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A B ST R AC T

The realm of quantum mechanics exhibits phenomena, such as superposition or entangle-
ment, that we do not encounter in our daily lives interacting with a macroscopic world. In
the field of quantum information processing those unique quantum features are leveraged
to solve problems that are intractable with classical computers. Over the last decades, algo-
rithms exploiting the particularities of quantum mechanics were developed that outperform
their classical counterparts in tasks like searching unstructured data or function classification.
Among the most prominent applications of quantum computing is finding the prime factors
of an integer. In 1994, Peter Shor proposed a quantum factorization algorithm providing a
superpolynomial speedup compared to the best classical algorithm. The task of prime factor-
ization attracts great attention as the widespread Rivest–Shamir–Adleman (RSA) encryption
protocol for secure communication relies on its intractability. Applying Shor’s algorithm
to factorization problems used in state-of-the-art RSA encryption requires implementing
billions of gate operations on thousands to millions of quantum bits, referred to as qubits.
The susceptibility to noise inherent in quantum computers renders the implementation

of protocols actively correcting errors during a computation indispensable in large-scale
applications such as factorization. The redundancy required to protect qubits against noise is
achieved by distributing the information content of a single qubit to multiple qubits, forming
a so-called logical qubit. In order to ensure that quantum error correction can suppress noise
it is inevitable that errors do not spread uncontrollably when one acts on logical qubits.
Protocols respecting this requirement are referred to as fault-tolerant.

This thesis discusses the implementation and characterization of fault-tolerant quantum
error correction building blocks. A trapped-ion quantum processor hosting up to 16 qubits
encoded in 40Ca+ ions is used to encode up to two logical qubits. Steane-type quantum
error correction relying on logical auxiliary qubits is experimentally investigated and found
to be beneficial compared to more commonly implemented protocols using bare auxiliary
qubits. Moreover, the manipulation of encoded quantum information is demonstrated by
applying gate operations to logical qubits. Although fault-tolerant protocols to manipulate
logical qubits require an increased overhead compared to their non-fault-tolerant analogs,
an improved performance of the fault-tolerantly implemented gate operations is observed
in the experiment. Furthermore, the impact of crosstalk in quantum operations on quantum
error correction protocols is studied. At noise levels currently present in the experimental
setup, crosstalk is not limiting the performance of error correction procedures. However,
crosstalk has to be taken into account if noise levels are decreased by future hardware
improvements. Lastly, the trapped-ion quantum processor is used as a testbed for a method
of quantifying spatial correlations in quantum dynamics. Comprehending the characteristics
of spatial correlations in noise dynamics present in quantum computing hardware is crucial
in assessing the performance of error correction procedures.
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K U R Z FA S S U NG

Werden physikalische Systeme auf kleinsten Skalen betrachtet, können Erscheinungen
beobachtet werden, denen wir in unserem alltäglichen Leben nicht begegnen. Diese
Phänomene, wie Superposition und Verschränkung, können im Rahmen der klassischen
Physik nicht beschrieben werden, sondern erfordern eine quantenmechanische Beschrei-
bung. In der Quanteninformationsverarbeitung werden diese Phänomene genutzt, um
Problemstellungen zu lösen, die mit den Mitteln der klassischen Informationsverarbeitung
nur schwer lösbar sind. Die Behandlung derartiger Probleme mit klassischen Rechnern
erfordert Ressourcen, wie Speichergröße oder Rechenleistung, welche exponentiell mit
der Problemgröße wachsen. In den letzten Jahrzehnten wurden Quantenalgorithmen
entwickelt, deren Ressourcenbedarf im Vergleich zu klassischen Algorithmen mit der Prob-
lemgröße deutlich langsamer wächst. Einer der bedeutendsten Quantenalgorithmen ist
der Faktorisierungsalgorithmus von Shor. Er erlaubt, Primfaktoren einer Zahl zu finden,
wobei der Ressourcenbedarf mit zunehmender Länge der Zahl im Vergleich zum besten
bekannten klassischen Algorithmus superpolynomiell langsamer wächst. Effiziente Al-
gorithmen zur Primfaktorenzerlegung stoßen auf reges Interesse, da das weitverbreitete
Rivest–Shamir–Adleman (RSA)-Verschlüsselungsverfahren darauf basiert, dass klassische
Computer Primfaktoren einer ausreichend großen Zahl nicht auf brauchbaren Zeitskalen
ermitteln können. Ein leistungsstarker Quantenrechner würde somit die Dechiffrierung
verschlüsselter Daten ermöglichen.

Typische Schlüsselängen zur RSA-Verschlüsselung liegen zwischen 1024 und 4096 bits.
Ummit dem Shor-Algorithmus Zahlen dieser Länge zu zerlegen, wird ein Quantencomputer
mit Tausenden von Qubits, den Analoga zu klassischen Bits, benötigt. Auf diesen Qubits
müssen Milliarden von quantenmechanischen Rechenoperationen, auch Gatteroperationen
genannt, durchgeführt werden. Quantencomputer sind intrinsisch anfällig für externe
Störquellen, sodass die in Qubits gespeicherte Information während einer Berechnung
korrumpiert werden kann. Daher werden Protokolle zur aktiven Unterdrückung von Fehlern
in Quantencomputern notwendig sein, um Probleme wie die Primfaktorenzerlegung großer
Zahlen lösen zu können. Dazu wird die gespeicherte Quanteninformation auf mehrere
Qubits aufgeteilt, sodass eine Wiederherstellung der Quanteninformation möglich ist, auch
wenn einzelne Qubits korrumpiert sind. Die Gesamtheit der physikalischen Qubits, die den
Informationsgehalt eines Qubits tragen, wird logisches Qubit genannt. Sind zu viele Qubits
fehlerbehaftet, lässt sich die gespeicherte Information nicht wiederherstellen. Deshalb ist
es wichtig, dass sich Fehler während der Manipulation logischer Qubits nicht auf weitere
physikalische Qubits ausbreiten können. Protokolle, die eine Ausbreitung von Fehlern
verhindern, werden als fehlertolerant bezeichnet.

In dieser Arbeit werden die experimentelle Realisierung und Charakterisierung grundle-
gender Bausteine für fehlertolerante Quanteninformationsverarbeitung demonstriert. Dazu
werden in einem Ionenfallenquantencomputer bis zu zwei logische Qubits kodiert. Eines der
beiden logischen Qubits agiert als Hilfsqubit und wird dazu verwendet, wiederholt Fehler
auf dem anderen logischen Qubit zu detektieren und in Folge zu korrigieren. Im Vergleich
zu einem verbreiteten Protokoll, welches auf physikalischen Hilfsqubits basiert, werden
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niedrigere Fehlerraten auf dem zu korrigierenden logischen Qubit beobachtet. Weiters
werden fehlertolerante Gatteroperationen auf den logischen Qubits realisiert und mit nicht
fehlertoleranten Operationen verglichen. Dabei zeigt sich, dass die logische Fehlerrate bei der
fehlertoleranten Implementierung niedriger ist, obwohl mehr fehlerbehaftete physikalische
Qubits und Gatteroperationen benötigt werden.

Fehlerbehaftete Gatteroperationen können nicht nur auf denmanipulierten physikalischen
Qubits Fehler erzeugen, sondern auch auf benachbarte Qubits übersprechen. Es wird gezeigt,
dass bei aktuellen Gatterfehlerraten Übersprechfehler keinen bedeutenden Beitrag zur lo-
gischen Fehlerrate leisten. Werden die Gatterfehlerraten allerdings durch experimentelle
Verbesserungen gesenkt, so können Übersprechfehler durchaus relevant werden. An die
Übersprechfehler angepasste Fehlerkorrekturprotokolle können in diesem Fall deutliche
Verbesserungen der logischen Fehlerrate bringen. Abschließend wird ein Protokoll zur
Quantifizierung räumlicher Korrelationen in Quantenprozessen auf verschiedene Fehler-
prozesse des Ionenfallenquantencomputers angewendet. Wie Übersprechfehler können
auch räumliche Korrelationen von Fehlerprozessen großen Einfluss auf Fehlerkorrekturpro-
tokolle haben. Damit ist die Kenntnis über räumliche Korrelation in Fehlerprozessen eines
Quantencomputers notwendig, um Fehlerkorrekturprotokolle entsprechend zu konzipieren.
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1
I N T RO D U C T I O N

The emergence of information technology during the last century has played an incredibly
influential role and led to an unprecedented societal transformation, affecting every aspect
of our modern life. The stunning growth in computational power over the last decades
was already predicted in 1965 by Gordon Moore, who estimated an increase in the number
of basic computational units, called transistors, per device by a factor of two every second
year [1]. A significant portion of this advancement can be attributed to the size reduction
of the semiconductor structures in the processor, the heart of a computer. The length scale
of those structures shrunk from 10µm in the early seventies [2] to on the order of 10 nm

in 2022 [3], allowing for a skyrocketing density of transistors. However, the once-reliable
trajectory of Moore’s Law faces an inevitable limit as transistors can not be realized at
sub-atomic size scales [4].
There exist problems requiring resources that grow exponentially with the size of the

input for which the problem is to be solved. For instance, while the state of a quantum
mechanical two-level system is fully described by two complex numbers, an arrangement
of 100 such systems already involves computing up to 2100 = 1.2676506 × 1030 complex
amplitudes. Facing the problem of simulating physical systems obeying the rules of quantum
mechanics, Richard Feynman outlined this scaling issue using the memorable words [5]:

“And I’m not happy with all the analyses that go with just the classical theory, because

nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.“

Using quantum mechanical systems as the centerpieces of a computer and leveraging
their unique features, like superposition and entanglement, opens up new possibilities in
algorithm design and potentially provides efficient solutions to many problems other than
simulating quantum systems.

“Quantum information is a radical departure in information technology, more fun-

damentally different from current technology than the digital computer is from the

abacus.“

— William Daniel Phillips

Apivotal role in the development of information processing based on quantummechanical
systems, referred to as quantum computing, is taken by the development of several key
algorithms. They not only showcase the power and versatility of quantum computers
but also attracted broader attention within the scientific community. The Deutsch-Jozsa
algorithm [6], proposed in 1992, is an example of an algorithm providing an exponential

1
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speedup over any classical counterpart. Let us assume a function with an n-bit input and
a one-bit output either yields the same output for every input, referred to as a constant

function, or a balanced output of 0 and 1 for half of the inputs, respectively. Then, the
Deutsch-Jozsa algorithm requires only a single function evaluation to classify the function
as constant or balanced. On the contrary, a classical algorithm requires 2n−1 + 1 evaluations
to classify a function as constant [7]. A function can be identified as balanced as soon as
two different outputs are obtained, meaning that two evaluations are required in the best
case. Admittedly, the Deutsch-Jozsa problem is kind of constructed to fit the strengths of
quantum computers and is of little practical use. However, it was one of the first algorithms
showing an exponential advantage of quantum computers, thus inspiring the development
of further algorithms.

One of the quantum algorithms sparking the most interest, earlier and still today, is Shor’s
algorithm [8]. It can be used to find the prime factors of an integer N requiring a runtime
polynomial in log(N). The fastest known classical algorithm exhibits a runtime that is faster
than exponential in log(N) but still slower than every polynomial of log(N) [9]. The reason
why Shor’s algorithm attracts a lot of attention is the significance of the problem it promises
to solve efficiently: Finding the prime factors of a large integer is impractical employing
classical computers. This fact is used in the widely spread Rivest–Shamir–Adleman (RSA)
cryptosystem [10]. When using RSA to transmit an encrypted message, the receiver of a
message publicly shares a large integer N , which is the product of two prime numbers.
The sender uses this number to encode the message and transmits it via a potentially
eavesdropped channel. Only the receiver, knowing the prime factors of N , is able to decode
the message.

Apart from the two prominent algorithms discussed exemplarily above, there are various
applications in the fields of material science, many-body physics, and chemistry exploiting a
quantum computer’s potential [11–14]. Simulating interesting problems in those fields of
research on a larger scale using classical computing is intractable.

After discussing the manifold opportunities opening up through quantum computation,
let us see the formal requirements for a quantum computer’s successful implementation. In
2000, DiVincenzo proposed a collection of five conditions that a physical system must fulfill
in order to be considered as a platform for quantum computing [15]. In the following, the
criteria proposed by DiVincenzo are reproduced in a shortened and paraphrased version:

1. The physical system has to offer a scalable way of encoding information in well-
characterized quantum mechanical two-level systems called qubits. The interaction of
the qubits with their environment and with each other should be accurately known.

2. The platform must allow for initializing the qubits in a known, simple initial state.

3. Qubits are subject to interactions with their environment, leading to the loss of a
system’s quantum features and to convergence to a classical system. This transition
has to occur on timescales much longer than the typical time needed to manipulate
the qubits.

4. Typically, a physical system offers a set of tunable interactions of the qubits with each
other and with classical control. Only if any quantum algorithm can be decomposed
into a sequence of these available interactions, called quantum gates, the physical system
is suitable for implementing a quantum computer.
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5. A measurement distinguishing the two qubit levels needs to be available to retrieve a
computation’s result.

Over the last decades, several platforms for quantum computing have been developed
that, at least partially, fulfill DiVincenzo’s criteria. Among others, possible candidates for
quantum computing architectures are quantum dots [16, 17], nitrogen-vacancy centers [18,
19], photonic systems [20, 21], superconducting electronic circuits [22–24], or trapped neutral
atoms [25, 26] and ions [27–29].

This thesis discusses the implementation of quantum computation in a trapped-ion system,
where qubits are encoded in the ions’ electronic state that can be manipulated via interaction
with laser light. External electromagnetic fields allow trapping the ions in vacuum to isolate
them from their environment. Furthermore, their charge causes an interaction between
individual ions that can be utilized to couple qubits encoded in their electronic states. Many
years of research and development in various academic institutions but also in industry
paved the way to precise control of the internal and motional state of trapped ions. The
control and isolation properties of trapped-ion systems together with the fact that different
ions of the same species, and therefore the qubits encoded in them, are identical, render
them a promising candidate for quantum computing.
The algorithms to solve problems like prime factorization or quantum chemistry tasks

for relevant problem sizes require the implementation of billions of quantum gates [30].
As the classical control realizing the gates is not perfect and the qubits are unintentionally
coupled to the environment, the implementation of a quantum algorithm is inherently noisy.
A sequence of n gates, each having an error probability of p, is faulty with a probability
1 − (1 − p)n. Therefore, there is always a finite probability of implementing a faulty gate
sequence, leading to the corruption of the quantum information and the algorithm’s failure.
Currently, none of the available quantum computing platforms offers quantum gates with
error probabilities low enough for a reliable and successful execution of large-scale quantum
algorithms. It is believed that the implementation of error correction (EC) mechanisms when
operating quantum computers will be inevitable [31–34]. Procedures for quantum error
correction (QEC) rely on redundancy to detect and correct errors stemming fromnoisy qubits.
The information content of a single qubit is distributed among multiple physical qubits,
forming a so-called logical qubit. Copying the quantum information is forbidden by quantum
mechanics, so carefully structured entanglement between the physical qubits collectively
carrying the encoded information is utilized to establish the required redundancy.
Peter Shor was not only developing seminal quantum algorithms [8] but also laid the

foundation of QEC. In 1995, he proposed a scheme of encoding a logical qubit in nine
physical qubits, allowing for the correction of an arbitrary error on any of the nine qubits [35].
A year later, Andrew Steane proposed a QEC code also correcting one arbitrary error using
only seven qubits [36]. This seven-qubit code, called Steane code, is still widely used in
cutting-edge QEC implementations [37–41] and also plays a substantial role in this thesis.
A key element of QEC is to repeatedly map the information about errors present on the
logical qubit to auxiliary qubits throughout a computation. Subsequently, the information
about the present error is extracted by measuring the auxiliary qubits and the respective
correction is applied to restore the error-free quantum state of the logical qubit.

In order to implement a particular quantum algorithm using logical qubits, the encoded
information needs to be manipulated according to the algorithm’s requirements. Tomaintain
the computation’s protection against errors, gate operations have to be applied directly to
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encoded qubits. Applying gate operations to physical qubits constituting a logical qubit
entails the risk of spreading errors within the logical qubit [42]. This could transform a
correctable error into an uncorrectable error and lead to a corruption of the computation.
Protocols preventing correctable errors from becoming uncorrectable are called fault-tolerant

(FT). The propagation of errors can be avoided by only applying gates that act on a
single physical qubit within a logical qubit at a time, referred to as transversal gates [42].
However, solely using transversal gates does not allow for the implementation of arbitrary
computations, and therefore, an alternative strategy for fulfilling the fourth of DiVincenzo’s
criteria is required [43].

In this thesis, the implementation of QEC protocols involving up to two logical qubits in a
trapped-ion quantum processor is discussed. Having two logical qubits at hand certainly
does not enable the implementation of quantum algorithms to solve relevant problems.
Nevertheless, studying QEC on small to medium-scale devices is informative as it allows
one to steer the development of next-generation quantum information processing (QIP)
architectures and estimate the performance of prospective devices. This work reports on the
experimental realization of the basic building blocks of error-corrected quantum computing,
namely the encoding of quantum information, the repeated extraction of information about
present errors and the application of gate operations to logical qubits. Furthermore, details on
decisive experimental advancements to the 40Ca+ trapped-ion quantum processor enabling
the implementation of these building blocks are provided.
This thesis is structured as follows: Chapter 2 provides a basic introduction to QIP in an

architecture-agnostic fashion. Chapter 3 discusses the implementation of the basic building
blocks of QIP in a trapped-ion quantum information processor and provides details about
the experimental setup. The implementation of various QEC codes is described in Chapter 4.
Furthermore, different methods are compared to repeatedly and fault-tolerantly read out the
information about present errors on logical qubits using either physical or logical auxiliary
qubits. Chapter 5 discusses the FT realization of a set of logical gates allowing for the
implementation of arbitrary algorithms while circumventing the propagation of errors
within a logical qubit. The set of transversal gates of the Steane code is augmented with the
logical T gate, implemented by preparing a specific resource state on an auxiliary logical
qubit and using transversal gates to apply the T gate on the target logical qubit. In Chapter 6,
the spatial properties of noise affecting qubits in a common register are investigated in
the context of QEC. Correlated errors induced via crosstalk in quantum gates, as well as
correlations in the dynamics of qubits unintentionally coupled to a common environment
are considered.



2
Q UA N T U M I N FO R M AT I O N P RO C E S S I NG

As the name suggests, the field of QIP deals with processing information whose behavior is
governed by the rules of quantum mechanics. Superposition and entanglement are salient
features of quantum mechanics that allow time-efficient computations that are intractable
for classical computers. Section 2.1 gives the mathematical framework to describe those
phenomena and the underlying qubits. Section 2.2 discusses how quantum information can
be manipulated, followed by an introduction to measurements, bringing the results of a
quantum computation back to the classical world in Section 2.4.

2.1 From bits to qubits

The smallest unit in classical computation is a bit. A bit can be realized in any two-level
system, e.g., a mechanical system like a light switch. The most apparent association one
probably has when it comes to a physical realization of a bit is two voltage levels at the
output of an electronic circuit containing transistors and other electronic components. In fact,
information processing devices like smartphones or personal computers we use daily consist
of such circuits. Regardless of its physical realization, the state of a bit can be described by a
single-digit binary number, where the possible states are labeled 0 and 1. Consequently, the
state of a system consisting of n bits can be described by n digits.

Following the term bit, the smallest unit in QIP is referred to as a quantum bit or qubit. In
contrast to its classical analog, a general state of a qubit encoded in a quantum mechanical
two-level system is described as a linear combination, in quantum mechanics referred to
as superposition, of its two basis states. Using the Dirac notation [44], which allows for a
convenient description of common calculations in quantum mechanics, the state of a qubit
can be written as [45]

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where α and β are complex numbers. The probability to find the system in the state |0〉 (|1〉)
is given by |α|2 (|β|2), which implies the condition [45]

|α|2 + |β|2 = 1. (2.2)

5



6 quantum information processing

Furthermore, any device probing the qubit can only be sensitive to the relative phase between
α and β but cannot probe the phases of α and β directly and therefore states with the same
relative phase of α and β are equivalent. Consequently |ψ〉 can be written as [45]

|ψ〉 = |α| |0〉+
√

1− |α|2ei(arg(β)−arg(α)) |1〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiφ |1〉 , (2.3)

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π. The state of a single qubit

|ψ〉 =

(
α

β

)
(2.4)

is a vector in a 2-dimensional Hilbert space, where

|0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
(2.5)

are orthonormal vectors forming a basis of the Hilbert space. This basis is often referred to
as the computational basis. On this Hilbert space, an inner product of two elements |ψ〉 and
|φ〉 is defined as [45]

|ψ〉† · |φ〉 = 〈ψ|φ〉 ∈ C, (2.6)

where |ψ〉† in Dirac notation is written as 〈ψ|. The normalization condition in Eqn. 2.2 can
conveniently be written in Dirac notation as [46]

〈ψ|ψ〉 = 1. (2.7)

|+〉

|−〉

|+i〉

|−i〉

|0〉

|1〉

Figure 2.1: Bloch sphere representation of the single-qubit state |ψ〉 =
√

3
4 |0〉 +

√
1
4ei

π
2 |1〉. The

blue arrow points to the location on the Bloch sphere that represents the state |ψ〉. The
computational states |0〉 and |1〉 lie at the intersections of the positive and negative Z axis
with the surface of a sphere with radius 1, respectively. Superposition states with equal
probabilities of being found in |0〉 or |1〉 are located on the equator of the sphere.
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An ubiquitous visual representation of a single-qubit state is given by the Bloch sphere [45],
shown in Figure 2.1. Using the parametrization in Eqn. 2.3, a state can be described as the
intersection of the surface of a sphere with a radius of 1 and a ray going through the center
of the sphere defined by the angles θ and φ. The parameter θ is the angle of the ray with
the Z axis, while φ is the angle between the X axis and the projection of the ray to the X-Y
plane. In Figure 2.1, the blue arrow exemplarily represents the state

|ψ〉 =

√
3

4
|0〉+

√
1

4
ei π

2 |1〉 . (2.8)

The basis states |0〉 and |1〉 are located at the poles of the Bloch sphere. The states

|+〉 =
1√
2

(|0〉+ |1〉) and |−〉 =
1√
2

(|0〉 − |1〉) (2.9)

are located at the intersection of the positive and negative X axis with the sphere’s surface.
Analogously

|+i〉 =
1√
2

(|0〉+ i |1〉) and |−i〉 =
1√
2

(|0〉 − i |1〉) (2.10)

are located at the intersections of the Y axis with the sphere’s surface.
Amulti-qubit quantumstate is a vector in a 2n-dimensionalHilbert space. Its computational

basis states are given by the tensor product of all possible combinations of single-qubit
computational basis states, e.g. [46]

|0〉 ⊗ |0〉 = |00〉 =




1

0

0

0



, |1〉 ⊗ |0〉 = |10〉 =




0

0

1

0



,

|0〉 ⊗ |1〉 = |01〉 =




0

1

0

0




and |1〉 ⊗ |1〉 = |11〉 =




0

0

0

1




(2.11)

for a two-qubit state. A general n-qubit state

|ψ〉n = c0 |000 . . . 000〉+ c1 |100 . . . 000〉+ c2 |010 . . . 000〉+ · · ·+
c2n−3 |111 . . . 101〉+ c2n−2 |111 . . . 110〉+ c2n−1 |111 . . . 111〉

(2.12)

is a superposition of 2n basis states∗ and, therefore, requires 2n+1 − 2 real parameters to be
described considering the normalization of the squared amplitudes and only accounting

∗ According to the convention used in this thesis qubit 1 is the left-most of the computational basis bitstrings.
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for relative phases between the computational basis states. The exponential growth in the
dimension of the Hilbert space with the number of qubits renders simulating quantum
information processors using classical computers intractable.

Qubits can be encoded in various physical systems. Among other architectures, quantum
information processors have been implemented using superconducting circuits [22–24],
photonic systems [20, 21], neutral atoms [25, 26], nitrogen-vacancy centers in diamonds [18,
19], and trapped ions [27–29].

2.2 Quantum operations

In order to use qubits for computation, one has to manipulate them using operations similar
to bits being acted on by classical logic gates. An operation U acting on the single-qubit
state |ψ〉 can be described using the basis vector notation from Eqn. 2.5 as the matrix
multiplication [46]

|ψ′〉 = U |ψ〉 = U

(
α

β

)
=

(
α′

β′

)
, (2.13)

with U being a 2× 2 matrix. As the squared amplitudes α and β have been interpreted as
probabilities, the normalization from Eqn. 2.7 also has to hold for |ψ′〉, meaning

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 1. (2.14)

Using 〈ψ|ψ〉 = 1 imposes the condition

U †U = 1 with 1 =

(
1 0

0 1

)
, (2.15)

meaning that U has to be unitary. From this, it follows that U † = U−1, meaning that every
quantum operation is reversible. Furthermore, a unitary matrix U can be expressed as [47]

U = e−iH , (2.16)

where H† = H . Such a matrix H is referred to as a hermitian matrix.
Figure 2.2a shows a visual representation of a quantum circuit implementing the operation

U on a qubit in the state |ψ〉. The horizontal line, often referred to as wire, represents the
quantum information encoded in a qubit flowing through the circuit.

2.2.1 Single-qubit gates

As shown in the previous section, general quantum operations acting on a single qubit can
be described as 2× 2 unitary matrices. A frequent parametrization of such an operation is
given by [48]

U(θ, ϕ, λ) =

(
cos
(
θ
2

)
−eiλ sin

(
θ
2

)

eiφ sin
(
θ
2

)
ei(φ+λ) cos

(
θ
2

)
)

(2.17)
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a b c d

U|ψ〉
X

Z

Y
H

P

Figure 2.2: Symbols representing operations in quantum circuits. a Operation U acting on an input
qubit in the state |ψ〉. Circuit symbols for b the Pauli operators X , Y , and Z, c the
Hadamard gate H and the phase gate P and d the controlled-NOT (CNOT) gate.

with θ, ϕ, λ ∈ R being Euler angles. Any point on the surface of the Bloch sphere, and
therefore, any quantum state of the form described in Eqn. 2.1, can be rotated to any other
point on the Bloch sphere. For an n-qubit state, the single-qubit unitary U acting on qubitm
can be written as

U (m) =
n⊗

i=1

Ui with Ui =




U, if i = m

1, otherwise
. (2.18)

Operators of a similar form that are constructed as tensor products of non-trivial single-qubit
operators and identity operators will be frequently used later in this thesis.
The single-qubit operations [45]

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, and σz =

(
1 0

0 −1

)
, (2.19)

are the so-called Pauli operators. Throughout this thesis, the Pauli operators are also denoted
as X ≡ σx, Y ≡ σy and Z ≡ σz , which is a common notation in the context of QEC. Their
respective circuit symbols are shown in Figure 2.2b. The group of operators

Pn = {eiεπ
2

n⊗

i=1

σ | ε ∈ {0, 1, 2, 3}, σ ∈ {1, X, Y, Z}}, (2.20)

is referred to as the n-qubit Pauli group, which plays an important role later in this thesis.
The cardinal states on the Bloch sphere |0〉, |1〉, |+〉, |−〉, |+i〉 and |−i〉 are eigenstates to the
Pauli operators:

X |+〉 = |+〉 Y |+i〉 = |+i〉 Z |0〉 = |0〉
X |−〉 = − |−〉 Y |−i〉 = − |−i〉 Z |1〉 = − |1〉 .

(2.21)

Furthermore, the following relations hold:

XX = 1 XY = iZ XZ = −iY

Y X = −iZ Y Y = 1 Y Z = iX

ZX = iY ZY = −iX ZZ = 1.

(2.22)
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Using the Pauli operators, a general single-qubit unitary can be parametrized as [45]

U = e−i
θ
2
a·σ = cos

(
θ

2

)
1− i sin

(
θ

2

)
a · σ, (2.23)

describing a rotation on the Bloch sphere around an axis with unit vector a and a rotation
angle of θ. Here,

σ = (X,Y, Z)
ᵀ (2.24)

is a vector operator consisting of the three Pauli operators. For θ = π and a = ( 1√
2
, 0, 1√

2
)
ᵀ

the resulting single-qubit unitary is

U = − i√
2

(
1 1

1 −1

)
, (2.25)

which is up to a global phase equivalent to the unitary

H =
1√
2

(
1 1

1 −1

)
. (2.26)

This operation is commonly referred to as Hadamard gate [45]. Applying the Hadamard
gate to the computational basis state |0〉 prepares the superposition H |0〉 = |+〉 and vice
versa. Another gate that is frequently used throughout this thesis is the phase gate P , which
is recovered up to a global phase, for θ = π

2 and a = (0, 0, 1)
ᵀ:

P =

(
1 0

0 i

)
. (2.27)

It implements a rotation around the Z axis by π
2 and turns eigenstates of X into eigenstates

of Y and vice versa. Eigenstates of Z remain unchanged as these states on the Bloch sphere
lie on the rotation axis. Figure 2.2c shows the circuit symbols of the Hadamard and phase
gates.
Sequences of Hadamard and phase gates can implement any operator in the group

N(Pn) = {V | V PnV † = Pn} (2.28)

for n = 1, where Pn is the n-qubit Pauli group, defined in Eqn. 2.20. With this, H and P
generate the group of operators that transforms the single-qubit Pauli group into itself [49].
The state |ψ〉 = V |0〉 is an eigenstate of a Pauli operator for all V .N(P1) is the normalizer of
the single-qubit Pauli group. The groupN(Pn) is commonly referred to as the n-qubit Clifford
group. Circuits containing only operations in the Clifford group acting on a computational
basis state can be simulated efficiently using classical computers [50, 51]. Therefore, a
quantum computer that only implements the Clifford group can not outperform a classical
computer.
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2.2.2 Two-qubit gates

In the previous section, operations acting non-trivially on a single qubit were discussed.
Now, let us consider operations manipulating two qubits, described by unitary matrices
with a dimension of 4× 4. A prototypical example of a two-qubit operation that one will
encounter repeatedly in this thesis is the controlled-NOT (CNOT) gate described by the
unitary [45]

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




(2.29)

with its corresponding quantum circuit symbol shown in Figure 2.2d. This operation is
acting on the two-qubit computational basis states in Eqn. 2.11 as follows:

|00〉 CNOT−−−−→ |00〉 , |01〉 CNOT−−−−→ |01〉 ,
|10〉 CNOT−−−−→ |11〉 , |11〉 CNOT−−−−→ |10〉 .

(2.30)

The state of the second qubit is left unchanged whenever the first qubit is in the state |0〉.
If, on the contrary, the state of the first qubit is |1〉, the second qubit is flipped from |0〉 to
|1〉 and vice versa. Effectively, the first qubit controls if a bit flip, corresponding to a NOT
gate in classical computing, is applied to the second qubit. Therefore, two-qubit operations
allow for conditional logic to be implemented in QIP. The way the computational basis
states are transformed under the application of the CNOT gate might not seem particularly
remarkable, as one could have prepared the output states using single-qubit operations only.
However, let us consider a different input state:

1√
2

(|0〉+ |1〉)⊗ |0〉 = |+〉 ⊗ |0〉 CNOT−−−−→ |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 = |00〉+ |11〉 . (2.31)

The output state is a Bell state [45] and cannot be written as a tensor product

(α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉) (2.32)

of general single qubit states. States that are not separable into a tensor product of states
describing the individual qubits are referred to as entangled [46]. For the Bell state in Eqn. 2.31
the combined system is found with equal probabilities in the states |00〉 and |11〉. Therefore,
each subsystem has the same probability of being in |0〉 or |1〉, but the two subsystems
are, for certain, found in the same state. Besides superposition, entanglement is a second
distinctive feature between classical and quantum computation.
In this thesis, we do not discuss quantum operations that act on more than two qubits

directly. However, any unitary operation acting on an arbitrary number of qubits can be
decomposed into a sequence of CNOT gates in conjunction with arbitrary single-qubit
operations. The following section explains how such a sequence is constructed.
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2.3 Universal gate set

The goal of quantum computation is to reliably implement any desired quantum algorithm.
This can be broken down into preparing the initial state |0〉⊗n for n qubits and applying a
unitary operation that transforms |0〉⊗n into a state encoding the result of the algorithm.
It is desirable to decompose this unitary operation into a finite set of gates, each acting
on a limited subset of qubits: In large-scale physical systems, mechanisms manipulating
qubits will always be limited to act only on a spatially bounded subset of qubits at a time.
Furthermore, a finite, parameter-free set of gates offers practical advantage when designing
a quantum computer as the hardware can be optimized for the implementation of this finite
gate set. Apart from that, limiting the required gate operations to a finite set is crucial in
error-corrected quantum computation, as will be discussed in Chapter 5. A set of gates that
can approximate any desired unitary to arbitrary accuracy is referred to as universal.
As entanglement is a key feature of QIP, a universal set of gates has to contain a gate

that can create entanglement. In order to do so, this gate has to act on more than one qubit.
However, an entangling gate acting on two qubits is sufficient to decompose any n-qubit
unitary operation into a finite universal set of gates [45]. For the rest of this section it will
be discussed, how an arbitrary unitary can be approximated to arbitrary precision by a
sequence of gates from a finite set of quantum gates. In overview, the decomposition is
constructed as following:

1. In a first step, a unitary operation acting on n qubits is decomposed into unitary
matrices acting only on two computational basis states, so called two-level unitary

matrices
∗.

2. The two-level unitaries are decomposed into CNOT gates and single-qubit operations.

3. Single-qubit unitaries are approximated to arbitrary precision by a sequence of gates
in a finite set.

Each of the following subsections is dedicated to one of the aforementioned steps of
decomposing a unitary operation into a sequence of gates from a finite set.

2.3.1 Two-level unitary operations are universal

Let us assume a unitary operation U ∈ U(2n) acting on n qubits has to be applied in order
to implement a desired quantum algorithm. The effect of U on |0 〉 is given by [52]

U |0 〉 =

2n−1∑

i=0

ai |i〉 , (2.33)

∗ Note that two-level unitarymatrices are not to be confusedwith two-qubit unitarymatrices that act on two qubits
instead of two basis states. For example, an operation transforming |000〉 to 1√

2
(|000〉 + |111〉) is a two-level

unitary but is not a two-qubit unitary, as it manipulates three qubits.
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where {|0 〉 , ..., |2 n − 1 〉}∗ are consecutively numbered computational basis states and ai ∈ C.
The stateU |0 〉 can be written as V0 |0 〉, where V0 is a product of 2n−1 two-level unitaries [52]

V0 =

2n−2∏

k=0

V(0,k). (2.34)

The two-level unitaries V(0,k) are acting as [52]

V(0,0) |0 〉 = a0 |0 〉+ b0 |1 〉
V(0,1)b0 |1 〉 = a1 |1 〉+ b1 |2 〉

...
V(0,2n−2)b2n−3 |2 n − 2 〉 = a2n−2 |2 n − 2 〉+ a2n−1 |2 n − 1 〉

(2.35)

on the computational basis states. Note that the operator U0 = V −1
0 U acts trivially on the

state |0 〉 = U0 |0 〉 and, therefore, is of the form

U0 =




1 0 . . . 0

0 u0,(0,0) . . . u0,(0,2n−2)
...

... . . . ...
0 u0,(2n−2,0) . . . u0,(2n−2,2n−2)



. (2.36)

Next, one can construct V1 as a product of two-level unitaries

V1 =

2n−2∏

k=1

V (1, k), (2.37)

such that U0 |1 〉 = V1 |1 〉. The unitaries V (1, k) act on the subspace spanned by
{|1 〉 · · · |2 n − 2 〉} as

V(1,1) |1 〉 = a′0 |1 〉+ b′0 |2 〉
V(1,2)b

′
0 |2 〉 = a′1 |2 〉+ b′1 |3 〉

...
V(1,2n−2)b

′
2n−4 |2 n − 3 〉 = a′2n−2 |2 n − 2 〉+ a′2n−1 |2 n − 1 〉 .

(2.38)

Defining U1 = V −1
1 U0, one sees that U1 |0 〉 = |0 〉 and U1 |1 〉 = |1 〉.

While U acts non-trivially on all computational basis states, U0 acts trivially on |0 〉 and
U1 acts trivially on the subspace spanned by {|0 〉 , |1 〉}. The procedure of finding products

∗ Note the italic typesetting here. The state |0〉 is not to be confused with the state |0 〉 = |0〉⊗n
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of two-level matrices that act trivially on subspaces with increasing dimension is repeated
2n − 1 times in total. The matrix [52]

U2n−2 = V2n−2U2n−3 = V −1
2n−2V

−1
2n−3 . . . V

−1
1 V −1

0 U = 1⊗n (2.39)

then acts trivially on all computational basis states and U = V0V1 . . . V2n−3V2n−2. This means
that any n-qubit unitaryU can be decomposed into (2n−1)+(2n−2)+ · · ·+2+1 = 2n(2n−1)

2

two-level unitaries. Consequently, two-level unitaries are universal.

2.3.2 Decomposition of two-level unitaries in CNOT and single-qubit gates

Up to now it was shown that any unitary operator can be decomposed in a product of
two-level unitary matrices. The goal of this subsection is to find sequences of CNOT and
single-qubit gates implementing those two-level unitaries. Let us consider the n-qubit
two-level unitary

V =







1 0

0. . .
0 1

0
V ′0,0 V ′0,1
V ′1,0 V ′1,1

(2.40)

acting on the subspace spanned by the states

|i〉 = |11 . . . 10〉 and |j〉 = |11 . . . 11〉 . (2.41)

This two-level unitary can be implemented using a n− 1-qubit controlled-U gate[45]. The
single-qubit unitary

V ′ =

(
V ′0,0 V ′0,1
V ′1,0 V ′1,1

)
(2.42)

is applied to qubit n if all other qubits are in the state |1〉 and the identity operator is applied
otherwise. This operation, depicted in Figure 2.3a for n = 5, can be decomposed into n− 2-
qubit controlled-U and one-qubit controlled-U gates. The corresponding decomposition
for n = 5 is shown in Figure 2.3b. Applying this decomposition repeatedly allows one
to express the n− 1-qubit controlled-U gate using just one-qubit controlled-U gates. The
controlled-U gate with a single control qubit then again can be decomposed into CNOT
gates and single-qubit gates [45], as shown in Figure 2.3c. Here, A, B, C, and D are chosen
to fulfill U = eiαAXBXC, ABC = 1, and D =

(
1 0
0 eiα

)
[45].

Up to now, only two-level unitaries acting non-trivially on the states |i〉 = |11 . . . 10〉
and |j〉 = |11 . . . 11〉were considered. To generalize this method to implementing arbitrary
two-level unitaries, the limitations for the computational states the unitary is acting on have
to be reduced. As a first step, let us assume the unitary acts on the subspace spanned by

|i〉 = |b1 · · · bn−10〉 and |j〉 = |b1 · · · bn−11〉 , (2.43)
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==

V ’ W W † W

U C AB

D

a b c

Figure 2.3: Circuits implementing two-level unitaries on the subspace spanned by |11110〉 and |11111〉.
a A four-qubit-controlled single-qubit unitary V ′ implementing a two-level unitary acting
on this subspace and b its decomposition into controlled unitaries with a single and three
control qubits. Here, W 2 = V ′ [53]. c Decomposition of a one-qubit controlled-U gate
into CNOT gates and single-qubit operations, where U = eiαAXBXC, ABC = 1 and
D =

(
1 0
0 eiα

)
[45].

a b c
V ’

V ’
=

V ’ V ’
X

XX

X

Figure 2.4: Circuits implementing two-level unitaries. a A controlled single-qubit unitary triggered
by the state |0110〉 on the control qubits and its decomposition into the circuit from
Figure 2.3a and NOT gates. b The same unitary acting on a different target qubit. c A
five-qubit two-level unitary acting on the subspace spanned by |00000〉 and |11111〉 can
be expressed as controlled unitaries with four control qubits.

where b1 · · · bn−1 is an arbitrary n − 1-digit bitstring. Then the n − 1-qubit controlled-U
gate has to be adapted to apply the unitary V ′ to qubit n, whenever the state |b1 · · · bn−1〉 is
present on the first n− 1 qubits. This can be achieved by applying X operations before and
after the controlled gate on all qubits i for which bi = 0, as shown in Figure 2.4a exemplarily
for n = 5, |i〉 = |01100〉 and |j〉 = |01101〉.
A further step of generalization to arbitrary two-level unitaries is to assume the basis

states |i〉 and |j〉, that the two-level unitary acts on, still differ only in one qubit, but it is not
the right-most one in the bitstrings i and j. In this case, the single-qubit unitary V ′ is just
applied to a different qubit conditional on the state of the other n− 1 qubits, as shown in
Figure 2.4b for |i〉 = |00101〉 and |j〉 = |01101〉.

As a last step in the generalization towards decomposing arbitrary two-level unitaries, let
us assume |i〉 and |j〉 differ inm different positions. Then, a sequence ofm− 1 multi-qubit
CNOT gates is applied to the register. The first gate of this sequence transforms |i〉 into |i1〉,
so that i1 and j differ inm− 1 positions. Each of the following gates reduces the number of
positions, in which ii and j differ, again by 1. Consequently, the bitstrings im−1 and j differ
in only one position. After that, an n− 1-qubit controlled-U gate is applied that implements
V ′, composed of the four non-trivial entries of the two-level unitary, on the qubit in which
im−1 and j differ. Subsequently, the multi-qubit CNOT gates are applied in reverse order
to undo the permutation. The multi-qubit CNOT gates can be decomposed in single-qubit
and CNOT gates using the decomposition from Figures 2.3a and 2.3b. Figure 2.4c shows
a circuit implementing the two-level unitary V acting on the subspace |i〉 = |00000〉 and
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|j〉 = |11111〉. The state |i〉 undergoes the following evolution until it only differs in the
left-most position from |j〉:

|00000〉 → |00001〉 → |00011〉 → |00111〉 → |01111〉 . (2.44)

With this, it is shown that a sequence of CNOT gates, in conjunction with single-qubit
gates, can implement any two-level unitary. As products of two-level unitaries are universal,
also the set of CNOT and single-qubit gates is universal.

2.3.3 Approximation of single-qubit gates using a finite set of gates

As mentioned in Section 2.2.1, the Hadamard gate H and phase gate P generate the single-
qubit Clifford group. In the following, it is shown that expanding the set {H,P} by the T
gate, implementing a rotation with a rotation angle of π4 , allows for decomposing arbitrary
single-qubit operations. Combined with the result from the previous subsection, stating
that CNOT and single-qubit gates are universal, this means that the set {H,P, T,CNOT} is
universal [54].
Commonly, the rotation axis of the T gate is chosen to be the Z axis. However, in this

work, the T gate is defined as

T = e−i π
8
Y (2.45)

which is a rotation around the Y axis. Up to single-qubit Clifford operations, T gates rotating
around the Z and Y axes are equivalent.

As it is not obvious at first sight how adding a π
4 rotation allows approximating continuous

single-qubit rotations, let us first consider the sequential application of the gate operations
T and HPTP †H†, resulting in the rotation

HPTP †H† T = ei π
8
Ze−i π

8
Y

=
(

cos
(π

8

)
1 + i sin

(π
8

)
Z
)(

cos
(π

8

)
1− i sin

(π
8

)
Y
)

= cos2
(π

8

)
1− i sin

(π
8

) [
sin
(π

8

)
X + cos

(π
8

)
(Y − Z)

]
.

(2.46)

This sequence of gate operations implements a rotation Rn(θ) around the axis

n =
1√

1 + cos2
(
π
8

)
(

sin
(π

8

)
, cos

(π
8

)
,− cos

(π
8

))ᵀ
(2.47)

with a rotation angle θ given by cos
(
θ
2

)
= cos2

(
π
8

)
. In Ref. [55], it is shown that θ is an

irrational multiple of 2π. Any rotation around n, Rn(α) with α ∈ R, can be approximated to
arbitrary accuracy by repeatedly applying Rn(θ) [45].

As a next step towards the approximation of arbitrary single-qubit unitaries, let us consider
the rotation

Rm(θ) = HRn(θ)H†

= cos2
(π

8

)
1− i sin

(π
8

) [
− cos

(π
8

)
(X + Y ) + sin

(π
8

)
Z
] (2.48)
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with a different rotation axis

m =
1√

1 + cos2
(
π
8

)
(
− cos

(π
8

)
,− cos

(π
8

)
, sin

(π
8

))ᵀ
(2.49)

and a rotation angle θ. Analogously to Rn(α), repeated implementation of Rm(θ) can
approximate any rotation Rm(α) to arbitrary accuracy. Any single-qubit unitary Usq can be
expressed by a sequence [56]

Usq = R1(α1) . . . Rj(αj) with Ri ∈ {Rn, Rm}, (2.50)

for appropriate choices of αi ∈ R. Therefore, Usq can be approximated by a sequence of
rotations Rn and Rm. The minimum number of rotations necessary to decompose any
unitary is given by [56]

j =

⌈
π

arccos (|nᵀm|)

⌉
+ 1. (2.51)

With this, the construction of an arbitrary unitary using only gates from a finite set
is complete. In Section 2.3.1, it was shown that two-level unitary matrices are universal,
followed by the proof that two-level unitaries can be decomposed in CNOT and single-qubit
gates in Section 2.3.2. As a sequence of gates from the set {H,P, T} allows one to approximate
any single-qubit gate to arbitrary accuracy, the set {H,P, T,CNOT} is universal [54].

2.4 Measurements

A particular quantum algorithm can be implemented by applying a sequence of gates
discussed above to a quantum register. The desired result is encoded in the quantum state of
the register. In order to retrieve the result, the qubits of the quantum processor are measured.
Measurements transfer the encoded quantum information to the classical world, rendering
it accessible to the quantum processor’s user.
A general measurement of a quantum system is described by a set of measurement

operators {Mλ} [45], where the index λ is the observed measurement outcome. The
probability p to obtain the outcome λ, when applying the measurement described by {Mλ}
to a quantum state |ψ〉, is given by [45]

p(λ) = 〈ψ|M †λMλ|ψ〉 . (2.52)

As the sum of all outcome probabilities

∑

λ

p(λ) =
∑

λ

〈ψ|M †λMλ|ψ〉 = 〈ψ|
∑

λ

M †λMλ|ψ〉 (2.53)

must be equal to 1, the measurement operators have to fulfill the following requirement [45]:

∑

λ

M †λMλ = 1. (2.54)
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|ψ〉 |0 〉 |1 〉/

0 / 1 U

H H

|ψ〉 |ψ'〉

|0〉a b

Figure 2.5: Measurements on a single qubit. a Projective measurement in the computational basis of a
qubit in the state |ψ〉. The quantum state of the qubit is collapsed to a computational basis
state, and one classical bit of information is extracted. bMeasurement of the hermitian
and unitary operator U using an auxiliary qubit. The state of the measured qubit after the
measurement |ψ′〉 is an eigenstate of U .

Unlike in classical systems, in the quantum mechanical world, even an ideal measurement
device will affect the measured system. For the considered measurement, after obtaining
the outcome λ the system is found to be in the state [45]

|ψ′〉 =
Mλ |ψ〉√
〈ψ|M †λMλ|ψ〉

. (2.55)

A particular, however pervasive, case is a single-qubit measurement in the computational
or Z basis, where

λ1 = +1 λ2 = −1

M+1 = |0〉 〈0| M−1 = |1〉 〈1| .
(2.56)

For |ψ〉 = α |0〉 + β |1〉 the outcome probabilities are p(+1) = 〈ψ|0〉 〈0|ψ〉 = |α|2 and
p(−1) = |β|2 and the final states are, up to an irrelevant global phase, |ψ′〉+1 = |0〉 and
|ψ′〉−1 = |1〉. This measurement extracts one bit of classical information from a single-qubit
state and projects the output state to the computational basis as shown in Figure 2.5a.
Measurements in a different basis can be implemented by applying a unitary operation

prior to the measurement. For a measurement in the basis {|+〉 , |−〉} a Hadamard gate is
applied to the state

|ψ〉 = α |0〉+ β |1〉 =
α+ β√

2
|+〉+

α− β√
2
|−〉 (2.57)

prior to the measurement in the computational basis discussed before. The outcome
probabilities then are

p(+1) = 〈ψ|H|0〉 〈0|H|ψ〉 = 〈ψ|+〉 〈+|ψ〉 =
|α+ β|2

2

and

p(−1) = 〈ψ|H|1〉 〈1|H|ψ〉 = 〈ψ|−〉 〈−|ψ〉 =
|α− β|2

2
,

(2.58)

corresponding to the square of the absolute value of the amplitudes of |+〉 and |−〉 in |ψ〉.
Note that the output state is still projected to |0〉 and |1〉 for measurement outcomes +1 and
−1, respectively.
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However, it might be desirable to perform a measurement that does not project the qubits
it is acting on in the computational basis. For example, one could want to probe a certain
property on a set of qubits that is prepared in a superposition state which is still supposed
to be used after the measurement. In such a case, a measurement of a unitary and hermitian
operator can be performed using an auxiliary qubit [57]. Figure 2.5b shows the circuit
implementing a measurement of a single-qubit operator U on a qubit in the state |ψ〉 using
an auxiliary qubit prepared to |0〉. As U is hermitian and unitary the relations U = U † and
U2 = 1 hold. The cornerstone of the measurement is the application of U to the qubit to be
measured conditioned on the auxiliary qubit being in the state |1〉. This controlled operation

UC = |0〉 〈0| ⊗ 1 + |1〉 〈1| ⊗ U (2.59)

is sandwiched between two Hadamard gates on the auxiliary qubit. The measurement proce-
dure is concluded with a projective measurement of the auxiliary qubit in the computational
basis described by the measurement operators

M+ = |0〉 〈0| ⊗ 1 and M− = |1〉 〈1| ⊗ 1. (2.60)

Using the measurement framework introduced above, one can calculate the probability of
obtaining the measurement outcome +1 to be

p(+) = (〈0| ⊗ 〈ψ|)H1 UCH1(M †+M+)H1 UCH1(|0〉 ⊗ |ψ〉)
= (〈0| ⊗ 〈ψ|)H1 UCH1(|0〉 〈0| ⊗ 1)H1 UCH1(|0〉 ⊗ |ψ〉)

=
1

2
(1 + 〈ψ|U |ψ〉),

(2.61)

withH1 = H ⊗ 1 being a Hadamard gate on the auxiliary qubit and UC being the controlled
unitary. After obtaining the outcome +1, the combined system is in the state [57]

|Ψ′+〉 = |0〉 ⊗ |ψ′+〉 =
1√

2(1 + 〈ψ|U |ψ〉)
|0〉 ⊗ (1 + U) |ψ〉 , (2.62)

with |ψ′+〉 = U |ψ′+〉 being a +1 eigenstate of U . Accordingly, the probability of obtaining −1

and the corresponding output state are [57]

p(−) =
1

2
(1− 〈ψ|U |ψ〉)

and

|Ψ′−〉 = |1〉 ⊗ |ψ′−〉 =
1√

2(1− 〈ψ|U |ψ〉)
|1〉 ⊗ (1− U) |ψ〉 ,

(2.63)

where |ψ′−〉 = −U |ψ′−〉. Therefore, the described measurement procedure projects to +1

or −1 eigenstates of the measured operator while the corresponding eigenvalue can be
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|0〉

Z

Z

Z

Z

H H

Figure 2.6: Parity measurement acting on four out of seven qubits. The expectation value of the
operator Z1Z3Z5Z7 is determined using an auxiliary qubit.

measured using the auxiliary qubit. The same reasoning holds for n-qubit measurements
with dim(U) = 2n × 2n and dim(|ψ〉S) = 2n [57].

Amulti-qubit measurement used extensively throughout this thesis is a unitarymeasuring
Pauli operators on a subset of qubits. Figure 2.6 exemplarily shows the measurement of

U =
7⊗

i=1

Ui with Ui =




Z, if i ∈ {1, 3, 5, 7}
1, otherwise

. (2.64)

A shorthand notation of this operator is Z1Z3Z5Z7. This measurement returns +1 for all
computational basis states with an even number of qubits of the subset {1, 3, 5, 7} being in
the state |1〉, e.g. |0000000〉 or |1010000〉. If the number of qubits in this subset being in the
state |1〉 is odd, the measurement returns −1. At the same time, the circuit projects to the
subspace with an even or odd number of qubits in |1〉. For instance, the input state

|ψ〉S =
1√
4

(|0000000〉+ |1000000〉+ |1000001〉+ |0000001〉) (2.65)

is projected to

|ψ′〉S,+1 =
1√
2

(|0000000〉+ |1000001〉) (2.66)

for a measurement outcome of +1 occurring with a probability of p(+1) = 0.5. In this
example, all qubits outside the subset acted on non-trivially by U are irrelevant and set to
|0〉. Such measurements are broadly used in QEC and are referred to as parity measurements.

2.5 Density matrix formalism

Until now, this thesis considered only systems consisting of qubits that can all be individually
controlled and measured. The qubits were not coupled to an environment that cannot be
acted on in a controlled fashion. The technical term describing such situations is closed
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systems. In reality, this might not be the case. Let us consider a bipartite system consisting of
subsystems A and B, but only system A is accessible. The combined system of A and B is
referred to as an open system. For simplicity, A and B are assumed to be qubits and a general
state of this system can be written as

|ψ〉AB =

1∑

i,m=0

αim |i〉A ⊗ |m〉B , (2.67)

with αim ∈ C and
∑1

i,m=0 |αim|2 = 1. An observable on the accessible subsystem A acting
trivially on the inaccessible subsystem B is given by

OAB = O ⊗ 1 (2.68)

with an expectation value of [46]

〈OAB〉 = AB〈ψ|OAB|ψ〉AB = (

1∑

j,n=0

α∗jn A〈j| ⊗ B〈n|)(O ⊗ 1)(

1∑

i,m=0

αim |i〉A ⊗ |m〉B)

=
1∑

i,j=0

(
1∑

k=0

α∗jkαik) A〈j|O|i〉A.
(2.69)

Using the expression for the trace of a product of matrices Tr(CD) =
∑n

i=0

∑n
j=0 cijdji for

n× nmatrices C and D, the expectation value 〈OAB〉 can expressed as [52]

〈OAB〉 = Tr(Oρ) with ρ =
1∑

i,j=0

(
1∑

k=0

α∗jkαik) |i〉A A〈j|. (2.70)

Measuring expectation values of observables is the only available tool to gain knowledge
about a quantum system. Therefore, the object ρ, referred to as the density matrix, describes
the characteristics of subsystem A. The density matrix is a hermitian, positive semi-definite
operator whose trace sums to 1 to fulfill the normalization condition for the probabilities to
find the system in any of the basis states.
The density matrix ρ expressed in the basis formed by its orthogonal eigenstates {|e〉}

reads [52]

ρ =
∑

e

pe |e〉 〈e| . (2.71)

where
∑

e pe = 1 and 0 ≤ pe ≤ 1 as Tr(ρ) = 1 and ρ is positive semi-definite. If there is only
one non-zero coefficient pe′ , then ρ = |e′〉 〈e′|, and system A is referred to be in a pure state.
The state of the combined system can be written

|ψ〉AB = |e′〉 ⊗ |ψ〉B . (2.72)



22 quantum information processing

The state |ψ〉AB is a separable and, therefore, a non-entangled state. If there is more than one
non-zero coefficient pe, the state of A is a mixture of pure states with respective weights pe.
The subsystem A is in a mixed state, and the systems A and B are entangled.

Let us assume the two states |φ〉AB = 1√
4
(|00〉+ |10〉+ |01〉+ |11〉) and |χ〉AB = 1√

2
(|00〉+

|11〉). The corresponding density matrices for subsystem A in the computational basis read

ρφ =
1

2

(
1 1

1 1

)
and ρχ =

1

2

(
1 0

0 1

)
. (2.73)

In the basis {|+〉 , |−〉} the density matrix ρφ reads

ρφ =
1

2

(
1 0

0 0

)
= |+〉 〈+| , (2.74)

meaning that the subsystems A and B are not entangled. In fact |φ〉AB can be written as |++〉.
In contrast, ρχ = 1

2(|0〉 〈0| + |1〉 〈1|) = 1
2(|+〉 〈+| + |−〉 〈−|) is a mixture of pure states, and

|χ〉AB cannot be written as a product state, meaning that subsystems A and B are entangled.
Performing a Z measurement on system A for the two states |φ〉AB and |χ〉AB yields the
same measurement statistics with randomly selected outcomes of +1 and −1. However, if
one measures in the X basis, the outcome will still be random for |χ〉AB but will always
return +1 for |φ〉AB, as subsystem A is in an eigenstate of X in this case.
The Pauli matrices given in Eqn. 2.19, together with the identity matrix, form a basis of

the 2× 2 hermitian matrices. Therefore, a single-qubit density matrix can be written as [46]

ρ = a01 + a1X + a2Y + a3Z (2.75)

with ai ∈ R. As the Pauli matrices have a trace of 0, the coefficient a0 has to be 1
2 [52].

Furthermore, r2 = a2
1 + a2

2 + a2
3 ≤ 1 to ensure det(ρ) = 1

4(1 − r2) ≥ 0 so that the density
matrix is positive semi-definite [52]. A violation of this inequality is equivalent to the
existence of negative eigenvalues of the density matrix. This is unphysical as it would
correspond to a negative probability to find the system in the respective eigenstate of the
density operator.
The vector a = (a1, a2, a3)

ᵀ, with r2 = 1, describes a point on the surface of the Bloch
sphere, where its three components are the projections of the Bloch vector on the X , Y
and Z axis. On the contrary, mixed states with r2 < 1 lie within the Bloch sphere, where a
higher degree of entanglement between the accessible and inaccessible subsystems leads to
a quantum state closer to the origin of the Bloch sphere.

Now, one might wonder how this is relevant to the description of a quantum information
processor. In the previous sections, it was assumed that the constituents of a quantum
processor are perfect two-level systems. In reality, this is usually not the case. The physical
systems encoding qubits can have more than two states and be undesirably coupled to an
environment providing additional degrees of freedom. The density matrix formalism allows
for describing the qubit’s state, although there might be entanglement with other degrees of
freedom.
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Furthermore, the classical control system of a quantum information processor can be
subject to undesired drifts in the control parameters, e.g., rotation angles or axes of gate
operations. Consequently, a slightly different gate sequence is implemented when repeatedly
implementing a computation. The observed quantum state prepared under fluctuating
classical control can be described as a mixture of different realizations that can be treated
using the density matrix formalism.





3
T R A P P E D - I O N Q UA N T U M P RO C E S S O R

The fundamental information carriers of a quantum information processor are physical
systems providing two states that can encode a qubit. A promising candidate for such a
system is atomic ions, where the quantum information is encoded in their internal electronic
states [28, 29]. Due to their charge, ions exposed to electric fields see a force that can be
employed to control their state of motion. Carefully engineering the properties of the electric
field even allows one to trap ions in a confined spatial region [58]. Furthermore, ions create
an electric field themselves, affecting other ions in spatial proximity. This interaction between
trapped ions can be exploited to create entanglement between qubits encoded in the ions’
electronic states. Electronic states encoding the qubit, but also external motional degrees of
freedom of ions can be manipulated by illuminating the ions with laser light [59].

This chapter provides a short introduction to trapped-ion QIP. Section 3.1 discusses how
ions can be spatially confined, and Section 3.2 describes how the basic building blocks of
QIP introduced in the previous section can be implemented in trapped-ion systems. In
Section 3.3, error processes affecting trapped-ion qubits and a framework modeling these
processes are addressed.

3.1 Trapping charged particles

Applying an electric field E = −∇φ, where φ is the electric potential, to a charged particle
with charge q generates a force F = qE acting on the particle. The magnitude of the force
is proportional to |E| and, for positively charged particles we are concerned with in this
thesis, the direction of the force is along E. One would now naïvely think that an ion trap
can be constructed by creating a potential φ with a maximum at the desired ion position.
Unfortunately, a local maximum of a static electric potential cannot exist in free space, as [60]

∇2φ = 0 (3.1)

according to Gauss’s law. Consequently, a charged particle cannot be trapped solely by static
electric fields in free space. However, trapping the ion in free space is necessary to provide
isolation of a qubit encoded in the ion’s internal state from the environment. The limitation
imposed by Gauss’s law can be circumvented by allowing E to be time-dependent. In doing
so, averaged over time a force pointing towards an equilibrium position fixed in space can
be exerted on the particle. In 1953, Paul proposed a device providing two-dimensional
mass-dependent confinement of charged particles and suggested using the device as a mass
filter for an ion beam along the third, non-confined axis [61]. An ion trap for QIP on the
contrary requires confinement in all three spatial dimensions. The macroscopic, linear Paul

25
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Figure 3.1: Macroscopic Paul trap. a Schematic depiction of the trap, where the line between the center
points of the gray electrodes is referred to as the main trap axis. A radio frequency (RF)
voltage is applied to the blade electrodes shown in red while the pair of blue blades
are at ground potential, providing confinement in the directions orthogonal to the trap
axis. A static voltage is applied to the gray electrodes aligned along the main trap axis
to provide confinement in the third direction. The electrodes are not drawn to scale for
better visibility of electrodes in the background. b Photograph of the Paul trap. At the
top and bottom, the RF electrodes are shown, and the electrodes providing confinement
along the main trap axis can be seen on the left and right.

trap used to obtain most of the results in this thesis is depicted schematically in Figure 3.1a
and photographically in Figure 3.1b. The electrodes depicted in red and blue on the left
provide confinement in two-dimensions perpendicular to the main trap axis, defined as the
line between the center points of the gray electrodes. The colored electrodes are called radio

frequency (RF) electrodes, whereas the gray electrodes are referred to as endcap electrodes. The
geometry of the RF electrodes resembles the device proposed by Paul [61]. One pair of
opposing electrodes is at ground potential, while an oscillating voltage is applied to the
other pair. A static voltage is applied to the endcap electrodes providing confinement along
the main trap axis. The time-dependent potential created by this electrode arrangement can
be approximated by [62]

φ(r, t) = φAC + φDC =
κrVAC

2R2
(x2 − y2) cos (ΩACt) +

κzVDC

2Z2
(2z2 − x2 − y2), (3.2)

with r = (x, y, z)
ᵀ. Here, VAC is the amplitude of the RF voltage with a frequency of ΩAC

applied to the electrodes shown in red. A static voltage of VDC is applied to the gray
electrodes. The distances between two opposing red/blue and gray electrodes are 2R and
2Z, respectively. The prefactors κr and κz account for deviations of the electrodes’ shape
from hyperbolic surfaces [63, 64], originally proposed by Paul [58, 61]. Using non-hyperbolic
electrodes allows one to decrease the solid angle the electrodes cover from the viewpoint of
the trapped particle, facilitating the illumination of the particle with laser light.
The equation of motion of a charged particle with mass m and charge Q within the

potential φ is given by

r̈ = −Q
m
∇φ(r, t). (3.3)
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It can be transformed into the standard form of the Mathieu equation

d2u

dξ2
+ (au − 2qu cos (2ξ))u = 0 (3.4)

for each Cartesian coordinate u ∈ {x, y, z} using the substitutions

ax = ay = −4QκzVDC

mZ2Ω2
AC

, qx = −qy = −2QκrVAC

mR2Ω2
AC

,

az =
8QκzVDC

mZ2Ω2
AC

, qz = 0,

(3.5)

and

ξ =
ΩACt

2
. (3.6)

Given a particular set of voltages, VDC and VAC, the solution to the equation of motion for
a range of particle masses can be a bounded trajectory. This means that for suitable initial
values of particle position and momentum, the distance of the particle to the center of the
trap is much smaller than R and Z for all times. Averaged over a period of the RF voltage, a
force is exerted on the particle that points towards the trap center. The particle’s motion can
be approximated by the motion of a particle in the harmonic pseudopotential [65]

Φ(r, t) =
1

2
m

∑

u∈{x,y,z}
ω2
uu

2 with ωu =
ΩAC

2

√
au +

q2
u

2
. (3.7)

Combining Eqns. 3.5 and 3.7, one can see that the frequency of the harmonic oscillator
along the z direction does not depend on the voltage applied to the RF electrodes. The
Hamiltonian of a single charged particle in this harmonic potential is

H =
1

2
m(

∑

u∈{x,y,z}
u̇2 + ω2

uu
2) =

∑

u∈{x,y,z}

p2
u

2m
+

1

2
mω2

uu
2. (3.8)

For applications in QIP, a trapped particle has to be stationary in order to render it reliably
addressable with focused laser light. This means that the energy of the harmonic oscillator
describing the particle’s motion has to be sufficiently low, so that the oscillation amplitude is
much smaller than the wavelength of the laser light. This goal can be achieved by cooling the
trapped particle. Laser cooling techniques enable the reduction of the energy of the charged
particle to an extent where a quantum mechanical treatment of the system is required [29].
The quantum mechanical expression for the Hamiltonian is [59]

H =
∑

u∈{x,y,z}
~ωu

(
â†â+

1

2

)
(3.9)
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with the ladder operators [59]

âu =
1√

2m~ωu
(mωuu+ ipu) and â†u =

1√
2m~ωu

(mωuu− ipu) . (3.10)

Therefore, a single charged particle in a Paul trap can be modeled as a three-dimensional
quantum mechanical harmonic oscillator. The operator nu = â†uâu quantifies the number of
excitations, referred to as phonons, being present in the respective direction.
If multiple particles are trapped in the same trap, the particles do not only see the

external potential given by the Paul trap but also interact with each other via the Coulomb
interaction [66]. The particles can be arranged as a chain along the z axis if ωrωz > 0.73N0.86,
where ωr = ωx = ωy and N is the number of particles in the trap [67]. This gives rise to 3N

normal modes of oscillation of the interacting particles, where N modes oscillate along the
x, y and z direction each. These normal modes allow one to describe the collective motion
of multiple particles trapped in the same pseudopotential. The lowest frequency normal
mode along z corresponds to all ions oscillating in phase and with equal amplitude. The
relative position of the ions with respect to each other does not change. Such a normal mode
is referred to as center-of-mass (COM) mode. The motional frequency ωz of this mode does
not depend on the number of ions in the linear chain, so that the entire ion chain oscillates
as a single particle would do. For the mode along the z axis next in frequency the ions
oscillate with an amplitude proportional to the distance of the ions position to the trap
center [66]. This mode is referred to as breathing mode and has an oscillation frequency of√

3ωz . Oscillation frequencies and amplitudes for higher frequency modes can be found by
numerically solving the equations of motions of the multi-particle system [66].
For the motion along the x and y directions the mode structure is inverted compared to

z-axis modes, so that the highest frequency modes are the COM modes with oscillation
frequencies of ωx and ωy, respectively. The frequency difference to the breathing modes
is about 0.05ωz [68]. If ωr is fixed, the frequency ωz has to be decreased with increasing
ion number in order for the ions to form a linear chain. In a 16-ion chain the ratio ωr

ωz
has

to be larger than 7.9 [67]. Therefore, the frequency difference between motional modes is
significantly smaller for motional modes along x and y compared to modes along z [68].

3.2 Ions as qubits

Encoding quantum information in electronic states of trapped ions was proven to be a viable
path for QIP by several research groups [29]. Various atomic species provide states that
fulfill the requirements for encoding and storing quantum information: First, the states
must not decay to other electronic states on typical timescales of a computation and second,
they have to allow for maintaining a fixed phase relation with respect to each other. These
properties ensure that encoded quantum information is not altered unintendedly during a
computation. On the other hand, the encoded information can be manipulated and read
out by exposing the trapped ions to laser or microwave radiation [29]. Furthermore, atoms
of the same species and isotope are identical by nature which ensures reproducibility and
yields benefits when scaling up the qubit register size of a quantum information processor.
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Figure 3.2: Energy scheme of 40Ca+. On the right-hand side of 4S1/2 and 3D5/2, the splitting of the
states into multiple Zeeman sublevels in an external magnetic field is shown. The usual
qubit encoding used throughout most of this thesis is in the states 4S1/2,mj=−1/2 and
3D5/2,mj=−1/2.

3.2.1 Encoding of quantum information in ions

Alkaline earth metals are a common choice as atomic species in trapped-ion QIP. Singly
ionized, they become hydrogen-like and provide simple energy schemes allowing for the
control of the electronic state with few external controls, e.g., lasers. The energy scheme of
40Ca+ is shown in Figure 3.2. Ions excited to the states 4P1/2 and 4P3/2 rapidly decay to the
ground state 4S1/2 within nanoseconds [69, 70]. On the contrary, the transitions from the
states 3D3/2 and 3D5/2 to the ground state are dipole-forbidden, rendering the latter states
metastable. The lifetime of the state 3D5/2 is T1 = 1.168(9) s [71]. In an external magnetic
field all states shown in Figure 3.2 split into Zeeman sublevels, which are shown as gray
horizontal lines for the states 4S1/2 and 3D5/2. A qubit can be encoded using one of the
Zeeman sublevels of the ground state and a state in the Zeeman manifold of the 3D5/2, e.g.,
4S1/2,mj=−1/2 and 3D5/2,mj=−1/2. As the transition frequency between those two states lies in
the optical regime, such an encoding is referred to as optical qubit encoding. The numerously
available Zeeman sublevels in the described trapped-ion system also allow for other qubit
encodings. In this thesis, also the qubit encoding in the two ground states 4S1/2,mj=−1/2 and
4S1/2,mj=+1/2 is employed. This qubit encoding is called ground-state qubit encoding.

The electric quadrupole transition connecting the states 4S1/2 and 3D5/2 of the optical qubit
encoding can be addressed by illuminating a trapped ion with light at 729 nm. This system
can be described by the Hamiltonian [72]

H = Hp + Ho + Hi

=
~ωa

2
σz + ~ωo

(
â†â+

1

2

)
+

~Ω

2

(
eikxσ+e−iωlt + e−ikxσ−eiωlt

)
.

(3.11)

The Hamiltonian is given by the sum of the Hamiltonians describing the electronic state
of the trapped particle Hp, the motion of the particle in the harmonic potential Ho, and
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the interaction between the trapped particle with laser light Hi. Here, ~ωa is the energy
difference between the qubit states, ωo is the frequency of the harmonic oscillator describing
the motion of the ion in the trap, Ω is the Rabi frequency, k and ωl are the wavenumber and
angular frequency of the laser field, and σz = Z, σ+ = 1

2 (X + iY ) and σ− = 1
2 (X − iY )

(see Eqn. 2.19) are spin operators. In the interaction Hamiltonian, fast-rotating terms are
neglected, referred to as rotating wave approximation [73]. Furthermore, only one motional
mode is considered and the laser light is assumed to be a plane wave. The particle oscillates
along the laser light’s direction of propagation, in this case presumed to be along the x
direction. Expressing the ion’s position x in terms of the ladder operators â and â† from
Eqn. 3.10, the interaction Hamiltonian reads

Hi =
~Ω

2

(
eiη(â+â†)σ+e−iωlt + e−iη(â+â†)σ−eiωlt

)
(3.12)

with η = k
√

~
2mωo

being the Lamb-Dicke parameter. With U = e−
i
~ (Hp+Ho)t, the Hamiltonian

in the interaction picture reads

H ′i = U †HiU =
~Ω

2

(
eiη(â′+â′†)σ+e−i(ωl−ωa)t + e−iη(â′+â′†)σ−ei(ωl−ωa)t

)
, (3.13)

where the modified ladder operator â′ = âe−iωot is time-dependent [73]. The time-
independent part of the HamiltonianHp +Ho commutes with U and, therefore, coincides
in the Schrödinger and interaction pictures.
In most practical cases, the Lamb-Dicke approximation

eiη(â′+â′†) ≈ 1 + iη(â′ + â′†) (3.14)

is valid, leading to the approximate interaction Hamiltonian

H ′i ≈
~Ω

2

(
σ+e−i(ωl−ωa)t + σ−ei(ωl−ωa)t

)
(3.15)

+ iη
~Ω

2

(
âσ+e−i(ωl−ωa+ωo)t − â†σ−ei(ωl−ωa+ωo)t

)
(3.16)

+ iη
~Ω

2

(
â†σ+e−i(ωl−ωa−ωo)t − âσ−ei(ωl−ωa−ωo)t

)
. (3.17)

These three terms correspond to different processes of the system consisting of a trapped ion
and an external drive, which is, in this case for the optical qubit encoding in 40Ca+, a laser:

• The term in Eqn. 3.15 is resonant if the laser frequency and the frequency of the atomic
transition coincide. It only contains the atomic operators σ+ and σ− and, therefore,
couples the electronic states encoding a qubit without acting on the harmonic oscillator.
This process is referred to as a carrier transition.

• The second term in Eqn. 3.16 is called a red sideband transition. If the laser is red detuned
from the atomic transition by the oscillator frequency ωo, the ion can be excited while
an excitation is removed from the harmonic oscillator and vice versa.
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Figure 3.3: Coil and resonator circuit for directly manipulating the ground-state qubit. The coil and
the resonator circuit are shown on the left and right, respectively. The drive signal with
a frequency of 16.7 MHz is supplied via the connector on the bottom right of the image.
The image shows a prototype with a slightly larger coil compared to the device used in
the experiment.

• In Eqn. 3.17 the excitation of the harmonic oscillator is increased while the ion is
excited if the laser is blue-detuned by ωo from the carrier transition. This process,
called blue sideband transition, also describes a simultaneous deexcitation of ion and
harmonic oscillator.

Therefore, driving an atomic transition not only allows for changing the internal state of
the ion but also affects the ion’s motion in the trap. Note that in this description, only
one harmonic oscillator has been taken into account for simplicity, but an extension of the
framework to motional modes for multiple ions in the same potential is straightforward.
Due to the collective nature of multi-ion motional modes, driving a sideband transition
allows acting on the motional state of all ions trapped in a common harmonic potential.

The framework discussed above describing the interaction of a laser drive with the optical
qubit can be directly transferred to the manipulation of the ground state qubit in 40Ca+.
In this case, the qubit can be directly manipulated by irradiating the ion chain with an RF
magnetic field oscillating at the transition frequency between the two ground states. Here,
the transition frequency between the states 4S1/2,mj=−1/2 and 4S1/2,mj=+1/2 is 16.7 MHz. The
implementedHamiltonian is the same as the one for driving an atomic transition of a trapped
ion using lasers, introduced in Eqns. 3.15 to 3.17. However, due to the long wavelength of
the RF field driving the ground-state qubit transition the Lamb-Dicke parameter η is on
the order of 10−9 in the considered setup. Therefore, sideband transitions are effectively
suppressed [74]. In the following, the experimental setup to drive the ground-state qubit is
discussed.
Figure 3.3 shows the antenna emitting the RF field. The coil antenna constitutes the

inductor of a resonant circuit∗ with a resonance frequency of 16.7 MHz, given by the
magnetic field applied to the ions. The antenna, a self-made coil with a diameter of 1.2 cm

and 10 windings, is mounted outside the vacuum chamber as close as possible to the ion
chain to maximize the coupling strength. Driving the resonator with a power of 2 W yields
a Rabi frequency of about 2π×14 kHz. Figure 3.4 shows the probability of finding each ion
in the state 4S1/2,mj=−1/2 in a 16-ion chain plotted against the RF field irradiation duration.
The difference between the maximum and minimum Rabi frequency along the ion chain

∗ At this point, I would like to thank Matthias Bock for providing the printed circuit board for the resonator
circuit.
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Figure 3.4: Rabi oscillations on the ground-state qubit in a 16-ion chain. The probability of finding
the ion in the state 4S1/2,mj=−1/2 is plotted against the duration of the pulse applied to the
RF antenna for ion 1 in the top left and ion 16 in the bottom right corner.

normalized to the minimum Rabi frequency is Ωmax−Ωmin
Ωmin

= 0.002(1). As the coil induces
an interaction that acts on the entire ion chain it is important that the Rabi frequency is as
homogeneous as possible along the ion chain. Otherwise manipulations of the qubit state
would act differently on different ions.

For both, the optical and ground-state qubit encoding, the transition frequency between
the two qubit states depends on the magnetic field at the ion’s position. Therefore, the phase
relation between the drive manipulating the qubit, e.g., laser or RF drive, and the qubit
itself varies in case of a fluctuating magnetic field affecting the qubit transition frequency∗.
This effect, referred to as dephasing, can be described as a Z(θ) rotation with time-dependent
rotation angle. The rotation angle is given by

θ(t) =

∫ t

t′=0
(ωd − ωq) dt′, (3.18)

where ωd and ωq are the angular frequencies of the drive and the qubit transition, respectively.
The time t′ = 0 is defined as the start of the manipulation of the qubit. Let us assume
that a qubit is prepared in the state |+〉, as shown on the Bloch sphere in Figure 3.5a. The
corresponding density matrix is given by

ρ = |+〉 〈+| = 1

2

(
1 1

1 1

)
. (3.19)

During a subsequent evolution under a fluctuating transition frequency, the Bloch vector
undergoes a Z rotation as described above. By repeating this thought experiment, one
ends up with different rotation angles of the Z rotation for every realization of the noise,

∗ Exactly the same behavior would be observed if the qubit transition frequency would be stable and the drive
frequency would fluctuate. The following discussion can be directly transferred to a situation of fluctuating
qubit transition drive.
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Figure 3.5: Depiction of dephasing of a single qubit on the Bloch sphere. aA single qubit is prepared to
the superposition state |+〉 = 1√

2
(|0〉+ |1〉). b Letting the qubit evolve under a fluctuating

transition frequency with respect to the qubit drive introduces different rotations around
the Z axis for different realizations of the stochastic process describing the transition
frequency fluctuation. c Averaging over the realizations shown in b yields a Bloch vector
shrunk towards the Z axis.

as depicted in Figure 3.5b. The resulting quantum state is described by a mixture of
superposition states

ρ′(t) =
1

N

N∑

i=1

(|0〉+ eiθi |1〉)(〈0|+ e−iθi 〈1|), (3.20)

whereN is the number of realizations. The averaged state can be described as a Bloch vector
shrunk towards the Z axis of the Bloch sphere, shown in Figure 3.5c. For white noise of the
frequency difference ωd − ωq, the length of the Bloch vector shrinks exponentially with the
evolution time after preparation [75]. The averaged state is described by the density matrix

ρ′(t) =
1

2

(
1 e

− t
T2

e
− t
T2 1

)
, (3.21)

where t is the evolution time and T2 is a the characteristic time constant of the dephasing
process given by the magnitude of the noise.

The coherence time T2 can be experimentally determined by implementing the thought
experiment discussed above, called Ramsey experiment [76]. After the preparation of a
superposition state, the qubit undergoes free evolution for a time t. After the evolution time
an analysis pulse with rotation angle π

2 and a variable drive phase is applied, followed by a
measurement of the qubit. Repeating this experiment multiple times for different analysis
pulse phases leads to a sinusoidal variation of the probability to find |1〉with the analysis
phase. The amplitude of the sinusoidal curve is called Ramsey contrast. The Ramsey contrast
is proportional to the absolute value of the off-diagonal elements of the single-qubit density
matrix ρ′(t) in Eqn. 3.21. Fitting an exponential function to the Ramsey contrast versus time
allows one to extract the coherence time T2.
In the setup considered here, the typical coherence time in the ground state encoding is

on the order of 5 ms. In Figure 3.6 the Ramsey contrast for different waiting times between
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Figure 3.6: Ramsey contrast decay for the ground-state qubit encoding with and without DD. The
Ramsey contrast on the vertical axis is plotted against the waiting time between the
preparation and analysis pulses on the horizontal axis. Without DD (labeled w/o DD), the
timescale of the decay is 5.1(8) ms. When applying an RF pulse inverting the population
every 1 ms, no significant decay can be observed for up to 64 ms (labeled w/ DD).

preparation of the superposition and the analysis pulse is shown in blue. Dephasing
of the qubit during the evolution time can be mitigated by periodically exchanging the
population of the two ground states, canceling the destructive effects of slow magnetic field
fluctuations [77], a technique called dynamical decoupling (DD). The simplest instance of a
DD sequence is a single pulse with rotation angle π halfway through the evolution time. If
the deviation of the qubit drive frequency from the qubit transition frequency δω = ωd − ωq

is constant during the evolution, the state of the qubit is |−〉 at the end of the evolution
regardless of the magnitude of the deviation. Applying another π pulse at the end of the
free evolution recovers the prepared state |+〉. If δω varies on timescales shorter than the
evolution time, the dephasing effect can not be fully suppressed. However, dividing the
evolution time in multiple segments and applying a π pulse in the middle of each segment
allows one to suppress dephasing caused by frequency deviations varying on timescales
much larger than the length of each segment. For an even number of segments the qubit
state returns to |+〉, whereas for an odd number of segments |−〉 is prepared at the end
of the evolution time. The data shown in orange in Figure 3.6 shows the Ramsey decay
for waiting times up to 64 ms under application of DD. The DD pulses are applied every
1 ms using the RF coil directly driving the ground-state qubit. Whereas the timescale of the
Ramsey contrast decay is about 5 ms without DD, no significant decay can be observed for
up to 64 ms if DD is applied∗.

3.2.2 State preparation

The first objective of QIP is to prepare a defined state of the physical system encoding the
qubits a quantum algorithm is supposed to act on. Translated to the situation discussed in
this thesis, one has to be able to reliably prepare a trapped ion in a desired electronic state,
e.g., 4S1/2,mj=−1/2.

∗ Stating a decoherence time in this case is not possible, as the waiting time in this measurement is not long
enough to perform a reliable fit to the measured data.
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Figure 3.7: Optical pumping scheme for state initialization. Population in 4S1/2,mj=+1/2 is excited to
3D5/2,mj=+1/2, from where it rapidly decays back to the ground state under illumination
with light resonant to the transition 3D5/2 ↔ 4P3/2. Population in the desired initial
state 4S1/2,mj=−1/2 (see green symbol) does not participate in this cyclic transition and
population accumulates in the ground state’smj = −1/2 Zeeman sublevel.

Let us assume for now that the ion under consideration is in one of the two ground
states 4S1/2,mj=−1/2 and 4S1/2,mj=+1/2, which is an assumption that will undoubtedly be
fulfilled if one waits long enough for all excited states to decay. An option to transfer
the population from 4S1/2,mj=+1/2 to 4S1/2,mj=−1/2 would be to drive the carrier transition
4S1/2,mj=+1/2 ↔ 3D5/2,mj=+1/2, shown in Figure 3.7 as a red arrow labeled 729 nm, andwait for
the population to decay to 4S1/2,mj=−1/2. This is quite tedious due to the long lifetime of the
3D5/2 state. The decay can be accelerated by exciting the ion to 4P3/2, which decays to 3D3/2,
3D5/2, or one of the ground states on the order of nanoseconds. This excitation can be achieved
by applying light at around 854 nm (see dark red arrow in Figure 3.7). The dominant decay
channel is the one to the ground state with a probability of≈ 0.93 [78]. A continuous process
pumping the population to 4S1/2,mj=−1/2 can be realized by simultaneously illuminating
the ion with light resonant to the transition 4S1/2,mj=+1/2 ↔ 3D5/2,mj=+1/2 and light with
wavelengths of 854 nm and 866 nm (green arrow inFigure 3.2). This simultaneous illumination
ensures a fast decay to the ground state while avoiding trapping population in the 3D3/2 state.
As soon as population reaches the state 4S1/2,mj=−1/2 it does not participate in the process
anymore and the population is trapped there. With this scheme, a reliable preparation of
the desired initial state can be realized in hundreds of microseconds.
Besides the electronic state, it is also crucial to control the motional state of trapped ions

before manipulating the qubit using gate operations. The rate at which the internal state of a
trapped ion can be manipulated via illumination with laser light depends on the motional
state of the ion [74]. Therefore, the internal state of the ion after interaction with a laser
pulse is different for different numbers of excitations n = a†a of the harmonic oscillator
formed by the ion in the trap. For a thermal state of the harmonic oscillator having multiple
contributions with different n, the laser-ion-interaction leads to a mixed internal state of the
ion. Consequently, the encoded quantum information is corrupted.
As a result, it is crucial to prepare trapped ions in a defined motional state, usually the

motional ground state with n = 0, before starting a quantum computation. A first step
towards this goal is the application of Doppler cooling on the transition 4S1/2 ↔ 4P1/2 [59]
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with a natural linewidth of Γ = 2π×20.7 MHz [79]. After Doppler cooling the harmonic
oscillator excitation is thermally distributed. The theoretically achievable minimal mean
phonon number [59] is n̄ ≈ 13 and n̄ ≈ 1.6 for harmonic oscillator frequencies of 2π×400 kHz

and 2π×3.2 MHz, corresponding to the typical range of oscillator frequencies in the considered
experimental setup. The excitation of the harmonic oscillator can be further reduced by
driving a transition whose linewidth is smaller than the harmonic oscillator’s frequency.
While this is not the case for the Doppler cooling transition, the qubit transition 4S1/2 ↔ 3D5/2

with a linewidth of Γ = 2π×0.14 Hz [80] fulfills this requirement. In this case, one can directly
access the red sideband transition, see Eqn. 3.16, exciting the ion while reducing the phonon
number by 1. A subsequent relaxation to the ground state by spontaneous emission will
predominantly occur on the carrier transition [59], leaving the phonon number unchanged.
This constitutes a cyclic process in which the electronic state returns to the initial state, but
the phonon number is reduced. This process is commonly called sideband cooling.
The cooling rate in this scenario is upper-bounded by the decay rate of the excited state,

which is ≈ 0.9 s−1 for 3D5/2 in 40Ca+ [81]. Reaching a mean phonon number close to n̄ = 0

starting from the steady state after Doppler cooling would require tens of seconds. The rate
can be increased by simultaneously driving the red sideband transition and illuminating the
ions with light at 854 nm, as is shown in Figure 3.8∗. Tuning the Rabi frequency driving the
3D5/2 ↔ 4P1/2 transition allows controlling the effective decay rate and, therefore, the cooling
rate [82]. Cooling a single motional mode to n̄ ≤ 0.1 can be achieved within hundreds
of microseconds to a few milliseconds [83, 84]. Only motional modes with oscillation
frequencies within tens of kilohertz from the detuning of the laser at 729 nm to the atomic
transition are cooled. Typically, the range of motional frequencies spans more than tens of
kilohertz when trapping multiple particles in an ion trap. Therefore, cooling all 3N modes in
an N -ion chain close to the ground state requires repeating the sideband cooling procedure
for multiple detunings.

TheZeeman splitting in the ground andmetastable state is usually larger than the harmonic
oscillator frequencies, and only two distinct Zeeman sublevels, e.g., 4S1/2,mj=−1/2 and
3D5/2,mj=−5/2, are involved in the cooling process. When using the aforementioned transition
for sideband cooling, a single spontaneous emission event cannot transfer population to the
state 4S1/2,mj=+1/2, where it is not involved in the cooling process anymore. However, after a
decay from 4P3/2 to 3D3/2 or 3D5/2 and subsequent excitation to 4P3/2 or 4P1/2, respectively,
population can be transferred to 4S1/2,mj=+1/2. To bring back population trapped in this dark
state to the cooling cycle and maintain the cooling rate, the cooling procedure is interleaved
with optical pumping, as described above and shown in Figure 3.7. The cooling procedure
for each motional mode is split into up to five sideband cooling pulses with optical pumping
pulses in between.

3.2.3 Gate operations

From Eqns. 3.15 to 3.17, one can see that illuminating trapped ions with light close to the
resonance of an electronic state transition can manipulate not only the internal state of the
ions, but also the state of the ions’ motion in the trap. We will now discuss how to utilize
this interaction to implement single-qubit and two-qubit gate operations, as introduced in
Section 2.2, on qubits encoded in electronic states of trapped ions.

∗ Similar to optical pumping, also light at 866 nm is applied to avoid trapping population in 3D3/2.
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Figure 3.8: Resolved sideband cooling scheme. Illuminating a trapped ion with light resonant to
the red sideband of the transition 4S1/2,mj=−1/2 ↔ 3D5/2,mj=−5/2 excites the ion while the
phonon number n of the harmonic oscillator is reduced by one. After exciting the ion to
4S3/2 by illuminating it with light at 854 nm, the ion rapidly decays back to the ground
state without changing the phonon number. Population is trapped in the motional and
electronic ground state (shown with a green symbol) due to the absence of a red sideband
transition for population in 4S1/2 with n = 0.

3.2.3.1 Single-qubit gates

Illuminating an ion with light resonant to the transition between the two qubit states
implements the following operation:

Rϕ(θ) = e−i θ
2

(X cosϕ+Y sinϕ). (3.22)

This operation corresponds to a rotation around an axis in the equatorial plane of the Bloch
sphere with a rotation angle θ, where ϕ is the angle between theX axis and the rotation axis.
The operation can be physically realized in the experiment by controlling the amplitude
and phase of a continuous-wave laser using an acousto-optic modulator (AOM). The phase
of the RF signal driving the AOM is directly imprinted on the phase of the light passing
through the AOM. The rotation angle θ can be controlled via the amplitude and duration of
the light pulse.

Rotations around theZ axis of the Bloch sphere can be implemented by adjusting the phase
of subsequent gate operations [85], often called virtual Z rotations. This implementation is
both noise-free and instantaneous, as the application of Z rotations in software does not
affect the execution time of a circuit. Virtual Z rotations in conjunction with Rϕ gates in
Eqn. 3.22 allow for the implementation of any single-qubit gate using the decomposition

U(θ, ϕ, λ) = Z
(
ϕ+

π

2

)
R0 (θ)Z

(
λ− π

2

)
= e−i

ϕ+π2
2

Ze−i θ
2
Xe−i

λ−π2
2

Z , (3.23)

where U(θ, ϕ, λ) is a general single-qubit unitary (see Eqn. 2.17) and Z(α) (R0(β)) is a
rotation around the Z (X) axis with rotation angle α (β).
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Figure 3.9: Mølmer-Sørensen interaction for two ions. a A bichromatic drive detuned by +δ and
−δ from the transition between the qubit states |S〉 and |D〉 couples the two-qubit states
|S〉 ⊗ |S〉, |D〉 ⊗ |S〉, |S〉 ⊗ |D〉 and |D〉 ⊗ |D〉. b Phase space trajectories of the harmonic
oscillator with oscillation frequency ωo close to the detuning δ for +1 (blue) and −1 (red)
eigenstates of Y (1,2). The phase space is spanned by the two operators, x ∝ (â† + â) and
p ∝ i(â† − â). After the interaction time t = 2π

ωo−δ , the harmonic oscillator returns to the
initial state, and the trajectory in phase space is closed.

3.2.3.2 Entangling gates

In Section 3.1, the collective nature of the motion of multiple ions in a trap was discussed.
The collective modes can be used to mediate an interaction between different ions in a
common trap [27]. In 1999, Sørensen and Mølmer [86] suggested driving a two-photon
transition on two ions between the states |S〉 ⊗ |S〉 and |D〉 ⊗ |D〉, where |S〉 and |D〉 here
denote the qubit states in one of the ground states and in the Zeeman manifold of the state
3D5/2, respectively. The driving fields are detuned by ±δ from the qubit transition frequency
ωa. Figure 3.9a depicts this scenario referred to as Mølmer-Sørensen (MS) interaction. Red and
blue arrows indicate laser light red detuned (−δ) and blue detuned (+δ) from the carrier
transition. The interaction can be realized by illuminating the ions with light consisting of
frequency components at ωa +δ and ωa−δ, referred to as bichromatic light. The corresponding
Hamiltonian in the interaction picture for two trapped ions reads

H ′i ≈
5∑

i=0

1∑

j=0

∑

∆=±δ

[
~Ω

2

(
σ+(j)e−i∆t + σ−(j)ei∆t

)

+ iηi
~Ω

2

(
âiσ

+(j)e−i(∆+ωo,i)t − â†iσ−(j)ei(∆+ωo,i)t
)

+ iηi
~Ω

2

(
â†iσ

+(j)e−i(∆−ωo,i)t − âiσ−(j)ei(∆−ωo,i)t
)]
.

(3.24)

The summation index i denotes different motional modes with Lamb-Dicke parameters ηi
and oscillation frequencies ωo,i. Each of these modes is modeled as a harmonic oscillator
with ladder operators âi and â†i . The index j specifies on which of the two illuminated ions
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a spin operator is acting. Assuming that the detuning ∆ is set close to one of the mode
frequencies ωo,i and neglecting fast-oscillating terms, the Hamiltonian simplifies to [87]

H ′i ≈ −
~Ω

2
η(

1∑

j=0

Y (j))

[
â†ei(ωo−δ)t + âe−i(ωo−δ)t

]
, (3.25)

where Y (j) is the Pauli operator Y acting on qubit j. Here, the index iwas dropped as all
modes but the one with oscillation frequency close to δ are neglected. The unitary operator,
governing the evolution of the ions’ electronic and motional states, of this approximated
Hamiltonian can be written as [87]

U(t) = D̂(α(t)Y (1,2))ei(λt− λ
ωo−δ sin(ωo−δ)t)Y (1,2)2

with

α =
ηΩ

2(ωo − δ)
(e−i(ωo−δ)t − 1), Y (1,2) =

1∑

j=0

Y (j),

λ =
η2Ω2

4(ωo − δ)
, D̂(α) = eαâ

†−α∗â.

(3.26)

This unitary describes a loop in the phase space of the harmonic oscillator with an oscillation
frequency close to the detuning, as shown in Figure 3.9b. Eigenstates of the operator Y (1,2)

with different eigenvalues undergo different trajectories in phase space, which leads to
entanglement between the electronic and motional state of the trapped ions. However, at the
time t = 2π

ωo−δ the operator D̂(α(t)Y (1,2)) vanishes. At this time, the electronic state of the
ions is not entangled with the harmonic oscillator∗, but the illuminated ions experience a
unitary evolution of the form

UMS(θ) = e−i θ
2
Y⊗Y . (3.27)

The rotation angle

θ = − η2Ω2

ωo − δ

(
t− 1

ωo − δ
sin(ωo − δ)t

)
(3.28)

can be controlled via the light intensity being proportional to Ω2.
For θ = π

2 the evolution of the state |SS〉 is given by

UMS

(π
2

)
|SS〉 =

1√
2

(|SS〉+ i |DD〉) . (3.29)

Therefore, the MS interaction allows for generating a maximally entangled state starting
from a product state. The phase of the bichromatic light field determines the rotation axis,
similar to the case of single-qubit gates in Eqn. 3.22. Up to single-qubit gates, an MS gate
with θ = π

2 is equivalent to a CNOT gate [88].

∗ The typical measurement performed at the end of a computation traces over the motional state. Therefore,
entanglement between the motional and internal state of the ions leads to a mixed qubit state.
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3.2.3.3 Single-site addressing

Implementing arbitrary algorithms in a qubit register formed by a linear chain of ions
requires applying the single-qubit and entangling gates discussed above to any ion or ion
pair. In the following the experimental setup to implement this selective ion-light interaction
is discussed. The laser light needs to be focused so that the light field can be spatially confined
to interact with a specific ion. Residual light intensity at a neighboring ion’s position leads
to an unintended manipulation of the neighbor ion. This erroneous effect is referred to as
crosstalk. For typical ion-to-ion distances of 3.8µm to 6µm, a spot size on the order of 1µm is
required. A naïve assessment using the Abbe diffraction limit yields that for a wavelength of
729 nm and a resolvable distance of 1µm, an optical system with an numerical aperture (NA)
of≈ 0.36 is required. Such a tightly focused laser beam has a Rayleigh length on the order of
a few micrometer. This means that the focused laser beam expands rapidly with increasing
distance from the focal plane of the objective. Therefore, variations in the distance between
an ion and the objective along the ion chain have to be as small as possible. This is achieved
by aligning the optical axis of the focusing optics perpendicular to the direction along the
ion string.
Furthermore, the optical system addressing individual ions must allow for changing

the target ion between two successive gates of an algorithm. Ideally, switching the focus
from one ion to another can be completed on timescales similar to the duration of a single
gate operation, typically a couple of microseconds for trapped-ion quantum information
processors. For the implementation of entangling gates, at least two ions have to be
illuminated simultaneously. Furthermore, individual control over the phase and amplitude
of the light for every addressing site is required to account for previously applied virtual Z
rotations and different transmission efficiencies of the optical system, respectively.

Beam expansion and 
high-NA objective

AOMs
Addressing

setup
Amplified
diode laser

Figure 3.10: Scheme of the optical setup from the light source to the ions. The light is generated in a
diode laser and is amplified in a tapered amplifier. The frequency, phase and amplitude
of the light is controlled in a setup consisting of two AOMs in series. In the addressing
setup the light is deflected to address individual ions before it is focused to the ion chain
shown as blue dots.

In Figure 3.10, a schematic depiction of the experimental setup for individual ion
addressing is shown. The continuous-wave laser light is generated in an amplified diode
laser. The phase, amplitude and frequency of the light is controlled in two consecutive
AOMs before being sent to the addressing setup. Here, the direction of propagation of the
laser beam is changed to selectably illuminate individual ions. Then the beam is expanded
in a telescope so that the necessary NA is obtained. Finally, the laser light is focused onto
the ions using a high-NA objective∗.
For the addressing setup we choose a system based on acousto-optic deflectors (AODs)

that fulfills the requirements concerning the optical system discussed above. In an AOD

∗ Custom-built objective from photon gear inc. with an NA of 0.59 and an effective focal length of 34.35mm at a
wavelength of 729 nm
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a sound wave is generated by a transducer and propagates within a crystal leading to a
periodic spatial modulation of the refractive index. The distance between two maxima of the
refractive index depends on the frequency of the sound wave. Light passing through the
crystal is diffracted at the grating formed by the periodic modulation of the refractive index.
After the diffraction process the direction of propagation of the light is changed and also the
frequency of the light is altered. Depending on the incident angle of the light, the frequency
of the sound wave, typically in the RF range, is either added (frequency upshift) or subtracted
(frequency downshift) from the light frequency. Furthermore, AODs provide control over the
phase and amplitude of the deflected light via the RF input signal. The switching time for
the AOD∗ used in this setup is approximately 10µs. Furthermore, the generation of multiple
deflected light beams can be straightforwardly achieved by combining multiple RF signals
before routing them to the AOD.

Figure 3.11: Optical setup for single-site addressing. The laser light propagates along the direction
indicated by green arrows in all three subfigures. Two acousto-optic deflectors, rotated
by 90◦ with respect to each other, deflect the laser beam without shifting its frequency.
This is achieved by applying a frequency upshift in the first and a downshift in the
second AOD. In between the acousto-optic deflectors, there is a 1:1 telescope that images
beams with different deflection angles at the first AOD to the same spot in the second
AOD. The two shown laser beams correspond to different AOD drive frequencies and,
therefore, to two different ions addressed in an ion chain aligned along the Z axis. The
deflection angle is exaggerated in this depiction for better visibility of the deflected
beams. Subfigure a shows a lateral view of the setup. In b a view orthogonal to the
optical axis is shown, whereas c shows a view along the optical axis in the direction
opposite to the propagation direction of the laser light.

The design of the laser beam deflection setup is shown in Figure 3.11. It consists of two
AODs mounted along the same optical axis. The AODs are rotated by ±45◦ around the
optical axis, as can be seen in Figure 3.11c. For light passing through the AODs the vertical
component of the deflection cancels while the horizontal deflection is added up. To ensure
that beams with different deflection angles originate from the same spot in the second AOD,
a 1:1 telescope is added in between the AODs. The distance between the AODs and the
identical lenses is given by the focal length of the lenses, while the distance between the two
lenses is twice the focal length. With this, the output beams of the setup for different RF

∗ AA Opto Electronic DTSXY-400-730-20
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Figure 3.12: Schematic of the deflection pattern in the focal plane created by the single-site addressing
system. a The red spot on the left is the laser beam which is not diffracted in the
acousto-optic deflectors. The first AOD introduces a frequency upshift indicated by
the arrow pointing to the top right, whereas the second AOD introduces a frequency
downshift shown as a black arrow pointing to the bottom right. Applying RF signals with
the same frequency f1 to both acousto-optic deflectors does not introduce a frequency
shift to the light transmitted through the single-site addressing system. Furthermore, the
vertical components of the spatial deflection in the two acousto-optic deflectors cancel.
However, the combined setup deflects the beam in the horizontal direction. The blue dots
indicate the ion chain. b Applying two frequencies, f1 and f2, simultaneously to both
acousto-optic deflectors creates four beam spots, where the two spots vertically displaced
from the horizontal axis are detuned by f1 − f2 and f2 − f1. The frequency difference
between f1 and f2 is exaggerated for better visibility of the four spots. c Introducing
a detuning δ between the frequencies f1 and f ′1 = f1 − δ used to address a single ion
allows shifting the beam spot in the vertical direction.

frequencies applied to the AODs lie in the plane formed by the ion chain and the optical
axis. In a prototype of the deflection setup we used achromatic lenses with a focal length
of 50 mm for the telescope. The optical setup actually used in the trapped-ion experiment
considered here is sourced from Alpine Quantum Technologies GmbH. In this setup, the
lenses are designed as triplets with an effective focal length of approximately 19 mm to
reduce aberrations.
One AOD imprints a frequency upshift to the passing light, while the other applies a

frequency downshift. When driving the AODs with the same RF frequency, this results in
an RF-frequency-dependent deflection of the beams, but the net frequency shift imprinted
on the laser light is zero. Figure 3.12a schematically shows the deflection of a light beam
with respect to the undeflected beam in the focal plane of the objective when an RF signal
with frequency f1 is applied.

For the simultaneous illumination of two ions, two RF tones with frequencies f1 and f2

are applied to the AODs. As can be seen in Figure 3.12b, not only the two spots that undergo
frequency up- and downshifts of f1 and f2, respectively, but also spots that are upshifted by
f1 and downshifted by f2 and vice versa, are present. Those spots are detuned in frequency
by the difference of f1 and f2 with respect to the spots addressing the individual ions.
Although the off-resonant spots do not lie on the ion chain’s axis, they can still affect the
state of the ions. Especially for the situation where two neighboring ions are illuminated,
the spatial distance of the off-resonant beam spots to the illuminated ions is smaller than the
inter-ion spacing potentially leading to undesired illumination of the ions with off-resonant
light. However, the detuning of the off-axis spots allows for shifting them away from any
carrier or sideband transition in frequency space by tuning the magnification of the telescope
for beam expansion after the addressing setup (see Figure 3.10). This parameter allows
tuning the ratio of the beam displacement to RF frequency change and, therefore, the
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Figure 3.13: Scan of a tightly focused laser beam across a chain of 16 trapped ions. The probability of
finding an ion in the excited qubit state after applying an excitation pulse is plotted against
the RF signal driving the acousto-optic deflectors of the single-site addressing setup.
Each color corresponds to the excitation probability of a different ion. The excitation
probability of each ion is only plotted for frequencies close to the peak frequency for
improved clarity.

frequency difference f1 − f2 for two illuminated ions. Besides that, the frequencies f1 and f2

obviously depend on the respective ion positions. Consequently, f1 − f2 depends on the
inter-ion spacing and, therefore, the detuning of the off-axis beam spots can be adjusted by
changing the ion trap’s confinement along the trap axis.

The individual control of frequency, amplitude, and phase of each RF tone sent to the two
AODs provides considerable flexibility in this addressing approach. Figure 3.12c shows a
situation where a frequency shift δ is introduced between the two RF tones sent to the AODs.
The first AOD is driven with a frequency f1, while the second is driven with f ′1 = f1 − δ.
This effectively shifts the deflected spot in the vertical direction orthogonal to the direction
along the ion chain∗. Adding the frequency offset δ introduces a frequency detuning of the
laser light from the atomic resonance by δ. However, this can be compensated for by shifting
the laser light prior to the AOD-based addressing setup by −δ, enabling two-dimensional
adjustments to the beam spot position by means of RF frequency control. Furthermore,
introducing a shift δ for individual ions without frequency compensation of the laser light
facilitates correcting undesired carrier frequency shifts along the ion string, e.g., caused by a
magnetic field gradient. This will spatially shift the beam spot with respect to the ion in the
vertical direction, but as long as the shift is much smaller than the diameter of the beam
spot, this effect can be neglected.

Figure 3.13 shows a scan of a single addressing beam spot resonant to the qubit transition
across a 16-ion chain. On the horizontal axis, the AOD drive frequency f1, and on the vertical
axis, the probability of exciting an ion from the ground state to 3D5/2 is plotted. Different
colors show the excitation probability for individual ions. The laser beam is displaced
by ≈ 5µm for an RF frequency difference of 1 MHz. The distance from the left-most ion,

∗ The detuning δ also introduces a shift in the direction along the ion string, which can be compensated for by
adjusting f1.
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Figure 3.14: Illumination scheme for qubit state detection. When illuminating the ion chain with
light at 397 nm, ions projected to the qubit state encoded in the ground state will scatter
photons. Ions projected to a Zeeman sublevel of 3D5/2 instead will not scatter photons
and appear dark. The ion string is additionally illuminated with light at a wavelength of
866 nm to avoid pumping initially bright ions to the dark, metastable state 3D3/2.

corresponding to the data shown in blue in Figure 3.13, to the right-most ion, corresponding
to the data shown in light gray, is 66µm.

The crosstalk to neighboring ions when addressing a specific target ion can be quantified
in terms of the ratio ε = Ωs

Ωt
of the Rabi frequencies at a particular spectator ion Ωs and at

the target ion Ωt. The highest crosstalk ratios occur for next-neighbors to the target ion. A
measurement of the crosstalk ratio ε shows a maximum and mean next-neighbor crosstalk
of 0.016 and 0.009, respectively. A more detailed analysis of undesired crosstalk affecting
neighbors of an illuminated ion can be found in Section 6.1.1.

3.2.4 Qubit measurements

Projective measurements in the computational basis in a 40Ca+ trapped-ion quantum
processor can be realized by illuminating the ions with laser light at a wavelength of 397 nm

resonant to the transition 4S1/2 ↔ 4P1/2. For the optical qubit encoding the two computational
states are 4S1/2,mj=−1/2 and 3D5/2,mj=−1/2. Ions projected to the qubit state encoded in the
ground state will absorb a photon while getting excited to 4P1/2, as shown in Figure 3.14.
From there, a decay within nanoseconds either to the ground state or to the state 3D3/2

occurs. Simultaneous illumination with light at 866 nm, repumps population decayed to
3D3/2 back to 4P1/2. This ensures that every ion, once excited to 4P1/2, eventually decays to the
ground state, emitting a photon at 397 nm. This closed cycling transition allows one to scatter
multiple 397 nm photons from ions in the ground state. Qubits projected to 3D5/2,mj=−1/2 do
not participate in this cyclic process and do not scatter any photons. Therefore, collecting
scattered photons at 397 nm allows for the distinction between qubits being projected to
either the ground state or to the metastable 3D5/2 state. This technique termed shelved optical

electron amplifier was first demonstrated in 1986 [89]. It allows one to distinguish the ground
state from a shelved, metastable state. The state of a single valence electron controls the
emission of thousands of photons in milliseconds. The final electronic state for qubits
projected to the ground state after such a projective measurement is not a certain Zeeman
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Figure 3.15: Image of a chain of 16 trapped ions captured with an EMCCD camera. The photons
scattered by the ions when illuminated with light at 397 nm are imaged to the camera
sensor using a high-NA objective. Note that the scale bar in the top right corner does
not show a distance of 15µm on the camera but at the position of the ion chain. The
exposure time is 100 ms.

sublevel but a mixture of the Zeeman sublevels with mj = −1/2 and mj = +1/2. On the
contrary, the Zeeman state of qubits projected to 3D5/2 is not affected.
For a simultaneous measurement of multiple qubits in an ion chain, all ions are simul-

taneously illuminated with light at 397 nm and 866 nm, projecting them to either 4S1/2 or
3D5/2. A computational state can be assigned to each qubit by spatially resolving the photons
emitted during the measurement. This can be achieved by collecting the emitted photons
using an electron-multiplying charge-coupled device (EMCCD) camera∗. The light emitted
by the ions is imaged to the camera through the same objective that is used for single-site
addressing described in Section 3.2.3.3. Figure 3.15 shows a typical image taken with an
EMCCD camera of a 16-ion chain with a length of 66µm. The optical system imaging the
ion chain to the camera has a magnification of ≈ 30 [84]. The number of photons scattered
by an ion is proportional to the summed up value of the pixels an ion is imaged to. A
computational state is assigned to each ion by comparing the summed pixel value to a
threshold: If the value is above (below) the threshold the ion is assumed to be projected to
4S1/2 (3D5/2). A histogram of the summed pixel value from 500 images with an exposure
time of 250µs for a single ion is shown in Figure 3.16. The ion is prepared in a superposition
of the two computational states before detection. On the horizontal axis, the summed pixel
value is plotted.

During a measurement an ion projected to the ground state scatters thousands of photons.
Every photon emission process results in change of the ions momentum. The magnitude of
this recoil is given by the momentum of the emitted photon. Due to the spatial symmetry
of the emission pattern the transferred momentum averaged over many emission cycles is
zero. However, the recoil leads to a random walk in the momentum space of the trapped
ion causing an excitation of the harmonic oscillators describing the motion of the ions in
the trap [59]. Therefore, a qubit measurement induces heating and the cooling procedure
described in Section 3.2.2 has to be repeated after a measurement.

For specific algorithms, e.g., QEC protocols, it is required to measure subsets of the entire
qubit register during a computation, referred to as mid-circuit measurement. Subsequently,
additional gate operations are applied to the measured qubits but also to spectator qubits.
Ideally, such a mid-circuit measurement implements an identity operation on the spectator
qubits. The procedure involves measuring a subset of the qubit register, recooling the ion

∗ Andor iXon Ultra 897
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Figure 3.16: Histogram of detected photon counts of a single ion extracted from 500 images with an
exposure time of 250µs. Before detection, the ion is prepared in a superposition of the
two qubit states so that bright and dark events are observed. The horizontal axis shows
the pixel value output by the camera accumulated over all pixels the ion is imaged to.
This quantity is proportional to the number of scattered photons.

chain after scattered photons induced motional excitation, and reinitializing the auxiliary
qubits for later reuse.

The lasers at wavelengths of 397 nm, 854 nm and 866 nm required for implementing
projective measurements, cooling of the ion motion, and qubit initialization are illuminating
the entire ion string simultaneously. Those laser beams are referred to as global beams, in
contrast to the addressed laser beam at 729 nm. Therefore, the standard procedures described
above and in Section 3.2.2 would also undesirably affect the information encoded in spectator
qubits. This can be avoided by changing the qubit encoding of spectator qubits for the
different stages of the mid-circuit measurement procedure. For the projective measurement
the qubit encoding is transferred from 4S1/2,mj=−1/2 and 3D5/2,mj=−1/2 to 3D5/2,mj=−1/2 and
3D5/2,mj=+1/2. A projective measurement does not affect the Zeeman sublevels of 3D5/2 and
the spectator qubits stay unperturbed. The same holds true for the following Doppler cooling
step, where the same lasers as for the measurement are involved. For the sideband cooling
and reinitialization of the measured qubits the encoding of the spectator qubits is transferred
to 4S1/2,mj=−1/2 and 4S1/2,mj=+1/2. A detailed description of the mid-circuit measurement
procedure, including a performance characterization, can be found in Appendix A.

During the recooling step using sideband cooling, spectator qubits are encoded in the two
Zeeman sublevels of the ground state. In the ground state encoding, the coherence time
is on the order of 5 ms. The sideband cooling sequence after a mid-circuit measurement
requires approximately 15 ms, significantly extending beyond the typical coherence time
in the ground state encoding. However, dephasing of spectator qubits can be mitigated by
applying the DD technique described in Section 3.2.1. When applying DD no significant
decay in coherence is observed on the timescales of tens of milliseconds relevant in the
context of recooling after mid-circuit measurements.

3.3 Modeling noisy trapped-ion quantum processors

All the implementations of fundamental building blocks for QIP described in the previous
section are faulty to some degree. Erroneous behavior of a building block can be caused by
fluctuations in the classical control system or limitations imposed by the physical system
encoding the qubits. Examples of classical control limitations are magnetic field fluctuations
or laser intensity noise, whereas, e.g., the limited lifetime of the metastable qubit state is a
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limitation of the physical system. Developing models describing the erroneous behavior
allows relating such limitations to deviations of the prepared from the ideal quantum state
after implementing a quantum algorithm. Furthermore, error models allow for identifying
limiting error processes and estimating a quantum processor’s performance after future
hardware advancements. The goal hereby is to find a model that is complex enough to
capture the salient features of a noisy implementation of a quantum computation and
reliably predict its outcome, while still being simplistic enough for an efficient simulation
using classical computers.

3.3.1 Idling

Errors corrupting quantum information can occur not only when one acts on a qubit but also
when a qubit is not directly involved in a particular time step of a quantum algorithm. Error
processes affecting inactive qubits are referred to as idling errors. Such a process was already
mentioned in Section 3.2.1, where ground-state qubits suffer from dephasing originating
from magnetic field fluctuations during idling.

An error model for this process that is applicable to complex gate sequences onmulti-qubit
registers can be constructed by describing each time step of the gate sequence individually.
Every idling location in a circuit is replaced by an ideal, error-free idling period followed
by the probabilistic application of a Z rotation with a rotation angle of π. With this, the
quantum state of a noisy implementation of a gate sequence can be described at every time
step throughout the computation. The mathematical description, called error channel, of this
model is given by the linear map

ρ′(t) = E(ρ) = (1− pidle)ρ+ pidleZρZ. (3.30)

Here, ρ and ρ′(t) = E(ρ) are the density matrices of the quantum state before and after
a qubit is undergoing noisy idling. The Pauli operator Z is applied with the probability
pidle to the idling qubit. Instead of modeling the Z rotations that physically happen in a
noisy system, a full phase-flip error is applied in a stochastic fashion. Such noise models
are referred to as being incoherent. A major upside of such an incoherent error channel is
that a quantum computation affected by the channel can be simulated efficiently using a
classical computer for quantum circuits only containing Clifford gates [50, 51]. Averaging
over multiple simulation runs of the noisy circuit, where the decision whether or not to
apply a Z rotation is made individually for every run and idling location, produces a mixed
state describing the final noisy state. For

pidle =
1

2
(1− e

− t
T2 ) (3.31)

this channel reproduces the noise-affected density matrix ρ′(t) = E(ρ) of a single qubit
undergoing noisy idling for a duration t from Eqn. 3.21.

Another noise process affecting a qubit’s state during idling is the decay of computational
basis states. For optical qubit encodings in trapped-ion quantum processors, one of the qubit
states is encoded in a metastable electronic state, i.e., the state 3D5/2,mj=−1/2 for the quantum
information processor discussed in this thesis. The time constant of the spontaneous decay
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of a Zeeman sublevel of 3D5/2 to the ground state is T1 = 1.168(9) s [71]. The error channel
of the metastable state’s decay to the other computational basis state, 4S1/2,mj=−1/2, reads

E(ρ) =

(
1 0

0
√

1− p

)
ρ

(
1 0

0
√

1− p

)
+

(
0
√
p

0 0

)
ρ

(
0 0
√
p 0

)
, (3.32)

with p being the probability that the metastable state decays during the respective idling
period. The decay of the metastable state to 4S1/2,mj=+1/2, which is a state outside the
computational subspace, cannot be modeled in the framework of a closed two-level system.
Simulating errors involving states outside the computational subspace requires to increase
the dimension of the quantum state describing the system [90].
The timescale T1 of the metastable state’s decay is on the order of one magnitude longer

than the coherence time T2 in the devices considered here, rendering this error process
negligible for most practical cases. Encoding a qubit in the two Zeeman sublevels of the
ground state can even eliminate the decay of computational states entirely.

3.3.2 Gate errors

When applying a single-qubit gate Rϕ(θ) defined in Eqn. 3.22, two different types of errors
can occur:

• The rotation angle θ can deviate from the ideal rotation angle. Physical processes that
cause this are, among others, fluctuations in the laser intensity, drifts or vibrations
of the focusing optics generating the tightly focused laser beam, or fluctuations in
the polarization of the laser light causing a change of the coupling to the atomic
transition [66].

• The rotation axis described by the angle φ can be affected by fluctuations of the laser
phase or the magnetic field applied to the ions.

These two effects will, similar to the case of dephasing noise, shrink the Bloch vector.
However, instead of shrinking towards the Z axis of the Bloch sphere, the Bloch vector
shrinks towards the center of the sphere for erroneous single-qubit gates averaged over
many gates. In other words, not only the off-diagonal elements of the density matrix are
affected, as for dephasing noise, but also the diagonal elements are altered. Ultimately,
when applying more and more single-qubit gates, the density matrix converges to the fully
depolarized state

ρ′(t) =
1

2

(
1 0

0 1

)
(3.33)

irrespective of the initial state. This behavior can be modeled by replacing each noisy gate
with an ideal gate, followed by the incoherent error channel

E(ρ) = (1− p1)ρ+
p1

3
(XρX + Y ρY + ZρZ) . (3.34)
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With a probability of 1− p1, the output state of the ideal single-qubit gate is left unchanged,
while with equal probabilities of p13 , either anX , Y , or Z error is applied. This error channel
is referred to as a depolarizing noise channel.

Adopting the same reasoning also for two-qubit gates, it stands to reason to model a noisy
gate as an ideal gate followed by the two-qubit depolarizing noise channel

E(ρ) = (1− p2)ρ+
p2

15

15∑

i=1

EiρEi (3.35)

with

Ei ∈ {σk ⊗ σl, ∀σk, σl ∈ {1, X, Y, Z}} \ {1⊗ 1}. (3.36)

Similar to the single-qubit case, random Pauli errors are applied with an equal probability.
With a probability of p215 , one of fifteen non-trivial bipartite tensor products of Pauli matrices
is acting on the system after the ideal gate operation. Repeated application of this channel
eventually leads to the fully depolarized two-qubit state. Estimated error probabilities for
the data in this thesis in a 16-qubit register are p1 ≈ 0.005 and p2 ≈ 0.025.

The aforementioned gate error models neglect off-resonant excitation to Zeeman sublevels
outside the computational subspace. Due to the large detuning from any transition to states
outside the computational subspace of at least 6.8 MHz with maximal Rabi frequencies
of 200 kHz, contributions from off-resonant processes to the total error probability are
negligible [91]. More gate-specific error models deviating from the generic depolarizing
noise model for two-qubit operations are discussed in Section 6.1.1.

3.3.3 Preparation and measurement errors

The dominant error source of the state preparation scheme discussed in Section 3.2.2 is
off-resonant excitation of transitions between 4S1/2,mj=−1/2 and Zeeman sublevels of 3D5/2.
The rate equation for the fraction of the population n− in the desired initial state 4S1/2,mj=−1/2

is given by

dn−
dt

= c1n+ − c2n−, (3.37)

where n+ = 1 − n− is the fraction of the population in 4S1/2,mj=+1/2. The coefficient c1

depends on the probability of the process, where population is excited from 4S1/2,mj=+1/2

and subsequently decays to 4S1/2,mj=−1/2, whereas c2 depends on theprobability of the inverse
process. In equilibrium the fraction of population in 4S1/2,mj=−1/2 is given by n− = c1

c1+c2
.

As the laser is tuned to resonance with the transition from 4S1/2,mj=+1/2 to 3D5/2,mj=+1/2

the coefficient c1 is much larger than the coefficient c2. However, in this equilibrium state,
some population is undesirably left in 4S1/2,mj=+1/2, outside the computational subspace
of the optical qubit encoding. Modeling this leakage from the computational subspace
would require extending the dimension of the modeled Hilbert space per qubit beyond two,
depending on the number of non-computational states taken into account [90]. However,
this extension to the error model would increase the computational effort of simulating
noisy circuits and prevent the utilization of optimized and readily available simulation tools.
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Therefore, an approximated error channel for noisy initialization following the spirit of the
channels discussed above is used in this thesis. The channel is given by

E(ρ) = (1− pi)ρ+ piXρX, (3.38)

where a noiselessly initialized qubit is flipped with a probability pi.
When measuring a qubit, the discrimination between the two computational states is

done by comparing the number of collected photons from a specific ion illuminated with the
detection laser beams with a threshold photon number, as described in Section 3.2.4. The
measurement outcome is corrupted if the detected photon counts are below the threshold
for a bright ion or above the threshold for a dark ion. One reason for such a misjudgment is
the finite overlap of the Poissonian distributions of collected photons for dark and bright
ions [74]. Another error mechanism is the decay of the dark computational state to the
ground state during the detection procedure, leading to an increased number of detected
photons [74]. Furthermore, imperfections in the optical system imaging the light from the
ion chain to the camera can cause the assessment of a dark ion as bright. Thereby, photons
scattered from a bright ion are imaged to pixels of the camera sensor that are associated
with a different, dark ion. Without considering the details of the aforementioned error
mechanisms, one can model a noisy measurement as a bit flip occurring with a probability
pm before a noiseless measurement. The corresponding error channel then reads

E(ρ) = (1− pm)ρ+ pmXρX. (3.39)

For the data presented in this thesis the preparation and measurement error probabilities
were estimated to be pi = pm = 0.003.



4
P RO T E C T I NG Q U B I T S F RO M NO I S E

In order to provide a practical advantage over classical computation, quantum computers
will require thousands of qubits and billions of quantum gates acting on them [30, 92–95].
The required quality of gate operations to successfully execute a circuit can be very naïvely
assessed as one over the number of applied gates. Hence, a gate error probability on the order
of 10−9 is required to implement a circuit consisting of 109 gates. The state of a quantum
mechanical system is described by continuous variables, as shown in Section 2.1. Already
tiny undesired interactions with an environment change the stored quantum information.
Therefore, no quantum computing architecture currently offers gate error probabilities that
fulfill the requirements for large-scale computations. In contrast, in classical computing the
set of possible states of a register is discrete. Each bit is either 0 or 1, usually represented
by two voltage ranges. Small voltage fluctuations, e.g., due to undesired influence of the
environment, do not alter the stored information. In this sense, digital logic for classical
computing is intrinsically error correcting.
Furthermore, in classical computing, additional to the intrinsic EC properties, a sophis-

ticated arsenal of tools to actively correct possible errors compromising a computation
was established over the last decades. The goal of implementing procedures detecting and
correcting errors is to recover the stored or transmitted information although parts of the
information are corrupted. Due to the low failure rates on the order of 10−17 and less in
classical computing hardware [45], EC is utilized predominantly in critical applications or
particularly noisy transmission lines, e.g., satellite or cellular connections [96]. Large-scale
quantum computation will require similar EC procedures in order to achieve the required
error probabilities. The techniques developed for EC in classical computing cannot be
directly applied to quantum computing owing to the peculiarities of quantum mechanics,
but the field of QEC was undoubtedly inspired by ideas from its classical counterpart.
In this chapter, the basic ideas of EC for QIP are presented. Section 4.1 discusses the

distinction between classical and quantum EC and introduces an instructive example of
a QEC code. In Section 4.2, a framework to describe an extensive class of QEC codes, the
stabilizer formalism [97], is introduced. Section 4.3 covers the seven-qubit Steane code [36],
which has been used for most of the work presented in this thesis. Finally, Section 4.4
discusses the building blocks necessary to encode and protect logical information in a QEC
code.

4.1 Introduction to quantum error correction

Redundancy in the encoding of information is a critical requirement for any sort of EC. If a
part of the system is corrupted, the storage of information distributed to multiple informa-
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tion carriers allows for the recovery of the encoded information. In classical information
processing, the most elementary approach for EC is just copying the information. Assuming
one wants to transmit a single bit, instead of sending the value 0 or 1, one sends 000 or
111, respectively. Those bitstrings consisting of the copied information are called code words

of the EC code. An error on a single bit will alter the encoded bitstring in one position.
Table 4.1 shows the effect of an error affecting a single bit (second column) on the encoded
information (first column) and the corresponding corrupted bitstring (third column). In this
example, we assume that errors occur independently on single bits with a probability of
p. A specific error affectingm bits, termed a weight-m error, occurs with a probability pm.
Therefore, the most likely error configuration leading to a particular corrupted bitstring is
the one having the lowest weight, which is a weight-1 error in this example. A procedure to
recover the encoded information, assuming the lowest weight error configuration occurred,
is a majority vote across the values in the transmitted bitstring. In the fourth column of the
table, one can see that this successfully recovers the encoded information for errors affecting
a single bit. However, any weight-2 error acting on the bitstring gives rise to a majority of
bits carrying the wrong value, and therefore, the recovered value is also inverted. Although
the EC procedure cannot recover the correct value for weight-2 errors, the fact that not all
bits in the corrupted bitstring hold the same value still allows detecting that an error has
happened. Going a step further by introducing a weight-3 error, one sees that the two code
words of the code are transformed into each other, and there is no chance even to detect this
error configuration. The weight of an error configuration transforming one valid code word
into another is referred to as distance d of the EC code. Therefore, for a distance-d code an
error affecting d bits can corrupt the encoded information while going unnoticed. In contrast,
the encoded information can be successfully recovered for errors with a weight of up to [98]

t = bd− 1

2
c. (4.1)

A commonly used notation for an EC code with a distance d encoding the information
content of k bits in n bits is the [n, k, d] notation. Such a code has 2k different code words
with a length of n each. The code introduced above is a [3, 1, 3] code. Copying the encoded
information to more bits than for the classical distance-3 repetition code discussed above
increases the distance and, therefore, the number of correctable errors.

If QIP, it is not sufficient anymore to protect the states |0〉 (corresponding to the classical
bitstring 0) and |1〉 (corresponding to 1), but also superposition states |ψ〉 of the form

|ψ〉 = α |0〉+ β |1〉 (4.2)

have to be safeguarded from errors. The most naïve way to transfer the EC procedure
discussed above to quantum states would be to copy the state |ψ〉. Unfortunately, there are
two roadblocks ahead:

1. A mechanism of copying superposition states for all allowed values of α and β is
prohibited by the no-cloning theorem [99].

2. Measuring the ensemble of copied qubits to determine the majority qubit state would
collapse the superposition states to eigenstates of the respective measurement operator.
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Encoded bit value Error on bit Corrupted bitstring Recovered value

0

1 100 0

2 010 0

3 001 0

1 011 1

1 2 101 1

3 110 1

Table 4.1: Single bit-flip error acting on a classical error correction code. The first column shows the
bit value to be encoded, and the third column shows the corrupted, encoded bitstring
after an error occurs on the bit indicated in the second column. The correct value can be
recovered, as shown in the third column.

a b c

-1 +1-1

+1 -1-1

} |ψ' L〉

|0〉

|0〉

X

X

X|ψ〉

|0〉

|0〉
} |ψ 

L
〉

Figure 4.1: Distance-3 bit-flip repetition code. a Circuit encoding an arbitrary single-qubit quantum
state |ψ〉 in the logical state |ψ〉L. b Single-qubit X errors acting independently on the
three qubits of the code. c Error syndrome extraction using two auxiliary qubits. The
colored measurement outcomes correspond to the errors in b of the same color.

Therefore, the random nature of the measurement would impair the majority vote,
and the encoded superposition state would be destroyed.

A way out of this dilemma is to provide the redundancy necessary to protect the encoded
information by using carefully structured entanglement between multiple qubits. Probably
the most basic instance of such a construction is given by:

|ψ〉 = α |0〉+ β |1〉 → |ψ〉L = α |000〉+ β |111〉 . (4.3)

The subscript L indicates that |ψ〉L is an encoded, also referred to as logical, state. Figure 4.1a
shows the encoding for this so-called distance-3 bit-flip code [100]. For both error-free code
words |0〉L = |000〉 and |1〉L = |111〉, two neighboring qubits always exhibit the same state
in the computational basis. The product of the eigenvalues to the Z Pauli operator of two
neighboring qubits is always +1∗. This quantity is referred to as parity. For the analysis
of the erroneous case, let us first restrict the possible errors to single-qubit bit-flip errors,
corresponding to rotations around the X axis of the Bloch sphere with rotation angle π. An

∗ The products of the eigenvalues are +1 ·+1 = +1 and −1 · −1 = +1 if both qubits are in the state |0〉 and |1〉,
respectively.
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error on the first qubit, as shown in Figure 4.1b in red, transforms the encoded state |ψ〉L to
|ψ′〉L = α |100〉+ β |011〉. The parity for the first two qubits then is −1, whereas the parity
for the last two qubits is still +1. Figure 4.1c shows a circuit measuring the parity of the first
two and last two qubits encoding the logical information using two additional qubits. Those
additional qubits are referred to as auxiliary qubits, whereas the qubits holding the encoded
information are called data qubits. Measurements of the first and second auxiliary qubit
reveal the parity of the first and last two data qubits, respectively. Evaluating this set of parity
measurements for the single-qubit bit-flip errors, shown in different colors in Figure 4.1b,
reveals that each error has its unique set of parity measurement outcomes, referred to as
error syndrome. If no error is present on the data qubits, the measured error syndrome is
(+1,+1). The parity measurements for two neighboring qubits correspond to measuring the
operators Z1Z2 and Z2Z3, where ZiZj is short for the tensor product of Pauli-Z operators
acting on qubits i and j and the identity acting on all other qubits. According to Eqn. 2.62, in
the error-free case, the state of the data qubits after measuring Z1Z2 and Z2Z3 is

|ψ′〉L =
1√

2(1 + L〈ψ|Z1Z2|ψ〉L)
(1⊗3 + Z1Z2) |ψ〉L =

=
1√

2(1 + L〈ψ|Z2Z3|ψ〉L)
(1⊗3 + Z2Z3) |ψ〉L = |ψ〉L .

(4.4)

Therefore, measuring the parity on the two pairs does not collapse a superposition of
logical basis states. Also for the erroneous cases, superposition states are unaffected. The
post-measurement quantum state can be determined according to Eqn. 2.63 for parity
measurements with outcome −1.
The unique correspondence of error syndrome and single bit-flip error allows restoring

the original state |ψ〉L by applying an X operation on the respective qubit. Let us now look
into the uncorrectable case of two independent errors being present on the data qubits
before the parity measurements. The recovery procedure suggests applying a correction to
the third, non-erroneous qubit. After the correction, a logical bit flip is introduced as the
code word |0〉L is transformed into |1〉L and vice versa. For an error configuration where all
three qubits suffer from a bit flip, the error is not even detected, and the corruption of the
logical information, termed logical error, goes unnoticed.

Although measurement-free protocols [101–107] seem to be a viable option for QEC, this
thesis will be restricted to schemes mapping the error syndrome to auxiliary qubits which
are measured subsequently. After the measurement, the error syndrome is processed in
a classical computer and the appropriate correction is applied. This general structure is
depicted in Figure 4.2.
This thesis will be restricted to QEC schemes mapping the error syndrome to auxiliary

qubits which are measured subsequently. After the measurement, the error syndrome is
processed in a classical computer and the appropriate correction is applied. This general
structure is depicted in Figure 4.2. Such schemes require the ability to measure and reset a
subset of qubits during the implementation of a quantum algorithm, but require fewer gate
operations acting on the qubit register compared to measurement-free protocols [101–106].

Since the goal of QEC is to reduce the rate at which quantum information is corrupted, in
the following the error rates of the distance-3 bit-flip code and a bare, unencoded qubit are
compared. Let us assume that the probability of a bit flip occurring on a single qubit in a
specific time interval is p. For independent errors the probability for a specific weight-m
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Syndrome 
extraction

Correction|ψ' 
L

〉 |ψ 
L

〉

|aux 〉

Figure 4.2: Principle of error syndrome extraction and EC based on measurements of auxiliary qubits.
The upper wire consisting of multiple lines symbolizes multiple physical qubits encoding
one logical qubit. An encoded, potentially erroneous state |ψ′〉L is coupled to a set of
auxiliary qubits in the state |aux〉 (depicted as the block labeled ’Syndrome extraction’).
Subsequently, the auxiliary qubits are measured, and the corresponding correction is
applied to the data qubits. The correction restores the error-free encoded state |ψ〉L if a
correctable error was present on the data register.

bit flip then is pm. In the case of a bare physical qubit, the information stored in the state
|ψ〉 will be corrupted after the respective time interval with a probability p. The same error
process acting on the encoded state |ψ〉L leads to one of the following four scenarios:

1. The encoded quantum state is unperturbed with a probability of (1− p)3.

2. In one of three possible locations, a single qubit sustains a bit flip with a probability of
p(1− p)2, leading to a combined probability of 3p(1− p)2.

3. A two-qubit error configuration occurs with a combined probability of 3p2(1− p).

4. All three qubits experience a bit flip with a probability of p3.

After applying the ECprocedure, scenarios three and four lead to logical errors. Therefore, the
summed probability of finding a corrupted logical state is 3p2(1−p)+p3 = 3p2−2p3 = O(p2).
This means that the error rate of the logical qubit is lower compared to the one of the bare
physical qubit if p < 0.5 [45]. Thus, implementing this QEC code is beneficial, if the error
rate given by undesired coupling to the environment is low enough and the time interval
between EC cycles, shown in Figure 4.2, is short enough.
So far, it was shown that the quantum repetition code can correct discrete bit-flip errors.

However, the control acting on qubits is continuous, meaning that an error in general
also shows this continuous behavior. Imagine, for example, a coherent error UX1 (θ) =

cos θ21⊗3 − i sin θ
2X1, implementing a rotation around the X axis for the first qubit with a

rotation angle θ. The perturbed encoded quantum state then reads

U
(1)
X (θ) |ψ〉L = |ψ̃〉L = cos

θ

2
(α |000〉+ β |111〉)− i sin

θ

2
X1(α |000〉+ β |111〉)

= cos
θ

2
(α |000〉+ β |111〉)− i sin

θ

2
(α |100〉+ β |011〉).

(4.5)

A measurement of the parity operator Z1Z2 now projects the state either to

|ψ′〉L =
1√

2(1 + L〈ψ̃|Z1Z2|ψ̃〉L)
(1⊗3 + Z1Z2) |ψ̃〉L = α |000〉+ β |111〉 (4.6)

with probability

p(+) =
1

2
(1 + L〈ψ̃|Z1Z2|ψ̃〉L) = cos2 θ

2
(4.7)
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|ψ〉

|0〉

|0〉
} |φ 

L
〉

H

H

H

Figure 4.3: Circuit encoding an arbitrary single-qubit quantum state |ψ〉 to the logical state |φ〉L of
the distance-3 phase-flip repetition code. The circuit corresponds to the encoding circuit
of the bit-flip code shown in Figure 4.1a, followed by Hadamard gates on all qubits.

or to

|ψ′〉L =
1√

2(1− L〈ψ̃|Z1Z2|ψ̃〉L)
(1⊗3 − Z1Z2) |ψ̃〉L = e−i π

2 (α |100〉+ β |011〉) (4.8)

with probability

p(−) =
1

2
(1− L〈ψ̃|Z1Z2|ψ̃〉L) = sin2 θ

2
. (4.9)

Therefore, one ends upwith either no error or a bit-flip error on the first qubit. This argument
holds analogously for errors acting on the other two qubits and justifies the restriction to
discrete errors.
Another distinct feature of QIP compared to classical computing is a further error

mechanism that maps

|0〉 → |0〉 and |1〉 → − |1〉 , (4.10)

commonly referred to as phase-flip error. This error, effectively applying the operator Z,
cannot be detected by measuring neighboring qubits’ parity with respect to the Z basis but
still affects the encoded information. Protection against phase-flip errors can be achieved
by using the same encoding as for the bit-flip code but subsequently applying Hadamard
operations to all three qubits. The encoding circuit of this code called distance-3 phase-flip

repetition code is depicted in Figure 4.3. Applying aHadamard operation effectively exchanges
the Z and X basis. The encoded state of this new QEC code then reads

|φ〉L = H1H2H3 |ψ〉L = α |+ + +〉+ β |− − −〉 (4.11)

with the code words |0〉L = |+ + +〉 and |1〉L = |− − −〉. Now, the error syndrome is
determined by measuring X1X2 and X2X3. Just as for the bit-flip code, the error syndrome
indicates on which qubit a phase flip has to be applied to restore the encoded information∗.

4.2 Stabilizer formalism

In the previous section, bit-flip andphase-flip repetition codeswere introduced anddiscussed
in terms of the state vector of their code words. For more complex codes, this description

∗ Only a single phase-flip error is correctable. For a phase-flip error acting on two or three qubits the logical
information is corrupted. For more details, see the analogous discussion on correctable errors for the bit-flip
code.
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can be cumbersome. An alternative way of describing a quantum state is by giving a set of
operators to which the state is a +1 eigenstate [45]. The quantum state remains unchanged
under the application of any operator from this set, i.e., the operators are stabilizing the
state [45]. The concept of describing a quantum state in terms of stabilizing operators is
called stabilizer formalism [97] and not only allows for the description of quantum states but
also for an efficient treatment of a large class of QEC codes, as will be discussed later in this
section.

The quantum state |ψ〉 is stabilized by an operator S(i) in the n-qubit Pauli group∗, defined
in Eqn. 2.20, if

S(i) |ψ〉 = |ψ〉 . (4.12)

The operator S(i) has as many eigenstates with eigenvalue +1 as it has eigenstates with
eigenvalue −1. Therefore, specifying that a state has to be a +1 eigenstate of S(i) reduces
the dimension of the available state space by a factor of 2 [42]. Let us consider a general
two-qubit quantum state

|ψ〉 = α |00〉+ β |10〉+ γ |10〉+ δ |11〉 , (4.13)

which is an element of a four-dimensional Hilbert space spanned by the orthonormal basis
{|00〉 , |10〉 , |01〉 , |11〉}. Demanding that a two-qubit state |ψXX〉 is stabilized by the operator
X1X2 implies that |ψXX〉 is an element of a two-dimensional Hilbert space spanned by
{|10〉+ |01〉 , |00〉+ |11〉} and the state can be written as

|ψXX〉 = α′ (|10〉+ |01〉) + β′ (|00〉+ |11〉) . (4.14)

The states

|0XX〉 =
1√
2

(|10〉+ |01〉) and |1XX〉 =
1√
2

(|00〉+ |11〉) (4.15)

are orthogonal basis states of this Hilbert space. Additionally requiring that Z1Z2 stabilizes
the state reduces the dimension of the Hilbert space to 1 and fixes the state to

|ψXX,ZZ〉 =
1√
2

(|00〉+ |11〉) , (4.16)

∗ Note that not every quantum state can be described in terms of operators in the Pauli group stabilizing it. A
state that can be described in terms of stabilizing operators is called stabilizer state.



58 protecting qubits from noise

being the two-qubit Greenberger-Horne-Zeilinger (GHZ) state. An n-qubit GHZ state is
stabilized by the n operators

S(1) =

n⊗

i=1

Xi

S(2) =Z1Z2

S(3) =Z2Z3

...
S(n−1) =Zn−2Zn−1

S(n) =Zn−1Zn.

(4.17)

In general, the group

S = {S(i) | S(i) |ψ〉 = |ψ〉 ,
[
S(i), S(j)

]
= 0 ∀ (i, j)} ⊂ Pn. (4.18)

is called the stabilizer of the n-qubit state |ψ〉. The elements of S are in the n-qubit Pauli
group Pn and have to mutually commute, as applying two elements S(i) and S(j) of S to the
state |ψ〉 has to leave the state unchanged regardless of the application order:

S(i)S(j) |ψ〉 = S(i) |ψ〉 = |ψ〉 = S(j) |ψ〉 = S(j)S(i) |ψ〉 . (4.19)

The stabilizer can be described in terms of n independent generators, so that each element
in S can be written as a product of generators [45]. The set of generators, called the generator,
is a convenient way of describing a group. Furthermore, it can be verified that a state is
stabilized by a certain stabilizer by verifying that all elements of the generator stabilize the
state.

Removing one element from the generator of the stabilizer increases the dimension of the
available Hilbert space from 1 to 2, corresponding to the Hilbert space dimension of a single
qubit. In the previous section, a similar situation was described: For the distance-3 bit-flip
code an element of the two-dimensional Hilbert space of a single qubit was encoded in a
three-qubit Hilbert spacewith dimension 23. In fact, the stabilizer generated by {Z1Z2, Z2Z3}
defines the distance-3 bit-flip repetition code discussed above. Generally, a set ofm stabilizer
generators on an n-qubit Hilbert space defines an 2n−m-dimensional subspace [45], which
in the context of QEC is referred to as code space. Measuring the expectation values of the
stabilizer generators does not reveal anything about the information encoded in the code
space but allows for the identification and subsequent correction of an error. The set of
outcomes of the stabilizer generator measurements is called error syndrome, as already
introduced above when discussing the bit flip code. Table 4.2 shows the mapping from the
error syndrome to the required correction operation of the distance-3 bit-flip code for states
in the code space affected by at most one single-qubit bit-flip error. The expectation values
of the stabilizer generators correspond to the parity measurements shown for the bit-flip
code in Figure 4.1.
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Quantum state Z1Z2 Z2Z3
Erroneous Applied Quantum state

qubit correction after correction
α |000〉+ β |111〉 +1 +1 - - α |000〉+ β |111〉
α |100〉+ β |011〉 −1 +1 1 X1 α |000〉+ β |111〉
α |010〉+ β |101〉 −1 −1 2 X2 α |000〉+ β |111〉
α |001〉+ β |110〉 +1 −1 3 X3 α |000〉+ β |111〉

Table 4.2: Error correction look-up table for the bit-flip code. The first column shows a state in the
code space of the distance-3 bit-flip code affected by either no error or one single-qubit
bit-flip error. In the second column, the expectation values of the stabilizer generators are
shown. In the third column, the erroneous qubit determined from the stabilizer generator
expectation values can be found. After applying the correction in the fourth column, the
error-free quantum state in the fifth column is restored.

As one can see fromEqn. 4.18, the application of an operator in S to a state in the code space
trivially retains the state in the code space, and the resulting state has the same stabilizer
as the initial state. Apart from the elements in the stabilizer, there are also other operators
that leave the stabilizer unchanged or, in other words, commute with every element of the
stabilizer. Sticking to the bit-flip repetition code, one can see that the operatorsX1X2X3 and
Z1 act as follows on the code space:

X1X2X3(|000〉+ |111〉) = |000〉+ |111〉
X1X2X3(|000〉 − |111〉) = −(|000〉 − |111〉)

X1X2X3 |000〉 = |111〉
X1X2X3 |111〉 = |000〉

(4.20)

and

Z1 |000〉 = |000〉
Z1 |111〉 = − |111〉

Z1(|000〉+ |111〉) = |000〉 − |111〉
Z1(|000〉 − |111〉) = |000〉+ |111〉 .

(4.21)

The operators XL = X1X2X3 and ZL = Z1 act on the logical state as the corresponding
single-qubit Pauli operators X and Z would act on the quantum state of a physical qubit.
These operators, referred to as logical operators, are not unique as multiplication with an
element of the stabilizer, e.g. Z ′L = ZLZ2Z3 = Z1Z2Z3, does not change the effect on the
encoded logical information. The operators ZL and Z ′L are termed stabilizer equivalent. The
lowest number of qubits a logical operator acts on determines the distance of the QEC code
and, therefore, the number of correctable errors, according to Eqn. 4.1. For the distance-3 bit-
flip code, a single Z error corrupts a logical qubit in an uncorrectable and even undetectable
way. Conversely, three X errors are necessary to change the logical state in an undetectable
fashion, two errors can be detected but lead to a logical error after correction, and any single
error can be corrected faithfully.
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As a consequence of the fact that all states in the code space of a QEC code are +1

eigenstates of the stabilizer, a set of data qubits can be encoded in a QEC code by measuring
all stabilizer generators of the code using additional auxiliary qubits. Subsequently, the
correction corresponding to the measured error syndrome is applied to prepare the data
qubits in a valid code state. This procedure prepares a logical state that depends on the
initial state of the data qubits. A deterministic logical state can be prepared by additionally
measuring a logical operator to project the logical qubit to an eigenstate of the operator.
If the logical qubit was not projected to the desired eigenstate, a logical operator can be
applied to rotate the logical qubit to the desired orthogonal eigenstate.

4.3 Steane code

The bit-flip and phase-flip repetition codes only possess the ability to either correct for
X-type or Z-type errors, respectively. In general, a noisy quantum information processor
will exhibit both types of errors and, therefore, a procedure facilitating the correction of X-
and Z-type errors will be required. A QEC code allowing for the correction of an arbitrary
single-qubit error∗ is the code proposed by Steane in 1996 [36]. The Steane code is, to this day,
one of the most established and well-known QEC codes, which is reflected in the fact that it
has been experimentally investigated on different quantum computing platforms in various
research groups [37, 38, 40].
The Steane code encodes k = 1 logical qubit in n = 7 physical qubits and has a code

distance of d = 3. Therefore, the Steane code is a [[7, 1, 3]]† QEC code and enables to correct
any error acting on a single qubit. The stabilizer generators and logical operators

S
(1)
X = X1X3X5X7 S

(1)
Z = Z1Z3Z5Z7

S
(2)
X = X4X5X6X7 S

(2)
Z = Z4Z5Z6Z7

S
(3)
X = X2X3X6X7 S

(3)
Z = Z2Z3Z6Z7

XL = X1X2X3X4X5X6X7 ZL = Z1Z2Z3Z4Z5Z6Z7

(4.22)

are shown in Figure 4.4. The black dots represent physical qubits. The colored tiles, also called
plaquettes, indicate the structure of the stabilizer generators: An X- and Z-type stabilizer
is defined on each plaquette. The stabilizer generators are acting on the qubits which are
located on the vertices of the respective plaquette‡. The logical operators act on all seven
qubits of the Steane code but are stabilizer equivalent to weight-3 operators. Therefore, a
weight-3 operator, e.g. X2X4X6, can transform a valid code word of the Steane code into
another one.
The state vector representation of the code word |0〉L (|1〉L) of the Steane code can be

found by projecting to the +1 eigenspace of the stabilizer generators and the +1 (−1)
eigenspace of the logical operator ZL. In Eqn. 2.62, it was shown that the final state |ψ′+〉

∗ A Y -type error is a combination ofX and Z and will also be correctable in this case.
† Double square brackets are used for QEC codes to distinguish them from classical EC codes.
‡ Note that this two-dimensional structure merely illustrates the definition of the code operators and does not

necessarily reflect the underlying physical architecture in an experimental implementation. All results presented
in this thesis are obtained from a trapped-ion processor exhibiting a one-dimensional qubit register formed by
an ion chain (see Figure 3.15). A possible qubit assignment is to number the ions consecutively starting with 1 at
the left-most ion.
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7

XL = X1X2X3X4X5X6X7

ZL = Z1Z2Z3Z4Z5Z6Z7

Sx
(1) = X1X3X5X7

Sz
(1) = Z1Z3Z5Z7

Sx
(2) = X4X5X6X7

Sz
(2) = Z4Z5Z6Z7

Sx
(3) = X2X3X6X7

Sz
(3) = Z2Z3Z6Z7

}

Figure 4.4: Structure of the Steane code with stabilizer generators S(1)
X , S(2)

X , S(3)
X , S(1)

Z , S(2)
Z and S(3)

Z

and logical operators XL and ZL. Colored tiles indicate on which qubits the stabilizer
generators are acting.

Error syndrome Qubit to be corrected
(+1,+1,+1) -
(+1,+1,−1) 2

(+1,−1,+1) 4

(+1,−1,−1) 6

(−1,+1,+1) 1

(−1,+1,−1) 3

(−1,−1,+1) 5

(−1,−1,−1) 7

Table 4.3: Error correction look-up table for the Steane Code. The first column shows the error
syndrome given by the expectation values of the three stabilizer generators of either X- or
Z-type and the second column shows the qubit to which a Z or X correction is supposed
to be applied.
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after a measurement of an operator U on a system in the state |ψ〉with the outcome +1 is up
to normalization given by

|ψ′+〉 ≈ (1⊗7 + U) |ψ〉 . (4.23)

The set of measurement operators to determine |0〉L and |1〉L are

U ∈ {S(1)
X , S

(2)
X , S

(3)
X , S

(1)
Z , S

(2)
Z , S

(3)
Z , ZL}

and

U ∈ {S(1)
X , S

(2)
X , S

(3)
X , S

(1)
Z , S

(2)
Z , S

(3)
Z ,−ZL},

(4.24)

respectively. The input state |ψ〉 has to be chosen such that the probability to measure +1 is
non-zero for all U . Particularly convenient choices of |ψ〉 to determine |0〉L and |1〉L are the
states |0000000〉 and |1111111〉, respectively. Those states already fulfill the requirement of
being a +1 eigenstate to the operators S(1)

Z , S
(2)
Z , S

(3)
Z , ZL and S(1)

Z , S
(2)
Z , S

(3)
Z ,−ZL. Therefore,

the projection can be omitted for the Z-type operators. Hence, the logical basis states are
given by

|0〉L =
1√
8

[(
1⊗7 + S

(1)
X

)(
1⊗7 + S

(2)
X

)(
1⊗7 + S

(3)
X

)]
|0000000〉 =

1√
8

( |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉+

|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉)

(4.25)

and

|1〉L =
1√
8

[(
1⊗7 + S

(1)
X

)(
1⊗7 + S

(2)
X

)(
1⊗7 + S

(3)
X

)]
|1111111〉 =

1√
8

( |1111111〉+ |0101010〉+ |1001100〉+ |0011001〉+

|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉).

(4.26)

Errors affecting physical qubits after preparation of a state in the code space of the Steane
code can be detected by measuring the expectation values of the stabilizer generators, where
X-type errors affect the Z-type generators and vice versa. If there is anX (Z) error on qubit i,
the parity of all Z-type (X-type) generators involving qubit i are flipped. The error location
can be found by means of a look-up table shown in Table 4.3. Since the code is symmetric
with respect to the X and Z basis, the error syndrome is reduced to only contain the three
expectation values of generators of the same type. The syndrome found from the generators
{S(1)

X , S
(2)
X , S

(3)
X } ({S

(1)
Z , S

(2)
Z , S

(3)
Z }) is used to infer the qubit requiring a Z (X) correction and

vice versa.
Asmentioned above, the expectation values of stabilizer generators are−1 for all generators

involving an erroneous qubit. Therefore, weight-2 errors exist that yield the same error
syndrome as single-qubit errors, e.g., X1X4 and X5. In case a weight-2 error is present
on the data qubits, applying the corresponding correction from Table 4.3 introduces an
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Figure 4.5: Propagation of Pauli-X and Pauli-Z errors through a CNOT gate.

additional error. The combined error operator, e.g., X1X4X5, is stabilizer equivalent to a
logical operator. Consequently, the encoded logical qubit is unintendedly manipulated and
the logical information is corrupted.

4.4 Fault-tolerant circuit design

So far in this chapter, the principles of QEC were introduced and the repetition and Steane
codes were discussed. It was shown that the distance-3 bit-flip code’s error rate of a logical
qubit can be lower than that of a bare physical qubit, given that the physical qubit error rate
is low enough. With the Steane code, a QEC code was discussed that allows for correcting a
single arbitrary error being present on any of the data qubits. As yet, it has been implicitly
assumed that errors only occur while the logical qubit is idling. A more realistic scenario
also includes errors during encoding and syndrome extraction procedures.
Encoding and syndrome extraction circuits inevitably contain entangling gates. For one

thing, faulty entangling gates can introduce uncorrectable weight-2 errors directly on the
two qubits they are acting on. Then again, they can also spread errors already present on
the register before the entangling gate is applied. Figure 4.5 shows the propagation of X
and Z errors through a CNOT gate. In the case of an X error on the control qubit, the
computational basis states |0〉 and |1〉 are exchanged at the control qubit. Therefore, the X
gate is applied to the target qubit when it actually should not have been applied, which
introduces an X error also on the target qubit. In contrast, an X error on the target qubit
does not propagate to the control, as the CNOT gate commutes with the X error. The same
is true for a Z error on the control qubit. While those three cases are rather straightforward,
a Z error on the target qubit is less intuitive. In this case, also the control qubit acquires a
Z error [108]. Although seeming unintuitive from our daily interaction with the classical
world, one can see, by multiplying the unitary matrices of the Z and CNOT gates, that a Z
error acting on the target qubit before applying a CNOT gate is equivalent to Z errors on
both qubits after the CNOT gate:

CNOT Z2 = Z1Z2 CNOT



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




=




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



.

(4.27)



64 protecting qubits from noise

Error propagation can increase the weight of an error. Therefore, an error that would be
correctable for a particular QEC code before propagation can become uncorrectable and
can lead to corruption of the encoded logical information. Let us assume that a circuit
component, like a gate operation, an idling location or a measurement, is erroneous with
probability p. In this case, implementing a circuit using bare physical qubits would yield
a faulty result with a probability O(p). In principle, using a distance-3 QEC code would
suppress these errors so that the error probability scales as O(p2). However, entangling gate
errors and error propagation lead to the breakdown of this suppression mechanism, as
single errors can propagate to higher weight, uncorrectable errors, as shown in Figure 4.5.
Therefore, some logical errors occur with probability O(p), breaking the promise of QEC.

For a QEC code with a distance d that can correct t = bd−1
2 c errors, a quantum circuit

is called fault-tolerant (FT) if logical errors are only caused by errors that occur with a
probability of order greater than O(pk). In contrast, a circuit is called non-FT if errors
occurring with a probability of order smaller than or equal toO(pt) lead to logical errors, e.g.,
by error propagation through entangling gates. This section discusses how entangling gate
and propagation errors can lead to logical errors. Furthermore, techniques are presented
that either herald the potential spreading of errors or avoid circuit constructions that are
susceptible to error propagation altogether. Those techniques are summarized by the term
FT circuit design.

For most of this thesis, fault tolerance is discussed for distance-3 QEC codes, where logical
errors are admissible with a probability of order larger than O(p2). This means that a single
faulty circuit component cannot cause a logical error. However, FT circuit design is also
essential for higher-distance QEC codes to maintain their error suppression capabilities and
their promised advantage over lower-distance codes.

4.4.1 Logical state preparation

The first building block of error-corrected quantum computing is preparing a logical qubit
with determined logical information. Section 4.2 discussed the preparation of a logical state
by measuring the expectation values of the stabilizer generators. The trapped-ion device
considered in this thesis allows us to efficiently implement entangling gates between any
pair in the qubit register. This enables implementing the logical qubit preparation more
resource-efficient compared to the preparation procedure discussed in Section 4.2.

Figure 4.6a shows the circuit for the preparation of |0〉L of the Steane code [109] affected by
an exemplary single-qubit error that propagates to an uncorrectable error. The Z-type error
syndrome obtained for this error configuration is (S

(1)
Z , S

(2)
Z , S

(3)
Z ) = (+1,+1,−1). After

naïvely applying the corresponding correction from Table 4.3 the error operator X1X2X3 is
present on the data qubits. This operator is stabilizer equivalent to the logical X operator,
and therefore, a logical error is induced.

In recent years, a concept has been introduced that uses extra auxiliary qubits coupled to
the data qubits to herald uncorrectable errors that are cause by a single erroneous circuit
component [110–113]. According to their purpose of signaling uncorrectable errors, the
extra qubits are called flag qubits. After preparing the encoded state and coupling the data
register to the flag qubits, the flag qubits are measured. A measurement outcome of −1

reveals potential corruption, and the prepared encoded state is discarded. In this case, the
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Figure 4.6: Encoding circuit for the Steane code. a Non-FT circuit encoding |0〉L [109]. b Verification
circuit rendering the encoding FT [110]. Single error events leading to logical errors
propagate to the flag qubit (bottom wire) and can be detected.

encoding block might just be repeated. If the flag-measurement outcome is +1, the desired
encoded state is prepared up to correctable errors.
Figure 4.6b shows the verification of the encoding of a Steane code logical qubit using

a flag qubit [110]. The additional circuitry shown in the figure is appended to the non-FT
encoding circuit and renders the combined circuit FT. As all correctable errors proliferating
to uncorrectable errors, the error shown in Figure 4.6a also propagates to the flag qubit and
raises the flag, manifesting itself in a measurement outcome of −1.

4.4.2 Error syndrome extraction

In the procedure for syndrome extraction, namely the measurement of stabilizer generator
expectation values, a similar problem arises, as has been discussed above for encoding a
logical qubit. Figure 4.7a shows the non-FT circuit for measuring a weight-4X-type operator,
where the bottom qubit is the auxiliary qubit. An X error on the auxiliary qubit after the
second CNOT gate will propagate to a weight-2 error on the data qubits, leading to an
uncorrectable error∗. The same problem can appear if the second or third CNOT gate is
faulty.
A naïve approach to address this problem would be to use multiple auxiliary qubits so

that only one entangling gate acts on each qubit, as depicted in Figure 4.7b. This solves
the problem of error propagation, as a single error cannot create an uncorrectable error.
However, here another problem arises: This circuit does not extract the parity information,
but instead it projects the data qubits in the respective basis they have been measured in.
Consequently, a carefully structured entangled state for QEC present on the data qubit
register collapses, rendering further cycles of QEC impossible.
In the following, two different procedures are discussed that circumvent the problems

arising when faulty gates and qubits are considered for error syndrome extraction. The

∗ Although errors before the first, after the first, or after the third CNOT gate will also propagate to higher-weight
errors, they do not have to be taken into account here as they do not lead to uncorrectable errors. AnX error
acting on the auxiliary qubit right before the first CNOT gate propagates to all four data qubits. However, the
error configuration consisting of X errors on all four data qubits is a stabilizer generator and, therefore, the
encoded information is not affected. AnX error on the auxiliary qubit after the first CNOT gate propagates to a
weight-3 error on the data qubits which is stabilizer equivalent to a weight-1 error and, by this, correctable. A
gate after the third CNOT gate propagates to a correctable weight-1 error on the data qubits.
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Figure 4.7: aNon-FT measurement of a weight-4X-type stabilizer generator using one bare auxiliary
qubit. The top four qubits are the qubits the stabilizer generator acts on. A single error
acting on the auxiliary qubit between the second and third CNOT gate can proliferate to
become a weight-2 error on the data qubits. b Coupling of the data qubits to four bare
physical qubits. Although in this circuit single errors can at most propagate to become
weight-1 errors on the data qubits, the circuit is unsuitable for parity measurements
because it reveals too much information about the data qubits’ quantum state.
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Figure 4.8: Parity measurement using a four-qubit Shor state [42]. a Non-FT circuit preparing the
four-qubit state |Shor〉. b Measurement of a weight-4 X operator. The top four qubits are
the qubits the stabilizer generator acts on. A single fault event acting on the third auxiliary
qubit during the preparation of the Shor state can propagate to a weight-2 error on the
data qubits.

techniques obey the rules of fault tolerance, ensuring a scaling of the error rate with O(p2)

while the encoded information is kept intact.

4.4.2.1 Steane syndrome extraction

A first approach to tackle problematic error propagation during syndrome extraction is
to further develop the idea of using multiple auxiliary qubits, ensuring that only a single
entangling gate is acting on each qubit. To avoid revealing too much information, one can
tailor the initial state of the auxiliary qubit register to be an entangled state [42]. A possible
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auxiliary register input state proposed by Shor [35] is a superposition of all computational
basis states with an even number of excitations. For four qubits, this state reads

|Shor〉 =
1√
8

(|0000〉+ |0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉+ |1111〉)
(4.28)

and can be prepared by applying Hadamard operations to all qubits in a four-qubit GHZ
state, as shown in Figure 4.8a. This auxiliary register state can be used to measure a weight-4
X-type stabilizer generator as shown in Figure 4.8b. In the error-free case, the parity of the
data qubits is +1, and the measurement procedure coupling the data qubits to the auxiliary
qubits will induce an even number of bit flips on the auxiliary qubits. This maps any basis
state in |Shor〉 to another basis state in |Shor〉. Therefore, the state |Shor〉 remains unchanged
if there is no error present on the data qubits. Subsequent measurement of the auxiliary
register will result in a projection to any of the basis states in |Shor〉 but will not project
the data qubit quantum state. The outcome of the stabilizer generator measurement can be
determined by multiplying the individual outcomes of the auxiliary register measurements.
If an error is present on the measured data qubits, an odd number of auxiliary qubits
experiences a bit flip. Therefore, every basis state in |Shor〉 is mapped to a basis state with
an odd number of excitations. The product of auxiliary qubit measurement outcomes is −1

in this case, and the error is detected.
The circuit shown in Figure 4.8b ensures that single errors occurring during the coupling

of the data register to the auxiliary register do not lead to logical errors. However, there is
still a flaw: If the second or third CNOT gate of the Shor state preparation circuit is erroneous
or a single-qubit error occurs between the CNOT gates, a weight-2 error on the auxiliary
register can be induced. One does not have to worry aboutX errors present on the Shor state
after preparation as they do not propagate to the data qubits. In the worst case, X errors
present on the qubit register corrupt the outcome of the stabilizer generator measurement.
This leads to a corruption of the error syndrome and the implementation of the wrong
correction operation. Applying the wrong correction introduces a weight-1 error on the
data register, but cannot directly lead to an uncorrectable error. On the contrary, Z errors
present on the Shor state do propagate to the data register, meaning that one has to ensure
the absence of two Z errors on the Shor state [42]. An error causing dangerous propagation
is shown exemplarily in Figure 4.8a. Dangerous error propagation can be avoided by using
an additional flag-type auxiliary qubit that measures the parity of the first and last qubit
of the GHZ state before applying the Hadamard operations that rotate the GHZ state into
|Shor〉 [42]. The circuit preparing this verified Shor state is shown in Figure 4.9a. There is no
single error introducing two Z errors on the Shor state that does not change the parity of
the first and last qubit of the GHZ state to −1. Therefore, a measurement outcome of +1

on the flag qubit verifies that no dangerous error propagation occurred. In other words,
errors leading to dangerous error propagation will also propagate to the flag qubit. Shor
states showing a flag-measurement outcome of −1 are discarded, and the state preparation
is repeated. After successful preparation of the verified Shor state, the auxiliary and data
registers are coupled as shown in Figure 4.9b to measure the expectation value of the
stabilizer generator.

An alternative approach to verified Shor states following a similar idea has been proposed
by Steane. Instead of measuring the expectation values of the stabilizer generators one by
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Figure 4.9: Fault-tolerant parity measurement using a four-qubit Shor state [42]. a Fault-tolerant
circuit preparing the four-qubit state |Shor〉. b Measurement of a weight-4 X operator.
The top four qubits are the qubits the stabilizer generator acts on. A single fault event
acting on the third auxiliary qubit in a can propagate to a weight-2 error on the data
qubits. However, an additional flag qubit coupled to the first and fourth auxiliary qubits
ensures fault tolerance as it heralds errors propagating to uncorrectable errors on the data
register [42].

one, he suggested determining all stabilizer generator expectation values of a particular
QEC code at once [114]. The procedure to extract the error syndrome is the following:

1. The stabilizer generators {S(i)} of an n-qubit QEC code containingX and Z operators
are interpreted as 2n-qubit operators only containing Z operators. A Z operator is
placed at position i of the 2n-qubit operator for every X operator at position i of the
stabilizer generator. Next a Z operator is placed at position i+ n for every Z operator
at position i of the stabilizer generator. For example, the five-qubit stabilizer generator

S(1) = X1X2Z3Z5 = X ⊗X ⊗ Z ⊗ 1⊗ Z (4.29)

is interpreted as

S′(1) = Z1Z2Z8Z10 = Z ⊗ Z ⊗ 1⊗ 1⊗ 1⊗ 1⊗ 1⊗ Z ⊗ 1⊗ Z. (4.30)

2. A 2n-qubit auxiliary register is prepared in an equal superposition state |ψ〉 of all
2n-qubit computational basis states that are a simultaneous +1 eigenstate of the
operators S′(i):

|ψ〉 ≈
∑

j

|j〉 with S′(i) |j〉 = |j〉 ∀ i. (4.31)

Here, the normalization of the state is neglected.

3. Next, the data and auxiliary registers are coupled so that errors from the data register
are copied to the auxiliary qubits. To do so, the circuit shown in Figure 4.9b, expanded
to act on n data and n auxiliary qubits, is applied between the data qubits and the first n
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Figure 4.10: Steane syndrome extraction for the Steane code. The blocks labeled ’FT enc. of |0〉L’
contain the circuit from Figure 4.6. The Z- and X-type error syndromes are determined
in the left and right parts of the circuit, respectively. A single execution of this circuit is
enough to determine the entire error syndrome fault-tolerantly.

auxiliary qubits. In this step,X errors are copied to the auxiliary qubits. Subsequently,
the same circuit, apart from replacing the CNOT gates with controlled-Z gates, is
applied between the data qubits and the last n auxiliary qubits to copy Z errors to
the auxiliary register. The following measurement projects the auxiliary register to
a randomly selected computational basis state without revealing the information
encoded in the data qubits.

4. The error syndrome can be extracted from the measured bitstring k. The expectation
value of the stabilizer generator S(i) is +1 if S′(1) |k〉 = |k〉 and −1 if S′(1) |k〉 = − |k〉.

In the original proposal [114], Steane discussed this syndrome extraction procedure
for a QEC code with stabilizer generators containing X and Z operators. Nowadays, the
procedure is mostly applied to QEC codes with stabilizer generators either containing X
or Z operators, called Calderbank-Shor-Steane (CSS) codes [36, 115]. For CSS codes, this
syndrome extraction procedure is referred to as Steane QEC

∗ and greatly simplifies compared
to the general case described above [116–118]: Then the X-type and Z-type syndrome can
be determined sequentially and only n auxiliary qubits are required simultaneously. To
determine the expectation values of the Z-type stabilizer generators {S(i)

Z } the auxiliary
qubit register is prepared in a superposition of all n-qubit basis states that fulfill S′(i)Z |j〉 = |j〉
for all stabilizers S′(i)Z = S

(i)
Z . Then, X errors are copied from the data qubits to the auxiliary

register using the coupling described in step three above. The auxiliary register state for
extracting the expectation values of the X-type stabilizer generators {S(i)

X } is given by a
superposition of all states fulfilling S′(i)X |j〉 = |j〉, where S′(i)X is an operator acting on the

∗ Do not confuse Steane QEC (also termed Steane EC or Steane syndrome extraction throughout this thesis) with
the Steane code. The former is a method for error syndrome extraction while the latter is a QEC code. Steane
QEC can be applied to various QEC codes.
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Figure 4.11: Circuit identities used to simplify QEC circuits. a Two consecutive applications of
Hadamard operations implement the identity. b A measurement of Z using an auxiliary
qubit can be implemented by applying a CNOT gate, where the qubit to be measured
acts as the control qubit, and the auxiliary qubit is the target of the CNOT gate.

same qubits as S(i)
X but every X operator is replaced by a Z operator. Subsequently, Z

errors are copied to the auxiliary registers. The error syndrome for the Z- and X-type
stabilizer generators is calculated as described in step four of the aforementioned procedure
description using the n-bit bitstrings kz and kx. Those bitstrings are obtained from the
auxiliary register measurement after copying the X and Z errors to the auxiliary qubits.

For the Steane code, which falls into the class of CSS codes, the auxiliary register state for
Steane EC is the superposition of the 16 computational basis states contained in the code
words |0〉L and |1〉L (see Eqns. 4.25 and 4.26). This superposition state |+〉L = 1√

2
(|0〉L + |1〉L)

can be generated by applying bitwiseHadamard operations to all physical qubits constituting
a logical auxiliary qubit prepared in |0〉L. Subsequently, the X-type or Z-type errors are
copied to the auxiliary register. The circuits for extracting the Z-type or X-type error
syndrome are shown in Figure 4.10 on the left and right, respectively. Simplified circuits
using the circuit identities shown in Figure 4.11 can be found in Appendix A. The extracted
error syndrome can be decoded using the look-up table shown in Table 4.3.
In this scheme, for both types of stabilizer generators only a single CNOT acts on each

auxiliary qubit, as well as each data qubit. This prevents the propagation of correctable to
uncorrectable error configurations. Nevertheless, the auxiliary input state has to be verified
as for Shor states. This ensures that the state preparation circuit does not introduce any
uncorrectable errors. For |0〉L of the Steane code, an FT state preparation scheme has already
been presented in Section 4.4.1. One can also use this circuit, respecting FT design rules,
for the preparation of |+〉L. The bitwise application of Hadamard operations necessary to
transform |0〉L to |+〉L preserves the fault tolerance properties of the preparation circuit, as
will be discussed in Chapter 5.

Steane EC requires 16 qubits (including verification flag qubits) to extract the error
syndrome of the Steane code. Steane QEC minimizes the coupling between data qubits
and auxiliary qubits [114]. Only 14 CNOT gates act on the data qubits, compared to 24 for
syndrome extraction with bare physical qubits or verified GHZ states.

Steane EC can also be applied to the distance-3 bit-flip and phase-flip codes discussed in
Section 4.1. The stabilizer generators of the bit-flip code are {Z1Z2, Z2Z3}. Computational
basis states satisfying the criteria of having even parity on the qubit pairs (1, 2) and (2, 3)

are |000〉 and |111〉, so that the auxiliary qubit state required for Steane-type EC is given by

|ψ〉a =
1√
2

(|000〉+ |111〉). (4.32)

Figure 4.12a depicts a complete cycle of Steane EC of the distance-3 bit-flip code. A singleX
error anywhere in the Steane EC procedure cannot propagate to become a weight-2 error
on the data qubits. Still, single X errors can corrupt the error syndrome extracted from
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Figure 4.12: Steane syndrome extraction for the distance-3 a bit- and b phase-flip code. In both cases,
the state |ψ〉a = 1√

2
(|000〉+ |111〉) is prepared on the auxiliary register before mapping

errors from the data to the auxiliary register. The protocol is FT without auxiliary state
verification for distance-3 repetition codes.
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Figure 4.13: Fault-tolerant measurement of a weight-4 stabilizer generator using a single additional
flag qubit [111]. Errors leading to weight-2 error configurations on the data qubits, like
the single-qubit error shown, are captured by the flag qubit.

a projective measurement of the auxiliary register. However, this can at most introduce a
singleX error on the data qubits after applying the correction determined using the look-up
table in Table 4.2. Hence, Steane EC is FT for the distance-3 bit-flip code without verification
of the auxiliary state.

For the distance-3 phase-flip code, the stabilizer generators {X1X2, X2X3} again require
the input state to exhibit even parity on qubit pairs (1, 2) and (2, 3) in the computational basis.
Therefore, the state |ψ〉a given in Eqn. 4.32 is also suitable for Steane EC on the phase-flip
code. The look-up table used to infer the necessary correction can be constructed from
columns two to four of the bit-flip code look-up table by replacing Z with X and vice versa.
The circuit for one round of syndrome extraction in the distance-3 phase-flip code is shown
in Figure 4.12b.

4.4.2.2 Flag-based syndrome extraction

Instead of pursuing the concept of having only one entangling gate acting on each auxiliary
qubit for syndrome extraction, one can also take up the paradigm of flag qubits to address
dangerous error propagation. Similar to the verification of logical state preparation discussed
in Section 4.4.1, extra qubits coupled to the auxiliary qubits can be used to herald correctable
errors that propagate to become uncorrectable. Figure 4.13 shows a circuit for the parity
measurement of a weight-4 operator using a single auxiliary and a single flag qubit [111].
Errors that propagate to weight-2 errors, like the one marked in the circuit, are also
propagating to the flag qubit and are detected as the flag qubit is measured. Depending
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Figure 4.14: Flag syndrome extraction for the logical state |ψ〉L encoded in the Steane code using six
auxiliary qubits [119, 120]. The auxiliary qubits used for syndrome extraction also act as
flag qubits for each other. Entangling gate operations are depicted using the color of the
plaquette for which they measure the stabilizer generator expectation value. The CNOT
gates shown in black establish the coupling necessary for the auxiliary qubits to act as
flag qubits for each other.

on the context in which the circuit from Figure 4.13 is embedded, there are two possible
ways to proceed after the measurement outcome of the flag qubit is −1: Either the run can
be discarded or the two bits of information gained from the measurement in conjunction
with additional measurements can be used to correct the present error on the data register.
Using this scheme to measure all six stabilizer generators of the Steane code requires twelve
qubits. Note that only two auxiliary qubits are required simultaneously if the expectation
values of the stabilizer generators are measured sequentially.

An approach requiring fewer auxiliary qubits throughout the syndrome readout compared
to the scheme shown in Figure 4.13 is proposed in Refs. [119, 120]. While still following the
concept of flag fault tolerance, the auxiliary qubits act as flag qubits for each other. This
allows for the measurement of all six stabilizer generators of the Steane code using only a
total of six auxiliary qubits. The corresponding circuit, consisting of two blocks measuring
three stabilizer generators each, is shown in Figure 4.14. For each block, entangling gates
are colored corresponding to the plaquette for which they measure the stabilizer generator
expectation value. The measurement outcome of this circuit is referred to as flag syndrome

to highlight that the auxiliary qubits also act as flag qubits here. Similar to the circuit in
Figure 4.13, error locations that allow for error propagation to two data qubits are to be
taken care of. The CNOT gates drawn in black ensure that errors also propagate within
the auxiliary register, so that auxiliary qubits can act as flag qubits for each other. One of
the dangerous propagation paths is illustrated in the circuit diagram. The single-qubit X
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error on the fifth auxiliary qubit causes the two-qubit error X4X6 to be present on the data
register. The non-trivial∗ flag syndrome (S

(1)
Z , S

(2)
Z , S

(3)
Z ) = (−1,+1,+1)† is obtained.

However, applying the syndrome extraction circuit shown in Figure 4.14 does not allow
one to distinguish all possible errors. In Figure 4.15 two different single-qubit errors are
shown that lead to the same flag syndrome (S

(1)
Z , S

(2)
Z , S

(3)
Z ) = (−1,−1,+1). The errors

shown in blue and green lead to the errors X1X3X7 = S
(1)
X X5 and X7 on the data register,

respectively. To render all errors distinguishable, another round of syndrome extraction
has to be implemented in case the measured flag syndrome is not trivial. This second
readout can be implemented using non-FT circuits shown in Figure 4.7 as error processes
introducing errors in the flag circuit from Figure 4.14 and in the second syndrome readout
have probability O(p2). A logical error with this probability scaling is acceptable as the
Steane code can only correct a single error, and therefore, logical errors with probability
O(p2) can not be avoided in any case. A second round of syndrome extraction yields the
error syndromes (S

(1)
Z , S

(2)
Z , S

(3)
Z ) = (−1,−1,+1) and (S

(1)
Z , S

(2)
Z , S

(3)
Z ) = (−1,−1,−1) for the

errors shown in blue and green, respectively. Applying a correction determined using the
standard look-up table for the Steane code, shown in Table 4.3, successfully corrects both
errors.
For the weight-2 error shown in Figure 4.14 the second round of syndrome extraction

yields (S
(1)
Z , S

(2)
Z , S

(3)
Z ) = (+1,+1,−1). Instead of applying the correction X2, determined

∗ A syndrome is referred to as trivial if all measured expectation values are equal to +1. Conversely, a syndrome
containing at least one expectation value of −1 is referred to as non-trivial.

† The part of the flag syndrome given by the expectation values of theX-type stabilizer generators is trivial for all
cases discussed in this section and is omitted.
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(S
(1)
Z , S

(2)
Z , S

(3)
Z ) Correction

(+1,−1,+1) X3X7

(+1,+1,−1) X4X6

(S
(1)
X , S

(2)
X , S

(3)
X ) Correction

(+1,−1,+1) Z3Z7

(+1,+1,−1) Z4Z6

Table 4.4: Error correction look-up table for flag-based syndrome extraction of the Steane Code. The
first column shows the error syndrome of a second round of syndrome extraction after the
flag-based syndrome extraction yielded a non-trivial syndrome. The second column shows
the correction that is applied to the data register.

using Table 4.3, the correction X4X6 is applied to correct the error on the data register.
A look-up table for error configurations propagating to two-qubit errors can be found in
Table 4.4. For all other error syndromes and in cases where the flag and error syndromes
match, the standard look-up table for the Steane code is applied.
This readout scheme only requires six physical auxiliary qubits. The number of qubits

can even be reduced to three if the two blocks in Figure 4.14 are implemented sequentially
and the auxiliary qubits are reused∗. This means that the qubit number overhead is smaller
compared to the Steane EC protocol discussed in Section 4.4.2.1. However, fewer entangling
gates are required for Steane EC, allowing for lower logical error rates, if the entangling gate
error rate is the dominant noise source. A more detailed discussion on the comparison of
flag-based syndrome extraction and Steane syndrome extraction can be found in the next
section and in Appendix A.

∗ This requires a procedure of reinitializing auxiliary qubits after a measurement.
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Encoding information redundantly using QEC codes allows one to overcome the
inherent sensitivity to noise in quantum computers to ultimately achieve large-scale
quantum computation. The Steane QEC method involves preparing an auxiliary
logical qubit of the sameQEC code used for the data register. The data and auxiliary
registers are then coupled with a logical CNOT gate, enabling a measurement
of the auxiliary register to reveal the error syndrome. This study presents the
implementation of multiple rounds of FT Steane QEC on a trapped-ion quantum
computer. Various QEC codes are employed, and the results are compared to a
previous experimental approach utilizing flag qubits. Our experimental findings
show improved logical fidelities for Steane QEC, and accompanying numerical
simulations indicate an even larger performance advantage for quantum processors
limited by entangling gate errors. This establishes experimental Steane QEC as a
competitive paradigm for FT quantum computing.

4.5.1 Introduction

Quantum computing has the potential to outperform classical machines by exploiting
superposition and entanglement. Quantum information is, due to unavoidable residual
coupling of quantum systems to the environment, intrinsically prone to errors potentially
jeopardising the computational advantages promised by quantum computing. Therefore, to
achieve the goal of enhanced computational capabilities, it is crucial to safeguard quantum
information, e.g. by encoding it into stabilizer codes that protect against environmental and
operational noise. By repeatedly measuring the stabilizer generators, we can detect noise
without disrupting the logical computational state. The error and its location within the

∗ The author of the present thesis carried out the experiments, analyzed the data, and wrote the manuscript. Here,
the accepted version of the manuscript is printed in a slightly amended form for consistency throughout the
thesis. Changes include adapting hyphenation and abbreviations.

https://doi.org/10.1103/PRXQuantum.5.030326
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register are mapped onto the results of the stabilizer measurements, also referred to as error
syndrome. We must prevent the spread of errors by following the principles of FT circuit
design, as defined in Section 4.5.2, to conduct quantum computation on the encoded level
while maintaining the expected scaling of logical error rates with physical error rates. This
requirement implies experimental challenges in FT logical state preparation, FT logical gates,
and FT EC.
Recent progress in achieving error-corrected universal quantum computation has been

made through the development of FT QEC components in leading hardware architectures.
In superconducting systems, significant strides have been made towards operating Kitaev’s
surface code, resulting in an operation fidelity that exceeds the break-even point [121–124].
Additionally, FT magic state preparation has been demonstrated in a superconducting
experiment with fidelity beyond break-even [125]. Ion-trap experiments have demonstrated
FT stabilizer readout [126], FT control of single logical qubits [127], and FT repetitive QEC
cycles [38], with subsequent efforts aimed at implementing universal FT logical gate sets [39,
128]. Meanwhile, practical experimental benefits of fault tolerance have been demonstrated
in error-detecting codes, such as FT non-Clifford gates on multiple logical qubits in both
superconducting and trapped-ion devices [129], FT one-bit addition as a small logical
algorithm on three logical qubits [130], the realization of Grover search utilizing encoded
qubits in a trapped-ion device [131], and the very recent demonstration of a larger logical
quantum processor with neutral atoms [40].

The backbone of the successful operation of an FT quantum processor is an efficient
implementation of QEC cycles. Steane QEC minimizes the coupling between data and
auxiliary qubits and therefore also perturbations of the data register. Thus it is a promising
candidate for the efficient extraction of error syndromes on scalable error-correcting codes.

4.5.2 Fault-tolerant quantum error correction

Given operations acting on logically encoded qubits, such as initialization, gate operations,
and measurements, have to be constructed in a way that prevents dangerous propagation
of errors. An error configuration is dangerous when an otherwise correctable number of
errors spreads via entangling gates and turns into an error supported on a number of
qubits (referred to as the weight of the error) beyond the number of errors the code can
correct. A circuit where this is precluded by design is called an FT implementation and
hence we refer to the corresponding operations as FT. In particular, this applies to the QEC
block itself, where the necessary coupling to auxiliary qubits unavoidably feeds back to
the data qubits. Any coupling can then potentially induce errors if the auxiliary qubit or
the coupling itself is faulty. A method to extract the error syndrome, which minimizes the
interaction between the logical data qubit(s) and the auxiliary qubit(s), was formulated by
Steane [114]. The key idea is to prepare an auxiliary logical qubit using the same code as the
data qubit and to couple both logical qubits via a transversal logical CNOT gate, i.e. in a
bitwise manner. This guarantees that if any single physical operation is faulty, at most one
error per encoded logical qubit block is introduced. Specifically, first, an auxiliary logical
qubit is prepared in a superposition of its basis logical states |+〉L = 1√

2
(|0〉L + |1〉L) and a

transversal CdataNOTaux is applied, as illustrated in Figure 4.16A. In the error-free case, the
CNOT will act trivially on both encoded qubits as CNOTL|ψ〉L|+〉L = |ψ〉L|+〉L. However,
if a single bit flip is present on the ith qubit comprising the logical data qubit (denoted
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Figure 4.16: Quantum error correction codes andmethods for syndrome extraction. (A) In Steane-type
EC, an auxiliary logical qubit is prepared in |+〉L, then coupled to the initial logical qubit
|ψ〉L with a transversal CNOT gate, and then measured in the computational basis. This
procedure is repeated for an auxiliary logical qubit in |0〉L with an inverted transversal
CNOT gate. A correction is applied to the corresponding data qubits based on the
syndrome which is extracted from the measurements performed on the auxiliary logical
qubit. (B) The repetition code encodes one logical qubit and its stabilizer generators
are weight-2 Pauli-operators defined between neighboring qubits on a line. (C) The
seven-qubit color code encodes one logical qubit into seven physical qubits. A code
state is a +1 eigenstate of all six weight-4 stabilizer generators {S(i)

X , S
(i)
Z } defined on

the colored plaquettes. Pauli-X (-Z) on all qubits corresponds to the logical operator
XL (ZL), which is up to multiplication with stabilizer generators equivalent to weight-3
operators. (D) Flag-EC includes the measurement of the stabilizer generators with
flagged circuits. In case of non-trivial measurement outcomes of the flagged circuits,
repeating the measurement of stabilizer generators is necessary. Different variants of
flag-based QEC require different numbers of simultaneously available auxiliary qubits
and remeasuring procedures. The flag-QEC procedure used in this work is described in
Appendix A.1.1.

as (Xdata
i )), this will be copied onto the ith qubit comprising the logical auxiliary qubit

(denoted as (Xaux
i )) as

CNOTL(Xdata
i ⊗1)|ψ〉L ⊗ |+〉L (4.33)

= Xdata
i |ψ〉L ⊗Xaux

i |+〉L.

The transversal CNOT gate is FT by construction since it introduces at most one error on
each encoded block. The entire circuit is therefore FT if one additionally verifies that only a
correctable number of errors is present on the auxiliary logical qubit. The syndrome can
then be reconstructed from the outcomes of the projective measurement of the auxiliary
logical qubit in a single shot. One can identify the appropriate recovery operation based
on a decoder such as the lookup table for the seven-qubit color shown as Table A.1 in
Appendix A.1.1. Just as an auxiliary logical qubit in |+〉L detects propagated X errors,
it detects propagated Z errors when prepared in |0〉L and acted upon with a transversal
CauxNOTdata in a second half-cycle. In this second half-cycle Z errors are copied from
the data qubit to the auxiliary qubit such that measuring the auxiliary qubits reveals the
entire X syndrome simultaneously, just as the first half-cycle reveals the entire Z syndrome.
This Steane-type QEC is to be seen in contrast to measuring each stabilizer individually,
where due to fault tolerance requirements one has to resort to either verified GHZ states



78 protecting qubits from noise

or flag schemes for the auxiliary qubits [35, 111]. Moreover, the syndrome measurement
has to be repeated for specific measurement outcomes to avoid single faults leading to
high-weight errors, which requires the conditional execution of circuits. In our experiment
and simulation, in order to benchmark against the Steane-type QEC, we implement the
flagged syndrome extraction protocol of [120], which was previously realized experimentally
in [38]. The circuits that are used in the implementation are shown in Figure A.4.
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Figure 4.17: Experimental methods for mid-circuit measurements. A The qubit register is split into
data qubit and auxiliary qubit segments. Tightly focused laser beams addressing up to
two individual ions simultaneously are available to manipulate the optical qubit, while
qubit state detection and reset lasers illuminate the entire register. (B) Different qubit
encodings are used prior to and during different steps of the mid-circuit measurement
procedure illustrated by symbols of different coloring. For qubit manipulation the qubits
are encoded in two Zeeman sublevels of two different electronic states (green). The
data qubit encoding is transferred to two Zeeman sublevels of the same electronic state
to either decouple from laser light used to project to the computational basis during
mid-circuit measurements (blue), or to be able to perform recooling on auxiliary qubits
after a mid-circuit measurement (red). While the qubit is encoded in the ground-state
manifold (red), we extend the coherence time viaDDby applyingRFfields. (C) Chimatrix
representation [45] of the process acting on data qubits during mid-circuit measurements
averaged over all data qubits. The area and the color coding of the squares corresponds
to the absolute value and the phase of an element of the chi matrix, respectively. The
values on the diagonal of the averaged chi matrix are used to inform the error model
(see Appendix A.2).

In this article, we report the implementation of Steane syndrome extraction in a trapped-
ion experiment. Central to the implementation of Steane QEC is the transversal logical
CNOT, which in our experiment can be performed between all qubits owing to all-to-all
qubit connectivity. Transversal CNOT gates have already been demonstrated in a trapped-
ion experiment [39] and even their error propagation properties have been exploited in a
neutral-atom quantum processor [40]. In this work, we employ transversal CNOT gates to
repeatedly perform single-shot syndrome extraction on different error-correcting codes. As
a first step, we investigate the bit-flip and phase-flip repetition codes with code distances
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3 and 5 each. While the repetition code protects only against either Pauli-X or -Z errors,
the syndrome extraction procedure is the same as for leading QEC codes such as surface
and color codes. We can therefore experimentally explore the scaling of Steane QEC for
codes of increasing distance. Furthermore, we demonstrate Steane syndrome extraction for
a complete quantum error correcting code by applying it to the seven-qubit color code. We
perform up to five and three full cycles of syndrome extraction for the repetition code and
seven-qubit color code, respectively.

4.5.3 Experimental setup

All experimental results presented in this manuscript are implemented in a trapped-
ion quantum processor. Sixteen 40Ca+ ions are trapped in a macroscopic linear Paul
trap, where the electronic state of the ions is controlled via laser pulses, as illustrated in
Figure 4.17A. Each ion encodes one qubit in the electronic states |0〉 = |42S1/2,mJ = −1/2〉
and |1〉 = |32D5/2,mJ = −1/2〉 (see Figure 4.17B) connected via an optical quadrupole
transition at a wavelength of 729 nm. Coulomb interaction between the ions gives rise to
collective motional modes of the ions, which are used to mediate entangling operations
between anydesiredpair of qubits. The available universal gate set and its error characteristics
are described in more detail in Appendix A.3.
For the repeated application of QEC blocks to encoded qubits it is necessary to have

the ability to extract the error syndrome by performing measurements on a subset of
qubits. Measurements on these auxiliary qubits are designed in a way that minimizes the
perturbation of the logical information stored in the data qubits. Furthermore, it is beneficial
to have the capability of reusing measured qubits by reinitializing them to a defined state
in the computational subspace, especially with the limited quantum register sizes of noisy
intermediate-scale quantum devices. Viable approaches to implement these procedures
in trapped-ion quantum processors are introducing a second atomic species [132–134], or
moving ions to a distinct region of the trap [126, 135] for mid-circuit measurements allowing
state readout of auxiliary qubits while keeping data qubits unperturbed. In this work we
make use ofmultiple Zeeman sublevels in the states |42S1/2〉 and |32D5/2〉 (see Figure 4.17) for
the implementation of mid-circuit measurements and subsequent reinitialization [136–138].
The first step of this procedure is the detection of the auxiliary qubits by electron

shelving [83]. All data qubits are encoded in the states shown as blue symbols in Figure 4.17B
to retain the phase relation of data qubit superposition states and to prevent scattering
out of the computational subspace. Scattering photons from auxiliary qubits projected to
|0〉 heat up the ion string, therefore a Doppler cooling pulse, acting on the same atomic
transition also used for auxiliary qubit state detection, is applied. However, further cooling
close to the motional ground state using resolved sideband cooling [83] is necessary for the
implementation of high-fidelity gates after mid-circuit measurements. The sideband cooling
procedure involves illumination with laser light that would lead to incoherent relaxation of
both states marked with blue symbols to the respective ground states marked as red symbols.
Therefore, the data qubit encoding is coherently transferred to the two Zeeman sublevels of
the ground state portrayed as red symbols in Figure 4.17B. Subsequent to sideband cooling
a final optical pumping step is used to reinitialize all auxiliary qubits that are supposed to
be reused. Finally we restore the encoding of the data qubits to the states shown as green
symbols, where further gate operations on the optical qubit can be implemented. A more
detailed description of the procedure can be found in Appendix A.3.
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Figure 4.18: Logical fidelities for bit- and phase-flip repetition code for distances 3 and 5. Fidelities
for up to 5 rounds of Steane-type EC for the distance-3 and distance-5 (A) bit-flip and (B)
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round of QEC. The experimental and simulation results are depicted with darker and
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availability statement 4.5.6.4.

The duration of the mid-circuit detection procedure is dominated by the sideband cooling
step with a duration on the order of the coherence time. Therefore, a DD sequence [77,
139] is performed on the data qubits during the recooling procedure. This decoupling is
implemented with a resonant RF antenna driving the transition between the two ground
states on the entire register simultaneously, where the data qubits are encoded during side-
band cooling (red symbols). A refocusing pulse is applied approximately every millisecond
in between cooling pulses for different motional modes. Figure 4.17C shows the process
matrix [45] of the evolution of data qubits during a full mid-circuit measurement procedure
including DD averaged over all data qubits.

4.5.4 Steane QEC for the repetition code and the seven-qubit color code

In this section we show the application of Steane QEC to 1D repetition codes and the 2D
seven-qubit color code. First, we study the scaling of Steane QEC with code distance, by
presenting results for distances 3 and 5 for both the bit- and phase-flip repetition code. The
structure of the codes and the stabilizer generators are illustrated in Figure 4.16B. Despite
their simplicity, these codes share key properties, such as syndrome extraction, logical
processing, and error suppression with fully-fledged topological QEC codes. Consequently,
they routinely form a testbed for the latter [121, 140]. One round of EC in repetition codes
consists of only one half of the cycle illustrated in Figure 4.16A since the codes can only
correct eitherX or Z errors. For example for Steane-type QEC on the distance-3 bit-flip code,
a logical state |ψ〉L is encoded in |000〉. The auxiliary logical qubit is prepared in a three-qubit
GHZ state |+〉L = (|000〉+ |111〉)/

√
2. If, for example, an X fault occurs on the first qubit,

this will propagate onto the auxiliary logical qubit when the auxiliary qubit is coupled to
the logical data qubit with a transversal CNOT gate. A final projective measurement of the
auxiliary logical qubit in theZ basis projects the state onto either |011〉 or |100〉.We can extract
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the stabilizer values S(1)
Z = Z1Z2 and S(2)

Z = Z2Z3, as given in Appendix A.1.2, by checking
the parity of this measurement outcome. It is then possible to identify the initial fault on the
first qubit based on the syndrome (S

(1)
Z , S

(2)
Z ) = (−1, 1). For the distance-5 repetition code,

the auxiliary logical state has to be verified to ensure that no single fault has caused aweight-2
error configuration on the auxiliary GHZ state. We do this by coupling a single flag qubit to
the prepared auxiliary qubit, heralding weight-2 error configurations, as shown in Figure A.7
in Appendix A.1.2. No verification is required for d = 3, since any single fault only results in
a correctable error configuration on each encoded block. The phase flip code can be treated
completely analogously to the bit-flip code. Figure 4.18 shows the probability to recover the
target logical state, within the correction capabilities of the respective QEC code, for the
bit- and phase-flip code with distances d = {3, 5}. We refer to this probability as logical
fidelity (see Appendix A.5). Corrections suggested by the repeated syndrome extraction
are accounted for via a Pauli frame update [141]. We can identify that increasing the code
distance from 3 to 5 improves logical fidelities for both the bit- and the phase-flip code. Lower
fidelities for the phase flip code compared to the bit-flip code can be attributed to dephasing
on idling qubits. Experimental results are accompanied by Monte Carlo sampling (MC)
simulations using an experimentally informed effective noise model. The model accounts for
errors on single-qubit gates, two-qubit gates, qubit initialization, and measurements with
error rates p1q = 3.6 · 10−3, p2q = 2.7 · 10−2, pinit = 3 · 10−3 and pmeas = 3 · 10−3, respectively.
Furthermore, duringmid-circuit measurements the remaining qubits experience noisewhich
we model as asymmetric depolarizing noise with error probabilities p(x)

mid−circ = 1.1 · 10−2,
p

(y)
mid−circ = 2.4 · 10−2, p(z)

mid−circ = 3.5 · 10−2, acting on all idling data qubits independently.
These error probabilities are extracted from the experimental process matrix, quantifying
the effect of mid-circuit measurements on idling (data) qubits, shown in Figure 4.17C. A
more detailed description of the error model can be found in Appendix A.2. The simulation
data obtained with this relatively simple multi-parameter, incoherent noise model shows
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good agreement with the experimental data, which indicates that it captures the experiment
well for the given error rates.

Going a step further, we now apply the above-described Steane-type QEC to the seven-
qubit color code [36, 37, 142], shown in Figure 4.16C, and compare its performance to
the previously used flag-based QEC scheme [38, 120, 128]. In the latter, the syndrome
information is extracted by measuring stabilizers using additional auxiliary physical qubits,
as illustrated in Figure 4.16D. The seven-qubit color code [[7, 1, 3]] is the smallest topological
color code and encodes a single logical qubit while allowing the correction of a single
arbitrary Pauli error. It has the highly desirable property of admitting a transversal and thus
FT implementation of the entire Clifford group. Physical qubits are placed on the vertices
of a two-dimensional graph and the encoded logical qubit is defined as the simultaneous
+1 eigenstate of the six indicated stabilizer generators. A single flag qubit is used to verify
the prepared logical state such that unsuccessful preparations can be discarded [110, 128]
analogous to usage in the distance-5 repetition code. The encoding circuit and lookup table
are given in Appendix A.1.1.

Figure 4.19 shows the logical fidelities we obtained experimentally and numerically from
MC simulations. We find an advantageous performance in terms of fidelity for Steane-type
QEC compared to the flag-based QEC scheme, where the performance benefit of Steane
QEC is more pronounced for the state |0〉L. The reason for this asymmetry is that the
dominating error source in the experimental setup at hand is asymmetric depolarizing
noise on the data qubits during mid-circuit measurements. Additionally dephasing of
data qubits is taking place during the implementation of gates on the auxiliary qubits (see
Table A.3 in Appendix A.2). This conflates the logical failure rates for the different protocols
and partially veils the advantage of Steane QEC, which is most pronounced in the regime
of dominating two-qubit error rates. Therefore, we estimate the projected advantage of
Steane-type QEC by numerically simulating logical error rates in a setting where the only
noise source are two-qubit gate errors. In this regime, we find that the logical error rate of
Steane-type QEC is suppressed by as much as a factor of 2, compared to flag-type QEC (see
Figure A.5 in Appendix A.1.1). Experimental improvements like an extended coherence time
on the order of seconds [143–145] or composite pulses robust against laser amplitude noise
and crosstalk [146, 147] could further mitigate perturbations of idling data qubits during
mid-circuit measurements and therefore extend the advantage in logical fidelity offered
by the Steane-type over flag-type QEC also in the present experimental setup. Additional
results on the extraction of only the Z (X) syndrome for the logical state |0〉L (|+〉L) are
presented in Appendix A.6.

4.5.5 Conclusions and Outlook

In this work we show practical advantage of Steane over flag-based QEC in a noisy
intermediate-scale trapped-ion quantum processor. We have implemented up to five rounds
of Steane QEC for bit-flip and phase-flip repetition codes with distances 3 and 5, and observe
an improvement of the logical fidelity with larger distances. This increase in spite of larger
qubit and gate overhead per logical qubit shows that both codes were operated below their
respective thresholds. We further demonstrated an advantage of repeated Steane QEC on
the seven-qubit color code, where multiple complete rounds of EC including repeated mid-
circuit measurements present substantial experimental challenges. Numerical simulations
based on amulti-parameter depolarizing error model, informed by experimentally estimated
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error rates of basic quantum operations, underpin this finding and capture the features in the
experimental data. The improved QEC performance has been achieved without the necessity
to make any changes to the hardware, but is rooted in the carefully crafted quantum circuit
design underlying the Steane-type QEC approach. The present implementation is currently
limited by errors during mid-circuit measurements. Therefore, the benefit of Steane QEC
will increase up to the numerically anticipated margin of about a factor of 2, if the error rate
of the mid-circuit measurement procedure becomes smaller than the entangling gate errors.

The results presented in thiswork establish SteaneQEC as a newparadigm in experimental
QEC by showing reduced error rates of encoded qubits compared to other QEC protocols.
The demonstrated Steane-type QEC approach is especially relevant in the context of the
emergence of larger qubit registers with efficient implementations of entangling logical gates
on various platforms. In architectures that allow for a parallel application of two-qubit gates
acting on distinct subsets of qubits, a transversal CNOT gate and, therefore, the extraction of
Z-type and X-type error syndromes can each be implemented within one circuit time step.
We believe Steane QEC will play a pivotal role towards large-scale FT quantum computation
owing to its increased logical fidelities and modularity, allowing to harness the emerging
capabilities of efficiently and fault-tolerantly coupled logical qubits as building blocks.
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5
FAU LT-TO L E R A N T GAT E O P E R AT I O N S

The previous chapter discussed how quantum information can be encoded and protected
against undesired interaction with the environment. Respecting FT design principles in
the design of QEC circuits ensures that idling errors on logical qubits can be suppressed
compared to errors on physical qubits. Let us assume p is the error probability of a single
component in a quantum circuit, e.g., a single gate. Then, for a distance-3 QEC code, the
logical error probability scales as O(p2) compared to O(p) for a physical qubit. However, a
quantum computer only implementing idling operations is obviously of limited use. In order
to implement a quantum algorithm, encoded information has to be manipulated by applying
gate operations to the qubit register. A naïve approach would be to transfer the stored
information from logical qubits to physical qubits, referred to as decoding the information,
before applying gate operations to the physical qubits. Subsequently, the qubits can be
encoded again to protect them from noise. However, this means that error processes during
the application of the gate operation can corrupt the physical qubits with a probability
scaling as O(p). This would clearly counteract the efforts of making the encoding and error
correction procedures FT. Consequently, gate operations that act directly on encoded, and
hence protected, information are necessary to maintain the suppression of errors a QEC code
offers. In this chapter, the FT implementation of single-qubit and two-qubit gate operations
for logical qubits encoded in the Steane code is discussed.

5.1 Transversal logical gates

As was shown in Section 4.4, a correctable error can potentially become uncorrectable due to
error propagation caused by entangling gates. In turn, single-qubit gates acting individually,
or bitwise, on all physical qubits constituting a logical qubit, cannot increase the weight
of an error. Furthermore, one faulty single-qubit gate cannot introduce an uncorrectable
error with a weight higher than one∗. In other words, any operation being applied bitwise,
commonly referred to as transversal, intrinsically respects FT design principles. Figure 5.1a
shows the transversal application of a Hadamard operation. In Section 4.4.2.1, it was already
used that a bitwise Hadamard gate applied to the state |0〉L of the Steane code acts as a
Hadamard gate on the encoded logical information. This can be understood by analyzing

∗ In case an error is already present on the register before the single-qubit gate is applied, a faulty gate can lead
to an uncorrectable error. However, such events occur with a probability scaling as O(p2) and are therefore
tolerable.
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Figure 5.1: Transversal gate operations and error propagation in the Steane code. a Transversal
Hadamard and phase gate. Note that the logical phase gate PL is implemented by
applying bitwise P † gates. b A single physical CNOT gate acting on two logical qubits. A
correctable error propagates to two errors that can be corrected individually on the two
logical qubits. c Two entangling gates acting on a single physical qubit. A weight-1 error
on the first logical qubit propagates to a weight-1 error on the first and an uncorrectable
weight-2 error on the second logical qubit. d The transversal CNOT gate only allows for
errors of the type shown in b and, therefore, is FT.

the effect of a transversal Hadamard gate on the stabilizer and the logical operators. A
single-qubit Hadamard gate transforms single-qubit Pauli matrices X and Z as

HXH† = Z HZH† = X. (5.1)

Therefore, a transversal Hadamard gate on all seven physical qubits of the Steane code
transforms the X-type stabilizer generators to Z-type operators acting on the same qubit
support and vice versa. Consequently, the stabilizer generators from Figure 4.4 are just
permuted. Therefore, the resulting state is still in the code space and a valid encoded state.
Furthermore, the logical operator XL is transformed into ZL and vice versa. This implies
that the transversal Hadamard gate acts on a logical qubit as a Hadamard gate acts on a
single qubit. Therefore, a Hadamard gateHL = H⊗7 on a logical qubit encoded in the Steane
code can be implemented by applying Hadamard gates on all seven physical qubits.

As shown in Chapter 2, the Hadamard gate is particularly interesting in conjunction with
the phase gate P defined in Eqn. 2.27. Together they generate the single-qubit Clifford group,
defined in Eqn. 2.28. The phase gate transforms single-qubit Pauli matrices as

PXP † = iXZ PZP † = Z. (5.2)

The Z-type stabilizer generators of the Steane code are left unchanged, while the weight-4
X-type generators are transformed to weight-4 XZ-type operators with i4 = 1. These
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operators are stabilizer equivalent to the original X-type generators∗, which means that a
state remains in the code space under the application of a transversal phase gate. The logical
operators are transformed as

P⊗7XLP
†⊗7 = −i(XZ)⊗7 P⊗7ZLP

†⊗7 = ZL. (5.3)

Comparing Eqns. 5.2 and 5.3, one sees that the gate P⊗7 acts as P †L on the logical qubit
because i7 = −i, and consequently PL = P †⊗7, as shown in the lower part of Figure 5.1a.
Hence, the effect of transversally applied single-qubit gates on the logical information does
not necessarily correspond to the effect the physically applied gate has on a single qubit.
Transversal implementations of the Hadamard and phase gate provide means to implement
any single-qubit Clifford gate intrinsically FT in the Steane code.
The concept of transversal single-qubit operations being FT relies on the absence of

entangling operations that may cause uncorrectable errors from a single error event. This
does not leave one very hopeful to find such a straightforward FT implementation when
it comes to entangling gates between logical qubits, as they will unavoidably comprise
physical entangling gates. However, the situation is different for gates acting on two qubits
compared to single-qubit logical gates: A single error event may well cause higher-weight
errors as long as the weight of the error per logical qubit is low enough to be correctable. In
Figure 5.1b, a single physical CNOT gate acting on two logical qubits of the Steane code
is shown. Although a single-qubit error propagates to affect two physical qubits, the two
errors are correctable independently on the two logical qubits. This is true as long as each
physical qubit is acted upon only by one entangling gate. On the contrary, in Figure 5.1c
two entangling gates act on a single physical qubit and, therefore, a single error can lead to
an uncorrectable error. The most obvious approach to finding a logical entangling gate is
to apply entangling gates pairwise between corresponding physical qubits of two logical
qubits. This is shown in Figure 5.1d, where CNOT gates are applied in a transversal fashion
to encoded qubits. The depicted circuit acts as an entangling gate on logical qubits if two
requirements, similar as for the single-qubit case, are fulfilled: First, the stabilizer of the
two logical qubits has to be unchanged to ensure that the output quantum state is in the
code space for valid input states. And second, the logical operators of the two qubits have
to be transformed in a way that the operation acts as an entangling gate on the encoded
information.

Let us discuss the aforementioned requirements for the application of a transversal CNOT
gate to two logical qubits encoded in the Steane code. For single-qubit Pauli operators Xi

and Zi, where i ∈ {1, 2} denotes the qubit on which the operator acts, the effect of a CNOT
gate is given by

CNOT X1 CNOT† = X1X2 CNOT X2 CNOT† = X2

CNOT Z1 CNOT† = Z1 CNOT Z2 CNOT† = Z1Z2.
(5.4)

∗ Multiplying anXZ-type stabilizer generator with the Z-type generator acting on the same qubits yields the
originalX-type stabilizer generators, asXZ · Z = X · ZZ = X · 1 = X .
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The stabilizer generators of the two logical qubits encoded in 14 physical qubits are given by
the tensor product of the generators acting on one logical qubit with the identity acting on
the other qubit. Therefore, the twelve stabilizer generators are

S
(j)
X,1 = S

(j)
X ⊗ 1⊗7 S

(j)
X,2 = 1⊗7 ⊗ S(j)

X

S
(j)
Z,1 = S

(j)
Z ⊗ 1⊗7 S

(j)
Z,2 = 1⊗7 ⊗ S(j)

Z

(5.5)

for j ∈ {1, 2, 3}. Applying a transversal CNOT gate, denoted as CNOTL, transforms the
stabilizer generators listed above into

CNOTL S
(j)
X,1 CNOT†L = S

(j)
X ⊗ S

(j)
X CNOTL S

(j)
X,2 CNOT†L = S

(j)
X,2

CNOTL S
(j)
Z,1 CNOT†L = S

(j)
Z,1 CNOTL S

(j)
Z,2 CNOT†L = S

(j)
Z ⊗ S

(j)
Z .

(5.6)

The six generators, S(j)
X,2 and S(j)

Z,1, remain unchanged compared to the stabilizer generators
before applying CNOTL, shown in Eqn. 5.5. The generators S(j)

X,1 and S(j)
Z,2 are transformed

into operators acting on both logical qubits. However, the stabilizer generators from Eqn. 5.5
can be recovered by multiplying S(j)

X ⊗ S
(j)
X and S(j)

Z ⊗ S
(j)
Z with the other two stabilizer

generators S(j)
X,2 and S(j)

Z,1, respectively∗. Therefore, a transversal CNOT gate in the Steane
code leaves the stabilizer invariant and is a valid logical operation. According to Eqn. 5.4 the
logical operatorsXL,1 = XL ⊗ 1⊗7,XL,2 = 1⊗7 ⊗XL, ZL,1 = ZL ⊗ 1⊗7 and ZL,2 = 1⊗7 ⊗ ZL

are transformed as

CNOTLXL,1CNOT†L = XL,1XL,2 CNOTLXL,2CNOT†L = XL,2

CNOTLZL,1CNOT†L = ZL,1 CNOTLZL,2CNOT†L = ZL,1ZL,2,
(5.7)

meaning that a transversal CNOT gate also acts as a CNOT gate on the encoded logical
information. Together with the transversal single-qubit gates discussed above, the CNOT
gate generates the n-qubit Clifford group [49]. With that, the Steane code has the property
that it provides a transversal, and therefore intrinsically FT, implementation of the Clifford
group.

5.2 Non-transversal logical gates

In Section 2.3, it was shown that a finite set of quantum gates is sufficient to approximate
any unitary operation to arbitrary precision, meaning that any quantum algorithm can be
implemented only using gates from this finite set. This is crucial in FT quantum computers:
As has been discussed in the previous section, it is neither trivial nor desirable to find a
new physical implementation for every unitary operation applied to logical qubits. The
requirement on logical gate operations, that any valid code state is transformed into another
valid code state, restricts the set of gates that can be implemented transversally.

The set of gates {H,P,CNOT} identified in the previous section to have a transversal
implementation in the Steane code only generates the Clifford group. In Section 2.3, this

∗ The product of elements of the stabilizer is in the stabilizer as well, as the stabilizer is a group.
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set of gates was expanded by the non-Clifford T gate to obtain a universal set of gates [54].
However, there is no way of constructing the T gate in a transversal fashion in the Steane
code. Hence, the Steane code does not provide means to perform universal FT quantum
computation only using transversal gates. But this is by no means just a shortcoming of the
Steane code. In fact, Eastin and Knill’s no-go theorem [43] shows that a transversal gate set
for any QEC code cannot be universal. As sobering as this may sound, this theorem does
not forbid universal FT quantum computing: It just states that this is not achievable with
a single QEC code using only transversal gate operations. Viable ways to circumvent this
hurdle are, e.g., code switching, where the encoded information is transferred between QEC
codes having a complementary set of transversal gates [148–150], or magic state injection.
This section discusses how the T gate can be implemented fault-tolerantly for logical

qubits encoded in the Steane code employing magic state injection. Utilizing the concept of
flag qubits, which has already proven to be helpful in achieving fault tolerance in Section 4.4,
along with transversal gates, forms the backbone of the discussed T gate construction. The
overall approach is to avoid the application of physical gate operations which allow for the
emergence of uncorrectable errors from correctable errors through error propagation. This
is achieved by outsourcing most of the complexity of the T gate operation to the preparation
of a resource state on a logical auxiliary qubit. Subsequently, only transversal operations are
used to apply the T gate to the logical data qubit.
The resource state required in the scheme discussed in this thesis is given by∗

|H〉 = cos
(π

8

)
|0〉+ sin

(π
8

)
|1〉 . (5.8)

The state |H〉 is referred to as a magic state because, on one hand, it can be used to achieve
universality and, on the other hand, a higher fidelity instance of such a state can be produced
from multiple lower quality instances via magic state distillation [151]. Furthermore, |H〉 is
the +1 eigenstate of the Hadamard operator:
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The T gate

T = e−i π
8
Y =

(
cos
(
π
8

)
− sin

(
π
8

)

sin
(
π
8

)
cos
(
π
8

)
)

(5.10)

∗ For now, physical qubit states and operations acting on physical qubits are considered for simplicity of the
notation, but all concepts can be directly applied to logical qubits.
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Figure 5.2: Implementation of a T gate using magic state injection [119]. The resource state |H〉
is prepared on an auxiliary qubit. Subsequently, Clifford operations, a measurement,
and a single-qubit operation conditioned on the measurement outcome are applied to
implement a T gate on the target qubit in the state |ψ〉.

can be applied to a data qubit in an arbitrary state |ψ〉 = α |0〉 + β |1〉 by preparing an
auxiliary qubit in |H〉 and employing the circuit shown in Figure 5.2. The application of the
controlled-Y gate CY acts on the input state as

CY |H〉 ⊗ |ψ〉 = CY
(
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The subsequent measurement of the auxiliary qubit in the Y basis projects the auxiliary
qubit to either |+i〉 or |−i〉 and affects the state of the data qubit accordingly. In case the
measurement outcome is +1, the state of the data qubit is

|ψ′〉 = cos
(π

8

)
|ψ〉 − i sin

(π
8

)
Y |ψ〉

=
(
α cos

(π
8

)
− β sin

(π
8

))
|0〉+

(
α sin

(π
8

)
+ β cos

(π
8

))
|1〉 = T |ψ〉 ,

(5.12)

In this case, the output state |ψ′〉 is rotated around the Y axis by π
4 compared to the input

state |ψ〉. Therefore, a T gate is applied to the data qubit and the final state is T |ψ〉.
In case the measurement outcome is −1, the conditional Y rotation with a rotation angle

of π2 is applied, leading to the final state

Y
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(5.13)

Also in this case, the T gate is applied to the data qubit.
In order to transfer this concept, referred to as magic state injection, to fault-tolerantly

operated logical qubits, all building blocks of the scheme have to be FT. In the Steane code,
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Figure 5.3: aNon-FT circuit preparing the magic state |H〉L,nf [110, 119] and b FT measurement of
the Hadamard operator HL using a single flag qubit [119].
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〉 M
H ED2x 6x

Figure 5.4: High-level description of the circuit for the FTpreparation of themagic state |H〉L [110, 119].
In a first step, themagic state is prepared non-fault-tolerantly, followed by an FTHadamard
measurement and an error detection block. The low-level circuits corresponding to the
three blocks can be found in Figures 5.3a, 5.3b, and 4.14.

the controlled-Y gate and the conditional single-qubit Y rotation are intrinsically FT as they
are Clifford gates. Furthermore, the measurement of the logical auxiliary qubit in the Y
basis is FT. It consists of a Clifford gate and a transversal measurement of the physical qubits
constituting the logical auxiliary qubit in the computational basis. The only missing building
block of the injection procedure is thus the preparation of |H〉L in an FT fashion.
The state preparation procedure discussed in this thesis prepares |H〉L utilizing flag

qubits [110, 119]. In a first step, the magic state |H〉L,nf is prepared in the Steane code using
the circuit in Figure 5.3a. This state preparation is not FT, as there are two-qubit gates acting
within a logical qubit enabling the propagation of a single error to a logical error.

In the spirit of flag fault tolerance, two circuit blocks are appended to allow for the
detection of dangerously propagating errors. A high-level schematic of the overall procedure
is shown in Figure 5.4. The first block labeled |H〉L,nf is the non-FT magic state preparation,
the block labeledMH is an FT measurement of the logical Hadamard operator shown in
Figure 5.3b, and the block labeledED is the flag-based FT circuit to measure all six stabilizer
generators of the Steane code presented in Figure 4.14. In order to render the circuit FT, all
eight∗ physical auxiliary qubits act as flag qubits. The state preparation is discarded if any
of the auxiliary qubit measurements yields the outcome −1.
In the following the fault-tolerance proof of the magic state preparation circuit from

Ref. [119] is sketched. For this, single errors occurring during the three circuit blocks shown
in Figure 5.4 are considered.

A single error in the non-FT preparation block can propagate to become a higher-weight
error. Any resulting weight-2 error of either X- or Z-type is stabilizer equivalent to a single-

∗ Two auxiliary qubits are used for the logical Hadamard measurement, and six auxiliary qubits are used for the
stabilizer generator measurement.
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qubit error in conjunction with a logical error, e.g., X3X6 = S
(1)
X S

(2)
X S

(3)
X XLX5. A weight-3

error after the non-FT magic state preparation is equivalent to either a single-qubit error or
a logical operator, e.g., X4X5X7 = S

(2)
X X6 or X3X5X6 = S

(1)
X S

(2)
X S

(3)
X XL. Any single-qubit

error, also in conjunction with a logical operator, is detected in the error detection block
labeledED. This leads to a measurement outcome of−1 for at least one of the six flag qubits
of the error detection block and the preparation is discarded. States affected by a logical
operator are either projected to the +1 eigenstate of the logical Hadamard operator or lead
to measurement outcome of −1 of the first auxiliary qubit in the blockMH . Therefore, all
accepted states affected by a single-error in the non-FT magic state preparation result in a
error-free preparation of |H〉L.

Let us now consider an error in the logical Hadamard measurement MH . A single error
causing an error on the data qubits of weight larger than 1 also propagates to the second
auxiliary qubit of the Hadamard measurement block. All weight-1 errors are discarded in
the following error-detection block. With this, all accepted final states are |H〉L.

Finally, single errors during the error-detection block are considered. Errors propagating
to errors of weight larger than 1 are captured by the six auxiliary qubits acting as flag qubits
for each other. Errors that are not detected by the auxiliary qubits are of weight-1. Therefore,
they are correctable and do not lead to a logical error. Consequently, a single-error during
any of the three circuit blocks |H〉L,nf , MH and ED does not lead to a logical error and the
preparation procedure is FT.

The FTmagic state preparation scheme, in conjunctionwith the transversal implementation
of the Clifford group, allows for universal FT quantum computation using logical qubits
encoded in the Steane code. Although the complexity of this T gate construction might seem
high compared to transversal gate operations, the overhead required for this preparation
of magic states can be orders of magnitude lower compared to competing, state-of-the-art
protocols [119].
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Quantum computers can be protected from noise by encoding the logical quantum
information redundantly into multiple qubits using error correcting codes [45,
152]. When manipulating the logical quantum states, it is imperative that errors
caused by imperfect operations do not spread uncontrollably through the quantum
register. This requires that all operations on the quantum register obey an FT
circuit design [31, 35, 116] which, in general, increases the complexity of the
implementation. Here, we demonstrate an FT universal set of gates on two logical
qubits in a trapped-ion quantum computer. In particular, we make use of the
recently introduced paradigm of flag fault tolerance, where the absence or presence
of dangerous errors is heralded by usage of few auxiliary ’flag’ qubits [111, 112,
119, 120, 153]. We perform a logical two-qubit CNOT gate between two instances of
the seven qubit color code [36, 142], and we also fault-tolerantly prepare a logical
magic state [110, 119]. We then realize an FT logical T-gate by injecting the magic
state via teleportation from one logical qubit onto the other [151]. We observe
the hallmark feature of fault tolerance, a superior performance compared to a
non-FT implementation. In combination with recently demonstrated repeated QEC
cycles [38, 154] these results open the door to error-corrected universal quantum
computation.

5.3.1 Introduction

Quantum computers promise to efficiently solve important computational tasks that are
beyond the capabilities of classical computers, such as prime factorization or the simulation
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Figure 5.5: Quantum error correction code, logical gates and experimental system. (a) Seven-qubit
color code encoding one logical qubit in seven physical qubits. The six weight-4 operators
{S(i)

x , S
(i)
z }, i = 1, 2, 3, are the stabilizer generators and the weight-7 operators are logical

operators ZL and XL. (b) Universal gate set consisting of Clifford gates (above dashed
line) and the T-gate. Whereas the Clifford group is transversal in the color code, magic
state injection can be used to realize the FT T-gate. The magic state |H〉L is prepared
fault-tolerantly and subsequently teleported onto the target qubit in an arbitrary state
|Ψ〉L, effectively implementing a T-gate on the target qubit. (c) Schematic 3D model
of the ion-trap quantum processor. Single and any pair i, j of ions can be addressed
simultaneously by steerable tightly focused laser beams. This enables entangling (darker
shaded beams) but also single-qubit (lighter) gates.
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of complex quantum systems [5, 155]. A digital quantum computer will offer a native gate
set, which is comprised of the operations that can be physically executed in hardware.
Remarkably, finite sets of native gates are sufficient to compose any operation to an arbitrary
desired precision, rendering such gate sets universal [45]. A fundamental challenge is to keep
the quantum computation coherent, while all components of the quantum computer such
as physical qubits, gate operations and measurements are inherently prone to errors. This
roadblock towards large-scale quantum computation can be lifted with the circuit design
principle of quantum fault tolerance [31, 35, 116, 152]. The central idea is to use QEC codes,
where many physical qubits together comprise so-called logical qubits such that the logical
information is distributed non-locally and thereby protected from decoherence and errors
due to finite control accuracy. By ingenuity of code design, it thus becomes possible to
suppress logical decoherence arbitrarily by adding redundancy, once the physical noise
level falls below some threshold [156]. Arbitrary logical quantum computation demands
that a universal logical gate set has to be synthesized from physical gates, which presents
new challenges. To prevent previously localized errors from spreading over the entire
qubit register and destroying the computation, logical gates have to be designed with fault
tolerance guarantees: For QEC codes with the potential to correct at least one arbitrary
single error, this means that a single error occurring at any location (initialization, gate or
measurement) in a particular circuit may under no circumstances turn into a non-correctable
error on two or more qubits. When assuming for simplicity that every location has some
error probability p, the logical failure rate without fault tolerance will scale as pL ∝ Np

with N the number of error locations in the circuit that lead to a logical error. While adding
further gates and qubits for fault tolerance increases the number of circuit locations, the
logical failure rate will now scale with pL ∝ N ′p2, i.e. it is quadratically suppressed in p,
where N ′ now denotes the number of pairs of locations where two errors lead to a logical
error. This entails one of the hallmark features of FT implementations: despite adding more
(noisy) qubits and gates, the quality of the encoded information can be improved, if the
physical noise level is sufficiently low. Certain QEC codes facilitate an FT implementation of
some gates by acting on all physical qubits individually – called a transversal logical gate.
However, a universal gate set with all gates having a transversal unitary implementation is
forbidden by a no-go theorem [43]. This leads to the difficulty that to reach universal FT
computation at least one logical gate must be implemented by other means, such as magic
state injection [151] or code switching [157]. Fulfilling fault tolerance requirements for these
approaches typically implies a substantial resource overhead [158].

The growing experimental effort towards FT quantum computation has seen tremendous
advances: Non-FT logical state preparation and transversal single-qubit logical gate oper-
ations were shown in a seven qubit experiment with trapped ions [37], whereas non-FT
two-qubit gates have been demonstrated in error detection codes [159, 160]. State preparation
of a topological surface code state [161], repetitive stabilizer measurements in an error-
detecting surface code [162, 163] and exponential error suppression in a repetition code [121]
have been demonstrated in superconducting architectures. Shortly following a theory pro-
posal towards demonstrations of fault tolerance in small systems [164], experiments showed
state preparation using error detection codes and post-selection [165–167], and recently EC
for FT state preparation and an FT logical single-qubit Clifford gate [127]. Theory works
have substantially reduced the resource requirements for fault tolerance by the concept of
flag fault tolerance [111, 112, 119, 120, 153]. Here, dedicated auxiliary qubits are introduced,
which signal the presence of dangerous errors. This concept was used to demonstrate FT
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operation of the five-qubit code in an NV center-based quantum processor [154], and FT
parity check measurements [126] and repetitive rounds of FT QEC cycles [38] with trapped
ions. In the present work, alongside the operation of single-qubit logical Clifford gates, we
demonstrate the FT implementation of a logical CNOT gate between two logical color code
qubits, thereby realizing the entire Clifford group fault-tolerantly. Since this is all one can
hope for regarding transversal implementations, to obtain the non-Clifford gate required
for universality, we amend the gate set by a T-gate. For this, in a first step we prepare a
magic state fault-tolerantly by the use of flag qubits, as proposed in [119]. Finally, using this
fault-tolerantly prepared magic state and the transversal logical CNOT gate, we perform FT
magic state injection, thus demonstrating a universal FT gate set.

We work with the seven-qubit color code, illustrated in Figure 5.5a, which is the smallest
member of the code family of topological 2D color codes [142] and is also known as the
Steane code [36]. It hosts one logical qubit and can be formulated as a stabilizer code
on seven physical qubits, with logical states encoded in the joint +1 eigenspace of six
weight-4 Pauli operators. The logical operators are XL = X⊗7 and ZL = Z⊗7, which are
stabilizer-equivalent to weight three operators, e.g. ZL ' Z1Z2Z3, rendering it a distance 3
code. This entails that all single-qubit errors can be corrected, but weight-2 errors on the code
will lead to logical failures. Besides a transversal CNOT gate, remarkably it also admits the
transversal implementation of the Hadamard gateH and the phase gate S. Consequently the
entire Clifford group can be implemented transversally (see Figure 5.5b) [45]. The required
magic resource state to enable T-gate injection can be prepared fault-tolerantly thanks to a
recently proposed protocol [119].
The experiments presented in this work have been performed in a 16-qubit ion-trap

quantum information processor [84] shown schematically in Figure 5.5c. The native gate
set is composed of entangling MS operations [168] and single-qubit rotations around an
arbitrary axis in the equatorial plane of the Bloch sphere with error rates of p2 = 2.5× 10−2

and p1 = 5 × 10−3, respectively. Error rates for state initialization and measurement are
estimated at pi, pm = 3 × 10−3. A more detailed discussion on the experimental setup
can be found in Appendix B. For better readability, all circuits shown in this work are
provided in standard CNOT gates, as these are equivalent to MS gates up to local Clifford
operations [169]. All experimental results are accompanied byMC simulations, for which we
model imperfections as uniform depolarizing noise on single-qubit gates, initialization and
measurement as well as two-qubit gates with independent physical error rates p1, pi, pm, p2,
respectively, as described in Appendix B.

5.3.2 Initializing and characterizing the logical qubit

We start by experimentally preparing the logical state |0〉L as the +1 eigenstate of the logical
Z operator ZL by implementing the circuit shown in Figure 5.6a. The first part of the circuit
encodes a logical qubit in a non-FT fashion. To render this encoding circuit FT, a verification
step is added (see Figure 5.6a) [110, 170]. An additional auxiliary qubit is used to herald a
successful logical qubit initialization, meaning that for a measurement outcome of +1 no
single error anywhere in the encoding circuit can have led to uncorrectable errors on the
data qubit register. For a measurement outcome of −1 of the flag qubit the initialization is
aborted and repeated.
We analyze the quality of the information encoded in a logical qubit in terms of logical

operator expectation values. After a projective measurement, the outcome of the logical
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Figure 5.6: Fault-tolerant preparation of a logical basis state |0〉L and logical Clifford operations. (a)
Logical Pauli states are prepared fault-tolerantly in three steps: First |0〉L is prepared by
a non-FT circuit. A single error, e.g. a bit flip on qubit 1, can propagate to other qubits,
here qubit 3, resulting in an uncorrectable weight-2 error and therefore causing a logical
error. Fault tolerance is ensured through verification (V) of the state by coupling to an
additional flag auxiliary qubit. This qubit, when measured as |0〉, signals that the correct
state has been prepared fault-tolerantly, i.e. up to single-qubit errors. To prepare a logical
Pauli eigenstate other than |0〉L an additional transversal Clifford gate needs to be applied.
(b) Relative occurrence rates of logical output states of distance d to the target state
|0〉L for non-FT (orange) and FT (turquoise) initialization. Example states of d = 1, 2, 3

are X0 |0〉L , X0X1 |0〉L , X0X1X2 |0〉L. Simulation results are depicted by lighter colored
bars. As described in the main text, all circuit elements are subject to depolarizing noise
in numerical simulations. (c) Logical infidelities of all six logical Pauli eigenstates (red
markers on Bloch sphere) including an ideal round of EC performed in post-processing
(experimental/simulation results depicted darker/lighter).

operators is corrected according to the measured error syndrome, effectively performing
a Pauli frame update [141, 171] described in Appendix B. The updated measurement
outcomes are categorized by their minimum Hamming distance d to any constituent state
of the logical zero state (see Appendix B) of 0, 1, 2 and 3. For outcomes with a minimum
Hamming distance of 0 or 1 the logical state is recoverable, whereas for distances 2 and 3 an
uncorrectable logical error is induced. The relative occurrence of outcomes associated to
those four categories for the initialization of |0〉L is shown in Figure 5.6b. The verification
circuit significantly suppresses the occurrence of errors leading to logical errors, resulting in
decreased relative occurrences for outcomes with distance 2 and 3 by a factor of more than
7. A figure of merit describing the quality of the encoded state is the logical state fidelity,
i.e. the overlap of the measured with the target logical Bloch vector (see Appendix B). The
logical infidelity is decreased from 0.090(6) to 0.012(2) by introducing the verification of the
initialization, showing a clear signature that an FT implementation outperforms its non-FT
counterpart. The acceptance rate heralded by a +1 outcome of the flag measurement is
78.9(5)%. This behavior is in good qualitative agreement with numerical simulations which
yield infidelities of 0.0538(2) and 0.0101(1) for the non-FT and FT circuits respectively, and
an acceptance rate of 84.42(4)%.

5.3.3 Transversal fault-tolerant operations

The transversality of the Clifford group as a property of the color code allows for the
preparation of the six cardinal states on the Bloch sphere, referred to as Pauli eigenstates
herein, by applying single-qubit rotations corresponding to the respective logical gate to all
qubits in the data register (see Figure 5.5b). For both experimental data but also results of
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Figure 5.7: Fault-tolerant implementation of a logical entangling gate. (a) To estimate the performance
of the logical CNOT gate we fault-tolerantly prepare six different logical two-qubit input
states and apply the transversal CNOT gate (framed gate at the end of the circuit). (b)
Logical state tomography after applying the CNOT gate to the |+, 0〉 state. The phase of
the complex amplitudes is encoded in the color of the 3D bar plot and the wireframes
depict ideal results. (c) Logical infidelities for six different input states of the CNOT gate
(experimental/simulation results depicted darker/lighter).

numerical simulations, the verification of the initialization reduces the logical infidelity of
all six Pauli eigenstates, as can be seen in Figure 5.6c. The definition of the logical fidelity
and a discussion on the variation of the logical infidelity for different Pauli eigenstates can
be found in Appendix B. The average logical infidelity for the FT circuit is 0.011(1) with an
acceptance rate of 80.6(2)%, while simulations suggest an average infidelity of 0.01203(4).
The six stabilizer generators were measured projectively to verify the preparation of the
correct encoded states for the Pauli states. The averaged expectation value of the X-(Z-)type
stabilizers is 0.826(3) (0.760(3)) for the FT and 0.842(3) (0.790(3)) for the non-FT preparation
scheme. Further details on the measured stabilizer generators can be found in Appendix B.7.

In Figure 5.7 the implementation of a two-qubit gate acting on two logical qubits prepared
as described above, requiring 29 entangling gates on 16 qubits, is illustrated. The transversal
logical CNOT gate is implemented by sequentially applying CNOT gates to corresponding
pairs of physical qubits of the two logical qubits (see also Figure 5.5b). A single error on any of
the physical qubits propagates to at most one error on each of the logical qubits and therefore
remains correctable, thereby ensuring fault tolerance of the gate realization. Applying the
logical CNOT gate to the input state |+, 0〉L yields the logical Bell state 1√

2
(|0, 0〉L + |1, 1〉L)

depicted in Figure 5.7b, showing a logical fidelity of 0.754(13) (see Appendix B). Figure 5.7c
shows the logical infidelity for six different input states. It reveals that the infidelity of output
states is higher if the control qubit is in a superposition state, thus leading to an entangled
outcome, compared to cases in which the outcome is a basis state of the logical two-qubit
computational basis. This increased error rate is well-described by numerical simulations
based on the circuit noise model: The average logical infidelity is 0.110+3

−4 and 0.1035(1) for
the experimental implementation and the numerical simulation, respectively.
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Figure 5.8: Fault-tolerant generation of a logical magic state |H〉L (see Eqn. 5.15). (a) The magic
state is prepared non-fault-tolerantly in a first step, where a physical magic state |H〉 is
mapped to the logical state |H〉L,nf encoded in the data qubits at positions 9 to 15 in the
ion string (see labels at left of circuit). Thereafter, an FT measurement of the Hadamard
operator (MH ) is carried out. Two auxiliary qubits herald that the prepared state is a +1

eigenstate of the Hadamard operator but also that no dangerous error occurred during
the measurement. The magic state preparation is concluded with an error detection block
that measures the three X- and Z-type stabilizers each in an FT fashion. The first part of
the error detection circuit (first dashed box), measures S(1)

X , S(2)
Z and S(3)

Z , whereas the
second part measures S(1

Z , S(2)
X and S(2)

X . The magic state preparation is discarded and
repeated in case of a non-trivial syndrome of the eight auxiliary qubits 1 to 8. (b) Logical
state tomography (see Section 5.3.3) after FT magic state preparation. The phase of the
complex amplitudes is encoded in the color of the 3D bar plot and the wireframes depict
ideal results. Phase deviations from the ideal density matrix are smaller than 50 mrad

while amplitude deviations are smaller than 0.007. (c) The decrease in infidelity of the
logical magic state (red marker on Bloch sphere) after each step of the FT preparation
procedure is observed experimentally and captured by depolarizing noise simulations
(experimental/simulation results depicted darker/lighter).

5.3.4 Universal fault-tolerant operations

The ability to perform a π/4-rotation about any axis is known to be sufficient to augment
the set of Clifford gates, which are transversal in the color code, to a universal gate set. The
logical T-gate

TL = e−i
π
8
YL (5.14)

performs a π/4-rotation about the Y axis∗ and can be implemented bymagic state injection as
shown in Figure 5.5b. It consists of the logical CNOT operation we have demonstrated in the

∗ Note that choosing this rotation axis is Clifford-equivalent to themore conventional T-gatewhere the π/4-rotation
is performed about the Z axis.
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Figure 5.9: Fault-tolerant T-gate injection. (a) After preparing the logical magic state fault-tolerantly
the logical T-gate is applied via logical gate teleportation onto a second register that
has a logical Pauli state prepared. Conditional application of R ≡ RY (π/2) is done in
post-processing. (b) Logical process matrix of the experimental logical T-gate. The phase
of the complex amplitudes is encoded in the color of the 3D bar plot and the wireframes
depict ideal results. (c) Infidelities of the data qubit state when applying the logical
T-gate to several logical Pauli input states (experimental/simulation results depicted
darker/lighter). Infidelity is the lowest for the |−i〉L state since it is an eigenstate of the
T-gate.

preceding section, a logical measurement and single-qubit Clifford operation conditioned on
the logical measurement outcome. First preparing and then injecting the logical magic state

|H〉L = cos(π/8) |0〉L + sin(π/8) |1〉L (5.15)

enables gate teleportation of the logical non-Clifford T-gate. The logical magic state in
Eqn. 5.15 is the +1 eigenstate of the logical Hadamard operator.

Recently, a resource-efficient procedure to prepare amagic state using FT circuits following
the flag fault tolerance paradigm has been proposed [110, 119]. The procedure consists
of the following steps, depicted in Figure 5.8a: we begin with a non-FT preparation of
the magic state |H〉L,nf, as recently demonstrated also in [38] (shown in subbox "Non-FT
encoding"). Next, a measurement of the logical Hadamard operator is performed, which
projects input states onto the +1 eigenspace and discards states that are eigenstates with
eigenvalue −1 (subbox "Hadamard meas."). The latter may be caused by single faults in the
circuit (e.g. faults in the initial state preparation of |H〉 for physical qubit 11), thus rendering
the circuit non-FT if −1 eigenstates are not discarded in this step. Here both auxiliary qubits
(qubits 1 and 2) are utilized as flag qubits. The syndrome measurement auxiliary qubit
flags when the −1 eigenstate has erroneously been prepared, the second auxiliary qubit
flags when a dangerous fault has occurred that may corrupt the state. The last step is a
complete EC cycle, consisting of fault-tolerantly measuring all six stabilizers of the color
code using one flag qubit per stabilizer as suggested in [112]. The EC block is used to sort
out faulty states whenever any flag qubit is measured as−1 and thus enables error detection
(ED) (subbox "Error detection"). The resulting states after performing all three steps are
guaranteed to be the correct logical magic state |H〉L up to correctable single-qubit errors
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provided at most one fault has occurred anywhere in the circuit. The generated state is
accepted as valid if all eight flag qubits indicate that no harmful error has happened.

In Figure 5.8b the reconstructed density matrix of the fault-tolerantly prepared magic state
is shown and its ideal numerical values can be found in Appendix B, whereat we prepared
the magic state up to local operations, which we account for in post-processing. Figure 5.8c
shows the logical infidelity of the magic state, which clearly decreases after each preparation
step in both experiment and simulation. Each step of the magic state initialization process
improves the quality of the generated logical state. After the full FT initialization procedure,
a logical infidelity of 0.006+14

−5 for the magic state |H〉L with an acceptance rate of 13.7(3)% is
found in the experimental realization, whereas numerical simulations predict approximately
27%, see Appendix B for discussion.
Next, the FT magic state initialization is followed by transversal Clifford operations to

fault-tolerantly teleport the logical magic state, thereby resulting in a realization of an FT
logical T-gate. For this, we perform an in-sequence measurement of the flag qubits for the
magic state generation as sketched in Figure 5.9a. In the case of heralded successful magic
state generation, the auxiliary qubits are in a well-defined state after the measurement and
can directly be re-used to encode a second logical qubit in |0〉L using the FT protocol from
Figure 5.6a. We then apply a transversal Clifford operation on this second logical qubit
to prepare one of the logical initial states |0〉L , |1〉L , |−〉L , |−i〉L. Finally, the transversal
controlled-Y operation is applied on the second register and all physical qubits are measured.
The measurement outcome for the logical Y operator of the control qubit in the first register
is then extracted and the conditional Y(π/2)-rotation R to the target qubit in the second
register is applied in post-processing, see Appendix B for details. By measuring the logical
state of the target register for the four different initial states, it is possible to reconstruct the
logical process matrix, shown in Figure 5.9b with the ideal values explained in Appendix B.
Figure 5.9c shows the logical infidelities for the different input states, yielding a mean
infidelity of 0.10(1). It is expected and indeed observed experimentally that the best fidelity
is achieved for the logical Y eigenstate |−i〉L as it is an eigenstate of the T-gate. Infidelities
for the three other logical input states are slightly higher, which qualitatively agrees with
the numerical simulations.

5.3.5 Discussion and Outlook

In this work we have demonstrated the first FT implementation of a universal set of
single- and two-qubit logical gates. We were able to witness a hallmark feature of FT
circuit design, namely an improvement of the performance of encoded qubits, despite
the FT implementations of encoding and manipulation requiring an increased gate count
and complexity of the underlying circuits. The resource-efficient implementation of these
FT operations is enabled by the all-to-all qubit connectivity in the present trapped ion
architecture, allowing for entangling operations between arbitrary pairs of qubits. Predictions
from numerical simulations based on a relatively simple, generic and architecture-agnostic
depolarizing circuit noise model, only informed by estimated experimental error rates,
approximate the experimental findings well. The largest deviations between experimental
behavior and and numerical predictions were observed for the logical CNOT gate. A more
extensive characterization of this logical entangling gate and the other FT gadgets, together
with more sophisticated and validated theoretical noise models will be subject to future
investigations, and is imperative for designing future QEC architectures and procedures.



102 fault-tolerant gate operations

On the way towards error-protected universal quantum computation on even more robust
logical qubits, further milestones ahead are the incorporation of repetitive QEC cycles [38,
172] into the FT logical gate operations demonstrated in our work. Another hurdle to be taken
is the demonstration of EC and FT gate operations for larger-distance logical qubits [119].

5.3.6 Data availability

The data underlying the findings of this work and the quantum circuits are available at
https://doi.org/10.5281/zenodo.6244536.
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6
C H A R AC T E R I Z AT I O N A N D M O D E L I NG O F S PAT I A L LY
CO R R E L AT E D NO I S E

In Chapters 3 to 5, a generic error model was introduced and applied to quantum circuits in
the context of QEC. In this model, noisy quantum gate operations are replaced by an ideal
implementation of the gate followed by the probabilistic application of Pauli errors on the
qubits the gate acts on. Furthermore, idling errors are modeled as an incoherent dephasing
process by probabilistically applying Z errors independently on all idling qubits. Such a
model does not necessarily reflect the microscopic noise processes taking place in a physical
implementation of a quantum information processor like the trapped-ion device considered
in this thesis.

This chapter considers two effects introducing noise processes that are spatially correlated:
In Section 6.1, the undesired manipulation of spectator qubits in spatial proximity to the
target qubits of a quantum operation, referred to as crosstalk, is discussed. A more refined
error model taking crosstalk errors into account is introduced. Section 6.2 discusses idling
processes, where the noise acting on spectator qubits is correlated across the qubit register.
The effect of correlated noise on the performance of a QEC code is investigated. Furthermore,
a method for the quantification of spatial correlations in error processes, analog to the
quantification of entanglement in quantum states, is introduced.

6.1 Crosstalk in quantum operations

In the quantum information processor considered here, gate operations are implemented
by illuminating a single ion or a pair of ions in a chain with steerable, tightly focused laser
beams. However, the laser beam has a finite diameter at the position of the target ion, so
that neighboring ions see residual light intensity. A limit on the ability to confine the laser
light to the target ions is given by the design of the focusing optics. In the focal spot of a
Gaussian beam focused by a lens with a numerical aperture NA the intensity of the light
drops to a fraction 1

e2
of the peak intensity at a distance [173]

w =
λ

π

1

arcsin(NA)
(6.1)

from the center of the focused spot. Here, λ is the wavelength of the light and it is assumed
that the laser propagates in vacuum. Therefore, the NA of the optics has to be chosen to
allow for the desired suppression of leakage light at neighboring ion positions.
The spot radius w from Eqn. 6.1 is a theoretical lower limit assuming defect-free optical

elements and perfect alignment. However, a realistic optical system always exhibits mis-
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alignment and errors in the surface shape of the used optics. When light passes through
optics that are not ideally aligned or optics with an erroneous surface, the wavefront of the
light is distorted. A distortion of the wavefront along the beam path leads to a deviation of
the intensity profile in the focal spot from the ideal unperturbed beam spot.
Figure 6.1 shows the two-dimensional electric field amplitude distribution of the tightly

focused addressing beam in the focal plane. The profile is measured by scanning the focused
beam across an ion using the beam steering setup described in Section 3.2.3.3 and measuring
the Rabi frequency on the optical-qubit transition. The Rabi frequency is proportional to
the electric field amplitude of the laser field at the ion position. One can see that there is a
residual light field at horizontal distances from the intensity maximum of approximately
3.8µm to 6µm corresponding to typical inter-ion distances along the ion chain. Therefore,
whenever one is acting on a specific target ion, neighboring spectator qubits will experience
an interaction with the laser light, which induces errors in the encoded quantum information.
The undesired interaction predominantly affects spectator qubits, which are direct

neighbors to the target qubits of a certain gate operation. Hence, the induced errors
exhibit a spatial correlation given by the structure of the quantum circuit. Crosstalk in
entangling gate operations can lead to error propagation to spectator qubits in spatial
proximity to the target qubits of the respective gate. Therefore, fault-tolerance properties of a
QEC circuit can be affected by crosstalk errors. In the publication presented in the following
section, the effect of crosstalk on QEC protocols is studied and the error model discussed in
Section 3.3 is extended to account for crosstalk in single- and two-qubit gates.
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Figure 6.1: Scan of a tightly focused laser beam across a trapped ion in two dimensions. For a given
vertical and horizontal deflection with respect to the calibrated ion position the Rabi
frequency normalized to the maximum Rabi frequency is measured. Aberrations caused
by imperfections in the optical system focusing the laser beam lead to a tail of the central
peak to the top-right and patches with relative Rabi frequencies on the order of 10−1

towards the edges of the scan area. The line plots on top and on the left of the color plot
are Rabi frequency profiles through the center of the color plot along the horizontal and
vertical axis, respectively.
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6.1.1 Publication: Strategies for a practical advantage of fault-tolerant circuit design in noisy

trapped-ion quantum computers

Strategies for practical advantage of fault-tolerant circuit design in
noisy trapped-ion quantum computers∗

Physical Review A 107, 042422 (2018)

Sascha Heußen1,2, Lukas Postler3, Manuel Rispler1,2, Ivan Pogorelov3, Christian D.
Marciniak3, Thomas Monz3,4, Philipp Schindler3, Markus Müller1,2

1Institute for Quantum Information, RWTH Aachen University, Aachen, Germany
2Institute for Theoretical Nanoelectronics (PGI-2), Forschungszentrum Jülich, Jülich,

Germany
3Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria

4Alpine Quantum Technologies GmbH, Innsbruck, Austria

Fault-tolerant QEC provides a strategy to protect information processed by a
quantum computer against noise which would otherwise corrupt the data. An FT
universal quantum computer must implement a universal gate set on the logical
level in order to perform arbitrary calculations to in principle unlimited precision.
In this manuscript, we characterize the recent demonstration of an FT universal gate
set in a trapped-ion quantum computer [Postler et al. Nature 605.7911 (2022)] and
identify aspects to improve the design of experimental setups to reach an advantage
of logical over physical qubit operation. We show that various criteria to assess
the break-even point for FT quantum operations are within reach for the ion trap
quantum computing architecture under consideration. Furthermore, we analyze
the influence of crosstalk in entangling gates for logical state preparation circuits.
These circuits can be designed to respect fault tolerance for specific microscopic
noise models. We find that an experimentally-informed depolarizing noise model
captures the essential noise dynamics of the FT experiment that we consider, and
crosstalk is negligible in the currently accessible regime of physical error rates.
For deterministic Pauli state preparation, we provide an FT unitary logical qubit
initialization circuit, which can be realized without in-sequence measurement and
feed-forward of classical information. Additionally, we show that non-deterministic
state preparation schemes, i.e. repeat until success, for logical Pauli and magic
states perform with higher logical fidelity over their deterministic counterparts
for the current and anticipated future regime of physical error rates. Our results
offer guidance on improvements of physical qubit operations and validate the
experimentally-informed noise model as a tool to predict logical failure rates in
quantum computing architectures based on trapped ions.

∗ The author of the present thesis carried out the experiments and wrote the manuscript. Here, the accepted
version of the manuscript is printed in a slightly amended form for consistency throughout the thesis. Changes
include adapting hyphenation and abbreviations and updating references that were only available as preprints
at the time of publication.

https://doi.org/10.1103/PhysRevA.107.042422
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6.1.1.1 Introduction

The toolbox of quantum fault tolerance provides a key on the way towards universal
quantum computation [174]. By careful circuit design this allows one to contain the effect of
faults stemming from the fundamentally noisy hardware of real physical quantum systems.
Here, the ideal computation takes place in a subspace (dubbed the logical subspace) of the
(much larger) physical Hilbert space, where the logical information is typically encoded
in non-local degrees of freedom of a QEC code and protected against local noise [152].
Avenues to experimental investigation of FT design principles have been opened up by
recent leaps in quantum computing experiments and the development of the theory of flag
fault tolerance, where dedicated auxiliary qubits flag the presence or absence of dangerous
error patterns [111, 112, 119, 120, 153]. In trapped-ion systems, code state preparation [37],
FT error detection [167], FT stabilizer readout [126], FT operation of one logical qubit [127]
as well as logical entangling gates [160] and repetitive QEC cycles [38] were achieved. The
state of the art now lies in FT universal gate sets [128] (reprinted in Section 5.3) conjoined
with repetitive QEC cycles [39]. In superconducting qubits, this evolution is paralleled,
where code state preparation [161, 165], error detecting QEC cycles [162], logical gates in an
error detecting code [163] and the operation of a surface code with QEC cycles [122] and
higher-distance surface codes [124] were demonstrated. Other qubit platforms are showing
greatly increasing capabilities recently along similar directions [154, 175].
Central to the task of FT operation of a quantum processor are a) the ability to initialize

logical states, i.e. QEC code states, b) to measure their error syndrome, c) to perform logical
gates using a universal set of gates, and d) to determine logical measurement outcomes.
All these tasks have to be implemented fault-tolerantly, i.e. in such a way that they do not
introduce errors beyond what can be tolerated by the QEC code. Furthermore, the noise
level of all operations needs to be below a (model-dependent) threshold [116, 156]. A major
concern is the proliferation of errors due to the application of entangling operations when
implementing a logical gate. A landmark result that emerged from fault tolerance theory is
that FT logical gate operations typically fall into two categories. On the one hand, some gate
operations can be relatively straightforward to compose by transversal implementations,
where the logical gate operation can be synthesized by independent bitwise action on the
qubit register, thus avoiding any need for entangling operations within the logical qubit
block. On the other hand, there are always gates that defy this realization and require special
treatment, as dictated by the no-go theorem of Eastin and Knill [43, 151]. For the platform of
trapped-ion qubits, the ability to perform a universal gate set on the logical level has recently
become experimental reality as part of a demonstration by Ref. [128]. In the present work,
we provide an extensive analysis to put this experiment into a broader context of current
and projected experimental capabilities.

6.1.1.2 Outline and summary of main results

This paper is structured as follows: In Section 6.1.1.3, we discuss the trapped-ion setup and
give an overview over the physics that provide the basis for defining qubit states as well as
single-qubit and entangling operations. We lay out how this leads us to an experimentally-
motivated noise model, building on and extending the model used in Ref. [128]. Also,
we introduce the circuit sampling technique of subset sampling (SS) and discuss how it
fares compared to conventional MC. In Section 6.1.1.4, we discuss one of the key aspects of
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FT circuit design, namely in what scenario and parameter regime they become useful by
outperforming their non-FT or bare physical counterparts. We discuss which parameters
the logical qubit performance can and should be compared to and present how FT circuits
for logical Pauli eigenstate preparation as well as logical magic state preparation perform on
those scales. We find in Section 6.1.1.4.1, that under our current noise levels, the Pauli state
preparation is already on the edge to the break-even point of outperforming the physical
initialization operation. The logical magic state preparation is already below one of the
relevant break-even points, namely the physical entangling gate error rate with current
noise parameters. By a scaling analysis of the physical error rates, we find that both will be
brought to the sub-threshold regime with moderate hardware improvements. We extend
the discussion in Section 6.1.1.4.2 by comparing non-deterministic circuits, where runs
with flag events are discarded, to deterministic circuits, where runs with flag events are
instead treated with further circuitry to maintain fault tolerance. We find that the added
circuitry reduces the logical fidelity substantially and discuss the scenarios where either
might be preferential. In Section 6.1.1.5, we discuss the relevance of crosstalk, where we
explain the notion of entangling crosstalk and the corresponding error channel. We study
its potentially detrimental effect on QEC under current and projected experimental noise.
We find that it does not constitute a major noise source at current noise levels but might
become relevant at lower error rates. Nevertheless, we demonstrate how a specific type of
entangling crosstalk can be mitigated by carefully designing the circuit. In Section 6.1.1.6,
we calculate the quantum state fidelity of a single logical qubit under different noise models.
From the comparison of different performance metrics we conclude that the logical fidelity
is the appropriate measure and the central figure of merit used for quantifying the logical
qubit performance.

6.1.1.3 Trapped-ion based quantum processors

One of the most promising system architectures for FT quantum information processors
is trapped-ion based devices [29, 59, 176, 177]. These devices offer mature hardware, high-
fidelity operations and all-to-all qubit connectivity. For register sizes of up to around 20
qubits [39, 84] any arbitrary pair of qubits in the register can be natively entangled with
a single quantum operation, facilitating certain quantum algorithms or rather reducing
the overhead of their implementation drastically [178]. This is achieved by exploiting a
long-range interaction between the ions mediated by a collective motional mode of the
ion Coulomb crystal. Even larger registers can be realized by subdividing the register into
smaller segments, each providing all-to-all connectivity [179]. Interactions between such
subsections can be realized by spatially rearranging the segments and single ions within the
segments. Individual ions can be moved within the device for reconfiguration, an operation
referred to as shuttling, via the application of time-dependent voltages to electrodes of the
ion trap. Fault-tolerant gadgets have already been demonstrated in setups following this
ion-shuttling based approach [38, 39, 126]. For the remainder of this section we will focus on
a system hosting a static ion string that provides all-to-all connectivity in a register of 16
qubits [84]. In the following we will discuss the native gate set and noise processes of the
device.
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Figure 6.2: Trapped-ion device architecture and native gate set. (a) Trapped ions (blue dots) are
suspended in a macroscopic linear Paul trap. Tightly focused laser beams allow for the
implementation of single-qubit rotations (lighter-shaded red laser beam) and entangling
operations on arbitrary pairs (darker-shaded beams). (b) The native gate set consists of
resonant single-qubit operations implementing rotations around an axis in the equatorial
plane of the Bloch sphere, where the rotation axis in controlled via the phase ϕ of
the laser pulse. The rotation angle θ is controlled via the pulse area of the laser pulse.
The native entangling operation is realized via an MS-type interaction. Z operations
can be implemented in software by updating the phase of subsequent light pulses on
the respective ion through individual control of the light phase. This allows for the
implementation of generalized MS-type gates MSϕ1,ϕ2

(θ). (c) Decomposition of a CNOT
gate into an MS gate and local operations.

6.1.1.3.1 Static ion chain quantum processor

The system under consideration uses a macroscopic Paul trap [84]. A suitable set of RF
and static voltages applied to the trap electrodes ensures that trapped ions form a one-
dimensional crystal, where their equilibrium positions are determined by the interplay of
the trapping forces and the Coulomb interaction between the ions [66]. Each trapped 40Ca+

ion hosts a qubit in the Zeeman sublevels 4S1/2,mj=−1/2 = |0〉 and 3D5/2,mj=−1/2 = |1〉 of the
ground state and a metastable excited state with a lifetime of T1 ≈ 1.2 s [80]. As can be seen
in Figure 6.2, a tightly focused laser beam addressing this quadrupole transition allows for
individual control of the qubits in the register. The native gate set of the apparatus consists
of the following three types of operations:

• Resonant operations:A laser pulse resonant to the qubit transitionwith variable phase
and pulse area implements rotations R(i)

ϕ (θ) = exp(−i θ2(Xi cosϕ+ Yi sinϕ)) around
an axis in the equatorial plane of the Bloch sphere, where Xi and Yi are single-qubit
Pauli matrices acting on qubit i. The rotation angle θ is controlled via the duration and
intensity of the laser pulse, and the angle of the rotation axis with respect to the X
axis ϕ is controlled via the pulse phase. A pulse length of about 15µs is required to
implement a rotation angle of π/2.

• Entangling operations: Entangling operations acting on an arbitrary pair of ions are
realized by illuminating the respective ions with a bichromatic light field slightly de-
tuned from aCOM radial mode, effectively applying anMS interaction to the respective
ions [168]. The phase of the light illuminating the ion pair can be controlled individ-
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ually, which allows for the implementation of the unitary operations MSϕ1,ϕ2(θ) =

exp
(
−iθS2

ϕ1,ϕ2

)
with Sϕ1,ϕ2 = 1

2 (X1 cosϕ1 +X2 cosϕ2 + Y1 sinϕ1 + Y2 sinϕ2). A ro-
tation angle of θ = −π/2 renders the operation maximally entangling and makes
the MS gate operation equivalent to a CNOT up to local operations [88]. The native
implementation of this entangling gate we use provides only negative values of θ due
to the spectral structure of the collective motional modes. We want to note that the
symbol introduced in the second panel of Figure 6.2b widely used throughout this
work refers to an XX-rotation with θ = −π/2.

• Virtual Z operations: Z rotations are implemented in software by manipulating a
phase register in the classical control hardware [180] that keeps track of Z operations
for each ion. The phases of all subsequent single-qubit and entangling operations are
shifted according to the state of the phase register [85].

Currently, the setup under consideration does not allow for parallel execution of gate
operations, as a simultaneous illumination of only up to two ions is possible. This restriction
ismainly due to a limited number of RF sources controlling the beam steering optics available
in the control hardware and laser power limitations, as the light intensity illuminating an
ion decreases quadratically with the number of addressed ions [181]. Modifications to the
addressing setup would eliminate this technical limitation and facilitate parallel execution
of gate operations [39, 182].

6.1.1.3.2 Noise modeling and simulation

In this section,wediscuss noise processes affecting the performance of the quantumprocessor
under consideration and introduce theoreticalmodels describing these processes.We analyze
their influence on the performance of FT circuits and estimate necessary improvements to
achieve a break-even of FT encoded qubits with respect to bare physical qubits.
Idling noise.A fundamental noise process affecting all implementations of physical qubits

is idling noise altering the quantum state of a qubit, which is not target of an operation
at the respective time. Thereby the effect on idling qubits is not dependent on the target
qubits of the respective operation, in contrast to crosstalk discussed later in this section. For
trapped-ion architectures utilizing metastable electronic states, three processes are affecting
the state of idling qubits: As the qubit state |1〉 is encoded in a metastable excited state
its population decays exponentially. First, it either decays to |0〉, referred to as amplitude
damping, or, second, it leaks out of the computational subspace while decaying to the
Zeeman sublevel 4S1/2,mj=+1/2. The rates of these processes are governed by the lifetime of
the metastable state T1. Third, fluctuations in the laser frequency or magnetic field during
idle time lead to dephasing on a timescale of T2 ≈ 100 ms∗.
Due to the predominance of dephasing over amplitude damping and leakage, the

incoherent noise channel for idling qubits can be modeled by Pauli-Z faults and reads

Eidle,deph(ρ) = (1− pidle)ρ+ pidleZρZ. (6.2)

∗ Typical values for the experimental dephasing time vary between 30ms and 200ms from day to day depending
on the electromagnetic environment being present.
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A more accurate model could also include effects of correlated dephasing which were
reported in previous investigations [183–185]. However, as idling is only a weak source of
failure in our setup we do not expect a difference between correlated and uncorrelated idling
noise. Thus, we choose to model the dephasing noise as uncorrelated on the individual
physical qubits. The physical error rate for idling faults pidle depends on the execution time
t of the gate performed on a subset of ions and the coherence time T2. The incoherent
probabilities for the dephasing process on idling qubits is given by

pidle =
1

2

(
1− exp

(
− t

T2

))
. (6.3)

The table below shows typical execution times of various operations in the setup considered
and the associated physical error rates for idling qubits during these operations.

operation time t pidle

single-qubit rotation 15µs 7.5× 10−5

MS gate 200µs 1.0× 10−3

measurement 300µs 1.5× 10−3

In the current ion trap architecture, all experiments for FT state preparation are performed
with both auxiliary and data qubit measurements deferred to the end of the circuit, as
described in Ref. [128], so that no idling faults occur during the measurements. Simulations
presented in Section 6.1.1.4 partly contain in-sequence measurements which are modelled
with the respective idling error rate. All in-sequence measurements are modeled to have the
same idling error rate, although measurements showing at least one bright ion are usually
followed by a recooling sequence with a duration on the order of milliseconds [181]. As
idling is not the dominant error source we neglect this dependence of the idling error rate
on the outcome of a measurement.
Single-qubit operations. As virtual Z operations are noiseless [85], the only erroneous

single-qubit operations are resonant operations. We characterize resonant single-qubit
operations experimentally via randomized benchmarking [186]. For different ions in a
16-qubit register, the fidelity of a single-qubit rotation ranges from 0.9969(4) to 0.9980(3)

with a mean of 0.9976 and a standard deviation of 2.4 × 10−4. Combined randomized
benchmarking data for sequences of up to 20 Clifford operations per qubit for all 16 qubits
are shown in Figure 6.3, data for individual qubits can be found in Appendix C.5. Faults
affecting single-qubit operations acting on a state ρ are modeled as depolarizing noise, hence
the modeled noise channel reads

E(1)
dpl(ρ) = (1− p1)ρ+

p1

3
(XρX + Y ρY + ZρZ). (6.4)

With a probability 1 − p1 the ideal operation is implemented and with a probability p1

a fault operator, randomly drawn from the set of Pauli operations {X, Y, Z}, is applied
subsequently to the ideal gate. For the theory model we choose p1 = 0.005 for better
comparability with Ref. [128] although recent improvements on the experimental setup
slightly increased the fidelity of single-qubit operations.
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Figure 6.3: Single-qubit gate benchmarking. Experimental success probabilities of randomized
benchmarking sequences containing up to 20 Clifford operations in a 16-qubit register. The
scatter on the horizontal axis around the sequence lengths 2, 5, 10, 15 and 20 is introduced
for better visibility of the success probability of the individual random sequences. The
discretization on the vertical axis is given by averaging over 150 executions per random
sequence. For brevity data from 16 qubits is combined to a single dataset. The underlying
data for individual qubits can be found in Appendix C.5. The decay fitted to the combined
data suggests a single-qubit gate fidelity of 0.99760(8), where the given error is the 95%
confidence interval.
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Entangling operations. In the system under consideration, entangling operations are
based on the COM motional mode, which offers equal coupling to all qubits in the register.
Nevertheless, unwanted coupling to higher order modes with different coupling strengths
along the ion string can potentially lead to a varying fidelity for different qubit pairs in
the register. To avoid benchmarking on all possible ion pairs, the mean fidelity of a single
entangling gate Ftq = 0.975(3) is estimated from the quantum state fidelity of the GHZ
state |ψGHZ〉 = (|0〉⊗16 − i |1〉⊗16)/

√
2 prepared across the entire register. A more detailed

description of this procedure can be found in Appendix C.6. Although this method does not
constitute a rigorous characterization of the underlying individual gates, it can still provide
insights about the system performance in terms of entanglement generation [187].
Microscopic noise models have been derived in previous works, considering amplitude

fluctuations or gate miscalibrations in particular [170] as well as thermal errors or motional
heating [188] and incoherent overrotations [189]. However, for simplicity, we apply depolar-
izing noise to two-qubit gates, as we do for single-qubit operations since our arguments of
advantageous FT quantum computation primarily regard the appropriate FT design of quan-
tum circuits. Depolarizing noise is considered the most general and architecture-agnostic
incoherent noise channel because the fault operators of the depolarizing noise channels
form a basis in the space of single- and two-qubit unitaries respectively. The modeled error
channel for depolarizing noise on entangling gates reads

E(2)
dpl(ρ) = (1− p2)ρ+

p2

15

15∑

i=1

E
(i)
2 ρE

(i)
2 (6.5)

E2 = {σk ⊗ σl, ∀k, l ∈ {0, 1, 2, 3}} \ {I ⊗ I}.

With a probability p2 one of fifteen non-trivial weight-2 Pauli faults is added to the ideal
entangling gate. We choose p2 = 0.025 as estimated from the GHZ state preparation.
Although overrotations have been identified as a dominant source of error in ion trap
quantum processors before [190, 191], we find in Section 6.1.1.4 that depolarizing noise
does not perform worse at estimating logical failure rates than an incoherent overrotation
noise model. The latter takes into account the physical nature of optical qubit operations,
i.e. laser driven rotations around a given Pauli axis (see Appendix C.1). We provide further
comparison between overrotations and depolarizing noise through quantum state fidelity
calculations in Section 6.1.1.6.
Crosstalk. Another noise process is the unintended manipulation of qubits in spatial

proximity to a target qubit, which we refer to in this work as crosstalk. The physical process
causing this is leakage light from the tightly focused laser beam,where themain contributions
are aberrations caused by imperfect optical systems. In Figure 6.4a we depict a Fourier
optics calculation [192] of the profiles of the electric field amplitude being proportional
to the Rabi frequency of a resonant operation. We show the electric field around the
target ion position for an ideally focused Gaussian beam, but also for beams affected by
coma, spherical aberration and astigmatism [193]. The parametrization of the electric field
amplitude is Eϕ(x) = E(x) exp (iϕ), where x is the position in a plane orthogonal to the
beam propagation at the ion location and E(x) is a positive, real number. The magnitudes
of the aberrations in this example are chosen to give peak-to-valley wavefront distortions
of 2λ and do not necessarily reflect the situation in the experiment. Figure 6.4b shows the
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Figure 6.4: Electric field crosstalk. Fourier optics calculation of aberrations affecting a tightly focused
laser beam. We simulate light with a wavelength of λ = 729 nm illuminating an objective
with anaperturediameter of 40 mm anda focal lengthof 20 mm. Aberrations are introduced
by distorting the input wavefront, where the peak-to-valley phase deviation compared to
a plane wave amounts to 2λ. (a) In the upper left image the ideal electric field amplitude
E(x) of an aberration-freely focused Gaussian beam is depicted. The other color plots
show the effect of different types of aberrations, namely coma (upper right), spherical
aberration (lower left) and astigmatism (lower right). The increased diameter of the
field distribution leads to increased leakage light at neighboring ions. (b) Cut along the
horizontal axis of the field distributions shown in a) through the maximum intensity
point for the ideal and the three aberrated spots.
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Figure 6.5: Ion-string crosstalk amplitude. Measured ratio ε of crosstalk to target Rabi frequency for
resonant operations acting on all 16 qubits, with a maximum and mean next-neighbor
crosstalk ratio of 1.6× 10−2 and 0.9× 10−2 respectively.
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Figure 6.6: Ion-string crosstalk phase. Measurement of the phase difference between target and
crosstalk light field in a 16-qubit ion crystal. The crosstalk phase covers the whole interval
[0, 2π] for different target-neighbor-pairs, but is stable up to tens of degrees over hours.
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calculated electric field amplitude along the ion string, where an offset of zero corresponds
to the position of the target ion. In a 16-ion crystal the distances to neighboring ions in the
discussed setup are typically around 4µm. As a figure of merit for the magnitude of the
effect of this crosstalk we use the ratio ε = Ωn/Ω of the Rabi frequencies of the unintended
manipulation at a neighboring ion Ωn and the target operation Ω. In the experimental setup
under consideration the maximum nearest-neighbor crosstalk ratio is εmax = 1.6 × 10−2

while the mean over the register is εmean = 0.9×10−2 in a 16-qubit register with an axial trap
frequency of 400 kHz. The inter-ion distances range from 3.6µm in the center to 5.7µm at
the edge of the ion chain. Crosstalk ratios ε for the 16-qubit register are shown in Figure 6.5.
We neglect crosstalk to non-nearest neighbors in our model as the measured mean Rabi
frequency ratio is more than an order of magnitude lower than between direct neighbors.
It is crucial to note that the phase of the leakage light can significantly differ from the

phase of the light at the target ion position. Aberrations that distort the wavefronts at the
input of the focusing optics propagate to the ion string in the focal plane and lead to an
electric field distribution around the target ion with spatially variable phase. This phase
is experimentally accessible via a Ramsey-type experiment, where a superposition state is
prepared with leakage light by illuminating a neighboring ion and subsequently its phase
is analyzed by applying a resonant single-qubit operation with varied phase to the qubit
affected by crosstalk. As can be seen in Figure 6.6, the measured phase difference between
target and neighboring ion varies across the whole interval of all possible values [0, 2π] for
different target ions. The wavefront distortions likely stem from non-ideal alignment of the
optical setup and surface imperfections in the beam path, and therefore the phase difference
of neighboring ions is stable on the timescale of hours.
Based on the aforementioned experimental observations we model crosstalk noise as

follows in simulations: When a resonant single-qubit gate is applied to a target ion with
a rotation angle θ = Ωt, where Ω is the Rabi frequency and t is the gate duration, nearest
neighbor ions see a resonant operation with a rotation angle θn = εθ. After Pauli twirling
(see Appendix C.1), this leads to the incoherent error process

E(ρ) = cos2 εθ

2
ρ+ sin2 εθ

2

(
cos2 ϕXρX + sin2 ϕY ρY

)
(6.6)

for the neighboring ions, where ϕ is the light phase at the respective neighbor ion position.
As the phase relation between the light at the target ion and neighbor ion position varies
along the ion chain (see Figure 6.6), we average over all possible crosstalk phases to obtain
the incoherent noise channel

Ec1(ρ) = (1− pc1)ρ+
pc1
2

(XρX + Y ρY ) (6.7)

for each single-qubit crosstalk location. Here pc1 = sin2 εθ
2 with ε = 1×10−2 is the probability

that crosstalk induces an error on a neighboring qubit. Applying the same reasoning to
model crosstalk errors for two-qubit gates gives the channel

Ec2(ρ) = (1− pc2)ρ+
pc2
4

(XtXnρXtXn +XtYnρXtYn

+ YtXnρYtXn + YtYnρYtYn) (6.8)
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for any pair of target and neighbor ions denoted by subscripts t and n respectively with
pc2 = sin2 επ

4 . An illustration of all target-neighbor locations can be found in Figure C.1.
State preparation and measurement. Measurements in the Z basis are performed by

illuminating the ion chain with light resonant to the 4S1/2 to 4P1/2 transition, leading to
fluorescence light emitted by ions projected to |0〉 and no emitted photons from ions projected
to |1〉 [83]. Measurement errors are caused by the overlap between bright and dark count
distributions originating from the intrinsic overlap of the Poissonian distributions of dark and
bright state fluorescence counts and by the probability that an ion decays from themetastable
excited state during the detection time [74]. State initialization of the qubit to 4S1/2,mj=−1/2 is
achieved by frequency-resolved optical pumping on the quadrupole transition. The ions are
illuminated with light resonant to the transition from 4S1/2,mj=+1/2 to 3D1/2,mj=−3/2, while a
repumping laser is broadening the transition [194]. Typical probabilities for initialization
and measurement faults in the setup considered are around 3× 10−3 [83]. Both initialization
and measurement errors are again modeled as depolarizing noise. Therefore, the model is
the same as in Eqn. 6.4 with error probabilities pi = pm = 4.5× 10−3, corresponding to a flip
error probability of 3× 10−3 for initialization and measurement, respectively.
All of the above-mentioned noise models are discussed in more detail in Appendix C.1

alongside coherent overrotations and coherent crosstalk on MS gates. Since it is known that
QEC decoheres noise through encoding and stabilizer measurement, although coherent by
nature [195, 196], we mainly focus on incoherent noise in this manuscript.
Numerical methods. In Section 6.1.1.4, we estimate logical failure rates of logical state

preparation protocols by performing numerical simulations of both stochastic incoherent
Pauli noise models and coherent noise as described above. We provide results of numerical
simulations for logical failure rates under both depolarizing noise on single-qubit gates,
two-qubit gates, physical qubit initialization and measurement as well as an extended noise

model. It includes dephasing noise on idling qubits and crosstalk on both single- and
two-qubit gates on top of said depolarizing noise. We use stabilizer simulations [51] for Pauli
state preparation with incoherent noise and statevector simulations otherwise, i.e. either for
magic state preparation or when applying coherent noise to either type of state preparation.
If applicable, stabilizer simulations are advantageous since they allow for simulation of
Clifford circuits in polynomial time according to the Gottesman-Knill-theorem [50]. The
exponentially large n-qubit Hilbert space of dimension 2n poses a numerical challenge for
statevector simulations which run slowly and consume an exponential amount of memory
with growing number of qubits n. All simulations in this work are performed using a
modified version of the python package “PECOS” [197, 198]. The effect of incoherent noise
is treated by means of direct MC and SS which is an importance sampling technique. Both
methods have a preferential range of applicability: MC is used for larger physical error rates,
SS achieves accurate estimates with well-defined confidence intervals for lower physical
error rates and is especially useful for extracting scaling behavior (see Appendix C.2 for
details on both methods).

6.1.1.4 Protocols for FT advantage over physical qubits

The paradigm of FT circuit design holds the promise to maintain coherence within a
quantum computation where many physical qubits are involved and suffer the influence
of noise [31]: Faults on individual components of a quantum circuit must not cause errors,
which cannot be corrected by the QEC code, on the qubits holding the logical information.
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There exist errors E at the end of the circuit, resulting from faults which happen at locations
within the circuit, that have weight wt(E) larger than t = bd−1

2 c. They are thus uncorrectable
and will lead to failure of the QEC procedure. Here d = 2t+ 1 is the distance of the QEC
code and the weight is the number of qubits on which the error E acts. There will always
exist configurations of t + 1 faults that cause logical failure, i.e. lead to application of an
unintended logical operator when performing QEC because wt(E) > t.
Up to t faults can be in principle prevented from propagating to cause more than the

correctable amount of t errors by advantageous circuit design. By unfortunate circuit design
though, large distance logical states could also be corrupted by propagation of lower order
faults. In this case, one could encode into lower distance logical states directly instead of
using such circuits. We denote fault tolerance towards up to t faults as “level-t FT” or “FTt”.
Assume that faults at any circuit location happen independently with probability p. Then the
logical failure rate pL of FT implementations of a distance d QEC code scales as pL ∝ pt+1 in
the limit of low physical error rate p→ 0. For level-t FT all fault configurations up to order pt
must only cause correctable errors∗. Note that the weight of the error determines whether or
not it is correctable and the probability of occurrence for the microscopic fault configuration
that propagates to an uncorrectable error determines its order in the polynomial for pL.
In this work, we discuss FT schemes of level t = 1 which thus display a quadratic

dependence of the logical failure rate pL ∝ p2 as p→ 0. This scaling of FT implementations
is contrasting non-FT circuits or operation of physical qubits where single faults can cause
uncorrectable errors, thus leading to a linear scaling of the logical failure rate pL ∝ p at low
physical error rates p. Although FT circuits may involve more (noisy) qubits and gates than
their non-FT counterparts, fault tolerance ensures that there exists a regime of physical error
rates where the polynomial dependence leads to lower logical failure rates than non-FT and
physical qubit implementation [116, 156].

The Steane code [36] shown in Figure 6.7 is the smallest representative of the family of
topological color codes [142, 199]. As a [[7,1,3]] code, it encodes n = 7 physical qubits into
a single logical qubit with distance d = 3 allowing for correction of t = 1 arbitrary Pauli
errors while t+ 1 = 2 or more errors lead to logical failure [45]. It has low resource overhead
needed for FT universal qubit operations: Not only are all Clifford gates transversal and thus
inherently FT in the Steane code. Also, the non-Clifford T -gate can be added to the logical
gate set, for instance, by magic state injection [151]. Pauli rotations with angle π/4, i.e. the
T -gate, can be performed fault-tolerantly in this way as long as an appropriate magic state is
available as a resource. The injection circuit then only requires Clifford operations, which
are suitable for the Steane code as they respect the FT requirements stated above. Different
strategies for logical qubit initialization in the logical zero state and a logical magic state are
addressed in this section.
The logical qubit is encoded in the [[7, 1, 3]] Steane code defined by the six stabilizer

generators

KX
1 = X4X5X6X7 KZ

1 = Z4Z5Z6Z7

KX
2 = X1X3X5X7 KZ

2 = Z1Z3Z5Z7 (6.9)
KX

3 = X2X3X6X7 KZ
3 = Z2Z3Z6Z7

∗ While there might exist particular higher order fault configurations where faults annihilate each other and do
not cause uncorrectable errors, it cannot be guaranteed that all such faults only cause correctable errors.
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Figure 6.7: Steane code. Left: The Steane code is the smallest representative of the family of topological
color codes. As a [[7,1,3]] code, it uses seven physical qubits to encode a single logical
qubit with distance d = 3 allowing for correction of t = bd−12 c = 1 arbitrary Pauli error.
Physical qubits sit on the vertices of the graph. Stabilizer generators Ki are plaquettes
spanning four physical qubits with mutual overlap of two qubits and are given by Eqn. 6.9.
The X- and Z-type stabilizers are symmetric. Right: All gates of the Clifford group can be
implemented transversally and thus fault-tolerantly in the Steane code and larger distance
2D color codes.

which are symmetric under exchange of X and Z. Any code state |ψ〉L is a +1 eigenstate of
all stabilizers and thus stays invariant under application of any stabilizer. As a consequence,
Pauli operators acting on code states can be multiplied by stabilizers without changing
their effect on the code state. Two Pauli operators that only differ by multiplication with
stabilizers are thus called stabilizer equivalent. Since the stabilizer generators exclusively
consist ofX or Z operators each, the Steane code belongs to the class of CSS codes [115, 200].
The transversality of the Hadamard and the CNOT gates follows directly from these two
properties, respectively. The logical operators can be chosen as XL = X⊗7 and ZL = Z⊗7.
By multiplication with stabilizers they can be expressed as weight-3 operators reflecting the
fact that the Steane code can correct a single Pauli error. Single Pauli errors Xi and Zj on
any two single qubits i 6= j can be corrected independently, or – as a consequence – a single
Y-type error since Yi ' XiZi (for i = j). Each possible syndrome measurement outcome is
mapped to a unique recovery operation, which guarantees the correction of all single Pauli
errors, with a look up table as shown in Table 6.1.
However, this mapping becomes non-unique if weight-2 errors can also occur. If two

different errors map to the same syndrome then the recovery operation may cause erroneous
application of a logical operator as a result of the EC attempt. As an example of such a
logical failure, consider the error E = X3X5. The Z syndrome will be measured as −+−
and by the look up table we would apply R = X6 as a recovery operation. The total operator
RE = X3X5X6 is a logical operator since it is stabilizer equivalent to XL given above.∗

Transversal implementation such as for Clifford gates shown in Figure 6.7 directly ensures
that single faults will at most cause a weight-1 error in each encoded logical qubit because
transversal gates never couple two qubits from the same block. The weight-1 errors in each
block can then independently be corrected in QEC.

∗ The chained error and correction operators RE correspond toX applied to all physical qubits multiplied by all
three X-type generators RE = KX

1 K
X
2 K

X
3 XL.
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KZ
1 ,K

Z
2 ,K

Z
3 recovery R

+ + + I

+ +− X2

+−+ X1

+−− X3

−+ + X4

−+− X6

−−+ X5

−−− X7

Table 6.1: Look up table for the seven qubit Steane code as shown in Figure 6.7. + and − indicate
a positive and negative expectation value of the respective stabilizer operator. All six of
them form the error syndrome (KX

1 ,K
X
2 ,K

X
3 ,K

Z
1 ,K

Z
2 ,K

Z
3 ). Only the Z-type syndromes

and corresponding X-type recoveries are shown. Since the Steane code is symmetric under
exchange of X and Z, the Z-type recoveries from X syndrome measurements can be
applied analogously. The two three-bit syndromes (KX

1 ,K
X
2 ,K

X
3 ) and (KZ

1 ,K
Z
2 ,K

Z
3 ) are

sufficient to correct all single Pauli errors.

In this work, we use unitary encoding circuits for the initialization of logical qubits. This
is in contrast to initialization procedures which rely on in-sequence stabilizer measurements
and feed-forward of syndrome information. Unitary encoding circuits typically prepare
logical stateswith fewer entangling gates at the cost of needing large connectivity between the
data qubits which is provided natively in our trapped-ion architecture. These circuits allow
for deterministic preparation of the code state since they avoid data qubit measurements
altogether. Nonetheless, due to the large degree of inter-qubit connectivity, faults that
happen on entangling gates might propagate throughout the circuit and cause uncorrectable
errors as a result. This is illustrated e.g. for the encoding circuit in Figure 6.8. For FT state
preparation in the Steane code the goal is to avoid such single fault events being able to
cause weight-2 errors to occur on the final data qubit state. We can achieve FT by making use
of recently introduced flag circuits [111, 112]. Here, additional auxiliary qubits called flag
qubits are coupled to the data qubit block. Their measurement outcomes herald the potential
presence of uncorrectable errors on the data qubit state. We refer to a flag measurement of
−1 as a “triggered flag” and call the +1 measurement outcome a “clear flag”.
In the remainder of this section, we analyze both deterministic and non-deterministic

protocols for FT state preparation. Deterministic protocols, although they may contain
measurement operations, always terminate with the data qubits prepared in the desired
logical state in each individual protocol execution. They are designed to tolerate all possible
faults of orderO(p1) (FT1).With non-deterministic protocols instead, a fraction of preparation
runs is discarded when measurements of one or more flag qubits indicate that an erroneous
state has been prepared. This cannot be foreseen a priori due to the stochastic nature of
noise. Depending on whether the chosen protocol is deterministic or not, a flagged state
is either corrected using an appropriate recovery operation, or is discarded. This recovery
operation is chosen conditioned on triggered flags and is different from the look up table 6.1
used when flags are clear. Non-deterministic protocols typically exhibit lower logical failure
rates as they contain fewer gates at the cost of repeatedly executing the circuit in case of
triggered flags. On the other hand, deterministic protocols perform worse due to their larger



122 characterization and modeling of spatially correlated noise

Figure 6.8: Pauli state preparation circuits. The logical zero state of the Steane code can be initialized
usingMS gates and single-qubit rotations about theX and Y axes. After the first block the
|0〉L state is prepared non-fault-tolerantly (non-FT) on the data qubits 1 to 7. An example
of a single Z1 fault which can cause an uncorrectable error is shown as 12-cornered star
(blue). The second block, shaded gray, couples to an additional flag qubit which heralds
successful FT state preparation. The Z1 will propagate and trigger the flag. When the flag
qubit is clear, it is guaranteed that |0〉L is prepared up to a weight-1 error. Crosstalk faults,
such as X3X5 (red 8-cornered stars), can devastate the FT property (cf. Section 6.1.1.5).
Initialization of physical qubits as |1〉 is done by first initializing them as |0〉 and then
performing anX rotation of angle π. The last two gatesQ† andR† (shaded grey) of the first
block are only needed for non-FT but not for FT state preparation. General propagation
rules for Pauli faults through MS gates are shown in the lower panel.

qubit overhead or circuit depth. In the remainder of this section we theoretically investigate
both types of protocols for Pauli and magic state preparation. For the non-deterministic
preparation circuits used in the experiment [128], we provide a scaling analysis of their
logical failure rates dependent on physical error parameters in order to estimate how much
improvement of physical operations is needed to experimentally achieve lower infidelities
than physical qubits.

6.1.1.4.1 Non-deterministic state preparation

In the following, we introduce and discuss circuits for non-deterministic FT state preparation
for both Pauli and magic states. For both types of states we provide an evaluation of logical
failure rate scaling with physical error parameters obtained via numerical simulations of
the two different noise models described in Section 6.1.1.3.2. We assess the performance
of FT protocols compared to physical qubit operations to estimate break-even points of FT
advantage, i.e. identify for which physical error parameters the infidelity of logical states is
lower than their respective physical qubit counterparts.
Logical Pauli states. The circuit shown in Figure 6.8 is used to prepare the |0〉L state

which is the +1 eigenstate of the logical Z operator ZL and also – as any code state – the
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+1 eigenstate to all stabilizers including the generating plaquette operators in Figure 6.7
[110, 170]. The entangling MS gates prepare the plaquette eigenstates in an interleaved way
which minimizes the number of gates. MS gates 1, 3 and 7 prepare K2, MS gates 2, 6 and
8 are needed for preparation of K3 and MS gates 4, 5 and 8 are involved in preparing K1

(counting left to right and top to bottom) [201]. After executing the first block of the circuit,
the state is prepared non-fault-tolerantly, meaning that single faults can still corrupt the
|0〉L state, e.g. the fault Z1 after the third MS gate would propagate to the uncorrectable
error X1X3 at the end of the first block. Fault tolerance is achieved by running the second
block which acts as verification. Here, the flag qubit couples to the data qubits, effectively
measuring a weight-3 logical Z operator. This logical Z operator must be chosen such that
any weight-2 error resulting from a single fault will trigger the flag. If the flag is triggered
the state is discarded and another trial must be run until the flag is clear. The flag qubit
measurement heralds uncorrectable errors such as the one caused by the aforementioned
Z1 fault. The error will propagate through the second MS gate of the verification block to
X1X3Xf so that the flag will be triggered.
Crosstalk is known to be a major source of failure in ion trap quantum computers as

described in Section 6.1.1.3. The effect of crosstalk in general does not respect the FT circuit
design principle [83, 172, 202]. As an example, consider the FT Pauli preparation circuit in
Figure 6.8. Here, a X3X5 crosstalk fault can occur after the fifth MS gate under the noise
channel in Eqn. 6.8. It will propagate through the circuit and cause an uncorrectable weight-2
X error on the data qubits without triggering the flag. This illustrates that even though
logical failure rates of FT circuits are expected to scale quadratically, there exists a linear term
in the expansion of pL caused by dangerous crosstalk fault locations which will eventually
destroy the advantageous scaling behavior (for more details on the microscopic crosstalk
noise model and its fault operators see Appendix C.1).

After successfully preparing the logical zero state |0〉L, any of the remaining five cardinal
states on the Bloch sphere |1〉L , |+〉L , |−〉L , |+i〉L and |−i〉L can be reached by subsequently
applying the appropriate logical single-qubit rotation to |0〉L. As all Clifford gates can be
realized transversally and are thus FT in the Steane code, so is the full preparation procedure
for any of the six Pauli states.
Logical magic state. It is known that Clifford gates are not sufficient to implement single-

qubit rotations of an arbitrary angle on the Bloch sphere. Therefore, the Clifford gates alone
cannot be used for universal quantum computation. In order to reach universality, the
Solovay-Kitaev-theorem states that any point on the logical Bloch sphere can be reached
with in principle arbitrary precision when a π/4-rotation about an arbitrarily-chosen axis is
available [203, 204]. We choose to implement a logical T -gate as

TL = exp
(
−i
π

8
YL

)
(6.10)

a rotation about the Y axis because the corresponding magic state

|H〉L = cos
(π

8

)
|0〉L + sin

(π
8

)
|1〉L . (6.11)

is the +1 eigenstate to the logical Hadamard operator HL. Thus, the logical magic state
can be prepared by FT measurement of HL which will project the data qubit state onto
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Figure 6.9: Non-FT magic state preparation circuit. The physical magic state is prepared on qubit
3 and then grown into the encoded |H〉L state of the Steane code. Hermitian-conjugate
rotation operators amount to rotations in the respective opposite direction. For coherent
rotation noise simulation, the direction of rotation affects the overall logical failure rate.

|H〉L if the measurement outcome is +1. When |H〉L is available, TL can be implemented
by magic state injection, which only requires Clifford gates [119]. Because all Clifford gates
are transversal in the Steane code, preparing |H〉L fault-tolerantly with high fidelity is the
crucial step for implementing the FT universal gate set.
The principle of repeat until success is also employed for magic state preparation in the

non-deterministic protocol given by Ref. [119]. The circuit in Figure 6.9 prepares the magic
state |H〉L non-fault-tolerantly, analogous to the first step of FT Pauli state preparation.
Verification of the prepared state consists of two steps. First, the logical Hadamard operator
is measured, which projects the data qubit state to theHL axis. The flag circuit shown as part
of the sequence in Figure 6.10 is used to measureHL fault-tolerantly. Any dangerous fault
which could occur on the measurement qubit in this block will trigger the flag. Transversality
of HL ensures that faults on single data qubits will not spread to higher-weight errors.
The measurement qubit itself is also interpreted as a flag in this protocol so that a run
that prepares the −1 eigenstate of HL is discarded as well. Second, one round of FT
parallel stabilizer readout, given in a CNOT version by Ref. [120], flags all other potentially
dangerous faults. In this step, we measure X and Z stabilizers in an interleaved way, which
is more resource-efficient because of its reduced number of 28 entangling gates compared
to sequential stabilizer measurements (at least 48 entangling gates). Firstly two Z and
one X stabilizer, KX

2 , K
Z
1 and KZ

3 , are measured; then, in the second half, the remaining
stabilizersKZ

2 , K
X
1 andKX

3 are measured via one auxiliary qubit each. The auxiliary qubits
are coupled to each other by four additional entangling gates. The interleaved arrangement
of entangling gates used for each of the individual stabilizer measurements permits that
the auxiliary qubits act simultaneously as both readout and flag qubits. This means that
the circuit can be used for error detection: If an error is already present before running
the circuit, the auxiliary qubits will indicate a non-trivial syndrome. If a dangerous fault
happens during the circuit and it acts on an otherwise ideal input state, the auxiliary qubits
act as flags and will be triggered. Thus the circuit can be used to verify that the logical qubit
is in the +1 eigenstate of all stabilizers, without introducing additional faults if all flags are
clear. All three blocks as shown in Figure 6.10 need to be run and the state is accepted only
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Figure 6.10: Fault-tolerant magic state preparation circuit. The logical magic state is prepared fault-
tolerantly after executing all three circuit blocks. Single-qubit Z rotations are absorbed
into phases of MS gates and single-qubit rotations∗. (a) Non-FT magic state preparation
is followed by a flag-FT measurement of the logical Hadamard operator. The flag qubits
herald dangerous faults which may happen during preparation or measurement. Note
that the single-qubit rotations in the non-FT preparation block differ from Figure 6.9
since they were optimized in conjunction with the subsequent Hadamard measurement
block. (b) Flag-FT parallel syndrome readout circuit. Auxiliary qubits act as flags. If
any flag is measured as −1 the state is discarded. (c) Phase-shifted MS gates with six
different phases on their respective data qubit are used in the circuit (cf. Figure 6.2).
(d) Sequence of logical building blocks of the FT magic state preparation protocol acting
on data qubits and flag qubits.

∗ For an accepted state the single-qubit Z rotations R(1)
Z (−3π/4)R(2)

Z (−3π/4)R(3)
Z (−π)R(4)

Z (−3π/4)R(5)
Z (−3π/4)

R
(6)
Z (π/4)R

(7)
Z (−π/4) need to be applied (in software) to the data qubits 1 to 7.
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if none of the eight flag qubits is triggered. The compiled version of this protocol into MS
gate circuits contains single-qubit Z rotations and thus the phases ϕ1, ϕ2 of the MS gates
MSϕ1,ϕ2(−π/2) and the phase ϕ of single-qubit rotations R(ϕ, θ) in Figure 6.10 are adjusted
as described in Section 6.1.1.3.1 (also see Eqns. C.43 and C.44).
Scaling results. As illustrated above, the regime of advantageous FT implementation is to

be found at low physical error rates due to its quadratic scaling behavior with physical error
rate as compared to linear scaling of physical qubits or logical error rates of non-FT protocols.
In order to demonstrate the capabilities of FT state preparation protocols to outperform
non-FT implementations, we show the scaling of logical failure rates dependent on the
set of physical error rates described above. We provide an easily accessible overall idea of
scaling behavior, such that we can estimate the necessary improvements of trapped-ion
operation fidelities, by introducing a single parameter λ to uniformly scale all physical error
parameters as

λ · (p1, p2, pi, pm, . . . ). (6.12)

Claiming FT advantage over physical qubits must be specifically justified for a given
hardware implementation because in different experimental setups one encounters different
physical phenomena, which realize the physical gate operations or even the physical qubit
to begin with. One criterion to judge upon FT advantage, suggested in Ref. [164], is that
the logical operation realized within a given hardware architecture should be compared to
the corresponding physical operation as it could be realized in exactly that same hardware
architecture. For the initialization of the logical qubit, we compare logical zero state
preparation to the physical qubit initialization error rate and logical magic state preparation
to first initializing the physical qubit to |0〉 followed by a physical Y rotation by an angle π/4,
which is the most straightforward way to prepare the physical magic state |H〉 = T |0〉. Here
we opt to provide the said comparison with the same physical error parameters achieved in
our ion trap setup for both the logical and corresponding physical operation.∗ Additionally
to the, more rigorous, comparison of logical to physical operations, another break-even
criterion is derived from comparing logical failure rates with the MS gate error rate p2, as
done previously e.g. in Refs. [205] and [206], since the overall noise in our experiment is
dominated by the error rate p2.†
Our definition of the logical failure rate pL(λ) is the logical infidelity 1− FL. It reflects

the probability to falsely conclude, by measurement of logical operators, that the desired
state has been prepared correctly (up to correctable errors) when in fact the wrong logical
information is output on the data qubits. The logical fidelity FL is determined by the
expectation value of the projector P±O onto the respective axis O ∈ {ZL, HL} of the logical
Bloch sphere

P±O =
I ±O

2
(6.13)

∗ Another possibility is to compare to the best possible hardware implementation of the corresponding physical
operation. In our ion trap even lower physical error rates could be achieved with smaller ion registers.

† Rigorous comparison with p2 in the sense of Ref. [164] would require comparing a physical CNOT gate to an
error-corrected logical CNOT gate. In our architecture wemay realize the logical gate by seven transversal CNOT
gates followed by a round of QEC on both logical qubits. We note that the logical error rate of this approach is
dominated by the QEC block since it contains most of the procedure’s entangling gates. As a consequence, the
logical error rate of a QEC block serves as a proxy to the full logical CNOT gate error rate.
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for the logical zero or the logical magic state respectively. For a single preparation of the |0〉L
state, the expectation value 〈PZL〉 after one round of ideal EC may only take the values 0 or 1.
DangerousX errors are either correctly recovered from or will result in a logicalX operator
after ideal EC (〈0|1〉 = 0, 〈0|0〉 = 1). For the logical magic state, logical errors of all three Pauli
typesX, Y andZ can be present on the state after ideal EC. A logical Y flip causes the output
state to flip from the correct magic state |H〉L to the orthogonal −1 Hadamard eigenstate
|−H〉L (〈H|Y |H〉 = 0). Logical X- and Z-flipped states still have finite overlap with |H〉L
thus contributing a finite value to the logical infidelity (〈H|X|H〉 = 1/

√
2, 〈H|Z|H〉 = 1/

√
2).

We discuss fidelity measures further in Section 6.1.1.6. For flag circuits, all preparation
rounds, which trigger a flag and are thus discarded, do not contribute to the logical failure
rate.
In Figure 6.11a we show the uniform scaling of all physical error parameters with the

scaling parameter λ ∈ [10−4, 101] for the non-FT and FT Pauli state preparation compared to
physical qubit parameters. The first is the rate 2pi/3 at which depolarizing noise of strength
pi causes failure of initializing a physical qubit to |0〉. The second is the MS gate error rate p2.
We observe that the FT preparation achieves lower logical failure rates than both the non-FT
preparation and physical MS gate error rate for all values of λ. It is larger than the physical
qubit initialization error rate for λ & 0.3 and lower than the physical qubit initialization error
rate for λ . 0.3. Within the interval λ ∈ [10−1, 101], i.e. with one order of magnitude stability
around the experimentally achieved physical error parameters at λ = 1, the simulations with
the four parameter depolarizing noise model quantitatively agree with the extended noise
model. It is only at very low physical error parameters λ . 10−1 that the extended noise
simulation deviates from the depolarizing noise estimation. This is because crosstalk, which
does not respect the FT properties of the circuit, becomes the dominant source of failure in
this domain. The scaling becomes linear here with extended noise whereas the quadratic
scaling of depolarizing noise continues for all λ→ 0. In this regime of low λ, we cannot rely
on predictions made from the depolarizing noise model. In the experimentally accessible
regime around λ = 1 the depolarizing noise prediction is as reliable as the extended noise
model.
It is known from previous investigations of incoherent noise in general and crosstalk in

particular that incoherent Pauli noise may underestimate logical failure rates [172, 207–209].
For the experimental error parameters at λ = 1 coherent overrotation noise on MS gates
in the FT Pauli state preparation circuit causes an infidelity of 0.0116(7) which is larger
than the incoherent depolarizing noise 0.0076(5) or an incoherent XX-overrotation channel
0.0082(6). When also adding coherent XX-type crosstalk, as given by Eqn. C.58, infidelity
increases to 0.0141(7), while the experimentally measured value is 0.012+5

−4.
The scaling behavior of the magic state preparation protocols, which we show with

depolarizing and extended noise in Figure 6.11b, exhibits qualitatively similar features as
the Pauli state preparation described above. In our setup, the physical qubit criterion of first
initializing the qubit to |0〉 and then applying a physical T -gate is stricter than claiming to
beat the MS gate error rate p2 for our specific physical error parameter values. Both physical
qubit criteria yield lower pL than the non-FT circuit for all observed values of the uniform
scaling parameter λ. Remarkably, the simulation data for the FT magic state preparation
suggests that its logical failure rate pL is lower than for both physical operations within the
full λ-interval. In the regime of low physical error rates λ . 0.03 we find that the advantage
of the FT implementation over both physical qubit criteria, i.e. the offset between the parallel
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Figure 6.11: Logical state scaling. Uniform scaling with a factor λ of all physical error parameters
in the non-FT and FT state preparation circuits alongside with parameters of physical
qubits (both initialization – gray, dotted – and entangling operation – gray, solid). For
numerical simulations, we employ direct MC (cross markers) and SS (triangle markers)
with subsets up to wmax = 3 in their preferential domain of physical error rates (see
Appendix C.2 for a more detailed discussion). At the experimentally achieved rates
λ = 1 (star marker) the models coincide in their prediction of logical failure rates
within uncertainty intervals. (a) Pauli state. We compare the extended noise model
containing idling and crosstalk (solid lines with markers) to depolarizing noise on single
and two-qubit gates, initialization and measurements (dashed lines with markers). For
each MC data point and subset failure rate we sample at least 100 times and until the
uncertainty of the respective logical failure rate estimator is below a relative error of
0.5 but at most 104 times. (b)Magic state. Logical failure rates using the extended noise
model and the depolarizing noise model are shown. We sample at least 100 times for
each MC data point and subset failure rates of the non-FT circuits and the FT circuit with
extended noise. For the FT circuit with depolarizing noise we use at least 1000 samples
for each subset failure rate. We sample at most 104 times for the non-FT circuits and up
to 105 times for the FT circuits or until a relative error of 0.3 for the FT circuit under
depolarizing noise and 0.5 for the other cases is reached. The left-most MC data point of
the FT depolarizing line is obtained from 2× 105 samples. For FT preparation at λ = 101

the logical failure rate decreases again which is related to the fact that most runs are
discarded.
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lines, is of more than one order of magnitude. This implies that we surely beat the physical
qubit criteria despite the destructive phase averaged crosstalk noise.

From the preceding analysis we conclude that the depolarizing noise model is well
suited to predict experimentally measured logical infidelities. With future improvements
of physical ion trap operations, more complex noise models should be taken into account.
Only moderate experimental improvements, smaller than one order of magnitude, are
needed in order to reach FT advantage over physical qubits judged by comparison with the
corresponding physical qubit state preparations. We now move on to discuss deterministic
protocols for FT state preparation.

6.1.1.4.2 Deterministic state preparation

The FT state preparation procedures discussed so far can be modified such that state
preparation is deterministic, i.e. states never need to be discarded. If the acceptance rate of a
non-deterministic protocol becomes too low, they might become experimentally unfeasible,
e.g. due to cycle time constraints, although the fidelity of accepted states is high. With
sufficiently low physical error parameters, the additional qubit and gate overhead that
deterministic protocols require may not cause a severe increase of logical failure rates. The
deterministic protocols for Pauli and magic state preparation, which we will discuss, make
use of the fact that the flag has been triggered which limits the number of errors which can
be present on the data qubits. The measurement information of the flag qubit is used to
conditionally apply additional operator measurements. As long as all errors that are not
stabilizer equivalent can be distinguished by those measurements, the combined flag and
syndrome information can then be used to correct all errors that are caused by single faults
in the circuit, thus preserving the FT property.
Logical Pauli state. In the following we lay out a new protocol for deterministic FT Pauli

state preparation. The desired |0〉L state can still be recovered even when the flag is triggered
instead of discarding the flagged state as in the non-deterministic case. While a single error
is still tolerable, a weight-2 error leads to application of an erroneous recovery operation
which causes logical failure when using the look up table decoder from Table 6.1. Instead, we
may extend the look up table decoder to prioritize two-qubit recovery operations when the
flag is triggered. These two-qubit errors make up the so-called flag error set. By exhaustively
placing all single faults on the FT encoding circuit, we find that only two dangerous data
qubit errors, namely X1X3 and X4X5, that are not stabilizer equivalent can propagate to
the final data qubit state. For example, they can be caused respectively by faults Y1X3 on
the last MS gate and Z4X5 on the fifth MS gate of the non-FT block in Figure 6.8 which also
trigger the flag. All other resulting data qubit errors are, if not stabilizer equivalent to either
X1X3 orX4X5, equivalent to a weight-1 error or a logical Z operator. The latter acts trivially
on the logical zero state that is being prepared. Additionally, given that the flag is triggered,
we find that the only weight-1 errors that can result on the data qubits from a single fault
are X3, X5 and X6.
The two dangerous errors X1X3 and X4X5 can be distinguished by measuring only two

additional stabilizers. Their syndrome will not be confused with the syndromes of the
single-qubit errors because the triggered flag restricts the number of errors that can occur. A
pictorial illustration of the protocol with stabilizer measurement conditioned on the classical
flag information is shown in Figure 6.12a. For the correction procedure, the look up table 6.2
can be applied.
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Figure 6.12: Deterministic FT state preparation. Schemes with logical building blocks acting on
registers of data qubits and auxiliary qubits. Shaded blocks are only applied conditioned
on classical measurement information. (a) |0〉L: The non-FT encoding and verification
blocks (|0〉nFT and V , see Figure 6.8) are followed by additional measurements of Z
stabilizers if the flag is triggered. Measuring with a single auxiliary qubit is sufficient to
preserve the FT property of the scheme. A recovery operation R is applied according to
the modified look up table 6.2 depending on how many stabilizers are measured (block
KZ

nFT). When the flag is clear no additional measurements and recovery are performed.
(b) |H〉L: Non-FT magic state preparation is followed by three repetitions of Hadamard
measurement and FT EC. The last EC block is only executed if the third Hadamard
measurement yields a non-trivial result. Finally, a logical Y flip (block Y ) is applied to
the data qubits if the Hadamard expectation value is measured as −1 in the second and
the third round. (c) Four flag qubits are necessary to correct all dangerous errors that
can happen during the Hadamard measurement. Our compiled MS gate circuit used to
measure the logical Hadamard operator is shown in (d). If and only if the flag pattern
f0, f2, f3 ∈ {− + −,− − +,− − −} the extra operation F = H1H3H4 must be applied
immediately after the Hadamard measurement to guarantee error distinguishability (see
example in Appendix C.3). (e) If and only if the FT parallel syndrome readout (block
KFT, see Figure C.4) flags we proceed by measuring the syndrome with single auxiliary
qubits (KnFT, see Figure C.5). The recovery R is chosen from the Hadamard error set
(Table C.1) when any flag ofMH is triggered. Otherwise, R is determined by the flag
error set {X3X7, X4X6, Z3Z7, Z4Z6} if a matching syndrome, −+ + or + +− for X or
Z stabilizers respectively, is measured, otherwise the standard Steane code look up table
6.1 is applied.
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Figure 6.13: Deterministic Pauli state scaling. Uniform scaling under extended noise with a factor λ
of all physical error rates for the FT flag preparation circuit of |0〉L and the deterministic
extension where stabilizers are measured with single auxiliary qubits. For each of the
105 MC samples, the preparation is repeated until the flag qubit is clear. The non-
deterministic circuit yields lower logical error rates then the deterministic procedure.
Since both scale quadratically, there will not be a crossover point at lower λ. The lines for
measuring two and three stabilizers lie on top of each other.

data qubit error KZ
1 KZ

2 ,K
Z
3 R2 KZ

123 R1

X1X3 + +− X1X3 − X7

X4X5 + −+ X4X5 − X7

X6X7 + −+ X4X5 − X7

X6 − +− X1X3 + I

X5 − −+ X4X5 + I

X3 + −− X3 + I

Table 6.2: Modified look up table for deterministic Pauli state preparation. It is used instead of
Table 6.1 if and only if the flag is triggered. All errors can be corrected, allowing for a
residual weight-1 error, when measuring either the single stabilizerKZ

123 = Z1Z2Z4Z7 or
the two stabilizersKZ

2 = Z1Z3Z5Z7 andKZ
3 = Z2Z3Z6Z7 or all three stabilizer generators,

includingKZ
1 = Z4Z5Z6Z7. The recovery R1 is applied when onlyKZ

123 is measured. R2 is
the recovery operation whenKZ

2 andKZ
3 are measured.

Applying the recovery R2 = X4X5 when measuring the reduced syndrome (KZ
2 ,K

Z
3 ) =

−+ will not cause a logical failure because either the X4X5 error is corrected or the product
of error and recovery will be X4X5X5 in case the data qubit error was X5. The result is the
weight-1 error X4 so FT is respected. From this example, we see that measuringKZ

1 is not
necessary to correct the weight-2 errors. The same holds if the actual error is X6X7 since it
is stabilizer equivalent to X4X5.

Moreover, we find that measuring only the stabilizer operatorKZ
123 = KZ

1 ×KZ
2 ×KZ

3 =

Z1Z2Z4Z7 is sufficient to neutralize the dangerous weight-2 errors. As shown in Table 6.2,
its expectation value is +1 for the correctable weight-1 errors and −1 for both uncorrectable
weight-2 errors. By applying the recovery operation R1 = X7, both errors X1X3 and X6X7

are turned into correctable weight-1 errors X5 and X6 respectively. Note that a single
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Figure 6.14: Repetition overhead for non-deterministic state preparation. Averaged number of repeti-
tions until the prepared state is accepted, i.e. all flags measured as +1. Preparation of the
magic state |H〉L on average needs more trials than the Pauli state |0〉L. Deterministic
state preparation schemes succeed after a single run by definition. Uncertainties on data
points are smaller than the marker sizes.

auxiliary qubit is sufficient for syndrome readout since an additional fault happening in
this step – on top of the fault that already happened to trigger the flag – would render
the overall fault configuration to be of order p2 so FT1 is not violated. The result of these
additional measurements is a deterministic FT way to prepare the logical zero state of the
Steane code. Given the flag has been triggered, we are able to correct all weight-2 errors
possibly present on the data qubit state by measuring a reduced set of stabilizers∗. Of course,
it is also possible to measure all three stabilizer generators and by the full three-bit syndrome
uniquely distinguish all weight-1 and weight-2 errors given in Table 6.2.
Analogously to the previous scaling analysis, we show the scaling behavior of the

deterministic and non-deterministic FT Pauli state preparation in Figure 6.13. The uniform
scaling parameter λ of all physical error parameters, including crosstalk, varies between 0.1

and 3. Both schemes scale quadratically in this interval due to their FT property. Nonetheless
the non-deterministic scheme, where only non-flagged states are accepted, has a logical
failure rate one order of magnitude lower than the deterministic schemes where either
two or three stabilizer measurements are performed in case the flag is triggered. It is
ensured that there cannot be another crossover point at lower values of λ since the vertical
offset between the curves is determined by the coefficient of the quadratic term. Figure
6.14 shows the average number of times the non-deterministic preparation needs to be
repeated until the state is accepted. While for the deterministic scheme this value is equal to
one by construction, we see that for increasing λ ∈ [0.1, 3] the mean number of necessary
repetitions moderately grows from 1.020(1) to 1.563(6) which is feasible for experimental
implementation. The number of repetitions translates to an increase of required entangling
gates, shown in Figure 6.15, from approximately 11 to 17.2 for the non-deterministic protocol
and from approximately 11 to 12.5 for the deterministic protocol on average. In case of a

∗ We note that the measurement of the flag qubit and the auxiliary qubit forKZ
123 can be avoided completely so

that the state preparation circuit works deterministically without in-sequence measurements or feed-forward of
measurement information by applying the R1 recovery through a Toffoli gate controlled by the two auxiliary
qubits. The FT property remains intact this way since the Toffoli only couples to a single data qubit.
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Figure 6.15: Entangling gate overhead for FT logical state preparation. Averaged number of entangling
gates needed until the prepared state is accepted. For the non-deterministic protocols
this amounts to all flags being clear. Deterministic protocols realize different circuit
sequences depending on in-sequence measurement outcomes. The increase in average
MS gate count is moderate for the deterministic protocols. For the non-deterministic
FT magic state preparation the increase is over two orders of magnitude. It requires
fewer MS gates on average than the deterministic FT magic state preparation protocol
for λ . 0.8. Uncertainties on data points are smaller than the marker sizes.

triggered flag, the deterministic protocol will proceed with just the measurement ofKZ
123,

requiring 4 additional MS gates, instead of repeating the preparation circuit with 11 MS
gates.
We conclude that using the non-deterministic state preparation protocol is preferable in

the examined range of λ and below since it yields logical failure rates one order of magnitude
lower than the deterministic state preparation at the cost of a moderate number of repetitions,
given that the necessary repetition times are permitted by other experimental constraints.
Logical magic state. The protocol for deterministic FT magic state preparation has been

pointed out in Ref. [119]. We provide a compiled version into MS gates visualized in
Figure 6.12b and discuss the expected performance for current and anticipated future
trapped-ion physical error parameters.
After preparing the logical magic state non-fault-tolerantly, we measure the logical

Hadamard operator three times, each involving the use of four flag qubits to distinguish
all possible errors resulting from a fault triggering flags. The measurement circuit labeled
MH is shown in Figure 6.12c with the detailed MS compilation given in Figure 6.12d.
For the flag patterns, i.e. combinations of flag qubit measurement outcomes, f0, f2, f3 ∈
{−+−,−−+,−−−} an additional operator F = H1H3H4 must be applied to guarantee
error distinguishability. Hadamard-type errors on four data qubits, which can arise from a
single X fault on the measurement qubit of the circuit in Figure 6.12d, cannot be corrected
using the six-bit syndrome if F were not applied. Triggered by the aforementioned flag
patterns, F transforms a dangerous error into a lower weight error which can then be
corrected by the subsequent EC block (see an explicit example in Appendix C.3).

After each Hadamard measurement, a full round of FT EC must be performed before the
logical Hadamard can bemeasured again. The EC block, shown in Figure 6.12e consists of the
flag-FT parallel readout circuit (KFT) which we previously used to discard erroneous states



134 characterization and modeling of spatially correlated noise

Figure 6.16: Deterministic magic state scaling. Comparison of deterministic and non-deterministic
FT magic state preparation for physical error rates uniformly scaled with parameter
λ. The significant overhead of the deterministic scheme leads to a logical failure rate
approximately two orders of magnitude larger than for the non-deterministic scheme
at low λ. For the deterministic scheme we use (1000, 104, 105) samples for the data
points at (λ > 0.1, 0.01 < λ ≤ 0.1, λ = 0.01). For the non-deterministic scheme we use
(1000, 104, 105) samples for the data points at (λ > 1, 0.1 < λ ≤ 1, λ = 0.1).

in the non-deterministic protocol. Now, it is followed by an additional block of syndrome
readout with single auxiliary qubits (KnFT, compiled with the CNOT decomposition of
Figure 6.2c) in case any flag is triggered. If the flags ofMH are triggered and the syndrome is
not trivial we apply a recovery operation according to the Hadamard look up table C.1 given
in Appendix C.3. Here, the full six-bit syndrome is necessary to identify the correct recovery
operation despite the CSS property of the Steane code. If all Hadamard flags are clear or
the syndrome is not in the Hadamard look up table but the parallel readout circuit KFT
yields a triggered flag, we make use of the flag error set FES = {X3X7, X4X6, Z3Z7, Z4Z6} to
correct weight-2 errors of both X- and Z-type informed by the Z andX syndrome measured
by KnFT respectively. The flag error set is formed by all dangerous errors that can result
from single faults in the KFT-block that trigger a flag. If the syndromes measured by the
two blocks KFT and KnFT agree, we apply the recovery from the standard look up table
(Table 6.1). The third EC block can be omitted in case the third Hadamard measurement
yields a +1 measurement outcome and no flags are triggered.

In the end, a logical YL-correction is applied dependent on the three Hadamard measure-
ment outcomes. It is applied if the three consecutive Hadamard measurements are either
−−− or +−−, otherwise no additional correction is applied. These corrections take into
account logical operators that can arise from single faults in the non-FT preparation circuit
(Figure 6.9) already. A detailed derivation is given in the Appendix of Ref. [119].

As for the logical zero state, we show the comparison of logical failure rates achieved by
the deterministic and non-deterministic protocol over the uniform scaling range λ ∈ [0.1, 3]

and subjected to extended noise in Figure 6.16. While the non-deterministic scheme scales
quadratically over the entire range of λ, the deterministic scheme just transitions towards
quadratic scaling at low physical error parameters. For λ ≤ 1 the advantage in logical failure
rates of the non-deterministic over the deterministic scheme is as large as approximately
two orders of magnitude. This is due to the gate overhead that the deterministic scheme
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requires. On the other hand, employing the non-deterministic scheme demands a repetition
overhead which we show in Figure 6.14. Although at low λ the mean number of repetitions
until the FT magic state is accepted approaches 1, at scaling factors λ = 1 and λ = 3 we
need approximately 5 and 63 repetitions on average respectively. From Figure 6.15, it is
clear that the number of necessary MS gates also increases drastically through the repetition
procedure. While the non-deterministic protocol requires only 56 MS gates at λ = 0.1 on
average, the deterministic protocol uses on average approximately 113 MS gates at λ = 0.1

and 198 MS gates at λ = 3 due to more frequent flag events and thus more realizations of the
full EC sequence. Due to the larger number of repetitions at λ = 3 the mean number of MS
gates increases to a large value of approximately 3010. At λ = 1 the deterministic protocol
requires approximately 182 MS gates on average; slightly less then the approximately 232
MS gates needed on average for the non-deterministic protocol.

The trade-off between deterministic and non-deterministic protocols includes on the one
hand preparing the logical state with high fidelity while on the other hand also keeping
acceptance rates high or equivalently keeping the required number of circuit repetitions
sufficiently low. For the FT magic state preparation the trade-off between logical fidelity
and gate overhead is more pronounced than for the Pauli state. In order to use the non-
deterministic protocol in an experimental realization and benefit from its low logical failure
rate, one must be able to tolerate the potentially large repetition overhead for the algorithm
aimed to be performed. When the deterministic protocol is used, the runtime of a quantum
algorithm can be bounded at the expense of the large gate overhead which deteriorates the
resulting logical failure rate compared to the non-deterministic protocol.
For scale-up to multiple logical qubits, scheduling aspects may become relevant for

the specific physical architecture at hand. Deterministic logical state preparation can be
performed in parallel, if the experiment permits, and all logical states will be prepared
after constant time. When L logical qubits are prepared non-deterministically, the waiting
time until all logical qubits are verified is limited by the logical qubit which needs the
most repetitions until accepted. On average, preparing the qubits non-deterministically is
advantageous if the average number of repetitions (see Figure 6.14) for a given set of physical
error parameters aλ leads to a smaller total state preparation time aλtn < td, assuming that
a single trial takes time tn, than using the deterministic scheme taking time td. Even if one is
lacking parallel operation capabilities, the waiting time of the other L− 1 logical qubits –
while one logical qubit is being prepared – does not need to be detrimental to the overall
fidelity: An additional round of QEC can be performed on each logical qubit before feeding
it into a subsequent logical building block. Moreover, it is not required with our protocols
that successful state preparations coincide in time.
Suppose that we are capable of preparing L logical qubits, using the non-deterministic

Pauli state preparation protocol, when we only need k accepted logical qubits in order to
use them to run a quantum algorithm. With flag rate f , the number of logical qubits that are
rejected due to flag events after a runs of the non-deterministic encoding circuit is Lfa. As a
consequence, the number of logical qubits L needed to accept k logical qubits on average at
flag rate f after a trials is given by

k = L(1− fa) (6.14)
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Figure 6.17: Preparation timeadvantage.Non-deterministic logical state preparation schemes (crosses)
have a preparation time advantage over the deterministic schemes (small circles) as long
as the number of entangling gates needed until k out of L logical qubits are accepted
is lower than for the deterministic scheme. The deterministic schemes always prepare
k = L logical qubits (solid black lines). The boundaries between regimes of advantage
of either scheme (dashed lines with crosses) are calculated at our respective flag rates
at λ = 1 using Eqn. 6.19 with P≥k ≥ 95% and a = a∗ = btd/tnc. In the region above
this line using the deterministic scheme is advantageous since the non-deterministic
scheme would take more MS gates for the same result of k logical qubits. (a) Pauli state.
Running the non-deterministic scheme twice already takes 2× 11 MS gates – more than
the 15 MS gates needed for the deterministic scheme. Thus we compare the expected
number of accepted logical qubits k at our flag rate f = 0.17 when L logical qubits can
be prepared for one circuit run of either scheme. For example, to prepare at least 3 out of
9 logical qubits correctly the non-deterministic scheme is sufficient (star marker) while
the deterministic scheme should be used if, e.g., at least 11 out of 13 logical qubits need
to be accepted (diamond marker). (b)Magic state. At our flag rate f = 0.8, we can run
the non-deterministic magic state preparation at most b232/48c = 4 times and stay below
the number of entangling gates used by the deterministic scheme on average. Regions of
accepted logical qubit number after 1, 2, 3 and 4 runs are shown in shades of orange.
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and the number of runs a needed to accept k out of L logical qubits on average at flag rate f
reads

a =
log(1− k/L)

log f
. (6.15)

Since all logical qubit preparations are independent from another, the probability P≥k
that at least k out of L logical qubits are prepared correctly after a runs is given by the
cumulative binomial distribution with success probability 1− fa

P≥k =

L∑

j=k

(
L

j

)
(1− fa)j(fa)L−j (6.16)

= 1−
k−1∑

j=0

(
L

j

)
(1− fa)j(fa)L−j (6.17)

= 1−
k−1∑

j=0

B(L, j, 1− fa) (6.18)

= 1− Ifa(L− k + 1, k) (6.19)

where we use the regularized incomplete Beta function I [210, 211]. We can extract the
number of necessary qubits L or the number of circuit runs a to obtain k accepted qubits
with a desired probability P≥k by numerical inspection of Eqn. 6.19.

It is advantageous to use the non-deterministic preparation procedure as long as after at
most a∗ = btd/tnc preparation attempts the number of accepted qubits k, either on average
or with probability P≥k, is sufficient to perform the desired quantum algorithm. For our
logical Pauli state preparation schemes, we have td/tn = 15/11 ≈ 1.4 when using the number
of entangling gates as a proxy for the circuit execution time. So if more than a∗ trials were
needed, there would be no savings in the number of entangling gates over the deterministic
scheme anymore. In Figure 6.17 we show the number of accepted logical qubits k given that
L logical qubits can be prepared and highlight which of the two schemes is advantageous in
terms of preparation time. While the deterministic scheme will always prepare k = L logical
qubits, Eqns. 6.14 and 6.19 provide the expected number on average or – here – with a 95%

probability P≥k, which we show for the Pauli state at flag rate f = 0.17 in Figure 6.17a. For
the logical magic state, the large number of MS gates used by the deterministic scheme on
average at λ = 1 allows one to run up to 4 trials of the non-deterministic scheme since the
fraction of entangling gates is td/tn = 232/48 ≈ 4.8. The expected number of accepted logical
magic states after up to 4 runs is compared to the deterministic scheme in Figure 6.17b.

6.1.1.5 Influence of entangling crosstalk on logical states

We have seen in the previous discussion of FT circuits that crosstalk in general does not
respect the FT property and thus can lead to linear scaling effects in the logical failure
rates detrimental to the FT property of – otherwise – FT circuits. Crosstalk on single-qubit
gates does not cause correlated faults but mere single-qubit faults on neighboring qubits.
After entangling gates however, crosstalk fault operators of Pauli weight-2 can potentially
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propagate to cause uncorrectable weight-2 errors at the end of the circuit. Preserving the
quadratic scaling behavior in the logical failure rate is thus essential when aiming for
advantage of FT circuits over their non-FT counterparts or physical qubits, which scale
linearly. In this section we demonstrate that, for the FT Pauli preparation circuit, it is actually
possible to find circuit implementations which show quadratic scaling of their logical failure
rate and thus respect fault tolerance despite the presence of crosstalk. Our argument is
derived from the CSS property of the Steane code.
As long as not more than a single fault occurs, accepted states from the FT Pauli state

preparation circuit are guaranteed to be the correct |0〉L state up to a single correctable error.
XX-type crosstalk on a target-neighbor location t, n of an MS gate acting on target qubits t1
and t2 is described by the channel

Exct(ρ) = (1− pc2)ρ+ pc2XtXnρXtXn. (6.20)

In the presence of XX-type crosstalk fault tolerance can be uphold if all XX faults can be
made to propagate to correctable errors at the end of the circuit.∗ Since the local rotations
that stem from the CNOT decomposition into MS gates rotate X-fault operators on the
control qubit to Z faults (see Figure 6.8), some of the resulting error operators may be
correctable because a single Z and a single X error are correctable distinctly in the Steane
code. An example of this effect can be seen for an X2X7 fault after the second MS gate in
Figure 6.18 which becomes an Z2X7 error at the end of the circuit. The Steane code can
correct Z2 and X7 independently. Consequentially, it is desirable to choose a qubit mapping
of the FT encoding circuit that reduces the number of neighbor locations around the control
qubits and allows for detection of dangerous crosstalk faults by the flag verification qubit.
Robustness against crosstalk faults via optimal qubit mapping has been shown before by
searching for Hamiltonian paths in a qubit mapping graph for a comparative code study
with realistic ion trap noise [190].

We distinguish these types of circuits by calling them crosstalk-resistant (CTR) and non-CTR.
Qubit indices can be relabeled to obtain a CTR circuit for FT preparation of the |0〉L state
using MS gates as given in Figure 6.18. After relabeling, the new stabilizers have support
on qubits (1, 4, 6, 7), (2, 5, 6, 7) and (3, 4, 5, 7). The X3X5 crosstalk fault after the fifth MS
gate, discussed as an example in Section 6.1.1.4, will now trigger the flag as opposed to the
non-CTR circuit in Figure 6.8 so that the output state with the dangerous error Z3X5X7 will
be discarded. A CTR circuit for FT magic state preparation was not found.
In Figure 6.19 we present the CTR property of the Pauli circuit and compare its logical

failure rate to the non-deterministic, non-CTR FT Pauli state preparation from Figure 6.11a.
Extended noise is applied to both circuits. While, as before, there is no visible distinction
between logical failure rates in an interval of approximately λ ∈ [10−1, 101], the non-CTR
circuit transits from quadratic scaling to a linear scaling for λ . 10−2 because crosstalk
destroys the FT property. The CTR circuit continues to scale quadratically for all λ → 0

under the influence of XX-type crosstalk on MS gates. XX-type crosstalk is only a valid
description of the actual physical processes if crosstalk phases are zero on all ions.
We have shown in Figure 6.6 that in reality the crosstalk phases, although constant over

time, vary over a large range of angles. To take this fact into account, we replace the XX-type

∗ Note that Exct is a special case of Eqn. C.50 with all phases equal to zero. The incoherent error probability is
shifted pc2 → 4pc2 for crosstalk locations which involve common neighbor ions. Also see Appendix C.1 for a
more detailed discussion.
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Figure 6.18: Crosstalk-resistant FT Pauli state preparation. There is no single XX-type fault placed
at any crosstalk location which causes an output state with X error of weight greater
than one and does not also trigger the flag. The Steane code is capable of correcting a
weight-1 X and Z error each. XX-faults are prevented by local rotations from resulting
in a weight-2 error. An example of such a fault on the second MS gate is depicted by the
red 8-cornered stars. The resulting two weight-1 errors are Z2 and X7. The previously
(Figure 6.8) dangerous X3X5 fault after the fifth MS gate (blue 12-cornered stars) now
triggers the flag.

crosstalk Exct by the phase averaged crosstalk channel (Eqn. 6.8, derived in Appendix C.1)
which applies fault operatorsXX, XY, Y X and Y Y with equal probability to each crosstalk
location. In Figure 6.19 we show the scaling behavior for the same two circuits under the
influence of the phase averaged crosstalk channel. Not only is the logical failure rate larger
than for XX-type crosstalk alone. Now both the non-CTR and CTR circuit scale linearly at
low λ because the XY- and YY-type crosstalk faults can cause logical failures. The distinction
between the two circuits is barely visible anymore. However, at λ = 1 all four circuit models
agree with the experimentally measured value of logical infidelity.

To conclude this section, we note that the existence of the CTR Pauli encoding circuit is a
special case which does not generalize to arbitrary quantum circuits. While fundamentally
valid, the CTR characteristic cannot be upheld in our experimental setting since crosstalk
phases will always mix the different X- and Y-type contributions even if they are constant
over long times. As a consequence, it can not be guaranteed that the quadratic scaling
behavior of FT circuits in the presence of crosstalk does actually lead to an advantage over
physical qubits; minimization of crosstalk in physical operations is imperative.

6.1.1.6 Quantum state fidelity of logical qubits

While the logical fidelity is a good quantity to assess the degree of successful state preparation
as a measure of operational performance in QEC, in this section we assess the quantum state
of the logical qubit in a more general way by calculating its quantum state fidelity [45].
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Figure 6.19: Crosstalk-resistant Pauli state scaling. Uniform scaling with a factor λ of all physical
error parameters under XX-type crosstalk (XX) and phase averaged crosstalk (PA) in
the FT Pauli state preparation circuit with an XX-crosstalk-resistant (CTR) and non-
crosstalk-resistant (non-CTR) qubit mapping. Lines for the two state preparations with
PA overlap. For numerical simulations, we employ direct MC (cross markers) and SS
(triangle markers) in their preferential domain of physical error rates. The experimentally
measured value (star marker) lies at λ = 1. In this regime of physical error rates, all
four curves coincide within their confidence intervals. At lower values of λ crosstalk
becomes a dominant source of failure causing linear scaling if CTR does not hold. Error
rates of physical operations are shown for comparison (gray lines without markers) as in
Figure 6.11. For each MC data point and subset failure rate we sample at least 100 times
or until the uncertainty of the respective logical failure rate estimator is below a relative
error of 0.5 but at most 104 times. All subsets up to wmax = 3 are taken into account for
SS.
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The quantum state fidelity of a stabilizer state is defined as the mean of expectation values
of all operators that form the stabilizer groupWk

F(ρt, ρ) =
1

128

128∑

k=1

〈Wk〉 (6.21)

with a target state ρt = |t〉 〈t| and ρ = |ψ〉 〈ψ| a stabilizer state such thatWk |ψ〉 = ± |ψ〉. The
stabilizer group of the Steane code contains 128 = 27 stabilizer operators and is generated by
the stabilizer generators in Eqn. 6.9 that define the logical qubit. The code space population
pCS is defined analogously but only involves averaging over the 64 code space stabilizer
expectation values

pCS =
1

64

64∑

k=1

〈Wk〉 (6.22)

and contains no logical operators which would fix the logical state within the code space
[37]. More detail on the derivation of the quantum state fidelity of stabilizer states is given
in Appendix C.4.
Since the largest physical error rate in our model is the infidelity of the MS gate, we

expect the MS gate dynamics to dominantly influence the quantum state fidelity and, as
a consequence, the logical failure rate. Thus, in the following, we compare the quantum
state fidelity for noisy logical qubit preparation using depolarizing noise versus incoherent
overrotation noise on MS gates. The MS gate is a rotation about the two-qubit XX axis
and it would thus be consistent to model MS gate noise by the overrotation channel given
by Eqn. C.62. The depolarizing noise channel is often used instead due to its general,
hardware-agnostic structure but by introducing faults of all Pauli types it might overestimate
the effect of MS gate errors compared to overrotations. It was previously expected that
overrotation is the more accurate noise model [189].

The table below shows values for the quantum state fidelity F and code space population
pCS with 95% confidence intervals of a single logical qubit in the |0〉L state prepared by the
FT circuit in Figure 6.8.

noise F pCS

depolarizing 82.63(3)% 82.62(4)%

overrotation 86.18(3)% 86.20(4)%

experiment 82.7(11)% 83.1(15)%

In Figure 6.20 we compare experimental data to numerical simulations with the depo-
larizing noise model as described before for a single logical qubit with MS gate errors
modeled as either depolarizing or overrotation noise. For each of the stabilizer operators
we determine the deviation

√
(〈Si〉exp − 〈Si〉sim)2 of the simulated expectation value 〈Si〉sim

with both noise models to the experimentally measured expectation value 〈Si〉exp. We
observe that the distribution of deviations is very similar for both noise channels. While
most stabilizer expectation values deviate little from the experimental values, individual
stabilizer expectation value deviations can be as high as approximately 20% for depolarizing
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Figure 6.20: Stabilizer estimation under different MS noise models. Distributions for depolarizing
(blue) and overrotation (red) noise models of the deviation

√
(〈Si〉exp − 〈Si〉sim)2 of all

128 stabilizer expectation values of the logical qubit in simulation to experiment. Each
bin has a width of 2%. Mean values which correspond to quantum state fidelities and
code space population for both noise models are indicated as vertical lines and deviate
from experimental values by approximately 6%. Individual stabilizer expectation value
estimates differ to up to 24%. All simulation data is generated by directMC sampling until
105 states are accepted. Each stabilizer has been measured 100 times in the experiment.

noise and 24% for overrotation noise. The averaged deviations (RMS) for all 64 or 128
expectation values, i.e. for the code space population and quantum state fidelity respectively,
are 6.0(15)% and 6.6(11)% with overrotation noise but for depolarizing noise yield the lower
values of 5.1(15)% and 5.7(11)%.

It is evident that incoherent overrotation noise does not provide amore accurate description
of MS gate errors than depolarizing noise for the circuits used in our experiment. Respecting
the FT property of the state preparation circuit on the logical level appears to be the more
relevant characteristic of noise than its microscopic structure. This is in stark contrast to
the detrimental effect that crosstalk can exert when it does not respect fault tolerance. The
effect of crosstalk strongly depends on the microscopic structure which differs between
the XX-type and phase average model discussed in the previous section. We stress that the
logical fidelity is an appropriate quantity to compare the agreement of experimental data
to noise simulations and that computing the full quantum state fidelity does not provide
additional information about the QEC procedure.

6.1.1.7 Conclusions & Outlook

We provided a detailed numerical study and analysis of future potential for FT universal gate
set implementations. Incoherent Pauli noise simulations suggest that reaching thresholds
of FT advantage over physical qubits need improvements on physical error rates of less
than an order of magnitude. Currently the logical error rate is limited predominantly by
entangling gate errors in the experimental setup under consideration in this work. Crosstalk
on MS gates is not a substantial source of error for the advantage of FT over non-FT circuit
implementation in our ion trap architecture at current noise levels. However, we give
a crosstalk resistant qubit mapping for FT Pauli state preparation which keeps scaling
quadratically under XX-type crosstalk as physical error rates are scaled to zero opposed
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to the usual circuits where crosstalk typically breaks the FT property. We showed that the
microscopic structure of crosstalk affects the scaling of logical error rates.
Therefore choosing a different set of physical gates could also make available crosstalk

resistant circuits for the realization of other logical building blocks. Furthermore, crosstalk
errors could be suppressed by utilizing inherently crosstalk insensitive gate operations like
composite pulses [212, 213], or active suppression schemes, where additional laser fields
are applied to the qubit register that destructively interfere with unwanted leakage light
at neighboring ion positions. Exploiting the fact that for each ion a global phase can be
freely chosen might allow for crosstalk resistant qubit mappings even in the case of random
but constant crosstalk phases. However, this method does not provide enough degrees of
freedom to directly control the effective crosstalk phase for both neighbors of all qubits in
the register. Further investigations are needed to clarify if crosstalk resistant mappings for
various logical building blocks can be found using this technique.

Also, we have found that deterministic state preparation schemes for Pauli and magic
state preparation do not outperform non-deterministic ones at current physical error rates
and are not expected to do so even with improvements on physical error rates due to their
larger gate count. The repetition overhead needed for non-deterministic state preparation is
moderate for both the Pauli and magic state at current noise levels.

Our analysis validates depolarizing noise as an appropriate effective model for FT logical
state preparation in the ion trap system from Ref. [84]. Flag circuits are recognized as
a promising paradigm to reach the break-even point where FT circuits will outperform
physical qubits [39]. Not only is the depolarizing noise model sufficient to predict logical
failure rates but also the average over stabilizer expectation values for a single logical qubit
initialized to its logical zero state. Individual stabilizer expectation values can be estimated
to about 24% relative uncertainty. The detailed crosstalk investigation provided in this work
illustrates the value of considering aspects specific to the physical architecture realizing
the quantum computer. We point out that for long protocols with deep circuits such as the
deterministic FT magic state preparation scheme, coherent errors might build up and cause
an additional source of logical failure. The effect of coherent noise to the logical failure rate
of such circuits is a subject for further studies.
In the future, effective noise models for different quantum computing architectures

and logical building blocks will aid in the characterization of FT universal quantum
computers. Simulating large distance logical qubits can help to better understand relevant
error processes and facilitate practical realization of error-corrected logical qubit operations
below the pseudothreshold.
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6.2 Spatial correlations in idling noise

In Section 3.3, erroneous idlingwasmodeled as an independent dephasing process for each
spectator qubit. This dephasing is caused by the interaction of a qubit with its environment.
In the setup considered in this thesis, the dominant contribution to idling errors is dephasing
caused by magnetic field fluctuations originating from the environment surrounding the
apparatus. The distance from the noise source to the qubit register and the wavelength of the
noise are large compared to the length scale of the qubit register. Thus, it is quite conceivable
that different qubits in the register are subject to similar disturbances introduced by the
fluctuating magnetic field. The assumption that noise processes on different qubits are
independent from each other does not hold in this case, but instead the dephasing processes
along the ion chain are correlated.

6.2.1 Quantum error correction under correlated noise

A QEC code with a distance d can correct all errors with a weight of up to t = bd−1
2 c. Now

the question is whether the occurrence rate of error configurations exceeding the weight
t depends on the spatial correlation properties of the noise acting on the physical qubits
encoding a logical qubit. In other words: Can two error processes, that are indistinguishable
when looking only at a single qubit but differ when considering the effect on multiple qubits,
lead to different failure rates of a logical qubit?
To answer this question, let us consider dephasing of an idling logical qubit encoded

in the Steane code. The logical state |+〉L is prepared noiselessly using the circuit from
Figure 4.6a followed by a transversal logical operation. Subsequently, dephasing is simulated
by applying Z rotations with a rotation angle θ(i) to each individual qubit i. Simplistically
assuming that the magnetic field fluctuation is a white noise process the rotation angles for
different realization of the simulation are distributed according to a Lorentz distribution
with the probability density function

f(θ, γ) =
1

πγ

[
1 +

(
θ
γ

)2
] . (6.23)

For uncorrelated noise, the rotation angle is sampled independently for each qubit from the
Lorentz distribution, whereas in the case of correlated noise, the same rotation angle θ(i) = θ

is chosen for all qubits. Finally, an error-free measurement in theX basis is performed on all
seven qubits. This allows one to calculate the expectation values of the X-type stabilizer
generators and the logical X operator. An ideal round of EC is applied by multiplying the
logical X expectation value by −1 if any of the stabilizer generator expectation values is
−1. The error introduced by the noisy idling process is correctable if the outcome of the
logical X measurement is +1 after EC. Figure 6.21 shows the probability of a +1-outcome
p+1 for different noise magnitudes γ obtained from a numerical simulation. For small noise
magnitudes, correlated noise yields significantly lower success probabilities. In this regime,
even the scaling of the success probability with regard to the noise magnitude differs for the
different noise models.
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Figure 6.21: Numerical simulation of the probability of recovering the correct logical state for a logical
qubit encoded in the Steane code exposed to idling noise. A logical qubit is prepared
noiselessly in |+〉L before being exposed to correlated or uncorrelated dephasing noise.
The probability of obtaining a measurement outcome of +1 for the logical X operator
averaged over 100000 noise realizations is plotted against the noise magnitude γ.

This simplified toy model only considering perfectly correlated and perfectly uncorrelated
dephasing noise already shows that the presence of spatial correlations in noise processes
heavily affects the performance of QEC protocols. Disregarding correlation effects in the
design of error models can lead to underestimating the logical failure probability, especially
in a regimewhere the correlated noise process is the dominant error source. Given the impact
of correlations on QEC, it is not surprising that a few years after the proposal of the first
QEC codes, the effect of spatial correlations of noise on large-scale quantum computation
was already studied. It was shown that long-range spatial correlations can compromise
the performance of QEC or even render FT quantum computation unfeasible [214–220].
However, adapting the utilized QEC codes can recover the performance of QEC to a large
extent [214, 217, 220].

6.2.2 Quantifying spatial correlations of quantum dynamics

Considering the effect spatial correlations have on the operation of an FT quantum infor-
mation processor, it is crucial to have protocols at hand that allow one to characterize the
magnitude and distance-dependence of correlations in noise dynamics. In Ref [183] a mea-
sure Ī quantifying spatial correlations in quantum dynamics is proposed. The construction
and properties of this measure are discussed in the following.
Let us consider a quantum process, e.g., a spatially correlated noise process, acting on a

composite system S = A⊗ B consisting of subsystems A and B. The process one wants to
characterize in terms of spatial correlations can be described as a completely positive and
trace-preserving map ES. Without loss of generality, it is assumed that the Hilbert spaces
associated with the subsystems A and B both have dimension d. Hence, the dimension of
the Hilbert space of the combined system S is d2. A cornerstone in the construction of the
measure Ī is the Choi-Jamiołkowski isomorphism [221, 222], which provides a one-to-one
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mapping between a quantum map ES and a quantum state in an extended Hilbert space
with dimension d4. The considered system S is extended by an auxiliary system S′ = A′B′

of the same dimension. The state [183]

|Φ+〉 =
1

d

d2−1∑

i=0

|i〉S ⊗ |i〉S′ (6.24)

is a maximally entangled state between the systems S and S′. Here, |i〉 denotes the i-th state
of the consecutively numbered computational basis {|0 〉 , ..., |d2 − 1 〉}∗. Applying ES to the
subsystem S after the preparation of the maximally entangled state yields the density matrix
of the Choi-Jamiołkowski state [183]

ρCJ
S = ES ⊗ 1S′

(
|Φ+〉 〈Φ+|

)
. (6.25)

Note that it is not required to implement the auxiliary system S′ physically to determine
ρCJ

S experimentally. Instead the dynamics ES can be fully characterized by quantum process
tomography [45] on the system S and ρCJ

S can be determined in classical post-processing.
This detour via the Choi-Jamiołkowski isomorphism allows for the transfer of the tools

available for the characterization of quantum states to quantum dynamics. If the dynamics
ES with respect to the subsystems A and B is uncorrelated, then the state ρCJ

S is uncorrelated
with respect to AA′ and BB′. Similar to the quantum mutual information [45] characterizing
correlations in quantum states, a measure for spatial correlations in quantum dynamics can
then be defined as [183]

Ī(ES) =
1

4 loge d

[
S
(
ρCJ

S |AA′
)

+ S
(
ρCJ

S |BB′
)
− S

(
ρCJ

S

)]
, (6.26)

where S(·) = −[(·) loge(·)] is the von Neumann entropy, and ρCJ
S |AA′ = TrBB′(ρ

CJ
S ) and

ρCJ
S |BB′ = TrAA′(ρ

CJ
S ) denote the partial traces of the Choi-Jamiołkowski state with respect

to the partitions BB′ and AA′, respectively.
The spatial correlation measure Ī(ES) fulfills the following criteria [183]:

1. A process ES is called uncorrelated if it can be decomposed as ES = EA ⊗ EB. The
measure Ī(ES) = 0 if and only if such a decomposition is possible.

2. The measure Ī(ES) ∈ [0, 1] is bounded.

3. For uncorrelated unitary maps LA(·) = UA(·)U †A, LB(·) = UB(·)U †B,RA(·) = VA(·)V †A,
andRB(·) = VB(·)V †B the inequality

Ī(ES) ≥ Ī [(LA ⊗ LB) ES (RA ⊗RB)] (6.27)

holds. This means that composing a map ES with uncorrelated unitary maps cannot
increase the measure Ī(ES).

∗ Note the italic typesetting here. For a two-qubit system, the numbered computational basis states read
|0〉 = |0〉 ⊗ |0〉, |1〉 = |1〉 ⊗ |0〉, |2〉 = |0〉 ⊗ |1〉 and |3〉 = |1〉 ⊗ |1〉.
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The measure allows for the certification of the presence of spatial correlations in idling
dynamics and facilitates determining their distance dependence. In case the measure
suggests the presence of correlations potentially impairing the implementation of QEC
protocols, an errormodel andmethods for estimating its parameters tailored to the correlated
idling noise of the specific device have to be developed. Note that it is not clear how this
measure can directly be used to inform more elaborate error models for idling processes in
quantum information processors.
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6.2.3 Publication: Experimental quantification of spatial correlations in quantum dynamics

Experimental quantification of spatial correlations in quantum
dynamics∗

Quantum 2, 90 (2018)

Lukas Postler†1, Ángel Rivas†2,3, Philipp Schindler1, Alexander Erhard1, Roman Stricker1,
Daniel Nigg1, Thomas Monz1, Rainer Blatt1,4, and Markus Müller5

1Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck,
Austria

2Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain
3CCS-Center for Computational Simulation, Campus de Montegancedo UPM, 28660

Boadilla del Monte, Madrid, Spain
4Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der

Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
5Department of Physics, College of Science, Swansea University, Singleton Park, Swansea -

SA2 8PP, United Kingdom

Correlations between different partitions of quantum systems play a central role in a
variety of many-body quantum systems, and they have been studied exhaustively in
experimental and theoretical research. Here, we investigate dynamical correlations
in the time evolution of multiple parts of a composite quantum system. A rigorous
measure to quantify correlations in quantum dynamics based on a full tomographic
reconstruction of the quantum process has been introduced recently [Á. Rivas et
al., New Journal of Physics, 17(6) 062001 (2015).]. In this work, we derive a lower
bound for this correlation measure, which does not require full knowledge of
the quantum dynamics. Furthermore, we also extend the correlation measure to
multipartite systems. We directly apply the developed methods to a trapped ion
quantum information processor to experimentally characterize the correlations in
quantum dynamics for two- and four-qubit systems. The method proposed and
demonstrated in this work is scalable, platform-independent and applicable to
other composite quantum systems and QIP architectures. We apply the method to
estimate spatial correlations in environmental noise processes, which are crucial
for the performance of QEC procedures.

∗ The author of the present thesis carried out the experiments and wrote the manuscript. Daniel Nigg carried
out preliminary experiments and discussed them in his PhD thesis [223]. Here, the accepted version of the
manuscript is printed in a slightly amended form for consistency throughout the thesis. Changes include
adapting hyphenation and abbreviations and updating references that were only available as preprints at the
time of publication.

† These authors contributed equally to this work.

https://doi.org/10.22331/q-2018-09-03-90
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6.2.3.1 Introduction

Correlations play a central role in quantum physics. A wide range of quantum effects
including apparently disconnected topics, such as Bell inequalities or quantum phase
transitions, can be analyzed by considering correlations. Inmost of the cases these correlations
refer to those shared between different parties of a multipartite quantum state, i.e. describing
the statistics of a system’s observables at a given time. These correlations, both classical and
quantum, have been extensively studied, quantified, and classified (see for instance [224–
226]). A different kind of correlations, subject of less attention, are dynamical correlations.
These account for the fact that the dynamics of one part of a system may not be statistically
independent from the dynamics of the other parts. Dynamical correlations in quantum
systems are the basis of many phenomena ranging from super-radiance [227] over super-
decoherence [228] to sub-radiance [229] in atomic gases. Furthermore, the study of dynamical
correlations is of central importance in various research areas, such as e.g. photosynthesis
and excitation transfer dynamics [230–235], driven-dissipative phase transitions [236–240]
and quantum metrology [241].
In the context of quantum information, the treatment of spatial correlations is highly

important, but usually limited to the extreme cases of either completely uncorrelated noise
with an independent noise source for each qubit, or completely correlated noise modeled by
a single noise source with equal strength on all qubits [242]. One consequence of the latter
type of correlations are decoherence free subspaces (DFSs) [243–247], which can be exploited
in QIP to extend the storage time of quantum states in noisy systems. Understanding and
quantifying these dynamical correlations is highly relevant for the performance of QEC
protocols [242], as correlated errors can undermine the FT operation of quantum error
correcting procedures [42]. Here, theory studies focusing on spatially correlated noise [214–
220] have shown that in particular the distance-dependence of correlated noise can be crucial
as to whether or not modified versions of the threshold theorem [35, 42] do hold. It is
crucial that not only the noise strength is below a critical value, but also that (unwanted)
interactions between qubits decay sufficiently quickly with increasing distance. In order
to assess whether or not these conditions are met in experimental quantum processors,
theoretically well-founded and practically applicable methods to characterize the strength
as well as the distance-dependence of spatial correlations are required. Such tools become
particularly important in scalable QIP architectures: There, it is forseeable that the noise
environment will not be fully correlated in processors consisting of multiple smaller units
that are interconnected by quantum channels. Noisy connection channels may introduce
spatial correlations in the system’s dynamics. Similar considerations apply in distributed
quantum systems that are interconnected by flying qubits.

Recently, we proposed and explored a measure to rigorously quantify dynamical cor-
relations [183]. Inspired by the metrics that can be employed to quantify the amount of
correlations within quantum states, a method to quantify dynamical correlations from
tomographic data was proposed with the following features:

1. It is a normalized quantity that is zero if and only if the dynamics are uncorrelated. In
particular, it is constructed in terms of an information measure and does not rely on
any assumptions or a priori knowledge of the underlying dynamics.

2. The quantifier introduces a hierarchy of quantum dynamics by enforcing a partial
order relation between dynamics, i.e. a way to quantitatively compare whether one
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bipartite dynamic is more or less correlated (with respect to the evolution of its
parts) than another. This partial ordering is known as a fundamental law of a resource

theory [224, 248–254]. This law states that the amount of correlations of some given
dynamics cannot increase by adding uncorrelated dynamics to it, i.e. a process for the
quantifier equals zero. This ordering property for the amount of dynamical correlations
is analogous to the fundamental law in the resource theory of entanglement [224, 226].
There, it refers to the fact that entanglement cannot increase under application of local
operations and classical communication (LOCC).

3. The measure establishes a rigorous theoretical framework that allows for a definition
and the study of maximally correlated dynamics and the properties that such dynamics
need to fulfill [183]. Again, the concept of maximally correlated dynamics is analogous
to the one of maximally entangled states in the resource theory of entanglement.

Whereas the proposed quantifier for dynamical correlations [183] allows one to study
correlated dynamics in a variety of contexts, its general applicability comes at the price of
requiring full knowledge of the quantum dynamics. Experimentally, this requires quantum
process tomography of the full system which is only feasible in small-scale systems, and
has been experimentally demonstrated for up to three qubits [255], and quickly becomes
impractical for quantum systems of larger size. Within this work, we therefore derive a
efficiently measurable lower bound of the quantifier applicable also to larger systems.
By applying the quantifier to a two-qubit trapped-ion quantum information processor

the amount of correlations is extracted from a reconstructed process matrix. Furthermore,
the quantifier’s lower bound is determined for dynamics in systems consisting of four
trapped-ion qubits. We investigate in detail the noise dynamics and its correlations for
different physical encodings of the qubits that lead to different correlation characteristics. Our
findings underline the importance of experimentally informed choices of qubit encodings in
the presence of spatially correlated noise in the context of quantum computing and QEC.
The presented work is structured as follows: In Section 6.2.3.2 we introduce and review

the correlation measure proposed in [183]. We present the derivation of a lower bound
of the measure in Section 6.2.3.3, followed by a generalization to multipartite systems in
Section 6.2.3.4. Finally, we present an investigation of noise dynamics in a trapped-ion system
in Section 6.2.3.5.

6.2.3.2 Measure for Spatial Correlations in Quantum Dynamics

In the following we review the correlation measure suggested in [183], which is based on the
Choi-Jamiołkowski isomorphism [221, 222], providing a one-to-one mapping of the dynamics

in a quantum system to a quantum state of a larger system. The mathematical construction
underlying the isomorphism can be summarized as follows: consider a bipartite system
S = S1 ⊗ S2, as shown in Figure 6.22. Then, the idea is to initially prepare a pair of maximally
entangled states |ψ+〉 = 1√

d

∑d−1
k=0 |kk〉 between every part S1 and S2 with two respective

ancilla systems S′1 and S′2 of the same dimension,

|ΦSS′〉 ≡ |ψ+〉S1S′1
|ψ+〉S2S′2

=
1

d

d−1∑

k=0

|kk〉
d−1∑

l=0

|ll〉 , (6.28)
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Figure 6.22: Schematic illustration of the measurement of Ī in a composite system S. At the beginning
of the protocol subsystemsS1 and S2 aremaximally entangledwith S′1 and S′2, respectively.
The dynamics of interest is subsequently acting on S and leaves the whole system in a
product state or a correlated state with respect to S1S′1|S2S′2 depending on the amount of
correlations in the dynamics.

where d is the dimension of the subsystemsS1 andS2, assumed to be the same for both of them
for simplicity. Then the part S = S1 ⊗ S2 of the state |ΦSS′〉 evolves according to a dynamical
process that is given by the map ES, and which leaves the part S′ = S′1 ⊗ S′2 unperturbed.
After the evolution, the final Choi-Jamiołkowski state ρCJ

S = ES ⊗ 1S′1S′2
(|ΦSS′〉〈ΦSS′ |) is a

product state with respect to the bipartition S1S′1|S2S′2, ρCJ
S = ρS1S′1

⊗ ρS2S′2
, if and only if

the dynamics are uncorrelated, ES = ES1 ⊗ ES2 . This result follows from the one-to-one
correspondence between the map ES and ρCJ

S . In contrast, if the process on the composite
system is correlated, then the resulting state ρCJ

S is correlated as well. A quantifier Ī which
suitably reflects the amount of correlations in ρCJ

S and thus in the process ES is the quantum
mutual information [45], given by the following definition:

Ī(ES) :=
1

4 log d

[
S
(
ρCJ

S |S1S′1

)
+ S

(
ρCJ

S |S2S′2

)
− S(ρCJ

S )
]
, (6.29)

with S(·) = −Tr[(·) log(·)] the von Neumann entropy evaluated for ρCJ
S and the reduced

density operators ρCJ
S |S1S′1

:= TrS2S′2

(
ρCJ

S

)
and ρCJ

S |S2S′2
:= TrS1S′1

(
ρCJ

S

)
.

Leaving aside the normalization factor 1
4 log d , this quantifier can be intuitively understood

as the amount of information that is needed to distinguish the actual dynamics ES from the
individual dynamics of its parts ES1 ⊗ ES2 [256]. Namely, the information that is lost when
ES1 ⊗ ES2 is taken as an approximation of ES. The normalized quantity Ī ∈ [0, 1] quantifies
this information relative to the maximum value it can take on all possible processes.
Furthermore, Ī fulfills the equation

Ī [(LS1 ⊗ LS2)(ES)(RS1 ⊗RS2)] ≤ Ī(ES) (6.30)

for all local dynamical maps LS1 , LS2 ,RS1 , andRS2 that might act before and after the actual,
possibly correlated dynamics ES [183]. Equation 6.30 states that the amount of correlations of
the dynamics ES cannot increase by composition with uncorrelated maps. In other words, if a
process is a composition of a correlated and an uncorrelated part, the amount of correlations
in the composition has to be equal or smaller than the amount of correlation that is inherent
to the correlated part. In fact, this is the fundamental law of the resource theory of correlated
dynamics [183], where the correlations are considered as a resource, and the operations
which do not increase the amount of this resource are uncorrelated maps.
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For clarity, we remark that the use of an ancilla system S′ is underlying the mathematical
construction of the isomorphism, but is not required in an experimental determination of Ī .
Rather than reconstructing the Choi-Jamiołkowski state ρCJ

S from quantum state tomography
on the enlarged system SS′, one can equivalently determine ρCJ

S by reconstructing the
dynamics ES by means of quantum process tomography on the physical system S [257].
Due to the Choi-Jamiołkowski isomorphism in both cases the number of real parameters to
determine (4N (4N − 1)) is the same and grows exponentially with the number of qubits. In
the following sections we therefore provide alternative strategies to estimate Ī avoiding full
tomography.

6.2.3.3 Lower Bound to Ī

A lower estimate for Ī can be obtained by performing correlation measurements on the
subsystems S1 and S2. Our central result is that the normalized quantity Ī(ES) is lower
bounded by

Ī(ES) ≥ 1

8 ln d

C2
ρ′(X1, X2)

‖X1‖2‖X2‖2
, (6.31)

with two local quantumobservablesX1 andX2 andCρ′(X1, X2) = 〈X1⊗X2〉ρ′−〈X1〉ρ′〈X2〉ρ′ .
ρ′ = ES(ρ) is the evolution of an initial product state ρ according to the dynamical map ES.
Here ‖ · ‖ denotes the operator norm (the absolute value of the maximum eigenvalue) and we
have taken the logarithms inside Ī(ES) in Eqn. 6.29 to be binary logarithms log2 (otherwise
the natural logarithm ln d on the right hand side becomes multiplied by a different factor).
In order to prove Eqn. 6.31, we use the relation between the mutual information and the

quantum relative entropy I(ρAB) = S(ρAB‖ρA ⊗ ρB) [258], so that by taking the bipartition
A = S1S′1 and B = S2S′2, we rewrite Eqn. 6.29 as

Ī(ES) =
1

4 log2 d
S
(
ρCJ

S

∥∥∥ρCJ
S |S1S′1

⊗ ρCJ
S |S2S′2

)
. (6.32)

Then the fundamental law that composition with uncorrelated dynamics does not increase
the correlatedness of dynamics, as expressed in Eqn. 6.30, yields the inequality

Ī(ES) ≥ 1

4 log2 d
S
(
ρ̃CJ

S

∥∥∥ρ̃CJ
S |S1S′1

⊗ ρ̃CJ
S |S2S′2

)
. (6.33)

Here, the state ρ̃CJ
S = [(ES)(RS1 ⊗RS2)]⊗ 1(|ΦSS′〉〈ΦSS′ |) is obtained by composition of the

dynamics ES with arbitrary local maps RS1 and RS2 , i.e. maps that act only locally on S1

and S2, respectively. Now, monotonicity of the relative entropy with respect to the partial
trace [45] leads to the bound for the correlation measure

Ī(ES) ≥ 1

4 log2 d
S
(
ρ̃CJ

S |S
∥∥∥ρ̃CJ

S |S1 ⊗ ρ̃CJ
S |S2

)
. (6.34)
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The trace over the subsystem S′ on the Choi-Jamiołkowski state yields

ρ̃CJ
S |S : = TrS′ {[(ES)(RS1 ⊗RS2)]⊗ 1(|ΦSS′〉〈ΦSS′ |)}

= (ES)(RS1 ⊗RS2)

(
1
d2

)
= ES(ρS1 ⊗ ρS2) = ρ′.

(6.35)

where the local mapsRS1 andRS2 are chosen such that ρS1,S2 := RS1,S2(1
d ). Moreover, since

ρ̃CJ
S |S1,S2 = TrS2,S1 [ES(ρS1 ⊗ ρS2)] := ρ′S1,S2

, we write Eqn. 6.34 as

Ī(ES) ≥ 1

4 log2 d
S(ρ′‖ρ′S1

⊗ ρ′S2
). (6.36)

Now we use the quantum Pinsker inequality [46]

S(ρ‖σ) ≥ 1

2 ln 2
‖ρ− σ‖21, (6.37)

where the relative entropy is measured in bits, ρ and σ are density matrices and the trace
norm is ‖A‖1 = Tr

√
A†A. Thus, we obtain

Ī(ES) ≥ 1
8(log2 d)(ln 2)‖ρ′ − ρ′S1

⊗ ρ′S2
‖21

= 1
8 ln d‖ρ′ − ρ′S1

⊗ ρ′S2
‖21. (6.38)

Finally, by considering two arbitrary observables on S1 and S2, X1 and X2 respectively, the
inequality ‖A‖1 ≥ Tr(AB)

‖B‖ implies:

Ī(ES) ≥ 1

8 ln d

{
Tr[X1 ⊗X2(ρ′ − ρ′S1

⊗ ρ′S2
)]

‖X1 ⊗X2‖

}2

=
1

8 ln d

C2
ρ′(X1, X2)

‖X1‖2‖X2‖2
. (6.39)

Therefore the inequality from Eqn. 6.31 is recovered. This result is useful because it allows
us to estimate a lower bound of the amount of dynamical correlation only by preparing
product states and measuring correlation functions. Specifically, the measurement protocol,
also shown in Figure 6.23, is as follows:

1. State preparation: The bipartite system is initially prepared in a product state ρ =

ρS1 ⊗ ρS2 .

2. Evolution: The state ρ evolves accordingly to the dynamical map ES to some state
ρ′ = ES(ρ).

3. Measurement: Correlation measurements of two local quantum observables X1 and
X2 are carried out, Cρ′(X1, X2) = 〈X1 ⊗X2〉ρ′ − 〈X1〉ρ′〈X2〉ρ′ .
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Figure 6.23: Schematic illustration of the measurement of the lower bound of Ī . The system is
prepared in a separable state ρ = ρS1

⊗ ρS2
and correlations of the observables X1 and

X2 are measured after the evolution.

Figure 6.24: Schematic illustration of the multipartite correlation measure. (A) Choi-Jamiołkowski
representation of the dynamics. The system is prepared in a product of maximally
entangled states of 2M parties {Sj |S′j} and the dynamics affect only the subsystems Sj .
If and only if the dynamics are correlated, the bipartitions {SiS′i|SjS′j} will be entangled,
yielding a nonzero Ī . (B) Schematic depiction of the procedure to estimate a lower
bound of Ī . There, the system is prepared in a separable state ρS1

⊗ ρS2
· · · ⊗ ρSM and

correlations in the dynamics appear as correlations C (see page 153) in a measurement
of the observables Xj .

Of course, the tightness of the inequality depends on the choice of X1 and X2, so in
practice one has to make a well informed choice of observables, taking into account prior
information about the system. Typically, one would choose observables that are orthogonal
to the dominant noise operator in the system. However there is no simple and universal
recipe to determine the observables giving the tightest lower bound. In particular, note
that finding non-vanishing values of the lower bound as given by Eqn. 6.31 allows one to
reveal unexpected dynamical correlations if suitable observables have been estimated in any
experiment.

6.2.3.4 Extension to multipartite systems

The approach to measure and estimate bipartite correlations can be extended to the
multipartite case. In this situation, one has to specify what kind of correlations are the matter
of interest. For instance, one may be interested in the amount of correlations shared between
two parties of the system or between all parties. Figure 6.24 illustrates a generic situation
where correlations among all systems are investigated.



156 characterization and modeling of spatially correlated noise

For definiteness, suppose we consider the total amount of correlations, i.e. the amount of
correlations shared by all parties (other cases can be analyzed in a similar manner). In that
case, if the system S hasM parties S1,S2, . . . ,SM , we introduce respective ancillary systems
S′1,S

′
2, . . . ,S

′
M and prepare a collection ofM maximally entangled states between S1 and S′1,

S2 and S′2, etc. [see Figure 6.24(A)]. The dynamics are then applied on the system S we want
to study. The amount of total normalized correlations in the dynamics can be assessed by

Ī(ES) :=
1

2M log d
S
(
ρCJ

S

∥∥∥ρCJ
S |S1S′1

⊗ . . .⊗ ρCJ
S |SMS′M

)

:=
1

2M log d

{[
M∑

i=1

S
(
ρCJ

S |SiS′i
)]
− S

(
ρCJ

S

)
}
, (6.40)

where ρCJ
S |SiS′i = Tr{∀Sj 6=iS′j 6=i}(ρ

CJ
S ).

The lower bound for the multipartite setting can be applied as shown in Figure 6.24(B), by
measuring correlations. Mathematically the same steps as in the bipartite case (see Eqn. 6.31)
can be applied, resulting in

Ī(E) ≥ 1

4M ln d

C2
ρ′(X1, . . . , XM )

‖X1‖2 . . . ‖XM‖2
. (6.41)

Here, ρ′ is the joint state after the evolution of an initial product state, X1, . . . , XM are local
observables for the parties S1, . . . ,SM , respectively, and

Cρ′(X1, . . . , XM ) = 〈X1 . . . XM 〉ρ′ − 〈X1〉ρ′ . . . 〈XM 〉ρ′ . (6.42)

This multipartite bound makes investigating correlation dynamics accessible in systems
that are too large for full quantum process tomography, as the number of measurements
increases only linearly compared to an exponential scaling for full quantum process
tomography.

6.2.3.5 Application to experiments

In the following, we study the dynamics of spatial correlations of noise processes in a
trapped ion quantum information processor [83]. In Section 6.2.3.5.1 we analyze the temporal
development of the spatial correlation estimator Ī to determine the degree of spatial
correlations in a two-qubit register. For this, we perform full quantum process tomography
on qubit registers with varying degree of correlations which yields following behaviour:

a) Fully correlated noise enables DFSs [259] and thus the correlation quantifier increases
with decoherence, eventually reaching a steady state for times larger than the single-
qubit coherence time when all single-qubit coherences have vanished but coherences
in the DFS survive. For purely dephasing noise the saturation value is Ī = 0.125 (see
Section D.1).

b) Partially correlated dynamics do not feature a full DFS and thus also, after an initial
stage of increasing spatial correlations, the correlations will vanish in the limit of
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infinite waiting times. More precisely, the correlations will start to decrease when the
individual constituents of the imperfect DFS suffer substantial dephasing.

c) For uncorrelated dynamics the quantifier should not detect any statistically significant
correlations.

In 6.2.3.5.2 we utilize the lower bound to Ī to characterize dynamics in a system consisting of
four qubits. Initially, we investigate the two-body correlators as a function of qubit distance
in the register. Following that, we investigate the four-body spatial correlations for different
qubit encodings.

In the experimental platform used to implement the two protocols each qubit is encoded
in the 4S1/2 and 3D5/2 states of a single 40Ca+ ion of a string of ions trapped in a macroscopic
linear Paul trap [83]. Doppler cooling of the ion crystal is performed on a short-lived
cycling transition between the 4S1/2 and the 4P1/2 levels, as illustrated in Figure 6.25. The
same transition is used to detect the qubit state via the electron shelving scheme [83]. Two
additional repumping lasers ensure that the ion does not get trapped in a dark state and
enable resetting from the long-lived 3D5/2 state. A more detailed description of the toolset
and the experimental setup used can be found in [83].
To manipulate the state of the qubit two different laser beams are used: A global beam

effectively illuminates all ions in the chain with equal power and allows rotations on the
Bloch sphere of all qubits simultaneously. Therefore interactions of the following form are
possible:

Rφ(θ) = e−i
θ
2
Sφ , (6.43)

where Sφ =
∑N

i=0(σ
(i)
x cosφ+ σ

(i)
y sinφ) with σ(i)

x,y being single-qubit Pauli matrices acting
on qubit i.

To perform local operations on single qubits an addressed beam is available. This tightly
focused beam is steered along the ion chain via an electro-optical deflector. By driving the
qubit transition on resonance or in a detuned way, two types of rotations can be realised:

R
(j)
φ (θ) =e−i

θ
2

(σ
(j)
x cosφ+σ

(j)
y sinφ)

and

S(j)
z (θ) = e−i

θ
2
σ
(j)
z .

(6.44)

With this control toolset at hand we are able to prepare the qubits in the required initial state,
encode them in different Zeeman sublevels and perform quantum process tomography.

The degree of noise correlations between individual qubits can be tuned by encoding them
in Zeeman states with differing magnetic field susceptibility. In 40Ca+, there exist multiple
possibilities to encode a qubit in the Zeeman levels of the 4S1/2 and 3D5/2 states as shown in
Figure 6.25. The susceptibility of the qubits to the magnetic field ranges from -2.80MHz/G
to +3.36MHz/G, which allows us to tune not only the coherence time of the individual
qubits but also the correlations between qubits, when magnetic field fluctuations are the
dominant noise source. Understanding the dephasing dynamics, and in particular noise
correlations, in registers containing qubits in different encodings is essential in the context of
error mitigation and QEC: this understanding will be needed to determine the viability of an
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approach to build, e.g. functional logical qubits, in complementary approaches either based
on the use of spectroscopic decoupling of ion qubits, as compared to, e.g., shuttling-based
protocols [108].

6.2.3.5.1 Determining the degree of spatial correlation

In the following we consider dephasing dynamics that is caused by a magnetic field acting
on a string of two ions. The various qubit-states have different susceptibility to magnetic
field fluctuations, given by the Landé g factors gi of the involved Zeeman substates. The
phase that qubit i accumulates during the time evolution is

φi(t) =

∫ t

0
dτB(τ)µbgi

with the magnitude of the magnetic fieldB(τ) and the Bohr magneton µb. The magnetic field
fluctuations are modeled by multiple random implementations of B(t). The time evolution
for a single implementation can then be expressed as:

U = e−iφ1(σz1+gσz2). (6.45)

with the ratio of the Landé factors g = g2/g1. In order to estimate the dynamics under
a dephasing decay, one needs to average the evolution over many noise realizations
with random phases. A detailed analysis of the expected decay for qubits with different
susceptibility to magnetic fields is given in the Appendix, Section D.1.

In the experiment we are investigating the following qubit configurations that implement
dephasing and spontaneous decay dynamics:

a) Configuration 1: For the realization of maximally correlated dephasing dynamics,
both qubits are encoded in the

∣∣4S1/2,mS = −1/2
〉
and

∣∣3D5/2,mS = −5/2
〉
states.

This encoding is referred to as encoding A hereinafter, and corresponds to the green
markers in Figure 6.25. Both qubits have a susceptibility to the magnetic field of
-2.80MHz/G, leading to identical susceptibility coefficients (g = 1) (see Eqn. 6.45).

b) Configuration 2: To introduce an asymmetric dephasing dynamics, one qubit is
encoded in A and the second is encoded in the states

∣∣3D1/2,mS = −1/2
〉
and∣∣3D5/2,mS = −5/2

〉
respectively. This encoding is referred to as encodingB hereinafter,

and corresponds to the blue markers in Figure 6.25. Their different susceptibilities to
magnetic field noise of -2.80MHz/G and +3.36MHz/G introduce unequal dephasing
and therefore affect correlations between the qubits, corresponding to the susceptibility
coefficients (g = −0.83).

c) Configuration 3: Uncorrelated dynamics can be engineered by introducing sponta-
neous decay. In this scenario, both qubits are encoded in Encoding A. A laser pulse
resonant with the 3D5/2 ↔ 4P3/2 transition at 854 nm shortens the effective lifetime of
the exited state by inducing a spontaneous decay to the 4S1/2,mS = −1/2 level via the
3P3/2,mS = −3/2 level. This pump process implements an uncorrelated noise process
that can be modeled as spontaneous decay. The effective lifetime depends on the laser
power and is in our case set to be Tspont = 7(1)µs.
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Figure 6.25: Level scheme of 40Ca+. The green and blue squares and circles indicate different qubit
encodings, denoted A and B, respectively. Squares are marking the qubit state |1〉
whereas the state |0〉 is highlighted with circles. The corresponding frequency shifts of
the transitions caused by the magnetic field are -2.80MHz/G and +3.36MHz/G for the
qubits marked with green and blue symbols respectively. For configuration 1 described
in the enumeration in the main text for both qubits the encoding marked in green is
used. The asymmetry in scenario 2 is introduced by encoding one of the qubits in in the
states illustrated in blue. For the third configuration both qubits again use the encoding
marked in green and the spontaneous decay from |0〉 to |1〉 is enhanced.

The system size of two qubits allows us to perform full process tomography to estimate the
correlation measure Ī (see Eqn. 6.29). In our platform for full process tomography in an N
qubit system, 12N measurement settings, each providing 2N −1 measurements, are required.
The amplitude of the magnetic field fluctuations is non-stationary as it depends on the entire
laboratory environment which cannot be controlled accurately. We engineer a stationary
magnetic field noise as the dominating noise source (a situation where laser and magnetic
field noise have to be taken into account is described in Section D.1). Thus we can control
the single-qubit coherence time as shown in Figure 6.26. The stationary magnetic field noise
is engineered by applying a white-noise current to the coils that generate the magnetic
field at the ions’ positions. We set the noise amplitude such that the coherence time of the
qubit encoded in

∣∣4S1/2,mS = −1/2
〉
and

∣∣3D5/2,mS = −5/2
〉
is reduced from 59(3)ms to

1.98(7)ms. The increase of magnetic field noise by a factor of ≈ 30 ensures that laser phase
noise is negligible. From the measured data, a process matrix is reconstructed using an
iterative Maximum Likelihood method (see Ref. [257]) that ensures trace preservation and
positivity of the process matrix.

The estimated quantifier for spatial correlations as defined in Eqn. 6.29 Ī is shown in
Figure 6.27 for the decoherence processes of the different configurations described above.
These processes are described by an exponential decay and show different timescales. To
compare the data from the different configurations we express the free evolution time in
units of the respective decay times τ . The temporal development of Ī is studied for evolution
times of up to 5 times the decoherence time for configurations 1 and 2 and up to 1.6 times
the lifetime for configuration 3, as the differences in the dynamics of different correlation
strength are most pronounced on those timescales.

It can be seen in Figure 6.27 that the symmetric configuration (Configuration 1), depicted
with blue triangles and labeled with "sym.", shows the highest degree of correlations that
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Figure 6.26: Coherence decay of the qubit in encoding A without (blue triangles) and with (green
circles) additional magnetic field noise.

reaches a steady state for long evolution times. The correlations converge to a saturation
value of 11.2(8)%, which is in agreement with the theoretical value of 12.5% (as expected in
the limit of perfectly correlated dephasing) within 2 standard deviations (see Section D.1).
Measurements using the asymmetric configuration (Configuration 2), depicted with

green circles and labeled with "asym.", show similar dynamics to the symmetric setting
for times up to twice the coherence time. For longer evolution times, however, a significant
decrease in correlations is observed as no DFS is available in the system.

The third investigated scenario (Configuration 3) implementing engineered uncorrelated
dynamics by adding spontaneous decay, is depicted with red diamonds. The correlations do
not exceed a value of 3.1(6)% in this case. This is significantly lower than the maximum of Ī
for fully and partially correlated dephasing dynamics.

The blue shaded area in the figure shows simulated results where random phase fluctua-
tions are acting on a two-qubit system. From the resulting output state of the simulation we
generate data including projection noise and the same analysis as for the experimental data is
performed. To simulate the asymmetric configuration the applied random phase fluctuations
are acting on the qubit weighted according to the different susceptibilities to the magnetic
field. For the simulation of uncorrelated spontaneous emission, instead of phase fluctuations,
probabilistic, uncorrelated quantum jump trajectories of the individual qubits are simulated.
Amore detailed description of the simulation can be found in SectionD.1. There is qualitative
agreement between simulations and measurements, but still there are significant deviations,
especially in the case of uncorrelated dynamics, of up to approximately 4σ. We assume
that this overestimation of the spatial correlations in the system dynamics by the quantifier
is due to miscalibration and drifts of experimental parameters. For instance a mismatch
between the actual and the calibrated Rabi frequency would lead to additional correlated
errors during the process tomography. This effect is best visible for Configuration 3, where
the dynamics are expected to show no correlations at all.
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Figure 6.27: Dynamics of the spatial correlation quantifier Ī for different qubit encodings. Three
cases are depicted: Both qubits encoded in

∣∣4S1/2,mS = −1/2
〉
↔
∣∣3D5/2,mS = −5/2

〉

(green triangles), one qubit encoded in
∣∣4S1/2,mS = −1/2

〉
↔
∣∣3D5/2,mS = −5/2

〉
and∣∣3D1/2,mS = −1/2

〉
↔
∣∣3D5/2,mS = −5/2

〉
(blue circles) and both qubits subject to

uncorrelated dynamics via spontaneous decay (red diamonds). The horizontal axis is
normalized to the coherence time for the first two cases and to the decay time for the
third case. Results from a MC based simulation with 500 samples are depicted with
shaded areas in the corresponding color.

6.2.3.5.2 Spatial correlations in multi-qubit systems

Due to the exponential scaling of the number of measurement settings for a single full
process tomography an analysis for a four qubit system would take about 24 hours per
waiting time setting and configuration in our system. Therefore, the feasible method to
investigate correlations is based on the provided lower bound for the correlation measure
as described in Section 6.2.3.4. For these experiments, the free-evolution time is fixed to
10ms, approximately corresponding to 5 times the coherence time. Inferring from the
two-qubit measurements, this evolution time renders a reliable discrimination of encoding
configurations, leading to differing degrees of correlations, possible.
First, we investigate the distance dependence of pairwise spatial correlations along the

register. For this we evaluate the lower bound for Ī (Eqn. 6.41) between the outermost qubit
and subsequently all other qubits. In a four-qubit system this corresponds to evaluating the
observables X1Xi, with Xi =

(
0 1
1 0

)
i
acting on ion i ∈ {2, 3, 4}, yielding the lower bound

ĪLB = 1
4·2 ln 2 [〈X1Xi〉 − 〈X1〉〈Xi〉]2. By applying a global π/2 pulse around the x axis of

the Bloch sphere R0(π/2) the system is prepared in the state |+〉 := 1√
d

∑d
k=1 |k〉, where

d = 24 for four ions†. After the preparation the system undergoes a free evolution. With this
preparation the qubits are in an eigenstate ofXi, the expectation values of these observables
are decaying quickly due to the dominant dephasing caused by the excess magnetic field
fluctuations. Therefore the lower bound of the dynamical correlations is the tightest for this
choice of observables. The data as shown in Figure 6.28 indicate that the spatial correlations
do not show any distance dependence. We compare the measured values by numerical
simulations which are shown as shaded bars in Figure 6.28 (see also Section D.1). The
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Figure 6.28: Lower bound for pairwise spatial correlations in a four-qubit system as a function of the
distance (in terms of ion index difference in the ion string) to qubit 1, depicted with black
circles. The corresponding simulations are shown with shaded bars. As all qubits have
the same encoding, the correlations between qubit 1 and qubit 2, 3 and 4 respectively are
the same within errorbars.

measured values are close to the expected value for a fully dephased state under perfectly
correlated noise of 4.5% (see Section D.1).

We then analyze the spatial correlations as given by the four-body observableX1X2X3X4.
We investigate three different configurations of qubit encodings which give rise to different
DFSs:

• Configuration 1: All four qubits encoded in Encoding A.

• Configuration 2: Qubits 1 and 2 encoded in Encoding A, qubits 3 and 4 encoded in
Encoding B.

• Configuration 3:Qubits 1, 2 and 3 encoded in EncodingA, qubit 4 encoded in Encoding
B.

The preparation of the system is the same as in the measurement of the pairwise
correlations, but after the waiting time, a four qubit state tomography measurement
is performed. From the reconstructed density matrix, we estimate the expectation val-
ues of the observables 〈X1〉, 〈X2〉, 〈X3〉, 〈X4〉 and 〈X1X2X3X4〉, where Xi =

(
0 1
1 0

)
i
is

a Pauli matrix acting on qubit i. The experimental results for the lower bound ĪLB =
1

4·4 ln 2 [〈X1X2X3X4〉 − 〈X1〉〈X2〉〈X3〉〈X4〉]2 but also for the individual expectation values
are presented in Figure 6.29. In the left subplot in the top row the lower bound is plotted
in green, blue and red for the qubit encoding configurations 1, 2 and 3, respectively. The
theoretically expected values from numerical simulations of the microscopic noise are
depicted with shaded bars. These estimated correlations and single-qubit expectation values
lead to a lower bound of 1.66(18)%, 1.05(18)% and 0.84(16)% for the three qubit encoding
patterns, respectively. These results show agreement with simulations within 1 standard
deviation. Note furthermore that in particular the lower bound value of 1.66(18)% for the

† In that notation the computational basis is numbered consecutively, so |1〉 = |0000〉, |2〉 = |0001〉, ..., |16〉 = |1111〉.
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Figure 6.29: a) Lower bound ĪLB for Ī for 3 different qubit encoding configurations described in
Section 6.2.3.5.2. b) and c) show the underlying expectation values from which ĪLB is
calculated. The expected results from numerical simulations are depicted with shaded
bars in the corresponding color.

first encoding pattern in which all four qubits reside in the Encoding A (Configuration 1)
is a signature of the almost perfectly correlated dynamics - it is close to the theory value
predicted for the long time limit of perfectly correlated dephasing dynamics of 1.27%. In
contrast, for two qubits in Encoding A and two qubits in B (Configuration 2), the observed
bound of 1.05(18)% is lower than for Configuration 1 and to be compared with the theory
value of 0.56% predicted for the long time limit (see Section D.1). For the asymmetric
Configuration 3 (three qubits in Encoding A and one in B), one observes with 0.84(16)% the
lowest value of the lower bound. As shown in Section D.1, theory predicts the lower bound
to fully vanish in the limit of even longer waiting times.

Instead of performing state tomography the expectation values necessary to calculate the
lower bound of the correlation quantifier could be measured directly, leading to a linear
scaling of the number of measurements with the number of qubits in the worst case. In
exchange for the better scaling the correlation estimation gets vulnerable to projection noise.
By increasing the number of repetitions of the experiment this error source can be reduced
to arbitrary low levels.

6.2.3.6 Conclusions and Outlook

We have presented a lower bound for the measure for correlations of quantum dynamics
proposed in Ref. [183]. We have shown how this lower bound can be evaluated without full
knowledge of the quantum process and how it can be extended to multipartite systems. We
have applied both the full measure Ī , which requires full tomographic information, as well
as the lower bound ĪLB to different electronic qubit encodings in a trapped ion quantum
information processor.
Our experimentally measured values are in agreement with expected values from

theoretical simulations which are based on a modelling of the various noise sources for
different types of qubit encoding patterns. For strings of up to four qubits our measurements
confirm that the natural noise in the quantum processor characterized in this work is
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dominated by perfectly correlated dephasing noise. Notably, both the values of the exact
measure Ī , as obtained from quantum process tomography in the two-ion case, as well as the
values of the lower bounds obtained for up to four ions, clearly reveal that the noise dynamics
is no longer perfectly correlated once a subset of ions is encoded in different electronic states
than the others. Furthermore, the observed values for Ī for an asymmetric encoding also
reveal the time scale on which this breaking of the perfectly correlated dephasing dynamics
takes effect. This quantitative information is valuable, if one is e.g. interested in using sets of
ion-qubits for the exploitation of DFSs.

In fact, one of themost intriguing applications of the correlationmeasure Ī is to characterize
noise processes in the context of QEC. It should be noted that the measure itself cannot be
directly used to assess the influence of the correlations on a QEC protocol, but it is able to
test a specific noise model and to furthermore estimate the model’s parameters. In particular,
the measure can be used to experimentally determine the behaviour of correlated noise as a
function of the distance between the constituent particles. The noise model can then inform
a microscopic model to estimate the QEC protocol’s performance. This is due to the fact
that the effect of correlations on EC procedures depends strongly on the interplay of the
actual form of the spatial correlations. The correlation measure quantifies the amount of
correlations and thus cannot be directly connected to the threshold of an error correcting
code without knowledge of the actual form of the correlations.
In addition, the exact correlation measure (and also the lower bound) can be used to

certify that the amount of spatial correlations is reduced in qubit pairs at positions ri and rj
with increasing distance according to certain scalings: Observing the way it decreases, e.g.
as a powerlaw ∝ |ri− rj |−α with a sufficiently large exponent α, allows one then to establish
a connection to QEC protocols. Such decay behaviour enters EC protocols as a necessary
condition for the provable existence of a regime in which the error correcting codes allow
for FT quantum computing [214–220].
Complementary, the lower bound is useful to detect unexpected correlations in systems

that do not allow full process tomography. It should be noted that the lower bound can
be estimated using data that is taken routinely during system tune-up, such as Ramsey
experiments, in many different physical QIP architectures. Based on prior knowledge about
the experimental system, one can also design the measured observable to be sensitive to a
certain kind of errors.
The presented methods can also be applied to characterize the noise environment in

precision measurements. For example in [260], two spatially separated ions are used for
dc magnetometry. The authors also investigated the coherence time of the singlet state as
a function of the ion distance. For short distances (≈ 4µm) the ions see almost perfectly
correlated noise resulting in no measurable decay (an almost perfect DFS). For larger ion
separation (≈ 6 mm), the coherence time is reduced by at least one order of magnitude,
indicating only partially correlated noise. The spatial correlation measure could be readily
applied to this experiment to characterize the correlations in the noise as a function of ion
distance. The distance of the qubits in the present work is in the order of 5µm and thus we
expect and observe completely correlated noise.
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CO NC LU S I O N

It is believed that large-scale quantum computation will require walking the long and rocky
road of QEC, where quantum information is distributed among several physical qubits
constituting logical qubits. In doing so, redundancy necessary to protect the intrinsically
fragile encoded quantum information from undesired disturbances is created. In this
thesis, two essential ingredients of FT quantum computation and their experimental
implementations using a trapped-ion quantum information processor are discussed:

• First, the repeated readout of information about errors being present on a logical qubit
is demonstrated. This procedure allows for continuous correction of errors as they
appear throughout the execution of an algorithm.

• And second, the implementation of a universal set of quantum gates on logical qubits
is presented. A sequence of gates from such a set allows one to approximate any
quantum algorithm with arbitrary accuracy.

Chapter 2 provided a general, hardware-agnostic introduction to QIP and introduced the
foundations and building blocks of the QEC protocols discussed throughout this thesis.
Chapter 3 discussed the basics of confining ions in free space. Furthermore, the interaction
of trapped ions with light and how this interaction can be utilized to implement the building
blocks of QIP were described. In Chapter 4, the basic concepts of QEC were explained and
the stabilizer formalism, a framework to describe a large class of QEC codes, was introduced.
Moreover, the experimental realization of multiple rounds of Steane-type QEC [114] was
presented. In this approach, the information about errors on a logical data qubit is copied to
an auxiliary logical qubit fromwhich the error syndrome can be extracted. As this syndrome
extraction procedure relies on transversal gate operations it is inherently FT, provided that
the initialization of the auxiliary logical qubit is FT. This is ensured for the implementations
presented herein by using single flag qubits [110–113]. The generality of Steane QEC was
illustrated by applying it to different QEC codes. For the distance-3 and distance-5 bit- and
phase-flip codes the logical fidelity improved with increasing code distance suggesting an
operation of the codes below their respective thresholds. Furthermore, Steane QEC was
implemented for the Steane code [36], a seven-qubit QEC code able to correct a single
arbitrary error, and compared to a state-of-the-art flag-based QEC protocol [119, 120]. It was
shown that Steane EC outperforms the flag-based protocol for the error processes present
in the experimental setup. A major contribution to the observed logical error rates can be
attributed to measurement and dephasing errors. However, numerical simulations suggest
that Steane QEC offers an even larger advantage of up to a factor of two in the regime of
dominating two-qubit gate errors. Furthermore, Steane-type QEC can be especially beneficial
for architectures providing parallel implementations of logical CNOT gates, as in this case
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extracting the error syndrome in only two circuit time steps is possible. The experimental
capabilities for efficient Steane EC were recently demonstrated in a neutral atom quantum
processor by realizing parallel entangling gates on multiple logical qubit pairs [40].

For the realization of FT quantum computation, FT encoding and syndrome extraction,
discussed in Chapter 4, are not sufficient. Also gate operations have to be implemented
such that the encoded quantum information is protected against noise throughout the
entire execution of a quantum algorithm. Thus, gate operations must be applied directly to
encoded qubits. Chapter 5 presented the FT implementation of a universal set of quantum
gates in the Steane code. Transversal single-qubit Clifford operations were applied to the
state |0〉L to prepare all six cardinal states on the Bloch sphere of the logical qubit. The logical
fidelity of the prepared states was compared for FT and non-FT initialization of |0〉L. It was
observed that the flag-based FT initialization protocol outperforms the non-FT version by
approximately a factor of 5. Furthermore, the transversal CNOT gate was characterized by
applying it to six different input states of two fault-tolerantly prepared logical qubits. To
achieve universality, the set of Clifford gates was amended by the T gate, a rotation with a
rotation angle of π4 around the Y axis [54]. For the implementation of the T gate, an auxiliary
logical qubit was prepared in a magic state, and subsequently, a transversal entangling
gate between the logical auxiliary qubit and the target qubit was applied. Along the same
lines as for Steane QEC, this magic state injection procedure is FT in case of an FT magic
state preparation. The flag-based FT preparation of the magic state proposed in Refs. [110,
119] uses a total of eight flag qubits to capture all dangerously propagating errors. For
approximately 13% of the prepared magic states the flag qubits did not indicate a dangerous
error and the magic state was accepted. Despite the significantly increased complexity of the
FT preparation circuit compared to its non-FT counterpart, an improvement in the magic
state fidelity of more than a factor of ten was observed in the experiment.

The application of gates to a qubit register can lead to unintended manipulation of qubits
in close proximity to the target qubit, as discussed in Section 6.1. Such crosstalk effects
can introduce error processes that break the FT properties of a circuit by introducing error
processes that lead to uncorrectable errors. It was shown that crosstalk does not pose a
limitation for current error rates in the considered experimental setup. However, simulations
showed that for physical error rates decreased by one order of magnitude, crosstalk affects
the scaling of the logical error rate with the underlying physical error rates. Nevertheless,
reordering the qubit register under consideration of the microscopic structure of the present
crosstalk can recover the error rate scaling promised by FT circuit design for some QEC
protocols.

Apart from the spatially correlated errors induced by crosstalk, spatially correlated idling
errors can significantly impact the performance of QEC procedures [214–220]. In Ref. [183],
a measure rigorously quantifying correlations in quantum dynamics for two qubits was
proposed. The implementation of this quantification method in a trapped-ion device was
discussed in Section 6.2. The correlation strength of idling dynamics between different qubits
can be engineering in the trapped-ion device used in this thesis: Encoding qubits in different
electronic states of the ions allows one to tune their sensitivity to magnetic fields. With this,
the intrinsically fully correlated magnetic field noise present in the setup acts differently
along the qubit register. This allows for testing the implemented correlation measure in
different correlation-strength regimes. Furthermore, a lower bound to the measure that does
not require full knowledge about the quantum dynamics, as well as an extension of the
correlation measure to multipartite quantum systems, was introduced. The measure and
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its lower bound can be utilized to inform error models that consider spatial correlations in
idling dynamics. Such error models will be crucial in future large-scale quantum devices to
predict the performance of QEC protocols.

In Ref. [39], error rates of logic qubit initialization and logical CNOT gates were observed
that are lower than the respective physical error rates in the same device. The current
physical error rates present in the trapped-ion device used to acquire the data in this thesis
do not allow us to observe this hallmark feature of beneficial QEC. The main limitations are
two-qubit gate error rates, dephasing errors caused by magnetic field noise and mid-circuit
measurement errors. To conclude this thesis, future updates to the experimental setup are
discussed that hopefully allow us to achieve beneficial QEC, a milestone on the long road
towards FT quantum computation.
We suspect that a major contribution to two-qubit gate errors is given by undesired

interaction with motional modes. With increasing qubit register size the number of motional
modes increases and the mode spectrum gets denser in frequency space. The scheme
described in Section 3.2.3 uses a single motional mode to mediate the entangling interaction
between qubits. Interactions mediated by other, neglected modes close in frequency can lead
to entanglement between electronic and motional state of the ions. An update to the control
electronics of the setup is currently in preparation, so that the laser intensity and phase can
be modulated during the gate operation. This allows us to decouple the ions’ electronic and
motional state for multiple modes simultaneously [261, 262] and increase the entangling
gate fidelity for trapped-ion devices with dense motional spectra.
Idling errors in the considered setup are dominated by dephasing errors caused by

magnetic field noise. The magnetic field at the ion position is generated by a combination of
permanent magnets and coils. Currently, the coherence time on the optical qubit transition
is on the order of 50 ms, where the limiting factor is noise on the current drivers supplying
the coils. By rearranging the permanent magnets, the coils can be superseded, so that the
coherence time can be significantly improved [143–145]. Modifying the permanent magnet
arrangement requires extensive disassembly of the experimental apparatus and is, therefore,
scheduled for a future down-time period of the setup.
Increasing the coherence time also reduces the error rate of mid-circuit measurements,

as the measurement contains periods where DD is not applicable. We assume that another
major contribution to the error budget of mid-circuit measurements is crosstalk in the single-
qubit operations required for switching the data qubit encoding during the measurement
procedure. Every single-qubit gate introduces a small undesired rotation on its neighbors.
By employing single-qubit operations, that consist of pulses with different rotation axes, the
rotation angle of the crosstalk rotation can be reduced [212, 213]. For small Rabi frequencies,
as are present on neighboring ions, the consecutive rotations arounddifferent axes implement
an operation close to the identity operation. On the contrary, the Rabi frequency at the target
ion is approximately two orders of magnitude larger and the pulse sequence implements the
desired single-qubit operation. As a sequence of rotations around different axes corresponds
to a single phase-modulated laser pulse, the update to the control electronics required to
implement modulated entangling operations mentioned above also allows us to implement
crosstalk-insensitive single-qubit gates.
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A P P E N D I X TO P U B L I C AT I O N D E M O N S T R AT I O N O F

FAU LT-TO L E R A N T S T E A N E Q U A N T U M E R RO R CO R R E C T I O N

a.1 Quantum error correcting codes

a.1.1 The seven-qubit color code

A powerful tool for describing a large group of QEC codes is the stabilizer formalism. In
an n-qubit quantum system encoding k logical qubits a group of mutually commuting
Pauli operators defining a QEC code, referred to as the stabilizer, can be specified. Any
valid code state is a +1 eigenstate with respect to all elements of the group, which can be
generated by a set of n − k stabilizer generators. By measuring the expectation values of
the stabilizer generators, errors can be detected and subsequently corrected through QEC
protocols, preserving the integrity of the encoded quantum information. The distance d
of the code is given by the minimal weight of a non-trivial operator that does retain the
quantum state it is acting on within the subspace of +1 eigenstates of the stabilizer. An
n-qubit stabilizer code with a distance d encoding k qubits is commonly denoted as an
[[n, k, d]] code.
The seven-qubit color code [[7, 1, 3]] is constructed by placing physical qubits on the

vertices of a graph [36]. The encoded logical qubit is defined as the simultaneous +1

eigenstate of the six stabilizer generators

S
(1)
X = X1X3X5X7, S

(1)
Z = Z1Z3Z5Z7

S
(2)
X = X4X5X6X7, S

(2)
Z = Z4Z5Z6Z7 (A.1)

S
(3)
X = X2X3X6X7, S

(3)
Z = Z2Z3Z6Z7,

as illustrated in Figure 4.16A and Figure A.1. The logical operators are given by ZL = Z⊗7

and XL = X⊗7, which can be expressed as weight-3 operators by multiplication with
stabilizers. For instance, multiplying S

(1)
X with XL gives the weight-3 logical operator

X2X4X6. The circuit shown in Figure A.2 is used to encode a logical state in the seven-qubit
color code [110].
In the error-free case, a measurement of the set of stabilizer generators will yield the

outcome +1 for each one, since a valid code state is a +1 eigenstate of these operators. If a
single Pauli fault occurs, this will anticommute with a set of stabilizers. The measurement
outcomes in this case will yield the outcome −1 for a set of stabilizers. This syndrome
measurement outcome is unique to the initial single Pauli fault when excluding error
configurations of weight greater than one. Therefore, one can correct for this error and
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recover the code state. However, higher-weight error configurations break this uniqueness
and can lead to logical errors when applying the recovery operation. For instance, the
weight-1 error configuration X5 and the weight-2 configuration X1X4 lead to the same Z
syndrome {S(1)

Z = −1, S
(2)
Z = −1, S

(3)
Z = 1}. Applying the recovery operationX5 would lead

to a logical error for the weight-2 error case, as the weight-3 configurationX1X4X5 = XLS
(3)
X

is up to multiplication with a stabilizer generator equivalent to XL. Table A.1 summarizes
the possible Z-syndromemeasurement outcomes and the corresponding recovery operation,
which corrects any single Pauli-X error. Since the seven-qubit color code is self-dual, i.e.
symmetric under exchange of X and Z stabilizers, the lookup table for Pauli-Z corrections
based on the measured X syndrome is the same.

The syndrome can be extracted using Steane-typeQECwith the circuit shown in FigureA.3,
where transversal CNOT gates copy errors onto an auxiliary logical qubit which is then
measured projectively. Figure A.4 shows the circuit we use for flagged syndrome readout on
the seven-qubit color code [38, 120, 128]. If no error is detected in a first round of flagged
stabilizer measurements, we assume that no error has occurred and proceed. If a non-trivial
syndrome is measured, the complete syndrome is measured again with unflagged circuits to
distinguish the dangerous propagated flag errors from non-flag errors. If the two syndromes
agree, we take this as a final syndrome for ECwith lookup table Table A.1. If they do not agree
and the unflagged syndrome coincides with a flag-error syndrome in Table A.2, we apply
the corresponding flag-EC. In case the unflagged syndrome is not in the flag-lookup table,
the single-qubit recovery from Table A.1 is used. Note that while one could immediately
apply the correction to the data register, it is admissible to just keep track of this in software
(known as Pauli frame tracking) as long as no logical non-Clifford gate is applied. The
experimental setup currently does not allow for real-time changes of the gate sequence
based on outcomes of mid-circuit measurements. For the realization of flagged QEC we
experimentally implement both possible circuits, with and without a second unflagged
measurement of the stabilizer generators, and all combinations thereof for multiple QEC
cycles. In post-selection we discard all implementations where the flagged syndrome was
trivial, but an unflagged readout was following, and vice versa.
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Figure A.1: Stabilizer generators of the seven qubit color code. The seven-qubit color code encodes
one logical qubit into seven physical qubits. A code state is a +1 eigenstate of all six
weight-4 stabilizer generators {S(i)

X , S
(i)
Z } defined on the colored plaquettes. Pauli-X (-Z)

on all qubits corresponds to the logical operator XL (ZL), which is up to multiplication
with stabilizer generators equivalent to weight-3 operators.

We numerically calculate the fidelities for the limiting case where all error rates except
p2q are set to 0, as shown in Figure A.5, in order to estimate the potential advantage of
Steane-type QEC over the flag-based approach. Since there is no additional dephasing



A.1 quantum error correcting codes 173

1

2

3

4

5

6

7

8

|+⟩ H

|+⟩ H

|0⟩ H

|+⟩ H

|0⟩ H

|0⟩ H

|0⟩ H

|0⟩

Figure A.2: Circuit for the encoding of a logical state in the seven-qubit color code [110, 128]. The
first eight CNOT gates initialize |0〉L on the seven-qubit color code. This is followed by a
verification in order to detect single faults that would otherwise propagate onto multiple
data qubits and cause a logical failure. Finally, a transversal application of HL may be
applied to prepare |+〉L.

{

Figure A.3: Circuits for Steane-type syndrome extraction in the seven-qubit color code [114, 116, 118].
A logical auxiliary qubit is initialized using the circuit shown in Figure A.2, coupled to
the data qubits and measured.



174 appendix to publication demonstration of fault-tolerant steane

quantum error correction

S
(1)
Z , S

(2)
Z , S

(3)
Z Recovery

+ + + I

−+ + X1

+ +− X2

−+− X3

+−+ X4

−−+ X5

+−− X6

−−− X7

Table A.1: Lookup table for the seven-qubit color code. For each syndrome measurement with a
given set of positive + and negative − outcomes, a single-qubit recovery operation is
applied. Since X and Z stabilizers are defined symmetrically on the same support, the
Z-type recoveries based on the X syndrome are applied analogously. Any Y error can be
considered as a combined X and Z error and be corrected independently.

S
(1)
Z , S

(2)
Z , S

(3)
Z Recovery

+−+ X3X7

+ +− X4X6

Table A.2: Flag-lookup table for the seven-qubit color code. If the outcomes of flagged and unflagged
syndrome readouts do not agree and the measured unflagged syndrome is the table above,
the corresponding recovery operation is applied. If the unflagged syndrome is not in the
above table, the respective single-qubit recovery operation from Table A.1 is applied. Since
X and Z stabilizers are defined symmetrically on the same support, the Z-type recoveries
based on the X syndrome are applied analogously.

included, the systematic difference in fidelity between the two logical states |0〉L and |+〉L
vanishes. The fidelities for the Steane-type approach are higher than for the flag-based
protocol and this difference increases with the number of QEC rounds. After two rounds
of QEC, the fidelity for the Steane-type approach is already more than 0.1 higher than for
the flag-based protocol. This promises an advantage of Steane-type QEC in the regime of
dominating two-qubit error rates.

a.1.2 The 1D repetition code

For the n-qubit bit-flip code [45], the logical |0〉L is encoded in n copies of |0〉 as |0〉L =

|0〉⊗n. The stabilizer generators are given by pairs of neighboring Pauli-Z operators
{Z1Z2, Z2Z3, ...Zn−1Zn} and the logical operators are XL = X⊗n and ZL = Z1. Analo-
gously, the phase flip code takes repetitions of |+〉 to encode information redundantly on
multiple qubits. In this case, one can define the n-qubit state |0〉L = |+〉⊗n and the stabilizers
correspond to pairs of Pauli-X operators {X1X2, X2X3, ...Xn−1Xn} and the logical operators
are given byXL = Z⊗n and ZL = X1. Steane-type QEC is performed by initializing a second
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Figure A.5: Fidelities from numerical simulations for Steane-type and flagged syndrome extraction
in the limiting case of only accounting for two-qubit gate errors. All error probabilities,
apart from the two-qubit gate error probability p2q = 0.025, are set to p1q = pinit =

pmeas = pmid−circ = 0. Shown are the logical fidelities for the seven-qubit color code
after preparing the logical states (A) |0〉L and (B) |+〉L. Steane-type QEC reaches higher
fidelities than the flag-based approach and this difference increases with the number
of subsequent rounds of QEC. Round 0 corresponds to the encoding of the logical state
with no extra round of QEC.
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Figure A.6: Infidelity ratio from numerical simulations for Steane-type and flagged syndrome
extraction in the limiting case of small two-qubit and single-qubit gate errors. All error
probabilities, apart from the gate errors p2q, p1q, are set to pinit = pmeas = pmid−circ = 0.
We calculate the leading order in the infidelity for both schemes by performing fault path
counting (see Appendix A.2) on the respective circuits. We plot the infidelity ratio of
Steane-type over flagged syndrome extraction, such that values below (above) 1 indicated
in blue (red) indicate an advantage for Steane-type (flagged) syndrome extraction. The
black line indicates the contour of equal infidelity of Steane-type and flagged QEC.
The results of our simulations show that when the two-qubit gate error is dominant
(p2q � p1q), Steane-type syndrome readout offers an advantage also at low physical error
rates.
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{
A B

Figure A.7: Circuits for Steane-type syndrome extraction in the repetition code. Syndrome extraction
for the (A) bit-flip code or (B)phase-flip code is performedby initializing a logical auxiliary
qubit is in a suitable GHZ state on qubits 6 to 10 and verifying it with an additional
flag qubit 11. Sequentially, a transversal CNOT gate is applied and the auxiliary qubit is
measured in the corresponding basis. The flag verification (qubit 11) can be left out in
the circuits for the respective distance-3 codes without breaking fault tolerance.

logical qubit in the corresponding logical |+〉L and applying a transversal CNOT gate, as
shown exemplarily in Figure A.7 for the distance-5 repetition code.

a.2 Effective noise model and simulation methods

In order to estimate the logical fidelities of the discussed EC protocols, we perform MC
simulations using STIM [263] and PECOS [198]. Every component in a circuit is modeled
as an ideal operation Uideal followed by an error E drawn from an error set with a given
probability p. We consider depolarizing noise channels on single- and two-qubit gates

E1(ρ) = (1−
3∑

j=1

pj)ρ+
3∑

j=1

pjE
j
1ρE

j
1 (A.2)

E2(ρ) = (1− p2q)ρ+
p2q

15

15∑

j=1

Ej2 ρE
j
2.

with the error sets

E1 ∈ {σk,∀k ∈ {1, 2, 3}} (A.3)
E2 ∈ {σk ⊗ σl,∀k, l ∈ {0, 1, 2, 3}}\{σ0 ⊗ σ0},

where σk are the single-qubit Pauli operators σk = {I,X, Y, Z} with k = 0, 1, 2, 3. For the
single-qubit case we give the more general channel to capture the asymmetric case found
for the errors induced during mid-circuit measurements. The general formula reduces to
the symmetric depolarizing case by choosing all three Pauli errors with equal probability
pj = p1q/3, as we do for the single-qubit gate error. The parameters p1q and p2q specify the
probability that any one of the errors of the corresponding error set occurs on the qubits
which are acted upon. Qubits are initialized andmeasured in the computational basis. Faults
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Operation Error rate Duration

Two-qubit gate p2q = 0.027 322.5µs

Single-qubit gate p1q = 0.0036 25µs

Measurement pmeas = 0.003

Preparation pinit = 0.003

p
(x)
mid−circ = 0.011

Mid-circuit detection p
(y)
mid−circ = 0.024

p
(z)
mid−circ = 0.035

Table A.3: Error rates and duration of operations on a trapped-ion quantum processor. These values
correspond to the trapped-ion setup that was used in the experiments and are used in
the following simulations. Gate durations are increased by 10µs compared to the values
given in Appendix A.3 to account for settling times of the addressing optics, when the ion
being addressed is changed.

on these operations are modeled by applying X errors after state preparations and before
measurements with a probability pinit and pmeas, respectively. Furthermore, we include noise
on idling qubits, which are not acted upon with a gate at a given step of the protocol. Since
the dominating noise on idling qubits is dephasing due to magnetic field fluctuations, which
limits the decoherence time T2 ≈ 50ms, we model the noise channel for idling qubits by
Pauli-Z faults as

Eidle(ρ) = (1− pidle)ρ+ pidleZρZ. (A.4)

The probability pidle of a Z fault on each idling qubit depends on the execution time t of the
performed gate and is given by

pidle =
1

2

[
1− exp

(
− t

T2

)]
. (A.5)

Mid-circuit detections are performed in order to perform multiple rounds of EC, where
auxiliary qubits are measured while keeping the data qubits intact. The idling data qubits
experience noise during thismid-circuit detection,whichwemodel as an asymmetric depolar-
izing channel on all data qubits. We estimate the individual Pauli p(x)

mid−circ, p
(y)
mid−circ, p

(z)
mid−circ

error rates in this channel based on single-qubit process tomography. All error rates and
gate times are summarized in Table A.3.

For the extrapolation to the limiting case of small gate error rates we additionally perform
simulationswith a technique knownas fault path counting [264]. The goal here is to determine
the leading order contributions to the logical infidelity at low physical error rates. Since single
faults cannot lead to logical errors by design, this function will be dominated by second order
termswhen expanding as a polynomial of physical error rates.We focus on the gate errors p2q

and p1q and set all other error sources to zero. This implies the leading terms of the function
describing the infidelity can be written as infid(p2q, p1q) = c2p

2
2q + c1p

2
1q + c12p1qp2q +O(p3).
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The coefficients ci are related to the number of corresponding fault configurations resulting in
logical failure. For example, c2 is the sum over all configurations where placing faults on any
two two-qubit gates in a given circuit (-sequence) results in a logical error; analogously for c1

when placing two faults on any two single-qubit gates and c12 when placing one two-qubit
gate and one single-qubit gate fault. The coefficients furthermore contain a normalization
since we write the polynomial as a function of p1q and p2q, which determine the microscopic
fault probabilities of a single-qubit gate fault as p1q/3 and a two-qubit gate fault as p2q/15 via
Eqn. A.3. To determine the logical outcome, each fault configuration has to be propagated to
the end of the circuit. Fault path counting is viable at low physical error rates when higher
order contributions are negligible. In this regime, this allows us to determine the coefficients
of the polynomial such that we can explore the influence of different error sources. The
coefficients are given in Table A.4. As shown in Figure A.6, we compare Steane and flagged

c2 c1 c12

Steane EC 70.3 684.2 438.3

Flagged EC 204.5 178.7 543.6

Table A.4: Coefficients obtained by fault path counting simulations. As described in the main text,
ck related to the number of fault configurations of two faults leading to a logical error
weighted with the probability of occurrence. These coefficients determine the leading
order of the polynomial describing the infidelity of each EC scheme at low error rates.

syndrome readout schemes and plot the ratio of infidelities as a function of single and
two-qubit gate error strength. We find that there are two regimes where either method
is preferable, strikingly for systems dominated by the two-qubit gate error p2q � p1q our
results show an advantage of Steane over flagged syndrome readout across the board.

a.3 Experimental methods

All experiments presented in this manuscript are conducted on a trapped-ion quantum
processor [84]. In a non-segmented macroscopic Paul trap a string of sixteen 40Ca+ ions is
trapped with inter-ion spacing ranging from 3.8µm to 6.0µm, set by trap parameters. The
COM modes of the ion string in the pseudo-harmonic potential of the trap have oscillation
frequencies of ωz = 2π × 369 kHz and ωx = 2π × 3086 kHz, ωy = 2π × 3165 kHz for the
direction along the ion string (referred to as axial) and the two perpendicular directions
(referred to as radial), respectively. The first step of every experimental cycle is a Doppler
cooling pulse acting on the |42S1/2〉 ↔ |42P1/2〉 transition at a wavelength of 397 nm (see
Figure A.8) with a duration of 500µs. Simultaneously the ion chain is illuminated with light
at 866 nm to avoid pumping to the dark state |32D3/2〉 by driving any population trapped
there back to the state |42S1/2〉. Both laser beams act on all ions simultaneously and have
spatial overlap with all motional modes. The two lowest-frequency axial modes and all 32

radial modes are further cooled close to the ground state by resolved sideband cooling [83].
The ions are illuminated by a laser beam red-detuned by the respective motional frequency
from the |42S1/2,mJ = −1/2〉 ↔ |32D5/2,mJ = −5/2〉 transition at 729 nm. For the axial
modes the 729 nm laser propagates along the ion string, whereas the radial modes are cooled
by a steerable, addressed 729 nm beam illuminating only one ion at a time from a direction
perpendicular to the ion string. To cool the radial modes the ion having the strongest
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Figure A.8: Energy scheme of 40Ca+. Lasers at wavelengths of 729 nm, 854 nm and 397 nm are used for
qubit manipulation, qubit reset, and Doppler cooling, respectively. Different encodings
are used for the data qubits in different stages of a circuit. Gates are applied to the
optical qubit encoding (green symbols). For mid-circuit measurements the data qubits are
encoded in different Zeeman sublevels of the states |0〉 = |42S1/2〉 and |0〉 = |32D5/2〉 to
avoid interactionwith laser light for qubit state detection, reset, and recooling illuminating
the whole register. Furthermore, a RF drive is available for DDwhen the qubit is encoded
in the Zeeman manifold of the electronic ground state during the sideband recooling
stage of mid-circuit measurements.

coupling to the respective motional mode is illuminated. All modes within approximately
50 kHz from the laser frequency are cooled, which allows us to cool 34 modes with only 15
frequency settings. To accelerate the cooling process ions excited to the |32D5/2〉 state are
pumped to the state |42P3/2〉 using laser light at 854 nm from where they rapidly decay to
one of the ground states. This sideband cooling cycle is repeated up to five times depending
on the mode, where one cycle takes 500µs. The mean phonon number of the COM mode
with mode frequency ωy = 2π × 3165 kHz after sideband cooling is n̄ = 0.05(1) and exhibits
a heating rate of 3.6(2) phonons per second. For the rocking mode along the same direction,
the mode closest in frequency to the COM mode with a relative detuning of 23 kHz, the
mean phonon number after sideband cooling is n̄ = 0.02(1). Within 50 ms no heating is
observed on this mode. This behavior is expected in macroscopic ion traps, as in such
traps typically the noise leading to motional heating is spatially correlated along the ion
string [265]. Measuring the mean phonon number and heating rate for other motional modes
is not trivial due to the crowding of the modes in frequency space. However, we assume that
the contribution of those modes to the entangling gate dynamics is negligible. The finalizing
step of the state preparation procedure is to prepare all ions in |42S1/2,mJ = −1/2〉 by
exciting the transition |42S1/2,mJ = +1/2〉 ↔ |32D5/2,mJ = +1/2〉with axial 729 nm light
while speeding up the decay to the ground state using 854 nm light, as for sideband cooling.

The coherent manipulation of the individual qubits in the register subsequent to state
preparation is exclusively done via tightly focused laser pulses with a propagation direction
perpendicular to the ion string addressing the qubit transition |42S1/2,mJ = −1/2〉 ↔
|32D5/2,mJ = −1/2〉. The experimental setup allows us to illuminate up to two ions simul-
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taneously. Addressing a single ion i with light resonant to the qubit transition allows us to
implement operations of the form R

(i)
φ (θ) = exp (−i θ2(σ

(i)
x cosφ+ σ

(i)
y sinφ)), where σ· are

single-qubit Pauli matrices. The rotation axis φ can be controlled via the light phase, the
rotation angle θ via light intensity and pulse duration. The duration of a pulse with θ = π

2 is
15µs. Together with virtual Z rotations [85] this operation allows us to implement arbitrary
single-qubit unitary operations. The gate set is completed by adding the entanglingMS inter-
action, where any two ions may be illuminated with bichromatic light slightly detuned from
the motional sidebands corresponding to the radial mode at frequency ωy [168]. Adjusting
the gate time to tgate = 1

δ = 312.5µs, where δ is the detuning from the motional sidebands,
implements the gate MS(ij) = exp(−iπ4σ

(i)
x σ

(j)
x ), which is equivalent to the CNOT gate up to

single-qubit rotations [88]. Qubit state readout after application of a gate sequence to the
qubit register is implemented by simultaneously illuminating the whole register with laser
light at wavelengths of 397 nm and 866 nm. While qubits projected to the computational state
|0〉 = |42S1/2,mJ = −1/2〉 repeatedly emit photons at a wavelength of 397 nm after being
excited to |42P1/2〉 and returning to |42S1/2〉, qubits projected to |1〉 = |42D5/2,mJ = −1/2〉
are not affected by those light fields and do not emit photons [83]. Imaging the ion string on
an EMCCD camera allows for the spatially resolved detection of light emission from the ion
string, and therefore the computational basis bit string the qubit register was projected into
can be reconstructed.
Error rates for single-qubit gates are estimated from single-qubit randomized bench-

marking on the 16-qubit register. We find an error rate per gate averaged over all 16 qubits
of 0.0036 with a standard deviation of 0.0004. The two-qubit error rate is estimated by
preparing a 16-qubit GHZ state and comparing the experimentally measured fidelity to
simulated fidelities from numerical simulations accounting for errors on single-qubit gates,
two-qubit gates, initialization andmeasurements. As outlined in previous work of ours [266],
for the analysis of the fidelity of the prepared GHZ state we perform two measurements:
The probabilities to project to one of the two basis states |0〉⊗16 and |1〉⊗16 are determined by
a direct projective measurement in the Z basis after preparation. The off-diagonal elements
of the density matrix of the GHZ state instead are measured by applying single-qubit gates
R

(i)
ϕ (π/2) to all qubits after preparing the GHZ state. For different phases ϕ the parity of the

prepared state is measured via a projective measurement and a sinusoidal model is fitted
to the observed parity oscillations [228]. The mean of the sum of the populations in |0〉⊗16

and |1〉⊗16 and the contrast of the parity oscillations of the coherence measurement gives
the fidelity of the GHZ state. Averaging over multiple instances of the prepared GHZ state
over the course of around 13 hours gives a mean fidelity of 0.54 with a standard deviation
of 0.04, corresponding to an estimated two-qubit error rate p2q = 0.027 with a standard
deviation of 0.005. Typical values for qubit initialization and measurement fault rates are
pinit = pmeas = 0.003 in the device under consideration [83].

a.3.1 Mid-circuit measurements

For mid-circuit measurements only a part of the register, referred to as auxiliary qubits, is
supposed to be projected into the computational basis, while a part of the register, referred to
as data qubits, is ideally unaffected. To avoid projecting the data qubits, their qubit encoding
is transferred to |0〉data,det = |32D5/2,mJ = +1/2〉 and |1〉data,det = |32D5/2,mJ = −1/2〉 by
first applying an RF pulse with a pulse area of π (π-pulse) that transfers the population
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in |42S1/2,mJ = −1/2〉 to |42S1/2,mJ = +1/2〉 followed by a π-pulse on the transition
|42S1/2,mJ = +1/2〉 ↔ |32D5/2,mJ = +1/2〉 for all data qubits. Subsequently the same
detection pulse as for the final detection is applied. Recoil of scattered photons from bright
auxiliary qubits heat up the ion string, which would lead to reduced gate fidelities after
the mid-circuit measurement. Therefore a Doppler cooling pulse is applied. To recool
the ion string close to the motional ground state an additional sideband cooling step
is necessary. The data qubit encoding is transferred to |0〉data,cool = |42S1/2,mJ = +1/2〉
and |1〉data,cool = |42S1/2,mJ = −1/2〉 by applying π-pulses on the transitions associated
to the states |42S1/2,mJ = ±1/2〉 and |32D5/2,mJ = ±1/2〉 as sideband cooling involves
illuminating the ion stringwith 854 nm light,whichwould otherwise destroy any information
encoded in the |32D5/2〉manifold. Then the same sideband cooling pulse scheme as for state
preparation is applied, apart from the fact that axial modes are not cooled and ions encoding
data qubits are excluded from the set of allowed cooling ions. Cooling axial modes would
require using the axial 729 nm beam, as the addressed beam does not have overlap with the
direction of motion of axial modes, and therefore would also affect data qubits. Prior to every
sideband cooling pulse the respective ion is pumped to |42S1/2,mJ = −1/2〉 by applying
two repetitions of a π-pulse on the transition |42S1/2,mJ = +1/2〉 ↔ |32D5/2,mJ = −3/2〉
followed by a 5µs pulse of 854 nm light. The mid-circuit measurement is finalized by
repeating the pumping cycle for all auxiliary qubits that are supposed to be reused four
times, and restoring the encoding of the data qubits by applying a π-pulse on the transition
|42S1/2,mJ = −1/2〉 ↔ |32D5/2,mJ = −1/2〉 followed by an RF π-pulse transferring the
population in |42S1/2,mJ = +1/2〉 to |42S1/2,mJ = −1/2〉. The mid-circuit sideband cooling
procedure requires around 15 ms. A detailed timeline of a mid-circuit measurement is shown
in Figure A.9.

a.3.2 Dynamical decoupling

The coherence time in the optical-qubit encoding and the ground-state encoding is on the
order of 50 ms and 5 ms, respectively. Idling data qubits would thus suffer from significant
dephasing during sideband cooling if no countermeasures were taken. Therefore a DD
sequence is performed on the data qubits during the recooling procedure to preserve
coherence. This decoupling is implemented with an RF antenna radiating at 16.7 MHz

acting on the entire register simultaneously which drives the transition between the two
ground states, where the data qubits are encoded during sideband cooling. The antenna
with a diameter of about 2 cm is connected to a resonant circuit and is mounted outside
the vacuum chamber as close as possible to the ion string. Driving the resonant antenna
with a power of approximately 2 W allows us to implement a bit flip in 35µs. The maximum
relative deviation in Rabi frequency in the 16-qubit register is Ωmax−Ωmin

Ωmin
= 0.002(1), where

Ωmax and Ωmin are the maximum and minimum Rabi frequencies, respectively. The RF
source driving the antenna is a direct digital synthesizer integrated in the same control
hardware that also generates the RF pulses driving AOMs used to address the optical-qubit
transition. The phase of the pulses generated by these RF sources is defined with respect to
a common reference enabling coherent operation across different direct digital synthesizer
channels. A decoupling pulse is applied approximately every millisecond in between cooling
pulses for different motional modes. Under the application of this decoupling scheme we
do not see any significant dephasing up to a waiting time of 60 ms, which indicates an
effective coherence time larger than 1 s. The effect of a full mid-circuit measurement on data
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Figure A.9: Sequence timing diagram of a mid-circuit measurement. The first light blue pulse
labeled ‘Hide’ transfers the encoding of the data qubits from the encoding labeled
with green symbols in Figure A.8 to the encoding labeled with blue symbols. Instead
of directly applying a π-pulse labeled ‘π1’ on the transition |42S1/2,mJ = −1/2〉 ↔
|32D5/2,mJ = +1/2〉 an RF pulse with pulse area π followed by π-pulses on the transition
|42S1/2,mJ = +1/2〉 ↔ |32D5/2,mJ = +1/2〉 are applied.As the coupling on the δmJ = 0

transition is significantly higher, this allows us to speed up the hiding process. After
applying detection andDoppler cooling pulses the encoding of the data qubits is returned
to the encoding shown with green symbols by applying the reverted hiding sequence.
Subsequently, the encoding of the data qubits is transferred to the encoding shown
with red symbols by applying an RF pulse with pulse area π followed by π-pulses
labeled ‘π2’ on the transition |42S1/2,mJ = −1/2〉 ↔ |32D5/2,mJ = −1/2〉. Although the
two RF pulses implement the identity we do not omit them to retain symmetry with
the unhiding pulses at the end of the sequence. Before each sideband cooling cycle a
π-pulses labeled ‘π3’ on the transition |42S1/2,mJ = −1/2〉 ↔ |32D5/2,mJ = −1/2〉 is
applied to the auxiliary qubit used for cooling in the respective sideband cooling cycle.
Subsequently a pulse labeled ‘Reset’ (simultaneous illumination with 854 nm and 866 nm

light of the entire register) is applied. Together, these two pulses ensure that the auxiliary
qubit population is transferred to |42S1/2,mJ = −1/2〉 and sideband cooling can operate
efficiently. After the last sideband cooling cycle all auxiliary qubits that are supposed to
be reused are reinitialized to |42S1/2,mJ = −1/2〉 using the same pulse sequence that
optically pumps the population before each sideband cooling cycle. The mid-circuit
measurement procedure is concluded with the unhiding sequence returning the data
qubit encoding to the encoding labeled with green symbols in Figure A.8. In between
sideband cooling cycles RF pulses are applied for DD. The length of the pulse labeled
‘Cool’ is varied for the first and last sideband cooling cycle to ensure that the refocusing
time τ is kept constant for hiding and pumping sequences involving different data and
auxiliary qubit numbers.
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qubits is characterized via single-qubit process tomography of the data qubits using linear
reconstruction. Figure 4.17C shows the chi matrix representation [45] of the process averaged
over all data qubits in the Pauli basis, whereas Figure A.10 shows the underlying process
matrices for the individual data qubits. The average fidelity is 0.930with a standard deviation
of 0.011. The averaged process matrix data is also used to inform the error model described
in Appendix A.2, as there are no salient differences between the individual matrices. These
error probabilities are extracted from the experimental process matrix, quantifying the effect
of mid-circuit measurements on data qubits, shown in Figure 4.17C.

The DD scheme described above can only be applied when the data qubits are encoded in
the ground state, shown with red symbols in Figure A.8. For detection and Doppler cooling
the data qubits are transferred to the encoding shown with blue symbols, which is a factor
of ≈ 2

1.2 less sensitive to magnetic field fluctuations compared to the ground-state encoding
given by the g factors of the states |42S1/2〉 and |32D5/2〉. Therefore, assuming a coherence
time T2 = 8 ms limited by magnetic field fluctuations and an idling duration of 0.8 ms the
dephasing error probability of the data qubits during detection and Doppler cooling of
the auxiliary qubits is 0.05 according to Eqn. A.5. Increasing the coherence time to T2 = 1 s

would decrease the error rate on the data qubits to 0.0004. Likely another major contribution
to the overall error affecting data qubits during mid-circuit measurements is crosstalk of
hiding pulses, where the Rabi frequency of undesired crosstalk is on the order of 100 times
smaller than the Rabi frequency on the target ion. Mitigating the effect of hiding pulses on
neighboring ions using composite pulses together with an extended coherence time could
significantly reduce the error rate on data qubits for mid-circuit measurements.

a.4 Uncertainty estimation

The uncertainties given in this work account for statistical errors under the assumption of an
underlying binomial distribution of the measurement outcomes. We make use of the Wilson
score interval [267] in order to get error intervals in the interval [0, 1] even for probabilities
close to 0 or 1. The upper (referred to as ‘+’ in the formula) and lower (‘−’) bound of the
interval for a probability pmeasured with N shots are given by

p±(p) =
1

1 + z(α)2

N

(
p+

z(α)2

2N
± z(α)

√
p(1− p)
N

+
z(α)2

4N2

)
, (A.6)

where z(α) = Φ−1
(
1− α

2

)
with Φ−1 being the quantile function of the normal distribution

and α being the target error rate. We choose z = 1 which corresponds to a confidence level
of 1− α ≈ 0.68.

a.5 Logical fidelity

The figure of merit for the quality of a logical state we choose in this work is the logical
fidelity, which is the probability of retrieving the correct logical state. A single logical qubit
state ρ is given by

ρ =
1

2
(σ0 + 〈XL〉σ1 + 〈YL〉σ2 + 〈ZL〉σ3) , (A.7)
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Figure A.10: Single-qubit process tomography of mid-circuit measurements. Chi matrix represen-
tation of the process acting on data qubits during mid-circuit measurements shown
for all data qubits individually. The process fidelity ranges from 0.919 to 0.951 with an
average of 0.930 and a standard deviation of 0.011. The area and the color coding of
the squares correspond to the absolute value and the phase of the elements of the chi
matrix, respectively.
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where XL, YL and ZL are the logical operators and σ· are single-qubit Pauli matrices. Then
the logical fidelity of ρ with respect to a logical target state ρt after performing an ideal
round of QEC is given by

Ft(ρ) = 〈Pt〉 = tr (Ptρ) , (A.8)

with Pt being the projector on the logical target state. For the logical Pauli states |0〉L and
|+〉L the projectors read

P|0〉L =
1

2
(1 + ZL) and P|+〉L =

1

2
(1 +XL) , (A.9)

leading to the expressions

F|0〉L =
1

2
(1 + 〈ZL〉) and F|+〉L =

1

2
(1 + 〈XL〉) (A.10)

for the logical fidelities of the logical states considered in this work.

a.6 Additional results

In addition to the implementation of multiple rounds of Steane QEC on the seven-qubit color
code we realize repetitive readout of a single type of stabilizer generators, corresponding to
executing either the first or the second half of the scheme displayed in Figure 4.16C. The
syndrome extraction is applied to a logical Pauli state sensitive to the corrections suggested
by the syndrome measurement, e.g. Z-type stabilizer generators are measured for the input
state |0〉L andX-type stabilizer generators are measured for the input state |+〉L. We refer to
one readout as a half-cycle of QEC. We implement up to five half-cycles of QEC with the
corresponding logical fidelities being shown in Figure A.11. Again we see good agreement
of experiments with data from numerical simulations.
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Figure A.11: Logical fidelities for half-cycles of syndrome extraction on the seven-qubit color code.
Logical fidelities obtained fromSteane-typeQEC for the logical input states |0〉L and |+〉L.
For the input states |0〉L and |+〉L only the syndrome given by the Z-type and X-type
stabilizer generators, respectively, is extracted multiple times. Half-cycle 0 corresponds
to the encoding of the logical state with no extra round of QEC. The experimental and
simulation results are depicted with darker and lighter shades, respectively.
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M E T H O D S S E C T I O N TO P U B L I C AT I O N D E M O N S T R AT I O N O F

FAU LT-TO L E R A N T U N I V E R SA L Q U A N T U M G AT E O P E R AT I O N S

b.1 Trapping and cooling

The experiments described in this work are performed on a trapped ion quantum computer.
40Ca+ ions are trapped in a macroscopic Paul trap and the optical qubit is encoded in two
Zeeman sublevels of the 4S1/2 and 3D5/2 electronic states. Further details on the experimental
setup can be found in the recent publication [84].
For this work, the ion crystal is configured to consist of 16 ions with an axial COM

mode frequency ωax, COM = 2π × 400 kHz and radial COM mode frequencies of ωrad1,COM =

2π×3270 kHz and ωrad2,COM = 2π×3100 kHz. Before executing any gate sequence, the radial
motional modes of the ion chain are cooled nearly to the ground state via Doppler cooling
for 2 ms, followed by resolved sideband cooling for 15 ms. Subsequently, the qubits are
initialized via optical pumping to the 4S1/2,mj=−1/2 ground state.

b.2 Qubit manipulation

Coherent qubit manipulation is performed by individually addressable laser pulses at
a wavelength of 729 nm. Pulses resonant with the 4S1/2,mj=−1/2 to 3D5/2,mj=−1/2 transition
enable rotations around an arbitrary axis in the equatorial plane of the Bloch sphere, where
the angle between the rotation axis and the X axis is determined by the phase φ of the light
pulse. Those operations are described by R(i)

φ (θ) = exp(−i θ2(σ
(i)
x cosφ− σ(i)

y sinφ)), where
σ

(i)
x and σ(i)

y are single-qubit Pauli matrices acting on qubit i. Rotations around the X axis Rx
(Y axisRy) can be implemented by setting φ to 0 (−π/2). A pulse length of 15µs is required to
implement a π/2-pulse on a single qubit. Randomized benchmarking for single-qubit gates
in the 16-ion chain yields an average fidelity of a π/2-gate of 99.51± 0.05%. Additionally,
rotations around the Z axis of the Bloch sphere for a specific ion can be implemented virtually

by introducing a phase shift to all subsequent pulses applied to the ion.
Two-qubit gates are realized by the MS interaction [168] described by MSij(θ) =

exp(−i θ2σ
(i)
x σ

(j)
x ). An arbitrary pair of ions is addressed with bichromatic beams slightly

detuned from the radial COM mode ωrad1,COM. Gate time tgate = 270µs and detuning from
the COMmode ∆ ≈ 2π × 3.7 kHz are chosen to allow for simultaneous decoupling of the
two closest radial modes ωrad1,COM, ωrad1,2 at the end of the interaction. An additional (third)
frequency tone, 1.05 MHz blue-detuned from the carrier transition, compensates the AC
Stark shift induced by the bichromatic light field. For θ = π/2 this results in an XX gate
which is equivalent to a CNOT gate up to single-qubit rotations [88]. A decomposition of

189
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a CNOT gate acting on qubits i and j into an XX gate and local operations with a freely
selectable parameter v = ±1 is the following:

CNOTij = Riy(−v · π/2) ·Rix(π/2) ·Rjx(v · π/2) ·MSij(−π/2) ·Riy(v · π/2). (B.1)

The average Bell state fidelity in a chain of 16 ions is about 97.5% for entangling gates
between neighbouring ions.

b.3 State readout

Qubit state readout is performed by illuminating the ions with a light field resonant to
the 4S1/2 to 4P1/2 transition and collect scattered photons. Due to technical limitations
imposed by the EMCCD camera, site-resolved state readout is only possible after the
coherent evolution. In-sequence detection events utilizing an avalanche photodiode (APD)
can only reveal the number of excitations present in the ion string. A subset of qubits can
be read out in-sequence by shelving the population in the 4S state of all other ions to the
3D5/2,mj=−3/2 Zeeman sublevel prior to the illumination of the ion string with the detection
light field. This technique is used for the measurements presented in Section 5.3.4. For the
FT initialization of the magic state the auxiliary qubits are measured via the APD. If there
are no excited ions detected, the protocol is continued by reusing the measured ions for
encoding a second logical qubit state and injecting the magic state. After an illumination
time of 2 ms for the EMCCD measurement and 0.5 ms for the APD measurement a readout
fidelity of > 99.7% is achieved, where this number refers to the single-qubit readout fidelity
for EMCCDmeasurements and and the discrimination between 0 and > 0 excited qubits for
APD measurements.

If the qubit manipulation is supposed to be continued after a detection event that scattered
photons, meaning that a qubit was projected to the S state, in-sequence recooling is required
as the scattered photons heat up the ion chain, which would prevent subsequent gate
operations with high-fidelity. The experimental setup we used to conduct the experiments
presented in this work currently does not support in-sequence cooling, therefore preventing
the implementation of repeated rounds of EC. We note that upgrades to the setup facilitating
in-sequence cooling are about to be carried out and that in-sequence detection and recooling
were already implemented in a different recent experiment of the research group [181].

b.4 Error estimation

The errors given throughout this work solely account for statistical errors. For the estimation
of the statistical fluctuations all measured outcomes are resampled from a multinomial
distribution according to their respective probabilities. The stated errors in the text but
also errorbars given in figures correspond to 68% confidence intervals extracted from the
resampled datasets.

An additional source of errors are temporal fluctuations of the experimental performance
due to varying environmental parameters like magnetic field or ambient temperature. Such
fluctuations on the timescale of minutes to hours explain the increased logical infidelity of
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|0〉L and |1〉L, as compared to the other Pauli eigenstates in Figure 5.6. In our experiment the
magnitude of these errors can exceed the contribution from statistical errors.

b.5 Simulation methods

Theoretical simulation results presented in the main text are obtained using stabilizer simu-
lations and statevector simulations for the logical Pauli states and magic state preparation
and injection circuits, respectively. We use the "Performance Estimator of Codes On Surfaces"
(PECOS) package due to its flexibility in analyzing error propagation in different errormodels
throughMCsimulation (publicly available at https://github.com/PECOS-packages/PECOS)
[198]. In these simulations any ideal circuit element is replaced by a faulty element, consisting
of the ideal operation followed by an error operator, with a given probability.

We model circuit errors as depolarizing errors, which reproduces well the experimentally
observed infidelities despite its conceptual simplicity which does not take the microscopic
physical processes underlying noisy gates and operations in the ion trap into account
explicitly. Noise is applied in simulations by randomly placing Pauli errors E according to
the experimental physical error rates after every single-qubit and two-qubit gate with their
respective error rates p1 and p2. These errors can be

E1 ∈ {σk, ∀k ∈ {1, 2, 3}} (B.2)
E2 ∈ {σk ⊗ σl, ∀k, l ∈ {0, 1, 2, 3}} \ {I ⊗ I} (B.3)

where σk = {I,X, Y, Z} with k = 0, 1, 2, 3 are the Pauli matrices. The error channels for our
depolarizing noise model read

E1(ρ) = (1− p1)ρ+
p1

3
(XρX + Y ρY + ZρZ) (B.4)

E2(ρ) = (1− p2)ρ+
p2

15




3∑

i,j=0

(σiρσj)− ρ


 (B.5)

so that any single-qubit error is applied uniformly to the ideal gate with equal probability
p1/3 and the single-qubit gate is executed ideally with probability 1− p1; two-qubit errors
are applied uniformly after the ideal two-qubit gates with equal probability p2/15 and any
two-qubit gate is executed ideally with probability 1− p2. Results of qubit initializations
and measurements are flipped with respective probabilities pi and pm. In all simulations we
used physical error rates of

p1 = 0.005

p2 = 0.025 (B.6)
pi = pm = 0.003

for the corresponding operations.
The logical Pauli state encoding circuits (Figure 5.6a) and logical CNOT circuit (Figure

5.7a) are simulated efficiently using stabilizer simulations. This is possible since we are

https://github.com/PECOS-packages/PECOS
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preparing eigenstates of Pauli operators, measuring exclusively in one of three possible Pauli
bases here and these circuits only contain Clifford gates.

This description as stabilizer states breaks down when arbitrary single-qubit rotations are
to be performed by the circuit, especially with regards to the magic state, Eqn. 5.15, that
generates the non-Clifford T-gate. The circuits that fault-tolerantly prepare the logical magic
state (Figure 5.8a) and perform the gate teleportation (Figure 5.9a) contain non-Clifford
operations and thus we are required to run full statevector simulations.
The Y-type teleportation circuit acts as follows on the Y-type magic state, as given by

Eqn. 5.15, and an arbitrary single-qubit input state |ψ〉:

|H〉 |ψ〉 = (cos(π/8) |0〉+ sin(π/8) |1〉) (α |0〉+ β |1〉) (B.7)
CY−−→ cos(π/8) |0〉 (α |0〉+ β |1〉) + i sin(π/8) |1〉 (α |1〉 − β |0〉) (B.8)

=
1√
2

(
|+i〉 exp

(
−iπ

8
Y
)
|ψ〉+ |−i〉 exp

(
i
π

8
Y
)
|ψ〉
)

(B.9)

=
1√
2

(
|+i〉T |ψ〉+ |−i〉 exp

(
i
π

4
Y
)
T |ψ〉

)
. (B.10)

Thus, in case of measuring the first qubit in the |+i〉 state, the T-gate is applied as desired to
the state |ψ〉 on the second qubit. In the other case of a −1 measurement result of the first
qubit in the Y basis, an additional Clifford operation, namely a π/2-rotation about the Y axis,
exp

(
−iπ4Y

)
, must be applied to end up with the desired state T |ψ〉 on the second qubit.

Therefore, in the teleportation circuit (Figure 5.9a), the logical controlled-Y is followed
by measurement of all data qubits of the first register in the Y basis and application of a
classically controlled logical Y rotation

R ≡ RY (π/2) = exp
(
−iπ

4
Y
)

(B.11)

depending on the measurement result of the first register where the logical magic state has
been prepared previously. The logical gateRL ' R⊗7 is applied to the second register which
carries a logical Pauli state, e.g. |+〉L. The resulting output state is the logical T-gate applied
to the logical Pauli state, e.g. TL |+〉L. Both in simulation and experiment the effect of the
R-gate is taken into account by altering the destructive final data qubit measurements. Since
R is a π/2-rotation about the Y axis, it maps Z-basis states onto X-basis states and vice versa.
In our experimental implementation of the magic state we omitted a Y(π/2)-rotation.

Therefore we applied logical R in the case of the +1 outcome of the logical Y-basis measure-
ment of the first register.

b.6 Ideal error correction

Whenever performing destructive measurements on encoded data qubits we may reinterpret
the measurement result according to the color code look-up table decoder. For example, from
measuring the bitstring 0000001 on a seven-qubit register we may conclude for low physical
error rates present in our setup that the likeliest error on those qubits has been a single X flip
on the first qubit and reinterpret the measurement result as 0000000. This process of ideal
or in-software EC is commonly used and possible whenever one aims not to keep running
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further quantum circuits on the error-corrected state. In general the corrected bitstring is
determined by extracting the syndrome from the overlap of the measured bitstring with
the stabilizer generators in binary notation and applying the respective correction. For
CSS codes such as the color code the X and Z sectors can be treated distinctly. So when
measuring the bitstring 0000001 in the Z basis, the overlap with Z stabilizers in binary
notation s(1)

Z = 1010101, s
(2)
Z = 1111000, s

(3)
Z = 1100110 yields the syndrome [−1,+1,+1].

Here binary 1s correspond to a Pauli-Z operator for the single qubit at the respective position
and binary 0s represent the identity operation. Reinterpreting the measured bitstring
as 0000000 is equivalent to applying a X1 correction operator based on the syndrome
information which would correctly recover the original state. Since in this work we are
demonstrating FT operations, all final quantum states may only be correct up to an arbitrary
single Pauli error. These errors are accounted for via ideal EC.

b.7 Logical Pauli states

When fault-tolerantly encoding logical Pauli states we characterize the output state by
categories of errors present after executing the circuit in Figure 5.6a. The categories of errors
given in Figure 5.6b refer to the states of distance d to the desired |0〉L-state which determines
whether or not we can correctly identify the state as |0〉L after ideal EC.

We obtain the distance d to the desired |0〉L-state by destructively measuring the data
qubit register and finding the minimal Hamming distance DH of the measurement bitstring
m to the bitstrings that label the basis states of

|0〉L =
1√
8

(
|0000000〉+ |1010101〉+ |0110011〉

+ |1100110〉+ |0001111〉+ |1011010〉
+ |0111100〉+ |1101001〉

)
(B.12)

in post-processing:

d ≡ min
(
DH(m, 0000000), DH(m, 1010101),

. . . , DH(m, 1101001)
)
. (B.13)

Ideal EC will trivially correct the exact |0〉L state, i.e. d = 0, and correct all states with
single Pauli errors, e.g. X2 |0〉L (d = 1). It will yield the logically flipped |1〉L result when
acting on a state of distance d = 2 or d = 3 from |0〉L, i.e. |0〉L carrying two X errors or
directly a weight-3 logical bit flip XL.
For arbitrary logical Pauli states destructive measurements must be performed in their

respective basis. However, only Pauli-X (Pauli-Z) errors are visible in the preparation of
logical Pauli-Z (Pauli-X) basis states |0〉1 , |1〉L (|±〉L).
Note that for all measurements on the characterization of logical Pauli states shown

in Figure 5.6 and Extended Data Figure B.1 an accidental redefinition of the rotation
direction of physical single-qubit Y rotations is accounted for in post-processing. See
Extended Data Figure B.1 for more details.
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Figure B.1: Stabilizer generators of a single logical qubit. Expectation values of the stabilizer generators
and the logical operators of the seven-qubit color code for the six cardinal states of the
Bloch sphere. Results for the non-FT and FT preparation scheme are depicted in orange
and turquoise respectively, whereas results from numerical simulations are shown in
lighter colored bars. 2500 and 106 runs were performed in the experiment and for
simulations for each prepared state, respectively. For the calculation of the expectation
values of the logical operators a round of perfect EC is applied. For the measurements
corresponding to the data presented in this figure but also in Figure 5.6 the sign of the
rotation angle of physical Y rotations is flipped, effectively implementing an additional
deterministic π phase flip on qubit 6 and a π bit flip on qubit 7 at the end of the circuit
depicted in Figure 5.6a. The effects of this redefinition do not amount in a change of
measurement bases and can be readily accounted for in post-processing.
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b.8 Logical fidelities

Single-qubit logical states. – The logical fidelities presented in the main text are obtained by
reconstructing the logical Bloch vector of the prepared state ρ and determining the overlap
with the Bloch vector of a logical target state. Within the code space, the projector onto an
ideal single-qubit logical target state ρt = |t〉 〈t|L is given by

Pt =
1

2
(I +Ot) (B.14)

with Ot the logical operator that the target state Ot |t〉L = |t〉L is the +1 eigenstate to. For the
Pauli states considered in this work the projectors are

P0/1 =
1

2
(I ± ZL) (B.15)

P± =
1

2
(I ±XL) (B.16)

P±i =
1

2
(I ± YL) (B.17)

and logical fidelity of a prepared state ρ follows as

Ft(ρ) = 〈Pt〉 = Tr (Ptρ) . (B.18)

We emphasize that these logical fidelities are not equivalent to the full quantum state fidelities
F = Tr (ρtρ) but are the probabilities to be able to correctly conclude which logical state
was intended to be prepared or stored.

Combining Eqns. B.15-B.17 with the expression for the logical fidelity in Eqn. B.18, we
can see that expectation values of logical Pauli operators Ot need to be determined in order
to find the logical fidelities

F =
1

2
(1± 〈Ot〉) with Ot ∈ {XL, YL, ZL}, (B.19)

which e.g. evaluates to F0 = 1
2 (1 + 〈ZL〉) for the logical Pauli state |0〉L. All six cardinal

state logical fidelities are shown in Figure 5.6c. We sample the expectation values of the
logical Pauli operators by running stabilizer simulations of the respective preparation circuit
N = 106 times followed by destructive measurement of all data qubits and ideal EC in the
respective Pauli basis. The measurement result for a logical operator before EC is determined
as (−1)|m| by the number of 1s in the measurement bitstringmmodulo 2. Then a round of
ideal EC as described in Section B.6 is performed to obtain the final measurement result.
Measurement results from each run are averaged to obtain the expectation value of the
respective logical operator.
Two-qubit logical states. – In order to characterize the logical CNOT gate through

stabilizer simulations single logical qubit states |x〉L and |y〉L are prepared distinctly in
two seven-qubit registers. The CNOT gate, acting |x, y〉L 7→ |x, y ⊕ x〉L on the basis states
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labelled with x, y ∈ {0, 1}, flips the second bit (target) if the first bit (control) is in the 1-state.
Thus, |+, 0〉L is mapped to the maximally entangled Bell state

|Φ+〉L =
1√
2

(|0, 0〉L + |1, 1〉L), (B.20)

which can equivalently be expressed by the logical density operator

ρΦ+ = |Φ+〉 〈Φ+|L '
1

2




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1




(B.21)

where the matrix representation is in the logical two-qubit computational basis. The input-
output mapping for the experimentally implemented input states is the following:




|0, 0〉L → |0, 0〉L
|0, 1〉L → |0, 1〉L
|1, 0〉L → |1, 1〉L
|1, 1〉L → |1, 0〉L
|+, 0〉L → |Φ+〉L
|+i, 0〉L → |Φ+i〉L




(B.22)

Quantum state tomography has been performed to quantify experimental capabilities
to obtain the logical Bell state described by this density matrix as shown in Figure 5.7b.
Expectation values of all logical two-qubit Pauli matrices including the identity are measured
and subsequently maximum likelihood techniques are used to reconstruct the logical density
operator [268]. The Bell state is stabilized by the logical operators Z1

LZ
2
L and X1

LX
2
L where

superscripts .1,2 refer to the two logical qubits. Analogously, the CNOT maps input |+i, 0〉L
to the Y-basis maximally entangled state

|Φ+i〉L =
1√
2

(|0, 0〉L + i |1, 1〉L). (B.23)

Its stabilizers can be obtained by realizing that both states are related via a phase gate

|Φ+i〉 = S1 |Φ+〉 (B.24)

so by transforming the stabilizer generators of |Φ+〉 as

S1Z1Z2S
†
1 = Z1Z2 (B.25)

S1X1X2S
†
1 = Y1X2 (B.26)
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we obtain the stabilizer generators of |Φ+i〉 .
The projectors onto the logical two-qubit output states we wish to characterize is now

given by the product of the projectors onto the simultaneous +1 eigenspace of the logical
operators in both registers

P00 = (P0 ⊗ I)(I ⊗ P0) =
1

2

(
I + Z1

L

) 1

2

(
I + Z2

L

)
(B.27)

P01 = (P0 ⊗ I)(I ⊗ P1) =
1

2

(
I + Z1

L

) 1

2

(
I − Z2

L

)
(B.28)

P11 = (P1 ⊗ I)(I ⊗ P1) =
1

2

(
I − Z1

L

) 1

2

(
I − Z2

L

)
(B.29)

P10 = (P1 ⊗ I)(I ⊗ P0) =
1

2

(
I − Z1

L

) 1

2

(
I + Z2

L

)
(B.30)

PΦ+ =
1

2

(
I +X1

LX
2
L

) 1

2

(
I + Z1

LZ
2
L

)
(B.31)

PΦ+i =
1

2

(
I + Z1

LZ
2
L

) 1

2

(
I + Y 1

LX
2
L

)
(B.32)

Employing Eqn. B.18, the logical fidelities for the output states of the logical CNOT gate
follow as expectation values of the logical two-qubit state projectors as

F00 =
1

4

(
1 + 〈Z1

L〉+ 〈Z2
L〉+ 〈Z1

LZ
2
L〉
)

(B.33)

F01 =
1

4

(
1 + 〈Z1

L〉 − 〈Z2
L〉 − 〈Z1

LZ
2
L〉
)

(B.34)

F11 =
1

4

(
1− 〈Z1

L〉 − 〈Z2
L〉+ 〈Z1

LZ
2
L〉
)

(B.35)

F10 =
1

4

(
1− 〈Z1

L〉+ 〈Z2
L〉 − 〈Z1

LZ
2
L〉
)

(B.36)

FΦ+ =
1

4

(
1 + 〈X1

LX
2
L〉 − 〈Y 1

LY
2
L 〉+ 〈Z1

LZ
2
L〉
)

(B.37)

FΦ+i =
1

4

(
1 + 〈Z1

LZ
2
L〉+ 〈X1

LY
2
L 〉+ 〈Y 1

LX
2
L〉
)

(B.38)

and are shown in Figure 5.7b as results of N = 106 stabilizer simulation runs of the logical
CNOT circuit followed by destructive measurement of all data qubits and ideal EC in the
respective Pauli basis. Averaging over measurement results for the logical operators yields
their expectation value.
The logical magic state |H〉L may be denoted by the logical density operator

ρH = |H〉 〈H|L '
1

2

(
1 + 1/

√
2 1/

√
2

1/
√

2 1− 1/
√

2

)
(B.39)

where the matrix representation is in the logical computational basis. Quantum state
tomography of the experimentally prepared logical magic state is shown in comparison to
the theoretical values in Eqn. B.39 in Figure 5.8b, where a logical Y(π/2)-rotation is applied
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after reconstruction to account for omitted local operations. The fidelity of the logical magic
state as shown in Figure 5.8c is given by

FH =
1

2

(
1 +
〈XL〉+ 〈ZL〉√

2

)
(B.40)

since the logical magic state is the +1 eigenstate of the logical Hadamard operatorHL |H〉L =

|H〉L and its projector reads

PH =
1

2
(I +HL) =

1

2

(
I +

XL + ZL√
2

)
. (B.41)

When we inject the logical magic state onto logical Pauli states the result is the logical
T-gate applied to the previously prepared logical Pauli state

|ψ〉L,out = TL |t〉L,in . (B.42)

For the four different input logical Pauli states |0〉L , |1〉L , |−〉L and |−i〉L the output states
are

|H〉L = TL |0〉L (B.43)
|−H〉L = TL |1〉L (B.44)
ZL |H〉L = TL |−〉L (B.45)
|−i〉L = TL |−i〉L (B.46)

and their projectors read

P0/1 =
1

2
(I ±HL) =

1

2

(
1± XL + ZL√

2

)
(B.47)

P− = ZLP0ZL =
1

2

(
1− XL − ZL√

2

)
(B.48)

P−i =
1

2
(I − YL) . (B.49)

The respective logical T-gate output state fidelities Ft for input Pauli state |t〉L are then given
by

F0 =
1

2

(
1 +
〈XL〉+ 〈ZL〉√

2

)
(B.50)

F1 =
1

2

(
1− 〈XL〉+ 〈ZL〉√

2

)
(B.51)

F− =
1

2

(
1− 〈XL〉 − 〈ZL〉√

2

)
(B.52)

F−i =
1

2
(1− 〈YL〉) . (B.53)
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To estimate the expectation values of the logical operators occurring in the expressions for
the fidelities given above, we runN = 105 statevector simulations of the FT preparation and
injection circuits. Each run is followed by destructive measurement in the respective Pauli
basis and ideal EC that determines a measurement outcome of the logical Pauli operator.
The expectation value is then calculated as the mean over all measurement outcomes.

The sampling uncertainty εL when sampling the expectation value of a logical Pauli
operator OL is εL =

√
Var(〈OL〉)

N and is propagated to their respective fidelities by Gaussian
error propagation.

b.9 Logical process matrix

Process matrices can be used to parameterize quantum channels

E(ρ) =
3∑

n=0

3∑

m=0

χmnEmρE
†
n (B.54)

in the quantum operations formalism. The process matrix χmn for the logical T-gate that we
show in Figure 5.9b is described by the quantum channel

E(ρ) = TρT † =
3∑

n=0

3∑

m=0

χmnσmρσn (B.55)

wherewe expand the channel in terms of the logical Paulimatrices. Thematrix representation
of χ in the logical Pauli basis reads

χ =
1

2




1 + 1/
√

2 0 i/
√

2 0

0 0 0 0

−i/
√

2 0 1− 1/
√

2 0

0 0 0 0




. (B.56)

Measurements of expectation values of the logical Pauli basis for the T-gate input states |0〉L,
|1〉L, |−〉L and |−i〉L form a tomographically complete set and allow for the reconstruction
of the process matrix χmn [268].

b.10 Acceptance rates

We define the acceptance rate as ratio of circuit runs where all flag qubits are measured as
+1. The logical Pauli |0〉L-state is fault-tolerantly encoded (|0〉L,ft) using the circuit given in
Figure 5.6a, the logical magic state is prepared both by using the non-FT circuit followed
by only the transversal Hadamard measurement (|H〉L,nf &MH ) and by using the full FT
protocol (|H〉L,ft) as given in Figure 5.8a. Approximate acceptance rates in simulation and
experiment are shown in Extended Data Table B.1 for these three different encoding circuits
alongside with the respective number of qubits acting as flags as well as number of gates.
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encoding #entangling gates #flags simulation experiment ∆ε

|0〉L,ft 8 1 85% 79% 7%
|H〉L,nf &MH 20 2 72% 57% 21%
|H〉L,ft 48 8 27% 14% 48%

Table B.1: Acceptance rates of flag encoding circuits. Approximate acceptance rates and relative
deviation in simulation and experiment for three encoding circuits with different number
of flag qubits and entangling gates.

We observe that the relative deviation ∆ε between MC simulation and experimentally
measured acceptance rates for the respective circuits increases with longer circuits and a
higher number of flag qubits involved.



C
A P P E N D I X TO P U B L I C AT I O N S T R AT E G I E S FO R P R AC T I C A L

A DVA N TAG E O F FAU LT-TO L E R A N T C I RC U I T D E S I G N I N NO I S Y

T R A P P E D - I O N Q U A N T U M CO M P U T E R S

c.1 Noise model details

In the following, we provide more details for the noise model used to perform the simu-
lations of faulty quantum circuits presented in Section 6.1.1.3.2 of the main text. The four
independent physical error rates on single-qubit gates, two-qubit gates, qubit initialization
andmeasurement are the sources of error in the simulations accompanying the experimental
FT universal gate set realization [128]. For the extended noise model, we also include
dephasing noise on idling qubits as well as crosstalk on single- and two-qubit gates. For the
latter, we provide two different descriptions, namely as a coherent noise channel and as an
incoherent Pauli channel. Overrotations on MS gates are also considered in both a coherent
and incoherent model. The derivation of generalized crosstalk noise on gates with arbitrary
laser phase, Eqns. 6.7 and 6.8, is the main focus of this Appendix.

The noise channels we state below are examples of quantum operations E which map an
initial qubit state ρ to a final state ρ′ = E(ρ) and thus allow one to formalize evolution of a
state under noise. We may express E as a Kraus map

E(ρ) =
∑

i

KiρK
†
i (C.1)

where the Kraus operatorsKi describe the noise on ρ.
As discussed in Section 6.1.1.3.2, all rotation axes of physical gate operations are

parametrized by the phase(s) of the respective qubit laser(s). In the following, we elaborate
on the realization of single- and two-qubit gate rotations about axes parametrized by the
laser phase(s) which we put to use for the FT magic state preparation circuit in Figure 6.10.
It is compiled from a circuit built from CNOT gates to a circuit containing only MS gates.
The compiled circuit then contains single-qubit Z rotations which need not be performed
physically in the ion trap system, e.g. by AC Stark shifts. All rotation axes, and therefore
laser phases, for subsequent gates are changed in order to propagate a Z rotation until the
end of the circuit [85]. Here they can be accounted for in software (and when measuring in
the Z basis they can be omitted entirely). In order to take advantage of this, we need to allow
for different phases ϕ1 and ϕ2 on the MS target ions and vary the phase ϕ for single-qubit
rotations. We now give a generalization of the standard Pauli-type single- and two-qubit
rotations, also including the case of crosstalk. The standard Pauli-X and -Y gates and the

201
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XX-type MS gate shown in Figure 6.2b will be recovered as special cases from this general
discussion.

c.1.1 Single-qubit gates

Single-qubit rotations are parametrized as a unitary evolution with the operator

Rϕ(θ) = exp

(
−i
θ

2
σϕ

)
(C.2)

σϕ = X cosϕ+ Y sinϕ (C.3)

where σϕ describes the rotation axis in the equatorial plane of the Bloch sphere. For example,
one recovers the X(Y )-gate for ϕ = 0(π/2) and θ = π. With ϕ = π/4 the resulting spin
operator is σπ/4 = X+Y√

2
, implementing a non-Clifford rotation.

Crosstalk occurs on gates when the laser light intended to only shine on ions in order
to perform a qubit rotation cannot be focused tightly enough so that a finite electric field
is at the position of a non-targeted ion. Then, neighboring ions also receive a fraction of
residual laser light and the rotation intended to the gate ions is partly performed as well on
the neighbor ions. The coupling of the laser field ~E to the electric quadrupole of the ion state
is measured by the Rabi frequency Ω. The Rabi frequency Ω is proportional to the gradient
of the electric field at the location of the neighbor ion. We assume that the main contribution
to the gradient of the electric field is given by the longitudinal change in electric field of the
electromagnetic wave. Therefore the gradient is proportional to the amplitude of the electric
field amplitude. Consequently also the Rabi frequency on a neighbor ion Ωn is proportional
to the electric field amplitude at the location of the neighbor ion. Since the rotation angle
θ of the single-qubit gate is given by θ = Ωt, where t is the time the laser light is on, the
rotation angle on the neighbor qubit θn is determined by the crosstalk ratio ε = Ωn/Ω via

θn = εθ. (C.4)

In our simulations, we assume an average crosstalk ratio of ε = 1× 10−2.
For single-qubit crosstalk, the neighboring ions to the target ion, where a rotation about θ

shall be performed, see residual laser light which causes the crosstalk rotation of angle εθ.
The rotation on each neighbor location is

Rϕ(εθ) = exp

(
−i
εθ

2
σϕ

)
. (C.5)
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The rotation operator Rϕ(εθ) acts on a single-qubit density matrix ρ like

E(ρ) = Rϕ(εθ) ρR†ϕ(εθ)

= cos2 εθ

2
ρ + sin2 εθ

2
(σϕρσϕ) +

i

2
sin εθ [ρ, σϕ]

= cos2 εθ

2
ρ + sin2 εθ

2

(
cos2 ϕXρX + sin2 ϕY ρY

+ cosϕ sinϕ(XρY + Y ρX))

+
i

2
sin εθ (ρ(X cosϕ+ Y sinϕ)

− (X cosϕ+ Y sinϕ)ρ) . (C.6)

In order to efficiently simulate the above coherent noise channel E in a stabilizer simulation,
wenowperform thePauli twirling approximation (PTA) [269–273] to obtain the (approximate)
incoherent channel of the form

Ẽ(ρ) =
1

4

∑

P∈P
PE(PρP )P (C.7)

with P = {I,X, Y, Z}. Each term in the sum of Eqn. C.7 of the channel Ẽ(ρ) reads

PE(PρP )P = cos2 εθ

2
ρ+ sin2 εθ

2
PσϕPρPσϕP

+
i

2
sin εθ [ρ, PσϕP ] (C.8)

for any Pauli matrix P ∈ P . With the identities

IσϕI = X cosϕ+ Y sinϕ (C.9)
XσϕX = X cosϕ− Y sinϕ (C.10)
Y σϕY = −X cosϕ+ Y sinϕ (C.11)
ZσϕZ = −(X cosϕ+ Y sinϕ) (C.12)

we can calculate the twirled channel. We calculate the sum over the Paulis for each of the
three terms in Eqn. C.8 separately to find the Pauli twirled channel

Ẽ(ρ) = cos2 εθ

2
ρ+ sin2 εθ

2

(
cos2 ϕXρX + sin2 ϕY ρY

)
(C.13)

≡ (1− pc1)ρ+ pc1 (rxXρX + (1− rx)Y ρY ) (C.14)

wherewe define the physical error rate as before but also introduce the phase ratios rx = cos2 ϕ

and ry = 1− rx = sin2 ϕ. All terms in the commutator and the off-diagonal terms in the
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sin2-term cancel. This directly corresponds to taking only the diagonal terms of the process
matrix χ parametrizing the coherent channel of Eqn. C.6 in the Pauli basis

χ =




cos2 εθ/2 i/2 sin εθ cosϕ i/2 sin εθ sinϕ 0

−i/2 sin εθ cosϕ sin2 εθ/2 cos2 ϕ sin2 εθ/2 cosϕ sinϕ 0

−i/2 sin εθ sinϕ sin2 εθ/2 cosϕ sinϕ sin2 εθ/2 sin2 ϕ 0

0 0 0 0



. (C.15)

As an example for crosstalk on a single-qubit Pauli gate, consider the coherent rotation
about a Pauli axis σ ∈ {X,Y } (realized via ϕ ∈ {0, π/2}) as described by the operator

Rσ(θ) = cos
θ

2
− i sin

θ

2
σ. (C.16)

With a laser beam that affects three qubits, the target ion t and its two neighbor ions n1(t)

and n2(t) that are subjected to a fraction ε of the laser electric field, the total rotation operator
is the product of three single-qubit rotations

R(n,t)
σ (θ)

= exp

(
−i
θ

2
σt

)
exp

(
−i
εθ

2
σϕn1(t)

)
exp

(
−i
εθ

2
σϕn2(t)

)
(C.17)

where the rotation axes of the neighbor ions are determined by the Pauli operators σϕn1(t)
and σϕn2(t) independently from the Pauli operator on the target ion. Let us assume that
the phase on neighbor n1(t) is ϕn1(t) = π/2 so that a Y rotation will be performed. The
corresponding rotation operator transforms the state ρ like

R
(n1)
Y (θ) ρR

(n1)
Y (θ)† = exp

(
−i
εθ

2
Yn1

)
ρ exp

(
+i
εθ

2
Yn1

)

= cos2 εθ

2
ρ+ sin2 εθ

2
Yn1ρYn1 +

i

2
sin εθ [ρ, Yn1 ] . (C.18)

Performing the PTA to this transformation amounts to neglecting the third term containing
the commutator. The Pauli-twirled channel is then an incoherent error channel of the form

E(ρ) = (1− pc1)ρ+ pc1Y ρY (C.19)

for the respective neighbor ion location and the probability

pc1 = sin2 εθ

2
(C.20)

of applying the crosstalk fault operator Y .
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Since we observe that the phases in Figure 6.6 are distributed across the whole interval of
all possible values ϕ ∈ [0, 2π], we use

∫ 2π

0
dϕ cos2 ϕ =

∫ 2π

0
dϕ sin2 ϕ = π (C.21)

to average over the crosstalk phase ϕ in Eqn. C.13:

〈Ẽ〉ϕ(ρ) = (1− pc1)ρ

+
pc1
2π

∫ 2π

0
dϕ

(
cos2 ϕXρX + sin2 ϕY ρY

)
. (C.22)

From this we obtain the incoherent noise channel

Ec1(ρ) = (1− pc1)ρ+
pc1
2

(XρX + Y ρY ) (C.23)

which we use in our numerical simulations.
Note that for this channel the physical crosstalk error rate pc1 = pc1(θ) depends on the

rotation angle of the gate as opposed to the depolarizing or our dephasing channel. The
quantum circuits in this work contain rotation angles θ ∈ {π, π/2, π/4} for which we list the
approximate probabilities according to Eqn. C.20 in the table below.

rotation angle θ physical error rate pc1
π 2.5× 10−4

π/2 6.2× 10−5

π/4 1.5× 10−5

For the incoherent channel, both neighbor ions n1 and n2 have their own independent
single-qubit crosstalk error channel.

c.1.2 MS gates

The two-qubit entangling gate in our trapped-ion architecture is theMS gate.We nowprovide
a derivation of our noise model for crosstalk on MS gates based on the gate Hamiltonian.
The Hamiltonian of the MS gate reads

H(t) = H0 +Hint(t) (C.24)

H0 =

Q∑

j=1

ωeg,0

2
σz,j + ν

(
a†a+

1

2

)
(C.25)

Hint(t) =

Q∑

j=1

Ωj(t)

2

(
ei(~k1~xj−(ωeg,0+δ)t−ϕj)

+ ei(~k2~xj−(ωeg,0−δ)t−ϕj) + h.c.
)(

σ+
j + σ−j

)
. (C.26)
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with σ±j = (Xj± iYj)/2. HereQ is the number of all ions that laser light shines on and the Ωj

are their respective Rabi frequencies. Using ~ki~x = ηi(a
† + a), we operate in a regime where

the detuning δ � ωeg,0 is much smaller than the qubit frequency so that the Lamb-Dicke
parameters η1, η2 ≈ η are assumed to be the same for both target ions 1 and 2. With the
rotated spin operator

σϕj = Xj cosϕj + Yj sinϕj (C.27)

we can write the sum over the ions explicitly as MS gate target ions t′ ∈ {1, 2} and neighbor
ions n ∈ {n1(1), n2(1), n1(2), n2(2)}with their Rabi frequencies Ωt′(t) = Ω and Ωn = εΩ:

Hint(t) ≈ −ηΩ
(
ae−iεt + a†eiεt

)(∑

t′

1

2
σϕt′ +

∑

n

ε

2
σϕn

)
(C.28)

where ε = ν − δ. The final form of the Hamiltonian can now be expressed as

Hint(t) = −ηΩ
(
ae−iεt + a†eiεt

)
S~ϕ (C.29)

with the collective spin operatorS~ϕ = 1
2σ~ϕwhere ~ϕ = (ϕt1 , ϕt2 , ϕn1(1), ϕn2(1), ϕn1(2), ϕn2(2))

contains all target and neighbor ion phases.
From this Hamiltonian follows the time evolution

U(t) = D(Γ(t)σ~ϕ) exp
(
iθ(t)S2

~ϕ

)
(C.30)

with Γ(t) =
∫ t

0 γ(t′)dt′ and θ(t) = =
∫ t

0 γ(t′)dt′
∫ t′

0 γ∗(t′′)dt′′ where γ(t) = iηΩeiεt and the
displacement operator D(α) = exp

(
αa† − α∗a

)
∼ 1 +

(
αa† − α∗a

)
for which D(α)D(β) =

D(α + β) exp (i =(αβ∗)) holds. The parameters of the gate Γ(t) and θ(t) can be adjusted
experimentally to realize the MS gate [274].
The collective spin operator contains both the target and their nearest neighbor ions

S~ϕ = S~ϕ

∣∣∣
targets

+ S~ϕ

∣∣∣
neighbors

(C.31)

=
1

2
(σϕ1 + σϕ2

+ ε
(
σϕn1(1) + σϕn2(1) + σϕn1(2) + σϕn2(2)

))
(C.32)

where the latter have their Rabi frequencies suppressed by the crosstalk ratio ε. Squaring S~ϕ
will create all combinations of target and neighbor ions in first order of εwhich we can as
well express as

S2
~ϕ = S2

~ϕ

∣∣∣
intended

+ S2
~ϕ

∣∣∣
crosstalk

. (C.33)
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The MS gate

MS~ϕ(θ) = exp
(
−iθS2

~ϕ

)
(C.34)

transforms the state ρ as

E(ρ) = exp
(
−iθS2

~ϕ

)
ρ exp

(
iθS2

~ϕ

)
. (C.35)

The intended part realizes the MS gate rotation on the target ions. The unitary evolution,
which describes the intended MS gate, then reads

MSϕ1,ϕ2(θ) = exp
(
−iθS2

ϕ1,ϕ2

)
(C.36)

with the spin operator

Sϕ1,ϕ2 =
1

2
(σϕ1 + σϕ2) . (C.37)

The MS interaction originates from the square of the spin operator

S2
ϕ1,ϕ2

∼
=

1

2
σϕ1σϕ2 (C.38)

where we have omitted terms which either sum to zero as the Pauli operators anticommute
on the same qubit or square to the identity and thus only contribute an irrelevant global
phase. For the case ϕ1 = ϕ2 = 0 we find the usual XX-type MS gate

MS0,0(θ) = exp

(
−i
θ

4
(X1 +X2)2

)
(C.39)

∼
= exp

(
−i
θ

2
X1X2

)
(C.40)

= cos
θ

2
− i sin

θ

2
X1X2 (C.41)

which has the same form as Eqn. C.16 with σ = X1X2. Another gate relevant to our
simulations is, for example, the non-Clifford gate

MS0,π/4(θ) = exp

(
−i
θ

2
X1

(
X2 + Y2√

2

))
(C.42)

which appears in the circuit for deterministic FT magic state preparation in Figure 6.10.
Here, the identities used for propagation of Z rotations to the end of the circuit are

MS0,0(−π/2)R
(t1)
Z (α) = R

(t1)
Z (α)MS−α,0(−π/2) (C.43)

Rϕ(θ)RZ(α) = RZ(α)Rϕ−α(θ). (C.44)
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Figure C.1: Crosstalk faults on phase shifted MS gate. Fault locations (red, dotted lines) for an
MS0,−π/4

(
−π2
)
gate (black, solid vertical line) originating from the square of the spin

operator in Eqn. C.61. The phase of the crosstalk corresponds to the phase of the associated
target ion.

The crosstalk term in Eqn. C.33 contains all two-combinations of single-qubit operators in
order ε, as depicted as an example in Figure C.1. Neglecting higher orders of ε, each crosstalk
location can be treated as an independent coherent two-qubit rotation. For example, the
location t1, n1(t1) is contained in the squared spin operator as

S2
~ϕ

∣∣∣
crosstalk

⊃ ε

2
σϕ1σϕn1(1) (C.45)

and generates the rotation

R1,n1(1) = exp
(
−i
ε

2
θσϕ1σϕn1(1)

)
. (C.46)

For any crosstalk location t, nwe describe its independent unitary evolution by the coherent
channel

E(ρ) = Rt,n(εθ) ρR†t,n(εθ) (C.47)

= exp
(
−i
ε

2
θσϕtσϕn

)
ρ exp

(
i
ε

2
θσϕtσϕn

)
(C.48)

(analogously to Eqn. C.6). Denoting arbitrary two-qubit Pauli operators P2 ∈ P ⊗ P , we can
perform the Pauli twirling analogously to the single-qubit crosstalk by calculating the 16
expressions P2E(P2ρP2)P2. The resulting incoherent channel for one MS crosstalk location
(a red gate in Figure C.1) is

Ẽ(ρ) = cos2 εθ

2
ρ

+ sin2 εθ

2

(
cos2 ϕt cos2 ϕnXtXnρXtXn

+ sin2 ϕt sin2 ϕnYtYnρYtYn

+ cos2 ϕt sin2 ϕnXtYnρXtYn

+ sin2 ϕt cos2 ϕnYtXnρYtXn

)
(C.49)
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where we can now define the incoherent noise channel

Ẽ(ρ) = (1− pc2)ρ+ pc2 (rxxXtXnρXtXn

+ rxyXtYnρXtYn

+ ryxYtXnρYtXn

+ ryyYtYnρYtYn) (C.50)

with phase ratios

rxx = cos2 ϕt cos2 ϕn (C.51)
rxy = cos2 ϕt sin2 ϕn (C.52)
ryx = sin2 ϕt cos2 ϕn (C.53)
ryy = sin2 ϕt sin2 ϕn. (C.54)

Averaging over phases of neighbor ions ϕn, we use Eqn. C.21 to obtain the incoherent noise
channel

〈Ẽ〉ϕn(ρ) = (1− pc2)ρ

+
pc2
2

(
cos2 ϕt (XtXn ρXtXn

+ XtYn ρXtYn)

+ sin2 ϕt (YtXn ρ YtXn

+ YtYn ρ YtYn)) . (C.55)

For a simple noise model which – in the same spirit as depolarizing noise – does not need
to take into account the microscopic nature of the gate, we also average over the target ion
phases ϕt to obtain the channel

Ec2(ρ) = (1− pc2)ρ+
pc2
4

(XtXnρXtXn +XtYnρXtYn

+ YtXnρYtXn + YtYnρYtYn) (C.56)

which we use in our numerical simulations.
We now consider the special case where the two target ions share a common neighbor,

i.e. that n2(1) = n1(2), which receives laser light from both target ions. If also the phases on
target and neighbor ions are the same, the spin operator in Eqn. C.32 changes to read

S~ϕ =
1

2

(
σϕ,1 + σϕ,2 + ε

(
σϕ,n1(1) + 2σϕ,n2(1) + σϕ,n2(2)

))
(C.57)

so we get a coherent rotation of doubled angle θ → 2θ on the common neighbor ion. This
doubling translates to the incoherent model through sin εθ = 4 sin2 εθ/2 cos2 εθ/2 to a shift in
probability pc2 → 4pc2 .
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This is, e.g., relevant for the XX crosstalk discussed in Section 6.1.1.5 where for all MS
gates ϕ1 = ϕ2 = 0. On each target-neighbor-pair t, nwe can expand the unitary evolution
operators from the coherent channel

Ecct(ρ) = exp
(
−i
ε

2
θXtXn

)
ρ exp

(
i
ε

2
θXtXn

)
(C.58)

(cf. Eqn. C.46) to obtain an incoherent noise channel for the MS gate crosstalk after PTA.
Every crosstalk location which does not involve a common neighbor ion is then subject to
the noise channel

Exct(ρ) = (1− pc2)ρ+ pc2XtXn(t)ρXtXn(t) (C.59)

with pc2(θ) = sin2 εθ/2 = 6.2× 10−5 and θ = −π/2. For locations with common neighbor
ions the shifts θ → 2θ and pc2 → 4pc2 are taken into account in the numerical simulations
respectively.
As another special case, let us consider target ions labeled as qubit 2 and 4 so there is a

common neighbor 3 and two outer neighbors 1 and 5. We take ϕ1 = 0 and ϕ2 = −π/4 and
define the operator F ≡ X−Y√

2
. Under the assumption that the neighbor ion phases were

the same as their associated target ion’s phase, we now find all operator combinations that
contribute to crosstalk from

S0,−π/4 =
1

2
(X2 + F4 + ε (X1 +X3 + F3 + F5)) (C.60)

S2
0,−π/4 ⊃

1

4
(2ε (X1X2 +X2X3 +X2F3 +X2F5

+ X1F4 +X3F4 + F3F4 + F4F5)) (C.61)

in the squared spin operator. Note that both termsX3F4 and F3F4 occur in Eqn. C.61 so there
is no angle doubling on the common neighbor qubit 4 since ϕ1 6= ϕ2. Adjusting the phases
of target ions could also be used in order to cancel the crosstalk on a common neighbor ion
completely with the above assumption.
Overrotations. The above reasoning for deriving noise channels from rotation operators

can also be applied for overrotations of a small angle ξ on a rotation about θ on an MS target
qubit pair. This effectively implements a rotation of angle θ+ ξ around an axis parametrized
by phases ϕ1, ϕ2 for a two-qubit gate. The incoherent noise channel that we employ for
simulations of XX overrotation in MS gates (Eqn. C.40) is

E(2)
ior (ρ) = (1− p2)ρ+ p2X1X2ρX1X2 (C.62)

with

p2 = sin2 ξ

2
. (C.63)
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The corresponding coherent channel reads

E(2)
cor(ρ) = exp

(
−i
ξ

2
X1X2

)
ρ exp

(
+i
ξ

2
X1X2

)
. (C.64)

c.2 Simulation methods

In this Appendix, we provide a detailed description of the theoretical methods employed
for numerical simulations of logical failure rates. Depending on the range of physical error
rates, we make use of either direct MC simulation or SS which is an importance sampling
technique focusing on just the most important fault-weight-subsets contributing significantly
to the logical failure rate.
DirectMonte Carlo.When using directMC simulations, wemodel faulty qubit operations

by an ideal unitary U which is followed by a fault operator E to form the faulty operation

Ufaulty = E · Uideal. (C.65)

The operator E is placed after any ideal unitary gate or qubit initialization (or before a
qubit measurement) with probability ~p = (p1, p2, pi, . . . ) and then drawn from the set of
all possible fault operators according to the noise model. The MC estimator for the logical
failure rate p̂L is given by the number of samples where the stochastic placing of fault
operators results in a logical failure divided by the total number of samples

p̂L =
no. logical failures
no. MC samples . (C.66)

The sampling error for MC sampling can be estimated by the Wald interval

εMC =

√
p̂L (1− p̂L)

N
(C.67)

so that for a large number of samples N →∞ the true logical failure rate pL is likely to be
found in the confidence interval [p̂L − εMC, p̂L + εMC]. It is known that for p̂L estimations
that are close to or equal to zero or one after a finite but potentially small number of samples
the Wald interval suffers from irregularities. These can be prevented using the Wilson score
interval [267] instead which is bounded by

p± =
1

1 +
z2
α/2

N


p̂L +

z2
α/2

2N
± zα/2

√
p̂L(1− p̂L)

N
+
z2
α/2

4N2


 (C.68)

at confidence level α where z is the quantile function of the normal distribution
MC sampling is efficient in a regime of physical failure rates where faults are realized

frequently so we only employ it for larger physical failure rates. For low physical failure
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rates, in MC sampling one would mostly run the fault-free case, e.g. at p = 0.1% and a
circuit of 100 gates the ideal circuit would be realized (1− p)100 ≈ 90% of the time. When
realization of fault operations becomes a rare event, we turn towards SS instead.
Subset sampling. The logical failure rate pL can be written as a sum of so-called subset

failure rates ~pfail that contribute with different weights A(~w, ~p) each, so that

pL =
∑

~w

A(~w, ~p)~pfail(~w) (C.69)

where we distinguish subsets by the weight ~w = (w1, w2, wi, ...) of the fault operator that is
applied to the respective circuit operations. Each subset failure rate ~pfail(~w) is obtained by
MC sampling fault operations with fixed weight ~w. The contribution of each subset is given
by the binomial weight

A(~w, ~p) =
∏

µ

(
Nµ

wµ

)
p
wµ
µ (1− pµ)Nµ−wµ (C.70)

where µ iterates over all types of faulty circuit operations since the probability of applying
exactly wµ fault operators is pwµµ (1 − pµ)Nµ−wµ and there are

(
Nµ
wµ

)
possibilities to arrange

these configurations for any type µ ∈ {1, 2, i, ...}. The true logical failure rate is bounded by

p̂L =

~wmax∑

~w=~0

A(~w, ~p)~pfail(~w) ≤ pL (C.71)

≤
~wmax∑

~w=~0

A(~w, ~p)~pfail(~w) +

~N∑

~wmax+1

A(~w, ~p) (C.72)

where the weight cutoff error

δ(~p) =

~N∑

~wmax+1

A(~w, ~p) (C.73)

vanishes for low physical failure rates δ(~p)→ 0 as ~p→ ~0. However, in the opposite regime
δ(~p) becomes large so one must choose an appropriate weight cutoff ~wmax to keep the cutoff
error below a desired numerical value. For large weight cutoff |~wmax| the number of subsets
is so large that it becomes advantageous to use MC sampling instead. Subset sampling will
be advantageous as long as the fault-free subset ~w = ~0 is the largest subset

A(~0, ~p) ≥ A(~w, ~p) ∀~w. (C.74)
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The MC sampling errors εSS(~w) ∼
√

~pfail(~w)(1−~pfail(~w))
NSS(~w) for all subsets accumulate to the

sampling error on the logical failure rate

εSS =

√√√√
~wmax∑

~w=~0

[A(~w, ~p)εSS(~w)]2 (C.75)

so that overall the true logical failure ratepLwill likely be in the interval [p̂L − εSS, p̂L + εSS + δ].
Practical procedure. For the logical failure rates presented in this work we performed

the following sampling procedure. First, we fix a scale of interest for the physical failure
rates and the crosstalk ratio parametrized by λ (see Eqn. 6.12). This scale contains the
experimental parameters as a reference point at λ = 1. For the depolarizing noise model
we scale the parameters p1, p2, pi, pm and for the extended noise model we additionally
scale the parameters pidle,1, pidle,2, pidle,m, pc1(π), pc1(π/2), pc1(π/4), pc2 . For the XX-type
crosstalkmodel, pc2 is replaced by pc2,com and pc2,non for common and non-common neighbor
ion crosstalk locations.
We then start our numerical simulation by using MC at the largest physical failure rates

and sample at decreasing physical failure rate until either the target relative error is reached
or the previously specified maximum number of samples has been run. In the latter case or
when no logical failure was recorded at all, we repeat the simulation at the present physical
failure rates using SS. Here, we now choose the maximum weight such that the cutoff error
δ at the present physical failure rates accounts for at most half of the target relative error. We
perform SS uniformly over all relevant subsets until the sampling error εSS is also at most
half of the target relative error or until the maximum number of samples has been reached.
The sampling error for all numerical simulations is given as the Wilson score interval C.68
at a confidence level of 95% (z0.025 ≈ 1.96) in a symmetric form [p̂L − p+−p−

2 , p̂L + p+−p−
2 ].

This prevents us from irregularities of the Wald interval that may occur at subset failure
rate estimations that are close to or equal to zero or one after a finite but potentially small
number of samples.
In SS we refrain from actually sampling the fault-free subset but fix its subset failure

rate and sampling error to be equal to zero. For a non-FT circuit we exhaustively place all
possible weight-1 faults to obtain the subset failure rates for the subsets with total weight |~w|
equal to one exactly, i.e. without sampling error. We do the same for all crosstalk faults since
they do not respect the FT property in general. For faults that do respect fault tolerance, we
also fix their subset failure rates and sampling error to be equal to zero.

c.3 Deterministic FT magic state preparation

The look up table used for correcting errors during the logical Hadamard measurement
as part of the deterministic FT magic state preparation protocol in Figure 6.12 is given in
Table C.1. The recovery operation R which is applied directly after an EC block depends not
only on the measured syndrome but also on the flag pattern f0, f1, f2, f3 measured in the
MH block. Note for example that the syndromes 000 001 may lead to either the recovery
operation R = X2 or R = X1X3 depending on said flag measurements. The full six-bit
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Figure C.2: Uncompiled logical Hadamard measurement circuit. Flag-FT circuit for measuring
the logical Hadamard operator according to Ref. [119]. The qubit mapping is not
changed because our stabilizers are unchanged compared to Ref. [119]. The faults
Xm (red, 8-cornered star), X2Xm (blue, 12-cornered star) and Z4 (green, 10-cornered
star) as described in the main text are shown with their respective propagated errors
H1H2H3H4, X2H1H3H4 and Z4.

syndrome is necessary to correct all Hadamard errors despite the symmetry of X and Z
stabilizers in the Steane code. To see this, consider the Hadamard error

H1H3 =
1

2
(X1X3 + Z1X3 +X1Z3 + Z1Z3) . (C.76)

Since H = X+Z√
2

the product of two or more Hadamards mixes all possible combinations of
X and Z operators which must be distinguished by the syndrome. At the same time, the
flag pattern allows us to distinguish weight-2 errors from weight-1 errors that would cause
the same syndrome.
To see why the correction F = H1H3H4 from Figure 6.12c is necessary, we consider the

uncompiled version of the measurement circuitMH from Ref. [119] which is reproduced in
Figure C.2. Here, an X fault on the measurement qubit can cause the error H1H2H3H4 at
the end ofMH as shown in Figure C.2. This error contains all combinations of X- and Z-type
operators onqubits 1 to 4, for instanceX1X2X3Z4 = XLZ4 andZ1Z2Z3Z4 = ZLZ4. Both these
constituents of the Hadamard error will lead to the same syndrome measurement in the EC
block, namely−++ +++, the onematchingZ4, but different logical operators are introduced
unnoticed. Applying the F -block will transform the error to F H1H2H3H4 = H2 ' X2 + Z2.
By the subsequent EC block, this superposition will collapse so that either the syndrome
+ + + + +− or + + − + ++ will be measured and the respective error can be corrected.
If instead we had not applied the F operation, we could confuse the error with another
one causing the same syndrome, i.e. an error that does not contain logical X or logical Z as
shown above but a logical identity or logical Y on qubits 1 to 3. Keep in mind that also the
flag pattern needs to be identical so that we cannot use it either to distinguish the errors.
Consider the Z4Im fault on the third to last controlled Hadamard gate. It will cause the
error Z4 with syndrome −+ + + ++ which can be distinguished from theXLZ4 and ZLZ4

errors given above because it will not trigger any flag ofMH . As an example of two faults
that lead to the same flag pattern and syndrome if F were not applied, take the fault X2Xm
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f0, f1, f2, f3K
X
1 ,K

X
2 ,K

X
3 KZ

1 ,K
Z
2 ,K

Z
3 R

1100 000 001 X2

1110 000 001 X2

1010 000 001 X2

1011 000 001 X2

1100 001 000 Z2

1110 001 000 Z2

1010 001 000 Z2

1011 001 000 Z2

1000 000 011 X3

1000 011 000 Z3

1000 000 111 X7

1000 111 000 Z7

1000 000 001 X1X3

1000 011 010 X1Z3

1000 010 011 X3Z1

1000 001 000 Z1Z3

1100 110 100 X4Z5

1100 100 110 X5Z4

1000 000 010 X6X7

1100 000 010 X6X7

1000 111 101 X6Z7

1100 111 101 X6Z7

1000 101 111 X7Z6

1100 101 111 X7Z6

1000 010 000 Z6Z7

1100 010 000 Z6Z7

1000 010 001 X1X3Z1

1000 001 010 X1Z1Z3

1000 000 101 X1X3X4

1010 000 101 X1X3X4

1000 011 110 X1X4Z3

1010 011 110 X1X4Z3

1000 010 111 X3X4Z1

1010 010 111 X3X4Z1

1000 001 100 X4Z1Z3

1010 001 100 X4Z1Z3

1000 100 001 X1X3Z4

1010 100 001 X1X3Z4

1000 111 010 X1Z3Z4

1010 111 010 X1Z3Z4

1000 110 011 X3Z1Z4

1010 110 011 X3Z1Z4

1000 101 000 Z1Z3Z4

1010 101 000 Z1Z3Z4

f0, f1, f2, f3K
X
1 ,K

X
2 ,K

X
3 KZ

1 ,K
Z
2 ,K

Z
3 R

1110 000 100 X5X6X7

1010 000 100 X5X6X7

1100 000 100 X5X6X7

1110 101 001 X5X7Z6

1010 101 001 X5X7Z6

1100 101 001 X5X7Z6

1110 110 010 X6X7Z5

1010 110 010 X6X7Z5

1100 110 010 X6X7Z5

1110 011 111 X7Z5Z6

1010 011 111 X7Z5Z6

1100 011 111 X7Z5Z6

1110 111 011 X5X6Z7

1010 111 011 X5X6Z7

1100 111 011 X5X6Z7

1110 010 110 X5Z6Z7

1010 010 110 X5Z6Z7

1100 010 110 X5Z6Z7

1110 001 101 X6Z5Z7

1010 001 101 X6Z5Z7

1100 001 101 X6Z5Z7

1110 100 000 Z5Z6Z7

1010 100 000 Z5Z6Z7

1100 100 000 Z5Z6Z7

1000 101 010 X6X7Z6

1000 010 101 X6Z6Z7

1100 011 001 X5X7Z5Z6

1100 001 011 X5X6Z5Z7

1000 100 101 X1X3X4Z4

1000 111 110 X1X4Z3Z4

1000 110 111 X3X4Z1Z4

1000 101 100 X4Z1Z3Z4

Table C.1: Look up table for flag-FTmeasurement of the logical Hadamard operator in the determinis-
tic scheme given in Figure 6.12b. +1 and −1 measurement outcomes of flag and syndrome
auxiliary qubits are represented as 0 and 1 respectively. The full six bit syndrome needs to
be considered in order to choose the appropriate recovery operation R in contrast to the
situation where X- and Z-type recoveries are applied independently in standard EC on the
Steane code.
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on the fourth controlled-Hadamard gate and Xm just before this gate. Both cause the flag
pattern 1011. The former will cause the error X2H1H3H4 and the latter will propagate to
H1H2H3H4 which is equivalent when acting on the logical magic state to H5H6H7 since
the magic state is the eigenstate of the logical Hadamard operator HL = H⊗7. These two
errors can, e.g., be collapsed toX1X2X3X4 andX5X6X7 by the EC block and the syndrome
+ + + −++ will be measured. Since they differ by a logicalX they cannot be distinguished
by the Hadamard look up table. Applying F will transform the errors according to

FX2H1H3H4 = X2 (C.77)
FH5H6H7 = H1H3H4H5H6H7

⇔ FH1H2H3H4 = H2 (C.78)

which can both be corrected. As another example, these two faults could also collapse to
X1X2X3Z4 and Z1Z2Z3Z4 respectively by the EC block yielding syndrome − + + + ++.
Confusing one for the other we would in total apply a logical Y operation to the logical
magic state which is prevented by the F flip.
The steps involved in the deterministic FT magic state preparation are depicted as a

flowchart in Figure C.3. The overall correction strategy works as follows: If the Hadamard
measurement flags and there exists an entry in the Hadamard look up table C.1 for the
measured flag pattern and syndrome, apply the corresponding recovery operation. Else,
if the EC flags, run the non-FT syndrome readout (Figure C.5) and apply the correction
according to the flag error set if the flags and syndrome disagree. Otherwise, apply the
standard Steane look up table recovery operation. For the EC block, X- and Z-type syndromes
can be read out independently from each other.

c.4 Quantum state fidelity

The full quantum state fidelity of the data qubit state is defined as

F(ρt, ρ) = Tr(ρtρ) = 〈ρt〉 (C.79)

the expectation value of our logical target state ρt = |t〉 〈t|. Eqn. C.79 is in contrast to the
logical fidelity which is the overlap of the output state with the desired logical Bloch vector.
The quantum state fidelity is the standard quantity that characterizes a quantum state
independently of any QEC framework. It contains information about the full state including
local properties which the logical fidelity fails to provide since it is merely understood as
the overlap of the logical Bloch vector with the desired logical target state, i.e. the projection
onto this state. Although the logical fidelity reflects the probability to successfully recover
the state after a noisy circuit, it is defined only in the code space but not the full n-qubit
Hilbert space [37]. Since the stabilizers subdivide the Hilbert space to form the code space in
the first place, it is important to quantify how well the code space itself is prepared, i.e. how
close to unity are the expectation values of the stabilizer generators.

We expand the general n-qubit target state ρt in the operator basis formed by all possible
n-qubit Pauli operatorsWk where k = 1, ..., 4n. The quantum state fidelity then reads
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Figure C.3: Flowchart for the deterministic FT magic state preparation procedure. In-sequence
measurements determine the circuits of the noisy protocol chosen dynamically during
runtime (rectangles). The measurement outcome of an individualMH circuit is labeled
h. Measurements of flag circuits are shown as outputs f and f ′. Denoted by s is the
syndrome output byKnFT. Additional corrections need to be applied (ovals) depending
on the intermediate measurement results: R is drawn from the Steane look up table 6.1,
the Hadamard error set (Table C.1) or the flag error set (FES) and F and Y are given
in Figure 6.12. The sets of measurement results that cause application of F and Y are
labeled FL and HY respectively.
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Figure C.4: Parallel stabilizer readout. Fault-tolerant circuit for interleaved measurement of all six
stabilizers. Auxiliary qubits simultaneously act as measurement and flag qubits for the
deterministic FT magic state preparation protocol (see Figure 6.12).

Figure C.5: Sequential stabilizer readout. The circuit is used for non-FT stabilizer readout of the six
bit syndrome as part of the deterministic FT magic state preparation protocol shown in
Figure 6.12. Each CNOT gate is directly compiled into the sequence of MS gates and local
rotations as given in Figure 6.2c.
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F(ρt, ρ) =
1

4n
Tr

(
4n∑

k=1

[Tr (Wkρt)Wk] ρ

)
. (C.80)

For stabilizer states ρ = |ψ〉 〈ψ|withWk |ψ〉 = ± |ψ〉 being the elements of the stabilizer
group, only the 2n coefficients corresponding to the set of all stabilizer elements Wk are
non-zero Tr(Wkρ) = ±1. The fidelity can then be expressed as

F(ρt, ρ) =
1

2n

2n∑

k=1

〈Wk〉 (C.81)

where theWk are all possible products of combinations of stabilizer elements of the logical
state, i.e. combinations of code stabilizer generators with the respective logical operators or
the identity:

2n∑

k=1

Wk =

n∏

i=1

I + Si
2

(C.82)

Si ∈ {KX
1 ,K

Z
1 ,K

X
2 ,K

Z
2 ,K

X
3 ,K

Z
3 , Ot} (C.83)

For stabilizer states we only need to evaluate Eqn. C.81 to obtain the quantum state fidelity.
For a single logical qubit in an n = 7-qubit register ρt may be factorized by projectors onto
the code space and the logical subspace

ρt = P±OtPCS (C.84)

PCS =
6∏

i=1

I +Ki

2
(C.85)

P±Ot =
I ±Ot

2
. (C.86)

The density operator for the logical zero state |0〉L reads

ρ|0〉L = |0〉 〈0|L =
I + ZL

2
PCS (C.87)

and the state fidelity for each of these cases reduces to

F(ρt, ρ) =
1

128

128∑

k=1

〈Wk〉 (C.88)
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with the respective Wk = I, . . . , ZLK
X
1 K

Z
1 K

X
2 K

Z
2 K

X
3 K

Z
3 . The code space population pCS

and the fidelity within the code space FCS is obtained via

pCS = Tr (PCSρt) =
1

64

64∑

k=1

〈Wk〉 (C.89)

FCS(ρt) =
Tr (ρtρ)

pCS
(C.90)

where the 64 terms for the code space population are the Pauli operatorsWk which do not
contain the logical operatorWk = I, . . . ,KX

1 K
Z
1 K

X
2 K

Z
2 K

X
3 K

Z
3 .

c.5 Single-qubit randomized benchmarking

The fidelity of single-qubit operations is extracted from randomized benchmarking exper-
iments as described in Ref. [275], where a single Clifford operation is decomposed into
2.167 laser pulses on average. In Figure 6.3 we combined data for all 16 qubits to a single
dataset, whereas in Figure C.7 we show the underlying datasets for all qubits individually.
The numerical values for single-qubit gate fidelities are given in Table C.2. As there is no
pattern of single-qubit gate fidelity with respect to the position in the ion chain apparent, all
error models discussed in this work feature only a single fidelity for all single-qubit gates.

Qubit number Single-qubit gate fidelity
1 0.9978(3)

2 0.9978(3)

3 0.9975(3)

4 0.9973(3)

5 0.9977(3)

6 0.9980(3)

7 0.9975(3)

8 0.9969(4)

9 0.9976(3)

10 0.9977(3)

11 0.9975(3)

12 0.9977(3)

13 0.9975(3)

14 0.9974(3)

15 0.9979(3)

16 0.9975(3)

Table C.2: Single-qubit gate fidelities estimated from randomized benchmarking in a 16-qubit register.
The number of Clifford operations used in the generation of the benchmarking sequences
ranges from 2 to 20. The given errors are 95% confidence intervals.
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Figure C.6: 16-qubit GHZ state preparation circuit. The circuit is used to estimate the fidelity of a
single entangling gate. The operations P (†) are resonant pulses with a rotation angle of
π (and opposite rotation direction) on the transition 4S1/2,mj=−1/2 to 3D5/2,mj=−3/2 used
for (un)hiding of qubits. This shelving procedure reduces noise due to crosstalk from
multiple entangling gates acting on qubit 3.

c.6 Estimation of entangling gate fidelity

To estimate the mean fidelity of entangling operations without using time-consuming
benchmarking techniques the following approach is used: We prepare the 16-qubit GHZ
state |ψGHZ〉 = (|0〉⊗16−i |1〉⊗16)/

√
2 across the entire register by using 15 two-qubitMS gates

and 40 single-qubit resonant operations. The corresponding circuit is depicted in Figure C.6.
For the analysis of the fidelity of the prepared GHZ state we perform two measurements:
The probabilities to project to the basis states |0〉⊗16 and |1〉⊗16 are determined by a direct
projective measurement in the Z basis. The off-diagonal elements of the density matrix of
the GHZ state instead are measured by applying single-qubit gates R(i)

ϕ (π/2) to all qubits
after preparing the GHZ state. For different phases ϕ the parity of the prepared state is
measured via a projective measurement and a sinusoidal model is fitted to the observed
parity oscillations [228]. The mean of the sum of the populations in |0〉⊗16 and |1〉⊗16 and
the contrast of the parity oscillations of the coherence measurement gives the fidelity of the
GHZ state. The fidelity of a single two-qubit gate is estimated as [276]

Ftq =

(FGHZ

F40
sq

) 1
15

, (C.91)

where FGHZ = 0.62(3) and Fsq = 0.99760(8) are fidelity of the GHZ state and mean single-
qubit gate fidelity estimated from randomized benchmarking respectively. The estimated
two-qubit gate fidelity in the 16-qubit register is Ftq = 0.975(3).
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Figure C.7: Single-qubit gate benchmarking. Success probability decay of randomized benchmarking
sequences in a 16-qubit register (qubit 1 in the top-left corner, qubit 16 in the bottom-right
corner). The scatter on the horizontal axis around the sequence lengths 2, 5, 10, 15 and
20 is introduced for better visibility of the success probability of the individual random
sequences. The discretization on the vertical axis is given by averaging over 150 executions
per random sequence.
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A P P E N D I X TO P U B L I C AT I O N E X P E R I M E N TA L Q U A N T I F I C AT I O N O F

S PAT I A L CO R R E L AT I O N S I N Q U A N T U M DY NA M I C S

d.1 Simulations

It is common to find more than one source of dephasing in ion trap architectures. Here
we consider the case where one type of dephasing is caused by the external and global
magnetic field fluctuations and the other due to the laser frequency fluctuations of the
addressing laser source. In particular, with respect to the contribution from magnetic field
fluctuations, it is important to note that trapped ion qubits encoded in the electronic qubit
levels S1/2(mj = −1/2) = |1〉 → D5/2(mj = −1/2) = |0〉 will undergo a different dephasing
dynamics than temporarily spectroscopically decoupled (“hidden”) qubits. Spectroscopical
decoupling has been commonly employed e. g. in the context of repetitive QEC [102],
entangling subsets of qubits [37] and quantum teleportation [277].
Here, we consider a string of two ions, the first of which is spectroscopically decoupled,

and the second one residing in the standard qubit subspace. Thus, we effectively consider
two ions with a laser field addressing the second one. The joint state of the ions ρ undergoes
the evolution which corresponds to accumulating random phases,

e−iφB(aσz1+bσz2)e−iφLσ
z
2 , (D.1)

where φB is due to the global magnetic field fluctuations and φL to frequency fluctuations
of the laser source addressing the second ion. The constants a and b depend on the specific
energy levels on each ion taken into consideration. If those are the same, we have a = b = 1.
Denoting by pB(φB) and pL(φL) the probability distributions for φB and φL, respectively,
we have the noisy dynamics

E(ρ) =

∫
dφBpB(φB)

∫
dφLpL(φL)[e−iφB(aσz1+bσz2)e−iφLσ

z
2 ]ρ[eiφB(aσz1+bσz2)eiφLσ

z
2 ]. (D.2)

We can write

e−iφBaσ
z
1 = cos(aφB)− i sin(aφB)σz1 , (D.3)

e−i(bφB+φL)σz2 = cos(bφB + φL)− i sin(bφB + φL)σz2 , (D.4)
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so that

e−iφBaσ
z
1e−i(bφB+φL)σz2 = cos(aφB) cos(bφB + φL)

− i sin(aφB) cos(bφB + φL)σz1

− i cos(aφB) sin(bφB + φL)σz2

− sin(aφB) sin(bφB + φL)σz1σ
z
2 ,

and then

E(ρ) =
∑

α,β=0,...3

χαβGαρGβ, (D.5)

withG0 = 1⊗1,G1 := σz1 ,G2 := σz2 , andG3 := σz1σ
z
2 . The coefficients χαβ form a self-adjoint

matrix with the following components:

χ00 =

∫ ∫
dφBdφLpB(φB)pL(φL) cos2(aφB) cos2(bφB + φL),

χ01 =
i

2

∫ ∫
dφBdφLpB(φB)pL(φL) sin(2aφB) cos2(bφB + φL),

χ02 =
i

2

∫ ∫
dφBdφLpB(φB)pL(φL) cos2(aφB) sin[2(bφB + φL)],

χ03 = −1

4

∫ ∫
dφBdφLpB(φB)pL(φL) sin(2aφB) sin[2(bφB + φL)],

χ11 =

∫ ∫
dφBdφLpB(φB)pL(φL) sin2(aφB) cos2(bφB + φL),

χ12 =
1

4

∫ ∫
dφBdφLpB(φB)pL(φL) sin(2aφB) sin[2(bφB + φL)],

χ13 =
i

2

∫ ∫
dφBdφLpB(φB)pL(φL) sin2(aφB) sin[2(bφB + φL)],

χ22 =

∫ ∫
dφBdφLpB(φB)pL(φL) cos2(aφB) sin2(bφB + φL),

χ23 =
i

2

∫ ∫
dφBdφLpB(φB)pL(φL) sin(2aφB) sin2(bφB + φL),

χ33 =

∫ ∫
dφBdφLpB(φB)pL(φL) sin2(aφB) sin2(bφB + φL).

(D.6)

If we consider a Gaussian distribution for every random phase

f(φB) =
1√

2πσB
e
− φ2B

2σ2
B and f(φL) =

1√
2πσL

e
− φ2L

2σ2
L , (D.7)

we obtain χ01 = χ02 = χ13 = χ23 = 0 because of the odd parity of the integrating functions.



D.1 simulations 225

0

0.2

0.40

0

0.5 0.6
1

1.5
0.8

2

0.05

2.5
13

0.1

0.15

0

0.2

0.40

0

0.5 0.6

0.02

1

1.5
0.8

2

0.04

2.5
13

0.06

0.08

0.1

0.12

Figure D.1: Amount of correlations for a = ±b (left) and a = 1, b = −0.83 (right), as a function of σB
and σL.

As we assumed to have pure dephasing dynamics the Choi-Jamiołkowski state can be
written as:

ρCJ
S = EZ ⊗ 1(|ΦSS′〉〈ΦSS′ |)

=
1

d2

d∑

k,l,m,n=1

αklmn |kl〉 〈mn| ⊗ |kl〉 〈mn|

All diagonal elements are αklkl = 1, and the remaining integrals in Eqn. D.6 can analytically
be performed, yielding the following components of the Choi-Jamiołkowski state ρCJ

S :

α1112 = α2122 = χ00 + χ11 − χ22 − χ33 = e−2(b2σ2
B+σ2

L)

α1121 = α1222 = χ00 − χ11 + χ22 − χ33 = e−2a2σ2
B

α1122 = χ00 + 2χ03 − χ11 − 2χ12 − χ22 + χ33 = e−2[(a+b)2σ2
B+σ2

L]

α1221 = χ00 − 2χ03 − χ11 + 2χ12 − χ22 + χ33 = e−2[(a−b)2σ2
B+σ2

L].

(D.8)

This allows us to compute the measure of correlation Ī from the Choi-Jamiołkowski state.
The results are shown in Figure D.1 for a = ±b, and for a = 1, b = −0.83. For a 6= ±b the
amount of correlations has a maximum for some value of σB and σL = 0, and decays for
large σB or σL. In the case of a = ±b, where both systems have the same susceptibility to
magnetic field fluctuations, a maximum value for Ī of 0.125 is reached in the limit of σB →∞
and σL = 0. For the experimental implementations from section 6.2.3.5 enhanced magnetic
field noise, engineered by applying white current noise to coils in the ion’s surrounding, was
added, rendering the laser phase noise described by σL negligible. Therefore, the presented
experimental results correspond to a cut through these 3D figures at σL = 0. Configurations 1
in section 6.2.3.5.1 corresponds to a = b (see left part of Figure D.1). The asymptotic limit
of 0.125 is in agreement with the experimental results in Figure 6.27. Configuration 2 is
corresponding to b

a = −0.83.
To simulate the dynamics of the build-up of space correlations in Figure 6.27 a different

simulation method is used: Random phase fluctuations are acting on both qubits, where
the experimental waiting time is corresponding to the width of the phase distribution from
which the samples are drawn. After 1000 realizations of random dephasing dynamics, the
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resulting density matrix is used to generate simulated measurement results by calculating
expectation values for all combinations of Pauli operators acting on the two qubits, which
correspond to the probabilities tomeasure a certain output state. From this set of probabilities
measurement results are generated using a multinomial distribution. We estimate the error
arising from this statistical error (projection noise) by performing 100 realizations of the
simulation. The methods used to simulate results for the asymmetric configuration are the
same, apart from the fact that the phase fluctuation of random strength is applied to qubit 1
directly and multiplied by the factor to include the different susceptibilities to the magnetic
field due to the different Landé g factors of the included states before acting on qubit 2. For
the simulation of the uncorrelated case a slightly different procedure is used: Instead of
random dephasing, an independent decay to the ground state of the two qubits is applied to
reflect the uncorrelated dynamics due to enhanced spontaneous decay.

Analytical expectations for the long-time limit under dephasing dynamics

4-qubit correlations - It is instructive to consider also the long-time dynamics in the case of
perfectly correlated dephasing dynamics, and the situation in which one is interested in
obtaining the lower bound of the correlation measure. Let us first focus on Configuration
1, in which all four qubits are encoded in Encoding A. The initial product state of the four
qubits, |ψ〉 = |+〉⊗4, can be written as

|ψ〉 =
1

4
(|ψ0〉+ |ψ4〉) +

1

2
(|ψ1〉+ |ψ3〉) +

√
3

8
|ψ2〉 (D.9)

with the Dicke states |ψj〉 of j = 0 up to j = 4 excitations,

|ψ0〉 = |0000〉 ,

|ψ1〉 =
1

2
(|1000〉+ |0100〉+ |0010〉+ |0001〉),

|ψ2〉 =
1√
6

(|0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉),

|ψ3〉 =
1

2
(|0111〉+ |1011〉+ |1101〉+ |1110〉),

|ψ4〉 = |1111〉 .

Under spatially perfectly correlated dephasing, the initial state |ψ〉 evolves for times much
longer than the single-qubit coherence time, but still shorter than the life-time of the
metastable qubit state, into

|ψ〉 〈ψ| t→∞−→ 1

16
(|ψ0〉 〈ψ0|+ |ψ4〉 〈ψ4|) +

1

4
(|ψ1〉 〈ψ1|+ |ψ3〉 〈ψ3|) +

3

8
|ψ2〉 〈ψ2| , (D.10)

i.e. the subspaces of a fixed excitation number j are decoherence-free, so that the initial
coherences between basis states within one and the same excitation number j subspace are
preserved, whereas coherences between subspaces of different j and j′ are eventually fully
lost. From this it is straightforward to see that the single-qubit coherences vanish for all four
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qubits, 〈Xj〉 = 0. In contrast, the four-qubit operator X1X2X3X4 has a non-zero expectation
value, 〈X1X2X3X4〉 = 3/8, which results in a lower bound

ĪLB =
1

4 · 4 ln 2
[〈X1X2X3X4〉 − 〈X1〉〈X2〉〈X3〉〈X4〉]2 = 0.0127. (D.11)

For Configuration 2 (qubits 1 and 2 encoded in Encoding A, qubits 3 and 4 encoded in
Encoding B) the initial four-qubit state |ψ〉 = |+〉⊗4 will evolve into the density matrix
ρ = ρ12 ⊗ ρ34 for long times. The state of the first and second, and third and fourth qubits,
respectively, is given by

ρ12 = ρ34 =
1

4
(|00〉 〈00|+ |11〉 〈11|) +

1

2
(|Ψ+〉〈Ψ+|), (D.12)

Therefore, all four single-qubit coherences vanish, 〈Xj〉 = 0. However, due to the presence of
the component which corresponds to the pair of Bell-states in the partially decohered four-
qubit density matrix, the four-qubit operator X1X2X3X4 has again a non-zero expectation
value, 〈X1X2X3X4〉 = 1/4, which in this case leads to

ĪLB =
1

4 · 4 ln 2
[〈X1X2X3X4〉 − 〈X1〉〈X2〉〈X3〉〈X4〉]2 =

1

256 · ln 2
= 0.0056 = 0.56%.

(D.13)

Finally, for Configuration 3, with qubits 1, 2 and 3 encoded in Encoding A, and qubit 4 in
Encoding B, one can show that the initial state |ψ〉 = |+〉⊗4 evolves for long enough times
into

ρ =

[
1

8
(|000〉 〈000|+ |111〉 〈111|) +

3

8

(
|ψ′1〉 〈ψ′1|+ |ψ′2〉 〈ψ′2|

)]

123

⊗ 1

2
14 (D.14)

with the Dicke-type 3-qubit states

|ψ′1〉 =
1√
3

(|100〉+ |010〉+ |001〉),

|ψ′2〉 =
1√
3

(|110〉+ |101〉+ |011〉).

Since for this state both the single-qubit coherences and 〈X1X2X3X4〉 vanish, one expects a
vanishing spatial correlation measure, ĪLB = 0, in this limit.

2-qubit correlations - Similarly, it is straightforward to obtain the expected behaviour for
the long-time dynamics of two qubits undergoing perfectly correlated dephasing. In this
case, the initial state |ψ〉 = |+〉⊗2 of a pair of qubits evolves for long times into

|ψ〉 〈ψ| t→∞−→ 1

4
(|00〉 〈00|+ |11〉 〈11|) +

1

2
(|Ψ+〉〈Ψ+|), (D.15)



228 appendix to publication experimental quantification of spatial cor-

relations in quantum dynamics

with the Bell state |Ψ+〉 = 1√
2
(|01〉 + |10〉). Again, the single-qubit coherences vanish,

〈X1〉 = 〈X2〉 = 0, whereas the two-qubit operatorX1X2 saturates at 〈X1X2〉 = 1/2, resulting
in a lower bound for the two-qubit correlations of

ĪLB =
1

4 · 2 ln 2
[〈X1X2〉 − 〈X1〉〈X2〉]2 = 0.0451. (D.16)
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