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Interfacing Quantum-Optical and Solid-State Qubits
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We present a generic model of coupling quantum-optical and solid-state qubits, and the correspond-
ing transfer protocols. The example discussed is a trapped ion coupled to a charge qubit (e.g., Cooper
pair box). To enhance the coupling and to achieve compatibility between the different experimental
setups we introduce a superconducting cavity as the connecting element.
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qubit; (ii) a gate operation is performed on the solid-state
qubit(s); (iii) finally, a second swap gate is applied to
transfer the processed state to the optical qubit.
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Significant progress has been made during the last few
years in implementing quantum computing proposals
with various physical systems [1]. Prominent examples
are quantum-optical systems, in particular, trapped ions
and atoms in optical lattices [2,3], and more recently
solid-state systems, such as Josephson junctions [4] and
quantum dots [5]. While quantum optics per se provides
stable qubits, high-fidelity quantum gate operations and
read out, future advances in quantum optics will increas-
ingly be based on incorporating ideas and methods from
emerging nanotechnologies, i.e., the same technologies
which underlie much of the present progress in solid-state
quantum computing. An example is the development of
mesoscopic segmented ion traps as a key to a scalable ion
trap quantum computing [3], where lithographic traps
allow the moving of individual ions (representing the
qubits) between a storage and a processing unit. Going
one step further, the question arises to what extent quan-
tum optics and solid-state hybrid systems for quantum
computing can be developed with the goal of combining
advances of various approaches, while still being experi-
mentally compatible (see also [6,7]). This provides the
motivation to study the interfacing of quantum-optical
qubits and solid-state systems: this can be in a form where
quantum-optical qubits are connected via a solid-state
data bus or by reversibly transferring quantum-optical to
solid-state qubits and circuits.

Quantum-optical qubits are typically represented by
internal (nuclear) spin states of single atoms or ions well
isolated from environmental noise [8]; solid-state charge
qubits can be operated at a nanosecond time scale via
Coulomb interaction or exchange interaction [4,5]. In our
scheme, the long-lived quantum-optical qubits are the
quantum memory unit, and the fast operable solid-state
charge states are the processing unit. Each call of logic
gate includes three steps: (i) a swap gate is applied which
transfers the state from the memory to the solid-state
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In this Letter we discuss the generic physical model
and the corresponding protocol for interfacing a
quantum-optical and solid-state charge qubit. On the
quantum-optical side, the single atoms can be trapped
and laser cooled. External fields provide a mechanism to
manipulate the qubit, as well as to entangle the qubit with
the motional state of the trapped particle. In the case of
trapped ions this allows one to convert spin (the qubit) to
charge superpositions, either dynamically, e.g., by kick-
ing with a laser, or quasistatically by applying spin-
dependent (optical or magnetic) potentials. This spin to
charge conversion provides a natural capacitive coupling
to a solid-state charge qubit, represented, e.g., by a
Josephson junction [4] or a charged double quantum dot
[5]. Instead of direct coupling of the charges, one can
introduce auxiliary elements, such as cavities. This serves
the purpose of allowing increased spatial separation and
mutual shielding of the systems, with the goal of easing
experimental requirements for coexistence of the hybrid
qubits (e.g., trapping and laser manipulation of atoms or
ions), while enhancing the coupling strength. Features of
this hybrid system are the significantly different time
scales of the evolution and coupling of the two qubits,
and (in comparison with quantum-optical qubits) a short
decoherence time of the solid-state systems. We exploit
this by developing a protocol of a ‘‘fast swap’’ gate on a
time scale comparable to the charge-charge coupling and
much shorter than the trap period. This has the additional
benefit of being a hot gate, i.e., not requiring cooling to
the motional ground state, and not making a Lamb-Dicke
assumption of strong confinement.

Model for coupled qubits.—A Hamiltonian for our
combined system has the form Ht � Hs �Hq �Hint

with a Hamiltonian for the quantum-optical qubit
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the solid-state charge qubit,

Hq �
Ez
2
�qz �

Ex
2
�qx; (2)

and the interaction term

Hint � �h��t�x̂x�qz : (3)

The first term in Hs describes the 1D motion of a
charged particle (ion) in the harmonic trapping potential
with x̂x as the coordinate, p̂px as the momentum, and !	 as
the trapping frequency. A pseudospin notation with Pauli
operators �si describes the atomic qubit. Physically, the
qubit is represented by two atomic ground state levels
which are coupled by a laser induced Raman transition
with Rabi frequency !R�t� and detuning 
0. Transitions
between the states are associated with a momentum kick

kl due to photon absorption and emission, which couples
the qubit to the motion at the Rabi frequency !R�t� [9].

The Hamiltonian for the solid-state charge qubit Hq
has the generic form for the quantum two level system
with �qi being the Pauli operators and Ex;z tunable. A
Hamiltonian of this form is obtained, for example, for
a superconducting charge qubit, i.e., a superconducting
island connected to a high resistance tunnel junction [see
Fig. 1]. With the phase ’ of the superconductor and its
conjugate n̂n, the number of Cooper pairs on the island, the
Hamiltonian is Hq � Ec�n̂n� CgVg=2e�

2 � EJ cos’ [4],
where EJ is the Josephson energy and Ec is the capacitive
energy with Ec � EJ. The gate voltage Vg controls the
qubit through the gate capacitor Cg. When Vg � �2m�
1�e=Cg (m is an integer), the qubit forms an effective two
level system with charge states j0i � jni and j1i �
jn� 1i, and in Eq. (2), Ez � Ec�CgVg=2e� and Ex �
EJ. Adjusting Vg or EJ provides arbitrary single-qubit
FIG. 1 (color online). Schematic coupling circuit of the
charge qubit and trapped ion. Top: the coupling via a cavity.
The voltage at the electrode is balanced by a filtering circuit.
Bottom left: coherent states of the motional mode. Bottom
right: energy of charge qubit vs gate voltage.

247902-2
gates. Typically, Ec is about 100 GHz and EJ is about
10 GHz. Other solid-state systems such as a double
quantum dot qubit can be considered within a similar
framework.

Finally, the interaction [Eq. (3)] has the universal form
of the electrostatic coupling between a motional dipole
and a charge which is linear in the coordinate x̂x and the
charge operator �qz . Note this coupling is of the order of
epi=4� 0r

2
0 for a given distance r0 with dipole pi and

charge e and is a factor of er0=pi stronger than the
familiar dipole-dipole couplings encountered in quantum
optics. Instead of a direct coupling of the dipole to the
charge, we introduce an interaction via short supercon-
ducting cavity. This provides a mutual shielding of the
qubits, e.g., from stray photon exciting quasiparticles
which might impair the coherence of the charge qubit.

Coupling via a superconducting cavity.—The electro-
magnetic modes of a superconducting cavity made of two
parallel cylindrical rods are described by the phase vari-
able  �z; t� [10], with the Lagrangian

L �
Cr
2L

Z L

0
dz _  2 �

L
2Lr

Z L

0
dz
�
@ 
@z

�
2
; (4)

with Cr the capacitance of the cavity, Lr the inductance,
and L the length. With a distance d0 between the rods and
the rod radii b0, Lr � '0 ln�d0=b0�L=�3 and Cr �
4� 0L=4 ln�d0=b0�. For example, for d0 � 20 'm, b0 �
1 'm, L � 100 'm, Cr � 1 fF, Lr � 10 pH; the fre-
quency of the first eigenmode of the cavity !r=2� �
1:5 THz. Application of a millimeter transmission line
superconducting cavity in the microwave regime has been
proposed for the interaction of charge qubits where the
cavity mode is in resonance with the qubit [11].

The coupling scheme is shown in Fig. 1. The left end of
the cavity capacitively couples with the ion as 
Vi �
_  �0; t��ex̂x=di, where di is the distance between the ion

and the cavity and Vi is the voltage on the trap electrode.
The cavity couples with one of the trap electrodes by the
capacitor Ci. The right end of the cavity couples with the
charge qubit via a contact capacitor Cm as Cm
 _  �L; t� �
_’’�2=2. In our scheme, the cavity length is much shorter

than the wavelength of a microwave field which charac-
terizes the energy of a charge qubit, so that the cavity can
be represented by phase variables  1;2 at the ends of the
cavity. Each node is connected with the ground by a
capacitor Cr=2, and the two nodes are connected by the
inductor Lr, as is shown in Fig. 1. The conjugates of the
phases obey the charge conservation relation p1 � p2 �
0, where p1;2 are the total charge on each node. With
the new variable ~  �  1 �  2 and its conjugate ~pp �
�p1 � p2�=2, the interaction is H�0�

int � Hcav �H1 with

Hcav �
~pp2 

2�Cr=4�
�

~  2

2Lr
;

H1 � ~pp 
ex̂x=di � CiVi
Ci � Cr=2

� ~pp 
Cm
Ct

e�qz � CgVg
Cm � Cr=2

;

(5)
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which includes the Hamiltonian of the cavity and the
coupling between the cavity, the charge, and the motion,
with Ct � Cm � CJ � Cg, and we have assumed Cr �
Ci; Cm; CJ; Cg. The cavity mode is an oscillator with
frequency !r � 2=

�����������
LrCr

p
. Effective coupling between

the charge and the motion is derived with second order
perturbation,

Hint �
e2

Cr

Cm
Ct

�
x̂x
di

�
CiVi
e

��
�qz �

CgVg
e

�
; (6)

which includes the effect of the gate voltage Vg on the ion
which shifts the trapping potential, and the effect of the
trap voltage Vi on the charge qubit which can be avoided
by designing a balance circuit (below). The cavity short-
ens the distance between the charge and the ion to the
order of di with �h� � e2=2Crdi, where � is increased by a
factor of 4 ln�d0=b0�r0=di compared with the direct cou-
pling. With Cg � CJ � 0:1 fF and Ci � Cm � 0:2 fF,
�=2� � 25 GHz=di.

A fast swap gate.—A controlled phase gate,
j 1isj 1iq ! ��1� 1 2 j 1isj 1iq ( 1;2 � 0; 1), together
with single-qubit rotations forms a universal set of op-
erations required for entanglement and information ex-
change between the ion and the charge. The swap gate,
which is the key step for interfacing the ion and the
charge qubit, can be achieved by three controlled phase
gates together with Hadamard gates on the qubits [12].

We construct a phase gate operating on nanoseconds, a
time scale much shorter than the trap period, and not
requiring the cooling of the phonon state with a eight-
pulse sequence. Three evolution operators are used in this
sequence. The free evolution U0�t� � exp��i!	tâa

y
x âax�,

where âax (âayx ) is the creation (annihilation) operator of
the motion, is achieved by turning off the interactions
� � !R � 0. Entanglement between the motion and the
spin state is obtained by applying short laser pulses with
!R*s � � for nl times (� � Hq � 0 and nl even):
Ul�zlnl� � exp��izl
klnl�

s
zx̂x�, where zk � �1 is the di-

rection of the photon wave vector and 
kl is the momen-
tum from one kick of the laser. The duration of the
kicking *s is assumed to be much shorter than other
time scales. Entanglement between the motion and the
charge qubit is obtained by turning on the interaction �
for time *q (Hq � !R � 0 and !	*q � 1): U2�*q� �
exp��i�*q�

q
z x̂x�. By flipping the charge qubit with

single-qubit operation, the sign of the evolution can be
flipped as U2��*q� � �qxU2�*q��

q
x .

The gate sequence is

U�T� �Ul�n2l �Uq�*2q�U0�t2�Ul��n1l � n2l �Uq��*1q � *2q�

�U0�t1�Ul�n1l �Uq�*1q�; (7)

where the parameters fulfill n1l t1 � n2l t2 and *1qt1 � *2qt2.
When !	t1;2 � 1, by making the approximation
exp��i!	t� ! 1� i!	t,

U�T� � ei,
0
U0�t1 � t2�e

�i-�qz�sz ; (8)
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where ,0 is a global phase, kieff � 
kln
i
l�

s
z � �*iq�

q
z with

i � 1; 2, and - � �h�
kl*1qn1l t1=mt2�t1 � t2�. The mo-
tional part factors out from the evolution of the qubits.
Hence, the gate does not depend on the initial state of the
phonon mode. The fidelity is 1�O�!2

	t
2� and can be

improved by exploiting a low trapping frequency. Note
for the free particle (!	 � 0), Eq. (8) is exact. For the
phase gate - � �=4. This gives the total gate time

T �
�m

4 �h�
kl

�
1

n1l t1
�

1

n2l t2

�
�t1 � t2; (9)

which shows that the limits of the phase gate are essen-
tially set by the available Rabi frequency of the laser and
the coupling �. We choose t1 � t2 � 5 nsec. With 
kl �
108 m�1, n1;2l � 10, for 9Be�, the gate time is T �
14 nsec; and for 43Ca�, the gate time is T � 26 nsec,
much shorter than the decoherence time of the qubits.

Decoherence of the combined system.—In the interact-
ing system of the ion, the charge qubit, and the cavity,
decoherence of any component affects the dynamics of
the others. Decoherence of the ion trap qubit [13] and the
superconducting charge qubit [4] have been well studied
and a coherence time of microseconds has been measured.
Here we concentrate on decoherence introduced by the
cavity, which is the new element in the scheme, in par-
ticular, the effect of excitation of quasiparticles in the
superconducting cavity generated by stray laser photons.

The dissipation of the cavity is described by a resistor
Rr in series to the inductance Lr. Following the two fluid
model [14,15], the resistance is Rr � �1L=/�

2
2b0, where

�1 � nne
2*n=m with nn the density of quasiparticles and

*n the mean free time,�2 � nse
2=m!with ns the density

of superconducting electrons, and / is the penetration
depth (typically of order of microns). Without radiation,
nn � n0exp��2#=kBT� (n0 is total electron density)
yields negligible resistance, when temperature is well
below the superconducting gap #, and negligible dissipa-
tion. However, stray photons from the ion trap excite
quasiparticles and lead to a resistance of Rr �
Rn�nex=n0�, where nex denotes excited quasiparticles
andRn � 104 $with given parameters is the normal state
resistance. Note the cavity is cooled to a temperature
below the gap. For bulk aluminum, # � 4:2 K; tempera-
ture lower than Kelvin is required. At high temperature,
e.g., room temperature for a normal ion trap, the elec-
trodes enter the normal metallic state and dissipation is
characterized by normal state resistance Rn.

The noise spectral density of the cavity loss can be
derived with an imaginary time path integral approach
[16] when modeled as a bosonic bath:

J�!� �
�
Cm
2Ct

�
2
!Zeff�!� coth

�
�h!
2kBT

�
; (10)

where the effective impedance Zeff is a capacitor �Cr �
Cm�=4 in parallel to the series of the inductor Lr and the
resistor Rr. With !� 1=

�����������
LrCr

p
, Zeff � Rr. With the

fluctuation-dissipation theorem (FDT), the decoherence
247902-3
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rate of the charge and the motion can be derived from the
spectral density

2qr �
Rr
Rk

2kBT
�h

�
Cm
2Ct

�
2
; 2xr �

Rr
Rk

2kBT
�h

�
xr
4di

�
2
; (11)

respectively, where Rk � �h=�2e�2 is the quantum resis-
tance and xr is the spatial displacement of the dipole.
Considering the laser power of mW, and assuming the
absorbed power to be nW for a duration of 100 nsec, Rr �
Rn=105. With temperature T � 100 mK, 2qr � 50 msec�1

and 2xr � 5 sec�1. This shows that the dominant deco-
herence is not by the cavity loss.

Discussion.—Combining two drastically different sys-
tems naturally introduces technical questions of compati-
bility, such as the coexistence of an ion trap with a cavity
and connected charge qubit. Ions can be trapped either
with a Paul or a Penning trap, i.e., employing strong
electric or magnetic fields, while a mesoscopic charge
qubit cannot survive a magnetic field exceeding
�0:1 Tesla and a voltage exceeding �1 mV. In the case
of a Paul trap typically radio frequency fields up to
250 MHz are applied which, according to Eq. (6), couples
to the charge qubit via the capacitor Ci. For example,
trapping a single 43Ca� (9Be�) ion in a trap of the size of
�20 'm ring diameter (or cap distance) requires Vtrap
about 30–50 Vat 100–250 MHz to achieve a trap depth of
about 1–1.5 eV with corresponding trap frequencies of
18–20 MHz. Thus capacitive coupling of the trap’s drive
frequency to the end caps must be carefully compensated
for by using tailored electronic filter circuits. This is only
schematically indicated in Fig. 1; in all experimental
setups higher order filtering is routinely used. Thus, the
voltage couples to the charge qubit is now CiVi �
CibVib ! 0 where only a small residue voltage due to
imperfect circuitry passes to the charge qubit. With a
residue of 0.1 V which is far off resonance, the dynamics
of the qubit is not affected significantly. We note that the
balance circuit requires refined electronic filtering and
feedback control circuitry. In the case of a Penning trap,
by using a superconducting thin film that sustains high
magnetic field or by using a cavity geometry that sepa-
rates the qubit from the trap, the qubit can coexist with
the trap.

Coupling of two ions via a cavity.—Instead of coupling
an ion to a charge qubit via a cavity, we can also couple
two ions, albeit at the expense of a reduced coupling
strength. This provides an alternative to the standard
scenarios of scalable quantum computing with trapped
ions, which are based on moving ions [2]. Note that ion
coupling via trap electrodes has been proposed for
Penning traps in [6]. With the geometry according to
Fig. 1, the ions couple to the ends of the cavity. The ion-
ion Hamiltonian can be derived as

Hi�i � H1
s �H2

s �
e2

2�Cr � 2Ci�
x̂x1x̂x2
d2i

; (12)
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where H1;2
s are the Hamiltonians for the two ions defined

in Eq. (1), and the trap voltage can be included by replac-
ing ex̂x1;2=di ! ex̂x1;2=di � CiVi. Compared with the di-
rect (free space) coupling between two dipoles with a
distance L, the interaction is enhanced by a factor of
4 ln�d0=b0��L=di�2. Besides, the coupling has the advan-
tage of being switchable: by inserting a switch, e.g., a
tunable Josephson junction, the interaction can be turned
on and off rapidly. The coupling is, in principle, scalable
by fabricating multiple connected cavities.

This work was supported by the Austrian Science
Foundation, European Networks and the Institute for
Quantum Information.

Note added.—After completion of this work we be-
came aware of the Letter by Sørensen et al. [17] discus-
sing coupling Rydberg atoms by transmission line.
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