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Abstract

Quantum information processing has been the subject of intense study for the past ten years.
Entanglement is an essential ingredient in order to achieve the exponential speed-up promised
by certain quantum algorithms. One system proposed for the implementation of quantum
information processing is a string of ions in a linear Paul trap. In this thesis the ability to
deterministically prepare and manipulate entangled states of two and three ions with such an
experimental setup is investigated.

The essential tools for an ion trap quantum computer, in particular a two ion controlled-
NOT gate, were demonstrated. The entangled states could be controlled with such precision
that it was possible to realize a deterministic quantum state teleportation between ions. The
experiments described were carried out with 40Ca+ ions stored in a linear Paul trap. The
physical representation of the qubits was with the S1/2 ground state and the metastable D5/2

state of the Ca+ ions. The operations necessary for entangling the ionic qubits were imple-
mented with a series of laser pulses at 729 nm, addressing the quadrupole transition between
the S1/2 and D5/2 states.

With this experimental setup two ionic qubits were prepared in all four Bell states and three
ionic qubits were prepared in both possible classes of tripartite entangled states, namely GHZ-
and W-states. The entangled states were investigated using quantum state tomography, which
provided complete information about the quantum system in the form of its density matrix.
The lifetime of these entangled states were studied. As predicted by theory, some particular
types of entangled state were found to be particulary stable against the predominant source
of noise in our experiment, namely correlated phase noise due to laser frequency fluctuations.

A technique to measure the state of one ionic qubit without affecting the other qubits in
the ion string was implemented. The effect of such a measurement on GHZ- and W-states was
studied. Furthermore the experimental setup was improved, such that single-qubit operations
could be applied depending on the outcome of a previous measurement of one or more qubits.
This technique was used to transform a GHZ-state into a pure bipartite entangled state using
only local operations.

Finally, the advanced techniques developed to manipulate the entanglement of the ionic
qubits were combined to allow the implementation of a quantum teleportation protocol. This
was the first demonstration of a completely deterministic teleportation protocol with massive
particles. In particular, it was possible to use the outcome of a complete Bell-measurement to
reconstruct the input state, a step which was omitted in all previous experimental realizations
of teleportation.
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Zusammenfassung

Quanteninformationverarbeitung wurde im Laufe der vergangenen Jahre intensiv diskutiert.
Verschränkung ist dabei ein wesentlicher Bestandteil, der gewisse Quantenalgorithmen gegen-
über den entsprechenden klassischen Algorithmen exponentiell beschleunigen kann. Ein Sys-
tem, das sich für Quanteninformationverarbeitung besonders eignet, sind in einer linearen
Paulfalle gespeicherte Ketten von Ionen. In der vorliegenden Arbeit werden verschränkte
Zustände von zwei und drei Ionen erzeugt und gezielt manipuliert.

Die wesentlichen Werkzeuge für einen Ionenfallen-Quantencomputer, speziell ein controlled-
NOT Quantengatter zwischen zwei Ionen, werden demonstriert. Die verschränkten Zustände
können mit solcher Genauigkeit kontrolliert werden, dass es möglich war deterministische
Quantenzustands-Teleportation zwischen Ionen durchzuführen. Die beschriebenen Experi-
mente wurden mit in einer linearen Paul-Falle gespeicherten Ketten von 40Ca+-Ionen durchge-
führt. Die Quantenbits werden dabei durch den S1/2-Grundzustand und den metastabilen
D5/2-Zustand der Ca+-Ionen dargestellt. Die notwendigen Operationen für die Verschränkung
von Ionen-Quantenbits werden durch eine Abfolge von Laserpulsen bei 729 nm umgesetzt, die
den Quadrupolübergang zwischen dem S1/2 und D5/2-Zustand anregen.

Mit diesem experimentellen Aufbau wurden zwei Ionen in allen vier Bellzuständen präpariert.
Mit drei Ionen wurden beide existierende Klassen von verschränkten Dreiteilchenzuständen,
GHZ- und W-Zustände, erzeugt. Die verschränkten Zustände wurden mittels Quantenzu-
standstomografie untersucht, die die vollständige Information über das Quantensystem in
Form von dessen Dichtematrix liefert. Zusätzlich wurde die Lebensdauern der verschränkten
Zustände untersucht. Wie theoretisch erwartet, erweisen sich bestimmte Zustände als beson-
ders robust gegenüber der dominierenden Fehlerquelle in unseren Experimenten, korreliertes
Phasenrauschen aufgrund von Laserfrequenz-Fluktuationen, herausgestellt.

Eine Methode um ein einzelnes Ionen-Quantenbit zu messen ohne die anderen Quantenbits
innerhalb der Ionenkette zu stören wurde verwirklicht. Die Auswirkung einer solchen Messung
auf GHZ- und W-Zustände wurde untersucht. Zusätzlich wurde der experimentelle Aufbau
erweitert, so dass Operationen auf einzelnen Quantenbits ausgeführt werden können, die vom
Ergebnis einer unmittelbar vorher stattgefundenen Messung eines oder zweier Quantenbits
abhängen. Mit Hilfe dieser Technik wurde ein GHZ-Zustand nur mittels lokaler Operationen
in einen reinen zweiteilchenverschränkten Zustand überführt.

Abschliessend, wurden die entwickelten Techniken zur Manipulation von Verschränkung von
Ionen-Quantenbits kombiniert angewendet, um ein vollständig deterministisches Teleporta-
tionsprotokoll mit massiven Teilchen zu realisieren. Vor allem gelang es eine vollständige
Bellmessung auszuführen und das Ergebnis dieser Messung unmittelbar zur Rekonstruktion
des Eingangszustands zu verwenden, ein Schritt der bei den bisherigen experimentellen Um-
setzungen von Teleportation ausgelassen wurde.
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1. Introduction

Entanglement is possibly one of the most peculiar aspects of quantum mechanics. In an
entangled composite quantum system the individual subsystems are strongly linked to each
other even if they are far apart and no longer interact with each other. The whole composite
quantum system can be well described as a definite pure state, while for the state of its subsys-
tems such a description is not possible1. A measurement on one of the subsystems will affect
the outcome of measurements performed in the other subsystems, a feature which obviously
contradicts local-realism, i.e. that the quantum states of spatially separated non-interacting
particles are independent. This phenomenon was first discussed by Einstein, Podolsky and
Rosen in their seminal paper in 1935 [1] in which they investigated the results of incompatible
measurements on one part of a two-particle system, which interacted once but are spatially
separated at the time of the measurement2. The contradiction arising in Einstein et al.’s
argument, which let them question the completeness of quantum mechanics, was rooted in
their insistence on local-realism.

In the 1960s John S. Bell discussed the EPR argument and was able to show that the
correlations between the results of measurements on the subsystems of an entangled state
predicted by quantum mechanics go beyond what can be explained by any theory assuming
local-realism [3–5]. The inequalities derived by Bell and others [4, 6, 7] allowed for an experi-
mental test of quantum mechanics. Such experiments were carried out with entangled photons
confirming the predictions of quantum mechanics [8, 9].

In this context entanglement appears only as a source for paradoxes and counterintuitive
phenomena, which challenge our understanding of reality and quantum mechanics in partic-
ular. However, in the last two decades quantum mechanical systems have been discussed as
means to store and process information. In this context entanglement is not a peculiarity but
a useful or even indispensable tool.

In quantum information theory the smallest unit is usually a two-level quantum system,
where the levels are denoted as |0〉 and |1〉. For such a system due to its obvious resemblance
to a bit of classical information the notion qubit was coined [10]. Qubits offer a special feature
in contrast to classical bits, since they can be prepared in a superposition of their logical
basis states |0〉 and |1〉. Thus, qubits offer new possibilities for information processing. At
the same time, however, quantum mechanics imposes restrictions on what we can do with
them. For instance it is not possible to determine the state of a single qubit in a superposition
(a|0〉+ b|1〉) without disturbing the qubit. A measurement in the logical basis will inevitably
project the state into |0〉 or |1〉 revealing little or no information about the parameters a and
b.

1More precisely, this means that the state of the composite system cannot be decomposed in a product of
pure states of its subsystems.

2The authors did not use the term entanglement in Ref. [1]. It seems that Schrödinger, in a reply to EPR
published in [2], used this term for the first time.
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1. Introduction

Suppose one unknown qubit of quantum information is to be transferred from one party,
whom we call Alice, to another called Bob. Suppose Alice and Bob have no means to directly
exchange a quantum system carrying the information, i.e. no quantum channel is available to
them. Alice could try to measure the qubit in order to obtain classical information, which
she would convey to Bob via a classical channel, who would then try to reconstruct the
original state based on this information. But such an attempt would be in vain, since such
a measurement doesn’t reveal much useful information about the quantum state. What can
Alice and Bob do? This is the point where entanglement as a useful resource comes into
play. Bennett et al. devised a recipe they called teleportation which allows Alice and Bob to
perfectly transfer a quantum state provided that they both share one half of an entangled pair
of particles3 [12]. All Alice has to do is to measure the unknown qubit and her part of the
entangled pair in a certain basis and convey the outcome of her measurement, i.e. two bits of
classical information, to Bob. Thereupon Bob has the necessary knowledge to reconstruct the
original state in his part of the entangled pair. The information-transfer in teleportation seems
to happen almost miraculously, letting a quantum state disappear at one place and appear
at a totally different place, and indeed to precisely imagine or explain what happens leads
to the same interpretational difficulties as with the EPR-Paradoxon (c.f. Wootters in [13]).
Nevertheless, teleportation has been demonstrated with entangled photons [14, 15] and in a
few other physical systems [16,17].

Another field in which entanglement plays a vital role is quantum computation, i.e. the
processing of quantum information stored in a register of qubits. The idea that a computer
exploiting the laws of quantum mechanics can potentially solve problems which are intractable
with a classical computer was first pointed out by Feynman in 1982. He noted that a simula-
tion of the dynamics of a quantum system on a classical computer requires an exponentially
growing computational effort with the size of the quantum system . However, a suitable well-
controlled quantum system could be used to mimic and therefore simulate the dynamics of
the investigated quantum system [18, 19]. In 1985 David Deutsch defined a quantum Turing
machine [20], i.e. the quantum mechanical analogue to the Turing machine, which is a fun-
damental computational model in classical computation (c.f. Nielsen and Chuang [21]). He
later formulated another computational model for the quantum computer, namely the quan-
tum circuit model in which an arbitrary computation is carried out by applying a finite set of
unitary operations or quantum gates on a register of qubits [22].

The discussion about quantum computers wouldn’t be much more than of academic interest,
if there weren’t tasks which a quantum computer could perform which are less efficiently solved
or even intractable by a classical computer. Apart from the previously mentioned possibility to
simulate the dynamics of quantum systems, a collection of algorithms for a quantum computer
were discovered which would solve their respective problems much faster than their classical
counterparts. The first quantum algorithm was found by D. Deutsch and is nowadays known as
the Deutsch-Jozsa algorithm, which can decide whether a given boolean function is constant or
balanced in a single evaluation of the function, while a classical computer would need at least
two evaluations [20, 23]. Another kind of quantum algorithm is a quantum search algorithm,

3This entangled pair of spin-1/2 particles or qubits is usually denoted as an EPR-pair alluding to Einstein,
Podolsky and Rosen’s paper [1]. However, the well known version of the EPR-paradox using spin-1/2
particles was formulated much later by Bohm [11].

2



which can search for a particular entry in a database. The most prominent one of these is
the algorithm formulated by L. Grover [24, 25]. The most spectacular quantum algorithm is
certainly the Shor algorithm, which was found by Peter Shor in 1994 [26]. The Shor algorithm
allows one to find the prime factors of a number N in a time which only grows polynomially
with N. This problem is seen as inefficient on a classical computer, i.e. the necessary time for
finding the prime factors grows exponentially with N. Shor’s discovery drew a lot of attention
to the field of quantum computation, since the security of common cryptographic protocols
like the RSA cryptosystem relies on the inability of classical computers to factorize large
numbers [27].

Given the fact that quantum computers can solve certain problems exponentially faster than
their classical counterparts it is tempting to ask which exact feature of a quantum computer
gives rise to this speed-up? This question was extensively discussed by Jozsa, Ekert and others
in [28–32]. At first glance, the ability to prepare a register of N qubits in a superposition of
all 2N possible combinations and perform a computation on all these possibilities at once
in a kind of parallel computation might be identified as the distinctive feature of a quantum
computer. But Jozsa showed that superpositions alone are not the unique feature of a quantum
computer, since superpositions of logical states could be mimicked by classical waves. However,
in general, the register of qubits will become entangled in course of the computation, which
can’t be simulated by classical waves without exponentially growing resources [28]. It turns
out that entanglement is the essential non-classical feature in a quantum computer, providing
the exponential speed-up in quantum algorithms like the Shor algorithm [29].

Entanglement can also improve the performance of a quantum computer in another respect.
Error correction is an important technique when it comes to realize a working quantum com-
puter, because in reality qubits will be subjected to various kinds of noise changing the state
of the qubits. Peter Shor devised in 1995 a quantum-error correction scheme in which phase
and bit-flip errors can be detected and corrected [33]. The basic idea in this scheme is use two
additional ancilla qubits to encode the state of a qubit |Ψ〉 = (a|0〉+ b|1〉) as a|000〉+ b|111〉,
i.e. the quantum information of one qubit is encoded in an entangled state of three qubits.
An error inflicted upon one of the qubits can be detected by applying the inverse encoding
procedure and measuring the state of the ancilla bits. The outcome of the measurement, also
called the syndrome, reveals if an error occcured.

In order to implement a quantum computer a physical system has to meet several require-
ments. Such a list of requirements was given by DiVincenzo [34]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple well-defined state, such as
|000...〉

3. Long relevant decoherence times, much longer than the gate operation time

4. A universal set of quantum gates

5. A qubit specific measurement capability

Meeting these requirements is a demanding task. Various physical systems were proposed
for implementing a quantum computer, including:

3



1. Introduction

• Optical photon quantum computer [35]

• Optical cavity quantum electrodynamics [36]

• Ion traps [37,38]

• Nuclear magnetic resonance (NMR) [39,40]

• Josephson junctions [41–43]

• Quantum dots [44]

• Silicon-based nuclear spin quantum computer [45]

This list and the references therein are by no means exhaustive. The most complex quantum
algorithms have been so far realized with NMR quantum computing [46]. However, NMR
quantum computing lacks scalability and is often criticized for working with highly mixed,
separable states [47–50]. The latter three proposals are solid-state systems which are tempting
given the success of solid-state devices in today’s technology. However, the experimental
progress in realizing these proposals has so far been limited, although recently basic operations
were demonstrated [51–56].

Ion traps have served as a tool for investigating systems of a few or even single ions with
laser spectroscopic techniques since the late 1970s. Trapped ions represent a suitable system
for quantum computing, since quantum information can be encoded in qubits made up of
the ground state |g〉 and and a metastable excited state |e〉 of the ions. Single qubits can be
manipulated by addressing them with suitable laser pulses. Interactions between the internal
states of different ions necessary for two-qubit quantum gates can be mediated using one of
the vibrational modes common to all ions. Such a two-qubit gate was first proposed by I.
Cirac and P. Zoller in 1995 [37] and was followed by several other proposals also utilizing the
interaction mediated by a common vibrational mode [57,58].

In recent years considerable progress has been made in implementing an ion trap quantum
computer. In the group of D.J. Wineland at NIST in Boulder the basic steps for implementing
the Cirac-Zoller quantum gate had already been realized in 1995 [59]. In the following years
they were able to prepare entangled states of, first two [60], and later four, ions [61]. A two-
qubit quantum gate was demonstrated employing a spin-dependent optical dipole force in
2003 [62]. Recently they demonstrated the preparation of GHZ-states, quantum teleportation
and error correction.

In our experimental setup the basic techniques of laser cooling and manipulation of single
qubits were demonstrated [63–65]. This allowed us to implement the Deutsch-Jozsa algorithm
with a single ion, the first demonstration of a quantum algorithm outside of NMR quantum
computing [66]. The Cirac-Zoller quantum gate was implemented for two ions [67], such that
we have a complete set of operations at hand necessary for quantum computing.

As was pointed out, entangled states are a crucial ingredient for quantum computing. Quan-
tum algorithms will in general entangle the register of qubits. The lifetime and stability against
noise of these states will substantially determine the performance of our quantum computer.
Therefore, the aim of this thesis is to investigate our ability to prepare and manipulate entan-
gled states of trapped ions. This thesis is structured as follows: In Chapter 2 qubits and the
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operations acting upon them are outlined. Furthermore means to identify and quantify en-
tangled states are introduced. In Chapter 3 the dynamics of ions in linear Paul traps is briefly
reviewed. Chapter 4 describes the interaction of laser light with the trapped ions. The internal
electronic energy levels and transitions of 40Ca+ we excite in our experiments are shown. The
quadrupole transition connecting the states which make up our qubit is investigated in detail.
Finally, it is shown how the previously introduced laser-ion interaction serves to implement
the single-qubit operations outlined in Chapter 2. The experimental setup is explained in
Chapter 5. Basic experimental techniques which are required for more complex experiments
are described in Chapter 6. The following Chapters 7 - 10 present the experimental results
achieved in this thesis. Chapter 7 describes the preparation of Bell-states of two trapped ions.
The lifetime of the different prepared Bell-states is investigated. In Chapter 8 the realization
of the Cirac-Zoller controlled-NOT quantum gate with two ions is presented. Initial results
of these measurements were already presented in the thesis of Stephan Gulde [68]. Here a
complete analysis of the CNOT gate is given. In Chapter 9 the results concerning entangled
states of three ions are presented. Both possible classes of tripartite entangled states were
generated and their lifetime was investigated. Important experiments like teleportation and
quantum-error-correction involve the measurement of a part of the qubit register and subse-
quent operations conditioned by the outcome of this measurement. Therefore, the effect of
a measurement on the different entangled states of three ions was investigated. By imple-
menting a subsequent conditional operation a tripartite entangled state was tranferred into a
pure bipartite entangled state. Finally the highlight of this thesis is presented in Chapter 10.
The experimental techniques developed for handling entangled states allowed us to perform a
textbook-style implementation of quantum teleportation. For the first time a teleportation ex-
periment was carried out in which the necessary entangled pair was generated on demand and
the outcome of a complete Bell-measurement was used to reconstruct the original quantum
state.
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2. Quantum bits

2.1. Single qubits

The quantum state of a two level system, consisting of the levels |0〉 and |1〉, can be written
as:

|ψ〉 = a |0〉+ b |1〉 . (2.1)

Here a and b are complex numbers, which satisfy the normality condition |a|2+ |b|2 = 1. Such
a system is capable of storing binary information in analogy with a classical bit with logical
states 0 and 1, which has led to the notion of quantum bits or qubits.

Operations mapping a quantum state |Ψ〉 = a|0〉+ b|1〉 onto another quantum state |Ψ′〉 =
a′|0〉 + b′|1〉 are unitary transformations and preserve the norm. They can be expressed as
unitary 2× 2 matrices acting on a quantum state vector |Ψ〉, which reads:

|ψ〉 =
(

a
b

)

. (2.2)

An example of such an operation is the Hadamard operation:

H =
1√
2

(

1 1
1 −1

)

, (2.3)

which transfers the state |0〉 or |1〉 into an equal superposition (|0〉 ± |1〉)/
√
2.

A useful way to visualize the state of a two level system is to represent it as a point with
polar coordinates θ and ϕ on a unit sphere, as shown in Fig. 2.1. This picture is generally
known as the Bloch sphere representation and the vector ~λ = (cosϕ sin θ, sinϕ sin θ, cos θ) as
the Bloch vector. In this picture, Eq. 2.1 can be expressed as:

|ψ〉 = eiγ
[

cos

(

θ

2

)

|0〉+ eiϕ sin

(

θ

2

)

|1〉
]

(2.4)

Here the global phase factor eiγ has no observable effect and is therefore usually omitted.
Unitary operations act in the Bloch sphere representation as rotations of the Bloch vector.
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2. Quantum bits

x y

z

1

φ

θ
Ψ

0

Figure 2.1.: Bloch sphere representation of a two level system.

Thereby, rotations about the x-, y- and z- axes are given respectively by1 :

Rx(θ) = e−i
θ
2
X = cos

θ

2
I − i sin θ

2
X =

(

cos θ2 −i sin θ
2

−i sin θ
2 cos θ2

)

Ry(θ) = e−i
θ
2
Y = cos

θ

2
I − i sin θ

2
Y =

(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)

Rz(θ) = e−i
θ
2
Z = cos

θ

2
I − i sin θ

2
Z =

(

e−i
θ
2 0

0 ei
θ
2

)

, (2.5)

where X,Y and Z are the Pauli matrices and I the identity matrix. These matrices are
defined by:

X =

(

0 1
1 0

)

Y =

(

0 −i
i 0

)

Z =

(

1 0
0 −1

)

I =

(

1 0
0 1

)

. (2.6)

More generally, the rotation of the Bloch vector by θ around a real unit vector ~n =
(nx, ny, nz) is given by:

R~n = exp(−iθ~n · ~σ/2) = cos

(

θ

2

)

I − i sin
(

θ

2

)

(nxX + nyY + nzZ), (2.7)

where ~σ denotes the three-component vector (X,Y, Z) of Pauli matrices.

1Rotation around an axis in the Bloch sphere picture can be imagined as looking along the respective axis
in the positive direction and turning the Bloch vector clockwise.
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2.2. Multiple qubits

2.2. Multiple qubits

For a system of N qubits a suitable set of basis states is given by the 2N -product states of the
individual qubit states {|0〉, |1〉}:

|n〉 = |iN 〉 ⊗ |iN−1〉 ⊗ ...⊗ |i1〉, (2.8)

where ikε{0, 1} and n =
∑N

k=1 ik · 2k−1. Please note that the rightmost state in this tensor
product belongs to the first qubit, which might be counterintuitive in the first place. Every N
qubit quantum state can be expressed as a decomposition of these computational basis states.
For example in the case of two qubits we have:

|ψ〉 = a0 |00〉+ a1 |01〉+ a2 |10〉+ a3 |11〉 , (2.9)

where the coefficients ak obey the normality condition
∑N−1

i=0 |ak|2 = 1. Quantum operations
acting on a system of N qubits are described by unitary N ×N matrices. For two qubits for
example the operation I ⊗X, i.e performing the identity operation on the second qubit and
X on the first, is described by:

I ⊗X =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









, (2.10)

where the matrix is notated with respect to the basis order {|00〉, |01〉, |10〉, |11〉}. This matrix
notation will be used throughout this thesis.

2.3. Controlled quantum gates

Operations where the state of one qubit is changed depending on the state of another qubit
are called controlled operations. An important example for a controlled operation is the
controlled-NOT or CNOT operation:

U21
CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (2.11)

This operation flips the state of the first qubit (the target qubit) if the second qubit (the
control qubit) is in state |1〉 and leaves the target qubit unchanged if it’s in state |0〉. We
adopt the notation U control,target

CNOT in order to denote which qubit acts as control and which as
target qubit. Another controlled two qubit operation is the controlled Z or phase gate:

Φ =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









. (2.12)
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2. Quantum bits

In the case of the phase gate the role of control and target qubit are interchangeable. Phase
gate and controlled NOT operations are closely related, since the controlled NOT gate can be
decomposed into two Hadamard operation and a phase gate:

U21
CNOT = H1 · Φ ·H1, (2.13)

where H1 = I ⊗H is the Hadamard operation acting on the first qubit:

H1 =
1√
2









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









. (2.14)

The qubit to which the Hadamard operations are applied acts as the target qubit.

Controlled operations are of vital importance for quantum computing. It has been shown,
that the controlled NOT operation and single qubit rotations are universal [69], i.e an arbi-
trary unitary operation can be realized by a combination of controlled NOT and single qubit
operations.

2.4. Measurements

2.4.1. Projective measurements

The ability to read out a register of qubits by measurements is a key ingredient for quantum
computing. The type of measurement usually encountered in experiments are projective mea-
surements, where the measurement of an observable M causes the quantum system subjected
to the measurement to be projected onto one of the eigenstates of the operator M̂ . The
Hermitian operator M̂ can be expressed as:

M̂ =
∑

m

mPm (2.15)

where Pm is the projector onto the eigenspace of M̂ with eigenvalue m. The probability that
the outcome m occurs is given by:

p(m) = 〈ψ|Pm|ψ〉 (2.16)

and the state of the quantum system is projected onto the state:

∣

∣ψ′〉 =
Pm |ψ〉
√

p(m)
. (2.17)
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2.5. Sequences of quantum operations: Quantum circuits

2.4.2. Measurement in the Bell basis

A special case of a measurement is a projective measurement in the Bell state basis. This
basis is given by the four Bell states, which are expressed in the computational basis as:

Ψ+ = 1√
2
(|10〉+ |01〉)

Ψ− = 1√
2
(|10〉 − |01〉)

Φ+ = 1√
2
(|00〉+ |11〉)

Φ− = 1√
2
(|00〉 − |11〉) . (2.18)

In most experimental setups measurements are preferably done in the computational ba-
sis {|0〉, |1〉}. Therefore, in order to perform a measurement in the Bell basis, the Basis
states {Φ+,Φ−,Ψ+,Ψ−} must be mapped onto the computational basis states of two qubits
{|00〉, |01〉, |10〉, |11〉}.

This is achieved by first applying a controlled NOT U 12
CNOT, where qubit 1 is the control

qubit and qubit 2 the target qubit, and then a Hadamard operation H1 to qubit 1. As an
example, consider the action of these operations on the Bell state Ψ+:

1√
2
(|10〉+ |01〉) U12

CNOT−−−−→ 1√
2
(|10〉+ |11〉) = 1√

2
|1〉(|0〉+ |1〉) H1−−→ |10〉. (2.19)

Interestingly, this procedure works in both directions, i.e starting from the computational
basis states, applying a Hadamard operation first and then the CNOT gate, will generate Bell
states.

2.5. Sequences of quantum operations: Quantum circuits

In the previous sections the most fundamental operations, which can be applied to one qubit
or a register of multiple qubits were introduced. In general an algorithm running on a quantum
computer will comprise many of these operations. Such a sequence of operations is also called
a quantum circuit, an analogy to classical computing, where a computation is built up of
a network of different logic gates2. In the following, different ways of expressing quantum
algorithms are shown and the corresponding conventions and notations introduced, which will
be used throughout this thesis.

First of all, when using the bra- and ket-notation for quantum states, the qubits will be
ordered as:

|qubitn, ..., qubit2, qubit1〉.
Outer products of operators will be ordered in the same way, such that for example in I⊗I⊗X
denotes an X-operation on qubit 1 and the identity operation on qubits 2 and 3. Subsequent
unitary operations on a register of qubits can be expressed by the product of the corresponding
operators, giving the overall unitary operation U = ...Op3 ·Op2 ·Op1 · |Ψin〉.

2In fact quantum circuits are a computational model, i.e. a generic model, how a computation is done. It is
not the only way a computer can work. Other models would be the one-way quantum computer or the
more abstract quantum Turing machine [70,71]
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2. Quantum bits
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Figure 2.2.: Graphical representation of a quantum circuit. The circuit shown is implementing
quantum teleportation. The temporal order is from left to right. Each horizontal
lines represent the state of one qubit. Operations acting upon the qubits are
indicated by different symbols, which are explained in Fig. 2.3.

Another way of representing a quantum circuit is shown in Fig. 2.2. This graphical rep-
resentation of a register of qubits and the operations acting upon them should be read as
follows: Each horizontal line represents the state of one qubit. The operations acting upon
the qubits are represented by different symbols, which are explained in Fig. 2.3. Time is
increasing, when the circuit is read from left to right.

In Sec. 4.5 this notation will be adapted to the ion trap quantum computer by replacing
the abstract operators by the corresponding laser pulses.

2.6. Quantum state tomography

The state of a quantum system is completely described by its density matrix ρ. Quantum state
tomography is a procedure to determine the density matrix of quantum system, provided that
this system is available in many copies. This procedure relies on the fact that every density
matrix ρ of a n-qubit system can be expanded into a series of mutually orthogonal operators
Oi

3, such that ρ can be written as:

ρ =
4n
∑

i=1

λiOi. (2.20)

The coefficients λi can be obtained by measuring the expectation value of their corresponding
operator Oi:

λi = tr(ρ ·Oi) (2.21)

Therefore, the density matrix ρ of a given state can be reconstructed by measuring the ex-
pectation values of the operators Oi. The actual set of operators used in our experiments is
given in Appendix A.1.

3Mutually orthogonal means that the operators Oi obey the equation tr(OiOj) = 2nδij
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2.6. Quantum state tomography

X =
0 1

1 0











Pauli operators:

Y =
0

0

−









i

i
Z =

1 0

0 1−










Hadamard operation:

Controlled NOT:

1 0 0 0

0 1 0 0

0 0 00 1

0 0 1 0



















=

Controlled Z/ Phase gate:

control

target Z

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1−



















control

target

Measurement: Classical controlled Z:

Z

H =
1

2

1 1

1 1−










Figure 2.3.: Symbols of quantum operations and the corresponding unitary matrices.
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2. Quantum bits

2.7. Entanglement

2.7.1. Entangled states of two qubits

A definition of entanglement of a quantum system containing multiple subsystems is usually
associated with the question whether its quantum state can be decomposed into a product of
its subsystems states.

This approach can be illustrated by considering a bipartite system consisting of two qubits
in a pure state. A state Ψ of this bipartite system is called a product state or separable, if it
can be written as a product of its subsystems states:

Ψ = ψ1 ⊗ ψ2 (2.22)

In this situation both subsystems are completely independent of each other. A measurement
performed on the one subsystem will not affect the state of the other. Measurement results
on both subsystems will be uncorrelated.

In contrast to this, a state which cannot be written as a product of subsystem states is
called an entangled state. A prominent example of entangled states are the Bell states given
in Eq. 2.18.

Here the subsystems are no longer independent. A measurement performed on the one
subsystem will result in a state reduction in both subsystems with strongly correlated mea-
surement results.

For mixed states this definition can be expanded as follows: A state, described by the
density matrix ρ, is said to be separable if a decomposition into product states exist:

ρ =
∑

i

pi · ρ1 ⊗ ρ2; pi > 0 ,
∑

i

pi = 1 (2.23)

The nonexistence of such a decomposition identifies an entangled mixed state. In addition to
quantum correlations, mixed states can also contain classical correlations, which are charac-
terized by the propabilities pi.

Unfortunately, for a given density matrix ρ it is not easy to directly verify whether a
decomposition like that in Eq. 2.24 exists or not. However, for bipartite systems, a criterion
exists to determine whether a state is separable or not, which relies on the behavior of the
partial transpose ρPT . The partial transpose ρPT is defined by:

ρPT = (σx ⊗ I) · ρ (2.24)

It has been shown that a mixed state ρ is entangled if and only if its partial transpose ρPT

has a negative eigenvalue [72].

2.7.2. Quantifying entanglement

A quantitative discussion of entanglement is possible by defining entanglement measures. It
is reasonable to start the discussion of entanglement measures by considering pure states of
a bipartite quantum system. Using the Schmidt decomposition [71] any pure state Ψ(A,B)
can be written as:

Ψ(A,B) =
n
∑

i=1

ci|αi〉 ⊗ |βi〉, (2.25)
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2.7. Entanglement

where {αi} and {βi} are a orthonormal basis of the subsystems A and B, respectively, and the
coefficients ci are positive, real numbers. An entanglement measure for such a state is given
by the entropy of one of the subsystems:

E(Ψ) = S(TrA|Ψ〉〈Ψ|) = S(TrB|Ψ〉〈Ψ|) = −
n
∑

i=1

c2i log2 c
2
i , (2.26)

where S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy. The definition of the quantity E(Ψ)
is connected to the question how many singlet pairs of the type |Ψ−〉 = |0〉A|1〉B − |1〉A|0〉B
are necessary to create n copies of a given bipartite state Φ(A,B). It has been shown that
approximately nE(Φ) singlet states are necessary to perform this task [73].

For mixed states of bipartite systems a definition of an entanglement measure becomes
more difficult. The von Neumann entropy of one of the subsystems E(ρ) is no longer a good
measure for entanglement, since it can be nonzero even if the state is separable. Again the
definition of an entanglement measure can be connected to the question of how many single
pairs Ψ− are necessary to generate n copies of a mixed state ρ. Every mixed state ρ can be
written as a decomposition into pure states:

ρ =
N
∑

i=1

pi|Φi〉〈Φi|, with
N
∑

i=1

pi = 1, (2.27)

where the states {|Φi〉} are normalized states of the bipartite system. Considering the result
obtained for pure states, it is reasonable to estimate the number of singlets necessary to create
n copies of ρ as:

n ·
N
∑

i=1

piE(Φi). (2.28)

However the quantity
∑

piE(Φi) is still not a good measure of entanglement, since it de-
pends on the particular decomposition of ρ. This line of reasoning leads to the definition of
entanglement of formation:

Ef (ρ) = inf
∑

j

pjE(Φj). (2.29)

Here the infimum of
∑

piE(Φi) over all possible decompositions of ρ into pure states is taken
as an entanglement measure. The definition of entanglement of formation given in Eq. 2.30
involves an optimization problem to find the infimum, which in case of higher dimensional
systems is an unsolved problem. However for bipartite systems an algebraic solution is known,
which allows calculation of the entanglement of formation from the given density matrix
[74,75].
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3. Linear Paul traps

3.1. Linear Paul traps

Radiofrequency traps were originally invented by Wolfgang Paul in the 1950s as mass filters
and later on were used as traps for charged particles. A linear Paul trap has an electrode
configuration as can be seen in Fig. 3.1. Four rod shaped electrodes generate a potential for
confinement in the x-y plane, while the endcap electrodes generate a confining axial potential.

Suppose a radiofrequency voltage V = V0 · cos(Ωt) is applied to two of the rods, which lie
diagonally opposite each other, while the other pair of electrodes is held at ground potential. If
the electrodes are assumed to have hyberbolical shape, the time varying quadrupole potential
Φ in the x-y or radial plane is given by

Φ(x, y, t) =
x2 − y2
2r20

· V0 cos(Ωt), (3.1)

where r0 is the minimum distance from the trap center to the electrodes. In practice the trap
electrodes are usually shaped like rods or blades to improve the optical access to the trap
center. In this case the quadrupole potential above is only valid for small excursions around
the trap axis. For larger excursions higher order corrections of the potential have to be taken
into account to describe the motion of a charged particle properly.

Using the potential given in Eq. 3.1 the equations of motion for a charged particle with
mass M and charge e in the radial plane are:

d2x

dt2
− 2q

Ω2

4
cos(Ωt)x = 0

d2y

dt2
+ 2q

Ω2

4
cos(Ωt)y = 0,

V

GND

VcapVcap

Figure 3.1.: Schematic drawing of linear Paul trap. Instead of of the ideal hyperbolic surfaces
a more realistic design using rod shaped electrodes is shown.
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3. Linear Paul traps

where q is defined as:

q =
2eV

Mr20Ω
2
. (3.2)

These equations take the form of the Mathieu equations. Stable solutions can be found for
0 < q < 0.908 [76]. An analysis of the solutions shows that the motion can be separated
into a slow secular motion around the trap center and a fast oscillation driven by the trap
radiofrequency called micromotion. The secular motion of a charged particle is a harmonic
motion with a frequency:

ωr0 = ωx = ωy =
Ωq

2
√
2
, (3.3)

where the oscillation frequencies in x and y direction are assumed to be degenerate.

For complete confinement in all three dimensions an additional trapping potential along the
axial z-direction is necessary. This is achieved by applying a DC voltage Vcap to the endcap
electrodes. The equations of motion including the axial potential are then given by:

d2x

dt2
+

Ω2

4
(b− 2q cos(Ωt)x) = 0

d2y

dt2
+

Ω2

4
(b+ 2q cos(Ωt)y) = 0

d2z

dt2
+

Ω2b

2
z = 0 (3.4)

where b is given by:

b =
eαVcap
ML2Ω2

. (3.5)

Here L is the distance between the endcap electrodes and α is a numerical factor which
depends on the trap geometry. The equation of motion for the axial direction is solved by a
harmonic motion with a frequency of:

ωz =

√

b

2
Ω. (3.6)

Adding an axial potential has also a defocusing effect on the frequency of the motion in the
radial harmonic pseudopotential, which is now given by:

ωr =

√

ω2
r0 −

1

2
ω2
z (3.7)

However in the case of our experiment we have ωr0 À ωz and therefore this effect can be
neglected.

3.2. Equilibrium positions

In the following we consider N ions stored in a linear Paul trap, where the ions are assumed
to be strongly bound in the radial direction but weakly bound by a harmonic potential in the
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3.3. Normal modes

axial direction. In this case the ions will arrange themselves in a linear chain configuration1.
The potential energy of the string with N ions of mass M and charge e is given by:

U =
M

2

N
∑

n=1

ω2
zz

2
n +

e2

8πε0

N
∑

n,m=1;m6=n

1

|zn − zm|
. (3.8)

Here we only take the axial direction into account, assuming a linear configuration with
xn = yn = 0. The first term is the potential energy of the ions in the axial trap potential, while
the second one describes the ions’ mutual Couloumb interaction. The equilibrium positions

z
(0)
n can be determined by the following equation:

[

∂U

∂zn

]

zn=z
(0)
n

= 0. (3.9)

For N = 2 and N = 3 this equation can be solved analytically [78]:

N = 2 : z1 = −
(

1

2

)2/3

l, z2 =

(

1

2

)2/3

l (3.10)

N = 3 : z1 = −
(

5

4

)1/3

l, z2 = 0, z3 =

(

5

4

)1/3

l, (3.11)

where the length scale l is defined as:

l =

(

e2

4πε0Mω2
z

)1/3

(3.12)

For more than three ions the equation has to be solved numerically. The distance between the
ions is minimal at the center and increases towards the outside of the string. The minimum
separation between the ions can be approximated up to N ' 1000 by:

∆zmin ∼= 2.0 · ln−0.57 (3.13)

With an increasing number of ions the minimum separation between the ions decreases. Quan-
tum computing using trapped ions requires the ability to apply laser pulses to single ions
without affecting the other ions within a crystal. For an increasing number of ions in the
same trap, it therefore becomes increasingly difficult to meet this requirement.

3.3. Normal modes

Considering only small oscillations around the equilibrium positions y
(0)
n = 0, x

(0)
n = 0, z

(0)
n , the

equation of motions can be solved and a set of of normal modes and the respective oscillation
frequencies be obtained. Here only the results of such a calculation will be discussed, a detailed
treatment can be found in [78]. For an ion crystal with N ions, where we assume the motions

1If the ratio between the radial and the axial trap depth is not large enough or a large number of ions is
stored in the trap a transition to a zig-zag configuration is possible. More details about the stability of the
linear ion configuration can be found in [77]
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Figure 3.2.: a) Normal modes for a three ion crystal are shown. The arrows indicate the
direction in which the ions move with respect to each other. Ions without an
arrow are not moving, as is the case for the axial breathing and radial rocking
mode. The length of the arrows indicates the amplitude of oscillation. For the
axial Egyptian and radial zig-zag mode, the central ion has twice the amplitude
as the outer ions. b) Spectrum of oscillation frequencies. An excitation spectrum
of an atomic transition will show the same features. The normal modes will show
up as sidebands in the excitation spectrum.
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3.3. Normal modes

in the radial x-y plane to be degenerate, a set of N axial and a set of 2N radial modes is
obtained.

The principal mode in the axial direction is the center of mass or axial COM mode in
which all ions oscillate together with the same amplitude. The oscillation frequency of
the COM mode is ωz, the single ion axial trap frequency, which is given by Eq. 3.6. All
higher order modes have larger frequencies. The second axial mode is called the breath-
ing mode and has a frequency of

√
3ωz. The frequencies of the center of mass and the

breathing mode are independent on the number of ions. For higher order modes the vi-
brational frequency depends on the number of ions. However for N ≤ 10 this dependence
is very weak, such that the axial mode frequency are to high degree of accuracy given by
{1,
√
3,
√

29/5, 3.051, 3.671, 4.272, 4.864, 5.443, 6.013, 6.576} in units of ωz.
In the radial set of normal modes the principal mode is again the center of mass mode,

where the ions oscillate with frequency ωr (see Eq. 3.7). In contrast to the case of the axial
modes, all higher order radial modes have a lower oscillation frequency than the center of mass
mode. The eigenvectors of the radial normal modes are formally identical to the eigenvectors
of the axial modes. In Fig. 3.2(a) all axial and radial modes of a three ion crystal are depicted.
The corresponding spectrum of oscillation frequencies is given in Fig. 3.2(b).
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4. Laser–Ion Interaction

4.1. The Hamiltonian

An ion trapped in a harmonic potential with frequency ω interacting with a travelling wave
from a single mode laser tuned close to a transition can be treated as an effective two level
system. The Hamiltonian of the ion in the absence of interaction with the light field is given
by:

H0 = H(m) +H(e) (4.1)

H(m) =
p2

2m
+

1

2
mω2x2 (4.2)

H(e) =
1

2
~ωaσz. (4.3)

Here the Hamiltonian H (m) describes the motion in the harmonic potential, while H (e) de-
scribes the ion’s internal electronic state. The Hamiltonian for the interaction of the light
field with the ion is:

H(i) =
1

2
~Ω
(

σ+ + σ−
)

(

ei(kx̂−ωlt+φ) + e−i(kx̂−ωlt+φ)
)

, (4.4)

where k is the wave number, ωl the frequency and φ the phase of the travelling light wave.
All details about the exact form of the atom-light interaction are included in the coupling
constant Ω, which is usually called the Rabi frequency.

The harmonic motion of the ion can be described using creation and annihilation operators
a† and a. Then the Hamiltonians H (m) and H(i) can be expressed as:

H(m) = ~ω

(

a†a+
1

2

)

(4.5)

H(i) =
1

2
~Ω
(

eiη(a+a
†)σ+e−i(ωlt+φ) + e−iη(a+a

†)σ−ei(ωlt+φ)
)

. (4.6)

Here the Lamb Dicke parameter η is used, which is defined by1

η = k

√

~

2mω
. (4.7)

The transformation into the interaction picture is done with the free HamiltonianH0 = H(m)+
H(e) and the interaction Hamiltonian V (t) = H (i). In the interaction picture, defined by the

1An angle β between the oscillation axis and the wavevector k, has to be taken into account by setting
η = k cosβ

√

~/2mω.
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4. Laser–Ion Interaction

transformation Hint = U †V (t)U with U = eiH0t/~, the transformed interaction Hamiltonian
is:

Hint(t) =
~

2
Ω
(

σ+eiη(ae
−iωt+a†eiωt)ei(φ−δt) +H.c.

)

, (4.8)

where δ = ωl − ωa. Here terms oscillating with frequency (ωl + ωa) have been omitted, i.e.
the rotating wave approximation has been applied.

Depending on the detuning δ, this interaction Hamiltonian will couple certain motional and
electronic states. An expansion of the exponentials containing the annihilation and creation
operators of the harmonic oscillator will result in a sum of terms of the form σ±ala†m. If
δ ≈ (l −m)ω these terms will result in a coupling of the level |S〉|n〉 with |D〉|n + s〉, where
|S〉 and |D〉 denote the two electronic states of our two-level system and s = l−m. The Rabi
frequency for this transition is given by:

Ωn,n+s = Ω‖〈n+ s| eiη(a+a†) |n〉‖. (4.9)

Transitions of this kind are called the |s|th blue (s > 0) or red (s < 0) sideband transition. In
the special case where s = 0, in which only the electronic state is changed while the vibrational
state is unaffected, the transitions are denoted as carrier transitions.

4.2. Lamb Dicke limit

The calculation of the interaction Hamiltonian in Eq. 4.8 and the Rabi frequencies in Eq.
4.9 can be simplified in the so-called Lamb-Dicke regime, in which the extension of the ions
wavefunction is much smaller than the light field’s wavelength. In this regime the inequality
η2(2n+1)¿ 1 must be fulfilled. The exponential in Eq. 4.8 can be expanded and only terms
in lowest order in η are kept, such that we obtain:

HLD =
~

2
Ωσ+{1 + iη(ae−iωt + a†eiωt}ei(φ−δt) +H.c. (4.10)

This Hamiltonian will give rise to three resonances. For δ = 0 the carrier transition is excited
and the Hamiltonian is:

Hcar =
~

2
Ω(σ+eiφ + σ−e−iφ). (4.11)

This Hamiltonian couples the levels |S〉|n〉 and |D〉|n〉 with a Rabi frequency Ω.
For δ = −1 the resonance is called the red sideband and the Hamiltonian is:

Hrsb =
~

2
Ω(aσ+eiφ + a†σ−e−iφ), (4.12)

which gives rise to transitions of the type |S〉|n〉 ←→ |D〉|n− 1〉 with Rabi frequency

Ωn,n−1 = Ω
√
n η. (4.13)

The third resonance occurs for δ = +1 and is called the blue sideband. In this case the
Hamiltonian takes the form:

Hbsb =
~

2
Ω(a†σ+eiφ + aσ−e−iφ). (4.14)

Here transitions of the kind |S〉|n〉 ←→ |D〉|n+ 1〉 occur with a Rabi frequency

Ωn,n+1 = Ω
√
n+ 1 η. (4.15)
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4.3. Generalizations of the Model

4.3. Generalizations of the Model

So far only the laser-ion interaction of a single ion trapped in a one-dimensional potential
was discussed. In the following the results from the previous section will be generalized to
three-dimensional systems of multiple ions.

4.3.1. Three-dimensional potential

Generalizing the results obtained for one dimension to three dimensions is straightforward,
since it only involves replacing products kx by the scalar product of the vectors ~k · ~r. There-
fore, the operator exp(iη(a† + a)) in the one-dimensional case, takes the form exp(i~k · ~r) =

exp i
∑

l ηl(a
†
l + al) in three dimensions, where the sum runs over all normal modes of the

three-dimensional harmonic oscillator and a†l and al are the creation and annihilation opera-
tors of the harmonic oscillator’s normal modes.

The Rabi frequency of a transition changing only the phonon number of one vibrational
mode is given by Ωn,n+s = Ω‖〈n + s, ...| exp i∑l ηl(a

†
l + al)|n, ...〉‖. Again, in the Lamb-

Dicke-regime this can be approximated using a Taylor expansion. For instance by applying
the expansion up to second order and keeping only first order terms of the operator a†i , the
blue sideband Rabi frequency of the mode i is given by:

Ωni,ni+1 = Ωηi
√
ni + 1



1−
∑

l 6=i
η2l (2nl + 1)



 . (4.16)

Therefore, the Rabi frequency of a sideband transition will slightly depend on the population
of all other vibrational modes.

4.3.2. Multiple-ion-crystal

For a crystal of N ions the interaction of the light field with each of the ions and 3×N normal
modes have to be taken into account, such that the interaction Hamiltonian for one ion in Eq.
4.8 becomes:

Hint =
~

2

N
∑

j=1

Ωjσ
+
j exp

(

i
∑

l

ηjl (a
†
l + al)

)

e−i(ωLt−φj) +H.c. (4.17)

In the experiments presented in this thesis the laser beam is focussed on one of the ions at a
time, such that coupling to all other ions is negligible and the sum over j can be dropped.

4.4. Spectroscopy with 40Ca+

4.4.1. Level scheme

In the experiments presented in this thesis the ion species of choice was 40Ca+. The level
scheme containing only the important transitions is shown in Fig. 4.1. As can be seen in the
level scheme four transitions are driven by laser radiation. The quadrupole transition from
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4. Laser–Ion Interaction
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Figure 4.1.: Level scheme for 40Ca containing only the states which are populated within our
experiments.

the S1/2 ground state to the D5/2 state is used to implement the qubit, i.e. the logical states
|0〉 and |1〉 are associated with these levels and laser pulses at 729 nm are used to carry out
unitary operations. Furthermore this transition is used for sideband cooling of the ion string
to the ground state of the vibrational modes.

The dipole transition connecting the S1/2 ground state and the P1/2 state serves two pur-
poses, namely the Doppler laser cooling of the ion string and the detection of the qubit’s
state. Additionally two light fields at 866 nm and 854 nm are used to deplete the metastable
D-levels.

4.4.2. The S1/2 ↔ P1/2 transition

The transition S1/2 ↔ P1/2 is at a wavelength of λ = 397 nm and has a linewidth of 20.7
MHz. The P1/2 level decays with 7 % (branching ratio 15 : 1) probability into the metastable
D3/2 state. Therefore, in order to avoid optical pumping into this state, the D3/2 ↔ P1/2
transition at 866 nm is excited to deplete the D3/2 level.

Doppler cooling

For Doppler laser cooling the laser at 397 nm is red detuned by approximately half of the
linewidth, i.e. δ = 10 MHz. The influence of the decay from the P1/2 to the D3/2 level due to
the favorable branching ratio is negligible, such that the cooling limit can be expected to be
close to the theoretical limit for Doppler cooling of a two-level-atom.

Qubit state detection

The qubit’s state can be read out by employing an electron shelving technique. Applying light
at 397 nm and thereby driving the S1/2 ↔ P1/2 transition will cause a S1/2−D5/2 superposition
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4.4. Spectroscopy with 40Ca+

to collapse and project the ion onto either the S1/2 or D5/2 state. In case of projection onto
the S1/2 state the ion will interact with the light at 397 nm and resonance fluorescence can be
detected, while in the case of projection onto the D5/2 state no fluorescence will be detected.
Therefore by detecting the presence or absence of the strong fluorescence signal at 397 nm
the qubit’s state after projection can be determined. By repeatedly preparing the ion in the
same quantum state and measuring the fluorescence the D5/2 population can be determined.
The detection efficiency of this method can be as high as 99.9 % and is only limited by the
finite lifetime of the D5/2 level [64].

4.4.3. The S1/2 ↔ D5/2 transition

The S1/2 ↔ D5/2 quadrupole transition is at a wavelength of 729 nm. Since this transition is
dipole forbidden, the D5/2 level is a metastable level with a lifetime of τ ≈ 1s.

In order to return the ions into the ground state at the beginning of every experiment
and to achieve sideband cooling at a reasonable rate it is necessary to deplete the D5/2 level
without relying solely on spontaneous decay. For this purpose the D5/2 ↔ P3/2 transition can
be excited with light at 854 nm. From the P3/2 level the ions will most probably decay back
into the S ground state. With a small probability a decay back into one of the D5/2 or D3/2

levels occurs, where the latter, as mentioned above, can be depleted by light at 866 nm.

Zeeman structure

The S1/2 ground state has two Zeeman sublevels with m = ±1/2 and the D5/2 six Zeeman
sublevels with m = ±1/2,±3/2,±5/2. For a quadrupole transition changes in the magnetic
quantum number of ∆m′ = 0, 1, 2 are allowed, which results in ten possible transitions between
the magnetic sublevels. These transitions have different coupling strength depending on the
(m,m′) combination and the angles between the light’s wave vector k and the polarization ε
and the direction of an externally applied magnetic field B.

In case of a quadrupole transition the induced electric quadrupole moment of the ion Q
couples to gradient of the electromagnetic field. Therefore, the Hamiltonian given by:

HI = Q∇E(t) (4.18)

is obtained. If this interaction Hamiltonian is written in the form of Eq. 4.4 the Rabi frequency
is defined by [68]:

Ω =

∣

∣

∣

∣

eE0

2~

〈

S1/2,m |(ε · r)(k · r)|D5/2,m
′〉
∣

∣

∣

∣

, (4.19)

where E0 is the electric field amplitude, r is the position operator of the valence electron
relative to the atom’s center of mass and m and m’ denote the magnetic quantum numbers.
This expression for the Rabi frequency can be further evaluated, such that we obtain:

Ω = κE0

√

A

k3
Λ(m,m′)g(∆m)(φ, γ), (4.20)

with

κ =
e

2~

(

15

cα

)1/2

= 30.089 · 1012V −1(sm)−1/2.
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4. Laser–Ion Interaction

Here A is the spontaneous decay rate of the D5/2 level. The factors Γ(m,m′) are the specific
Clebsch-Gordan coefficients, which in the case of our S1/2 ↔ D5/2 transition are given by:

m -1/2 -1/2 -1/2 -1/2 -1/2

m’ -5/2 -3/2 -1/2 1/2 3/2

Λ(m,m′) 1
√

4/5
√

3/5
√

2/5
√

1/5

Here only the coefficients for the case m = −1/2 are listed. The coefficients for m = +1/2 can
be derived using the fact that the Λ(m,m′) are invariant under the inversion (m→ −m;m′ →
−m′).

The functions g(∆m)(φ, γ) contain the geometry dependence of Ω. Here φ denotes the angle
between light’s k vector and the magnetic field and γ the angle between the polarization and
the magnetic field vector projected onto the plane of incidence. Explicit expressions for these
functions can be found in [64,68]. In the specific geometry of our experiment, we have φ = 45◦

and γ = 0 and the values for the g(∆m) are:

g(∆m=0) =
1

2

g(∆m=1) = 0

g(∆m=2) =
1√
24

Therefore in the chosen geometry transitions with ∆m = 1, 2 are suppressed. Additionally,
in the experiment the ion’s state is prepared in the m = −1/2 by σ− polarized light at 397
nm, before starting coherent operations on the S1/2 ↔ D5/2 transition, such that only three
available transitions, namely S(m = −1/2) ↔ D(m′ = −5/2,−1/2, 3/2) are left. In Fig.
4.2(a) the squared Clebsch-Gordan coefficients are shown and in (b) the relative line strength
(∝ Ω2) for the geometry γ = 0◦ and φ = 45◦ are given.

4.5. Manipulating ion qubits with laser pulses

In Sec. 2.5 the fundamental operations necessary to implement any kind of unitary operation
on a quantum computer were shown. In order to implement a quantum computer using
trapped 40Ca ions, these operations have to be realized by employing the laser-ion interaction
described in the previous section.

Our qubits consist of the ground state S1/2(m = −1/2) and the metastableD5/2(m = −1/2)
state of 40Ca ions. These states will often only be denoted by |S〉 and |D〉, without explicitly
giving all quantum numbers. Furthermore these states are mapped to the logical basis states
by |S〉 ↔ |1L〉 and |D〉 ↔ |0L〉. For a state of N ions the notation is2

|ion N, ..., ion 3, ion 2, ion 1〉.

The qubit’s quantum state is manipulated by laser pulses of 729 nm light, which couples to
the |S〉 ↔ |D〉 transition. The corresponding interaction Hamiltonian was given in Eq. 4.11

2The definition of the logical states and the notation will be consistently used in this thesis. However, one has
to be careful when referring to earlier publications of the presented results, in which often other conventions
were used.
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Figure 4.2.: Zeeman splitting of the quadrupole transition in a non-zero magnetic field. The
splitting is drawn in units of u = µbB/h. The height of the components in a)
is given by the squared Clebsch-Gordan coefficients. All ten allowed transitions
are shown. b) Height of the components is given by the square of the product
of geometric factors g(∆m) and the Clebsch-Gordan coefficients. Because of the
chosen geometry φ = 45◦,γ = 0◦ only six transitions are left.
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4. Laser–Ion Interaction

for carrier transitions and in Eq. 4.14 for blue sideband transitions. In order to express the
length of laser pulses independent of the actual Rabi frequency, the angle θ = Ω · t will be
used, which is identical to the angle of rotation used in Eq. 2.5-2.7. Throughout this thesis
the length of pulses will be given in units of this angle, i.e a pulse of length π actually means
a pulse of length t = π/Ω. In the following, the action of carrier and sideband laser pulses on
a string of ions will be discussed in the context of implementing the operations necessary for
a quantum computer

4.5.1. Carrier transitions

Laser pulses resonant with the carrier of the S1/2 ↔ D5/2 transition, realize the single qubit
rotations introduced in Sec. 2.1. A laser pulse of length θ and phase φ corresponds to the
unitary operation:

R(θ, φ) = exp

(

i

~
Hcarθ

)

= exp

(

i~
θ

2
(σ+eiφ + σ−e−iφ)

)

. (4.21)

Using the identity given in Eq. 2.7 this can be transformed into the more convenient form:

R(θ, φ) = cos

(

θ

2

)

I + i sin

(

θ

2

)(

0 eiφ

e−iφ 0

)

(4.22)

By comparing this equation with Eq. 2.7, we see that this unitary operation corresponds to
a rotation of the Bloch vector around an axis lying in the x-y-plane. The special cases of
rotations around the x and y-axes, as given in Eq. 2.5, are realized by the following laser
pulses:

Rx(θ) = R(θ, π) Rx̄(θ) = R(θ, 0)

Ry(θ) = R(θ, 3π/2) Rȳ(θ) = R(θ, π/2), (4.23)

where x̄ and ȳ denote rotations around the −x and −y-axis, respectively. Those operations
are already sufficient to implement any kind of single qubit operation, since every rotation
around an axis n̄ can be decomposed in rotations around the x and y-axis or in general in
rotations around any pair of non-collinear axes. A rotation Rz(θ) around the z-axis can for
example be replaced by:

Rz(θ) = R
(π

2
, π
)

·R
(

θ,−π
2

)

·R
(π

2
, 0
)

(4.24)

A widely used operation is the Hadamard transformation given in Eq. 2.3, which implements
the transformation |0〉 ↔ (|0〉 + |1〉)/

√
2 and |1〉 ↔ (|0〉 − |1〉)/

√
2. This operation can be

decomposed into rotations around the x- and y-axis by:

H = −i Rȳ
(π

4

)

·Rx̄
(π

2

)

·Ry
(π

4

)

. (4.25)

Instead of using this sequence of three rotations, we usually mimic the action of the Hadamard
operation by applying single π/2 pulses, where equal superpositions are prepared by a Rx̄(π/2)
rotation and the corresponding inverse operation is implemented by a Rx(π/2) rotation.
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Figure 4.3.: Ladder of energy levels of one vibrational mode and the ion’s internal states.
Arrows indicate coupling due to excitation of the blue sideband.

4.5.2. Sideband transitions

Laser pulses set to a frequency of one of the vibrational sidebands are an additional tool avail-
able in ion traps. By driving a sideband transition the state of the ion string’s corresponding
vibrational mode is manipulated. Provided its vibrational state is well defined, the respective
vibrational mode can serve as an additional qubit. However, this additional “qubit” is not
only attributed to a single ion but rather belongs to and is accessible from all ions within an
ion string.

In our experiments we have so far exclusively employed blue sideband transitions for qubit
manipulation and therefore the discussion will be limited to this kind of transition. The
interaction Hamiltionian for blue sideband transitions was given in Eq. 4.14. A laser pulse of
length θ = t/Ωblue and phase φ, will correspond to a unitary operation given by:

R+(θ, φ) = cos

(

θ

2

)

I + i sin

(

θ

2

)

(

a†σ+eiφ + aσ−e−iφ
)

, (4.26)

where a† and a are the creation and annihilation operators of the harmonic oscillator attributed
to the respective vibrational mode. The pulse notation given in Eq. 4.27 will often be used
with an additional subscript, as R+

n (θ, φ), where the subscript n indicates the number of the
ion adressed by the laser pulse.

The dynamics given by Eq. 4.27 is more complicated than the simple two-level dynamics
in the case of carrier transitions. The harmonic oscillator provides a system of an infinite
number of equidistant levels, where an operation R+(θ, φ) will couple all neighboring levels
|n〉 ↔ |n+ 1〉 apart from coupling the ion’s internal qubit states |S〉 and |D〉. The ladder of
the harmonic oscillator and the ion’s internal states is illustrated in Fig. 4.3. An additional
problem arises from the fact that the coupling strength of the transition |S, n〉 ↔ |D,n + 1〉
depends on the phonon number n with Ωblue ∝

√
n+ 1. Therefore, a pulse of given length

will result in different rotations of the Bloch vector for each pair of levels |S, n〉 ↔ |D,n+ 1〉.
In spite of these difficulties vibrational modes can be employed as an effective qubit by

restricting the vibrational levels which are populated in course of a pulse sequence to |0〉 and
|1〉, such that the available computational subspace is given by {|D, 0〉, |D, 1〉, |S, 1〉, |S, 0〉}.
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4. Laser–Ion Interaction

In the following two examples for blue sideband operations will be given, which will be used
frequently in the experiments presented in this thesis.

Pseudo-SWAP: Consider the action of a laser pulse R+(π,−π/2), which will transfer a
superposition of an internal qubit (α|S〉+β|D〉)|0〉 to |D〉(α|1〉+β|0〉), i.e such a pulse swaps
the state of the internal qubit with the vibrational state. However, this is only a valid SWAP
operation as long as the vibrational mode is in |n = 0〉 prior to the operation. An initial
population of |n = 1〉 would be partially transferred to the |n = 2〉 state and would therefore
leave the computational subspace. A full SWAP operation allowing a population of |n = 1〉
would require a more sophisticated pulse sequence employing the composite pulse technique
(c.f. [66, 68,79]).

Entangling electronic and vibrational state: Another interesting example is the action
of R+(π/2, 0) pulse, which transfers an ion from the |S, 0〉 state to a (|S, 0〉 + |D, 1〉)/

√
2

superposition. Formally this state can be considered as an entangled state of the vibrational
qubit with the internal qubit of the ion. Of course this kind of entanglement is of limited
use, since both qubits cannot be separated spatially nor a separate measurement of one of
the qubits without affecting the other is possible. However, applying our previously discussed
SWAP operation R+(π,−π/2) to another ion in the string, which has been prepared in the
|D〉 state prior to this operation, will map the vibrational mode’s state onto the internal state
of this ion and will therefore create an entangled state of two ions. This technique will be
employed in Ch. 7 in order two create pairs of entangled ion qubits.

4.6. Non-resonant interactions

So far only resonant interactions have been considered. However, non-resonant interactions
have to be taken into account, especially when working with sideband transitions. Due to the
small coupling strength of these transitions, which is only 1-2 % of the coupling strength to a
carrier transition (c.f. Eq. 4.15) higher light intensities are usually employed to achieve suffi-
ciently high Rabi frequencies. These high light intensities increase problems with non-resonant
coupling to the much stronger carrier transitions. In the following discussion, population
transfers and light shifts due to this coupling will be discussed.

4.6.1. Population Transfer

A light field resonant with the |S, 0〉 ↔ |D, 1〉 transition, will drive Rabi oscillations on this
transition3. At the same time this light field will non-resonantly drive Rabi oscillations on
the carrier transition |S, 0〉 ↔ |D, 0〉. In order to understand this effect, consider the time
dependence of the population of the upper level, which is obtained as the solution of the Bloch
equations [80]:

PD =
Ω2

Ω2 +∆2
sin2

(

1

2

√

Ω2 +∆2 t

)

, (4.27)

where ∆ = ωl − ωa is the detuning of the light field’s frequency from the atomic resonance
frequency. In case of the resonantly excited |S, 0〉 ↔ |D, 1〉 sideband transition, we have ∆ = 0

3Here it is assumed that the respective vibrational mode is cooled to the ground state |n = 0〉, such that we
only have to consider sideband transitions between levels with n = 0 and n = 1.
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4.6. Non-resonant interactions

and therefore Rabi oscillations with Rabi frequency Ωblue and an amplitude of one will occur.
Rabi oscillations due to non-resonant excitation of the carrier have a frequency

√

Ω2
car +∆2

and an amplitude of 1/(1 + (∆/Ω)2), where we have Ωcar = Ωblue/η.
In order to implement quantum computations with high fidelity, it is required to implement

the operations shown in Sec. 4.5 as perfect as possible. Unwanted non-resonant excitation
of the carrier transition will transfer populations into the wrong states of the computational
subspace. Therefore it is desirable to keep the amplitude of the off-resonant Rabi oscillations
given by:

Aoff-resonant =
1

1 + [ η∆
Ωblue

]2
, (4.28)

as small as possible by reducing the Rabi frequency Ωblue on the sideband transition. This
measure will however increase the time necessary for operations containing sideband pulses,
which limits the number of operations, that can be carried out within the coherence time of
the qubits. Therefore, setting the Rabi frequency of the sideband transition is a trade-off
between the speed of the quantum gates and the quality of these gates.

In our experiments, the blue sideband transition belonging to the center-of-mass mode is
usually excited with a Rabi frequency on the order of Ωblue = 2π · 5 kHz. Typically, the
center-of-mass mode will be 1.2 MHz away from the carrier resonance and will have a Lamb-
Dicke parameter of η = 2.4 %. The non-resonant Rabi oscillation of the carrier transition are
expected to have a frequency of Ωrabi = 2π · 1.22 MHz and an amplitude of 3 · 10−2.

4.6.2. Light Shifts

A non-resonant light field will shift atomic levels, an effect known as light shift or AC-Stark-
effect. Suppose the unperturbed energy difference of two atomic levels is given by E = ~ωA
and the light field is detuned by ∆ = ωL − ωA from the unperturbed transition frequency,
where ωL is the frequency of the light field. Further suppose that the light field’s intensity is
such that the Rabi frequency is given by Ω. Then, the energetically lower level will be shifted
by Ω2/4∆ and the energetically upper level by −Ω2/4∆, where the level shifts are given
in units of angular frequency. These shifts will result in a change of the atomic resonance
frequency by Ω2/2∆, which is illustrated in Fig. 4.4 for both signs of the detuning ∆. For
red-detuned light (∆ < 0) the transition frequency is shifted to a larger frequency, while in
case of blue-detuned light (∆ > 0) the transition frequency is shifted to a lower frequency.
Unlike non-resonant population transfers, light shifts can be cancelled. The corresponding
compensation technique will be introduced in Sec. 6.4.
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Figure 4.4.: Light shift of the resonance frequency of a transition depending on the detuning
∆. For red-detuned light the resonance frequency is shifted to a higher frequency,
while for blue-detuned light the resonance frequency is shifted to a lower frequency.
In case the light is at resonance with the transition (∆ = 0) no light shift occurs.
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5.1. Linear Ion Trap

The linear ion trap used in this PhD thesis, was designed by Stephan Gulde and the specifi-
cations and design are thoroughly discussed in his PhD thesis [68]. A picture and schematic
drawings of the trap can be seen in Fig. 5.1. One of the major goals of this trap design was
to increase the trap frequencies in the radial and axial direction with respect to earlier trap
designs by decreasing the size of the trap [63,65].

As can be seen in Fig. 5.1 the radial trap electrodes have a blade-like shape. This design
was chosen because such a structure can be machined with higher precision than rod-like
electrodes which were used in earlier experiments.

Front view

compensation

electrodes Side view 

(cut through diagonally

opposite blades)

blades - radial electrodes

tips - axial electrodes

30.0 mm

Figure 5.1.: Picture and a schematic drawing of the linear ion trap. The distance between
the axial electrodes is L = 5.0 mm, the diagonal distance between two radial
electrodes r = 1.6 mm. Picture and drawings from [68].

The ion trap is operated at a drive frequency of 23.5 MHz. The radiofrequency power of up
to 15 W is produced by a signal generator and an RF-amplifier. The RF power is adjustable
by a variable attenuator. The radiofrequency signal is then coupled into a helical resonator,
which is driven at its resonant frequency and therefore enhances the RF amplitude. The axial
trap potential is created by applying a DC voltage of up to 2000 V to the endcap electrodes.

A standard choice for the trap parameters in the experiments presented in this thesis were an
RF power of P = 11−12 W and an endcap voltage of V = 1000 V. With such a configuration
the frequency of the center-of-mass mode in the radial direction was ωr ≈ 2π ·4.4 MHz and in
the axial direction ωz ≈ 2π · 1.2 MHz. In this configuration the chosen parameters are below
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5. Experimental Setup

their maximum values and therefore the trap frequencies are not as high as possible. But at
higher RF powers or endcap voltages it was observed that the ions more frequently left the
desired linear crystal configuration, which is supposedly due to nonlinear resonances of the
ion’s oscillations.

5.2. Laser Systems

In Sec. 4.4.1 on page 26 a part of the level scheme of 40Ca+ was shown, containing the
transitions important for our experiments. Four laser sources are needed, a laser at 397 nm
to cool and monitor the ions, one at 729 nm to drive the qubit transition and lasers at 866
and 854 nm to deplete the metastable D-levels.

Fig. 5.2 gives an overview of the laser systems and the optical setup. The setup is spread
over two optical tables. On optical table 1 the laser light at 729 and 397 nm is generated
and sent to optical table 2 via optical fibres. On optical table 2 the vacuum vessel containing
the linear ion trap and two diode laser systems, generating the light at 866 and 854 nm, are
installed.

The laser light at 397 nm is split into three parts. Two beams are used for Doppler cooling
and monitoring of the ions and are denoted Dop1 and Dop2 in Fig. 5.2. These laser beams
are overlapped with the light at 866 and 854 nm. For this purpose a glass substrate is used
which has a high reflectivity coating for 397 nm on one side and an anti-reflection coating for
infrared light around 860 nm on the other side. The third 397 nm beam is used to produce
a circularly polarized light beam, denoted as 397σ, for optical pumping of the ions into the
S1/2(m = −1/2) state.

To be able to adjust the lasers’ wavelengths coarsely close to the atomic resonances, two
wavemeters are used with which the wavelengths can be determined with a precision of 10−3

to 10−4 nm.

5.2.1. 397 nm Laser System

The light at 397 nm is generated by frequency doubling the light from a Ti:Sapphire laser
at 794 nm. The Ti:Sapphire laser is pumped by a diode pumped solid state laser system
(DPSS)1 at 532 nm with a power of up to 10 W. The Ti:Sapphire laser is frequency stabilized
to a reference cavity using the Pound-Drever-Hall method [81]. To isolate the reference cavity
from temperature fluctuations of the environment, it is built into a temperature stabilized
vessel. One of the reference cavity’s mirrors is mounted on a piezoelectric transducer (PZT).
By changing the voltage applied to this PZT, the length and therefore, resonant frequency of
the cavity are changed. At the same time the laser’s frequency is changed by virtue of the
feedback loop. The laser light at 794 nm is coupled into a commercial frequency doubler to
generate laser light at 397 nm.

Switching of the 397 nm light is achieved by an acousto-optical modulator (AOM) placed
before the fibre which transports the light to optical table 2, where the trap is located. Only
light diffracted into the first order is coupled into the fibre. Switching off the RF power of the

1Coherent Verdi 10 W
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Figure 5.2.: Overview of the laser systems and optical setup. The laser systems for 729 nm
and 397 nm are installed on optical table 1. This laser light is transferred to
the second optical table via optical fibres. On optical table 2 the vacuum vessel
containing the ion trap and the diode laser systems at 866 nm and 854 nm are
installed.
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AOM will switch off the light at 397 nm on optical table 2. Additionally by changing the RF
power the light power at 397 nm on optical table 2 can be adjusted.

5.2.2. 866 nm and 854 nm Laser Systems

The light at 866 nm and 854 nm is generated by two diode laser systems. A detailed desciption
of the design and specifications of these laser systems can be found in [82]. Both diode laser
systems are frequency stabilized using optical feedback from a grating and modulation of the
laser diode’s injection current. Optical resonators are used as frequency references and are
placed in temperature stabilized vessels. The diode lasers are locked using the Pound-Drever-
Hall method. The frequency of both diode laser systems can be adjusted by changing the RF
drive frequency of acousto-optical modulators in a double pass configuration.

5.2.3. 729 nm Laser System

Frequency stabilization

Laser light at 729 nm is generated by a second Ti:Sapphire laser, which is pumped by another
DPSS laser system (see Sec. 5.2.1). The 729 nm laser system provides the light for coherent
manipulation of our ion qubits. The laser’s frequency is required to be highly stable on both
long and short time scales. In order to meet this requirement a sophisticated frequency lock
of the Ti:Sapphire laser at 729 nm was developed which is thoroughly described in [65]. As
a frequency reference a high finesse resonator (F=230000) is used. The resonator is placed
in a temperature stabilized vacuum tank to isolate it from thermal fluctuations and acoustic
noise. Additionally, the vacuum vessel is placed in a closed box, whose inner temperature is
also stabilized. In this way changes in the resonators temperature are minimized, such that the
resonator’s resonance frequency drift is below 1 Hz/s. The Ti:Sapphire laser is stabilized onto
the resonator using the Pound-Drever-Hall method. The feedback circuit has a bandwidth
of up to 10 MHz. Slow frequency fluctuations (below 18 kHz) are compensated by adjusting
the laser’s cavity length, with a PZT which is mounted below one of the cavity mirrors. High
frequency fluctuations are compensated for by an electro-optical modulator, which is placed
in the laser resonator.

Frequency and phase control

The qubits are manipulated by laser pulses of light at 729 nm. The length and power of these
pulses and the frequency and phase of the laser light have to be precisely controlled.

The light at 729 nm passes through an acousto-optical modulator (AOM) in a double pass
configuration, such that only light which is first-order diffracted will be coupled into the fibre
transporting the light to the ion trap. The frequency and phase of the light are adjusted by
changing the AOM’s RF drive frequency and phase. Additionally by switching on and off the
RF drive power of the AOM, the 729 nm light pulses of well defined length can be produced.

Usually every single run of an experiment takes 20 - 40 ms, including an initial period for
Doppler and sideband cooling of about 16 ms, a period containing the pulses for coherent
manipulation of the qubit of up to 2 ms and a final period in which the qubit’s state is read
out. During the second period, sequences of a few tens of 729 nm pulses at the different
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Figure 5.3.: RF network to control phase and frequency of the 729 nm laser light via an
acousto optical modulator. For every desired laser frequency one RF synthesizer
is necessary. The radiofrequency signal from every RF source can be turned on
and off by RF switches, controlled by TTL signals. All signals from the RF sources
are mixed with the signal from the local oscillator, to obtain an RF signal around
the acousto-optical modulators center frequency of 230 MHz. In the branch of
the local oscillator a digital phase shifter is present to control the phase of the
radiofrequency sent to the acousto-optical modulator. The RF-synthesizers are
all phase locked to the 10 MHz signal from a Rubidium atomic clock.
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carrier and sideband frequencies with different power and phases have to be generated, by
changing the parameters of AOM’s RF drive. This is achieved by the RF-network, whose
architecture is shown in Fig. 5.32. For every frequency needed within an experimental run one
RF synthesizer3 is present, which is set to the desired frequency and power. TTL controlled
RF-switches are installed at the output of all RF-synthesizers, such that the RF-source driving
the AOM can be switched in a time below a microsecond and the length of the 729 nm laser
pulses can be controlled by the length of the applied TTL pulses. After the switches the RF
signals are combined and sent through another switch, which can be used to mask pulses or
whole pulse sequences sent to the other switches.

The actual RF signal which is sent to the AOM is generated by mixing the signal of the
RF sources with another RF source which serves as a local oscillator. The advantage of
this approach is as follows: The frequency of the 729 nm laser will slowly drift away from
the atomic resonance, due to a slow drift of the resonance frequency of the 729 nm laser’s
reference cavity. Additionally slow changes of the ambient magnetic field will change the
atomic resonance frequency via the Zeeman effect. Both effects have to be compensated for
by resetting the 729 nm frequency using the AOM. Now, instead of adjusting every single RF
source only the frequency of the local oscillator has to be adjusted. Additionally a digital
phase shifter is placed after the local oscillator . A phase shift of the radiofrequency signal
applied to the acousto-optical modulator will result in an equal phase shift of the first order
diffracted laser light passing through the modulator.

Addressing optics

Our approach to ion trap quantum computing relies on the ability to manipulate one qubit
within an ion string at a time while leaving all other qubits in the ion string undisturbed.
Therefore it is necessary to focus the 729 nm laser beam onto the ions with a spot size smaller
than the inter-ion distance. Additionally it must be possible to shift the focus from one ion
location to another within a few microseconds.

Recalling the results in Sec. 3.2 the expected inter-ion distance for the usual trap parameters
(ωz = 2π · 1.2 MHz) can be calculated to be:

N = 2 : ∆z = 4.96 µm

N = 3 : ∆z = 4.24 µm

To meet these demands the optical setup shown in Fig. 5.2.3 is used. After adjusting the 729
laser beam polarisation by a polarizing beam splitter and half wave plates the beam passes
through an electro-optical-deflector (EOD). This element deflects the laser beam dependent
on the voltage applied to the device. The voltage applied to the electro optical deflector can
be switched within 10 µs in a range of -1000 V to +1000 V. This voltage amplitude results
in a shift of the focus at the location of the ion string of ≈20-25 µm. In order to align the
deflection plane of the EOD with the axis of the ion string, the EOD had to be turned by
about 10◦ with respect to the horizontal plane. The EOD only works properly with light

2Currently efforts are underway to replace this network by a single device, which can switch between the
needed frequencies, phases and power with the necessary time resolution

3Marconi 2023, LFR 2023A
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Figure 5.4.: Schematic drawing of the optics for adressing single ions. An electro-optical de-
flector is used to change the lateral position of the 729 nm focus. To achieve a
beam waist on the order of a few micrometers, the 729 nm beam is first expanded
by a telescope and then focussed onto the ion string by a microscope objective.

whose polarization is normal to the EOD’s deflection plane. Therefore, two additional half
wave plates are necessary, to turn the polarization such that it matches to the deflector and to
turn the polarization back to the vertical. The beam is expanded using a telescope consisting
of a lens L1 (f=25 mm) and a second lens L2 (L=160 mm) and finally focused onto the ions
by a commercial microscope objective4, which has a working distance of 65 mm. The path
backwards through the objective is also used to image the fluorescence light of the ions at 397
nm onto the CCD camera. In order to split the light at 729 nm and 397 nm a dichroic mirror
is used, which is only highly reflective for the light at 729 nm.

The waist of the focus at the position of the ions has been measured to be w = 2.50(8)µm.
Assuming a Gaussian shape of the beam, one would expect the intensity at the position of
the next neighboring ion to be only a fraction of 3.4 · 10−4 and therefore the Rabi frequency
to be a fraction of 1.8%. Measurements of the Rabi frequencies of adjacent ions, where the
729 nm laser beam is focused onto one of the ions, yields a ratio of 2.9 % [68].

5.3. Vacuum Vessel and Optical Access

5.3.1. Vacuum vessel

The vacuum vessel is built up out of a CF 63 double cross with eight extra CF 35 flanges. The
linear ion trap is attached to the flange on top of the vacuum vessel. At the bottom, two ovens
containing calcium are installed (cf. Sec. 5.4). All vacuum related devices are installed on one
arm, to the side of the vessel. Two pumps are installed: a constantly running ion-getter-pump
and an titanium sublimation pump, which is turned on from time to time to keep the pressure
on the order of 10−11 − 10−10 bar.

4Nikon MNH-23150 ED Plan 1.5x
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Figure 5.5.: Schematic drawing of the vacuum vessel and the laser beams entering it, a) cross-
section of the vacuum vessel in the vertical plane, b) cross-section in the horizontal
plane. The grey boxes denoted with O represent the microscope objectives imag-
ing the 729 nm light onto the ions and the fluorescence light onto the PMT. The
flanges in which the objectives are built in are inverted viewports, which allows
one to place the objectives close enough to the trap. The coils generating the
magnetic field are denoted as Cx, Cy and Cz.
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5.3.2. Optical access

The geometry of the vacuum vessel can be seen in Fig. 5.5. The trap is located in the center
of the vacuum vessel. The trap axis does not coincide with the x-axis given of the vacuum
vessel. The reason for this arrangement is the different demands on the coupling of the ions
to the light beam at 729 nm, which is coupled in along the vacuum vessel’s y-axis. On the one
hand it has to be possible to address single ions within an ion chain with this beam, which
is easiest when the beam hits the ion chain perpendicularly. On the other hand, for sideband
cooling and quantum algorithms, a coupling to the ion’s axial sidebands is necessary, which
is largest when the 729 nm light beam passes along the trap axis. Therefore, the trap axis
deviates from the y-axis of vacuum chamber by an angle of α = 22.5◦.

As has been noted in the previous section the 729 nm beam is imaged onto the ions by a
microscope objective with a working distance of 65 mm. The flanges, in which the objectives
are installed, are inverted viewports, which allows one to place the objectives close enough to
the trap. On the opposite side of the vacuum vessel another microscope objective is installed
which images the ions’ fluorescence onto the photo-multiplier-tube.

The so-called Doppler beams Dop1 and Dop2, containing the laser beams at 397 nm, 866
nm and 854 nm, are coupled in through two channels. One Doppler beam lies in the horizontal
x-y plane, while the other is coupled in from below and lies in the x-z-plane. Both beams
are coupled in through quartz viewports with an antireflection coating for 397 nm. Another
two optical channels in the horizontal x-y-plane are used to couple in the light beams with
circularly polarized 397 nm σ-beam and the light of the photoionization lasers.

For the experiments treated in this thesis a well-defined magnetic field has to be applied
to achieve a splitting of the Zeeman-sublevels of the S1/2 ↔ D5/2 transition. Coils are
installed which produce magnetic fields along the x,y and z-axis of the vacuum vessel to
compensate for the earth’s magnetic field. Another pair of coils (Cq) produces a magnetic
field of approximately 2.3 Gauss parallel to the σ+ polarized 397 nm beam, which generates
the desired Zeeman splitting.

5.4. Trap loading

In order to load ions into the trap a beam of neutral calcium atoms is used, which is ionized
in the trap center. An atomic calcium beam is produced by an oven, which is built into the
vacuum vessel. It consists of stainless steel tubes which are heated by an electric current.
The atomic beam leaving the oven is collimated by another steel tube with a diameter of 4
mm that is attached to the end of the oven tube. The end of this collimating tube is 15
mm away from the trap center, such that the trap potential is not modified by the presence
of the metallic oven. This construction results in an atomic beam of 6 mm diameter and a
divergence of 17◦ at the trap center [68,83].

Ionization of neutral atoms for loading of an ion trap, is usually done by electron impact.
But this method has some serious disadvantages, namely [68]:

• After electron bombardment localized charges remain on the surface of the trap elec-
trodes and surrounding structures, producing stray fields which have to be compensated
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Figure 5.6.: Level scheme of neutral calcium and relevant wavelengths for ionization.

for to avoid micromotion. Because of the slow migration of these charges on a time scale
of a few hours, the compensation fields have to be readjusted several times during a day.

• The flux of neutral calcium atoms, necessary to obtain a sufficient loading rate, can
result in patches of calcium on the electrode surfaces, which aggravates the problems
with unwanted charges deposited on the electrodes and the resulting stray fields.

• Not only neutral 40Ca atoms but also atoms from the background gas or other calcium
isotops are ionized using the electron impact method. Therefore impurity ions in the
ion strings were frequently observed [63].

These problems were solved by discarding the electron impact method and adopt photoion-
ization for trap loading [84]. Photoionization of calcium is achieved by a process shown in the
level scheme in Fig. 5.4. First the calcium atoms are excited from the 4s1S0 ground state to
the 4p1P1 with light at 423 nm. Then with light at 390 nm the calcium atoms are excited from
the 4p1P1 to Rydberg states near the continuum, where the atoms are field ionized by the
electric fields in the trap volume. The light at 423 nm and 390 nm is generated by two diode
laser systems. The excitation in the first step of the photoionization is a resonant process and
therefore the wavelength of 423 nm laser system has to be tuned to the atomic resonance.
We measure the laser’s wavelength with a wavemeter and set the wavelength within 1× 10−3

nm of the atomic resonance. Then the laser wavelength can be set to the 4s1S0 ↔ 4p1P1
transition by using the signal from a hollow-cathode discharge lamp [84].

This photo-ionization process proved to be more than five orders of magnitude more efficient
than the electron impact method [68]. The flux of neutral calcium and therefore the risk of
producing patches on the electrodes could be reduced. Additionally, the fact that electrons
are no longer used for ionization reduced the problem with unwanted stray fields. Another
advantage of the photoionization scheme is that the used wavelengths are specific to neutral
calcium and therefore other elements from the background gas are not ionized and loaded into
the trap. It has been even shown that depending on the exact wavelength of the 423 nm laser
the photoionization process is specific to different calcium isotopes [84].
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5.5. Detection system

5.5.1. Photomultiplier (PMT)

The photomultiplier tube5 consists of a bialkali photo cathode which is specified to have a
quantum efficiency of 28% at 397 nm. The fluorescence from the ions is collected by a micro-
scope objective, which images the trap center to focal plane 45 cm away from the objective.
At this point four adjustable blades serve as an diaphragm to reduce unwanted straylight.
Light at wavelengths other than 397 nm has to be suppressed. In particular the light of the
729 nm beam, which directly enters into the PMT channel after passing through the trap
center, has to be filtered out. The photo cathode itself has a much lower quantum efficiency
for light above 650 nm compared to 397 nm. Additionally the PMT window is covered by
Schott glas filters type BG39 and BG3, which suppress light at 729 nm.

In Fig. 5.7 histograms of the photons counted by the PMT for exposure times of (a) 3.5
ms and (b) 300 µs are shown. In both cases only one ion was fluorescing and before the
measurement the ion was prepared in a S1/2 − D5/2 superposition. Two peaks can be seen
in the histogram. One peak corresponds to the events where the ion is projected into the
S-ground-state and the ion is fluorescing. The other peak corresponds to the cases where the
ion is projected into the D-state and the ion doesn’t emit fluorescence photons. The residual
photons which are detected in this case are due to stray light of the 397 nm laser.

An exposure time of 3.5 ms is usually used to detect the quantum of the ion’s at the end
of one experimental run. As can be seen in the histogram Fig. 5.7(a) it is possible to detect
the state of one ion with virtually 100% certainty. The shorter exposure time of 300 µs was
used when a projective measurement of one qubit had to carried out and the result of this
measurement was immediately used, i.e. within the coherence time of our qubits, to determine
which further operations had to be applied to the qubit register. For this exposure time the
state of the ion can be detected with a probability of 99%.

For three ions a typical histogram of the photons counted by our PMT is shown in Fig.
5.8. Three peaks can be seen, which correspond to events where non, one, two or three
ions emitted light; therefore the number of fluorescing ions can be determined, however no
information about which ions fluoresce is available.

5.5.2. CCD Camera

The second detection device used in our experimental setup is a CCD camera6. Fluorescence
light emitted by the ions is imaged onto the CCD detector by the same objective used for
focussing of the 729 nm beam (cf. Fig. 5.2.3). The CCD camera in our setup is equipped with
an image intensifier, which increases the sensitivity of the camera system. The image intensifier
consists of three components: a photocathode, a microchannel plate and a fluorescent screen.
Photons incindent on the photocathode generate electrons via the photoelectric effect. These
electrons enter the microchannel plate (MCP), which is a glass substrate with millions of
transverse channels7. These channels contain secondary electron emitters on their inner walls,

5Electron Tubes, PMT type 9111
6Roper Scientific IPentaMAX (512x512 FT CCD, Red/Blue GenII Intensifier)
7Usually each of these channels has a diameter of 10-12 µm. The spacing between hexagonally arranged

channels is about 12 - 15 µm [85]
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Figure 5.7.: Histograms of the photons counted by the PMT from one fluorescing ion for an
exposure of a) 3.5 ms and b) 300 µs.
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Figure 5.8.: Histogram of the photons counted by the PMT from three fluorescing ions for an
exposure time of 3.5 ms. The four peaks correspond to events when no, one, two
or three ions emit light.
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Figure 5.9.: Histogram of the average number of counts within an ROI containing one ion.
The CCD cameras exposure time was set to 10 ms.

such that by applying a voltage across the MCP every channel works as a small photomultiplier
device. Electrons leaving the MCP are accelerated by a voltage of 5-8 kV before they hit the
fluorescent screen and generate photons, which are then detected by the CCD.

It is possible to define areas of pixels around the ion’s images on the CCD, the so-called
regions of interest (ROI). Then only these small regions, which are usually 5x5 pixels large,
are read out and digitized instead of the full array of 512x512 pixels. This way, the time
necessary for reading-out the CCD chip and transferring the data to the PC can be decreased
to appoximately 30 ms. The average number of counts for every ROI is calculated. In Fig.
5.9 a histogram of this average is shown for an exposure time of 10 ms. Two peaks can be
seen corresponding to events where the ion contained in the ROI fluoresces or not. Provided
a proper threshold between the two peaks is set, the ion’s state can be determined with a
probability of 99.3 %.
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6. Experimental techniques and prerequisites

The experiments presented in the following chapters required several experimental techniques
and procedures to be properly implemented. The most basic steps of loading ions and ad-
justing the lasers were already described in the PhD theses of Hanns-Christoph Nägerl [63],
Harald Rohde [65] and Christian Roos [64]. In the following we assume that these initial steps
have been already completed.

In the following some of the required experimental techniques are briefly reviewed. A more
extensive description of these techniques can be found in the PhD thesis of Stefan Gulde [68].

6.1. Spectroscopy on the Qubit transition

Spectroscopic measurements on the qubit transition are made by employing a pulsed scheme.
Every experimental cycle, which usually takes 20-40 ms1, includes all necessary pulses for
laser cooling, manipulation of the qubits and the read-out of the ion string. For one data
point such a cycle is repeated for 100-200 times in order to determine the probability to find
the ions in the D-state PD, which will sometimes also be denoted as D-state probability or
excitation probability. The estimation of the D-state population is subjected to quantum
projection noise [86], such that the chosen number of cycles will depend on the allowed order
of statistical noise.

A simple example for an experimental cycle is shown in Fig. 6.1. This sequence starts
with 2 ms of Doppler cooling by applying 397 nm and 866 nm light. Light at 854 nm is
simultaneously applied to return any population left in the D5/2 state in the previous cycle
to the S1/2 ground state. In order to ensure that the ions are prepared in the m = −1/2
Zeeman level of the S1/2 state, a short pulse of σ− polarized light is applied, which transfers
any population of the m = +1/2 Zeeman level to the m = −1/2 level.

Next the sequence of 729 nm laser pulses implementing the actual spectroscopic or quantum
computational experiment is applied. Finally, the experimental cycle is concluded by applying
light at 397 nm and 866 nm in order to measure the state of the ion string (cf. Sec. 4.4.2). The
ion’s fluorescence is detected with the photo-multiplier tube (PMT) or the CCD-camera. The
detection time is set to 3.5 ms, if only the PMT is used, or is set to 10 ms, if the CCD-camera
is also employed.

In Figs. 5.7 and 5.9 histograms of the number of photons counted with the PMT and CCD
camera, respectively, were shown. Histograms of this kind are used to set a threshold in order
to define whether an ion is fluorescing or not. For all cycles taken, the number of counted
photons2 is evaluated, the number of cycles in which the ion was not fluorescing counted and
eventually the probability to find the ion in the D-state, PD, determined.

1An exception are measurements of the lifetime of certain states, where an experimental cycle can include
waiting times of up to a few seconds.

2In the case of the CCD camera the average fluorescence within one region of interest is taken (see Sec. 5.5.2)
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Doppler 397 nm

866 nm

854 nm

729 nm

397 nm σ−

Detection 397 nm

Counter

2.0 ms 2.3 ms 5.0 ms

Laser cooling

Qubit


manipulation

Read-out


Figure 6.1.: Sequence of laser pulses in one experimental cycle. The grey rectangles indicate
the periods, when the respective laser pulses are applied. The vertical dashed
lines separate the stages of laser cooling, qubit manipulation and read-out of the
ion string.

Evaluating the fluorescence data collected with the PMT for more than one ion is a little
more complicated. For example, as can be seen in Fig. 5.8 a histogram for three ions contains
four peaks, which correspond to events where three, two, one or none of the ions were fluoresc-
ing. In order to discriminate between these cases, thresholds are set in-between those peaks.
For every single cycle the number of non-fluorescing ions noff is determined and weighted by
the total number of ions, nion. The excitation probability of the ion string is given by:

PD =
1

N

N
∑

i=1

noff
i

nion
, (6.1)

which becomes one if all ions are excited to the D-state.
Experimental cycles can be synchronized with the 50 Hz power line frequency. This measure

minimizes the influence of magnetic field fluctuations, which usually have a 50 Hz periodicity.
Therefore, most experiments, especially those presented in the later chapters, are performed
with this synchronization, i.e. every cycle will start at the same phase of the 50 Hz power
line (cf. Sec. 6.5). Experiments without synchronization are done only if less spectroscopic
precision is acceptable and it is desired to acquire data points at a higher rate than the upper
bound of 50 Hz for synchronized experiments.

An experiment as shown in Fig. 6.1, containing only a single 729 nm laser pulse, can serve
for different kinds of measurements. In Fig. 6.2(a) the frequency of the laser pulse exciting
the ions was varied, resulting in an excitation spectrum, containing information about the
relative frequencies of the carrier and sideband resonances and therefore the trap frequencies.
In Fig. 6.2(b) the frequency of the laser was set to the carrier resonance and the length of
the pulse was varied, which results in Rabi oscillations. Such pulse length scans are used to
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Figure 6.2.: a) Excitation spectrum of a 3-ion-crystal. The central resonance is the carrier of
the S1/2(m = −1/2) ↔ D5/2(m = −1/2) transition. Frequencies are given with
respect to the carrier resonance. The axial and radial sidebands of the ion-crystal
can be identified. The axial trap frequency is ωax = 2π · 1.2 MHz and the radial
trap frequency is ωr = 2π · 4.2 MHz. The radial sideband resonances are split,
which is due to the radial oscillation frequencies being non-degenerate. b) Scan
of the length of a laser pulse exciting a single ion. The laser frequency was set
to the carrier resonance. Rabi oscillations with frequency Ω = 2π · 18 kHz are
observed.
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determine the Rabi frequency and/or the length of laser pulses implementing π/2-, π- and
other rotations in more complex pulse sequences.

6.2. Laser cooling

Slowing down the motion of ions in our experiments via laser cooling techniques is done in
order to to:

• crystallize the ions in linear configuration,

• reach the Lamb-Dicke limit,

• cool down one of the vibrational modes to its ground state |n = 0〉.

The first two goals can be accomplished by using only Doppler cooling, whereas the third goal
can in case of our experiment only be accomplished by additional sideband cooling3 of the
respective vibrational mode. We apply each technique in turn to accomplish all these goals.

6.2.1. Doppler cooling

For Doppler cooling, light at 397 nm is used, which is red-detuned approximately half the
natural line width of Γ/2 ≈ 11.5 MHz from resonance with the S1/2 ↔ P1/2 dipole transition.
The lowest temperatures are reached if the intensity of the 397 nm laser is far below the
saturation intensity of the dipole transition. This behavior is understandable given that the
cooling limit is half the transition’s line width, which would be increased by power broadening
when using laser intensities above the saturation intensity.

As shown in the experimental cycle in Fig. 6.1 Doppler cooling is applied for 3.5 ms, which
is sufficient to keep the ions crystallized in a linear chain configuration and to reach the Lamb-
Dicke limit. For radial and axial trap frequencies of ωr = 2π · 5 MHz and ωax = 2π · 1 MHz,
respectively, the mean phonon number of the vibrational modes after doppler cooling were
found to be n̄ax = 15 for the axial modes and n̄rad = 4 for the radial modes [68].

6.2.2. Sideband cooling

As has been discussed in Sec. 4.5.2, employing sideband transitions in order to implement
well-defined quantum operations requires the available vibrational states to be restricted to
|n = 0〉 and |n = 1〉. First of all this requires the respective vibrational mode to be initialized
in |n = 0〉. In the experiments presented in the following chapters the center-of-mass mode
was usually employed. After Doppler cooling this mode has a mean phonon population of
n̄ = 15. The ground state is reached by laser cooling on the S1/2(m = −1/2) ↔ D5/2(m =
−5/2) transition. Since the natural linewidth of this transition is much smaller than the trap
frequency, the vibrational sidebands can be resolved in the transition’s spectrum, such that we
speak of resolved sideband cooling. In Fig. 6.3 the basic laser cooling mechanism is depicted.

3Whether we speak of Doppler cooling or sideband cooling depends on the relation of the transition’s natural
linewidth Γ and the vibrational frequency ω. In the weak confinement regime (Γ À ω) it is common to
use the term Doppler cooling , while in the strong confinement limit (Γ < ω) the term resolved-sideband
cooling is employed [87].
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Figure 6.3.: a) Basic principle of sideband cooling. Excitation of an ion on the red sideband
of the S1/2(m = −1/2) ↔ D5/2(m = −5/2) reduces the phonon number by
one. Spontaneous decay back into the ground state will most likely happen under
conservation of the phonon number. By repeating these excitation-decay cycles
the phonon number is stepwise reduced until the ground state is reached and the
ions no longer interact with the light field at 729 nm. b) Level scheme of 40Ca+

with the transitions used for sideband cooling. The cooling rate is increased by
applying light at 854 nm which depletes the D5/2-level.

The laser at 729 nm is tuned to the red sideband of a vibrational mode of the S1/2(m =
−1/2)↔ D5/2(m = −5/2) transition. An excitation of an ion to the D5/2(m = −5/2) level is
accompanied by a decrease of the number of phonons by one. Due to the preceding doppler
cooling stage the ion string is in the Lamb-Dicke limit, such that spontaneous emission events
from the D5/2 level back to the ground state S1/2 will most probably happen without a
change of the number phonons4. Therefore by repeating such a cycle of excitation on the red
sideband of the S1/2(m = −1/2)↔ D5/2(m = −5/2) transition and subsequent spontaneous
decay back into the ground state, the number of phonons can be steadily reduced until the
vibrational ground state is reached.

However, due to the natural lifetime of the D5/2-level of τ ≈ 1 s the cooling rate of this
scheme is limited to 1 Hz, which is far to small for practical purposes. Heating processes,
that are always present in experiments, will increase the mean phonon number and therefore
a large enough cooling rate is necessary to overcome the heating processes5.

The cooling rate can be increased by applying light at 854 nm, which will transfer a popu-
lation of the D5/2-level to the P3/2-level from where spontaneous decay back into the ground
state will occur quickly, since this level has only a lifetime of ≈ 7 ns. From the P3/2-level
the ion can decay with a certain probability into the S1/2(m = +1/2)-level and therefore
leave the cooling cycle. This probability is already minimized by choosing the transition
S1/2(m = −1/2) ↔ D5/2(m = −5/2) for cooling, such that due to the selection rules a

4Spontaneous emission events of the kind |D,n〉 → |S, n + 1〉 are suppressed by a factor ∝ η2 in the Lamb-
Dicke limit [87]

5In our experiment a heating rate of one phonon per 140 ms was measured [68].
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decay back into the m=+1/2 level is most probable. On the average the ions end in the
S1/2(m = +1/2) level every 80-160 cycles depending on the polarization setting of the 854 nm
laser. Hence, the ions will rarely leave the cooling cycle, since far fewer cycles are necessary
to cool the ion string from the initial mean phonon number of n̄ = 15 to the ground state. A
possible population of the S1/2(m = +1/2) level is transferred back to the S1/2(m = −1/2)
by applying short pulses of 397 nm σ− polarized light during sideband cooling.

In Fig. 6.4 an experimental cycle including sideband cooling is shown. Sideband cooling
starts immediately after Doppler cooling and is carried out for ≈14 ms. The efficiency of

Doppler 397 nm

866 nm

854 nm

729 nm

397 nm σ
−

Detection 397 nm

Counter

2.0 ms 16 ms 16.3 ms

Doppler cooling

Qubit

manipulation
Read-outSideband cooling

19.9 ms

Figure 6.4.: Sequence of laser pulses of an experimental cycle including sideband cooling. After
Doppler cooling light at 729 nm tuned to the red sideband of the S1/2(m =
−1/2) ↔ D5/2(m = −5/2) transition is applied. Additionally, short pulses of
397 nm σ− polarized light are applied to transfer possible populations of the
S1/2(m = +1/2) level back to to the S1/2(m = −1/2) level.

ground state sideband cooling can be determined by comparing the height of the red and blue
sidebands of the cooled mode. The red sideband is expected to become gradually smaller for
decreasing phonon numbers until it completely vanishes when the vibrational ground state is
reached. Such measurements were carried out in [68] and found that the vibrational ground
state could be reached with probability of 98 % or higher for crystals of one to three ions.

In Sec. 4.3 it was shown that the Rabi frequency of a sideband transition weakly depends
on the population of all the other so-called spectator modes. A large mean phonon number
n̄ in those modes will be accompanied by a large variance of the actual phonon population,
which scales with ∼

√
n̄, from one experimental cycle to the next. The corresponding slight

variation of the sideband Rabi frequency would deteriorate our experimental results. In our
experiments this effect is expected to play a role in case of the axial spectator modes, which
have a comparably large mean phonon population after Doppler cooling. Therefore, not only
the axial mode which is chosen as “bus mode” is subjected to sideband cooling but also the next
neighboring axial mode. The radial modes have a much lower mean phonon number of n̄ = 4
after Doppler cooling, which is due to the higher frequencies of these modes. These populations
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Figure 6.5.: Scan of the voltage applied to the electro-optical deflector, such that the posi-
tion of the focus of the 729 nm laser beam is scanned across an crystal of three
ions. The probability PD of the ions to be excited to the D5/2 shows three max-
ima, corresponding to the focus being centered on each one of the ions in turn.
The excitation probability was fitted with a function describing three overlapping
Gaussian profiles. The dashed line indicates the result of this fit, while the solid
line shows the individual Gaussian profiles.

have a negligible effect on the sideband Rabi frequencies [68], such that no additional efforts
to cool these modes have been undertaken so far.

6.3. Addressing of individual qubits

Addressing of a single ion within a crystal of several ions with 729 nm laser pulses and switch-
ing between ions in a string is achieved with the optical setup shown in Sec. 5.2.3. Properly
adjusting this setup is indeed often the most time consuming task when preparing the experi-
mental setup for more sophisticated experiments. The critical parameter used to quantify the
performance of the addressing optics is the ratio of the Rabi frequency on the neighboring ions
to the Rabi frequency on the addressed ion, the so-called addressing error. With our optical
setup addressing errors of 2.5-5 % are feasible, if the setup is properly adjusted. Addressing
errors larger than ≈ 5 % would already significantly affect the performance of pulse sequences
applied to the ion string.

The optical setup is adjusted for optimal performance as follows: Using an experimental
sequence like that shown in Fig. 6.1 which contains only a single 729 nm pulse the excitation
probability is probed. The position of the second lens L2 in the telescope optics can be
adjusted in all three dimensions. The lateral and horizontal position of this lens is adjusted
until the excitation probability is maximized. Then an experimental sequence is chosen in
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which a single 729 nm laser pulse of length θ = π/6 excites the ions. The voltage applied
to the electro-optical deflector is scanned and the excitation probability measured. A typical
result of such a scan for a three ion crystal is shown in Fig. 6.5. Three peaks of the excitation
probability can be seen, which correspond to the voltages, where the laser beam is centered
on one of the three ions. These voltages will be denoted as U ion#

def in the following. Later, the

deflector voltage will be set to U ion#
def when laser pulses should be applied to the respective

ion. The pattern of peaks is adjusted, such that they are centered around U=0 V deflector
voltage, by adjusting the horizontal position of lens L2.

In order to measure the addressing error Rabi oscillations for all U ion#
defl are recorded. Typical

results of such a measurement in the case of a three ion crystal are shown in Fig. 6.6. These
pulse-length scans show fast Rabi oscillations, which are superimposed on a slower Rabi
oscillation, stemming from the excitation of the next neighboring ions. The period of these
Rabi oscillations can be fitted and the addressing error calculated. For the data shown in Fig.
6.6 the addressing error is determined to be on the order of 2-3 % for the outer ions number
1 and number 3. As can already be seen from Fig. 6.6 the center ion number 2 is stronger
affected by imperfect addressing. Both of its neighboring ions are excited and contribute to
the addressing error, which was determined to be 6%.

This cycle of adjusting the optical setup, determining the deflector voltages corresponding
to the ion positions and then measuring the addressing error is repeated until the addressing
error is sufficiently small. The following strategies turned out to be suitable in order to reduce
the addressing error: First of all it should be ensured that the 729 nm laser beam is passing as
well a possible through the center of all optical elements in order to reduce optical abberations.
This especially applies to the electro-optical deflector, the telescope lenses and the microscope
objective. The main handle for optimizing the performance is the second telescope lens L2,
which is mounted on a three-axis translation stage. By adjusting the position of this lens
along the axis given by the beam path, the position of the focus plane in the trap can be
shifted. This plane should ideally coincide with the axis of the ion string.

The vertical position of lens L2 has turned out to be a critical parameter, since even the
smallest misalignment of the vertical position of the laser beam with respect to the ions
increases the addressing error noticeably6. Another measure, which was frequently successful
in reducing the addressing error, was to displace the laser beam in the horizontal or vertical
direction. This can be done by deliberately misaligning the laser beam with lens L2 and then
realigning it with the dichroic mirror. The ions themselves can serve as points of reference in
this procedure. For instance, suppose that a deflector voltage is chosen, such that the center
ion is addressed. Using lens L2 the focus is shifted until a neighboring ion is addressed. Then
the focus is shifted back to the center ion by adjusting the dichroic mirror.

During these adjustments the ions are usually excited with a pulse of length π/2 and the
excitation probability is monitored. Centering the focus of the laser beam on one of the ions
corresponds to maximizing the excitation probability or, more precisely, increasing the Rabi
frequency. However, sometimes a more useful method is to set the pulse length to 2π or
4π. For perfect addressing the excitation probability would be zero for these pulse lengths.

6This large sensitivity of the addressing error to misalignment of the laser beam in the vertical direction is
unfortunate given the fact that the vertical position of the whole ion trap slowly changes due to thermal
expansion, whenever the applied RF-power is reduced in order to recrystalize the ions.
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Figure 6.6.: Scan of the pulse length for the 729 nm laser beam being directed to one of
the ions of a three ion crystal. The excitation probability, i.e the probability to
find the ions in the D5/2 state, was determined using the PMT. Rabi oscillations
with a frequency of ≈ 2π · 75 kHz are observed. These Rabi oscillations are
superimposed by a slower oscillation, due to excitation of the next neighbouring
ions. By determining the Rabi frequency of these oscillations the addressing error
was determined to be about 2-3 % for the outer ions 1 and 3 and 6 % for the
center ion 2. The center ion is more affected by imperfect addressing, since both
of its neighboring ions are excited.

However, due to excitation of the neighboring ions the excitation probability is non-zero, as
can be seen in Fig. 6.6. Therefore, measuring the excitation probability at these pulse lengths
allows to monitor a quantity, which is directly related to the addressing error. This method
is for example useful for adjusting the vertical and horizontal position of the electro-optical
deflector. The crystal through which the laser beam has to pass, has only a diameter of a
few millimeters. If the laser beam is not passing through the center of this crystal or is even
clipped by it, abberations and therefore an increased addressing error are the result. Instead
of adjusting the laser beam, the electro-optical deflector’s vertical and horizontal position can
be changed by a translation stage. The optimal position causing the least aberrations can
be determined by the method outlined above, i.e. minimizing the excitation probability for a
pulse length of 2π.

6.4. Compensation of Light Shifts

In Sec. 4.6.2 the frequency shift of two atomic levels due to a non-resonant light field was
discussed. In this section light shifts of the levels S1/2 and D5/2, which make up our qubit,
will be treated. First the consequences of light shifts in context of quantum algorithms will
be discussed. Then measurements of the light shift induced by an off-resonant laser pulse
are presented. Finally a technique in order to compensate light shifts induced by laser pulses
exciting the sideband transitions is introduced.
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6.4.1. Negative effects of Light shifts on Quantum Algorithms

Quantum algorithms will consist of a sequence of laser pulses being resonant with the carrier
transition or one of the sidebands of the S1/2 ↔ D5/2 transition. The exact length and phase
of these pulses has to be well defined in order to properly implement the desired unitary
operation. In general, the action of quantum algorithms on a register of qubits can be seen
as a many-particle quantum interference experiment. The outcome of such an interference
experiment will critically depend on the relative phases of the interfering quantum states. Un-
wanted or even uncontrollable phase shifts would severely affect the performance of quantum
algorithms.

We have to be solely concerned with light shifts induced by sideband transitions. A laser
pulse resonant with the carrier transition will in itself not shift the carrier transition. Side-
band transitions are however usually driven with high intensities in order to achieve decent
Rabi frequencies despite of the low coupling constant. Non-resonant coupling to the nearby
strong carrier transition is inevitable, which will shift the resonance frequency of the sideband
transition. In addition, the change in resonance frequency of the S1/2 −D5/2 transition will
act like a rotation around the z-axis in the Bloch sphere picture, i.e. the relative phase of
an superposition of |S〉 and |D〉 would be changed. In principle one could think of cancelling
these effects by adjusting the frequency of the sideband pulses and the phase of the following
laser pulses. But apart from complicating the proper implementation of an algorithm this
approach is limited by the fact that the intensity of our 729 nm laser is fluctuating on the
order of ≈ 5%. The resulting fluctuating light shift will affect experiments in two ways: First,
the resonance frequency of the sideband transition will fluctuate, acting like an additional
line broadening, which will harm our efforts to apply well defined sideband operations. And
second, the phase shift induced on possible atomic superpositions will vary statistically, acting
as an additional source of phase noise, which would limit our coherence time. Therefore, a
more promising strategy is to cancel the occurring light shifts on the sideband transition.

6.4.2. Measurement of Light Shifts

Measuring a light shift caused by a non-resonant laser pulse is possible by making use of the
phase shift induced on an atomic superposition. Such a phase shift can be determined by a
Ramsey interference experiment [88]. In Fig. 6.7(a) the basic setup of a Ramsey experiment
is shown. An initial π/2-carrier laser pulse applied to a single trapped ion is generating a
(|S〉+ i|D〉)/

√
2 superposition and after a certain waiting time a second π/2-pulse is applied.

Provided, that no relative phase shift between the phase of the laser and the phase of the
atomic superposition is induced, the second laser pulse will transfer the ion to the |D〉-state
resulting in an excitation probability of one. In Fig. 6.7(b) a non-resonant laser pulse of length
τ is applied within the two Ramsey pulses. This pulse will induce a phase shift δφ, such that
the second π/2 pulse will no longer transfer the ion to the |D〉-state. This can be clearly seen
in the Bloch sphere pictures, bearing in mind that the phase shift induced by the Stark effect
acts like a rotation around the z-axis and that the Ramsey carrier pulses are assumed to act
like π/2-rotations around the x-axis. By varying the length τ of the non-resonant laser pulse
and measuring the D5/2 excitation probability after the second Ramsey pulse an oscillation is
obtained, as can be seen in Fig. 6.7(c), whose frequency directly provides the light shift δac.

58



6.4. Compensation of Light Shifts

π

2

time t

π

2

π

2

time t

non-resonant laser pulse

length τ

a)

b)

δφ

0 25 50 75 100 125 150 175 200
0.00

0.25

0.50

0.75

1.00

Pulse length τ  (µs)

 D
  
  
 e

x
ci

ta
ti

o
n

 p
ro

b
ab

il
it

y
 P

D
5
/2

c)

waiting time t ramsey

x y

z

y

x y

z

y x y

z

x y

z

Figure 6.7.: a) Setup of a Ramsey interference experiment consisting of two π/2-carrier pulses
applied to a single trapped ion separated by a waiting time τramsey. With no
additional phase-shift the second laser pulse will transfer the ion to theD5/2-state.
b) Ramsey experiment with a non-resonant laser pulse inducing a light shift δac
applied in between of the Ramsey pulses. The induced phase-shift δφ will change
the outcome of the Ramsey experiment. The action of the pulse sequences in
a) and b) is also depicted in the Bloch sphere picture. In b) the consequence
of the additional phase-shift and the second Ramsey-pulse on the Bloch vector
can be clearly seen. c) Measurement of the dependence of the D5/2 excitation
probability on the length of the non-resonant laser pulse. The frequency of the
observed oscillation and therefore the ac-Stark shift is given by δac = 2π ·13.9(0.2)
kHz.
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Figure 6.8.: Measured light shift induced by a non-resonant 729 nm laser pulse as a function
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carrier resonances of the Zeeman levels (m = −1/2)↔ (m′ = −5/2,−1/2,+3/2).
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In Fig. 6.8 such a measurement of the light shift for different frequencies of the Stark
pulse are shown. There are two major contributions to the Stark-shift: The largest contri-
bution is due to the coupling to the three Zeeman carrier transitions (m = −1/2) ↔ (m′ =
−5/2,−1/2,+3/2). The second largest contribution is the non-resonant coupling to the dipole
transitions S1/2 ↔ P1/2 and D5/2 ↔ P3/2, which are far off-resonant but add a measurable
contribution due to their large line strength. A third kind of contributing transitions are
sideband resonances of the S1/2 ↔ D5/2 transition, which have a small coupling strength and
therefore can be neglected. Taking into account the major contributions measured Stark-shift
data can be well described, as the fitted curve in Fig. 6.8 shows7.

6.4.3. Compensation of light shifts

In experiments we will most often use blue sideband transitions belonging to the center-of mass
mode at a detuning ∆ = +2π · 1.2 MHz or in few cases the breathing mode at a detuning of
∆ = +2π · 2.1 MHz. In Fig. 6.8 it can be seen, that the light shifts at these detunings will be
negative. In order to cancel out the light shift induced by laser pulses on the blue sideband a
second light field is applied, which induces the exact opposite positive light shift. That this
scheme actually works can be proven with the experimental sequence shown in 6.9(a), where
again a Ramsey-interference experiment is used to detect any occurring phase shift induced
by the pulses during the waiting time τramsey. The blue sideband laser pulse is actually a
few ten kHz detuned from resonance to avoid population transfer to the D-state, its induced

7For more details see references [68] and [89].
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Figure 6.9.: a) Sequence of an experiment to adjust the parameters of the compensating laser.
A Ramsey experiment measures residual light shifts induced by the pulses during
the Ramsey interrogation time. b) Results of alternatively taken experiments
with no sideband and compensation pulse (solid dots) and experiments with those
pulses switched on for τ = 200µs (open dots). The relative phase of the Ramsey
pulses is adjusted to π/2, such that PD is close to 0.5. The residual light shift is
estimated to be δac = 2π · 0.25(3) kHz [89]

light shift will however remain practically identical. Simultaneously a non-resonant laser pulse
of equal length is applied, whose frequency and intensity should be adjusted, such that the
exact opposite light shift of the sideband pulse is induced. The proper parameters of the
compensation pulse are found, if no longer an oscillation of the Ramsey signal is observed,
when varying the length of the simultaneous sideband and compensation pulse. However, the
accuracy with which the light shift can be nulled using this method is limited by the drift
of the Ramsey pulses’ frequency, which results in a drift of the relative phase of the Ramsey
pulses, mimicking a residual light shift [89]. Hence, the parameters of the compensation laser
were set by alternating Ramsey experiments without sideband and compensation pulses and
experiments with those pulses switched on for a time τ = 200µs, which should deliver the
same result provided no residual light shift is present. This way light shifts due to imperfect
compensation can be discriminated against the effect of a slow drift of the laser’s frequency.
In Fig. 6.9(b) data points of such alternating Ramsey experiments are shown.

The laser light driving the sideband transition and the simultaneously applied light for com-
pensation of light shifts are obtained from the same 729 nm laser system, where the necessary
bichromatic light field is generated by feeding two RF-signals with different frequencies and
intensities to the acousto-optical modulator controlling the frequency of the laser light. This
has the advantage that drifts or fluctuations will affect both light fields in the same way, such
that the light shift compensation is unaffected. The frequency of the compensating light field
has to be chosen, such that unwanted off-resonant excitations are avoided. In the results
shown in 6.9(b) the frequency of the compensating laser light was set to ∆ = 2π · 800 kHz
detuned to the red from the S1/2(m = −1/2)↔ D5/2(m = −5/2) transition. However, in all
the experiments presented in this thesis an even larger detuning of usually ∆ = 30 MHz was
chosen. At such a large detuning the main contribution to the compensating light shift stems
from coupling to the far detuned dipole transitions, which is only weakly depending on the
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exact value of the detuning.

The method to find the proper parameters of the compensating laser described above was
found to be too time consuming, since a parameter-set has to be checked for different pulse
lengths to avoid adjusting the phase shift accidentally to a multiple of 2π rather than 0π.
Therefore the following procedure for setting the compensating laser was adapted: Excitation
spectra are taken in order to precisely determine the frequency of the blue sideband resonance.
These spectra are taken using laser pulses, whose intensity are set 1-2 orders of magnitude
smaller than the intensities for later qubit manipulations. Due to the small intensities light
shifts can be neglected and thus the unshifted resonance frequency of the blue sideband is
obtained. In another experiment a blue sideband pulse of length ≈ π/2 is applied, set to
the unshifted blue sideband frequency and set to the intensity chosen for later quantum
manipulation. Simultaneously the compensating laser light is applied. Proper compensation
of the light shift induced by the sideband pulse, will keep the blue sideband resonance at its
unshifted frequency and will therefore maximize the excitation probability of the sideband
pulse. Therefore, in order to find the right intensity of the compensating laser, its intensity is
varied and the excitation probability PD maximized.

6.5. Coherence of single qubits

Our experiments rely on our ability to store quantum information in superpositions of the
S1/2 ground state and the D5/2 metastable state, which make up our qubits. Now the crucial
question is: Assuming that we prepare a qubit in a superposition |Ψ〉 = α|S〉+β|1〉, after how
much time are we still able to manipulate the stored quantum information in a well defined
manner ? Or more technically speaking: After which time span the initial coherently prepared
pure state will have decayed into an incoherent mixture, reflecting our ignorance about the
qubit’s exact state ? This time span is usually denoted as the coherence time of a single qubit.
Even though, due to this definition it seems that the coherence time is an attribute of the
qubit itself, one should bear in mind that it is a measure of the relative stability of the qubit
and the tools with which the qubit is manipulated, i.e in our experiment our 729 nm laser
system.

A fundamental physical limit of the coherence time is given by the lifetime of the metastable
D5/2 state. This lifetime was recently measured by A. Kreuter et al. to be 1162(22) ms
[90]. This fundamental limit will however play no role for the single qubit coherence time in
our experiments. The major source of decoherence rather are technical imperfections of our
experimental setup, as there are:

• frequency noise of the laser light driving the qubit transition,

• fluctuations of the ambient magnetic field resulting in a fluctuating shift of the qubit’s
energy levels via the Zeeman effect.

These noise sources will cause fluctuations of the relative phase φ of a qubit superposition
|α||S〉+ |β|eiφ|D〉. In the following a few experiments are presented, which investigate these
sources of decoherence. An extensive discussion of decoherence sources in our experiment,
including most of the experiments presented here, can be found in Ref. [91].
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Figure 6.10.: Resonance frequency of the S1/2(m = −1/2) ↔ D5/2(m = −5/2) transition
depending on the delay between the exciting laser pulse and the trigger derived
from the 50 Hz power line frequency. Due to 50 Hz fluctuations of the ambient
magnetic field the resonance frequency is shifted. The vertical bars indicate the
width of the observed resonances and not the error of its center frequency.

6.5.1. Noise components at 50 Hz

The noise spectrum of the ambient magnetic field is expected to have a large component at
the power line frequency of 50 Hz, which is caused by transformers, pumps, motors etc. in the
various electric devices present in the vicinity of our experimental setup. In order to reduce
the influence of 50 Hz noise, experimental cycles are triggered synchronized with the 50 Hz
frequency from the power line.

The variation of the magnetic field can be determined by shifting the trigger with respect
to the line frequency and measuring the resonance frequency of the S1/2(m = −1/2) ↔
D5/2(m = −5/2) transition. The resonance frequency of the m = −1/2 → −5/2 Zeeman
component was determined by recording excitation spectra, which were taken by measuring
the D-state excitation probability after a 1 ms laser pulse at 729 nm. From the results shown
in Fig. 6.10 a variation of the resonance frequency of ' ±5 kHz is inferred, which corresponds
to a variation of the magnetic field of ≈ 1 mG. The width of the recorded resonances, indi-
cated by the vertical bars in Fig. 6.10, also varies depending on the chosen delay indicating
different magnitudes of higher frequency fluctuations of the magnetic field during the 1 ms
long excitation pulse. It would be favorable to choose a delay, where the linewidth and there-
fore magnetic field fluctuations are minimal. However, it was found that the features of the
results of a measurements like in Fig. 6.10 are not constant but change on a time scale of days
or weeks.

6.5.2. Active Compensation of ambient magnetic-field fluctuations

A commercial active magnetic-field compensation system8 was installed in order to improve
the ambient magnetic field stability. This system is measuring the magnetic field with two

8FCS-12 Field Cancelling System, Oxford Instruments
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Figure 6.11.: a) Pulse sequence of a Ramsey experiment. The second π/2-pulse is applied with
phase φ. b) Excitation probability after Ramsey experiment depending on the
phase φ. Interference fringes with nearly unity contrast are observed. c) Again
Ramsey interference fringes for a longer waiting time t. Due to dephasing of the
atomic superposition the contrast of the fringes is decreased. Data shown in b)
and c) belong to Spinecho-Ramsey experiments shown Fig. 6.12 for t= 1ms and
t= 3.5 ms, respectively.

flux-gate sensors, which are positioned in direct vicinity of the vacuum vessel. A compensating
magnetic field is generated by three orthogonal coils. The system is specified to compensate
magnetic field fluctuations in the frequency range of 0.5 Hz to 5 kHz. Indeed using an
independent flux-gate sensor it was found that the ' 1 mG field fluctuations at 50 Hz are
reduced by factor of ' 20. This reduction of 50 Hz noise was also proven with trapped Ca+

ions, by recording the shift of the resonance frequency of a Raman transition dependent on
the line trigger delay [91].

6.5.3. Ramsey-Spectroscopy

Due to the decoherence mechanisms present in our experimental setup a qubit prepared in a
coherent superpositions will dephase into an incoherent mixture. This decay can be measured
using a Ramsey-interference experiments, which were introduced in Sec. 6.4.2. The basic
setup of an Ramsey experiment is again shown in Fig. 6.11(a). If the phase of the second
Ramsey pulse φ is varied, which corresponds in the Bloch sphere picture to a variation of
the chosen rotation axis in the equatorial plane, the D-state excitation probability will vary
periodically, as can be seen in Fig. 6.11(b). Provided that after the waiting time the relative
phase of the atomic superposition generated by the first Ramsey pulse is still well defined,
the observed oscillation will show a contrast of one. However, if the atomic superposition is
decayed into a mixed state after the waiting time t the contrast of the Ramsey fringes will
be decreased, as can be seen in Fig. 6.11(c) where Ramsey fringes for a long waiting time are
shown9 The result of a series of Ramsey experiments for different waiting times t are shown
in Fig. 6.12. For an increasing waiting time t the contrast is decreasing, indicating the loss
of phase coherence of the atomic superposition. Data sets were taken with (open dots) and

9It is important to note, that we determine the excitation probability by repeating Ramsey experiments for
one value of φ for 100 times.
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Figure 6.12.: Contrast of Ramsey interference fringes depending on the waiting time t. Results
of Ramsey experiments with (open dots) and without magnetic-field stabilization
(black dots). A fit with a Gaussian ∝ exp(−(t/t0)2) yields a coherence time of
t0 = 0.94(5) ms. The dashed line shows an optimal exponential fit ∝ exp(−t/t0),
which is the expected dependence for a white noise model. Furthermore, results
of Ramsey experiments including a spin-echo pulse are shown (triangles). The
spin-echo technique is eliminating the effect of slow drifts of the atomic phase.
A coherence time of > 3.5 ms is observed.
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Figure 6.13.: Ramsey interference experiment including a π pulse in the center implementing a
spin-echo. The action of the pulse sequence is illustrated using the bloch sphere
picture, where a constant drift of the atomic phase is assumed.

without (black dots) the active magnetic-field stabilization. No influence of the magnetic-
field stabilization on the coherence time can be observed, which is assumed to be due to the
limited bandwidth of the magnetic-field stabilization device. Assuming a white noise model
of the frequency fluctuations10 a exponential decrease exp(−t/t0) of the contrast would be
expected [92]. However, the optimal exponential fit shown in 6.12 (dashed line) is only poorly
modelling the data, while a Gaussian model ∝ exp(−(t/t0)2) with t0 = 0.94(5) ms is fitting
the data well (solid line). Compared to the fit to the white noise model, the observed noise
shows an excess for frequencies ≤ 1.5 kHz.

6.5.4. Spin-echo technique

Spin-echoes are a spectroscopic technique invented in nuclear magnetic resonance experiments
[93]. We adapt this technique in our experiments in order to cancel the dephasing of atomic
superpositions and improve our coherence time. In Fig. 6.13 again the setup of a Ramsey
interference experiment is shown. However, in this setup an additional carrier laser pulse of
length pulse π is applied after half of the Ramsey waiting time t implementing the spin-echo.
The action of this spin-echo pulse can be best understood by considering its action on the
Bloch vector, shown in the Bloch sphere pictures in Fig. 6.13. Suppose the phase of the atomic
superposition is drifting at a constant rate during the Ramsey experiment, which for example
could be caused by a drift of the ambient magnetic field. After half of the Ramsey waiting
time the Bloch vector will be rotated by an angle of φ in the equatorial plane. Now, the spin-
echo pulse, whose phase is adjusted, such that we perform a π rotation around the ȳ-axis, will
mirror the Bloch vector at the x-axis. Then in the second half of the Ramsey waiting time
the phase drift will return the Bloch vector to its initial position. Thus, by introducing the
spin-echo pulse in the center of the Ramsey experiment, it is possible to cancel a dephasing of
the atomic superposition, which takes place on a time scale greater or equal than the length

10This noise model could be expected to be suitable, if our major noise source would be frequency fluctuations
of a laser with an Lorentzian line shape.
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of the Ramsey experiment.
A series of Ramsey experiments with different waiting times including a spin-echo pulse

were carried out. The dependence of the Ramsey contrast on the waiting time is shown in
Fig. 6.12 (triangles). A much improved coherence time of ≥ 3.5 ms is observed. Perfect
Ramsey contrast is observed up to a waiting time of 1 ms, after which the contrast is starting
to decrease. From this behavior it can be inferred, that a dephasing, which is constant up to
a 1 ms, is cancelled by the applied spin-echo. This dephasing is most likely caused by a drift
of the ambient magnetic field.
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7. Deterministic preparation of Bell states

7.1. Introduction

Entangled states of two qubits, which are generally called Bell states, have been experimentally
realized in several different physical systems. Entangled states of a pair of photons have
been studied, where the preparation of the entangled pair relied on stochastic processes like
spontaneous emission cascades or parametric down-conversion [8, 9]. The first experiment in
which two massive particles were prepared in an entangled state in a controlled way, was
performed by Hagley et al. [94], who entangled Rydberg states of two Rubidium atoms, which
interacted by interchanging a single photon via a microwave cavity. The first experiments in
which the internal states of two ions confined in a Paul trap were entangled, were carried out
in the group of D.J. Wineland, who prepared Bell states deterministically and investigated
the lifetime of different Bell states [60,95].

In this chapter entangled states of two ion qubits are studied. First, the pulse sequences
which prepare all four Bell-states are introduced. Next the generated Bell states are inves-
tigated by determining their density matrix using quantum state tomography. Finally, the
time-evolution of the prepared entangled states is studied.

7.2. Pulse sequence for preparation of Bell states

We want to entangle the internal states of two ions trapped in a linear Paul trap. First of
all we assume both ions to be initialized in state |S〉 and one of the ion string’s common
vibrational modes to be cooled to the ground state |n = 0〉. Starting from |SS, n = 0〉 all four
Bell states can be generated with the following pulse sequences:

Uψ± = R+
2 (π,±

π

2
) ·R2(π,

π

2
) ·R+

1 (
π

2
,−π

2
), (7.1)

Uφ± = R2(π, 0) · Uψ± . (7.2)

This pulse sequence is also shown in Fig. 7.1 as a quantum circuit using the notation introduced
in Sec. 2.5. For example, the pulse sequence Uψ+ works as follows:

|SS, 0〉
R+

1 (π
2
,−π

2
)

−−−−−−−→ 1√
2
(|SS, 0〉+ |SD, 0〉)

R2(π,
π
2
)

−−−−−→ 1√
2
(|DS, 0〉+ |DD, 1〉)

R+
2 (π,±π

2
)

−−−−−−→ 1√
2
(|DS〉+ |SD〉) · |n = 0〉. (7.3)
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Figure 7.1.: Pulse sequence in order to prepare Bell states. The solid lines represent the
quantum state of ions 1 and 2, while the dashed line represents the vibrational
mode’s state. The quantum state of the ion string is shown for all intermediate
steps.

The initial blue sideband pulse R+
1 (π, π/2) entangles the vibrational mode and the first

ion’s internal state. The following two pulses R+
2 (π, π/2) · R2(π, π/2) map the vibrational

state onto the internal state of the second ion. This pulse sequence nicely illustrates the role
of the vibrational mode in ion trap experiments. It serves as a mean to mediate interactions
between different qubits within the ion string. Furthermore, conditional operations become
possible using sideband pulses, since a blue sideband pulse will couple the levels |S, 0〉, |S, 1〉,
and |D, 1〉 to other levels but does not interact with the level {D, 0〉. In the pulse sequence
shown above the vibrational mode is only temporarily populated. Its state is transferred back
to |n = 0〉 after completion of the pulse sequence, such that it is again separable from the
ions’ internal states.

Provided one has prepared a Bell state Ψ±, this state can be transformed into a Bell state
of the type Φ± by applying a single carrier π-pulse on one of the ions:

Ψ± =
1√
2
(|SD〉 ± |DS〉) R2(π,0)−−−−−→ 1√

2
(|SS〉 ± |DD〉) = Φ±. (7.4)

7.3. Experimental results: Preparation of Bell-states

For the experimental realization of Bell states two ions were loaded into the trap. For the blue
sideband operations we had to choose one of the available vibrational modes. Off-resonant
excitation of the carrier transition should be decreased for a larger detuning, which allows to
increase the Rabi frequency of the sideband transitions. Therefore the breathing mode was
chosen, which is farther away from the carrier transition (ωb = 2π · 2.1 MHz) compared to the
center-of-mass mode (ωcm = 2π · 1.2 MHz). The breathing mode was prepared in its ground

70



7.3. Experimental results: Preparation of Bell-states

state |n = 0〉 by sideband cooling for 6 ms. The ground state was reached with a probability
of ≈ 99%. The Rabi frequency of the sideband transition belonging to the breathing mode
slightly depends on the number of phonons in the center-of-mass mode (cf. 4.3), which are
left after Doppler cooling. Therefore, in order to reduce this dependence, the center-of-mass
mode was subjected to sideband cooling for 2 ms.

The Rabi frequency for the carrier transition was set to Ωblue = (2π) ·50 kHz and Ωcarrier =
(2π) · 4.5 kHz for the blue sideband transition. The value chosen for the sideband Rabi
frequency was a compromise between trying to increase the Rabi frequency as much as possible
and avoiding off-resonant carrier excitations. For the chosen Rabi frequencies, the length of
the complete pulse sequence shown in Fig. 7.1 was approximately 200 µs.

After laser cooling and the initialization of the qubits all four pulse sequences introduced
in the previous section were applied. Quantum state tomography was carried out in order
to determine the density matrices of the prepared entangled states. The measured density
matrices of the states generated by the pulse sequences designed to prepare the Bell states
Ψ+, Ψ−, Φ+ and Φ−, are denoted as ρΨ+ , ρΨ− , ρΦ+ and ρΦ− respectively. As explained in
Sec. 2.6 and in Appendix A.1 in order to obtain the density matrix of a two qubit system,
nine expectation values of different combinations of the Pauli-operators have to be measured.
Each expectation value was determined by repeating the experiment cycle for 200 times.

In Fig. 7.2 the results of the maximum likelihood estimation of the prepared states density
matrices are shown. For each pulse sequence the real and imaginary part of the density
matrices are plotted. To determine the extent to which the prepared states are identical to
the respective ideal states the fidelity defined by F = 〈Ψid|ρ|Ψid〉 can be used [71]. For the
density matrix ρΨ+ shown in Fig. 7.2(a) the fidelity is FΨ+ = 〈Ψ+|ρΨ+ |Ψ+〉 = 0.91(1). For the
density matrices ρΨ− , ρΦ+ and ρΦ− depicted in fig. 7.2(b-d) the fidelities are FΨ− = 0.90(1),
FΦ+ = 0.91(1) and FΦ− = 0.88(2). The quoted errors are due to quantum projection noise
in the measurement of the expectation values necessary for the reconstruction of the density
matrix. The errors of the fidelities of all other quantities derived from the density matrices
were determined by Monte-Carlo simulations (cf. A.2).

The fidelities of the prepared states are all on the order of 90%. The dominant error, which
reduces the fidelities are relative fluctuations of laser frequency and the atomic resonance
frequency (cf. Sec. 6.5).

Having reconstructed the density matrices of the generated states, the entanglement mea-
sures introduced in Sec. 2.7 can be applied to further characterize the states’ entanglement
properties. As a first test, the eigenvalues of the partial transpose ρPT were investigated.
Provided that ρ is an entangled state ρPT will have some negative eigenvalues. In case of
ρPTΨ+

the eigenvalues {-0.42(2), 0.40(2), 0.49(2), 0.53(3)} were obtained. Indeed one of the
eigenvalues is negative proving that the state ρΨ+ is entangled. The results are even close to
what is expected for a maximally entangled state {-0.5, 0.5, 0.5, 0.5}. For the other prepared
entangled states similar results were obtained.

The degree of entanglement of the prepared states was also quantified by using the entan-
glement of formation introduced in Sec. 2.7. Using the method given by Wootters in [75]
the entanglement of formation was calculated to be Ef (ρΨ+) = 0.79(4), Ef (ρΨ−) = 0.75(5),
Ef (ρΦ+) = 0.76(4) and Ef (ρΦ−) = 0.72(5).
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Figure 7.2.: Results of quantum state tomography of the four pulse sequences for preparing
Bell-states. Real and imaginary parts of the density matrices a) ρΨ+ , b) ρΨ− , c)
ρΦ+ and d) ρΦ− .

7.4. Experimental results: Time evolution

Since we are able to deterministically prepare entangled states of two localized qubits, it was
possible to investigate the lifetime of these entangled states. The predominant sources of deco-
herence in our experiment, fluctuations of the laser and the atomic resonance frequency, cause
fluctuations of the relative phase of atomic superpositions (cf. Sec. 6.5). These decoherence
sources affect all trapped ion qubits in the same way, i.e. correlated phase fluctuations occur.
By introducing a waiting time between the end of the state preparation and the quantum
state tomography, the decay of the entangled states into a statistical mixture was monitored.

Bell states of the kind Ψ± are expected to be immune against correlated phase flucu-
tations [95]. This invariance can be easily proven by substituting |S〉 → exp(iβ)|S〉 in
Ψ± = 1/

√
2(|DS〉 ± |SD〉) for both ions. However, this reasoning is only valid as long as

the energy difference of state |D〉 and |S〉 is the same for both ions. In presence of a magnetic
field gradient the two ions experience a slightly different Zeeman shift of their electronic states,
which leads to a linear evolution of the relative phase between the |DS〉 and |SD〉 components
of the Ψ± states. Such a behavior was observed in our experiments and the acquired phase
after a waiting time τ is plotted in Fig. 7.3. Here, the phase was determined by calculating
the maximum overlap Fm = maxβ(〈Ψβ |ρΨ+(τ)|Ψβ〉) between the measured density matrix
ρΨ+(τ) and the states Ψβ = 1/

√
2(|SD〉+exp(iβ)|DS〉). A nearly linear change of the phase

with time according to β(τ) = ωβτ with ωβ = (2π) 170 Hz was observed. From the measured
phase change this field gradient can be inferred to be ∂B/∂z = 0.6 G/cm along the trap axis.
This value was confirmed by later measuring the resonance frequencies of the two ions using
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Figure 7.3.: Time evolution of the state Ψ+ = 1/
√
2(|SD〉 + |DS〉). In a) the relative phase

of the superposed states βm, for which the overlap Fm = 〈Ψβ |ρΨ+(τ)|Ψβ〉 is
maximized, where Ψβ = 1/

√
2(|SD〉+ exp(iβ)|DS〉). The phase changes linearly

in time due to a magnetic field gradient. In b) the obtained values of Fm for Ψ+ =
1/
√
2(|SD〉+ exp(iβ)|DS〉) (filled circles) and for the states Ψ+ = 1/

√
2(|SS〉+

exp(iβ)|DD〉) (triangles). The error bars were determined using Monte-Carlo
simulations, as described in A.4. The error bars are centered around the mean
value of the fidelity of the simulated density matrices, which is indicated by small
horizontal bars.
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Figure 7.4.: Time evolution of entanglement measures of the state ρΨ+(τ). a) Dependence of
the entanglement of formation on the waiting time. Two inset pictures show the
absolute value of the corresponding density matrix ρΨ+(τ) for τ = 2 ms and 8
ms. After 8 ms the non-diagonal elements of the density matrix have decayed. b)
Smallest eigenvalue of the negative partial transpose of the density matrix ρΨ+(τ).
The error bars were determined using Monte-Carlo simulations, as described in
A.4. The error bars are centered around the mean value of the fidelity of the
simulated density matrices, which is indicated by small horizontal bars.
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a Ramsey-type experiment.
Due the dephasing of the superposed states, the generated Bell states decay into a statis-

tical mixture, which results in a decrease of the fidelity Fm = maxβ(〈Ψβ |ρΨ+(τ)|Ψβ〉) with
increasing waiting times. In Fig. 7.3(b) the results for Fm are shown. For the Ψ± states the
fidelity decreases to 75 % within 5 ms, while for states Φ± this decay occurs within 200 µs.
Thus, the intrinsic stability of the Ψ± states against collective dephasing is demonstrated.
States of the kind Φ±, however, are found to be much more sensitive to decoherence. This
behavior is expected since collective phase fluctuations transforming |S〉 into exp(iβ)|1S〉 for
both ions will change the relative phase |DD〉 and |SS〉 by 2β. Additionally, the slow decay of
the Ψ± states can also be seen in the entanglement of formation and the smallest eigenvalue
of the partial transpose, which are plotted in Fig. 7.4.

Even though the lifetime of Ψ± is already longer than the coherence time of a superposition
of |0〉 and |1〉 for a single qubit, the coherence time of Ψpm states should in principle be
only limited by spontaneous decay of the D5/2 level. The reason for the reduced lifetime
was identified to be the 866 nm repumper laser. This laser was not switched off during
the preparation and subsequent waiting time. Since it is coupled into the trap from two
different directions an interference pattern is established, such that time-varying and spatially
inhomogeneous Stark-shifts are induced on the qubit transitions.

After installing shutters for the 866 nm light and improving the homogeneity of the magnetic
field much longer lifetimes of the Ψ± states could be observed. Plotted in Fig. 7.5 is the time

evolution of the expectation value 〈σ(1)x ⊗σ(2)x 〉 after a Ψ− state was produced. This expectation
value slowly oscillates at a frequency of ω = 2π · 7.2(1) Hz, due to the remaining magnetic
field gradient along the trap axis. The amplitude of this oscillation gives a lower bound for
the fidelity of our entangled state. It can be seen that the amplitude is damped, indicating
a slow decrease in fidelity over time. Spontaneous decay of the D5/2 level would lead to an
exponential decay with a decay time of τ = 1.16 s [90]. From the data shown in Fig. 7.5 the
decay time can be inferred to be τ = 1.05(0.15) s, which shows that the lifetime of Ψ± states
is indeed only limited by the lifetime of the D5/2 state.
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Figure 7.5.: Time evolution of the expectation value 〈σx ⊗ σx〉 for a state ρΨ+(τ). The os-

cillation at f = 7.2(1) Hz is caused by the residual magnetic field gradient. The
observed damping indicates a loss of fidelity with increasing time and is caused
by spontaneous emission from the metastable upper D5/2 level.
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8. The Two Ion CNOT Gate

8.1. Introduction

In Ch. 2 the fundamental operations necessary to build a quantum computer were introduced.
As has been noted in Sec. 2.5 single qubit rotations and the controlled NOT operation (CNOT)
between two arbitrary qubits form a universal set of gates, which are sufficient to implement
an arbitrary unitary operation or algorithm. In the case of an ion trap quantum computer,
using internal electronic states of the ions as qubits, it is straightforward to implement single
qubit rotations, by addressing single ions within a linear chain of ions with laser pulses of
suitable frequency, length and phase.

For the implementation of a controlled NOT gate between two trapped ions the first and
most prominent proposal was made by Cirac and Zoller in 1995 [37]. They proposed to
implement a controlled-NOT gate by first mapping the quantum state of one ionic qubit
onto one of the common vibrational modes of the ion string and then performing a CNOT
operation between this vibrational state and the electronic state of another qubit. Finally
the vibrational state is mapped back onto the internal state of the first ion. The crucial idea
in the Cirac-Zoller scheme is to use one of the common vibrational modes of the ions, which
is often denoted as the “bus” mode, to mediate an interaction between two ions at different
places within an ion string.

The central step of performing a CNOT gate between the vibrational state and an internal
state of an ion was already realized by Monroe et. al in 1995 [59] using a single ion in a
spherical Paul trap. In our experimental setup a CNOT gate between the vibrational state
and an internal state of an ion was realized and served as a part of the implementation of the
Deutsch-Josza algorithm with a single trapped ion [66].

Implementations of a two ion CNOT gate different from Cirac and Zoller’s have been pro-
posed by several authors [57, 58] but most have not yet been implemented. One example for
an alternative implementation of a universal quantum gate equivalent to the CNOT gate has
been demonstrated with a single trapped ion [96]. So far the only experimental implemen-
tation of a CNOT quantum gate between two trapped ions, apart from the work presented
in this thesis, was realized by Leibfried et. al [62], who implemented a phase gate by a spin
dependent optical dipole force.

8.2. Quantum circuit for the two ion CNOT gate

A graphical representation of the scheme proposed by Cirac and Zoller can be found in Fig.
8.1(a). As can be seen the vibrational mode used for mediating the interaction between the
ions is assumed to be cooled to its ground state |n = 0〉.

The scheme starts by mapping the state of the first qubit onto the chosen vibrational mode.
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Figure 8.1.: Illustration of two ion controlled NOT gate proposed by Cirac and Zoller. a)
Quantum circuit for the CNOT gate. The line in the middle represents the vi-
brational mode, which serves as the intermediary “bus” qubit. After completion
of the operation the second qubit is in the state |Ψ1 ⊕ Ψ2〉 where ⊕ denotes the
addition modulo 2. b) Computational basis states for our S1/2 ↔ D5/2 transition
and the possible blue sideband transitions with their respective Rabi frequencies.
Additionally the transition through an auxiliary level |aux〉 is shown, which was
proposed by Cirac and Zoller to implement the phase gate operation.

This can be done applying a blue sideband π-pulse on the first ion, which maps the |0, n = 0〉
state onto |1, n = 1〉 while the |1, n = 0〉 state is unaffected, as can be seen from 8.1(b).

The next steps are to perform a CNOT operation between the vibrational mode and the
second ion and then to map the vibrational mode’s state back to the internal state of ion
1 by another π pulse on the blue sideband. The CNOT operation is decomposed as in Eq.
2.13 into two π/2 carrier pulses, which can be thought of as Ramsey pulses, and a phase
gate. To implement the step of performing a phase gate between the vibrational mode and
the second qubit’s internal state Cirac and Zoller proposed a 2π sideband pulse on the second
ion coupling the |S, n = 1〉 to an additional excited state |aux〉. In our experiment this
additional level could be another one of the available Zeeman levels of the D5/2 state. A red
sideband 2π-pulse on the |S, n = 1〉 ↔ |aux, n = 0〉 transition results in a transformation
|S, n = 1〉 → −|S, n = 1〉, while all the other states |D,n = 0〉,|S, n = 0〉 and |D,n = 1〉
are unaffected. However, as stated in Sec. 4.4.3 the S1/2(m = −1/2) ↔ D5/2(m = −1/2) we
use to implement the qubit is already the Zeeman transition least affected by magnetic field
fluctuations via the Zeeman effect. All other Zeeman transitions would be much more affected,
causing a much larger susceptibility to decoherence because of the fluctuating magnetic field
during the full 2π-rotation on the vibrational sideband.

What if one could perform a sideband 2π-rotation without employing an additional level? As
can be seen in Fig. 8.1(b) a blue sideband laser pulse would couple to the |S, n = 0〉, |D,n = 1〉
and |D,n = 1〉 levels but not to the |D,n = 0〉 level, containing the conditional dynamics
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Figure 8.2.: Behavior of the Bloch vector for the composite phase gate UΦ. a) Trajectory for
the transition |S, n = 0〉 ↔ |D,n = 1〉 . Initially the state is assumed to be |S, n =
0〉 represented by the black arrow pointing up. The first pulse R+(π/

√
2, 0)

rotates the Bloch vector around the x-axis by an angle π/
√
2. The second pulse

R+(π, π/2) corresponds to a π-rotation around the y-axis, mirroring the Bloch
vector about the x-y-plane. Then the third pulse, which is identical to the first
one, rotates the Bloch vector around the x-axis, such that it points downwards,
corresponding to the state |D,n = 1〉. Finally, the fourth pulse (like the second
pulse) is a π-rotation around the y-axis, returning the Bloch vector to its initial
state. During the whole pulse sequence a phase factor of −1 is acquired, i.e. the
transformation |S, n = 0〉 → −|S, n = 0〉 and |D,n = 1〉 → −|D,n = 1〉. b)
Action of the same pulse sequence on the |S, n = 1〉 ↔ |D,n = 0〉 is shown.
Due to the higher Rabi frequency for this transition the pulse sequence reads:
U ′
Φ = R+(π, 0) ·R+(

√
2π, π/2) ·R+(π, 0) ·R+(

√
2π, π/2). Again, the whole pulse

sequence returns the Bloch vector into its initial position, while acquiring a phase
factor of −1, thus acting like 2π-rotation.
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8. The Two Ion CNOT Gate

necessary to implement a phase gate. However, as stated in Eq. 4.15 the Rabi frequency of
blue sideband transitions has a square root dependency on the number of phonons present.
Therefore a blue sideband laser pulse representing a 2π rotation on the |S, n = 0〉 ↔ |D,n = 1〉
would represent a 2

√
2π rotation on the |S, n = 1〉 ↔ |D,n = 2〉 transition, resulting in a part

of the population left in the |D,n = 2〉 state, leaving the computational subspace of the states
{|D,n = 0〉, |D,n = 1〉, |S, n = 0〉, |S, n = 1〉}.

A solution for this problem using the composite pulse technique borrowed from nuclear
magnetic resonance spectroscopy was proposed by Childs and Chuang [79]. They proposed to
design a pulse sequence such that sideband transitions of the kind |n = 0〉 ↔ |n = 1〉 would
undergo a effective 2π rotation while transitions of the kind |n = 1〉 ↔ |n = 2〉 would perform
a 4π rotation. Such a composite pulse sequence would, for example, be:

Φ = R+

(

π√
2
,
π

2

)

·R+ (π, 0) ·R+

(

π√
2
,
π

2

)

·R+ (π, 0) , (8.1)

where the angles are given for the |1, n = 0〉 ↔ |0, n = 1〉 transition. A representation of the
corresponding behavior of the Bloch vector for |n = 0〉 ↔ |n = 1〉 and |n = 1〉 ↔ |n = 2〉
transitions is shown in Figs. 8.2(a) and (b) respectively. In the computational subspace
{|0, n = 0〉, |0, n = 1〉, |1, n = 0〉, |1, n = 1〉} the unitary transformation corresponding to this
pulse sequence is given by:

Φ =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









which is, apart from a global phase factor of −1, the phase gate introduced in Sec. 2.3. The
complete pulse sequence to implement a CNOT between two trapped ions is then:

U12
CNOT = R+

2 (π, 0) ·R1

(π

2
, 0
)

· Φ2 ·R1

(π

2
, π
)

·R+
2 (π, 0)

=









0 0 −i 0
0 −1 0 0
i 0 0 0
0 0 0 −1









(8.2)

Here, the symbol Φ2 denotes the phase gate pulse sequence in Eq. 8.1 applied to ion 2. The
unitary evolution of this CNOT differs from the ideal CNOT introduced in Sec. 2.3. Our
CNOT is first of all a zero-controlled NOT gate, which flips the state of the target qubit if
the control ion is in state |D〉 = |0L〉. Additionally the target is not only flipped but also its
phase is changed. Nonetheless, our CNOT operation UCNOT is fully equivalent to the ideal
CNOT and could be transformed into it using only single qubit operations1.
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Figure 8.3.: Pulse sequence for the realization of the Cirac-Zoller CNOT gate. The two solid
lines represent the internal states of the two ions, the dashed line indicates the
state of the vibrational mode used to implement the controlled operation between
the internal states of the two ions.

8.3. Experimental Results

The Cirac-Zoller-CNOT gate was demonstrated using a two ion crystal. For the same reasons
as in the experiments about Bell states, the vibrational mode, chosen to serve as our “bus”
mode, was the breathing mode at a frequency of ωb = 2π · 2.1 MHz from the carrier transition.
For the application of the Cirac-Zoller scheme it is necessary to prepare the bus mode in its
ground state. Therefore, the breathing mode was prepared in |n = 0〉 using sideband cooling.

The pulse sequence, carried out after the initial laser cooling stage, is shown in Fig. 8.3.
Here, the first ion is the control qubit and the second ion the target qubit, corresponding to the
bra-ket notation |target, control〉. Both ions were initially prepared in their |S〉 = |1L〉 ground
state and then the desired input states for the gate sequence were generated by appropriate
carrier pulses. The period of one Rabi oscillation on the blue sideband transition was set
to T 2π

blue = 190µs and the period for carrier transitions set to T 2π
blue = 26µs. Therefore, the

complete CNOT pulse sequence takes a total time of about 500 µs.

8.3.1. State evolution during Cirac-Zoller-CNOT gate

For both ions the temporal evolution of the probability to find the ions in the D5/2 state was
measured during the CNOT pulse sequence. This was done by truncating the pulse sequence
as a function of time and measuring the D5/2 state probability for each ion. The results are
shown in Fig. 8.4 together with the theoretically expected behavior, which is indicated by solid
lines. The theoretical behavior was calculated assuming only the measured Rabi frequencies
for the sideband and carrier transition and the addressing error. No additional parameters

1The necessary transformation is [i ·R1(π, 0) ·R1(
π
2
, 3

2
π) ·R1(

π
2
, 0) · UC′ ·R1(

π
2
, π) ·R1(

π
2
, π

2
)].
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8. The Two Ion CNOT Gate

were used to fit these curves to the data points.
Instead of observing only the D5/2 population of each ion alone, more information was

revealed by measuring the probabilities to find the qubits in one of their joint basis states
{|DD〉, |DS〉, |SD〉, |SS〉}. The measured time evolution of these states during the CNOT
pulse sequence is shown in Fig. 8.5, alongside with the theoretically expected behavior. From
these results the measured probabilities of finding the qubits in the different output states for
a given input states were inferred, such that the following truth table was constructed:

|DD〉 |DS〉 |SD〉 |SS〉
|DD〉 0.22(4) 0.09(3) 0.78(3) 0.08(2)
|DS〉 0.02(1) 0.70(5) 0.07(3) 0.14(3)
|SD〉 0.73(5) 0.07(2) 0.14(4) 0.05(2)
|SS〉 0.04(2) 0.15(3) 0.01(1) 0.74(3)

Here every column corresponds to the measured probabilities of the different basis states after
completion of the CNOT pulse sequence for a given input basis state. Ideally this table should
reproduce the absolute values of the entries of the unitary operation in Eq. 8.2. For a given
input state we were able to transfer 70 - 80 % of the population into the correct output state
given by Eq. 8.2.

8.3.2. Preparation of entangled states

In Sec. 2.4.2 a quantum circuit consisting of a Hadamard operation and a controlled-NOT
was shown to map the Bell states onto the computational basis states of two qubits. This
procedure also works the other way around, i.e. Bell states can be prepared by starting
from the computational basis states, preparing one of the qubits in a superposition and then
applying a controlled NOT operations.

To prove that our CNOT pulse sequence is indeed capable of generating entangled states,
the first ion, which acts as the control qubit, was prepared in a superposition state by a
π/2 carrier pulse. Then this input state was subjected to the CNOT gate. The result of
this experiment is expected to be a state of the kind 1/

√
2 · (|DD〉 + eiα|SS〉). Indeed the

probabilities to find the ion string in the states |DD〉 and |SS〉 after completion of the CNOT
gate were measured to be:

PDD = 0.45(3)

PSS = 0.42(3). (8.3)

However, these populations alone do not prove that the prepared state is entangled. Addi-
tionally one has to show that the ions are in a coherent superposition of |DD〉 and |SS〉, by
measuring the "coherences" or off-diagonal elements of the prepared state’s density matrix.
For this purpose we used a method employed in [61]. To both ions π/2-carrier pulses with
phase φ are applied after the CNOT sequence. Then the dependence of the parity P on the
phase φ is observed, where the parity is defined as:

P = PDD + PSS − (PSD + PDS) . (8.4)

For an entangled state an oscillation of the parity with cos(2φ) is expected, whereas a non-
entangled state is expected to vary with cos(φ) only. In Fig. 8.7 the measured behavior of
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Figure 8.4.: State evolution of both qubits under the action of the CNOT gate for four dif-
ferent input states. The pulse sequence is truncated as function of time and the
probability to find the ions in the D5/2 state is measured. The solid lines show
the theoretically expected behavior. The CNOT pulse sequence starts at t = 0
ms. The grey shaded area indicates the stage of input state preparation. The
input state was |SS〉 in a), |DS〉 in b), |SD〉 in c) and |DD〉 in d).
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Figure 8.5.: Time evolution of the probabilities to find the ions in the basis states
{|DD〉, |DS〉, |SD〉, |SS〉}. The ions were initially prepared in the |DD〉 state for
a) and in |SD〉 for b). The solid line indicates the theoretically expected behavior.
The grey shaded area again represents the period for input state preparation.
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Figure 8.6.: Time evolution of the probabilities to find the ions in the basis states
{|DD〉, |DS〉, |SD〉, |SS〉}. The ions were initially prepared in the |DS〉 state
for a) and in |SS〉 for b). The solid line indicates the theoretically exepected
behavior. The grey shaded area again represents the period for input state prepa-
ration.
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Figure 8.7.: Analysis of an entangled state of the kind 1/
√
2 · (|DD〉 + eiα|SS〉) prepared by

using the CNOT pulse sequence. After preparation of this state π/2-carrier pulses
with variable phase φ are applied two both ions. The measured dependence of
the parity P = PDD + PSS − (PSD + PDS) on the the phase φ is shown. Note
that the parity varies with cos(2φ) as expected for a an entangled bipartite state.

the parity is shown. The observed oscillation has a period of π, proving entanglement of the
prepared state. Furthermore, by measuring the amplitude ρcoh of this oscillation it is possible
to infer a lower bound for the fidelity

F = 〈Ψ|ρ|Ψ〉 = 1

2
(PDD + PSS + ρcoh) , (8.5)

where Ψ = 1/
√
2(|DD〉+e−iα|SS〉 is a maximally entangled state and ρexp denotes the density

matrix of the experimentally prepared state. From the results shown in Fig. 8.7 the amplitude
can be determined to be ρcoh = 0.54(3), such that using the results in Eq. 8.3 a fidelity of
F = 0.71(3) is obtained. Given the prepared input state, we would expect the phase to be
α = π. However, from the parity oscillation the phase is inferred to be α = 0.41(7), indicating
that the CNOT gate is not perfectly reproducing the phases of the ideal evolution given in Eq.
8.2. This was possibly due to either a detuning of the 729 nm laser from the atomic resonance
or imperfect compensation of the light shift.

In addition, after quantum state tomography was implemented, it was possible to fully
determine the density matrix of an entangled state generated by using the CNOT pulse se-
quence. In Fig. 8.3.2 the real and imaginary part of the density matrix are shown. The fidelity
F = 〈Ψ|ρ|Ψ〉 with the state Ψ = 1/

√
2(|DD〉 + |SS〉) was determined to be F = 80(2)%.

Therefore, in this experiment a much larger fidelity compared to the experiment described
previously was achieved, which is due to the fact that both experiments are separated by
about a year during which the experimental setup was improved. In particular, the computer
control of the experiment was improved, such that it is easier to keep experimental parameters
at their optimal value.
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Figure 8.8.: a) Real and b) imaginary part of the density matrix of a Bell state prepared by
using our CNOT operation.

8.3.3. Error analysis

The results presented in the previous sections show that we can achieve fidelities on the order
of 70 - 80 % for the Cirac-Zoller controlled NOT gate operation2. The performance of the
CNOT operation is thereby limited by the imperfections of our experimental apparatus.

A major limitation is the performance of the laser system, which is used to manipulate
the qubit register. This laser has a limited frequency stability of about 100 Hz on short
time scales, causing fluctuations of the laser light’s phase with respect to the phase of atomic
superpositions. At the same time the laser’s frequency is slowly drifting with about 1 Hz/s,
resulting in a detuning from the atomic resonance, which can be compensated by measuring
the resonance frequency every few minutes and resetting the laser frequency.

The influence of the laser’s imperfect frequency stability could be minimized by increasing
the Rabi frequency on the blue sideband transition, such that the whole gate operation would
take less time. But unfortunately this measure would at the same time increase another error
source, namely the off resonant excitation of the carrier transition.

Furthermore, minor error sources are the imperfect laser cooling, leaving residual thermal
excitation of the bus mode and all other vibrational modes, fluctuations of the laser intensity
and the imperfect addressing of the ions, due to the finite width of the focussed laser beam.
To estimate how much the individual error sources contributed to the observed loss in fidelity,
for every error source a simulation of our CNOT pulse sequence was carried out for the input
states {|DD〉, |DS〉, |SD〉, |SS〉} and the loss in population of the expected output states
recorded. The results of these simulations are summarized in the following table:

2Here of course the fidelity was inferred by only looking at the final populations after the gate operation,
ignoring that the exact phases of the final states are also of importance, when assessing the performance
of the gate operation. A better measure, including also information about the output states’ phase, would
be the process fidelity, which can be calculated from the results of a quantum process tomography [71].
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8. The Two Ion CNOT Gate

Error source Magnitude Contribution

Laser frequency noise (phase coherence) ∼100 Hz (FWHM) 11 %
Laser intensity fluctuations ∼3% peak to peak ∼ 1 %
Laser detuning error ∼200 Hz ∼1 %
Residual thermal excitation 〈n〉bus < 0.02 2%

〈n〉other < 6 0.4%
Addressing error 5 % in Rabi frequency (at 2 %

neighbouring ion)
Off resonant excitation for tgate = 600µs 4 %

Total contribution of all error sources Πi(1− εi) ∼ 20 %

Therefore assuming the known imperfections of our experimental apparatus a loss in fidelity
of about 20 % can be explained. Therefore the major error source is the frequency noise of our
laser system which contributes an error on the order of ten percent. This contribution could
be decreased by improving the frequency stability of the 729 nm laser system. However, in
order to achieve laser linewidths far below 100 Hz a much more complex setup of the locking
scheme would be necessary.

An error source not included in these simulations were fluctuations of the ambient magnetic
field which shift the atomic levels via the Zeeman effect, acting therefore in the same way as
frequency fluctuations of the laser light.
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9. Entangled states of three ions

9.1. Introduction

The results shown in Ch. 7 demonstrated our capability to deterministically prepare and
investigate entangled states of two ions. The same techniques can be applied to ion strings
consisting of three ions in order to generate tripartite entangled states. In the case of two
qubits Bell states are the only kind of maximally entangled states. However, three qubits can
be entangled in different ways. It has been shown by Dür et al. that two nonequivalent classes
of tripartite entangled states exist [97], which is the class of GHZ-states represented by:

|GHZ〉 = 1√
2
(|000〉+ |111〉) (9.1)

and the class of W-states, which is represented by:

|W 〉 = 1√
3
(|001〉+ |010〉+ |001〉) . (9.2)

Both classes are distinguished by the fact that if only local operations and classical commu-
nication1 (LOCC) between the respective subsystems are used, an entangled state belonging
to one class cannot be transformed into a state belonging to the other class.

So far, W- and GHZ-states have been successfully created by using polarization entangled
photons [98, 99]. The experiments with GHZ-states were motivated by the fact that GHZ-
states exhibit such strong quantum correlations, such that an elegant test of the nonlocality
of quantum mechanics is possible [7]. Furthermore, nuclear spins of molecules were prepared
in a GHZ-state by nuclear-magnetic resonance techniques (NMR) [100].

9.2. Quantum circuits for the preparation of GHZ- and

W-states

9.2.1. Preparation of GHZ-states

In order to prepare three ion qubits in a GHZ-state, the ion string is initially prepared in the
|SSS〉 state and one of its vibrational modes, which serves as the “bus” mode, is cooled to the
ground state |n = 0〉. Starting from this state, the pulse sequence to prepare the ions in a

1Classical communication means that the kind of local operations or the result of a measurement in one
subsystem can be communicated to the parties owning the other subsystems. Nonlocal operations like a
CNOT- or CZ-operation are however not allowed.
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Figure 9.1.: Pulse sequence for the preparation of an ion string of three ions in the GHZ-state
|Ψ〉 = 1/

√
2(|SSS〉 − |DDD〉). For certain times the intermediate state of the

qubits is shown.
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(9.3)

This pulse sequence, which is depicted in Fig. 9.1, contains ten pulses. The initial π/2-sideband
pulse entangles ion 1 and the vibrational mode, creating the state (|SS〉⊗(|S, 0〉+i|D, 1〉))/

√
2.

The following six pulses on ion 2 represent the Ramsey pulses and controlled phase gate,
which are part of the controlled NOT pulse sequence, introduced in the previous chapter.
The vibrational mode is in a superposition of the states |n = 0〉 and |n = 1〉 and therefore
the controlled-NOT sequence on ion 2 entangles the second qubit with the vibrational mode
and ion 1, resulting in the state (|D〉 ⊗ (|SS, 1〉 − |DD, 0〉)/

√
2. Up to this point the state

of ion 3 is still separable. The final two pulses on ion 3 transfer the entanglement from the
vibrational mode to ion 3, such that the GHZ state −((|SSS〉 + i|DDD〉)/

√
2 ⊗ |n = 0〉) is

obtained. The vibrational mode returns to its ground state and is again separable from the
ions’ internal states.

9.2.2. Preparation of W-states

As in the case of the preparation of the GHZ-state, the ion string is assumed to be initially
prepared in the |SSS, 0〉 state. The pulse sequence to prepare three ionic qubits in a W state
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9.3. Experimental results: Preparation of GHZ- and W-states
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Figure 9.2.: Pulse sequence for the preparation of an ion string of three ions in the W-state
Ψ〉 = 1/

√
3(|DDS〉 − |DSD〉 − |SDD〉). For certain times the intermediary state

of the qubits is shown.

is as follows:

UW = R+
2 (π, π)R+

1

(π

2
, 0
)

R+
3

(

2 arccos(1/
√
3), π

)

R2 (π, 0)R3 (π, 0) . (9.4)

This pulse sequence, also shown in Fig. 9.2, contains only five pulses and takes less time than
the pulse sequence for GHZ-states. The first two carrier pulses on ions 1 and 2 prepare the ion
string in the state −|SDD, 0〉. The subsequent blue sideband pulse of length 2 arccos(1/

√
3)

transfers the ion string to the state −(1/
√
3|SDD, 00〉 + i

√

2/3|DDD, 1〉. The final blue
sideband pulses on ions 1 and 2 leave the ion string in the W state 1/

√
3(|DDS〉 − |DSD〉 −

|DDS〉), which is equivalent to the W-state shown in Eq. 9.2.

9.3. Experimental results: Preparation of GHZ- and W-states

In order to generate GHZ- and W-states the string of three ions was prepared in the same
way as in previous experiments with Bell states and the controlled-NOT gate. A three-ion
crystal has three axial vibrational modes, i.e. the center-of-mass mode, the breathing mode
and the “Egyptian” mode (cf. Sec. 3.3). Following the line of reasoning explained in the
previous chapters it would be favorable to use the mode with highest frequency as “bus”
mode, i.e. the Egyptian mode, to avoid off-resonant excitation of the carrier when driving
sideband transitions. However, it turned out, that better results where achieved, when using
the center-of-mass vibrational mode at a frequency of ωcom = 2π · 1.2 MHz from the carrier2.

2Further measurements showed that the coherence time of a superposition of vibrational states is much lower
for the Egyptian and the breathing mode compared to the center-of-mass mode. This behavior is not
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Figure 9.3.: Density matrix of a state produced by the pulse sequence UGHZ (cf. 9.3) ob-
tained by quantum state tomography. The state expected to be generated by
this pulse sequence is ψideal = −(|SSS〉 + i|DDD〉)/

√
2. The measured density

matrix shows the corresponding characteristics, including imaginary off-diagonal
elements caused by the relative phase of π/2 between the superposed states.

Therefore this mode was chosen for all experiments presented in this chapter. The center-of-
mass mode was cooled to its ground state via Doppler cooling followed by sideband cooling.
After laser cooling each ions was initialized in its |S〉 ground-state. The pulse sequences shown
in the previous section were applied. The Rabi frequency for carrier transitions was adjusted
to Ωcarrier = 2π ·50 kHz and the Rabi frequency of the blue sideband set to Ωblue = 2π ·4 kHz.
The length of the complete GHZ-state pulse sequence amounted to about 650 µs whereas the
W-state pulse sequence took only about 300 µs.

In order to gain complete information about the outcome of the pulse sequences, quantum
state tomography was used to obtain the density matrices of the generated states ρexp. In
Fig. 9.3 the real and imaginary part of a density matrix ρexp of a state generated by our GHZ
pulse sequence is shown. The overlap or fidelity F = 〈ψideal|ρexp|ψideal〉, where |Ψideal〉 =
−1/
√
2(|DDD〉+i|SSS〉) is the ideally expected state, was calculated. For the density matrix

shown in Fig. 9.3 the fidelity was calculated to be F = 76(2)%3.

In Fig. 9.4 the density matrix of a state produced by our W-state pulse sequence is shown.
The fidelity with respect to the ideal state Ψideal = (|SDD〉 − |DSD〉 − |DDS〉)/

√
3 was

calculated to be F = 83(3)%.

expected and is still investigated.
3Here, the statistical uncertainty is caused by quantum projection noise due to the finite size of the sets

of data taken for the quantum state tomography. The statistical error was calculated using Monte-Carlo
simulations (cf. A.2)
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Figure 9.4.: Measured density matrix of a W-state generated by the pulse sequence in Eq. .
This density matrix fits well to the expected output state ψideal = 1/

√
3(|SDD〉−

|DSD〉 − |DDS〉), the calculated overlap is F=83(3)%. Off-diagonal matrix ele-
ments belonging to coherent superpositions of the |DDS〉 state with |DSD〉 and
|SSD〉 are as expected negative. The real and imaginary part of the density ma-
trix are shown in a) and b), respectively. Since two of the off-diagonal elements
belonging to coherent superpositions are not visible in a) the absolut value of the
density matrix is shown in c).
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9. Entangled states of three ions

9.4. Experimental results: Lifetime of GHZ- and W-states

Just as in the experiments in Sec. 7.4 with Bell states, the fact that we are able to prepare
tripartite entangled states enabled us to investigate the lifetime of these states.

In order to monitor the time evolution of the entangled states, a waiting time τ was inserted
before the pulses for the quantum state tomography were applied. This kind of measurement
was done with two kinds of GHZ-states, namely |GHZ1〉 = (|SSS〉+i|DDD〉)

√
2 and |GHZ2〉 =

(|SDD〉 + |DSS〉)/
√
3, and the W-states shown in the previous section. All three states are

expected to have different lifetimes or inherent stability against correlated phase fluctuations.
W-states are invariant against this kind of noise, which can be easily proven by substituting
|S〉 → e−α/2|S〉 and |D〉 → e+α/2|D〉 in |W 〉 = (|DSS〉 − |SDS〉 − |SSD〉)

√
3 for all ions.

The same substitution in the GHZ-state |GHZ1〉 = (|SSS〉 + i|DDD〉)
√
2 will change the

relative phase of the superposed states by 3α. Therefore these GHZ-states are expected to be
highly sensitive to dephasing. However, the other kind of GHZ states |GHZ2〉 = (|SDD〉 +
|DSS〉)/

√
2 are expected to be roughly three times more stable, since the dephasing on two

of the three qubits will cancel.

The fidelity F (τ) = 〈GHZ|ρ(τ)|GHZ〉 is shown in Fig. 9.5a). Additionally, in Fig. 9.5b)
the normalized height of the non-diagonal elements of the density matrix are shown, which
indicate coherent superpositions of |SSS〉 and |DDD〉 or |SDD〉 and |DSS〉 in case of the
GHZ-state |GHZ2. The height of these off-diagonal elements and therefore the fidelity as
well, decreases with increasing waiting time, indicating that the entangled states decay into a
statistical mixture. A Gaussian ∼ exp(−τ 2/τ20 ) was fitted to the height of the non-diagonal
elements of the density matrix. In case of the |GHZ1〉-states the decay time was determined
to be τ0 = 0.9(3) ms, while for the |GHZ2〉-states the decay time obtained was τ0 = 2.3(4)
ms. The two lifetimes differ by a factor of 2-3 which is expected.

The results for W-states |W 〉 = (|SSD〉−|SDS〉−|DSS〉)/
√
3 are shown in Fig. 9.6. Again

the fidelity F (τ) and and the mean of the absolute value of the six off-diagonal element, which
correspond to coherent superpositions within the W-state (see Fig. 9.4) are shown. In order
to show the difference between the lifetime of GHZ- and W-states, the results from Fig. 9.5 for
the |GHZ2〉-states are shown again. The waiting time was increased to 40 ms, during which
the loss of fidelity for the W-states was only about 20 %, whereas the GHZ-states already
decay into a statistical mixture in less than 3 ms. This demonstrates the inherent stability
of the W-states against correlated dephasing. A proper fit of a Gaussian to the data is not
possible, since data points at even larger waiting times would be necessary in order to do so.

9.5. Partial measurement of GHZ- and W-states

9.5.1. General remarks

Being able to generate both types of tripartite entangled states, it is intriguing to investigate
the effect of a measurement of one of the involved qubits on the entangled states. The two
classes of tripartite entangled states are expected to behave differently if one of the qubits
is subjected to a projective measurement in the {|S〉, |D〉} basis. Suppose a measurement is
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Figure 9.5.: Time evolution of the GHZ-states (|GHZ1〉 = |SSS〉 + i|DDD〉)/
√
2 (squares)

and |GHZ2〉 = (|SDD〉 + |DSS〉)/
√
2 (triangles). In a) the fidelity F (τ) =

〈GHZ|ρ(τ)|GHZ〉 is shown, where ρ(τ) is the measured density matrix after a
waiting time τ . b) Mean of the absolute value of the off-diagonal elements of the
density matrix ρ(τ). The measured values are normalized to the ideal value of
1/2. The solid curves show fits of the data with a Gaussian ∼ e−(τ/τ0)2 . For the
GHZ-states |GHZ1〉 the decay time was determined to be τ0 = 0.9(3) ms and
for the GHZ-state |GHZ2〉 the decay time τ0 = 2.3(4) ms was obtained. In both
figures the given error bars are the quantum projection noise, which is due to the
finite number of experiments (n=5400) taken for every point of data. The error
bars were determined using Monte-Carlo simulations as described in A.4. The
error bars are centered around the mean value of the fidelity of the simulated
density matrices, which is indicated by small horizontal bars.
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Figure 9.6.: Time evolution of W-states. In a) the fidelity F (τ) = 〈W |ρ(τ)|W 〉 is shown.
b) Mean of the absolute value of the six off-diagonal elements |DDS〉〈DSD|,
|DDS〉〈SDD| and |DSD〉〈SDD| and the corresponding hermitian conjugated
elements. In order to compare the lifetimes of GHZ- and W-states the lifetime
data for |GHZ2〉 is shown again. The values are normalized to the ideal values,
i.e. 1/2 for the GHZ-states and 1/3 for the W-states. The error bars represent the
statistical error due to quantum projection noise, whose magnitude is determined
by the number of experiments (n=5400) taken for every data point. The error
bars were determined using Monte-Carlo simulations as described in A.4. The
error bars are centered around the mean value of the fidelity of the simulated
density matrices, which is indicated by small horizontal bars.
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9.5. Partial measurement of GHZ- and W-states

performed on the first qubit, then the following behavior is expected:

ρGHZ = |GHZ〉〈GHZ| measure qubit 1−−−−−−−−−−→ 1

2
(|DDD〉〈DDD|+ |SSS〉〈SSS|)

ρW = |W〉〈W| measure qubit 1−−−−−−−−−−→ 2

3
|ψ〉〈ψ|+ 1

3
|DDS〉〈DDS|

where ψ = (|SD〉+ |DS〉) |0〉. (9.5)

Here, the states |GHZ〉 and W〉 are those defined in Eq. 9.1 and 9.2. In both cases the quantum
state after measurement is described by a mixed state. In case of the GHZ-state the qubits
will be found with equal probability in |DDD〉 or |SSS〉. The resulting mixed state is no
longer entangled. For the W-state the situation is different: The qubits are left in a mixed
state, but with a probability of 2/3 the state (|SD〉+ |DS〉) |0〉 is obtained in which two of
the qubits are still entangled.

9.5.2. Partial read-out of ion strings
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Figure 9.7.: Scheme for partial measurement of an ion string. The populations of the S1/2(m =
−1/2) states of ions 1 and 2 are coherently mapped to the D5/2(m = −5/2)
states. Potential superpositions of S1/2(m = −1/2) and D5/2(m = −1/2) are
now superpositions of D5/2(m = −5/2) and D5/2(m = −1/2). If light at 397 nm
is applied, only ion 3 is measured and projected onto either the S1/2- orD5/2-state.
The quantum states of ion 1 and 2 are unaffected by the 397 nm light.

In order to implement an experiment as described in the previous paragraph the ability to
perform a measurement on one of the qubits while preserving the quantum state of the others is
a prerequisite. In the case of our ion trap implementation measurements are done by scattering
light at 397 nm at the S1/2 ↔ D5/2 transition. Since in principle only one scattering event is
sufficient to destroy possible coherent superpositions of qubits and since in our experimental
setup the whole ion string is illuminated by the laser beam at 397 nm, it is necessary to
protect qubits from the influence of the 397 nm light. Here, the fact that the 397 nm light
couples only to the S-ground state but not to the D-state can be used to our advantage.
By exciting the transition S1/2(m = −1/2) ↔ D5/2(m = −5/2) with a pulse of length πΩ,
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9. Entangled states of three ions

superpositions of the S1/2 −D5/2(m = −1/2) type are transformed into superpositions of the
type D5/2(m = −5/2) −D5/2(m = −1/2). In this way quantum information is temporarily
stored in the D sub-levels, which are not affected by the 397 nm laser light. This is depicted in
Fig. 9.7, where the quantum information in ion 1 and 2 is "hidden" in the D′ −D sub-levels,
where D′ and D denote the D5/2(m = −1/2) and D5/2(m = −5/2) states respectively, while
the quantum state of ion 3 is measured by scattering 397 nm light. After completion of this
measurement, superpositions in the D′ − D sub-levels can be transformed back to S − D-
superpositions by another pulse on the S1/2(m = −1/2) ↔ D5/2(m = −5/2) of length πΩ.
The required time for writing the quantum information back and forth from S−D to D ′−D
is usually only a few tens of microseconds, since only carrier transitions are involved.

A problem arises from the fact that the shift of the levels relative to each other due to the
Zeeman effect is six times larger for the D′ −D levels than for the S −D levels. Therefore,
magnetic field fluctuations will affect the coherence of D′ − D superpositions far more than
S−D superpositions. However, the effect of magnetic field fluctuations on a time scale greater
than or equal the length of one experimental cycle ( 20-40 ms) can be cancelled by employing
the spin-echo technique (cf. Sec. 6.5.4).

9.5.3. Experimental results

Ion 1 |S>

Ion 2 |S>

Ion 3 |S>

Prepare
entangled

state

C'
π

0

C'
π

0

C'
π

π

C'
π

π

Figure 9.8.: Pulse sequence in order to investigate the effect of a measurement of one ion on an
entangled states of three ions. First the three ions are entangled using the pulse
sequences shown in Fig. 9.1 and 9.2. While ion 3 is projected by a measurement,
the quantum states of ions 1 and 2 are stored in a superposition of the levels D ′

and D, indicated by grey lines. The transfer from S to D′ is done by pulses on the
carrier transition S1/2 ↔ D5/2(m = −5/2). In the diagram these carrier pulses
are indicated by C ′.

In order to investigate the effect of a measurement on GHZ- and W-states and to demon-
strate the technique introduced in the previous section, the following experiment was carried
out (cf. Fig. 9.8): First three ion qubits were prepared in GHZ- or W-states using the pulse
sequences introduced in Sec. 9.2. Then laser pulses were applied to qubits 1 and 2 to transfer
their quantum state from the S − D to the D′ − D manifold. A measurement of qubit 3
was carried out by scattering light at 397 nm. Finally, the quantum state of qubits 1 and 2
was transferred back to the S − D-manifold and the quantum state of the three qubits was
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9.5. Partial measurement of GHZ- and W-states

determined by quantum state tomography. In Fig. 9.9 the measured density matrices of a
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Figure 9.9.: Measured density matrices of three entangled qubits after qubit was projected by
a measurement. In a) the density matrix for a GHZ-state and in b) that for a W-
state are shown. Off-diagonal elements corresponding to coherent superpositions
of qubit 3 with the other qubits disappear in both cases. In the case of the
GHZ-state all off-diagonal elements vanish, whereas in the case of the W-state off-
diagonal elements corresponding to superpositions of ion 1 and ion 2 are preserved.

GHZ-state in (a) and a W-state (b) after ion 3 was subjected to a measurement are shown. In
the case of the GHZ-state a comparison with the density matrix without a measurement on
ion 3 in Fig. 9.3 shows that the off-diagonal elements |SSS〉〈DDD| and |DDD〉〈SSS| vanished.
This is expected, since the ion string is no longer in a coherent superposition of |SSS〉 and
|DDD〉 after the measurement but a mixture of these states. For the W-state the result is
different. All off-diagonal elements corresponding to superpositions where ion 3 is involved
have vanished. However, the non-diagonal elements belonging to superpositions of ions 1 and
2 are still present after the measurement, leaving those ions with a probability of 2/3 of being
in a Bell state (|SD〉+ |DS〉)/

√
2.

If information is available about the state into which state ion 3 was projected, the state of
the other two ions is completely determined. To prove this, the time during which light at 397
nm was scattered by ion 3 was increased to 500 µs, such that by collecting the fluorescence
light of the ion with our PMT, it was possible to determine the state into which ion 3 was
projected. In Fig. 9.10(a) a histogram of the photon counts measured with the PMT is shown.
Here the peak centered around 10 counts per 500 µs corresponds to events where ion 3 was
projected into the |D〉 state while the peak centered around 40 counts per 500 µs corresponds
to events where it was projected into the |S〉 state. The threshold which discriminates between
the two cases was set to 20 counts. Ion 3 is observed in state |D〉 in 65(2) % of the cases
complying with the expected probability of 2/3. Using the information about the state of ion
3 the experimental results were sorted and for both cases the resulting reduced density matrix
of ions 1 and 2 was reconstructed. For the cases where ion 3 was found in |S〉 the density
matrix in Fig. 9.10(b) is obtained, which shows that ions 1 and 2 are projected into the |DD〉
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9. Entangled states of three ions

state. The density matrix of ions 1 and 2 for the case where ion 3 was projected into the |D〉
state is shown in Fig. 9.10(c). As expected ion 1 and 2 are projected into a Bell state, whose
fidelity was calculated to be 75%.
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Figure 9.10.: a) Histogram of the photons counted with the PMT during 500 µs of measuring
ion 3. The peaks centered around 10 and 40 counts per 500 µs correspond to
events where ion 3 was projected into state |D〉 or |S〉, respectively. The subsets
of data belonging to either one of the two cases - ion 3 in |S〉 or |D〉 - were used
to reconstruct the reduced density matrix containing only the information about
the states of ions 1 and 2. b) Reduced density matrix for the case that ion 3 was
found in |S〉. c) Reduced density matrix for the cases where ion 3 was projected
into |D〉.

The ability to perform a measurement on a part of a register of qubits and use the obtained
result to choose an appropriate operation for the rest of the qubits is an important part of
quantum algorithms like error-correction, quantum teleportation and entanglement swapping.
In order to demonstrate this ability the following experiment was carried out: A GHZ-state
of the kind |ψ〉 = 1/

√
2(|DSD〉+ i|DSS〉) was prepared4. The third ion was then rotated by

4This kind of GHZ-state can be generated by using the pulse sequence U = R1(π, 0)R
+
1 (π, 0) · U

32
CNOT ·

R+
3 (π/2, 0).
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9.5. Partial measurement of GHZ- and W-states

a carrier pulse R3(π/2, π), such that the following state was obtained:

|ψ〉 = −1

2
(|D〉 (|DS〉+ |SD〉) + i|S〉 (|DS〉 − |SD〉)) . (9.6)

A measurement of ion 3 was carried out, while the quantum states of ions 1 and 2 were stored
in the D′ − D levels. Ion 3 is projected with equal probability into the |D〉 or |S〉 state,
whereas ion 1 and 2 are projected into the (|DS〉 + |SD〉)/

√
2 state or (|DS〉 − |SD〉)/

√
2,

respectively. The measured density matrix corresponding to this state is shown in Fig. 9.11(a).
We intended to transform this state into the pure state |S〉 ⊗ (|DS〉 − |SD〉). Therefore,
whenever the state of ion 3 was found to be |D〉, the states of ions 1 and 2 were mapped by
the pulse sequence U = R1(π, π/2)R1(π, 0) from (|DS〉 + |DS〉)/

√
2) to (|DS〉 − |DS〉)/

√
2)

and ion 3 was transferred from |D〉 to |S〉 by a pulse R3(π, 0), such that we obtain the desired
pure state. In Fig. 9.11(b) the density matrix measured after applying these reconstruction
operations is shown.

This experiment demonstrates our ability to measure a part of an register of qubits and to
apply operations to the other qubits, depending on the result of this measurement. This tech-
nique is a fundamental building block in more complex experiments as quantum teleportation
and error correction. The experimental implementation of quantum teleportation will be dis-
cussed in the following chapter. It has to be pointed out that our ability to apply operations
after a measurement is so far restricted to carrier pulses. During the measurement the ion
string is heated up to the Doppler limit by the 397 nm photons scattered by the ions. The state
of the vibrational COM mode will thus be a thermal state with a mean phonon population of
〈n〉 = 20. Under these conditions carrier pulses of high accuracy are still feasible, since the
Rabi frequency of carrier transitions depends only weakly on the phonon number. However,
operations like a controlled-NOT or a phase gate, which require the vibrational mode to be
in the ground state, cannot be executed. It would be necessary to cool down the relevant
vibrational mode to the ground state once more.
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Figure 9.11.: Density matrices illustrating a measurement of ion 3, which depends on the
result of the measurement followed by a subsequent rotation of ions 1 and 2. a)
Real part of the density matrix of a GHZ state, after measurement of ion 3 in
a rotated basis. As can be seen from the density matrix the ion string is left in
a mixed state. Ions 1 and 2 are found in two different Bell states, depending on
whether ion 3 was found in the |S〉 or |D〉 state. In the latter case carrier pulses
are applied to ions 1 and 3. This way the ion string is prepared in a pure Bell
state again, whose density matrix - only the real part is shown - can be seen in
b). Please note the different scaling of the y-axis in a) and b).
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10. Quantum Teleportation

10.1. Introduction

Suppose a person called Alice is in possession of a quantum state or qubit |ψ〉 unknown to her
which she wants to transfer to another person called Bob. However, Alice and Bob have no
quantum channel available through which they can directly transfer the quantum state1. Alice
might be tempted to try to gain information about |ψ〉 by subjecting it to a measurement
and transfer the obtained information to Bob via a classical communication channel. But
this approach would not succeed, since Alice would only obtain one bit of information by
measuring the quantum state in her possession. However, it would require measurements
on an infinite ensemble of copies of the quantum state |ψ〉, producing an infinite amount of
classical information in order to gain complete information about |ψ〉.

In 1993 Bennett et al. proposed a scheme which allows Alice and Bob to faithfully transfer
quantum information [12]. They called this scheme teleportation. The major steps of this
scheme are depicted in Fig. 10.1. Bennett et al. assumed that Alice and Bob each have one
particle of an entangled pair of particles, which is the necessary quantum resource Alice and
Bob need to transfer a quantum state. Alice performs a measurement of the unknown quantum
state and her part of the entangled pair of particles in the Bell basis (cf. Sec. 2.4.2). Due to the
nonlocal properties of the entangled state, Bob’s part of the entangled pair will be projected
into a state which turns out to be the original state |ψ〉 modulo an additional rotation. If Alice
conveys the results of her Bell-measurement to Bob via a classical communication channel,
Bob has the necessary information to apply the suitable operation, which recovers the original
quantum state.

The first experimental demonstration of teleportation was realized by Bouwmeester et al.
in 1997 [14]. They used a pair of polarization-entangled photons created by parametric down-
conversion and another photon to carry the initial quantum state encoded in the photon’s
polarization. However, this first experiment lacked a complete Bell-measurement: Only one
of four Bell states could be detected. In further experiments this limitation was overcome by
using more complex optical setups. Boschi et al. for instance implemented teleportation by
generating a path-entangled pair of photons, which at the same time carried the input state
for teleportation encoded in their polarization. Their setup allowed them to implement a
complete Bell-measurement [15]. Another approach was pursued by Kim et al. who also used
polarization-entangled photons but implemented a Bell-measurement using nonlinear optical
elements. This allowed them to discriminate between all four possible Bell states but decreased
the rate at which teleportation events were detected significantly [101]. Although all four Bell

1A quantum channel would be a quantum system which Alice and Bob use to exchange quantum information.
An example of such a channel could be the polarization of a photon onto which the unknown quantum
state could be swapped and sent to Bob, who would then swap the quantum information onto one of his
qubits
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Figure 10.1.: Bennet et al.’s proposal to teleport an unknown quantum state [12]. An un-
known quantum state is to be transferred from Alice to Bob. Alice and Bob
share one part of a maximally entangled pair of particles. Alice carries out a
projective measurement in the Bell basis, whose results she communicates to Bob
via a classical channel. Depending on this information, Bob selects the suitable
operation to reconstruct the input state in his part of the entangled pair.

states could be detected, the final step of reconstructing the input state by an operation con-
ditioned by the result of the Bell-measurement, was omitted in these experiments. Successful
teleportation events had to be established by selecting the data after completion of the ex-
periment, searching for the subset of data where the outcome of the Bell-measurement and a
preset reconstruction operation did match, i.e. teleportation was performed post-selectively.

Teleportation was also demonstrated for other physical systems. Teleportation of the quan-
tum state of a continous system, was realized by Furusawa et al. who teleported an optical
coherent state [16]. In another experiment teleportation was simulated using liquid-state nu-
clear magnetic resonance [17]. A teleportation experiment similar to the one presented in this
chapter was realized by Barrett et al. , who used three 9Be+ ions in a segmented ion trap to
implement the teleportation algorithm [102].

10.2. Teleporting an Unknown Quantum State

In this section the teleportation scheme shown in Fig. 10.1 is investigated step-by-step. First
we assume the source of entangled pairs provides the Bell state:

|Ψ+〉AB =
1√
2
(|0〉A|1〉B + |1〉A|0〉B) , (10.1)

where the subscripts indicate whether the qubit belongs to Alice’s or Bob’s subsystem. Sup-
pose the unknown quantum state is given by |ψin〉A = (α|0〉 + β|1〉)/

√
2. The complete
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10.3. Quantum state transfer without entanglement vs. teleportation

quantum state of all three qubits in the system is given by:

|Ψ〉AB =
1

2
(α|0〉B|00〉A + β|1〉B|10〉A + α|1〉B|01〉A + β|1〉B|10〉A) . (10.2)

The basis states {|00〉, |01〉, |10〉, |11〉} can be expressed using the Bell states (cf. Eq. 2.18),
such that Eq. 10.2 becomes:

|Ψ〉AB =
1√
8
[ (α|1〉+ β|0〉)B |Φ+〉A + (α|1〉 − β|0〉)B |Φ−〉A

+ (α|0〉+ β|1〉)B |Ψ+〉A + (−α|0〉+ β|1〉)B |Ψ−〉A],

and by using the Pauli operators X and Z we finally obtain:

=
1√
8
[X|ψin〉B ⊗ |Φ+〉A +XZ|ψin〉B ⊗ |Φ−〉A|ψin〉B ⊗ |Ψ+〉A − Z|ψin〉B ⊗ |Ψ〉A]. (10.3)

A projective measurement of Alice in the Bell-basis projects the qubit in Bob’s possession
with equal probability into the states X|ψin〉, XZ|ψin〉, |ψin〉 and Z|ψin〉. It is noteable,
that at this point neither Alice nor Bob own enough information to recover the input state.
Both possess only random information. Only if Alice communicates the result of her Bell-
measurement to Bob, does he know which operation to apply in order to reconstruct |ψin〉.
Therefore the information transfer in teleportation is not taking place instantaneously at the
moment of Alice’s measurement, which would violate one of the cornerstones of the theory
of relativity, i.e. that no signal can travel faster than the speed of light. The information
transfer is not complete until Alice and Bob have finished their classical communication,
which is limited by the speed of light.

10.3. Quantum state transfer without entanglement vs.

teleportation

In the previous section the protocol of teleportation was outlined. Provided Alice and Bob
share a maximally entangled pair of particles and a classical communication channel it was
shown, that they can transfer a quantum state, without loss of information. The question to
be investigated in this section will be: In terms of fidelity, how well can Alice and Bob transfer
a quantum state without a maximally entangled pair at hand, using only the classical chan-
nel? The answer to this question gives a mean fidelity Flim, averaged over the distrubution
of possible input states. This mean fidelity is important in the context of experimental real-
izations of teleportation. Due to inevitable experimental imperfections, the overlap of Alice’s
input state |ψin〉 and Bob’s reconstructed state ρout, i.e. the fidelity Fexp = 〈ψin|ρout|ψin〉, is
expected to be less than one. However, it is necessary to achieve a fidelity above the threshold
Flim to prove that the obtained result can only be explained by the action of teleportation
and not by any other strategy Alice and Bob might have used. The question raised above has
been adressed by various authors (c.f. [103–105]). Here, mainly the results will be discussed.
Technical details about how the thresholds can be calculated are explained in Appendix A.3.

Strategy 1 (Teleportation protocol with mixed state): Suppose Alice and Bob share
a totally mixed state given by ρmix = 0.5 · I, where I denotes the identity, instead of a
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10. Quantum Teleportation

maximally entangled state. Even if they apply the teleportation protocol, Bob’s output state
will only be a mixed state ρout = 0.5·I, i.e. no information about the input state is transferred.
The mean fidelity achievable with this strategy is given by:

Flim(Strategy 1) =
1

2
. (10.4)

The same result is achieved if Alice and Bob have no classical communication channel available.
In this case all Bob can do is to prepare his qubit in randomly chosen states, resulting in a
mean fidelity of Fexp = 0.5.

Strategy 2 (Measure and transfer one bit of information): In this approach Alice
and Bob only use the available classical communication channel. Alice measures the unknown
input state ψin along the z-axis, obtains one of the eigenvalues +1 or -1 and projects ψ in

into |0〉 or |1〉, respectively. She communicates her measurement result to Bob, who prepares
his qubit accordingly in |0〉 or |1〉, respectively. The mean fidelity Flim achievable with this
approach depends on the probability distribution of the input states ψ in.

First, consider the case where all possible input states are equally probable. In this case
the mean fidelity is given by:

Flim(Strategy 2.1) =
2

3
. (10.5)

In an experimental realization generate it is preferable to work with a finite set of input states
instead of an ensemble of completely random input states. Such a set of four input states2

could be for instance:

|ψin
1 〉 = |1〉, |ψin

2 〉 = |0〉, |ψin
3 〉 =

1√
2
(|0〉 − i|1〉), |ψin

4 〉 =
1√
2
(|0〉 − |1〉). (10.6)

In this case Alice’s and Bob’s strategy result in a mean fidelity of :

Flim(Strategy 2.2) =
3

4
. (10.7)

Thus, by choosing a set of input states covering only a quarter of the Bloch sphere, the mean
fidelity achievable by Alice and Bob using only a classical channel is increased compared to
the case with an equal distribution of input states. However, if two more states are added to
the set:

|ψin
5 〉 =

1√
2
(|0〉+ i|1〉), |ψin

6 〉 =
1√
2
(|0〉+ |1〉), (10.8)

such that all directions on the Bloch sphere are covered, the mean fidelity using stategy 2
becomes:

Flim(Strategy 2.3) =
2

3
. (10.9)

Therefore, in order to exclude strategy 2 and prove teleportation in an experiment, the de-
mands in terms of fidelity are less if six instead of only four input states are chosen.
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Figure 10.2.: Sets of input states for teleportation. a) Set of four input states given by: ψ in
1 =

|1〉, ψin
2 = |0〉, ψin

3 = (|0〉−i|1〉)/
√
2 and ψin

4 = (|0〉−|1〉)/
√
2. The corresponding

Bloch vectors cover only a quarter of the Bloch sphere. b) Set of input states
with two additional states ψin

5 = (|0〉+ i|1〉)/
√
2 and ψin

6 = (|0〉+ |1〉)/
√
2, giving

a set of six input states.

10.4. Adapting Teleportation for the ion trap quantum

processor

The crucial ingredients of a teleportation experiment were shown in Fig. 10.1: Generation
of an entangled pair of particles, a complete Bell-measurement and reconstruction operations
chosen according to the results of the Bell-measurement. In our ion trap experiment we
intended to teleport the quantum information stored in one ion qubit to another ion qubit.
The quantum circuit accomplishing this task is shown in Fig. 10.3. A three ion crystal was
used, where ion 1 carried the input quantum state and ion 2 and 3 served as entangled pair.
After completion of the quantum circuit the state of ion 3 was expected to be identical to the
input state.

Initially all ions were prepared in their |S〉 ground state and the center-of-mass mode in its
vibrational ground state |n = 0〉. The quantum circuit started with preparing ions 2 and 3 in
a Bell state (|SD〉+ |DS〉)/

√
2 employing the techniques outlined in Ch. 7.

Ion 1 was prepared in the input state by applying the operation Uχ. Next we wanted to
subject ions 1 and 2 to a measurement in the Bell basis. The procedure given in Sec. 2.4.2 was
used to map the Bell-basis onto the computational basis states, which we can discriminate by a
measurement. In Fig. 10.3 the corresponding quantum circuit consisting of a controlled-NOT
and a Hadamard operation has been adapted to the ion trap. Hadamard operations were
substituted by suitable π/2-carrier pulses, the controlled-NOT operation was decomposed in
π/2-rotations and a phase gate. The phase gate was implemented as presented in Chapter
8. One of the π/2-rotations belonging to the CNOT was omitted. Therefore, it was actually
the state R(π/2)|χ〉 that was teleported. The omitted π/2-pulse was later added to the
reconstruction operations applied to ion 3 3.

2Choosing at least four non-collinear input states might seem sufficient, since it would allow one to completely
characterize the quantum process [71].

3Strictly speaking the quantum circuit acting on ion 1 and 2 is not rotating the Bell states completely onto
the computational basis. Therefore, Eq. 10.3 would have to be rewritten to take into account our different
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Figure 10.3.: Quantum circuit for teleportation with three ionic qubits. Quantum information
is teleported from ion 1 to ion 3. Initially ion 2 and 3 are prepared in a Bell state.
Ion 1 is prepared in the input state |χ〉 = Uχ|S〉. Ion 1 and 2 are subjected to a
measurement in the Bell-basis. During the subsequent read-out of both ions the
other ions are protected from 397 nm light by mapping their quantum state to
the D′ −D manifold. The hidden ions are indicated by grey lines in the figure.
Resonance fluorescence is detected by the PMT and accordingly π-rotations
around the x- and/or z-axis are applied to ion 3 in order to reconstruct the
input state.

Ions 1 and 2 were subsequently read out by illuminating each ion with 397 nm laser light
for 250 - 300 µs and recording the ion’s fluorescence light with the PMT. The signal from the
PMT is immediately evaluated by counter electronics, which compared the number of counts
during a measurement period with a given threshold in order to decide whether an ion was
fluorescing or not (cf. Appendix A.5). After both ions have been read out, information about
the computational basis state {|00〉, |01〉, |10〉, |11〉} into which the two ions were projected
is available to the experimental control electronics. Depending on this information, a logical
network chose which operations were to be applied to ion 3 in order to reconstruct the input
state.

While measuring one of the ions the quantum information stored in the other two ions had
to be protected from the 397 nm light. Therefore, the quantum state of these ions was mapped
to the D′ − D subspace, a technique introduced in Sec. 9.5.2. The quantum state of ion 3
was mapped to the D′ −D manifold immediately after the teleportation experiment started.
During the subsequent measurements on either ion 1 or 2, the other ion of the pair was mapped
into the D′ −D subspace. This was even done for ion 1 after it had been measured and was
no longer storing critical quantum information. This mapping of a possible population of the
S-state to the D′-level guaranteed proper state discrimination, when measuring ion 2.

While quantum information is stored in the D′ −D-subspace, it is much more affected by
magnetic field fluctuations, due to the larger difference in g-factors of the D ′- and D-level. In
order to cancel a phase shift induced by a drift of the magnetic field, which is constant on the
time scale of the experiment, we applied the spin-echo technique. A spin-echo pulse R1(π, 0)
was applied to ion 1 and a R3(π, π/2) to ion 3 after the phase gate. After ion 1 and ion 2 had
been read out a waiting time was introduced to let ion 3 rephase.

After the waiting time, the reconstruction pulses were applied to ion 3. First the π/2-
rotation, which was omitted in the Bell-analysis, was carried out to rotate ion 3 into the

measurement setting. Details can be found in Appendix A.4.
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proper basis. If ion 1 was measured to be in the |D〉 = |0L〉 state, a Z-operation, decomposed
in a X- and a Y -operation, was applied while no operation if it was measured to be in
|S〉 = |1L〉. If ion 2 was found to be in |0L〉 an X-operation was carried out and no operation
in the case |1L〉 was measured. In this way, for all four possible cases the proper reconstruction
operations were applied.

The reconstruction pulses were applied with a variable phase φ, which had to be determined
experimentally. This additional phase φ, which will be denoted as reconstruction phase in the
following, turned out to be necessary to compensate for a systematic error of the atomic
phase prior to the reconstruction pulses. This systematic error was most probably caused
by the spin-echo on ion 3, which added an additional phase shift. Another possible reason
was the imperfect action of the phase gate in the Bell-analysis, due to improper light shift
compensation for example, which would have also introduced an additional phase shift of the
atomic superpositions.

Finally, the state of ion 3 was analyzed. If the teleportation algorithm was successful, ion
3 was expected to be in input state |χ〉, which initially entered the teleportation algorithm.
In order to measure the fidelity Ftele = |〈χ|ψout〉| two approaches were pursued:

1. The quantum state of ion 3 after teleportation was estimated by quantum state tomog-
raphy, which allowed one to calculate the fidelity Ftele = 〈ψin

i |ρ
exp.
out |ψin

i 〉, where ρexp.
out is

the density matrix of ion 3 measured after completion of the teleportation algorithm.

2. The operation U−1
χ was applied to ion 3 after teleportation. If ion 3 was in the input

state, this operation would have transferred ion 3 back to the |S〉-state. Therefore
the fidelity Ftele was directly given by the |S〉-state population of ion 3, i.e. Ftele =
〈|ψin

i |U−1
χ ρout|ψin

i 〉 = PS .

In both cases ion 3 was measured by using the CCD-Camera as the detection device.
All laser pulses and detection steps together made up a total of 30 experimental steps

necessary in order to implement teleportation. A scheme containing all these steps is shown
in Fig. 10.4.

10.5. Experimental results

Teleportation was implemented with a crystal of three ions using the pulse sequence shown
in Fig. 10.4. The experimental parameters were adjusted as follows: The Rabi frequencies for
the carrier transitions were Ω−1/2↔−1/2 = 2π · 68 kHz for the (m = −1/2 ↔ m′ = −1/2)-
transition and Ω−1/2↔−5/2 = 2π · 20 kHz for the (m = −1/2 ↔ m′ = −5/2)-transition used
for mapping to the D−D′-sublevels. The center-of-mass mode was chosen as the “bus mode”
and the Rabi frequency was set to Ωblue = 2π · 4 kHz. The addressing optics was adjusted,
such that an addressing error of 3-4% was obtained for all ions.

In order to read out the state of ion 1 and ion 2, each ion was illuminated with laser light at
397 nm for 300 µs. Histograms of the number of fluorescence photons counted with the PMT
are shown in Fig. 10.8(a) A threshold of three counts was chosen to discriminate between the
events where an ion was or was not fluorescing, which corresponds to the ion being projected
into |1L〉 or |0L〉, respectively. The electronics which evaluated the signal from the PMT
during the read-out of ion 1 and ion 2 was set to this threshold.
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Figure 10.5.: Dependence of the teleportation fidelity Ftele on the the reconstruction phase φ.
The state |S〉 = |1L〉 was used as input state for teleportation. The teleportation
fidelity was maximal for φ = 0.3π.

In order to cancel a phase shift of the information stored in ion 3 induced by magnetic
field fluctuations a spin-echo was implemented. The waiting time prior to the reconstruction
operations had to be adjusted in order to properly let the phase of the quantum state phase
recover. Various waiting times were tried and finally the waiting time was set to 70µs.

The reconstruction phase φ, which compensates for a systematic shift of the phase in the
previous experimental steps, was adjusted as follows: The teleportation algorithm was carried
out with |ψin

1 〉 = |S〉 as input state. The reconstruction phase φ was varied and the tele-
portation fidelity Ftele monitored by applying the operation U−1

χ and measuring the S-state
population of ion 3 after completion of the teleportation algorithm. The result of this mea-
surement is shown in Fig. 10.5. A sinusoidal dependence of the teleportation fidelity on the
reconstruction phase was observed. Instead of the theoretically expected phase of φ = 0π,
the teleportation fidelity was found to be maximal for φ = 0.3π. This value was used for all
teleportation experiments presented here. It is important to point out that the reconstruction
phase did not depend on the input state, but instead was determined once for one input state
and later used for all other input states as well.

The teleportation algorithm was tested with the six input states |ψ in
1 〉 − |ψin

6 〉 discussed in
Sec. 10.3. First, the teleportation fidelity Ftele was determined by applying the operation U−1

χ

to ion 3 and measuring the S-state population PS . For all six input states PS was determined
by repeating the teleportation experiment 800 times, which yielded:
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Figure 10.6.: Teleportation fidelity for our six input states. The teleportation fidelity was
determined by applying the operation U−1

χ to ion 3 and measuring the S-state
population PS . A mean fidelity of 83(1)% (solid line) was obtained, which is
clearly above the limit of 66% (dashed line) for quantum state transfer without
teleportation.

i |ψin
i 〉 Ftele = 〈ψin

i |U−1
χ ρout|ψin

i 〉 = PS
1 |S〉 86(1)%
2 |D〉 79(1)%

3 (|D〉 − i|S〉)/
√
2 82(1)%

4 (|D〉 − |S〉)/
√
2 88(1)%

5 (|D〉+ i|S〉)/
√
2 79(1)%

6 (|D〉+ |S〉)/
√
2 87(1)%

Mean Fidelity F̄tele 83(1)%

The errors given are the uncertainty due to quantum projection noise. The fidelities are
also shown in Fig. 10.6. The mean fidelity of F̄tele = 83(1)% is well above the threshold of
Flim(Strategy 2.3) = 66 %, such that the obtained results can only be explained by the action
of quantum teleportation.

Furthermore, the outcome of the teleportation experiment was analyzed using quantum
state tomography of ion 3 after completion of the teleportation algorithm. In Fig. 10.7(a)-
(d) real and imaginary part of the obtained density matrices ρexp,i are shown. The fidelities
〈ψin

i |ρexp,i|ψin
i 〉 were calculated to be:
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i |ψin
i 〉 Ftele = 〈ψin

i |ρ
exp
out,i|ψin

i 〉
1 |S〉 80(2)%
2 |D〉 76(3)%

3 (|D〉 − i|S〉)/
√
2 77(3)%

4 (|D〉 − |S〉)/
√
2 87(2)%

5 (|D〉+ i|S〉)/
√
2 81(2)%

6 (|D〉+ |S〉)/
√
2 89(2)%

Mean Fidelity F̄tele 82(1)%

Here the errors are again due to quantum projection noise and were obtained by a Monte-
Carlo simulation (cf. A.2). The obtained mean fidelity of F̄tele = 82(1)% agrees well with the
fidelity found with the other approach. The fidelities obtained for each single state all lie in
the range of 76 − 89%. However, the results don’t agree perfectly with the results shown in
Fig. 10.6, which is due to systematic errors such as drifts of experimental parameters.

In Sec. 10.2 it has been discussed that neither Alice nor Bob alone have enough information
to gain knowledge about the input state. In order to prove this statement the data taken was
further analyzed. In Fig. 10.8(b) the relative frequency of four possible outcomes of the Bell-
analysis is shown. All four outcomes occurred with almost equal probability of 0.25. In Fig.
10.8(c) the probabilities for the outcomes of the Bell-analysis are examined more closely. The
probabilities are shown depending on the different input states. As can be seen, no correlation
between the input state and the outcome of the Bell-analysis can be found, which proves that
Alice can gain no information about the input state through her Bell-measurement.

In order to prove that Bob alone does not have enough information to recover the input
state, the teleportation experiment was carried out, but the reconstruction operations were
omitted. The teleportation fidelity for four input states is shown in Fig. 10.8(d). As expected
for all four input states the teleportation fidelity without reconstruction operations was only
50%. Thus, as long as Bob has no information about which is the proper reconstruction
operation, he only possesses a mixed state.

In Bennett et al.’s original proposal the entangled pair is seen as a resource, which after its
preparation, is split up between Alice and Bob and then stored by them until the need for
teleportation arises. In order to demonstrate that this is possible with our experimental setup,
the Bell state was prepared and a waiting time before the start of the actual teleportation
experiment introduced. For waiting times of up to 10 ms no decrease in the teleportation
fidelity was observed, which is five times the time necessary for the teleportation experiment.
Longer waiting times would have been feasible, if the 729 nm laser had been addressed away
from the ions, such that no residual 729 nm light could disturb the entangled state.

In principle, the target ion could have been separated from the other two ions after prepa-
ration of the entangled state, since for all further operations on the target ion no common
vibrational mode of the target ion and the other ions was necessary. It was not possible to
demonstrate this in the current experimental setup. However, separating single ions from
crystal could be realized in segmented microtrap designs [106] and was actually demonstrated
in teleportation experiment implemented by Barrett et al. [102].
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Figure 10.7.: Real and imaginary part of the density matrices of the target ion 3 after comple-
tion of the teleportation experiment. The respective input states were a) |ψ in
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√
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√
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√
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√
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11. Summary and Outlook

In this thesis the ability to prepare and manipulate entangled states of atomic qubits in an
ion trap quantum processor were investigated. It was clearly demonstrated that entangled
states of two and three ions can be prepared with the available experimental setup. It was
found that some of the prepared entangled states are remarkably stable against decoherence,
displaying coherence times which exceed those of a single qubit by orders of magnitude.

With two ion qubits all four Bell states were generated with fidelities on the order of 90%.
The lifetime of these entangled states was investigated and it was found that the Bell states
Ψ+ and Ψ− are particular stable, their lifetime being limited only by the lifetime of the D5/2

level. These states are intrinsically stable against the main source of decoherence in our
experiment, namely phase fluctuations of the atomic superpositions which affect all qubits in
the same way. These correlated phase fluctuations are caused by fluctuations of the laser light
manipulating the qubits and fluctuations of the magnetic field, changing the atomic resonance
frequency via the Zeeman effect.

Furthermore, a detailed analysis of the implementation of the Cirac-Zoller CNOT quan-
tum gate was carried out. This quantum gate is an important cornerstone for implementing
an ion trap quantum computer and allowed us to generate GHZ-states and the complete
Bell-measurement within the teleportation experiment. The CNOT gate pulse sequence was
investigated for all possible input states and it was found that with 70-80% probability the
correct output state is obtained. An analysis of the various error sources using simulations of
the CNOT gate showed that the frequency noise of the laser light at 729 nm is the main error
source.

With three ion qubits both types of tripartite entangled states, GHZ- and W-states, were
generated. For GHZ-states a fidelity of 76% was achieved while W-states could be prepared
with a fidelity of even 83%. The respective lifetime of both types of entangled states were
investigated. W-states were expected to be intrinsically stable against correlated phase fluctu-
ations, while GHZ-states should be particularly sensitive to this kind of fluctuation. Exactly
this behavior was observed experimentally. Furthermore, the effect of a measurement of a
single qubit on these entangled states was studied. This required to prevent the other qubits
from being projected by the applied 397 nm light, which was accomplished by mapping the
population of the S-state, which couples to the 397 nm light, to an additional Zeeman sub-
level of the D5/2-state. It was observed that GHZ- and W-states are affected differently by
such a measurement in the computational basis . For GHZ-states it was observed that a
measurement destroys all entanglement and leaves the qubit register in a mixed state. In
contrast, it was found that W-states retain bipartite entanglement after the measurement.
The experimental setup was improved, such that the result of a measurement of one or two
qubits could be immediately evaluated to choose subsequent operations on the qubit register.
This technique was first demonstrated with a measurement of single qubit in a GHZ-state
in a rotated basis. The subsequently applied operations, which were chosen according to the
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outcome of the measurement, allowed us to transfer the created mixed state of two different
Bell states into a pure Bell state of the two unmeasured qubits.

Finally, the demonstrated experimental techniques with two and three ions allowed the
complete implementation of the teleportation scheme proposed by Bennett et al. [12]. The pair
of entangled particles necessary for this scheme was generated on demand and kept as resource
for a variable waiting time of up to ten times the time necessary for the actual teleportation
experiment. Furthermore, our ability to perform a CNOT-operation allowed us to implement
a complete Bell measurement. Our capability to perform single qubit operations conditioned
by the outcome of a previous measurement was employed to choose the suitable operations
necessary to reconstruct the original quantum state in the target qubit. This is the first time
that this final step in the teleportation scheme has been experimentally demonstrated. The
pulse sequence was tested with six different input states covering the whole Bloch sphere,
resulting in a mean fidelity of 83%. This teleportation experiment demonstrated almost all
techniques available in our experiment. In addition, it is the most complex experiment carried
out so far with our experimental setup including over 30 individual experimental steps. It
therefore serves as a kind of benchmark algorithm for our ion trap quantum processor.

The experimental techniques demonstrated in this thesis will be applied in even more com-
plex experiments in the future. A straightforward expansion of the teleportation scheme is
entanglement swapping, which is teleportation of entanglement in which two previously un-
entangled qubits become entangled without direct interaction [107, 108]. Another interesting
line of experiments would be to investigate entangled states of four and five ions. The generic
principle of the pulse sequence shown in Ch. 9 for preparing W-states can be expanded to
generate W-states of an arbitrary number of ions. Simulations show that with the current
experimental setup W-states of four or five ions can be prepared with a fidelity on the order
of ≈ 88% [109].

The results presented in this thesis concerning Bell-states showed that the Bell states Ψ+ and
Ψ− act as a decoherence free subspace (DFS). It is worth investigating if it is advantageous to
encode quantum information in this DFS, i.e. in superpositions of the kind (a|Ψ+〉+bΨ−〉)/

√
2,

even though the number of necessary qubits is doubled by this measure. The success of
this strategy will depend greatly on the of difficulty of realizing single qubit operations and
quantum gates in the DFS.

The complexity of experiments that can be implemented with the current experimental
setup is mainly limited by the number of CNOT gate operations, which can be carried out
within the coherence time of the qubits. Since CNOT gate operations take approximately
500µs and the time for an experiment is limited to approximately 1 ms by the single qubit
coherence time, only 1-2 gate operations are feasible. This limits the number of interesting
experiments that can be implemented with the current setup. This situation could be improved
by the following means:

• The coherence time could be increased by improving the frequency stability of the 729
nm laser system and the stability of the ambient magnetic field. Improvements on
the former are currently underway. A better construction of the reference cavity and
improvements on the electronics of the locking scheme are planned. The stability of
the ambient magnetic will hopefully be improved by installing a new magnetic field
stabilization system, which promises to suppress magnetic field fluctuations in a larger
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frequency range than the currently installed system.

• Proposals for two qubit quantum gates different from the Cirac-Zoller proposal which
promise shorter gate times could be tested.

Concerning the latter point, the quantum gate implemented by Leibfried et al. is most
noteable [110]. They implemented a phase gate with a fidelity of 97% and a gate time of
≈ 40µs. However, this gate requires the encoding of the quantum information either in a
hyperfine or Zeeman splitting of the S1/2 ground state. A hyperfine structure is not available
in 40Ca+. A new experiment is currently being built, which will use 43Ca+, which has the
necessary hyperfine structure.

These improvements of the experimental setup would allow one to implement various inter-
esting experiments. Realizing quantum error correction with our experimental setup would,
for example, be an important step towards implementing a scalable ion trap quantum com-
puter. Furthermore, it might become feasible to demonstrate a simplified version of Shor’s
algorithm similar to the experiment realized by Vandersypen et al. [46].
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A. Appendix

A.1. Quantum State Tomography

A.1.1. Choice of operators Oi and measurement of expectation values 〈Oi〉
In Sec. 2.6 it was stated that the density matrix ρ of a n-qubit system can be expanded into
a series of mutually orthogonal operators Oi (cf. Eq. 2.21). A convenient choice for a set of
operators Oi are the outer products of the Pauli-matrices given by:

Oi = σi1 ⊗ σi2 ⊗ ...⊗ σin , ikε[1, 4] (A.1)

where
σ1 = I, σ2 = X, σ3 = Y, σ4 = Z. (A.2)

In our experimental setup we obtain the population probabilities pk of the 2n computational
basis states, i.e. the diagonal elements of the density matrix. Thus, we can directly extract
the expectation values λi = tr(ρ · Oi) from the measured population probabilities for all Oi
containing only the Pauli-matrices I and Z. For measurements of the expectation values of
operators containing the Pauli-matrices X and Y, the measurement basis has to be changed.
For a single qubit this basis transformation works as follows. Since we preferably measure the
expectation value of tr(Zρ), we apply rotations prior to the measurement such that:

tr(Z(UxρU
†
x)) = tr((U †

xZUx)ρ) = tr(Xρ), (A.3)

tr(Z(UyρU
†
y)) = tr((U †

yZUy)ρ) = tr(Y ρ), (A.4)

where Ux = Rȳ(π) and Uy = Rx(π) (see Sec. 4.5.1). For a system of n-qubits these rotations
have to be applied to the ions, where an operator X or Y is to be measured.

Even though the expectation values of 4n operators have to be determined actually less
measurements are necessary, since a measurement of 〈Z⊗n〉 allows us to calculate all expec-
tation values containing all combinations of I and Z. The same is true for 〈X⊗n〉 and 〈Y ⊗n〉
and operators containing only combinations of I and X or I and Y , respectively. Therefore,
for two qubits we only have to measure nine expectation values instead of 16 and for three
qubits 27 instead of 64 measurements are necessary.

A.1.2. Maximum likelihood estimation

As has been shown in the previous section the density matrix of a quantum system can
be directly calculated using Eq. 2.21 from the measured expectation values λi. However,
it turns out that the density matrices obtained by this direct reconstruction method are
often not physical valid. This is caused by inevitable errors in the measurements of the
expectation values. A density matrix for a physical state has to be normalized, i.e tr(ρ) = 1,
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Hermitian, i.e ρ† = ρ, and positive semidefinite, i.e 〈ψ|ρ|ψ〉 ≥ 0, ∀|ψ〉. These properties imply
that all eigenvalues of ρ are real and must lie in the interval [0, 1], which in turn implies
0 ≤ tr(ρ2) ≤ 1 [111].

In order to obtain physical valid density matrices a maximum likelihood estimation of the
density matrix can be employed as outlined by James et al. [111]. The procedure for maximum
likelihood estimation of the density matrix is as follows:

1. A 2N × 2N matrix is constructed, which is normalized, hermitian and positive semidef-
inite. This matrix will be a function of 4N real parameters t = {t1, t2, ..., t4N }.

2. A likelihood function L(t, λ) is defined which quantifies how good the density matrix
ρ(t) fits the experimental data given by λ = {λ1, λ2, ..., λ4N }.

3. The optimum set t
(opt) maximizing L(t, λ) is found by numerical optimization, which

provides ρ(t(opt)) as the best estimate for the density matrix.

An explicit recipe how to parameterize the density matrix of a two qubit system, such that
it is physical valid, can be found in [111]. Construction of a parameterized density matrix for
higher dimensional systems can be done analogously. As likelihood function we employed:

L(t, λ) =
4N
∏

i

exp

[−(λi − tr(ρ(t)Oi))2
1− tr(ρ(t)Oi)2

]

. (A.5)

Instead of finding the maximum of this function, we rather search for the minimum of its
logarithm. The density matrix obtained by direct reconstruction is used to calculate the
initial guess parameters t

(guess).

A.2. Estimating errors using Monte Carlo simulations

Quantum state tomography is an essential tool in our experiments. The density matrices
obtained with this technique are used to derive quantities like the fidelity, various entanglement
measures or simply values of certain matrix elements which are used to assess the performance
our experiments. These quantities have a certain statistical error, since the estimation of the
density matrix itself depends on the results of measurements which are affected by quantum
projection noise [86]. Estimating the errors of the derived qualities using the standard methods
for calculating the propagation of errors are difficult to apply. Instead, we can employ our
knowledge about the source of errors and the resulting probability distribution to estimate
the error using Monte Carlo simulations of our experiment [112].

The procedure to estimate the error σQ of a quantity Q(ρ) calculated from a measured
density matrix is as follows:

Step 1 Calculate the results of the measurements of λi = 〈Oi〉 using the density matrix
obtained by quantum state tomography.

Step 2 Use these parameters and the probability distribution modelling our errors to simulate
data sets {λi}Sk .
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Figure A.1.: a) Set of N = 100 random numbers Ri. The probability p(1) = 0.5 is indicated
by the vertical line. For different sets of random numbers Ri the probability
pS(1) = (Number of Ri > p(1))/N is binomially distributed around p(1) b)
Another set of N = 100 random numbers. The values of the probabilities sk =
∑k

m=1 pm are indicated. For different sets of numbers Ri the probabilities sSk =

(Number of Ri >
∑k

m=1 pm)/N are obtained from which binomially distributed
sets of probabilities {pS1 , pS2 , pS3 , pS4 } which obey the relation

∑

i=1−4 p
S
i = 1.

Step 3 Reconstruct density matrices ρSk from these data sets. Calculate desired quantity

QSk = Q(ρSk ) for all ρSk and finally determine the standard error σSQ =
[

∑

k(Q̄
S −QSk )2

]1/2
,

which serves as an estimator of the error σQ.

Implementing Step 2 requires simulating the outcome of experiments for given expectation
values λi taking quantum projection noise into account. For a single qubit the outcome of a
single measurement can either be 0 or 1 and the statistics of N measurements is governed by
a binomial probability distribution depending on the probabilities p(0) and p(1) [113].

In order to simulate the outcome of N measurements, a series of N equally distributed ran-
dom numbersRi in the interval [0, 1] is generated and the probability pS(1) = (Number of Ri >
p(1))/N calculated, as illustrated in Fig. A.1. By repeating this procedure we obtain a set of
simulated data points with value pS(1) and pS(2) = 1−pS(1), which are binomially distributed
around p(1) and p(2), respectively.

For systems of n qubits we have 2n output states with probabilities {p1, .., p2n}. Even though
we have more than two output states, the governing probability distribution is still binomial,
since we are always able to separate the quantum states in two groups by investigating the
probability to obtain a particular output state and not one of the others. Simulation of data
points is done analogous to the single qubit case. A set of N random numbers is generated
and the probabilities

sSk =
Number of Ri >

∑k
m=1 pm

N
(A.6)

are calculated. The case of two qubits illustrated in Fig. A.1b). From the obtained sk the
probabilities pS(i) can be successively calculated by pS1 = s1, p

S
1 = s1 − pS2 and so forth. The

construction of the sk guarantees that the pSi will obey the condition
∑

i p
S
i = 1.
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A.3. Maximum achievable fidelity for quantum state transfer

without teleportation

Teleportation is allowing two parties -Alice and Bob- to perfectly transfer a quantum state
using an entangled pair of particles and by communicating two classical bits of information.
In Sec. 10.3 a few strategies of Alice and Bob to transfer an unknown quantum state without
use of entanglement were discussed.

A.3.1. Measurement and transfer of 1 classical bit of information

Alice is measuring the unknown quantum state in her possession in the z-direction and is
obtaining the eigenvalues ±1 as result. She communicates this one bit of classical information
to Bob, who will choose to prepare his qubit in |0〉 or |1〉, accordingly. The mean fidelity
achievable with this strategy, depends on the distribution of input states. It has to be em-
phasized that neither Alice nor Bob have any knowledge about the distribution of the input
quantum states. Therefore they are not able to adapt their strategy accordingly in order to
achieve a higher mean fidelity.

Case 1 (Equal probability distribution): The input state |ψin〉 can be expressed as:

ψin(θ, ϕ) = cos
θ

2
|0〉+ e−iϕ sin

θ

2
|1〉. (A.7)

By measuring in z-direction, Alice projects the input state either in |0〉 or |1〉, corresponding
to the eigenvalues z = +1 and z = −1, respectively, where the corresponding probabilities
are:

P (z = +1, θ, ϕ) = cos2
θ

2
,

P (z = −1, θ, ϕ) = sin2
θ

2
. (A.8)

If Bob prepare his qubit accordingly in |0〉 or |1〉 the fidelity is given by:

F (z = +1, θ, ϕ) = cos2
θ

2
,

F (z = −1, θ, ϕ) = cos2
θ

2
. (A.9)

The mean fidelity over an ensemble of input states, where all states on the Bloch sphere are
equal probable, is given by:

F =
1

4π

∑

z=±1

∫ 2π

0
dϕ

∫ π

0
dθ sin θ · P (z, θ, ϕ) · F (z, θ, ϕ) (A.10)

=
1

2

∫ π

0
dθ sin θ ·

(

cos4
θ

2
+ sin4

θ

2

)

(A.11)

Which results in:

F =
2

3
(A.12)
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A.4. Bell-analysis and Reconstruction

Case 2 (Finite set of input states): We assume that the unknown quantum states given
to Alice comprise only a set of N input states ψin

i = ψin(θi, ϕi). The mean fidelity Alice and
Bob can achieve by measuring the unknown quantum state and preparing Bob’s qubit in |0〉
or |1〉 is:

F =
1

N

∑

z=−1,+1

N
∑

i=1

P (z, θi, ϕi) · F (z, θi, ϕi), (A.13)

where P (z, θi, ϕi) and F (z, θi, ϕi) are given in Eq. A.8 and A.9, respectively.

First consider the case of a set of four input states given by:

ψin
1 (θ1 = π, ϕ1 = 0) = |1〉,

ψin
2 (θ2 = 0, ϕ2 = 0) = |0〉,

ψin
3 (θ3 =

π

2
, ϕ3 = −

π

2
) =

1√
2
(|0〉 − i|1〉) ,

ψin
4 (θ4 =

π

2
, ϕ4 = −π) =

1√
2
(|0〉 − |1〉) . (A.14)

These states correspond to the vectors on the Bloch sphere along the ±z, y and −x-axis, i.e.
these vectors span up a quarter of the Bloch sphere. Inserting these states into Eq. A.13 gives
the mean fidelity :

F(N=4 input states) =
3

4
(A.15)

The mean fidelity can be decreased by adding another two states, which correspond to Bloch
vectors along the x and −y-axis, namely the states:

ψin
5 (θ5 =

π

2
, ϕ5 =

π

2
) =

1√
2
(|0〉+ i|1〉) ,

ψin
6 (θ6 =

π

2
, ϕ6 = 0) =

1√
2
(|0〉+ |1〉) . (A.16)

By inserting all six states in Eq. A.14 and A.16 into Eq. A.13 results in a mean fidelity of:

F(N=6 input states) =
2

3
. (A.17)

A.4. Bell-analysis and Reconstruction

A.4.1. Bell-analysis

Fig. A.2a) shows the operations implementing the Bell-analysis in our teleportation exper-
iment. In order to map the Bell states onto the computational basis one π/2-rotation is
missing. This operation was omitted and instead, we chose to add this operation to the recon-
struction operations. Technically, due to the missing π/2-rotation, we measure in a rotated
Bell basis. From the known unitary operation of a phase gate and the applied carrier pulses
(cf. Sec. 4.5) the operation of the circuit shown in Fig. A.2(a) including the spin-echo pulse

125



A. Appendix

ion 1

ion 3

ion 2

Z

C

π

C

π

π 2

C

π 2

π 2

2

C

3 2 +

C

π

φ

C

π

φ

C

π

2 +

a) b)
spin-echo

spin-echo

π 2

π 2

Figure A.2.: a) The circuit implementing the Bell measurement in our teleportation experi-
ment. b) Part of the pulse sequence shown in Fig. 10.4 implementing the recon-
struction of the input state in ion 3.

can be inferred to be:

Uanalysis =
1

2









1 1 1 −1
1 −1 1 1
1 1 −1 1
1 −1 −1 −1









. (A.18)

The actual basis in which the measurement is carried out can be inferred, by considering onto
which states the computational basis states are mapped by the inverse operation U−1

analysis. We
obtain:

|ζ1〉 =
1√
2
(Φ− +Ψ+) |ζ2〉 =

1√
2
(Φ+ +Ψ−) (A.19)

|ζ3〉 =
1√
2
(Φ+ −Ψ−) |ζ4〉 =

1√
2
(Φ− −Ψ+) . (A.20)

Here, the states {|ζ1〉, |ζ2〉, |ζ3〉, |ζ4〉} are mapped onto {|00L〉, |01L〉, |10L〉, |11L〉}. The nec-
essary reconstruction operation on the target qubit are obtained, if Eq. 10.3 is rewritten in
terms of the basis states |ζi〉:

1√
8
[X|ψin〉B ⊗ |Φ+〉A +XZ|ψin〉B ⊗ |Φ−〉A|ψin〉B ⊗ |Ψ+〉A + Z|ψin〉B ⊗ |Ψ〉A]

=
1

2
[(XZ + I)|ψin〉B ⊗ |ζ1〉A + (X + Z)|ψin〉B ⊗ |ζ2〉A + (X − Z)|ψin〉B ⊗ |ζ3〉A

+(XZ − I)|ψin〉B ⊗ |ζ4〉A]
(A.21)

A.4.2. Reconstruction operations

In Fig. A.2(b) the operations reconstructing the input state in ion 3 are shown. The pulse
implementing a spin-echo on ion 3, the π/2-pulse omitted in the Bell-analysis and the pulses,
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which are applied conditioned on the result of the measurements, are included. The latter four
pulses are applied with a variable phase φ. The value of φ was determined experimentally.

The spin-echo pulse S = R3(π, π/2) and the following Rbasis = R3(π/2, 3π/2) pulse corre-
spond to the unitary operations:

S =

(

0 −1
1 0

)

Rbasis =
1√
2

(

1 −1
1 1

)

. (A.22)

If these operators are applied to the state of the third ion in Eq. A.21 we obtain:

1√
2
Rbasis · S · (XZ + I)|ψin〉B = XZ|ψin〉B

1√
2
Rbasis · S · (X + Z)|ψin〉B = X|ψin〉B

1√
2
Rbasis · S · (X − Z)|ψin〉B = −Z|ψin〉B

1√
2
Rbasis · S · (XZ − I)|ψin〉B = −|ψin〉B (A.23)

By comparing these results with Eq. ?? we see that the operation (Rbasis ·S) rotates ion 3, such
that can we can apply the conditional reconstruction operations as if we actually measured in
the Bell basis. The conditional operations we apply are (cf. A.2):

R(π, 3π/2) ·R(π, π) = −iZ (A.24)

R(π, π) = −iX (A.25)

The Z-operation is applied whenever ion 1 is found to be in the |D〉 = |0L〉 state and the
X-operation whenever ion 2 is found to be in the |D〉 = |0L〉 state. All four conditional
operations are:

Measurement result corresponding basis state Conditional operation

|00〉 |ζ1〉 -XZ
|01〉 |ζ2〉 -iX
|10〉 |ζ3〉 -iZ
|11〉 |ζ4〉 I

A.5. Counter electronics for PMT read-out and conditional

choice of pulses

The electronic circuit shown in Fig. A.4 allows us to count the TTL-pulses coming from our
photo-multiplier, to decide whether the number of counts exceed a preset threshold and to
store the result in a Flip-Flop. Depending on the results of these measurements TTL-pulses,
which switch on or off a RF-signal going to our 729 nm AOM, are masked by the electronics.
This way, the conditional operations in Sec. 9.5.3 and Ch. 10 were implemented. In the
following the input and output signal denoted by names in capital letters can be found in the
scheme in Fig. A.4.
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EXPGATE

ION1

ION2

P1

P2

MACIN

MACOUT

Figure A.3.: Typical sequence of TTL-pulses which control the counter electronics. The EXP-
GATE signal defines the intervals during which pulses from the PMT are counted.
ION1 and ION2 determine in which of the flip-flops the result of a measurement
is stored. P1 and P2 are pulses which depending on the results stored in the
flip-flop are to the signal MACIN.

Our photo-multiplier device generates TTL-pulses with a length of 5-8 ns. These pulses are
too short to be counted by standard TLL-logic components. Therefore, the initial stage of our
counter electronics stretches the pulses from the PMT to a length of ≈ 50ns. For this purpose
a MAX903 comparator is used in a self-latched scheme, where the length of the pulses a the
output are determined by the value of the capacitor CLatch.

During the periods in which the input EXPGATE is HIGH, a 74xx191 4-bit-counter counts
the TTL-pulses. It is counting down from an initial value, set by switches on the front panel,
which control the value of the inputs A-D of the counter. In our experiments this value was
usually set to the threshold, which discriminates between the events where ions fluoresce or
not. If more events are counted during the measurement period as is set by the threshold its
output MAX/MIN switches to HIGH. After the measurement period the state of the output
MAX/MIN is stored in a flip-flop. The 74xx109 is containing two flip-flops and can therefore
store the results of two measurement periods. In which of the two flip flops the result is stored
is chosen by setting either the input ION1 or ION2 to HIGH. Additionally measurement
results can be inverted by switches on the back panel, which control the inputs INV1 and
INV2.

The following stage of logical gates is either adding the pulses P1 and P2 to the signal
MACIN, depending on the result stored in the flip-flops. For instance pulse P1 is added, if flip-
flop 1 is storing the result HIGH, i.e. if the counter counted more events than set by the thresh-
old in the corresponding measurement period. If the inverter is activated (INV1=HIGH), the
pulse is not added.

The output signal MACOUT is carrying the original pulses from MACIN and the pulses
added by our electronics.
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