in the |S〉 state by detecting light scattered on the S1/2 ↔ P1/2

dipole transition with a photomultiplier for 3 ms. The error
in state detection due to spontaneous decay from the D state
is estimated to be less than 0.15%. Each experimental cycle is
synchronized with the frequency of the a.c.-power line and repeated
50–200 times. The laser beam carrying out the entangling operation
is controlled by a double-pass acousto-optic modulator, which
enables setting the frequency ωL and phase φ of the beam. By
means of a variable gain amplifier, we control the radiofrequency
input power and hence the intensity profile of each laser pulse.
To generate a bichromatic light field, the beam is passed through
another acousto-optic modulator in single-pass configuration that
is driven simultaneously by two radiofrequency signals with
difference frequency δ/π (see the first paragraph of the Methods
section). Phase coherence of the laser frequencies is maintained by
phase-locking all radiofrequency sources to an ultrastable quartz
oscillator. We use 1.8 mW average light power focused down to a
spot size of 14 μm gaussian beam waist illuminating both ions from
an angle of 45◦ with equal intensity to achieve the Rabi frequencies
Ω/(2π) ≈ 110 kHz required for carrying out a gate operation with
(ν − δ)/(2π) = 20 kHz and η = 0.044. To make the bichromatic
laser pulses independent of the phase ζ, the pulse is switched on and
off by using Blackman-shaped pulse slopes of duration τr = 2 μs.

Multiple application of the bichromatic pulse of duration τgate

ideally maps the state |SS〉 to

|SS〉 τgate−→ |SS〉+ i|DD〉
︸ ︷︷ ︸

Ψ1

τgate−→ |DD〉 τgate−→ |DD〉

+ i|SS〉 τgate−→ |SS〉 τgate−→ ··· (2)

up to global phases. Maximally entangled states occur at instances
τm = m · τgate (m = 1, 3, . . .). A similar mapping of product
states onto Bell states and vice versa also occurs when starting
from state |SD〉. To assess the fidelity of the gate operation,
we adapt the strategy first applied in refs 11,13 consisting
of measuring the fidelity of Bell states created by a single
application of the gate to the state |SS〉 (Fig. 2a). The fidelity
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Figure 3 Entanglement and disentanglement dynamics of the Mølmer–Sørensen interaction. Starting from state |SS〉 for a detuning of the bichromatic laser from the
sidebands set to δ− ν = −20 kHz, the figure shows the time evolution of the populations p0, p1 and p2 denoted by the filled circles, open diamonds and filled triangles
respectively. The length of the pulse is equivalent to the application of up to 17 gate operations. Maximally entangled states are created whenever p0 (τ ) and p2 (τ ) coincide
and p1 (τ ) vanishes.

F = 〈Ψ1|ρexp|Ψ1〉 = (ρ
exp
SS,SS + ρ

exp
DD,DD)/2 + Imρ

exp
DD,SS, with the

density matrix ρexp describing the experimentally produced qubits’
state, is inferred from measurements on a set of 42,400 Bell states
continuously produced within a measurement time of 35 min.
Fluorescence measurements on 13,000 Bell states reveal that
ρ

exp
SS,SS + ρ

exp
DD,DD = p2 + p0 = 0.9965(4). The off-diagonal element

ρ
exp
DD,SS is determined by measuring P(φ) = 〈σ(1)

φ σ
(2)

φ 〉 for different
values of φ, where σφ = σx cosφ + σy sinφ, by applying (π/2)φ

pulses to the remaining 29,400 states and measuring p0 + p2 − p1

to obtain the parity 〈σ(1)
z σ(2)

z 〉. The resulting parity oscillation P(φ)
shown in Fig. 2b is fitted with a function Pfit(φ) = Asin(2φ+φ0)
that yields A = 2|ρexp

DD,SS| = 0.990(1). Combining the two
measurements, we obtain the fidelity F = 99.3(1)% for the Bell
state Ψ1.

A wealth of further information is obtained by studying the
state dynamics under the action of the gate hamiltonian (see
equation (2)). Starting from state |SS〉, Fig. 3 shows the time
evolution of the state populations for pulse lengths equivalent to
up to 17 gate times. The ions are entangled and disentangled
consecutively up to nine times, the populations closely following
the predicted unitary evolution of the propagator (1) for ζ = 0
shown in Fig. 3 as solid lines.

To study sources of gate imperfections we measured the fidelity
of Bell states obtained after a pulse length τm for up to m = 21
gate operations. The sum of the populations p0(t) + p2(t) does
not return perfectly to one at times τm as shown in Fig. 4 but
decreases by about 0.0022(1) per gate. This linear decrease could
be explained by resonant spin-flip processes caused by spectral
components of the qubit laser that are far outside the laser’s
linewidth of 20 Hz (ref. 21) (see the Methods section). The figure
also shows the amplitude of parity fringe pattern scans at odd
integer multiples of τgate similar to the one in Fig. 2b. The gaussian
shape of the amplitude decay is consistent with variations in the
coupling strength Ω that occur from one experiment to the next
(see the Methods section).

The observed Bell-state infidelity of 7×10−3 indicates that the
gate operation has an infidelity below the error threshold required
by some models of fault-tolerant quantum computation6–8 (an
indication to be confirmed by full quantum gate tomography16

in future experiments). However, further experimental advances
will be needed before fault-tolerant computation will become a
reality as the overhead implied by these models is considerable.
Nevertheless, in addition to making the implementation of
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Figure 4 Multiple gate operations. Gate imperfections as a function of the
bichromatic pulse length τm =m · τgate given in equivalent number of gate
operations m. The upper curve shows a linear decrease of the state populations
p0 + p2 with a slope of 0.0022(1). All errors given are 1σ statistical errors. The
lower curve represents the magnitude of the coherence 2ρDD,SS measured by
detecting parity oscillations and fitted by a gaussian decay function that accounts for
low-frequency noise of the laser–ion coupling strengthΩ (see the Methods section).
Combining both measurements yields the Bell-state fidelity Fm shown as the middle
trace. For m= 21, the fidelity is still F21 = 80(1)%. Similar results are achieved
when replacing the entangling pulse of length τm by m amplitude-shaped pulses
each of which is realizing an entangling gate operation.

quantum algorithms with tens of entangling operations look
realistic, the gate presented here also opens interesting perspectives
for generating multiparticle entanglement23 by a single laser
interacting with more than two qubits at once. For the generation
of N-qubit Greenberger–Horne–Zeilinger states, there exist no
constraints on the positioning of ions in the bichromatic beam
that otherwise made generation of Greenberger–Horne–Zeilinger
states beyond N = 6 difficult in the experiment with hyperfine
qubits described in ref. 24. Although the bichromatic force
lacks a strong spatial modulation that would enable tailoring
of the gate interaction by choosing particular ion spacings25,26,
more complex multiqubit interactions could be engineered by
interleaving entangling laser pulses addressing all qubits with
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a focused laser inducing phase shifts in single qubits. Akin to
nuclear magnetic resonance techniques, this method should enable
refocusing of unwanted qubit–qubit interactions27 and open the
door to a wide variety of entangling multiqubit interactions.

METHODS

A.C.-STARK-SHIFT COMPENSATION
The red- and the blue-detuned frequency components ω± of the bichromatic
light field cause dynamic (a.c.-) Stark shifts by non-resonant excitation on
the carrier and the first-order sidebands that exactly cancel each other if the
corresponding laser intensities I± are equal. The remaining a.c.-Stark shift
due to other Zeeman transitions and far-detuned dipole transitions amounts
to 7 kHz for a gate time τgate = 50 μs. These shifts could be compensated by
using an extra far-detuned light field28 or by properly setting the intensity
ratio I+/I−. We use the latter technique, which makes the coupling strengths
ΩSS↔DD ∝ 2

√
I+I−, ΩSD↔DS ∝ I+ + I− slightly unequal. However, the error is

insignificant as ΩSD↔DS/ΩSS↔DD −1 = 4×10−3 in our experiments.

SOURCES OF GATE INFIDELITY
A bichromatic force with time-dependent Ω (t) acting on ions prepared in an
eigenstate of Sy creates coherent states α(t) following trajectories in phase space
that generally do not close20,29. For the short rise times used in our experiments,
this effect can be made negligibly (<10−4) small by slightly increasing the
gate time.

Spin flips induced by incoherent off-resonant light of the bichromatic laser
field reduce the gate fidelity. A beat frequency measurement between the gate
laser and a similar independent laser system that was spectrally filtered indicates
that a fraction γ of about 2×10−7 of the total laser power is contained in
a 20 kHz bandwidth B around the carrier transition when the laser is tuned
close to a motional sideband. A simple model predicts spin flips to cause a gate
error with probability pflip = (πγ|ν− δ|)/(2η2B). This would correspond to
a probability pflip = 8×10−4, whereas the measured state populations shown
in Fig. 4 would be consistent with pflip = 2×10−3. Spin-flip errors could be
further reduced by two orders of magnitude by spectrally filtering the laser light
and increasing the trap frequency ν/(2π) to above 2 MHz where noise caused
by the laser frequency stabilization is much reduced.

Imperfections due to low-frequency noise randomly shifting the laser
frequency ωL with respect to the atomic transition frequency ω0 were
estimated from Ramsey measurements on a single ion showing that an average
frequency deviation σ(ωL−ω0 )/(2π) = 160 Hz occurred. From numerical
simulations, we infer that for a single gate operation this frequency uncertainty
gives rise to a fidelity loss of 0.25% (an infidelity of 10−4 would require
σ(ωL−ω0 )/(2π) = 30 Hz). In our parity oscillation experiments shown in Figs 2b
and 4, however, this loss is not directly observable because a small error in
the frequency of the bichromatic laser beam carrying out the gate operation is
correlated with a similar frequency error of the carrier ( π2 )φ pulse probing the
entanglement produced by the gate so that the phase φ of the analysing pulse
with respect to the qubit state remains well defined.

Variations in the coupling strength δΩ induced by low-frequency laser
intensity noise and thermally occupied radial modes were inferred from
an independent measurement by recording the amplitude decay of carrier
oscillations. Assuming a gaussian decay, we find a relative variation of
δΩ/Ω = 1.4(1)×10−2. For m entangling gate operations, the loss of fidelity
is approximately given by 1− F = (πm/2)2(δΩ/Ω )2 and contributes with

5×10−4 to the error of a single gate operation. For the multiple gate operations
shown in Fig. 4, this source of noise explains the gaussian decay of the parity
fringe amplitude, whereas laser frequency noise reduces the fringe amplitude by
less than 1% even for 21 gate operations. In combination with error estimates
for state preparation, detection and laser noise, the analysis of multiple gates
provides us with a good understanding of the most important sources of
gate infidelity.

Received 19 December 2007; accepted 25 March 2008; published 27 April 2008.
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For quantum-information processing �QIP� with trapped ions, the isotope 43Ca+ offers the combined advan-
tages of a quantum memory with long coherence time, a high-fidelity readout, and the possibility of performing
two-qubit gates on a quadrupole transition with a narrow-band laser. Compared to other ions used for quantum
computing, 43Ca+ has a relatively complicated level structure. We discuss how to meet the basic requirements
for QIP and demonstrate ground-state cooling, robust state initialization, and efficient readout for the hyperfine
qubit with a single 43Ca+ ion. A microwave field and a Raman light field are used to drive qubit transitions, and
the coherence times for both fields are compared. Phase errors due to interferometric instabilities in the Raman
field generation do not limit the experiments on a time scale of 100 ms. We find a quantum-information storage
time of many seconds for the hyperfine qubit.

DOI: 10.1103/PhysRevA.77.062306 PACS number�s�: 03.67.Lx, 32.80.Qk, 37.10.Ty, 42.50.Dv

I. INTRODUCTION

Quantum-information processing �QIP� with trapped ions
has made huge progress since it was first proposed more than
a decade ago �1�. The question of which ion species is best
suited for QIP is still undecided. So far, qubits encoded in
trapped ions come in two flavors. On the one hand, two
energy levels of the hyperfine �or Zeeman� ground-state
manifold of an ion can serve as a qubit commonly termed a
hyperfine qubit. The energy splitting is typically several
GHz. Many successful experiments have been performed on
hyperfine qubits with cadmium and beryllium ions, illustrat-
ing the capabilities for QIP �2–5�. On the other hand, quan-
tum information can be encoded in the ground state and a
metastable energy state of an ion. Here the energy splitting
lies in the optical domain and the qubit is therefore referred
to as an optical qubit. This concept has been pursued so far
mainly with calcium ions, where all major building blocks
for QIP have been demonstrated �6–8�.

When it comes to judging the suitability of a particular
ion for QIP, the fidelities and speed of the basic gate opera-
tions and the quantum-information storage time are impor-
tant criteria. Concerning the latter the hyperfine qubit has
been the clearly better choice. For the optical qubit, it is
technically challenging to achieve quantum-information stor-
age times much longer than a few milliseconds since this
requires a laser with a linewidth of less than a few Hz. Yet
optical qubits have excellent initialization and readout prop-
erties. Moreover, the metastable states can be used as inter-
mediate levels when driving the hyperfine qubits with a Ra-
man light field as suggested in Ref. �9�. Errors induced by
spontaneous scattering, which are a major limitation in
present experiments with Raman light fields detuned from an
optical dipole transition, are then largely suppressed.

From today’s perspective, it seems necessary to integrate
the building blocks that have been acquired over the years
into a single system. By using hyperfine qubits in combina-
tion with metastable states, it is possible to exploit the best of
both concepts. Only a few ion species offer this possibility,

one of them being 43Ca+. It is the only calcium isotope with
nonzero nuclear spin, and it offers the advantage that all
necessary laser wavelengths lying within the range from 375
nm to 866 nm can be produced by commercially available
solid-state lasers. For QIP, only a small number of electronic
levels are of interest �Fig. 1�. The S1/2 ground state is split
into the states F=4 and F=3 with a hyperfine splitting of 3.2
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FIG. 1. �Color online� Energy level diagram of the valence elec-
tron of 43Ca+ showing the hyperfine splitting of the lowest energy
levels. Laser light at 397 nm is used for Doppler cooling and de-
tection; the lasers at 866 nm and 854 nm pump out the metastable D
states. A laser at 729 nm excites the ions on the transition from the
S1/2�F=4� states to the D5/2�F=2, . . . ,6� states. It is used for
ground-state cooling, state initialization, and state discrimination.
Microwave radiation applied to an electrode close to the ions as
well as a Raman light field at 397 nm can drive transitions between
different levels in the hyperfine structure of the S1/2-state manifold.
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GHz �10�. It is connected by electric-dipole transitions to the
short-lived levels P1/2 and P3/2 and by electric-quadrupole
transitions to the metastable states D3/2 and D5/2 with a life-
time of �1 s. Because of the fairly large nuclear spin of I
=7 /2, these levels split into a total of 144 Zeeman states.
This results in a very rich spectrum for the S1/2↔D5/2 tran-
sition, which has been investigated to a high precision re-
cently �11�.

II. EXPERIMENTAL SETUP

43Ca+ ions are loaded from an enriched source into a lin-
ear Paul trap by a two-step photoionization process �423 nm
and 375 nm� �11–13�. Radial confinement is provided by a
quadrupole field created by the application of a radio fre-
quency voltage to two out of four blade electrodes and con-
necting the other two blade electrodes to ground �14�. Axial
confinement is achieved by setting two tip electrodes to dc
voltages of 500–500 V, resulting in center-of-mass �c.m.�
mode secular trapping frequencies of �ax /2�
=0.8–1.5 MHz. Applying slightly unequal voltages to the
tips leads to an axial shift in the ions’ equilibrium position.
The closest distance between the ions and the tip �blade�
electrodes is 2.5 mm �0.8 mm�. Two additional electrodes
compensate for external electric stray fields in the radial di-
rections. One of them, located at a distance of 7.3 mm to the
trap center, can also be used to guide microwave signals to
the ions. The trap is housed in a vacuum environment with a
pressure below 2�10−11 mbar. When no laser light is
present, ion storage times as long as 2 weeks have been
observed.1

For most experimental steps, we use a titanium-sapphire
laser at 729 nm for coupling the energy levels of the S1/2�F
=4� and D5/2�F=2, . . . ,6� manifolds via their electric-
quadrupole transition �Fig. 1�. The laser’s frequency is stabi-
lized to an ultrastable Fabry-Perot cavity �15� with a line-
width of 4.7 kHz. A Lorentzian fit to a beat note
measurement with another similar laser reveals a width of
the beat note’s power spectral density of 1.8 Hz �4 s data
acquisition time�. This is indicative of a linewidth for each
laser below 1 Hz. In a measurement where a single 43Ca+ ion
served as a frequency reference �11�, we obtained a linewidth
of 16 Hz with an integration time of 60 s.

In order to stabilize the laser’s frequency to the atomic
transition frequency, we use a feedback loop based on spec-
troscopic measurements typically taken every 1–2 min. Since
Ramsey phase experiments are used to probe the frequencies
of two different Zeeman transitions, these measurements
serve also to infer the strength of the magnetic field at the
ion’s position. The result is automatically analyzed and fed
back to an acousto-optic modulator �AOM� located between
the laser and its reference cavity. By this means the laser’s
output frequency remains constant with respect to the ion’s
quadrupole transition frequency. The mean frequency devia-
tion between laser and ion depends on the Ramsey probe

time, the measurement interval, and the actual frequency
drift of the reference cavity and is typically smaller than 200
Hz. With the knowledge of the laser frequency and the mag-
netic field, the transition frequency of all required Zeeman
transitions are calculated to an accuracy of �500 Hz. The
optical frequency and phase of the laser are controlled with a
double-pass AOM �270 MHz� between laser and ion. Slow
drifts of the magnetic field ��200 �G /h� are taken into ac-
count by properly adjusting the radio frequency feeding the
AOM. Deteriorating effects due to magnetic field noise com-
ponents at 50 Hz, typically on the order of 1 mG, are largely
suppressed by triggering all experiments to the ac-line fre-
quency.

The hyperfine qubit can be driven with a Raman light
field comprising two phase stable frequency components. It
is derived from a commercial diode laser system, consisting
of a tapered amplifier and a frequency-doubling stage emit-
ting at a wavelength of 397 nm. To achieve the frequency
difference of 3.2 GHz required for bridging the ground-state
hyperfine splitting in 43Ca+, the light is first sent through an
AOM �1 GHz� that splits the laser beam into a blue beam
line �+1st order of diffraction� and a red beam line �0th or-
der�. The latter passes another AOM operated at 1 GHz �−1st
order of diffraction�. The remaining frequency shift is
achieved by two more AOMs ��300 MHz� in each beam-
line. For noncopropagating Raman light fields, the two beam
lines are separately guided to the ions through the viewports
labeled NW and NE in Fig. 2�a�.

Frequency, phase, and amplitude control of these lasers is
synonymous to controlling the radio frequency signals ap-
plied to the AOMs. We use a homemade versatile frequency
source �VFS� based on direct digital synthesis that can
phase-coherently provide 16 different radio frequencies up to
305 MHz. Amplitude shaping is achieved with a variable-
gain amplifier controlled by a field-programmable gate array.
The VFS and all other radio frequency sources providing the
input signals of the AOMs mentioned above are referenced
to an ultrastable quartz oscillator with a long-term stabiliza-
tion provided by the global positioning system. For direct
microwave driving the hyperfine qubit, the output of the VFS
is mixed with a signal of 1.35 GHz, then filtered, frequency
doubled, filtered, and amplified. In this way, full amplitude,
frequency, and phase control of the VFS is up-converted to
3.2 GHz.

The laser sources at 866 nm, 854 nm, and 397 nm are
commercially available diode lasers whose frequencies are
referenced to Fabry-Perot cavities. The Doppler cooling laser
at 397 nm is produced by frequency-doubling light of a near-
infrared laser diode. Except for the Raman light fields, all
other light sources are linked to the experiment with single-
mode fibers. As sketched in Fig. 2, the vacuum vessel pro-
vides optical access for illuminating the ion by laser beams
mostly arriving in a plane containing also the symmetry axis
of the trap. In addition, two beams used for laser cooling
�729 nm and 866 nm� are sent in from below with a 60°
angle to the trap axis.

Fluorescence light is collected with a custom-designed
lens �with a numerical aperture of 0.3�, correcting for aber-
rations induced by the vacuum window. The light is sent to a
photomultiplier �PMT� or a sensitive camera with a magni-

1With two 40Ca+ ions trapped, we repeatedly observe that one of
the ions forms a CaOH+ molecule by measuring the change of the
axial sideband frequencies. These events occur every few hours.
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fication of 25 and a resolution of 2.2 �m. For a single 43Ca+

ion, the signal-to-noise ratio at the PMT is typically around
50. The same type of lens is also used to focus light at 729
nm and 397 nm from the S, NE, and NW viewports.

III. INITIALIZING THE 43Ca+ HYPERFINE QUBIT

There are many ways to encode quantum information in
the 43Ca+ level structure. An optical qubit with vanishing
first-order dependence on magnetic field fluctuations has
been proposed in Ref. �11�. Here, we consider the hyperfine
ground-state manifold depicted in Fig. 1 where the energy
splitting between the F=3 and F=4 manifold is about 3.2
GHz. For low magnetic fields, the two states �↓ �	S1/2�F
=4, mF=0� and �↑ �	S1/2�F=3, mF=0� exhibit no linear
Zeeman effect and are therefore attractive as a robust
quantum-information carrier �16�. As in classical computing,
QIP devices also need to be initialized. In our experiment,
the initialization step comprises Doppler cooling, optical
pumping, cooling to the motional ground state, and state
transfer to �↓ �.

A. Doppler cooling and optical pumping

For Doppler cooling and fluorescence detection, the ion is
excited on the S1/2↔P1/2 dipole transition with two laser
beams. The beam entering from SE is � polarized and is
slightly red detuned from the transition S1/2�F=4�↔P1/2�F

=4�. The second beam is �+ polarized. It is sent through an
electro-optic phase modulator �3.2 GHz� to excite the ions
from the S1/2�F=3� and S1/2�F=4� to P1/2�F=4� manifold.
Coherent population trapping is avoided by lifting the degen-
eracy of the Zeeman sublevels with a magnetic field. To
avoid population trapping in the D3/2 manifold, repumping
laser light at 866 nm is applied. The repumping efficiency
was improved by tuning the laser close to the D3/2�F
=3�↔P1/2�F=3� transition frequency and providing two ad-
ditional frequencies shifted by −150 MHz and −395 MHz
such that all hyperfine D3/2 levels are resonantly coupled to
one of the P1/2�F=3,4�-levels. We observed a maximum
fluorescence count rate of 24000 counts per second and per
43Ca+ ion on a PMT for magnetic fields ranging from 0.2 to
5 G. This is about 45% of the count rate we observe for
40Ca+ ions. The count rate difference, possibly caused by
coherent population trapping, is still under investigation.

After switching off the �-polarized laser beam, the ion is
optically pumped into the state S1/2�F=4, mF=4�. The
state’s population was measured with two consecutive �
pulses exciting the population to the D5/2 state and subse-
quent fluorescence detection �Sec. IV�. Figure 3 shows the
dynamics of optical pumping and illustrates that the
stretched Zeeman states of the ground-state manifold are al-
ready strongly populated during Doppler cooling. An expo-
nential fit to the data points yields a time constant of the
process of 1.4 �s. After 10 �s, the desired state is popu-
lated in 98% of the cases.

The pumping efficiency can be improved by transferring
the population after this first step with a � pulse to the
D5/2�F=6, mF=6� state and repeating the optical pumping.
By applying another � pulse on the same transition, the
populations in S1/2�F=4, mF=4� and D5/2�F=6, mF=6�
are exchanged. On average, 98% should now be in S1/2�F
=4, mF=4� and the rest in the D5/2 state. Finally the two
populations are combined by switching on the 854-nm laser
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FIG. 2. �Color online� �a� Most laser beams are sent to the ion
from a plane containing also the symmetry axis of the trap �top
view�. With three custom-made lenses in the inverted viewports S,
NE, and NW, we can tightly focus light at wavelengths 729 nm and
397 nm. The lens in S is also used to collect fluorescence light
which is sent to a PMT or a camera. The quantization axis is de-
fined by a magnetic field along SW-NE. �b� Two beams �729 nm
and 866 nm� are sent in from below in a 60° angle to the trap axis
�side view�. The axial trapping potential is provided by two tips
indicated by arrows along the z axis. Unbalancing the tip voltages
results in a shift of the ion crystal along the trap axis �E-W�.

FIG. 3. �Color online� The population in the stretched state
S1/2�F=4, mF=4� is plotted as a function of the duration of optical
pumping. An exponential fit �solid line� reveals a time constant of
1.4 �s. After 10 �s the population is in the desired state in 98% of
the measurements. The inset shows a histogram of the success rate
of 100 measurements each containing 100 experiments when two �
pulses on the quadrupole transition are applied and an additional
intermediated optical pumping interval is used. This enhances the
fidelity of the process to above 99.2%.

EXPERIMENTAL QUANTUM-INFORMATION PROCESSING … PHYSICAL REVIEW A 77, 062306 �2008�

062306-3



for a short time to clear out the D5/2 state via the P3/2�F
=5, mF=5� state from where it can decay only into the de-
sired stretched state. The inset of Fig. 3 shows a histogram
built from 100 measurements, each comprising 100 experi-
ments, indicating a lower bound of the pumping efficiency of
99.2%.

After Doppler cooling and optical pumping, an average
population n̄ax=10�5� of the axial mode is inferred from
measuring the decay of Rabi oscillations on the blue axial
sideband. The average number of quanta is heavily depen-
dent on the different laser detunings and powers.

B. Ground-state cooling, heating rate, and ion shuttling

Cooling the ions to the motional ground state is manda-
tory in order to maximize quantum gate fidelities. In our
experiment, it has been implemented with a scheme analo-
gous to what has been demonstrated with 40Ca+ ions �17�. In
order to obtain a closed cooling cycle, the frequency of the
laser at 729 nm is tuned to the red sideband ��ax /2�
=1.18 MHz� of the transition S1/2�F=4, mF=4�↔D5/2�F
=6, mF=6�. An additional quenching laser at 854 nm is
required to increase the spontaneous decay rate to the energy
level S1/2 by coupling the D5/2�F=6, mF=6� to the P3/2�F
=5, mF=5� state. Spontaneous decay to the stretched state
takes the entropy away from the ion. In each cycle, one mo-
tional quantum can be removed. The residual occupation of
the motional mode is measured by comparison of the red and
blue sideband excitations. Alternatively, Rabi oscillations on
a blue motional sideband can be observed in order to infer
the average population of the axial mode �see Fig. 4�. The
solid line is a fitted model function with n̄ax as a free param-
eter. From both methods, we consistently obtain n̄ax=0.06.

By introducing and varying a delay time between ground-
state cooling and the temperature measurement, we deter-
mined a heating rate on the axial com-mode of 1 motional
quantum per 370 ms. The coherence of a motional superpo-
sition state �0�+ �1� was investigated by performing Ramsey
experiments that mapped the motional superposition states
after a variable waiting time to the S1/2 and D5/2 electronic
states. These measurements showed that the motional coher-

ence was preserved for more than 320�10� ms, in good agree-
ment with the measured heating rate.

When it comes to scaling the system up to strings of many
ions, it is important that single-qubit gates can be applied to
each individual ion. Individual addressing can be achieved
by using an electro-optical deflector to rapidly steer a
strongly focused laser beam to different ions in the string
with high precision �14�. Driving Raman transitions in 43Ca+

requires more than a single laser beam that would have to be
steered this way. To avoid this complication, we prefer to
shuttle the ion string along the axis of the trap instead of
moving the laser beams. For an axial trapping frequency of
�ax / �2��=1.18 MHz we are able to shuttle the ions over a
distance of up to 10 �m by changing the right �left� tip
voltage from 990 V �1010 V� to 1010 V �990 V�. The switch-
ing speed is currently limited by a low-pass filter with a
cutoff at 125 kHz, which prevents external electrical noise
from coupling to the trap electrodes. Shuttling over the full
distance in order to individually address single ions works
for transport durations as low as 40 �s. In a test run with a
single 40Ca+ ion, quantum information encoded into the mo-
tional states �n=0� and �n=1� was fully preserved during the
shuttling.

C. Transfer to the hyperfine clock states

Ground-state cooling on quadrupole transitions requires a
closed cooling cycle which can only be achieved efficiently
when working with the stretched hyperfine ground states
�F=4, mF= �4�. For this reason, methods are needed that
allow for a transfer from these states to the qubit state �↓ �.
Four different techniques were under consideration.

1. Optical pumping on the S1Õ2 to P1Õ2 transition

The state �↓ � could be populated by optical pumping with
�-polarized light fields exciting the transitions S1/2�F
=4�↔P1/2�F=4� and S1/2�F=3�↔P1/2�F=4� within a few
microseconds. However, many scattering events would be
required to pump the population to the desired state that are
likely to heat up the ion from the motional ground state.
Moreover, the efficiency of the optical pumping would prob-
ably be fairly poor as small polarization imperfections of the
beams and repumping via the S1/2�F=4�↔P1/2�F=3� are
likely to occur.

2. Raman light field

Transferring the population can also be achieved with a
Raman light field detuned from the S1/2↔P1/2 dipole transi-
tion at 397 nm. In the simplest scenario, a sequence of four �
pulses would be used to populate the state �↓ � starting from
S1/2�F=4, mF= �4� by changing the magnetic quantum
number in units of 	m= �1. Use of copropagating beams
suppresses unwanted excitations of motional sidebands.

3. Microwave

Instead of a Raman light field, also a microwave field can
be used to transfer the ions in a four-step process to �↓ �. An
additional advantage here is that the field’s wavelength is

FIG. 4. �Color online� Rabi oscillations on the blue axial side-
band of the transition S1/2�F=4, mF=4�↔D5/2�F=6, mF=6� af-
ter ground-state cooling. The solid line is a fit assuming a thermal
state. It yields a mean occupation of the axial mode of n̄ax=0.06.
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huge compared to the distance of the ions and therefore an
equal coupling of all ions to the field is guaranteed.

A limitation for both methods—Raman light field and
microwave—is the small coupling strength on the transitions
�F=3, mF= �3�↔ �F=4, mF= �2�. That makes the
whole process either slow or necessitates a larger frequency
separation of the Zeeman levels in order to suppress nonreso-
nant excitation of neighboring transitions.

4. Transfer via quadrupole transitions

State transfer based on a laser operating on the quadru-
pole transition S1/2↔D5/2 reduces the transfer process to two
steps since the selection rules allow for 	m= �2. The dura-
tion of a � pulse can be as short as a few microseconds, and
only a single laser beam is needed that can be either focused
to a small region or illuminate the whole trap volume. If the
D5/2�F=4� is chosen as intermediate state, a good compro-
mise is achieved between the quadrupole coupling strength
of the involved transitions and the frequency separation of
the neighboring D-state Zeeman levels. The latter is by a
factor 1.6 larger as for the ground states. In particular, for
low magnetic fields this method is expected to work better
than a transfer with Raman or microwave fields.

With the precision laser for the quadrupole transition act-
ing on a single 43Ca+ ion, the implementation of state trans-
fer is straightforward. With two consecutive � pulses, we
achieved a transfer success probability of more than 99%.
Assuming Gaussian beam waists, such high probabilities
cannot be expected for larger ions crystals though, unless one
is willing to waste most of the laser power by making the
beam size very large. As variations of the coupling strengths
may also arise from other technical imperfections, a more
robust scheme seems to be desirable. Inspired by Ref. �18�,
we introduce amplitude shaping and a linear frequency
sweep of the transfer pulses to demonstrate a transfer tech-
nique less sensitive to changes in the laser intensity. Figure 5

shows the transfer probability for a single 40Ca+ ion and the
transition S1/2�m=1 /2�↔D5/2�m=3 /2� as a function of the
Rabi frequency for four different pulse durations 
. The am-
plitude of the laser pulse had a cos2 shape over the pulse
length. The frequency of the laser was linearly swept over a
range 	c centered on the transition frequency. The data show
clearly that the transfer probability is hardly affected over a
broad range of Rabi frequencies � for the different param-
eters.

IV. STATE DETECTION

For 43Ca+ ions, the electron shelving technique first intro-
duced by Dehmelt �21� allows for an efficient state discrimi-
nation between the �↓ � and �↑ � hyperfine qubit states by
scattering light on the S1/2 to P1/2 transition after having
shelved the �↓ � state in the D5/2 metastable state with a �
pulse. In our experiment, the same light fields as for Doppler
cooling are used, but with slightly more power. With this
method, not only �↑ � and �↓ � can be discriminated, but the
other Zeeman levels in the S1/2-state and D5/2-state mani-
folds, too. The quality of the transfer pulses sets a limitation
on the state discrimination. Again, pulse shaping and fre-
quency sweeping can help to increase the robustness with
respect to intensity variations of the shelving laser. In addi-
tion, instead of using a single �-pulse excitation to a certain
Zeeman state in the D5/2-state manifold, the first � pulse can
be followed by a second one, exciting any population still
remaining in �↓ � to a different Zeeman state. Assuming a
transfer probability of 0.99 for each of the pulses, one ex-
pects a transfer error probability of less then 10−4. The final
detection fidelity will then be limited by spontaneous decay
from the D5/2 state during the detection whose duration de-
pends on the signal-to-noise ratio and signal strength. For the
experiments reported here, the detection time was set to 5
ms. The error due to spontaneous decay is estimated to be
0.5%.

V. SINGLE-QUBIT GATES ON THE 43Ca+ HYPERFINE
QUBIT

Once external and internal degrees of freedom are initial-
ized, quantum information needs to be encoded into the ions,
stored, and manipulated. This is achieved with a driving field
tuned to the qubits’ transition frequency. Two different driv-
ing fields were investigated.

A. Microwave drive

From an experimental point of view, quantum-state ma-
nipulation by microwave radiation is simple and robust.
There is no alignment required, and stable frequency sources
are readily available with computer-controlled power, fre-
quency, and phase.

To characterize the microwave properties on a single
43Ca+ ion, Rabi oscillations were recorded on the hyperfine
qubit �↓ �↔ �↑ � at a magnetic field of 3.4 G. After initializing
the ion into �↓ �, a microwave signal of 3.226 GHz is turned
on for a variable amount of time followed by state detection.
Figure 6 shows the resulting Rabi oscillations at instances of

FIG. 5. �Color online� Transfer probability measurement of an
amplitude shaped laser pulse on the transition S1/2�mF

=1 /2�↔D5/2�mF=3 /2� of a single 40Ca+ ion as a function of the
Rabi frequency. Data were taken for four different pulse lengths 

and frequency chirp spans 	c as given in the plot legend. The lines
indicate what is theoretically expected. With enough laser power
available, the transfer probability hardly changes over a wide range
of Rabi frequencies.
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0, 50, and 100 ms. The solid line represents a weighted least-
squares fit to the function f�t�= A

2 cos��t /
��+y0, resulting in
y0=0.490�3�, 
�=520.83�3� �s, and A=0.974�11�. About
200 state transfers are observed over a time of 100 ms with
hardly any decrease in fringe amplitude. Also, for measure-
ments with 
�=34.3 �s, a fringe amplitude A close to unity
has been observed for more than 150 state transfers. In both
cases, the subsequent decay of the fringe amplitude for more
oscillations indicates a limitation due to small fluctuations of
the microwave power.

Unfortunately, microwave excitation does not couple mo-
tional and electronic states unless strong magnetic field gra-
dients are applied �19� and it cannot be focused to a single
qubit location. Nevertheless, microwave excitation turns out
to be a useful reference for investigating the phase stability
of Raman excitation schemes to be discussed in the next
subsection.

B. Raman light field

In contrast to the microwave drive, the interaction region
of the Raman field detuned from the dipole transition
S1/2↔P1/2 is as small as the diameter of the involved laser
beams. When a single ion is illuminated, the coupling to the
center-of-mass mode along the trap axis �unit vector ez� is
described by the Lamb-Dicke parameter �= �k+

−k−� ·ez

 

2M� . Here, k� is the wave vector of the blue and
red Raman light fields, respectively, M is the mass of all ions
in the string, and � denotes the trap frequency. For copropa-
gating lasers the Lamb-Dicke factor is negligible, whereas it
is maximized for lasers counterpropagating along the mo-
tional mode axis.

We characterize the Raman interaction on a single ion by
driving Rabi oscillations on the hyperfine qubit with co-
propagating beams from NW that are detuned from the S1/2
to P1/2 transition frequency by −10 GHz. Figure 7 shows
Rabi oscillations for excitation times of up to 4 ms with a
duration of a � pulse of 
�=65.3�1� �s. The first few oscil-
lations have a fringe amplitude of A=0.97�1�, which is re-
duced to 0.80�2� after more than 50 state transfers. Shot-to-
shot variations in Raman light intensity contribute to a loss
symmetrically to the average excitation. In addition, the
fringe center, ideally at y0=0.5, has dropped to y0

=0.428�7� due to nonresonant scattering introduced by the
Raman light field.

The ability to couple electronic and motional states by the
Raman excitation was tested by comparing Rabi frequencies
on the carrier and on the first blue sideband with nonco-
propagating beams �from NW and NE� illuminating an ion
initially prepared in the motional ground state. The two Ra-
man beams enclose a 90° angle such that the residual mo-
mentum transfer is optimized for the axial direction. From
the ratio of the Rabi frequencies, we directly infer the Lamb-
Dicke parameter to be �=0.216�2�, in good agreement with
the theory.

VI. COHERENCE PROPERTIES OF THE 43Ca+

HYPERFINE QUBIT

Applying the methods described before, we investigated
quantum-information storage capabilities of the 43Ca+ hyper-
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FIG. 6. �Color online� Rabi oscillations on the 43Ca+ hyperfine qubit mediated by a microwave field after 0, 50, and 100 ms. Each data
point represent 50 individual measurements. The solid line is a weighted least-squares fit with the function A

2 cos��t /
��+y0, resulting in
y0=0.490�3�, 
�=520.83�3� �s, and A=0.974�11�. The number of state transfers is indicated. Since the amplitude of the Rabi oscillation is
still close to unity even after 200 state transfers, the microwave can serve as a reference to the Raman light field regarding power and phase
stability.
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FIG. 7. �Color online� Rabi oscillations on the 43Ca+ hyperfine
qubit induced by a colinear Raman light field. Each data point rep-
resents 50 individual measurements. As for the microwave excita-
tion, we fitted a sinusoidal function to the data set from 0 to
600 �s, which yields a fringe amplitude A=0.97�1�, a � time of

�=65.3�1� �s, and a fringe center at y0=0.479�5�. Fitting to the
data points beyond 3.4 ms, a small offset phase had to be introduced
and 
� adjusted to 63.8�2� �s, indicating a small increase of the
Raman light power during the measurement. The amplitude reduced
to A=0.80�2�, and the fringe center dropped to y0=0.428�7�. A
comparison with microwave excitation reveals imperfections
caused by spontaneous scattering and laser amplitude fluctuations.
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fine qubit. Limitations on the coherence time arise from both
spontaneous scattering events and dephasing �16�. For the
hyperfine qubit, spontaneous decay is negligible since the
lifetime of the involved states can be considered as infinite
for all practical purposes. Scattering can be induced though
by imperfectly switched off laser beams. To judge the impor-
tance of this effect, we prepared the ion in the �↓ � state. After
waiting for a time 
d, we transferred the population with two
subsequent � pulses to D5/2�F=6, mF=0� and D5/2�F
=4, mF=2�. Ideally no fluorescence should be observed.
Figure 8 shows how an initial �↓ � population of 0.97 de-
creases with increasing waiting time 
d. An exponential de-
cay fit yields a time constant of 410 ms. This observation can
be explained by imperfectly switching off the cooling laser at
a wavelength of 397 nm by one single-pass AOM only. For
every blue photon that is scattered, the ion will be lost from
the state �↓ � with a high probability by decaying to one of
the other S1/2 Zeeman states. This complication was avoided
by using a mechanical shutter completely switching off the
Doppler cooling laser in all Rabi and Ramsey experiments
lasting for 50 ms and longer.

Decoherence due to dephasing does not alter the state
occupation probabilities. Instead, the phase information be-
tween driving field and the qubit gets lost. A powerful
method to characterize this effect consists in measuring
fringe amplitude in Ramsey phase experiments. Here a su-
perposition of the two qubit states is created by a � /2 pulse.
After a waiting time 
R, during which the qubit evolves
freely, a second � /2 pulse is applied. By scanning the Ram-
sey phase � of the second pulse, a sinusoidal fringe pattern is
observed whose fringe amplitude is a measure of the coher-
ence.

For the Raman light field, the relevant phase is not only
determined by the radio frequency devices supplying the
AOMs creating the 3.2 GHz splitting, but also by the relative
optical path length of the red and blue beamlines. In general,
the absolute phase is not of interest as long as it does not
change during the experiment. The setup can be considered
as an interferometer whose sensitivity is also dependent on
its size. In case of a copropagating Raman light field, the two
beamlines are recombined on a polarizing beam splitter di-
rectly after the relative frequency generation. Here the inter-
ferometer encloses an area of about 0.04 m2, whereas the
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FIG. 8. �Color online� Measurement of the qubit state
�↓ �-population probability after a waiting time 
d. Single-photon
scattering events induced by residual light at 397 nm lead to a
transfer of population from the �↓ � state to other Zeeman states in
the ground-state manifold. The solid line is an exponential fit with a
decay time constant of 410 ms.
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FIG. 9. �Color online� Ramsey
phase experiments on the 43Ca+

hyperfine qubit at a magnetic field
of 3.4 G with a Ramsey waiting
time 
R set to 100 ms. The data
were taken with three different
driving fields. �a� Microwave
drive with 
�=19 �s, �b� co-
propagating Raman light field
with 
�=20 �s, and �c� nonco-
propagating Raman light field
where 
�=23 �s. The fringe am-
plitudes are determined by
weighted least-squares sinusoidal
fits with amplitude A, offset phase
�0, and fringe center y0 as free
parameters. This yields fringe am-
plitudes of 0.886�17�, 0.879�16�,
and 0.922�13�, respectively.
Dephasing by interferometric in-
stabilities does not limit the ex-
periments on these time scales.
For Ramsey times beyond 100 ms,
we observed a further decay of the
fringe amplitude.
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noncopropagating beams enclosing an area of about
0.15 m2. In order to see whether the experiment would be
limited by this effect, we investigated three different configu-
rations.

Figure 9 shows the resulting Ramsey fringe patterns when
driving the hyperfine qubit with �a� a microwave, �b� a co-
propagating Raman field, and �c� a noncopropagating Raman
field. The Ramsey waiting time 
R was set to 100 ms, the
� /2 pulses having a duration of about 20 �s. Each data
point represents either 50 or 100 measurements. The error
bars indicate statistical errors and are used as weights when
fitting the function f���= A

2 sin��+�0�+y0 to the data in or-
der to determine the fringe amplitude A. The parameters y0
and �0 are also free fit parameters, but are not further con-
sidered. For the different excitation schemes, we find fringe
amplitudes of 0.886�17�, 0.879�16�, and 0.922�13�, respec-
tively. From this we conclude that errors introduced by inter-
ferometric instabilities in generating the Raman beams do
not limit our experiment on time scales up to 100 ms. For
longer Ramsey times, we observed a further decay of fringe
amplitude, which we attribute to dephasing. These measure-
ments were performed at a magnetic field of 3.4 G. For small
magnetic fields, the residual qubit sensitivity to magnetic
field fluctuations increases linearly with a slope of
2.4 kHz /G2. Therefore we reduced the magnetic field to 0.5
G and repeated the measurement with the microwave field.
The resulting fringe patterns for three different Ramsey times

R are depicted in Fig. 10. A short waiting time of 
R
=50 �s results in a fringe pattern amplitude of �a� 0.976�4�.
This demonstrates the ability of reliable state initialization,
readout, and single-qubit gate operation for the 43Ca+ hyper-

fine qubit at low magnetic fields. For a Ramsey time of 
R
=200 ms we still obtain a fringe amplitude of �b� 0.962�11�.
A drop in amplitude to �c� 0.847�21� is observed only after
increasing the Ramsey waiting time to 
R=1 s.

Typically, the coherence time is defined as the Ramsey
time for which the fringe amplitude A has dropped to a value
of 1 /e. Extrapolation of our measurements would lead to a
coherence time on the order of about 6.0 s assuming an ex-
ponential decay and 2.5 s for Gaussian decay. Comparing the
measurements at 3.4 G and 0.5 G, we conclude that the main
limitation to the coherence time comes from the residual
sensitivity of the qubit at finite fields. Further improvements
can be made by means of active magnetic field stabilization
and passive shielding. In addition, rephasing can be achieved
by an intermediate spin-echo pulse that exchanges the popu-
lations of the two qubit levels.

VII. SUMMARY AND DISCUSSION

In conclusion, we have discussed and demonstrated vari-
ous experimental techniques for high-fidelity QIP with 43Ca+

ions. These techniques were applied for measuring the
quantum-information storage capabilities of the hyperfine
qubit in a noisy environment to be many seconds. Further-
more, we demonstrated that interferometric instabilities due
to Raman frequency creation do not limit the phase coher-
ence on time scales up to 100 ms. For most experimental
steps, use of the quadrupole transition laser is crucial for our
scheme. It seems straightforward to apply these techniques to
strings of ions without compromising the error rate. From
other experiments with 40Ca+ ions, we already have experi-
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FIG. 10. �Color online� Ram-
sey phase experiments on the
43Ca+ hyperfine qubit with micro-
wave excitation at a magnetic
field of 0.5 G. �a� A scan with 
R

=50 �s results an amplitude of
0.976�4� and demonstrates the
ability of state initialization, ma-
nipulation, and readout. �b� For a
Ramsey time 
R=200 ms, the
amplitude is 0.962�11�. �c� For a
Ramsey time of 
R=1 s, a fringe
amplitude of 0.847�21� was mea-
sured. Here the measurement time
was about 90 min. The reduction
of the amplitude is attributed to
the residual sensitivity of 1.2
Hz/mG to ambient magnetic field
fluctuations.
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mental evidence that high-fidelity two-qubit operations are
possible for the optical qubits �20�. It will be interesting to
explore how these can be combined with the long storage
times found here by swapping quantum information between
hyperfine and optical qubits.
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Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+
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The hyperfine structure of the 4s 2S1/2-3d 2S5/2 quadrupole transition at 729 nm in 43Ca+ has been investi-
gated by laser spectroscopy using a single trapped 43Ca+ ion. We determine the hyperfine structure constants of
the metastable level as AD5/2

=3.8931�2� MHz and BD5/2
=4.241�4� MHz. The isotope shift of the transition with

respect to 40Ca+ was measured to be 	iso
43,40=4134.713�5� MHz. We demonstrate the existence of transitions

that become independent of the first-order Zeeman shift at nonzero low magnetic fields. These transitions
might be better suited for building a frequency standard than the well-known “clock transitions” between m
=0 levels at zero magnetic field.

DOI: 10.1103/PhysRevA.75.032506 PACS number�s�: 31.30.Gs, 32.80.Pj, 42.62.Fi, 32.60.�i

I. INTRODUCTION

In recent years, optical frequency standards based on
single trapped ions and neutral atoms held in optical lattices
have made remarkable progress �1,2� towards achieving the
elusive goal �3� of a fractional frequency stability of 10−18. In
199Hg+, 27Al+, 171Yb+, 115In+, and 88Sr+, optical frequencies
of dipole-forbidden transitions have been measured �1,4–7�.
Among the singly charged alkali-earth ions, the odd isotope
43Ca+ has been discussed as a possible optical frequency
standard �8,9� because of its nuclear spin I=7/2 giving rise
to transitions 4s 2S1/2�F ,mF=0�↔3d 2D5/2�F� ,mF�=0� that
are independent of the first-order Zeeman effect. While the
hyperfine splitting of the S1/2 ground state has been precisely
measured �10�, the hyperfine splitting of the metastable D5/2
has been determined with a precision of only a few MHz so
far �11�. A precise knowledge of the S1/2↔D5/2 transition is
also of importance for quantum information processing
based on 43Ca+ �12�. In these experiments where quantum
information is encoded in hyperfine ground states, the quad-
rupole transition can be used for initialization of the quantum
processor and for quantum state detection by electron
shelving.

This paper describes the measurement of the hyperfine
constants of the D5/2 level by probing the quadrupole transi-
tion of a single trapped ion with a narrow-band laser. Our
results confirm previous measurements and reduce the error
bars on AD5/2

and BD5/2
by more than three orders of magni-

tude. In addition, we precisely measure the isotope shift of
the transition with respect to 40Ca+.

With a precise knowledge of the hyperfine structure con-
stants at hand, the magnetic field dependence of the D5/2
Zeeman states is calculated by diagonalizing the Breit-Rabi
Hamiltonian. It turns out that several transitions starting from
one of the stretched states S1/2�F=4,mF= ±4� become inde-
pendent of the first-order Zeeman shift at field values of a

few gauss. Transitions with vanishing differential Zeeman
shifts at nonzero fields have been investigated in experiments
with cold atomic gases �14� to achieve long coherence times
and with trapped ions �15� for the purpose of quantum infor-
mation processing. These transitions are also potentially in-
teresting for building an optical frequency standard and have
several advantages over mF=0↔mF�=0 transitions. We ex-
perimentally confirm our calculations by mapping the field
dependence of one of these transitions.

II. EXPERIMENTAL SETUP

Our experiments are performed with a single 43Ca+ ion
confined in a linear Paul trap consisting of two tips and four
blade-shaped electrodes �16�. A radio frequency voltage
��rf=25.642 MHz; Prf=7 W� is fed to a helical resonator and
the up-converted signal is applied to one pair of blade elec-
trodes while the other blade pair is held at ground. In such a
way, a two-dimensional electric quadrupole field is generated
which provides radial confinement for a charged particle if
the radio frequency and amplitude are chosen properly. Two
stainless steel tips are placed 5 mm mm apart in the trap’s
symmetry axis and are held at a positive voltage Utips
=1000 V providing axial confinement. The electrodes are
electrically isolated by Macor ceramic spacers which assure
a 20 �m tolerance in the positioning of the four blades and
the tip electrodes. For the parameters given above, the ion
trap confines a 43Ca+ ion in a harmonic potential with oscil-
lation frequencies �axial=1.2 MHz and �radial=4.2 MHz in the
axial and radial directions. Micromotion due to stray electric
fields is compensated by applying voltages to two compen-
sation electrodes. The correct compensation voltages are
found by minimizing the Rabi frequency of the first micro-
motional sideband of the quadrupole transition for two dif-
ferent laser beam directions. The trap is housed in a vacuum
chamber with a pressure of about 10−10 mbar.

Single 43Ca+ ions are loaded from an isotope-enriched
source �Oak Ridge National Laboratory; 81.1% 43Ca+, 12.8%
40Ca+, and 5.4% 44Ca+� into the trap by isotope-selective
two-step photoionization �17,18�. The first transition from
the 4s 1S0 ground state to the 4p 1P1 excited state in neutral
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†Present address: GE India Technology Center, Bangalore, India.
‡URL: http://www.quantumoptics.at

PHYSICAL REVIEW A 75, 032506 �2007�

1050-2947/2007/75�3�/032506�5� ©2007 The American Physical Society032506-1



calcium is driven by an external cavity diode laser in Littrow
configuration at 423 nm. Its frequency is monitored by satu-
ration spectroscopy on a calcium vapor cell held at a tem-
perature of 300 °C and by a wavelength meter with a rela-
tive accuracy of 10 MHz. The second excitation step
connecting the 4p 1P1 state to continuum states requires light
with a wavelength below 390 nm. In our experiment, it is
driven by a free-running laser diode at 375 nm.

For laser cooling, a grating-stabilized diode laser is
frequency-doubled to produce light at 397 nm for exciting
the S1/2↔P1/2 transition �see Fig. 1�. By means of polariza-
tion optics and an electro-optical modulator operated at
3.2 GHz, laser beams exciting the following transitions are
provided:

Beam no. Polarization Transition

1, 2 �, �+ S1/2�F=4�↔P1/2�F�=4�
3 �+ S1/2�F=3�↔P1/2�F�=4�

Laser beams no. 1–3 are all switched on for Doppler cool-
ing and fluorescence detection. We avoid coherent popula-
tion trapping by lifting the degeneracy of the Zeeman sub-
levels with a magnetic field. To avoid optical pumping into
the D3/2 manifold repumping laser the light at 866 nm has to
be applied. The repumping efficiency was improved by
tuning the laser close to the D3/2�F=3�↔P1/2�F�=3� transi-
tion frequency and redshifting part of the light by −f1, −f1
− f2 with two acousto-optical modulators �AOMs� operating
at frequencies f1=150 MHz and f2=245 MHz. In this man-
ner, all hyperfine D3/2 levels are resonantly coupled to one of
the P1/2�F�=3,4� levels. Since the electronic g factor of the
D3/2�F=3� level vanishes, coherent population trapping in
this level needs to be avoided by either polarization-
modulating the laser beam or by coupling the level to both
P1/2�F�=3,4� levels. In our experiment, nonresonant light
���190 MHz� exciting the D3/2�F=3�↔P1/2�F�=4� seems

to be sufficient for preventing coherences from building up.
After switching off laser beam no. 1, the ion is optically
pumped into the state S1/2�F=4,mF=4�. The pumping effi-
ciency is better than 95%.

All diode lasers are stabilized to Fabry-Pérot cavities. The
cavity spacer is a block of Zerodur suspended in a tempera-
ture stabilized vacuum housing. For frequency tuning, one of
the reference cavity mirrors is mounted using two concentric
piezo transducers that are compensated for thermal drift.
This allows frequency tuning of the lasers over several GHz
while achieving low drift rates �typically �100 Hz/s� once
the piezos have settled.

To set the magnitude and orientation of the magnetic field,
a single 40Ca+ ion was loaded into the trap. The ambient
magnetic B field was nulled by applying currents to magnetic
field compensation coils so as to minimize the ion’s fluores-
cence. After that, the magnetic field can be set to the desired
value by sending a current through a pair of coils defining
the quantization axis. All coils are powered by homemade
current drivers having a relative drift of less than 2�10−5 in
24 h.

Light for the spectroscopy on the S1/2↔D5/2 quadrupole
transition is generated by a Ti:sapphire laser stabilized to an
ultrastable high finesse reference cavity �finesse
F=410 000� �13�. The free spectral range of the cavity was
measured to be 	FSR=1933.07309�20� MHz by using a sec-
ond independently stabilized laser and observing the beat
note for the Ti:Sa laser locked to several different modes.
From this measurement, also an upper limit of less than
50 Hz could be determined for the laser linewidth. The fre-
quency drift of the 729 nm laser stabilized to the reference
cavity is typically less than 0.5 Hz/s. By locking the laser to
different modes of the reference cavity and by changing its
frequency with AOMs we are able to tune the laser frequency
in resonance with any transition between levels of S1/2 and
D5/2 in 40Ca+ and 43Ca+. The radio frequencies applied to the
AOMs are generated by a versatile frequency source based
on direct digital synthesis.

Spectroscopy on the quadrupole transition is implemented
using a pulsed scheme. In a first step, the ion is Doppler
cooled and prepared in the S1/2�F=4,mF= ±4� level by opti-
cal pumping. Then the ion is probed on the quadrupole tran-
sition by light at 729 nm. At the end of the experimental
cycle, the ion’s quantum state is detected by a quantum jump
technique. For this, the cooling laser and the repumper at
866 nm are turned back on for a duration of 5 ms, projecting
the ion onto either the fluorescing S1/2 or the dark D5/2 state.
The light emitted by the ion is collected with a customized
lens system �NA=0.27, transmission �95%� and observed
on a photomultiplier tube and a CCD camera simultaneously.
A threshold set for the number of photomultiplier counts
discriminates between the two possibilities with high effi-
ciency. Finally, the D5/2 state population is pumped back to
S1/2 by means of another grating-stabilized diode laser oper-
ating at 854 nm. This measurement cycle is repeated a hun-
dred times before setting the probe laser to a different fre-
quency and repeating the experiments all over again.

In order to set the magnetic field precisely, we use a
single 40Ca+ ion to determine the field strength by measuring
the frequency splitting of the two transitions

P1/2

P3/2

D5/2

D3/2

S1/2

729 nm

397 nm

866 nm

854 nm

2 317.3(1.7)
3 178.0(0.8)
4 -10.1(0.9)
5 -249.3(1.2)

3 1814.4046611(18)

F [MHz]δhfs

3
4
5
6

1 41.525(3)
2 34.951(2)

24.635(1)
10.032(1)
-9.585(1)
-35.125(2)

F [MHz]δhfs

3
4
5

2 205.6(1.6)
117.5(0.8)
-4.5(0.8)
-164.5(1.1)

3
4

327.2(2)
-254.5(2)

4 -1411.2036253(14)

FIG. 1. �Color online� 43Ca+ level scheme showing the hyper-
fine splitting of the lowest energy levels. Hyperfine shifts �hfs of the
levels are quoted in MHz �the splittings are taken from �10,11� and
our own measurement�. Laser light at 397 nm is used for Doppler
cooling and detection; the lasers at 866 and 854 nm pump out the D
states. An ultrastable laser at 729 nm is used for spectroscopy on
the quadrupole transition.
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S1/2�m= +1/2�↔D5/2�m�= +5/2� and S1/2�m= +1/2�
↔D5/2�m�=−3/2�. Stray magnetic fields oscillating at mul-
tiples of 50 Hz change the magnitude of the field by less than
2 mG over one period of the power line frequency. By syn-
chronizing the experiments with the phase of the power line,
ac-field fluctuations at multiples of 50 Hz are eliminated as a
source of decoherence. As the duration of a single experi-
ment typically is on the order of 20 ms, this procedure does
not significantly slow down the repetition rate of the experi-
ments.

III. RESULTS

A. Hyperfine coefficients for the D5/2 state

The hyperfine structure splitting of the S1/2 and D5/2 states
is determined by effective Hamiltonians �19� Hhfs

�S1/2�

=hAS1/2
I ·J and, assuming that J is a good quantum number,

Hhfs
�D5/2� = hAD5/2

I · J

+ hBD5/2

3�I · J�2 +
3

2
�I · J� − I�I + 1�J�J + 1�

2I�2I − 1�J�2J − 1�
�1�

operating on the hyperfine level manifolds of the ground and
metastable state. Here h is Planck’s constant and AD5/2

�AS1/2
�

and BD5/2
are the hyperfine constants describing the magnetic

dipole and electric quadrupole interactions in the D5/2 �S1/2�
state; higher-order multipoles �20� are not taken into account.
Terms arising from second-order perturbation theory �20� are
expected to shift the levels by only negligible amounts as
�AD5/2

·AD3/2
� /	FS�100 Hz where 	FS denotes the fine-

structure splitting of the D states.
In a nonzero magnetic field, the Hamiltonian �1� is

replaced by

H�D5/2� = Hhfs
�D5/2� + gD5/2

�BJ · B + gI��BI · B , �2�

where gD5/2
is the electronic g factor of the D5/2 state and

gI� denotes the nuclear g factor. Figure 2 shows
the resulting energy shifts of the Zeeman level caused
by hyperfine and Zeeman interactions. The energies of
the S1/2�F=4,mF= ±4� levels used in our spectroscopic
measurements are linearly shifted by
h�±= ± �gS1/2

S+gI�I��BB with S=1/2.
From earlier measurements and calculations of the isotope

shift �21� and the hyperfine splitting of the S1/2 �10� and the
D5/2 �11,22,23� states, the transition frequencies on the quad-
rupole transition in 43Ca+ are known to within 20 MHz with
respect to the transition in 40Ca+. This enabled us to unam-
biguously identify the lines observed in spectra of the
S1/2↔D5/2 transition. In a first series of measurements the
ion was prepared in the state S1/2�F=4,mF= +4� by optical
pumping with �+-polarized light. There are fifteen transitions
to the D5/2 levels allowed by the selection rules for quadru-
pole transitions. Spectra were recorded on all of them with
an excitation time of 500 �s in a magnetic field of about

3.40 G. In a second measurement series, after pumping the
ion into S1/2�F=4,mF=−4� another fifteen transitions were
measured. To obtain the hyperfine constants of the D5/2 state,
we fitted the set of 30 transition frequencies by diagonalizing
the Hamiltonian taking the hyperfine constants AD5/2

, BD5/2
,

the magnetic field B, and a frequency offset as free param-
eters. The hyperfine constant AS1/2

=−806.402 071 6 MHz
was measured in �10�. The g factors gI�=2.0503�10−4 and
gS1/2

=2.00225664 were taken from �24,25�; gD5/2
=1.2003�1� was measured by us in an experiment with a
single 40Ca+ ion. The fit yields

AD5/2
= 3.8931�2� MHz,

BD5/2
= 4.241�4� MHz,

where the standard uncertainty of the determination is added
in parentheses. The average deviation between the measured
and the fitted frequencies is about 1 kHz. If gD5/2

is used as a
free parameter, we obtain gD5/2

=1.2002�2� and the fitted val-
ues of the hyperfine constants do not change. Also, adding a
magnetic octupole interaction �20� to the hyperfine Hamil-
tonian does not change the fit values of the hyperfine
constants.

B. Isotope shift

After having determined the values of AD5/2
and BD5/2

, the
line center of the 43Ca+ S1/2↔D5/2 transition can be found.
By comparing the transition frequencies in 43Ca+ and in
40Ca+, the isotope shift 	iso

43,40=�43−�40 is determined.
Switching the laser from �40 to �43 is achieved by locking the
laser to a TEM00 cavity mode three modes higher
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FIG. 2. �Color online� Hyperfine and Zeeman splitting of the
D5/2 state manifold calculated for hyperfine constants measured in
our experiment. Filled circles ��� and crosses ��� mark states that
can be excited starting from the S1/2�F=4� state with magnetic
quantum number mF= +4 �mF=−4�, respectively. The vertical
dashed line indicates the magnetic field used for measuring the
frequency shifts in the experiment.
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��n+3=�n+3	FSR� than for 40Ca+ and adjusting its frequency
with an AOM. For the isotope shift, we obtain

	iso
43,40 = 4134.713�5� MHz.

This value is in good agreement with a previous measure-
ment �	iso

43,40=4129�18� MHz �10��. Frequency drift between
the measurements, accuracy of the reference cavity’s free
spectral range 	FSR, and the uncertainty in the determination
of the exact line centers limit the accuracy of our measure-
ment.

C. Magnetic field independent transitions

Given the measured values of the hyperfine coefficients
AD5/2

and BD5/2
, we calculate that there are seven transitions

starting from the stretched states S1/2�F=4,mF= ±4� that
have no first order Zeeman effect for suitably chosen mag-
netic fields in the range of 0–6 G. These transitions are use-
ful as they offer the possibility of measuring the linewidth of
the spectroscopy laser in the presence of magnetic field
noise. To demonstrate this property, we chose the transition
S1/2�F=4,mF=4�↔D5/2�F�=4,mF�=3� which has the low-
est second-order dependence on changes in the magnetic
field. We measured the change in transition frequency for
magnetic fields ranging from one to six gauss as shown in
Fig. 3. The black curve is a theoretical calculation based on
the measurement of the hyperfine constants. For the data, the
frequency offset is the only parameter that was adjusted to
match the calculated curve. Both the experimental data and
the model show that the transition frequency changes by less

than 400 kHz when the field is varied from 0 to 6 G. The
transition frequency becomes field-independent at about
B=3.38 G with a second order B-field dependency of
−16 kHz/G2, which is six times less than the smallest coef-
ficient for a clock transition based on mF=0↔mF�=0 tran-
sitions at zero field. At B=4.96 G the linear Zeeman shift
vanishes again.

We used the field independence of this transition for in-
vestigating the phase coherence of our spectroscopy laser.
For this, we set the magnetic field to 3.39 G and recorded an
excitation spectrum of the transition by scanning the laser
over the line with an interrogation time of 100 ms. The result
is depicted in Fig. 4. A Gaussian fit gives a linewidth of
42 Hz. The observed linewidth is not yet limited by the life-
time 
 of the D5/2 state �
=1.17 s� or by the chosen interro-
gation time. Line broadening caused by magnetic field fluc-
tuations can be excluded on this transition. Also, ac-Stark
shifts are expected to play only a minor role. Therefore, we
believe that the observed linewidth is mostly related to the
linewidth of the exciting laser.

IV. SUMMARY AND DISCUSSION

The hyperfine structure of the D5/2 level in 43Ca+ has been
observed and precisely measured by observing frequency in-
tervals of the S1/2�F=4,mF= ±4�↔D5/2�F�=2. . .6 ,mF��
transitions at nonzero field. These measurements yielded val-
ues for the hyperfine constants AD5/2

and BD5/2
as well as a

determination of the isotope shift of the quadrupole transi-
tion with respect to 40Ca+. A diagonalization of the D5/2
state’s Hamiltonian showed that several transitions exist
which become magnetic-field independent at small but non-
zero values of B. These transitions are of practical impor-
tance for probing the laser linewidth of the spectroscopy la-
ser and for monitoring the drift rate of its reference cavity.
For the purpose of building an optical frequency standard
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FIG. 3. �a� Frequency dependence of the S1/2�F=4,mF=4�
↔D5/2�F=4,mF=3� transition frequency for low magnetic fields.
The transition frequency becomes field-independent at
B=3.38 G and B=4.96 G with a second-order Zeeman shift of
±16 kHz/G2. The measured data are not corrected for the drift of
the reference cavity which may lead to errors in the shift of about
1–2 kHz. To match the data with the theoretical curve based on the
previously measured values of AD5/2

and BD5/2
, an overall frequency

offset was adjusted. �b� Calculated shift of the fifteen allowed tran-
sitions starting from S1/2�F=4,mF=4�. The thick line shows the
transition to the state D5/2�F�=4,mF�=3�.
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FIG. 4. �Color online� Frequency scan over the transition
S1/2�F=4,mF=4�↔D5/2�F�=4,mF�=3� with an interrogation time
of 100 ms. A Gaussian fit �solid line� determines a width of 42 Hz
which is dominated by the linewidth of the spectroscopy laser at
729 nm.
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based on 43Ca+ �8,9�, they might be superior to the transi-
tions S1/2�F ,mF=0�↔D5/2�F� ,mF�=0� for the following rea-
sons: �i� The initialization step requires only optical pumping
to the stretched state S1/2�F=4,mF= ±4� which can be con-
veniently combined with resolved sideband cooling to the
motional ground state of the external potential. �ii� The mag-
netic field can be exactly set to the value where the transition
becomes field-independent while still maintaining a well-
defined quantization axis. �iii� The second-order Zeeman ef-
fect can be reduced to a value that is six times smaller than
what can be achieved for the best mF=0↔mF�=0 “clock
transition.” Still, we are somewhat cautious about the useful-
ness of 43Ca+ as an optical frequency standard as compared
to other candidate ions. While the rather small hyperfine

splitting of the metastable state has the nice property of pro-
viding field-independent transitions at low magnetic fields, it
risks also being troublesome as the induced level splitting is
about the same size as typical trap drive frequencies. Improp-
erly balanced oscillating currents in the trap electrodes might
give rise to rather large ac-magnetic level shifts.
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Erratum: Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+

[Phys. Rev. A 75, 032506 (2007)]

J. Benhelm, G. Kirchmair, U. Rapol, T. Körber, C. F. Roos, and R. Blatt
�Received 4 April 2007; published 18 April 2007�

DOI: 10.1103/PhysRevA.75.049901 PACS number�s�: 31.30.Gs, 32.80.Pj, 42.62.Fi, 32.60.�i, 99.10.Cd

By mistake, the correct sign factors appearing in front of the measured hyperfine constants AD5/2
and BD5/2

were omitted.
The correct values are

AD5/2
= − 3.8931�2� MHz,

BD5/2
= − 4.241�4� MHz.

This correction does not affect the analysis of the measured spectral lines that the hyperfine structure determination is based
on.
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[107] W. Nörtershäuser, N. Trautmann, K. Wendt, & B. A. Bushaw: Isotope shifts and
hyperfine structure in the 4s2 1S0 → 4s4p 1P1 → 4s4d 1D2 transitions of stable
calcium isotopes and calcium-41. Spectrochimica Acta Part B: Atomic Spectroscopy
53, 709 (1998)

[108] U. Tanaka, H. Matsunishi, I. Morita, & S. Urabe: Isotope-selective trapping of
rare calcium ions using high-power incoherent light sources for the second step of
photo-ionization. Appl. Phys. B 81, 795 (2005)

[109] Q. A. Turchette, Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt,
M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, & D. J. Wineland:
Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 0634318
(2000)

[110] D. Kielpinski, C. Monroe, & D. J. Wineland: Architecture for a large-scale ion-trap
quantum computer. Nature 417, 709 (2002)

[111] M. A. Rowe, A. Ben-Kish, B. DeMarco, D. Leibfried, V. Meyer, J. Beall, J. Brit-
ton, J. Hughes, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, & D. J.
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