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Abstract. Coupling internal and vibrational states of a string of trapped ions has proven
to be an effective way of entangling the ions’ internal states. This mechanism can be used
for high-fidelity quantum gates, QND measurements of spin correlations and creation of large
entangled states. However, spin-motion interactions are also of interest for the purpose of
quantum simulations where the motional state no longer acts as an auxiliary quantum system
only. Here, we describe an experiment where a laser-cooled trapped ion is set to behave as a
free relativistic quantum particle.

1. Introduction
Quantum simulation aims at simulating a quantum system of interest with a controllable
laboratory system described by the same mathematical model. In this way, it might be possible
to simulate quantum systems that can neither be efficiently simulated on a classical computer
[1] nor easily accessed experimentally. For this, the laboratory system needs to be very well
understood in terms of the Hamiltonian describing it. To turn it into a useful quantum simulator,
it should allow for parameter tunability and for the measurement of observables that provide
important insights into the physics of the system to be simulated. There are two types of
quantum simulators currently discussed in the literature. Digital quantum simulators [2, 3, 4]
try to translate the unitaries describing the system dynamics into quantum circuits consisting of
elementary gate operations. In this approach, a universal quantum computer could be used for
efficiently simulating all quantum systems with local interactions [2]. The second class, that one
might call analogue quantum simulators, builds on the principle of engineering a system having
exactly the Hamiltonian one is interested in. The main motivation behind these approaches is to
find solutions of problems in quantum-many body physics that cannot be efficiently simulated
on classical computers. Examples include quantum phase transitions, quantum magnetism or
high-temperature superconductivity.

Many proposals and experiments in this area currently focus on neutral atoms trapped in
optical lattices as a possible quantum simulator [5]. The parallelism that is naturally occurring
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in the interactions between atoms filling an optical lattice is a very promising starting point
for simulating many-body Hamiltonians [6], and experiments demonstrating, for example, the
transition from a Bose-Einstein condensate to a Mott insulator state [7] are exciting steps in
this direction.

Laser-manipulated trapped ions provide another quantum optical system for which a number
of proposals have been made [5, 8]. While it is more difficult to scale up ion trap systems to
large numbers of particles, experiments with trapped ions offer superb possibilities for measuring
observables and manipulating the system at the level of individual particles. Trapped ions have
the potential of simulating quantum spin systems [9, 10, 11], spin-boson models [12] or strongly
correlated phonons [13, 14]. But even systems of just a single or a few ions offer the possibility to
simulate other quantum systems. The earliest example is probably the observation of C. Blockley
and coworkers [15] that a resonant red-sideband interaction between two internal states of a single
trapped ion and a vibrational mode is described by the Jaynes-Cummings-Hamiltonian which
originally was meant to describe a two-level atom interacting with a single mode of the radiation
field [16]. Other more recent examples include the suggestions to simulate quantum relativistic
effects, quantum fields or particle generation [17, 18, 19, 20].

Even though the system dynamics can also be numerically simulated in experiments involving
just a single ion, these experiments are nevertheless interesting as a test bed for a larger quantum
simulator. For these systems, it is indeed possible to test the concept of a quantum simulator
by a comparison with well-known solutions. In ref. [18], the proposal was made that a laser-
manipulated trapped ion can be used to simulate the physics of a free Dirac particle. The
Dirac equation for a spin-1/2 particle with rest mass m was put forward in 1928 to describe a
quantum-relativistic particle. It is given by:

i~
∂ψ

∂t
= (c α · p̂ + βmc2)ψ (1)

where c is the speed of light, p̂ is the momentum operator, α and β are the Dirac matrices, and
the wave functions ψ are 4-component spinors. It provides a natural description of the electron
spin and predicts the existence of antimatter [21]. When extended to the case of a particle
moving in a 1/r potential, it accurately predicts the spectrum of the hydrogen atom. However,
it also predicts peculiar effects like Klein’s paradox [22] and Zitterbewegung [23], a trembling
motion of relativistic particles in the absence of an external potential. For electrons, this motion
would have a very small amplitude (≈ 10−13 m) and an extremely high frequency (≈ 1021 Hz).
It arises as an interference effect between the positive and negative energy parts of the spinor
and does not appear for spinors that consist entirely of positive (or negative) energy. The real
existence of Zitterbewegung, in relativistic quantum mechanics and in quantum field theory, has
been a recurrent subject of discussion in the last years [24, 25].

Lamata et al. suggested [18] that the physics of a free Dirac particle could be simulated
using an ion with four internal states and a set of laser beams coupling these states to the three
harmonic oscillators describing the ion motion in the trapping potential. Luckily, the simulation
of a free Dirac particle in one spatial dimension is much simpler. In one dimension, there is no
need for introducing a four-component spinor. Instead, only a two-component spinor appears in
the 1+1 version of the Dirac equation

i~
∂ψ

∂t
= HD ψ = (c p̂ σx + mc2 σz)ψ, (2)

which couples only to a single motional degree of freedom. Here, σx and σz denote the usual
Pauli matrices. In order to simulate the physics described by this equation with a trapped
ion, the ion needs to be prepared in a desired input state and subjected to a non-relativistic
quantum dynamics described by a Schrödinger Hamiltonian that has exactly the form of the
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Dirac Hamiltonian HD appearing in (2). Moreover, techniques need to be devised to in order to
extract relevant physical observables such as the mean position of the particle 〈x〉 as a function
of time.

2. Experimental realization
For our experiment [26], we work with a single trapped 40Ca+ ion held in a linear trap with axial
and transverse vibrational frequencies of about ωax = (2π) 1.36 MHz and ωtr = (2π) 3 MHz,
respectively. The two spinor components needed in Eq. (2) are encoded in the ion’s S1/2

ground state and the metastable D5/2 state. A magnetic field of about 4 G is applied to lift the
degeneracy of the Zeeman states. In the experiment described below, we chose to work with the
states S1/2,m = 1/2 and D5/2, m = 3/2.

For a laser-cooled trapped ion, the first term appearing in HD can be realized by a bichromatic
laser field simultaneously coupling to the first red and blue vibrational sidebands of the ion’s
electronic transition of interest [27]:

HD = ~ηΩ̃(σx cosφ+ − σy sinφ+)⊗ ((a + a†) cos φ− + i(a† − a) sin φ−) (3)

The phases φ± are linear combinations of the phases φr, φb of the red- and blue-detuned light
fields, 2φ± = φb ± φr, η is the Lamb Dicke parameter and Ω̃ denotes the Rabi frequency. For
the choice of φ+ = 0 and φ− = π/2, one obtains a spin-motion coupling proportional to σxp̂.
The second term of HD could be realized by adding another light field off-resonantly coupling
to an electronic transition in order to introduce a differential Stark shift described by a term
proportional to σz. However, instead of shifting the ion’s energy levels with respect to the
frequency of the bichromatic light field creating the spin motion coupling, it is also possible
to suitably detune the laser. By going into a reference frame where the atom-light interaction
becomes time-independent, we find that the coupling is described by the Hamiltonian

HD = 2η∆Ω̃σxp̂ + ~Ωσz, (4)

where ∆ =
√
~/(2m̃ωax) is the size of the ion’s ground state wave function and m̃ denotes

the ion’s mass. In this way, the Dirac Hamiltonian (2) is realized in our non-relativistic
quantum system. In the ion trap system, the operators x̂, p̂ describing the motional state
in (2) correspond to the position and the momentum of the particle in a frame rotating with the
particle’s oscillation frequency in the trap. By changing the strength of the off-resonant coupling
term (or by changing the frequency of the bichromatic light field), the mass of the simulated
particle can be varied from zero to finite values.

To determine the motional dynamics induced by the Hamiltonian (2), we need to measure
the observables that characterize the ion’s position as a function of time. As the motional wave
packets are considerably smaller than an optical wavelength, there is no chance to determine
the ion position from a simple light scattering experiment. Instead, we need to map the relevant
information about the motional state onto an internal state of the ion which is then subsequently
read out by a fluorescence measurement providing us with information about 〈σz〉. For this, we
modify a proposal made in ref. [28] by using again a spin-motion coupling described by (3) prior
to the fluorescence measurement. In this case, we make use of a state-dependent displacement
operation Ux = exp(−ikx̂σx/2) which is realized by applying the Hamiltonian (3) to the quantum
state with φ+ = φ− = 0. The operation Ux followed by a measurement of σz is equivalent to
measuring the observable

A(k) = U †
pσzUp = cos(kx̂)σz + sin(kx̂)σy. (5)

Here, k = 2ηΩpt/∆ is proportional to the interaction time t. If the ion’s internal state is
| ↑〉, the +1 eigenstate of σz, we have 〈A(k)〉 = 〈cos(kx̂)〉. For |+〉y, the +1 eigenstate of
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Figure 1. Expectation values 〈x̂(t)〉 for particles with different masses. The linear curve (¥)
represents a massless particle (Ω = 0) moving with the speed of light given by c = 2ηΩ̃∆ =
0.052 ∆/µs for all curves. The other curves are for particles with increasing mass moving
down from the linear curve. Their Compton wavelengths are given by λC := 2ηΩ̃∆/Ω = 5.4∆
(H), 2.5∆ (¨), 1.2∆ (•) and 0.6∆ (N), respectively. The solid curves represent numerical
simulations. The figure shows Zitterbewegung for the crossover from the relativistic 2ηΩ̃ À Ω to
the nonrelativistic limit 2ηΩ̃ ¿ Ω.

σy, 〈A(k)〉 = 〈sin(kx̂)〉. It is also possible to measure the moments 〈x̂k〉, k = 1, 2, . . ., of the
distribution by taking derivatives of the expectation values of (5) with respect to k [28, 29]. For
example, to measure 〈x̂〉, we need to prepare |+〉y and calculate d

dk 〈A(k)〉 by applying Ux for
short times (i.e., small values of k) and record the changing excitation. Moreover, a Fourier
transformation of 〈cos(kx̂)〉 and 〈sin(kx̂)〉 yields the probability density 〈δ(x̂ − x)〉 in position
space.

Figure 1 demonstrates that we indeed observe Zitterbewegung in the motion of a relativistic
particle described by the 1+1 Dirac equation. Here, we prepared the initial state ψ(x; t =

0) = (
√

2π2∆)−
1
2 e−

x2

4∆2
(
1
1

)
by sideband cooling and application of a π/2-pulse where

(
α
β

)
=

α|S1/2,m = 1/2〉 + β|D5/2,m = 3/2〉. The upper curve corresponds to the case of a massless
particle (Ω = 0) realized by making the bichromatic light field exactly resonant with the sideband
transitions. Only in this case a uniform motion is observed. For a simulated particle with non-
zero rest mass, obtained by tuning the centre frequency of the bichromatic laser field away from
the atomic transition frequency, an oscillatory motion on top of the linear one is observed. In
general, the Hamiltonian HD entangles the spinor and motional states. For the measurement
shown in Fig. 1, the spinor populations were incoherently recombined by optical pumping of
the ion’s D5/2 state to S1/2,m = 1/2 so that the ion could be prepared in an eigenstate of σy

prior to the bichromatic laser pulse applied for measuring the particle’s position. The resulting
quantum states can be further characterized by reconstructing the spatial probability density
〈δ(x̂ − x)〉 using again bichromatic light fields for the measurement process. Figure 2 shows
another example for an input state with non-zero momentum. Here, the amplitude of the
oscillatory motion vanishes after some time because positive and negative energy contributions
of the state move in opposite direction and become unable to interfere after a while. The inset

22nd International Conference on Atomic Physics IOP Publishing
Journal of Physics: Conference Series 264 (2011) 012020 doi:10.1088/1742-6596/264/1/012020

4



(a)

›

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

Time (µs)

Time (µs)

<σ
z
>

<σ
z
>

cos

sin

(b)

Figure 2. Zitterbewegung for a state with non-zero average momentum. (a) Initially,
Zitterbewegung appears due to interference of positive and negative energy parts of the state.
As these parts separate, the oscillatory motion fades away. The inset shows a position space
reconstruction of the two spinor states at time t = 75 µs. The solid curve represents a numerical
simulation. (b) Measured expectation values 〈cos kx̂〉 and 〈sin kx̂〉 used for reconstructing the
probability distribution |ψ(x)|2 of the spinor state plotted above the horizontal line in the inset
of (a). The solid line is a fit to the data based on a convex optimization routine.

shows a reconstruction of the probability distribution based on the two spinor states after a time
t = 75 µs. In order to reconstruct the spinor states individually, we replace the population
recombination used in Fig. 1 by a projective measurement. Only if the ion scatters no light
because it is projected into the state D5/2, we use the subsequent measurement for reconstructing
the probability distribution. By adding an additional π pulse to interchange the population of
the spinor states, we are able to reconstruct both of them in two separate experiments. On
the right-hand side of Fig. 2, the raw data 〈cos kx̂〉 and 〈sin kx̂〉 used for the reconstruction are
shown. Here, k = 2ηΩpt/∆ is varied by changing the duration t of the bichromatic measurement
pulse with Ωp its Rabi frequency. To avoid unphysical negative densities, the reconstruction in
position space is actually not carried out by a simple Fourier transformation. Instead, we use
a convex optimization routine that realizes a least-squares fit to the data with the additional
constraint of yielding non-negative densities in position space. The solid lines in Fig. 2 b are fits
based on this convex optimization routine.

We consider this experiment to be an important first step that will pave the way towards
more complex quantum simulations. Possible extensions include the simulation of relativistic
particles in potentials that can be created by adding another ion to the setup [30]. In this
extension of the work described here, the second ion interacts with another bichromatic laser
field that induces a coupling proportional to x̂σx. Now, the position operator x̂ describes a
centre-of-mass of the two-ion string. By preparing the second ion in an eigenstate of σx, one
obtains an additional term in the Hamiltonian that looks like a linear potential for the Dirac
particle encoded in the other ion. In this way, other relativistic phenomena like Klein tunneling
could be observed in the setup.
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