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A B S T R A C T

The field of experimental quantum information processing is already
at the stage where few-qubit quantum computers are available, such
as the one in our laboratory, consisting of a string of 40Ca+ ions con-
fined in a macroscopic linear Paul trap. In this work, improvements
to the experimental setup are shown, followed by recent experiments.
A new software for compiling quantum algorithms into experimental
pulse sequences is described, that improves on previously existing
tools. Then, a new laser setup for Raman cooling is shown. These
tools are applied to experiments exploring two research lines: quan-
tum computation and quantum simulations. The first experiment re-
ported is a scalable implementation of Shor’s algorithm for integer
factoring, paradigmatic for quantum computation. The second exper-
iment is a quantum simulation of quantum electrodynamics, as a par-
ticular case of lattice gauge theories, which are fundamental for high-
energy physics. Here it is experimentally demonstrated how these
theories can be efficiently simulated on a quantum computer.

Z U S A M M E N FA S S U N G

Im Forschungsgebiet der experimentellen Quanteninformationsverar-
beitung sind bereits Quantenrechner mit wenigen Qubits verfügbar.
In unserem Labor haben wir einen Quanteninformationsprozessor,
der mit einzelnen gefangenen 40Ca+ Ionen in einer makroskopischen
Paulfalle rechnet. Diese Dissertation befasst sich mit Beiträgen zum
experimentellen Aufbau und kürzlich dürchgeführten Experimenten.
Es wird eine neue Software zum Übersetzen von Quantenalgorith-
men in experimentelle Pulssequenzen beschrieben, die auf einer be-
reit verfügbaren Methode aufbaut und diese verbessert. Dann wird
ein neuer Laseraufbau vorgezeigt, der zur Laserkühlung an einem
Ramanübergang verwendet wird. Die Nützlichkeit dieser Erweite-
rungen wird anhand von Experimenten zu Quantenalgorithmen und
Quantensimulation demonstriert. Das erste Experiment ist eine ska-
lierbare Implementierung des Shor-Algorithmus zur Faktorisierung
ganzer Zahlen, ein Musterbeispiel für die Leistungsfähigkeit eines
Quantenrechners. Weiters wird eine Quantensimulation der Quante-
nelektrodynamik als Beispiel für eine Gittereichfeldtheorie demons-
triert. Solche Theorien sind ein wesentlicher Grundbaustein der Hoch-
energiephysik. In dieser Arbeit wird experimentell bewiesen, wie sie
mithilfe eines Quantenrechners effizient simuliert werden können.
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1
I N T R O D U C T I O N

“Begin at the beginning,” the King said, very gravely, “and go
on till you come to the end: then stop.”

—Lewis Carroll, Alice in Wonderland [1]

Quantum mechanics has revolutionized science and technology in
the twentieth century, enabling applications such as semiconductor
devices, lasers and superconducting materials. However, these de-
velopments all rely on the bulk manipulation of large ensembles of
quantum mechanical systems. As E. Schrödinger put it in 1952: “We
never experiment with just one electron or atom or (small) molecule.
In thought experiments we sometimes assume that we do; this in-
variably entails ridiculous consequences. . . we are not experimenting
with single particles, any more than we can raise Ichthyosauria in the
zoo.” [2] Only seven years later, R. Feynman offered a different per-
spective: “The principles of physics, as far as I can see, do not speak
against the possibility of maneuvering things atom by atom. It is not
an attempt to violate any laws; it is something in principle that can
be done, but has not been done because we are too big.” [3]

Thanks to the advances in experimental quantum optics towards
the end of the twentieth century, we can now confidently say that we
can, indeed, maneuver things atom by atom. We now have full exper-
imental control of the individual quantum states of trapped atoms
or ions, together with the ability to engineer interactions between
them [4]. This allows us to encode and manipulate quantum informa-
tion, much in the way that classical computers process classical infor-
mation. We already have, in effect, small-scale quantum computers in
the laboratory [5]. What can we achieve with this new technology?

In this thesis, some of the possibilities offered by a small-scale
trapped-ion quantum computer are explored. One promising road to
follow with quantum technology is to perform computational tasks
that are not feasible for classical computers. It is the case for many im-
portant problems that the computational resources required to solve
them grow exponentially with the problem size. Despite the techno-
logical progress of the semiconductor industry, the progress of tran-
sistor speed and miniaturization is slowing down and might plateau
in the near future (see Figure 1). This means that simply employing
more classical computational power will not be sustainable in the
future, and thus a radically new approach is needed. Quantum me-
chanics offers a way around this obstacle, since quantum systems are
intrinsically richer than classical ones. Several algorithms have been
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2 introduction

proposed that take advantage of quantum mechanical phenomena
like superposition or entanglement for performing tasks more efficiently
than classical computers [6]. In this thesis a paradigmatic example is
discussed, Shor’s algorithm for integer factoring [7], which we have
implemented for the first time in a scalable way.

1970 1980 1990 2000 2010 2020

Frequency (MHz)

Transistors
(thousands)

Typical Power
(Watts)
Number of
logical cores

Single-�read
Performance
(SpecINT x 103)

40 years of microprocessor trend data
107

106

105

104

103

102

101

100

Figure 1: Evolution of microprocessors since the 1970’s. The data shows an
exponential growth until the year 2000 (Moore’s law) and a slow-
down since then. Credit K. Rupp1.

The second avenue of research that is presented here is to exploit
quantum computers to investigate the fundamental laws of nature.
Interactions between the elementary constituents of matter are de-
scribed by so-called gauge theories [8, 9]. However, computing the real-
time dynamics in gauge theories is a notorious challenge for classical
computational methods. This is so because the processing time and
memory requirements increase exponentially with the system size.
In the spirit of Feynman’s vision of a quantum simulator [10, 11],
this has recently stimulated theoretical effort to devise schemes for
simulating such theories on engineered quantum devices. Such simu-
lations can solve these problems efficiently, that is, the required sim-
ulation time and simulator size scale polynomially with the system
size [12]. In this thesis,the first experimental demonstration of a dig-
ital quantum simulation of a lattice gauge theory is reported. More
specifically, quantum electrodynamics in one spatial dimension (the
Schwinger model) [13, 14] is investigated.

The structure of this thesis is as follows: In Chapter 2, the funda-
mentals of quantum information processing using trapped 40Ca+ions
are introduced. In Chapter 3, Shor’s algorithm is presented as a paradig-
matic application of quantum computing, as well as the experimen-
tal requirements for its scalable implementation. In Chapter 4, two

1 Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte,
O. Shacham, K. Olukotun, L. Hammond, and C. Batten. New plot and data col-
lected for 2010–2015 by K. Rupp. Adapted from: https://www.karlrupp.net/2015/
06/40-years-of-microprocessor-trend-data/.

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/


introduction 3

frameworks for quantum simulation of gauge theories are introduced:
quantum link models and Wilson models. In Chapter 5, a tool to en-
able the implementation of quantum algorithms or simulations is de-
scribed, consisting of software for compilation of quantum unitaries
into experimentally available pulse sequences. In Chapter 6, a tech-
nical improvement to the existing experimental setup is presented: a
new laser setup for Raman cooling. In Chapter 7, an experimental
implementation of Shor’s algorithm is described. In Chapters 8 and
9 the implementation of two different approaches to quantum simu-
lation of lattice gauge theories is shown. Finally, in Chapter 10 the
contents of this work are summarized and an outlook towards future
advances is given.





2
Q U A N T U M I N F O R M AT I O N W I T H T R A P P E D I O N S

By any objective standard, the theory of computational
complexity ranks as one of the greatest intellectual
achievements of humankind – along with fire, the wheel, and
computability theory.

—Scott Aaronson, Quantum Computing Since Democritus [15]

Quantum mechanics has not only revolutionized the foundations
of physics, but also changed the way we understand information and
computation. Quantum systems are richer than classical ones: they
can store more information and offer additional resources that can be
used for computation. For this reason, in the past few decades strong
theoretical and experimental efforts have focused on realizing a quan-
tum computer: a device that can perform computation making direct
use of quantum-mechanical phenomena. To achieve this, we must
use a physical system that offers both robustness against external
disturbances and a high degree of control. Trapped ions fulfill these
requirements, and therefore are a promising platform for quantum
computation. Since the appearance of the landmark work by I. Cirac
and P. Zoller [16] describing the implementation of logic gates using
trapped-ion qubits, many experimental advances have been made in
this field [4, 5, 17, 18]. Nowadays, small-scale quantum information
processors based on trapped ions are available in the laboratory.

In this chapter, some basic concepts in the field of quantum infor-
mation processing are introduced. In Section 2.1 quantum computers
are introduced, together with the criteria that they must fulfill so as
to be useful. In Section 2.3, it is shown how to implement a quantum
computer with trapped ions. In Section 2.4, the experimental toolbox
that is available in our trapped-ion system is described. Finally, in Sec-
tion 2.5 it is shown how this toolbox can be used to perform digital
quantum simulations of physical systems.

quantum information

The basic unit of information in modern digital computing is the bit,
which can have only one of two values; let us call these 0 and 1. A
bit can be implemented by any physical system with two possible
states, for example, two stable voltages of a flip-flop circuit or two
magnetization directions. By analogy, a quantum system which can
be in two possible states, which we call |0〉 and |1〉, is called a qubit
(quantum bit) [6, 19]. The key distinction from classical bits is the fact
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6 quantum information with trapped ions

that the state of a qubit is not necessarily either |0〉 or |1〉, but can be
a superposition of both. In quantum mechanics, the state of an isolated
physical system is described by a vector in the space of all possible
states, called a Hilbert space [6]. The most general state of a qubit is
described by a vector |ψ〉 that is a linear combination of |0〉 and |1〉:

|ψ〉 = α |0〉+β |1〉 , (1)

where α and β are complex numbers such that |α|2 + |β|2 = 1.
Suppose the state of a quantum system is not completely known,

namely, we might only know that it is in certain states {|ψi〉} with
probabilities pi. In this case, the state can be described using the den-
sity matrix formalism [6]. The density matrix ρ is an operator defined
by:

ρ =
∑
i

pi |ψi〉 〈ψi| . (2)

The notation |ψi〉 〈ψi| corresponds to an operator that maps the state
|ψi〉 to |ψi〉, and maps every state orthogonal to |ψi〉 to 0. The den-
sity matrix of a system completely describes its state and allows us
to calculate any quantities of interest. For instance, the expectation
value of any observable A, represented by a Hermitian matrix, can be
calculated as:

〈A〉 = tr(Aρ). (3)

In the case that the system is described by a single quantum state
|ψi〉, with probability pi = 1, we call its state pure. Mathematically,
this corresponds to the condition [6]:

tr ρ2 = 1. (4)

On the contrary, if a system is in a mixture of several quantum states,
we say it is in a mixed state. The most general density matrix of a
qubit can be written as:

ρ =
1

2
(1 + rxσx + ryσy + rzσz), (5)
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Figure 2: The Bloch sphere is a convenient representation of the state of a
qubit, in this case described by the density matrix ρ = (1 + rxσx +
ryσy + rzσz)/2.

where 1 is the 2× 2 identity matrix, σx,y,z are the Pauli matrices:

σx =

(
0 1

1 0

)
, (6)

σy =

(
0 −i

i 0

)
, (7)

σz =

(
1 0

0 −1

)
, (8)

and r = (rx, ry, rz) is a real vector with ||r|| 6 1. In this way, the state
of a qubit as a density matrix corresponds to a vector r. This has
a convenient pictorial representation in terms of the Bloch sphere, as
shown in Figure 2. The basis states |0〉 and |1〉 lie on the south and
north poles of the Bloch sphere, respectively. Pure states lie on the
surface of the sphere, and mixed states in its interior.

If we are dealing with a composite system made of N qubits, its
possible states are spanned by the products of all possible states of
each individual qubit. For instance, the state of an isolated two-qubit
system can be written as:

ρ = α0 |00〉+α1 |01〉+α2 |10〉+α3 |11〉 , (9)

where the first and second numbers in each state vector correspond
to the states of qubit 1 and 2, respectively, and

∑
|αi|

2 = 1. As op-
posed to classical systems, it may not be possible to describe the state
of a quantum system by simply describing the state of each of its
components. If the state |ψ〉 of a quantum system can be separated as
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|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψN〉, we say that the state is separable. If this is not
the case, then it is entangled.

Entanglement is of great theoretical and experimental interest, since
it is a characteristic feature of quantum systems and cannot be de-
scribed classically. It can be quantified in different ways; in Chapter 8

we use a measure known as the logarithmic negativity [20], which we
proceed to define. Let us consider a system with state ρ, divided into
subsystems A and B, such that:

ρ =
∑
ijkl

p
ij
kl|i〉〈j|⊗ |k〉〈l|. (10)

The partial transpose of the density matrix ρ with respect to subsystem
A is defined as:

ρTB =
∑
ijkl

p
ij
kl|j〉〈i|⊗ |k〉〈l|. (11)

The logarithmic negativity En quantifies how much entanglement
there is between the subsystems A and B, and is defined as:

EN(ρ) = log2 ||ρ
TA ||1, (12)

where ||X||1 = Tr|X| = Tr
√
X†X is the trace norm, or the sum of the

singular values of the operator X.

quantum computing

A quantum computer is a device that can store and manipulate quan-
tum information. These manipulations are performed as a sequence
of quantum gates, which are operations that take a quantum state as
an input and produce a quantum state as output. Formally, a quan-
tum gate is a unitary operator U which maps state vectors to state
vectors:

U |ψinput〉 = |ψoutput〉 , (13)

where U is a matrix such that the inverse operation U−1 is given by:

U−1 = U† = (UT )∗. (14)

A unitary operation cannot map two different input states |ψ1〉 and
|ψ2〉 to the same output state, so quantum information cannot be lost.
This implies that quantum operations are reversible [6].

A universal quantum computer is a quantum device able to imple-
ment arbitrary unitary operations, or at least to approximate them
to arbitrary accuracy. However, in any specific implementation of a
quantum computer, only a certain set of operations is available. There-
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H

|q2⟩

|q1⟩

|q0⟩ Z(π/2)Z(π/4)

HZ(π/2)

H

Figure 3: A quantum circuit with controlled gates and measurements at the
end.

fore, it is necessary to decompose the desired unitary operation as a
sequence of these available quantum gates. A set of quantum gates is
known as universal if it is possible to approximate any unitary quan-
tum operation to an arbitrary accuracy with a sequence of these gates.

A universal set of gates requires both local operations, which can be
expressed as the product of single-qubit operations, and multi-qubit
operations, which implement interactions between the qubits and can
produce entanglement. An example of a single-qubit operation is the
Hadamard gate, which creates a superposition state on a qubit starting
from a basis state, and is represented by the unitary matrix:

H =
1√
2

(
1 1

1 −1

)
. (15)

A frequently used two-qubit operation is the CNOT gate, which flips
a target qubit conditionally on the state of a control qubit, as described
by the unitary matrix:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (16)

A canonical universal set of gates [6] consists of single-qubit oper-
ations plus CNOT gates. Other universal sets of gates can be used
to implement quantum operations, such as the set described in Sec-
tion 2.4.

Quantum algorithms, namely, sequences of quantum unitaries, are
usually visually depicted as quantum circuits [21], as shown in Fig-
ure 3. Each qubit is depicted by a single straight line, with its initial
state to the left. The quantum algorithm is represented from left to
right, with each quantum gate depicted as a box. Conditional quan-
tum gates are represented by a dot on the control qubit and a vertical
line connecting it to the gate, as depicted in Figure 4 for the CNOT
gate.

The key criteria for a successful implementation of a quantum com-
puter, as listed by D. DiVincenzo [22], are:

1. A scalable physical system with well characterized qubits.
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|control⟩
|target⟩

Figure 4: Quantum circuit representation for the CNOT gate.

2. The ability to initialize the state of the qubits to a simple fiducial
state, such as |000 . . .〉.

3. Long relevant decoherence times, much longer than the gate
operation time.

4. A “universal” set of gates.

5. A qubit-specific measurement capability.

6. The ability to interconvert stationary and flying qubits.

7. The ability to faithfully transmit flying qubits between specified
locations.

the
40

ca
+

qubit

Here and in the rest of this work, all experimental implementations
are based on qubits encoded in the electronic degrees of freedom
of trapped ions. The use of trapped ions for quantum computing is
by now a standard technique, and has already been described exten-
sively in the literature [4, 5, 17, 18]. Our implementation of a quantum
information processor is based on trapped 40Ca+ ions in a linear Paul
trap, as depicted in Figure 5. This system has already been described
in detail in [23], so it will be only briefly reviewed. The relevant elec-
tronic level scheme for 40Ca+ is shown in Figure 6. The 32D5/2
level has a lifetime of 1.045 s [24] before decaying to the ground state
42S1/2 , which is much longer than typical gate durations (on the
order of µs) [18]. Moreover, the 32D5/2 to 42S1/2 transition has a
wavelength of 729 nm, which means it can be conveniently manipu-
lated using laser pulses in the optical regime.

Ions in a Paul trap are subject to effective harmonic trapping poten-
tials (secular potentials) along the axial and radial directions. An ion
crystal trapped in these potentials has motional modes which can be
cooled down close to their ground state and coherently manipulated
by means of laser pulses [17]. An ion can absorb a photon that is blue-
or red-detuned from the electronic transition by the secular frequency
of a motional mode. This process excites the electronic transition of
the ion and creates or destroys, respectively, a single excitation of the
mode (a phonon). In this way, the motional degrees of freedom of the
ions can be entangled with their electronic degrees of freedom, thus
acting as a “bus” for the transfer of quantum information. There exist
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Figure 6: 40Ca+ electronic level scheme.

several protocols that use the common motional modes to implement
entangling gates between the ions. In Section 2.4 the scheme that is
employed in this work, the so-called MS gate, is described.

Without going into further detail, let us see how trapped ions fulfill
the DiVincenzo criteria and thus make a good candidate for a qubit:

1. A scalable physical system with well characterized qubits. Trapped
ions are well characterized qubits since they are physically sepa-
rate and thus can be independently addressed for manipulation
and detection. Scalability means being able to increase the sys-
tem size to an arbitrary number of qubits while still being able
to apply a universal set of quantum operations on the whole
system. This can be done using surface trap architectures and
shuttling techniques [25], or separate traps and photonic inter-
faces [26]. The control resources needed, such as lasers or radio-
frequency (RF) electronics, scale linearly with the number of
qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.
Standard techniques such as optical pumping and laser cooling
allow one to bring the electronic and motional state of the ions
to a well-defined ground state [5].
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Global
beam

Addressing
beam

Figure 7: Beam configuration in our experimental setup.

3. Long relevant decoherence times, much longer than the gate operation
time. Typical decoherence times of optical qubits are on the or-
der of tens or hundreds of ms1 and typical gate operations are
performed on µs timescales [18].

4. A “universal” set of gates. An arbitrary quantum operation can
be implemented using single-qubit operations together with en-
tangling gates such as the MS gate [30], which are available in
trapped ion experiments (see Section 2.4).

5. A qubit-specific measurement capability. The electron shelving tech-
nique [31] allows one to detect the electronic state of an ion,
providing a state-dependent fluorescence measurement.

6. The ability to interconvert stationary and flying qubits and

7. The ability faithfully to transmit flying qubits between specified loca-
tions. The electronic state of trapped ions can be mapped onto
photons by means of optical cavities [32]. The photons can be
transmitted over long distances through optical fibers. Alter-
natively, ions themselves can be turned into flying qubits by
means of shuttling techniques [25], or can be interconnected
with wires [33].

experimental toolbox

In this section, the set of quantum operations available in the experi-
mental setup considered in this thesis is introduced:

• Collective single-qubit rotations applied to the whole qubit reg-
ister are implemented by means of laser pulses resonant with

1 Coherence times of over tens of seconds have been shown on magnetic field-
insensitive transitions [27–29].
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the qubit transition, coupled to the entire ion string. Such rota-
tions can be made about any axis on the equator of the Bloch
sphere, depending on the optical phase φ of the laser pulses.
We denote these rotations C(θ,φ), where θ is the rotation angle
and φ is the phase, so that:

C(θ,φ) = e−iθ(Sx cosφ+Sy sinφ)/2, (17)

where Sx,y = σ
x,y
1 + · · · + σx,y

N are the global spin projections
on the x or y axes, and σx,y,z

j are the respective Pauli operators
corresponding to qubit j. For the sake of brevity we also define
rotations around the X and Y axes as:

X(θ) = C(θ, 0), (18)

Y(θ) = C(θ,π/2). (19)

• Single qubit rotations around the Z axis can be implemented
by means of tightly-focused off-resonant laser pulses addressed
on individual qubits. This induces an AC-Stark shift, which de-
tunes the qubit and thus induces a phase that is proportional to
the pulse duration. These are denoted by Zn(θ), where θ is the
rotation angle, and n is the qubit index:

Zn(θ) = e−iθσ
z
n/2, (20)

with σzn being the Pauli Z operator applied to the n-th ion.

• Entangling Mølmer-Sørensen (MS) gates [30] are carried out
by means of bichromatic laser pulses coupled to the entire ion
string, detuned with respect to the red and blue motional side-
bands. These gates are denoted by MSφ(θ), where θ is the rota-
tion angle and φ is the phase of the gate, resulting in:

MSφ(θ) = e−iθ(Sx cosφ+Sy sinφ)2/4, (21)

where Sx,y = σ
x,y
1 + · · ·+ σx,y

N are the total spin projections on
the x or y axes, as before. For φ = 0 or φ = π/2 we obtain
gates that act around the X or Y axes respectively, which we
will denote:

MSx,y(θ) = e
−iθS2x,y/4. (22)

The addressed Z rotations, together with the collective rotations,
allow us to implement arbitrary local unitaries, as is shown in Sec-
tion 5.1. These operations, together with a suitable entangling gate
like the MS gate, form a universal set of gates [34]. A similar tool-
box of operations is available for other atomic, molecular and opti-
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cal physics (AMO) architectures, like trapped-ion hyperfine qubits or
neutral Rydberg atoms [35–38].

Let us note that our MS gates couple to the entire qubit register.
This can be an advantage, as they allow one to implement non-local
interactions directly, but can also be a drawback if some of the qubits
have to be left unaffected by the interaction. One way to achieve this
is by spectroscopically decoupling certain qubits from the interaction,
as illustrated in Figure 8. Our usual qubit is encoded in the states
S1/2(m = −1/2) andD5/2(m = −1/2). To decouple it, the population
in the S1/2(m = −1/2) state is transferred to the D5/2(m = −5/2)

state, and the population in the D5/2(m = −1/2) state is first trans-
ferred to S1/2(m = +1/2) and then to D5/2(m = −3/2), by means of
laser pulses resonant with the respective transitions. This technique
is used in the experiments described in Chapters 8 and 9.

42S1/2

32D5/2

m =

-1/2 +1/2

+1/2 +3/2 +5/2
-1/2-3/2-5/2

m =

computational
subspace

Figure 8: Electronic level manifold of 40Ca+ with Zeeman splitting. The
qubit is encoded in the m = −1/2 to m = −1/2 transition, and
MS interactions are resonant with this transition. To decouple the
qubit from the interactions, its population is coherently transferred
to the m = −5/2 and m = −3/2 levels of the 32D5/2 manifold.

digital quantum simulation

In the previous section we described an implementation of a univer-
sal quantum computer. Richard Feynman posed the question in 1982:
“Can physics be simulated with a universal computer?” [10]. The an-
swer is negative if we restrict ourselves to classical computers, since
the memory required merely to store a quantum state grows exponen-
tially with the size of the system. Moreover, directly reproducing the
measured probabilities of a quantum-mechanical system on a local
classical device is impossible (the hidden-variable problem) [10]. How-
ever, a universal quantum computer can indeed be used to simulate
any local quantum system, as Seth Lloyd answered affirmatively in
Ref. [12]. This possibility is appealing, since a quantum simulator
with tens of qubits and hundreds of operations, which seems feasible
in the near future, could outperform any classical computer [12].
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The problem of quantum simulation is, given a physical system of
interest with local interactions, to map it to another physical system
that we can control and measure: a quantum simulator. The dynamics
of the simulator must approximate the time evolution of the system
of interest with arbitrarily small error. Suppose the system of interest
evolves during a time t under a Hamiltonian

H =

l∑
i=1

Hi. (23)

Since the interactions are local, each of the terms Hi acts on a Hilbert
space of dimension d at most, where d is independent of the size of
the system. In general, the Hi do not commute with each other, and
cannot be implemented simultaneously in the laboratory. To solve
this issue, we slice the evolution into n time windows ∆t = t/n,
and in each time window we evolve the simulator under each Hi
successively, as depicted in Figure 9. This technique is known as the
Trotter-Suzuki decomposition [39, 40], and is based on the fact that:

ei(H1+···+Hl)t ≈ (eiH1∆t · · · eiHl∆t)n. (24)

More exactly, the error terms are given by:

eiHt = (eiH1∆t · · · eiHl∆t)n +
∑
i>j

[Hi,Hj]
t2

2n
+

∞∑
k=3

E(k), (25)

where the higher order error terms E(k) are bounded by:

||E(k)||sup 6 n
||H∆t||ksup

k!
, (26)

where ||A||sup is the maximum expectation value (supremum) of the
operator A over the states of interest. The total error in this approx- “By going forward

and backing up a
sufficiently small
distance a large
enough number of
times, it is possible
to parallel park in a
space only ε longer
than the length of
the car.” Seth Lloyd,
[12].

imation is less than ||n(eiHt/n − 1 − iHt/n)||sup, and can be made
arbitrarily small by making n large enough.

H1 H2H +

e-iHt e-iH1Δt e-iH2Δt ...

=

~

Δt = t/n

n
e-iH1Δt e-iH2Δt

Figure 9: Stroboscopic implementation of a time evolution.

It remains to implement each of the local Hamiltonians Hi on our
simulator, which in general requires less than d2 operations [12]. Each
local operator is implemented n times, so the total number of oper-
ations required is less than nld2. The number of local components l
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depends on the physical system to be simulated, but for typical local
interactions (e.g. nearest or next-nearest neighbor) it is proportional
to the system size. In such cases, the number of operations required
scales linearly with the system size, so this scheme provides a feasible
way of simulating the system dynamics. The scheme described here
is the basis of the experiments described in Chapters 8 and 9.
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Dass das Problem, die Primzahlen von den zusammengesetzten
zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen
zu den wichtigsten und nützlichsten der ganzen Arithmetik
gehört und den Fleiss und die Weisheit der Geometer der
Antike und der Neuzeit beschäftigt hat, ist so bekannt, dass es
überflüssig ist, viel darüber zu sagen.

—C. F. Gauss, Disquisitiones Arithmeticæ [41]

Shor’s algorithm, formulated in 1994 by Peter Shor [7, 42], is a
quantum algorithm to solve the integer factorization problem: given an
integer N, what are its prime factors? It is a paradigmatic example of
the power of quantum computing because it solves a problem with
practical applications and yet outperforms every known classical algo-
rithm. Beyond the pure mathematical interest in factoring large num-
bers, this problem is relevant since the security of widely used crypto-
graphic schemes such as the Rivest-Shamir-Adleman (RSA) scheme [43]
relies on the assumption that it is exponentially difficult to factor big
numbers. Shor’s algorithm runs in polynomial time in the size of
the input, so a large-scale implementation would render such crypto-
graphic schemes insecure.

At the heart of this algorithm lies the capability of quantum com-
puters to evaluate a function on all possible inputs at the same time.
However, much of the difficulty in designing quantum algorithms lies
in retrieving useful results from the vast space of quantum states that
are populated. In this chapter the quantum algorithms that constitute
the building blocks of Shor’s algorithm are explored. In Section 3.1
a basic quantum algorithm is described, the quantum Fourier trans-
form (QFT), that allows to find periodicities in data encoded in a
quantum state. The QFT is a building block for the quantum order-
finding algorithm, which is introduced in Section 3.2. Finally, in Sec-
tion 3.3 it is shown how the integer factorization problem can be re-
duced to the order-finding problem, applied to the concrete example
of factoring the number N = 15 and outlining the implementation
shown in Chapter 7.

the quantum fourier transform

In classical computing, the discrete Fourier transform (DFT) is an
algorithm useful for finding periodicities in discrete data. Given a

17
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vector of complex numbers {x0, x1, . . . , xN−1}, their DFT is another
vector of complex numbers {y0,y1, . . . ,yN−1} given by:

yk =
1√
N

N−1∑
j=0

e2πijk/Nxj. (27)

Let us now consider a system of N qubits, which we will call a
register. Any integer 0 6 j 6 2N − 1 can be encoded as a quantum
state of this system if we write j as a binary string:

j = bN−1 · · ·b0, (bj = {0, 1}), (28)

since then we can associate j with the quantum state:

|j〉 = |bN−1 · · ·b0〉 , (29)

where |bi〉 = {|0〉 , |1〉} is the state of the i-th qubit.
We can likewise encode a vector of complex numbers {xj}, normal-

ized such that
∑
j |xj|

2 = 1, in the quantum state
∑2N−1
j=0 xj |j〉. The

quantum Fourier transform (QFT) of such a state is defined as [6]:

QFT

2N−1∑
j=0

xj |j〉

 =

2N−1∑
j=0

yk |k〉 , (30)

where the vector {yj} is the DFT of the vector {xj}. Equivalently, the
action of the QFT on the basis states |j〉 is:

QFT |j〉 = 1√
2N

2N−1∑
k=0

e2πijk/2
N

|k〉 . (31)

The QFT is a unitary operation, and thus can be implemented on a
quantum computer, as well as its inverse operation:

QFT† |j〉 = 1√
2N

2N−1∑
k=0

e−2πijk/2
N

|k〉 . (32)

As in the classical case, the QFT is useful for finding periodicities
of an input. Suppose we consider an input state:

|ψ〉 = 1√
m

(|j0〉+ |j0 + r〉+ |j0 + 2r〉+ . . . ), (33)

where m is a normalization factor. The state |ψ〉 has a periodicity of
r, or frequency of N/r. The output state QFT |ψ〉 is a linear combi-
nation of the basis states |k〉, where the |k〉 with the greatest weight
are those such that k is close to a multiple of N/r. Therefore, to find
r we can measure QFT |ψ〉, and we will obtain with high probability
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|j0⟩ Z(π/2)Z(π/4)

HZ(π/2)
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Figure 10: Implementation of the inverse quantum Fourier transform (QFT†)
on 3 qubits.

the outcome corresponding to state |k〉, corresponding to the fraction
mN/r. From this fraction we can estimate the period r of the input.
The precise procedure for finding the denominator r of this fraction
makes use of the continued fraction algorithm, see [6, Theorem 5.1].

An quantum algorithm for the inverse QFT on 3 qubits is shown
in Figure 10. Such a quantum circuit for implementing the QFT (or
the inverse QFT) in the general n-qubit case requires ∼ n2 gates [6].
Hence, it offers an exponential speedup over the best classical algo-
rithms, which require ∼ n2n gates. However, the output values of the
quantum version cannot be directly accessed.

Quantum hardware is scarce, so available qubits ought to be used
as efficiently as possible. A. Kitaev has proposed [44] a variation of
the QFT that manages to reduce the size of the register to a single
qubit if only the classical information in the output is required. Sup-
pose we perform a QFT and measure the outcome immediately af-
terwards (Figure 11a). In this case, the measurements can actually be
performed before the conditional operations (Figure 11b), and these
can be replaced by classical feed-forward (Figure 11c).

order-finding

Let us begin by recalling the definition of the modulo operation. This
is written as amodN, and is the remainder of dividing a by N. The
order-finding problem is the following: given integers a and N, what
is the least integer r > 0 such that armodN = 1? The integer r is
called the order of amodN. The order-finding problem can also be
expressed as finding the periodicity of the function f(s) = asmodN.
For instance, if we take N = 15 and a = 7 then:

a0modN = 1,

a1modN = 7,

a2modN = 4,

a3modN = 13,

a4modN = 1, . . . (34)

so the order of 7mod 15 is 4.
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Figure 11: Successive optimizations of the QFT [44]. a) Full inverse QFT fol-
lowed by a measurement. b) Since only the classical information
is preserved, the measurements can be made before the controlled
operations and these can be replaced by classical feed-forward. c)
The outcome of each measurement is stored classically, so the
same qubit can be reused by resetting it after each measurement
and preparing it in the correct input state.

There is no known classical algorithm that solves the order-finding
problem in polynomial time. However, since it involves finding the
periodicity of a function, it seems plausible that the QFT may be of
help. If we consider the unitary

U |y〉 =

|aymodN〉 if y < N

|y〉 if y > N,
(35)

and we apply it repeatedly to the state |1〉, we obtain:

Uj |1〉 = |ajmodN〉 , (36)

which is the desired function. Therefore, the problem can also be ex-
pressed as finding the least integer r such that Ur = 1; it has been
shown that it can be solved using the QFT [6]. The outcome r is
known as the order or period of the unitary U [6].

In order to find the order of Uwe use two registers, each containing
multiple qubits, as illustrated in Figure 12. The first register is initial-
ized to the state |0〉 = |00 . . . 0〉, and its size t determines the success
probability of the algorithm, as we shall see. The second register is
initialized to the state |1〉 = |00 . . . 01〉, and it must be big enough to
hold the number N, so it must consist of at least L > log2N qubits.
Applying Hadamard gates on every qubit in the first register creates
a superposition of all possible input states |j〉. We then apply the uni-
tary U on the second register j times, conditionally on the state |j〉 of
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Figure 12: The order-finding algorithm, exemplified for a QFT qubit register
of size t = 3. U is the modular multiplication unitary defined in
Eq. (35).

the first register. The result is a superposition of every possible value
of |ajmodN〉 on the second register, which is at this point entangled
with the first register. This means that, for any particular value of the
second register, the state of the first register is a superposition of basis
states |j〉 spaced with periodicity r. Therefore, as we have already seen
in Section 3.1, by applying the inverse QFT on the first register we can
find the value of r.1 This procedure is summarized in Algorithm 1.

Algorithm 1 Quantum order-finding [6]

Input: an eigenstate |u〉 of U with eigenvalue e2πiφu .
Output: an n-bit approximation φ̃u to φu.

1: Prepare the initial state |0〉 |1〉.
2: Create the superposition 1√

2t

∑2t−1
j=0 |j〉 |1〉 on the first register.

3: Apply U to the computation register to obtain the state
1√
2t

∑2t−1
j=0 |j〉 |xjmodN〉.

4: Apply the inverse QFT to the first register to obtain
1√
r

∑r−1
s=0 |s̃/r〉 |us〉, where s̃/r is an approximation to s/r.

5: Measure the first register to obtain s̃/r.
6: Apply the continued fractions algorithm to obtain the order r.

As a concrete example of the order-finding algorithm, let us calcu-
late the order of a = 7mod 15, using a first register with t = 3 qubits.
After preparing the initial state |ψ1〉 = |0〉 |1〉 and applying Hadamard
gates on the first register, the state is the following:

|ψ2〉 =
1√
8
(|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |7〉) |1〉 , (37)

1 If t = 2L+ 1+ dlog(2+ 1
2ε )e, the result of the QFT will be accurate to 2L+ 1 bits with

probability at least (1− ε)/r. [6]
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that is, we have a superposition of every possible input state on the
first register. Next, we apply the unitary Uj to the second register,
conditioned on the state |j〉 of the first register, and obtain:

|ψ3〉 =
1√
8
(|0〉 |1〉+ |1〉 |7〉+ |2〉 |4〉+ |3〉 |13〉+

+ |4〉 |1〉+ |5〉 |7〉+ |6〉 |4〉+ |7〉 |13〉), (38)

which contains every possible result of the modular multiplication. If
we measured the second register, we would project the first register
to a superposition of states with a periodicity of r, independently of
the outcome of the second register. Suppose this outcome was |7〉,
then the first register would be projected to 1√

2
(|1〉+ |5〉). To find the

periodicity in the state after measurement, we apply the inverse QFT
on the first register and get the state:

|ψ4〉 = (|0〉− i |2〉− |4〉+ i |6〉). (39)

Finally, we perform a measurement on the first register. We can obtain
as a result either 0, 2, 4 or 6, with probability 1/4 each, and all of these
are multiples of 2t/r = 8/r = 2. If we measure 2 or 6 we can calculate
the right period r = 4 immediately. Otherwise, we can repeat the
algorithm to obtain the correct order, since we can check efficiently
whether the obtained value of r is indeed the order of amodN or
not.

Note that the order-finding algorithm as we have presented it can
be optimized with respect to the register size. Since the QFT at the
end is followed by a measurement, its fully coherent version is not
necessary and can be replaced by Kitaev’s QFT, as shown in Figure 13.
Using this approach, we can reduce the size of the first register to a
single qubit.

|0⟩

|1⟩ U2U4

H HZ(π/4)HZ(π/2)H Z(π/2)|0⟩ |0⟩H H

U

Figure 13: The optimized order-finding algorithm integrated with Kitaev’s
QFT. U is the modular multiplication unitary defined in Eq. (35).

shor’s algorithm

We reduce now the integer factorization problem to the order-finding
problem. The starting point of this reduction is the following obser-
vation: if x is a solution of

x2modN = 1, (40)
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where xmodN 6= ±1, then we have that

x2 − 1modN = (y+ 1)(y− 1)modN = 0. (41)

Therefore N divides (x + 1)(x − 1), so the prime factors of N must
be contained among the prime factors of x + 1 and x − 1. In other
words, N must have at least a common prime factor with one of these
numbers. We can find these common factors by calculating gcd(N, x+
1) and gcd(N, x− 1) using Euclid’s algorithm.

The rest of the problem is finding such an integer x. Let us choose
a random integer a < N coprime with N, that is, without any common
prime factors with N. Then, let us find the order r of amodN, which
we can do using the quantum order-finding algorithm. As shown
in [6, Theorem A4.13], if N has m distinct prime factors, with proba-
bility p > 1− 2−m it is the case that r is even and:

ar/2modN 6= N− 1. (42)

If this happens, then x = ar/2 is an integer that satisfies Eq. (40) and
we can find a prime factor of N. If our choice of a does not succeed,
then we choose another a randomly and continue until we obtain a
prime factor. This algorithm is summarized in Algorithm 2.

Algorithm 2 Shor’s algorithm [6]

Input: an integer N
Output: a prime factor of N

1: if N is even then return 2
2: if N = bc for integers b > 1 and c > 2 then return b
3: loop
4: a← random integer in the range from 1 to N− 1
5: if gcd(a,N) > 1 then return gcd(a,N)

6: r← order of amodN . the quantum step!
7: if r is even and ar/2modN 6= N− 1 then
8: if gcd(ar/2 − 1,N) 6= −1 then return gcd(ar/2 − 1,N)
9: else if gcd(ar/2 + 1,N) 6= −1 then return gcd(ar/2 + 1,N)

The time required by Shor’s algorithm to factor an n-bit number
scales as [45]:

O(n2 logn log logn), (43)

whereas the fastest classical algorithm published to date, the general
number field sieve, has a complexity of [46]:

O
(

exp
(
(64/9)1/3n1/3(logn))2/3

))
. (44)

Therefore, Shor’s algorithm offers an exponential improvement over
the best classical algorithm known. Where does this speedup come
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from? Shor’s algorithm would also have exponential complexity if
carried out on a classical computer, since there is no known efficient
classical algorithm for the order-finding step. However, we have al-
ready seen in Section 3.2 that this problem can be solved efficiently
on a quantum computer. The rest of the algorithm consists of pre- and
post-processing computation steps that can be carried out classically
in an efficient way.

As an example of Shor’s algorithm, let us see how to factor N = 15.
Steps 1 and 2 check that N = 15 is neither an even number nor a
power of a prime number. For step 4, let us “randomly” choose a = 7.
In step 5 we calculate gcd(7, 15) = 1, which is not a non-trivial factor
of 15. Therefore, the algorithm proceeds to the quantum order-finding
step, which we have already shown in Section 3.2 and yields the value
r = 4. This number is even, and ar/2modN = 4 6= 1, so we know that
the algorithm will succeed. We compute gcd(ar/2 + 1,N) = 5 and
gcd(ar/2 − 1,N) = 3, so the algorithm succeeds. If the algorithm had
failed, we would have had to go back to line 4 and try again with a
different a.
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You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:
Still keeping one principal object in view –
To preserve its symmetrical shape.

—Lewis Carroll, The Hunting of the Snark [47]

Our most fundamental and complete understanding of nature, grav-
ity aside, is given by the Standard Model of particle physics [48]. This
framework classifies all the subatomic particles known, and describes
their interactions via gauge theories, thus called because they obey cer-
tain physical symmetries (gauge symmetries). Some examples of these
gauge theories are the electroweak theory, which combines electro-
magnetism and the weak interaction, and quantum chromodynam-
ics (QCD), which describes quarks, the fundamental constituents of
hadrons, and their interactions via the strong force.

The Standard Model has had tremendous success in explaining ex-
perimental observations in high-energy physics and predicting the
existence of new particles like the W and Z bosons and the charm,
bottom and top quarks. However, there are still phenomena – par-
ticularly in quantum chromodynamics (QCD) – that are not well un-
derstood due to the inability to solve the equations of motion, either
analytically or numerically. Since the coupling of quarks to the strong
interaction is – not surprisingly – strong, the perturbative approaches
that are so successful in the case of quantum electrodynamics can-
not be applied. This has led to the development of non-perturbative
approaches, for example lattice gauge theories (LGTs), where space-
time is discretized to a lattice. This approach is more amenable to
numerical calculations and has proven useful to determine hadron
masses [49] and properties of quark-gluon plasmas [50]. However, it
is still extremely computationally expensive because of exponentially
growing memory requirements, which make simulating the real-time
dynamics of QCD systems unfeasible.

For this reason, quantum simulation is a promising approach for
studying LGTs. For this, these theories can be reduced to spin mod-
els, which in turn can be efficiently simulated on a quantum com-
puter [12]. State-of-the-art quantum computers do not yet allow us
to carry out full-fledged calculations of QCD. However, theories such
as quantum electrodynamics (QED) in 1+ 1 dimensions (one spatial
dimension plus time) are simpler to study and also feature some phe-
nomena characteristic of QCD. Therefore, we perform a quantum sim-
ulation of this theory as a testbed for tackling more challenging ones.

25
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In Section 4.1 QED in 1+1 dimensions is introduced, also known as
the Schwinger model [13]. Then, in Section 4.2 we see how this model
can be reduced to a discrete spatial lattice. Finally, in Section 4.3 we
encode the fermionic and gauge fields as spins, thus showing that
the Schwinger model is analogous to a spin model, which can be
efficiently simulated on a quantum computer.

the schwinger model

In this section we study QED in one spatial dimension, known as the
Schwinger model [13], and explain some important phenomena that
arise in this theory. Throughout this chapter we adopt natural units
where  h = c = 1, as is usual in the literature.

The dynamics of spin-1/2 (fermionic) particles with mass m, e.g.
electrons and positrons, are described by a relativistic generalization
of the Schrödinger equation, the Dirac equation [51]. The Dirac equa-
tion is usually formulated in three spatial dimensions (3+ 1 dimen-“Doubtless we

cannot see that other
higher Spaceland
now, because we

have no eye in our
stomachs.” – Edwin
A. Abbott, Flatland:

A Romance of Many
Dimensions [52]

sions), for evident reasons. Here we restrict our study to one spatial
dimension, a theory studied by J. Schwinger in Ref. [13] in the mass-
less case, and described by him as “physical, if unworldly”. Because
of its conceptual simplicity, this theory is an ideal testbed for more
complicated gauge theories. The Dirac equation for the wavefunction
ψ of fermions in 1+ 1 dimensions is:

(iγµ∂µ −m)ψ = 0. (45)

The derivatives ∂µ (µ = 0, 1) are (∂/∂t,−∂/∂x), and the γµ are 2× 2
matrices that satisfy the following anticommutation relations:

{γµ,γν} = 2gµν12×2, (46)

where gµν is the Minkowski metric in 1+ 1 dimensions:

gµν =

(
1 0

0 −1

)
. (47)

A pair of suitable γµ matrices is:

γ0 =

(
1 0

0 −1

)
, (48)

γ1 =

(
0 1

−1 0

)
. (49)
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The solutions of this equation are two-component fields ψ:

ψ =

(
ψ−

ψ+

)
. (50)

As in the 3 + 1-dimensional case, there exist positive and negative
energy solutions, which represent particles and antiparticles, respec-
tively. Solutions of the form ψ = (ψ− 0) have positive energy, whereas
solutions of the form ψ = (0 ψ+) have negative energy. We shall occa-
sionally call the particles “electrons” and the antiparticles “positrons”,
by analogy to standard QED.

The 1+ 1 version of QED displays some particular phenomena dif-
ferent from 3+ 1 QED. As shown in Figure 14a, the electric field lines
in three spatial dimensions diverge. Their density, which corresponds
to the electric field strength, decays with the inverse square of the dis-
tance. Therefore, the electric potential, which is the integral of the
field strength, decays linearly with the distance. On the other hand,
in one spatial dimension the electric field lines do not diverge (Fig-
ure 14b), so the electric field strength does not decay with distance.
Thus, the electric potential grows linearly with distance.

a b
E

ρ ρ

E

Figure 14: a) The electric field lines in three spatial dimensions diverge and
their density, which corresponds to the electric field strength, de-
cays as the inverse square of the distance. Therefore, the electric
potential decays linearly with distance. b) In one spatial dimen-
sion, the electric field lines do not diverge and their density (the
electric field strength) remains constant. Thus, the electric poten-
tial grows linearly with distance.

This particular distance dependence of the potential has important
consequences for QED. Suppose that an electron-positron (e−e+) pair
is created and gets separated, as depicted in Figure 15a-b. As the
distance between the particles increases, the potential energy of the
system grows. At some point it becomes energetically favorable for
a new e−e+ pair to be created spontaneously from the vacuum (Fig-
ure 15c). Now there are two e−e+ pairs linked by electric flux strings,
and no field in between. This mechanism is known as string breaking,
since the flux string breaks and leads to the creation of new particle-
antiparticle pairs. This leads to confinement of the individual particles,
since they cannot be isolated. This phenomenon is also observed in
QCD, since the strong force is asymptotically constant for large dis-
tances [53], thus confining quarks inside hadrons. For this reason, the
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Schwinger model provides some insight into the dynamics of confine-
ment in QCD, which cannot be studied analytically.

Figure 15: The string breaking (or hadronization) mechanism. a) An electron-
positron pair are linked by an electric field flux string. b) If
the particles get separated, the potential energy of the system
increases. c) At some point it becomes energetically favorable
for a new particle-antiparticle pair to be spontaneously created
from the vacuum. Now there are two pairs linked by electric flux
strings, and no field in between. In this way the flux string breaks
and new “hadrons” (particle-antiparticle pairs) are created.

A related phenomenon predicted by QED is the spontaneous cre-
ation of particle-antiparticle pairs in the presence of a strong back-
ground electric field, known as the Schwinger mechanism [54]. This
mechanism has been used as a model of string breaking in QCD [55,
56] and black hole physics [57]. The Schwinger mechanism has, up
to now, never been tested experimentally. Its observation is currently
pursued at high intensity laser facilities Extreme Light Infrastructure
(ELI) and Exawatt Center for Extreme Light Studies (XCELS) [58].
There exist also numerous theoretical proposals [59–62] to study it in
AMO systems. An implementation of the Schwinger mechanism in
our trapped-ion setup is reported in Chapter 8.

The Schwinger model with massless fermions has been solved ex-
actly by J. Schwinger in Ref. [13]. However, the massive Schwinger
model, where fermions have a mass m 6= 0, has not been solved an-
alytically. The dynamics of the system can be investigated numeri-
cally after discretizing the theory and restricting the dimension of its
Hilbert space to finite dimension. These steps are the focus of the
following sections.

lattice gauge theories

In this section we show how to discretize the continuous Schwinger
model to a lattice in space. The discussion here mainly follows Ref. [63].
We will only consider the Schwinger model, but this construction can
be generalized to more spatial dimensions or non-Abelian gauge the-
ories [14].
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Dirac fermions on a lattice

We first formulate the Dirac equation on a spatial one-dimensional lat-
tice, as illustrated in Figure 16. The intersite spacing will be denoted
by a. A point in the lattice is denoted by an integer index n. The
spaces between neighboring lattice points are known as links, and are
indicated by a pair (n,n+ 1). A lattice site can be even or odd depend-
ing on its position n.

To encode the two-component fermion fields ψ on the lattice, we
will encode their upper (particle) components ψ− on the even sites,
and their lower (antiparticle) components ψ+ on the odd sites. As we
will see, this allows us to retrieve the Dirac equation in the continuum
limit of small lattice spacing a. Thus, on each lattice site we define
a one-component fermion field φ(n), which satisfies the fermionic
anticommutation relations:

{φ†(j),φ(k)} = δjk, (51)

{φ(j),φ(k)} = 0. (52)

The two-component field ψ is built from the one-component fields φ
as follows:

ψ(n) =



 φ(n)

φ(n+ 1)

 for even n,φ(n+ 1)

φ(n)

 for odd n.

(53)

0 1 2 3

φ(0)

ψ(0)

φ(1) φ(2) φ(3){ {

ψ(1) ψ(2)

{

E(0) E(1) E(2) E(3)

Figure 16: Definition of the lattice. A one-component fermion field φ(n) is
placed on each lattice site. The fields φ(n) on even and odd sites
correspond to particles and antiparticles, respectively. The two-
component fermions ψ(n) are built from two adjacent sites. The
gauge fields E(n) are placed in the links in between lattice sites.
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We propose now a Hamiltonian that generates the Dirac equa-
tion (45) in the continuum limit, where the lattice spacing a goes
to zero:

H =
i

2a

∑
n

[
φ†(n)φ(n+ 1) −φ†(n+ 1)φ(n)

]
+

+m
∑
n

(−1)nφ†(n)φ(n). (54)

The equation of motion for the one-component fields φ is therefore:

φ̇(n) = i[H,φ(n)] =
1

2a
[φ(n+ 1) −φ(n− 1)] − im(−1)nφ(n).

(55)

To obtain the equation of motion for the two-component fields ψ we
join Eq. (55) for two neighboring even and odd sites:

ψ̇(n) =

(
0 1

1 0

)
[ψ(n+ 1) −ψ(n− 1)] − im

(
1 0

0 −1

)
ψ(n). (56)

Multiplying Eq. (56) on the left by iγ0 we obtain:

iγ0ψ̇(n) − iγ1
ψ(n+ 1) −ψ(n− 1)

2a
−mψ(n) = 0, (57)

which yields the Dirac equation (45) as a→ 0, where the finite differ-
ence [ψ(n+ 1) −ψ(n− 1)]/(2a) becomes the spatial derivative.

Coupling to gauge fields

We will now describe how fermions in 1 + 1 dimensions couple to
the electric field and interact through it, that is, QED in 1+ 1 dimen-
sions. In modern particle physics, interactions are described by means
of gauge theories, which are theories that are invariant (symmetric)
when certain transformations (gauge transformations) are applied to
the fields. The gauge symmetry group of QED is U(1), which means
that the theory must be invariant if the fermion fields φ(n) are mul-
tiplied by arbitrary local phases α(n) [51], since these phases are not
observable. Here we consider only the time-independent case, so the
most general transformation on the fermion fields is:

φ(n)→ eiα(n)φ(n). (58)

The kinetic energy terms φ†(n)φ(n + 1) − φ†(n + 1)φ(n) in the
Hamiltonian (54) are not invariant under such transformations, since
the phases α(n) depend on n. We can achieve gauge invariance by
coupling the fermion fields to additional fields, following Ref. [63].
Let us introduce on each link, between the sites n and n + 1, a di-
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mensionless field operator θ(n), which is proportional to the spatial
component of the electric vector potential Aµ:

θ(n) = agA1(n), (59)

where a is the lattice spacing and g the strength of the coupling of
the fermions to the electric field. We now replace the kinetic energy
term in (54) by one that couples the fermions φ to the fields θ:

Hf =
i

2a

∑
n

[φ†(n)eiθ(n)φ(n+ 1) −H.c.]+

+m
∑
n

(−1)nφ†(n)φ(n). (60)

This Hamiltonian is invariant under gauge transformations of the
form (58) if the link operators θ(n) transform as:

θ(n)→ θ(n) − [α(n+ 1) −α(n)] (61)

In this way, the transformation law for the link operators absorbs the
phases from the fermion fields.

On each link we will also define the electric field operators E(n),
that are canonically conjugate to the vector potential A(n):

[A(j),E(k)] =
i

a
δjk. (62)

It will be more convenient to work with the fields L(n), which are
proportional to the electric field and dimensionless:

L(n) =
1

g
E(n), (63)

The fields L(n) are canonically conjugate to the θ(n):

[θ(j),L(k)] = iδjk. (64)

Applying (64) it can be shown [63] that the Hilbert space of the gauge
fields L(n) is spanned by their discrete eigenstates |l〉:

L(n) |l〉 = l |l〉 (l = 0,±1,±2, . . . ), (65)

and each of these corresponds to an electric field strength gl. The
operators e±iθ(n) act as raising/lowering operators for the electric
field:

e±iθ(n) |l〉 = |l± 1〉 . (66)
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The energy of the gauge fields is the quantized version of the clas-
sical electric field energy:

Hg =
a

2

∑
n

E2(n) (67)

=
ag2

2

∑
n

L2(n). (68)

Therefore, the full Hamiltonian for this lattice gauge theory, the Kogut-
Susskind Hamiltonian, is the sum of Hf in Eq. (60) and Hg in Eq. (68):

H =
i

2a

∑
n

[φ†(n)eiθ(n)φ(n+ 1) −H.c.]+

+m
∑
n

(−1)nφ†(n)φ(n) +
ag2

2

∑
n

L2(n). (69)

spin models

In the previous section we have seen how to encode QED in 1+ 1 di-
mensions on a one-dimensional spatial lattice, and the Hamiltonian
that generates the dynamics of this discrete version of the system.
However, it is still not clear how to reduce this model to an experimen-
tal implementation. We show first how to map the lattice of fermionic
fields to a chain of spins (Section 4.3.1). Then, we show two alterna-
tive ways to deal with the infinite-dimensional Hilbert space of the
gauge fields: either realizing them as spin systems (Section 4.3.2), or
encoding these into long-range interactions (Section 4.3.3).

Mapping fermions to spins

Fermionic systems can be mapped onto spin systems using the so-
called Jordan-Wigner transformation [64], which preserves the fermionic
anticommutation relations (51). Following Ref. [63], let us encode
a spin 1/2 on each lattice site, whose possible states are |↑〉 and
|↓〉. Let σi(n) (i = x,y, z) be the Pauli matrices at each site, and
σ±(n) = [σx(n)± iσy(n)]/2 the usual raising and lowering operators.
Then one can represent the fermionic field operators as:

φ(n) =

(∏
l<n

iσz(l)

)
σ−(n), (70)

φ†(n) =

(∏
l<n

−iσz(l)

)
σ+(n). (71)

It can be verified that these operators satisfy the fermionic anticom-
mutation relations (51). Here we adopt the convention that φ(n) cre-
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ates a particle at site n if n is odd, or destroys an antiparticle at site
n if n is even. Therefore, the spin states |↑〉 and |↓〉 represent particles
|e−〉, antiparticles |e+〉 or the vacuum state |0〉 in the following way:

|↑〉 =

|0〉 n odd,

|e+〉 n even,
(72)

|↓〉 =

|e−〉 n odd,

|0〉 n even.
(73)

Rewriting the Kogut-Susskind Hamiltonian (69) in terms of the
spin operators we obtain:

H =
1

2a

∑
n

[σ+(n)eiθ(n)σ−(n+ 1) + H.c.]+

+m
∑
n

(−1)n
(
1+ σz(n)

2

)
+
g2a

2

∑
n

L2(n). (74)

In this way, the Schwinger model on a lattice is equivalent to a spin
chain coupled to the gauge fields. Next, we need to consider how to
encode the gauge fields.

Mapping gauge fields to spins

One way of tracking the evolution of the gauge fields is to encode
them as spins, and to consider them together with the fermion fields.
It can be seen from Eqs. (65) and (66) that the field operators L(n)
behave analogously to the z-component Sz of an angular momentum
operator, and the operators e±iθ(n) are analogous to the raising/low-
ering operators S± for angular momentum. Therefore, each field op-
erator can be encoded as a spin system of arbitrary dimension. This
is known as a quantum link model (QLM) [65]. The dimension of the
spins chosen for the encoding restricts the maximum values of the
electric field, and as it goes to infinity we recover the continuum limit.
An experimental implementation of a quantum link model where the
gauge fields are encoded in spin-1/2 systems is shown in Chapter 9.

Encoding gauge fields into long-range interactions

In the previous section we showed that the gauge fields can be mapped
to spin systems. This approach requires additional quantum resources
to encode the dynamics of the gauge fields. Moreover, we only recover
the exact dynamics in the limit of infinite spin dimension, since oth-
erwise the possible values of the electric field are restricted. For these
reasons, it is desirable to look for a scheme where only the dynam-
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ics of the fermion fields appear explicitly. This is possible because
the gauge fields are completely determined by their boundary condi-
tions (the background field) and the distribution of the fermions, that
is, the charge distribution.

In one spatial dimension, the continuum version of Gauss’ law is:

∂E

∂x
= ρ(x), (75)

where ρ is the charge density. Gauss’ law is enough to determine
the fields at every point if ρ(x) and the boundary conditions for the
field E are known. On the lattice, the spatial derivative must be trans-
formed into a discrete difference of the link operators Ln:

∂E

∂x
→ Ln − Ln−1. (76)

The particle number on each site is φ†nφn, and the charge of the
particles has a staggered sign depending on whether the site is odd
or even. Thus, the charge density on each site of the lattice is:

ρ(n) = φ†nφn −
1

2
[1− (−1)n] . (77)

Therefore, the discrete version of Gauss’ law on the lattice is:

Ln − Ln−1 = φ
†
nφn −

1

2
[1− (−1)n] , (78)

This equation can be understood by considering a fixed field op-
erator Ln and an adjacent spin φn to its right. Spins in state |↑〉 (|↓〉)
on an odd (even) lattice site indicate that this lattice site is in the vac-
uum state, i.e. not occupied by a particle or antiparticle. Accordingly,
Ln = Ln−1. Spins in the state |↑〉 on even lattice sites (correspond-
ing to positrons) generate (+1) unit of electric flux to the right, so
Ln = Ln−1 + 1. Similarly, spins in the state |↓〉 on odd lattice sites
(corresponding to electrons) lead to a decrease of one unit, and thus
Ln = Ln−1 − 1.

Following Ref. [66], we use this constraint to eliminate the opera-
tors Ln from the dynamics in a two-step procedure. First, the opera-
tors θn are eliminated by a gauge transformation,

σ−n →
∏
l<n

[
e−iθl

]
σ−n . (79)

In a second step, the electric field operators Ln are eliminated using
the spin version of Gauss’ law, which can be obtained by applying a
Jordan-Wigner transformation (70,71) to Eq. (78):

Ln − Ln−1 =
1

2
[σzn + (−1)n] . (80)
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The field operators Ln can be eliminated iteratively from left to right
as depicted in Figure 17.

σ1 σ2 σ3 σ4

E0=0 -1 -1 -1 0
|e-〉 |0〉 |0〉 |e+〉

Figure 17: The electric field operators Ln are eliminated iteratively, using
the spin version of Gauss’ law given in Eq. (78). The elimination
starts from the far left, where the value of the field is 0 in this
case, and proceeds towards the right. Whenever an e− is met, the
field value decreases by one unit, and whenever a e+ is met, the
field value increases by one unit.

This procedure yields an effective spin Hamiltonian which involves
only the fermionic degrees of freedom and a free parameter E0 that
corresponds to the boundary electric field on the link to the left of the
first lattice site:

ĤS =
m

2

N∑
n=1

(−1)nσzn +w

N−1∑
n=1

[
σ+nσ

−
n+1 + H.c.

]
+ J

N−1∑
n=1

[
E0 +

1

2

n∑
m=1

[σzm + (−1)m]

]2
. (81)

The effect of the gauge fields transforms into a long-range σzσz in-
teraction that corresponds to the Coulomb interaction between the
simulated charged particles. In this thesis only consider the case of
zero background field is considered, where E0 = 0. So far, this en-
coding approach has only been employed as a tool for analytical or
numerical calculations [66–68]. In contrast, in Chapter 8 we investi-
gate the use of this idea for a quantum simulation scheme, i.e. the
realization of the Schwinger model in its encoded form in an actual
physical system.
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C O M P I L I N G Q U A N T U M A L G O R I T H M S

I had a running compiler and nobody would touch it. . . they
carefully told me, computers could only do arithmetic; they
could not do programs.

—Grace Hopper [69]

The contents of this chapter are extracted from Ref. [70].
As we have seen in the previous chapters, quantum technologies

open new possibilities that are inaccessible with classical devices. To
utilize the full computational power of quantum systems, one needs a
universal quantum computer: a device able to implement arbitrary uni-
tary operations, or at least to approximate them to arbitrary accuracy.
However, in any specific physical system, only a certain set of op-
erations is readily available. Therefore, it is necessary to decompose
the desired unitary operation as a sequence of these experimentally
available gates. An available set of gates is known as universal if it is
possible to find such a decomposition for an arbitrary unitary quan-
tum operation acting on the qubit register.

A canonical universal set of gates consists of two-qubit CNOT gates
and arbitrary single qubit rotations. There exist deterministic algo-
rithms that can provide near-optimal decompositions of unitaries in
terms of these gates [6]. However, the set of gates that yields the high-
est fidelities depends on the particular experimental implementation.
In particular, two-qubit CNOT gates may not be the most efficient
to implement. Architectures like trapped ions [18, 36] or atom lat-
tices [37] include in their toolboxes high-fidelityN-qubit gates that act
on the entire qubit register (see Section 2.4). Implementing two-qubit
gates in terms of these requires refocusing [71] or decoupling [18]
techniques, and thus increases the overhead. Therefore it is desirable
to find a direct decomposition of the target unitary into the available
operations. In general, entangling operations are more prone to errors
than single-qubit operations, so the number of entangling operations
needs to be minimized.

Compiling unitaries using multi-qubit gates that act on the whole
qubit register is more challenging than using two-qubit gates. Even
if a sequence implements correctly a unitary for N qubits, it might
not work for N + 1 qubits, since additional “spectator” qubits will
also be affected by the sequence instead of being left unchanged [34].
Therefore, one has to define a qubit register of interest where the uni-
tary will be compiled, and the experimental implementation of the
resulting sequence has to be limited to this subregister, as explained

37
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in Section 2.4. Moreover, the existing analytical methods for finding
decompositions of unitaries in terms of two-qubit gates (see for in-
stance Ref. [72]) do not seem to apply to multi-qubit gates. Therefore,
an approach based on numerical optimization is used here.

A similar algorithm for finding multi-qubit gate decompositions
has been studied in Ref. [34], where optimal control techniques are
used to find a pulse sequence for a given target unitary operation.
The procedure described there starts with long sequences and then
removes pulses, if possible. This often results in sequences with more
entangling operations than actually required. In this chapter an algo-
rithm designed to produce decompositions with a minimal number of
entangling gates is presented. In addition, a deterministic algorithm
for finding decompositions of local unitaries is introd uced. The al-
gorithm is extended to operations required for state preparation or
measurement, which are particular cases of more general operations
known as isometries [73, 74].

This chapter is organized as follows: in Section 5.1 an analytic algo-
rithm to compile local unitaries is shown, which can be used to find
efficient implementations of state and process tomographies. Then,
in Section 5.2 an algorithm to compile fully general unitaries which
relies on numerical optimization is described and analyzed.

compilation of local unitaries

Local quantum unitaries are those that can be written as a product of
single-qubit unitaries. In this section a fully deterministic algorithm
is shown that produces decompositions of any local unitary as a se-
quence of collective equatorial rotations and addressed Z rotations,
as described in Section 2.4. The decompositions presented here are
optimal in the number of pulses. These techniques are particularly
useful for the implementation of state and process tomographies, as
exemplified in Figure 18, since both require only local operations at
the beginning and end of the algorithm.

Let us consider a register of N qubits, and a local unitary U =

U1 ⊗U2 ⊗ · · · ⊗UN to be applied to them, where Ui is the action of
the unitary on the i-th qubit. If the same operation has to be applied
to more than one qubit (Ui = Uj), we can replace both with a single
instance of the operation, and then apply the same addressed rota-
tions on all qubits subject to the same operation Ui. Therefore, we
only have to consider the case where every Ui is unique.

In order to apply a general local unitary to each qubit we need to
have at least three degrees of freedom per qubit [6], so the decompo-
sition must have at least 3N free parameters. During the sequence at
least N− 1 of the qubits must eventually be addressed, since a differ-
ent unitary has to be applied to each qubit. Therefore, addressed oper-
ations of the form Z1(θ1),Z2(θ2), . . . ZN−1(θN−1) must be included
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Figure 18: Pulse sequence to perform a projective measurement on the
{X, Y, Z} bases for qubits {1, 2, 3}, respectively.

in the decomposition. These provide N − 1 parameters, so 2N + 1

more degrees of freedom are required. The most economic way to
provide these is by means of collective gates C(θi,φi), which have
two degrees of freedom each, so the shortest sequence possible must
add at least N global operations to the addressed gates, for a total of
3N− 1 free parameters. One additional degree of freedom remains,
so we must add a last gate. This can be either an addressed operation
on qubit N or a collective gate. If we add an addressed gate ZN, we
obtain a sequence of the form:

U = ZNCNZN−1CN−1 · · ·Z2C2Z1C1, (82)

where Ci = C(θi,φi) and Zi = Zi(θi) are collective and single-qubit
rotations respectively, as explained in Section 2.4. Such a sequence
is useful for compiling local unitaries up to arbitrary phases, as ex-
plained in Appendices A.1.3 and A.1.4. The second alternative is to
add a collective rotation C ′N:

U = C ′NCNZN−1CN−1 · · ·Z2C2Z1C1, (83)

which is the type of sequence we consider in this section.
For particular unitaries, some of the Ci and Zi in Eq. (83) may ac-

tually be the identity, in which case the sequence is simpler. Since the
decomposition depends on the ordering of the qubits, by reordering
them a simpler sequence might be obtained. For small numbers of
qubits, one can compile the unitary for every possible permutation,
although this becomes inefficient for large numbers of qubits. How-
ever, let us remember that, for the purposes of the compilation, the
qubits are grouped together according to which of them experience
the same single-qubit unitary Ui. For an application such as state
tomography, there are only three possible unitaries to be applied to
each qubit in the register (shown in Figure 18), since one only wants
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to perform a measurement in one of three different bases. Therefore,
effectively we only need to consider three qubits, in which case trying
out all the permutations is perfectly feasible.

We shall now see how to compile a generic local unitary U = U1 ⊗
U2 ⊗ · · · ⊗UN exactly, using a decomposition of the form (83). Let
us first note that the unitaries in Eq. (83) act on the N-qubit Hilbert
space, which is the tensor product of the single-qubit Hilbert spaces.
For the sake of simplifying the notation, we will now refer to these
unitaries as C̃i, Z̃i, and will reuse the notations Ci and Zi for their
action on the single qubits, so that:

C̃i = Ci ⊗Ci ⊗ · · · ⊗Ci, (84)

Z̃i = 1⊗ 1⊗ · · · ⊗Zi ⊗ · · · ⊗ 1,

where 1 is the 2× 2 identity matrix, and Zi appears at the i-th place
(since it only addresses the i-th qubit).

In terms of these single-qubit unitaries, factoring Eq. (83) for each
qubit we obtain N equations:

U1 = C
′
NCN · · ·C2Z1C1, (85)

U2 = C
′
NCN · · ·Z2C2C1,

...

UN = C ′NCN · · ·C2C1.

From the last equation we can determine C ′NCN:

C ′NCN = UNC
−1
1 C−1

2 · · ·C
−1
N−1, (86)

and eliminating this factor from the remaining equations we obtain:

U−1
N U1 = C

−1
1 Z1C1, (87)

U−1
N U2 = C

−1
1 C−1

2 Z2C2C1,
...

U−1
N UN−1 = C

−1
1 C−1

2 · · ·C
−1
N−1ZN−1CN−1 · · ·C2C1.

We solve each equation in (87) consecutively. To solve the first equa-
tion, let us notice that its left-hand side is a unitary operation that can
be directly calculated from the target operation. This unitary, as any
single-qubit unitary, can be written as:

U−1
N U1 = e

−iα1u1/2, (88)

where α1 is the angle of the rotation and u1 its generator. The right-
hand side is simply a rotation around Z and a change of basis. There-
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fore, the rotation angle of Z1 must be equal to α1, and the change of
basis must be such that:

u1 = C
−1
1 σzC1. (89)

It is shown in Appendix A.1.1 how to find the generator and angle of
the collective rotation C1.

Having determined C1, we can write the second equation in (87)
as:

C1U
−1
N U2C

−1
1 = C−1

2 Z2C2. (90)

As before, the left-hand side of this equation is a known unitary, and
the right-hand side consists of a rotation around Z and a change of
basis, so the rotation angle θ2 and generator of the change of basis C2
can be found as for the previous equation. This procedure can be re-
peated until all of the Ck and Zk with k 6 N− 1 are determined. The
last collective operations CN and C ′N can be determined from Equa-
tion (86). For this we need to decompose an arbitrary unitary into a
product of two equatorial rotations; this can be done as explained in
Appendix A.1.2.

We have seen so far how to compile a local unitary exactly. How-
ever, in certain cases the constraints on the target unitary are weaker,
so that it can be implemented with a simpler sequence. For instance, a
unitary that is followed by global gates whose phase can be freely ad-
justed must only be specified up to a collective Z rotation afterwards,
since this rotation can be absorbed into the phase. This removes one
free parameter from the sequence, thus simplifying its implementa-
tion. The mathematical details of this procedure are presented in Ap-
pendix A (Section A.1.3). Another case of interest is when the tar-
get unitary is specified up to arbitrary independent Z rotations af-
terwards, for instance when the unitary is followed by a projective
measurement on the Z basis. This is particularly useful for tomo-
graphic measurements, since at the end only populations are mea-
sured, and the state is determined up to arbitrary local Z rotations.
The procedure for finding these rotations is explained in Appendix A
(Section A.1.4).

compilation of general unitaries

In Section 5.1 we studied how to compile local unitaries in terms
of collective and addressed rotations. However, a universal quantum
computer also requires entangling unitaries, which must be compiled
into the experimentally available local and entangling gates. For ex-
ample, in Figure 19 a decomposition of a Toffoli gate into a sequence
of local and entangling gates applied consecutively is shown. In this
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section, an algorithm is presented to find such decompositions for
arbitrary unitaries.

Figure 19: Decomposition of a Toffoli gate into a pulse sequence of collec-
tive equatorial rotations, addressed Z rotations and entangling
Mølmer-Sørensen (MS) gates.

We seek decompositions directly in terms of multi-qubit entangling
gates, since these are often more efficient than decompositions in
terms of two-qubit gates. For example, a Toffoli gate can be imple-
mented using only 3 Mølmer-Sørensen (MS) gates [34], while 6 CNOT
gates are needed to implement it [75]), and a Fredkin gate can be im-
plemented using 4 MS gates [76], while the least number of two-qubit
gates required is 5 [77]. As described in section 2.4, many equivalent
types of entangling gates are experimentally available. We will con-
sider MS gates, but the methods shown here are applicable to any
entangling gate that forms a universal set together with local opera-
tions.

Compilation in layers

In many quantum information processing experiments the most costly
operations in terms of fidelity are entangling gates. Therefore, when
trying to compile a unitary we seek to minimize the number of those.
A straightforward way to do this is to use pulse sequences where lay-
ers of local unitaries and entangling gates are applied consecutively,
as shown in Figure 20.
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Figure 20: Sequence with layers of local and entangling gates applied con-
secutively.

Any unitary can be decomposed in terms of single-qubit gates and
two-qubit CNOT gates [78]:

U = LM CNOTM LM−1 · · · CNOT1 L0, (91)

where Li denotes an arbitrary local unitary on the whole qubit regis-
ter and CNOTi denotes a gate between some two qubits. A two-qubit
CNOT gate can be implemented in an arbitrary N-qubit register as
a sequence of local unitaries and MSx(π/8) gates [34]. Therefore, the
following decomposition is always possible:

U = LM MSx(π/8) LM−1 MSx(π/8) · · ·MSx(π/8) L0. (92)

However, some of the local unitaries Li in a decomposition of the
form (92) may actually be identity, so after removing them the result-
ing sequence has the following structure:

U = LM MSx(αM) LM−1 · · · MSx(α1) L0. (93)

The decomposition consists of M entangling gates, and the MS ro-
tation angles αi are multiples of π/8. It is not necessary to consider
angles αi > π since MSx(π) is either the identity for an odd num-
ber of qubits, or a π rotation around X for an even number of qubits,
which can be absorbed into a local operation.

We now seek to further simplify sequence (93). Every single-qubit
unitary Ui on qubit i can be written as a composition of rotations
around two different fixed axes [6], which means that we can always
choose αi1, αi2 and αi3 such that:

Ui = Xi(αi3)Zi(αi2)Xi(αi1). (94)

Any local unitary L =
∏N
i=1Ui can therefore be written as:

L =

N∏
i=1

Xi(αi3)Zi(αi2)Xi(αi1), (95)
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where the product goes over the N qubits in the register. Since uni-
taries acting on different qubits commute, we can write this as:

L =

N∏
i=1

Xi(αi3)

N∏
i=1

Zi(αi2)

N∏
i=1

Xi(αi1) (96)

= X̃ ′Z̃X̃, (97)

where X̃ and Z̃ denote arbitrary products of rotations around the X
or Z axes for all qubits. Therefore, the sequence in (93) can be written
as:

U = X̃ ′MZ̃MX̃MMSx(αM) · · · X̃ ′1Z̃1X̃1MSx(α1)X̃ ′0Z̃0X̃0. (98)

Commuting the X rotations with the MS gates we obtain a sequence
of the form:

U = X̃ ′MZ̃MX̃MMSx(αM) · · · ×
× X̃ ′2Z̃2X̃2MSx(α2)Z̃1MSx(α1)X̃ ′0Z̃0X̃0. (99)

Every odd local unitary (except for the last one) is a product of Z
rotations on all qubits, and the even local unitaries can be grouped
as Li = X̃ ′iZ̃iX̃i. Moreover, a collective Z rotation can be extracted
from each even local unitary Li and absorbed into the phase of the
subsequent MS gates and collective operations to simplify the imple-
mentation of Li. Therefore the sequence can be written as:

U = LMMSφM(αM) · · ·L2MSφ2(α2)Z̃1MSφ1(α1)L0. (100)

We have thus shown that any N-qubit unitary U can be decom-
posed into a sequence of the form shown in (100). These sequences
always have the same structure, which makes it easier to identify pat-
terns if one wants to compile families of unitaries, i.e. unitaries that
depend on some tunable parameter.

Numerical optimization

We have seen a general form of a sequence of local operations and
global entangling gates that implements any desired target unitary. It
remains to find the actual sequence parameters, that is, the rotation
angles and phases of the gates. However, it is not known, a priori, how
many entangling gates will be needed for a given unitary. Therefore,
the following algorithm can be applied:

1. Propose a sequence with M = 0 entangling gates.

2. Search numerically for the sequence parameters that maximize
the fidelity with the target unitary.
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3. If the sequence has converged to the desired unitary (i.e. the
fidelity equals 1), stop. Otherwise increase M by 1 and go back
to step 2.

When performing the numerical optimization in step 2, there might
be a number of local optima in addition to the true global optimum,
making fully deterministic optimization methods difficult to apply.
Therefore a repeated local search can be applied, where an efficient
deterministic optimization method is iterated, each time using ran-
domly determined initial conditions. The initial conditions are cho-
sen randomly for every optimization run, as experience has shown
us that starting close to previously found local minima does not offer
any improvement. The search is finalized whenever the fidelity with
the target unitary is above some predefined threshold, or when a
maximum number of tries is exceeded. An advantage of this method
is that, since each optimization run starts from random initial condi-
tions, these are easy to perform in parallel.

The algorithm chosen for each numerical optimization is the quasi-
Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
[79]. The function to be maximized is the fidelity of the unitary re-
sulting from the pulse sequence with the target unitary. The gradient
of the fidelity can be calculated analytically as a function of the se-
quence parameters, which speeds up the computation as compared
to using several evaluations of the fidelity function.

A previously used approach to this optimization problem was a
combination of local gradient descent and simulated annealing (SA)
[34], which also helps to avoid local maxima. However, this method
did not make use of the analytic expression for the fidelity gradient,
which speeds up the search. Moreover, its performance depends on
the “topography” of the optimization space and requires manual tun-
ing of the search parameters to achieve optimal results. The BFGS
and simulated annealing approaches were compared by compiling
100 unitaries randomly distributed in the Haar measure as explained
in [80] for different numbers of qubits. Repeated application of the
BFGS method seems to scale better with the number of qubits than
simulated annealing (see Figure 21). The median number of search
repetitions needed to find the global optimum was 1 in all the cases.

The minimum number of entangling gates required to compile a
given unitary is an intrinsic property of the unitary and does not de-
pend on the search algorithm. It is known that the number of gates
required to implement an arbitrary N-qubit unitary in terms of two-
qubit gates grows exponentially with the number of qubits N [6]. Our
numerical results suggest a similar result for N-qubit gates. In the
two-qubit case the compilation always succeeded with 3 entangling
gates, and not less (using 200 search repetitions with random initial
conditions). This was to be expected, since for two qubits an MS gate
is equivalent to a CNOT gate, and it is known that 3 CNOT gates
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Figure 21: Average time required to find the global optimum for 100 uni-
taries randomly distributed in the Haar measure with the BFGS
and simulated annealing methods, using an Intel©Core i5-4670s
CPU 550 @ 3.10 GHz x 4 (one processing thread per optimization
run). No data was obtained for the simulated annealing approach
for 4 qubits owing to the excessive time required.

are enough (and in general necessary) to implement an arbitrary two-
qubit unitary [81, 82]. In the three-qubit case, the optimization always
succeeded with 8 entangling gates, and never with fewer (also using
200 repetitions). For 4 qubits, the optimization always succeeded for
25 entangling gates, and succeeded only 4% of the time with 24 en-
tangling gates. However, only 4 optimization repeats were carried out
in the four-qubit case, owing to the increased time it takes for these
to converge. Therefore, it might be the case that given enough opti-
mization runs, more unitaries would have been compiled with only
24 gates. I am not aware of any result in the literature concerning the
number of N-qubit global entangling gates required for implement-
ing a general N-qubit unitary for more than N = 2 qubits. From the
numerical results, it can be conjectured that any three-qubit unitary
can be implemented using at most 8 MS gates, and any four-qubit
unitary using at most 24 or 25 MS gates.

A particularly interesting group of unitaries are Clifford gates, which
map Pauli operators to Pauli operators. Clifford gates find appli-
cations in quantum error correction [83], randomized benchmark-
ing [84], and state distillation protocols [6]. To explore the difficulty
of compiling such gates, the algorithm was tested with randomly
generated Clifford gates, as explained in Ref. [85]. In Figure 22 the
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distribution of the optimal number of entangling gates required for
compiling two-, three- and four-qubit unitaries is shown. The results
agree with the literature [86] for the two-qubit case, since MS gates are
then equivalent to controlled-Z (or CNOT) gates. For larger numbers
of qubits, the performance of our algorithm in terms of number of
multi-qubit gates required is also similar to that of algorithms based
on two-qubit gates [86].

Figure 22: Optimal number of entangling gates needed to compile random
Clifford operations, for sample sizes {1000, 200, 100} for N =
{2, 3, 4} qubits. Each Clifford gate was generated using 10N8 steps
of the random walk described in Ref. [85]. Error bars correspond
to one standard deviation.

Compilation of isometries

A particular case of interest is the compilation of a unitary whose
action is only specified on certain input states. This is helpful, for
instance, for state preparation starting from some fixed input state.
Such operations belong to the more general class of operations known
as isometries: operations that preserve the overlap between states, but
in general map two Hilbert spaces with different dimensions [74, 84].
In this case, the problem to be solved has less constraints than spec-
ifying a full target unitary, so a simpler sequence may exist. In this
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section we focus on compiling a unitary that is only specified in a
particular subspace of the input states, for example:

Utarget =


u11 u12

...
...

u21 u22 free free

u31 u32
...

...

u41 u42
...

...

 , (101)

where the columns marked as ‘free’ are left unspecified. In this case,
a suitable fidelity function for the numerical optimization is:

f(U) =
∣∣∣tr(U|SUtarget|

†
S

)∣∣∣2 , (102)

where U|S is a rectangular matrix with the components of the desired
unitary in the restricted subspace.

A more general case is where some of the relative phases of the
projections of the unitary acting on different subspaces of the whole
Hilbert space are irrelevant. For example, suppose that one wants
to apply a unitary to map some observable onto an ancilla qubit
and then measure the ancilla, as shown in Figure 23. Since the in-
put state of qubit 3 is known to be |0〉, only the subspace of input
states spanned by {|000〉, |010〉, |100〉, |110〉} is relevant. Moreover, the
measurement will project the state of the system onto either the sub-
space spanned by {|000〉, |010〉, |100〉}, or that spanned by {|111〉}, and
all phase coherence between these alternatives will be lost. Therefore,
the compiled sequence can be sought such that it matches the desired
unitary in each of the subspaces but allowing an arbitrary phase φ
between them:

Utarget =



1
... 0

... 0
... 0

...

0
... 0

... 0
... 0

...

0
... 1

... 0
... 0

...

0 free 0 free 0 free 0 free

0
... 0

... 1
... 0

...

0
... 0

... 0
... 0

...

0
... 0

... 0
... 0

...

0
... 0

... 0
... eiφ

...



(103)

In this case (Figure 23) it is possible to find a simpler implementa-
tion than in the fully constrained case (Figure 19), owing to the addi-
tional degrees of freedom available, namely arbitrary outputs for the
|ψ3〉 = |1〉 input states and an arbitrary relative phase between the
two possible measurement outcomes.
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Figure 23: Top: a unitary mapping (Toffoli gate) is applied, after which qubit
3 is measured. Bottom: a pulse sequence for implementing the
circuit on the left. This implementation is simpler than in the fully
constrained case (Figure 19) because of the additional degrees of
freedom when compiling.

In the case considered here we want to maximize the fidelity in
each subspace, without regard to the relative phases between these.
Therefore we can seek to maximize the function f consisting of the
sum of the fidelity functions (102) corresponding to each subspace:

f(U) =
∑
j

∣∣∣tr(U|Sj Utarget|
†
Sj

)∣∣∣2 , (104)

where the sum goes over all the subspaces with different relative
phases, and U|Sj is a rectangular matrix with the components of the
desired unitary in the j-th subspace.

Compensation of systematic errors

Another strength of the compilation procedure is that it is able to
compensate for systematic errors. Owing to these, the operations ex-
perimentally applied may still be unitary but deviate from the in-
tended ones. An example of this is addressing crosstalk due to the
finite waist of the addressing beam, since qubits neighboring the tar-
get qubit might also be rotated. If it is possible to characterize the
actual experimental operations being applied, then they can be taken
into account for the compilation by adapting our optimization proce-
dure:

1. Compile the target unitary in terms of the ideal gates.
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2. Replace the ideal gates by the experimentally characterized op-
erations.

3. Add operations to obtain a higher fidelity with the ideal target
unitary.

As an example, it is shown that excessive crosstalk can be corrected
in an implementation of a Toffoli gate. Figure 24 depicts experimen-
tal data corresponding to the action of the Toffoli gate on the 8 input
basis states. It can be seen that, by adding just two pulses, the output
fidelity for each input state increased in some cases by up to 20%.
The sequence with 11 pulses is actually only an approximate correc-
tion to the uncorrected case. The exact correction requires 14 pulses,
and actually yields a lower fidelity than the approximate one, since it
requires more pulses and each of these has a non-zero error probabil-
ity.
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Figure 24: State fidelity for a Toffoli gate applied on the 8 canonical input

states.
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A L A S E R S E T U P F O R R A M A N C O O L I N G

For most quantum information applications, it is desired that trapped
ions have the least possible motional temperature. Various methods
exist to cool down ions using lasers; for example, Doppler cooling
and sideband cooling on the qubit transition are routinely employed
in our laboratory [18]. Doppler cooling is faster, while sideband cool-
ing achieves lower phonon numbers. However, neither of these tech-
niques are suitable if one wishes to recool the ion string during the
execution of an algorithm. Doppler cooling does not achieve ground-
state cooling, and sideband cooling on the qubit transition destroys
the quantum information. Raman sideband cooling [87, 88] is advanta-
geous for this application, since it allows one to achieve lower temper-
atures than Doppler cooling and can be implemented on a different
transition than the qubit transition, so as to preserve the quantum
information.

The fundamentals of Raman cooling are explained in Section 6.1.
Then, in Section 6.2 a new laser setup is described, designed for im-
plementing this cooling method in quantum information processing
experiments, such as the one described in Chapter 7. Finally, in Sec-
tion 6.3 the basic experimental steps to implement and calibrate the
cooling scheme are outlined.

raman cooling

Raman cooling is a particular case of sideband cooling where a two-
photon transition is used, as we will now discuss. Resolved sideband
cooling (SBC) [17, 89] is widely used for cooling down trapped ions to
the ground state of the confining potential. The basic SBC scheme is
illustrated in Figure 25: starting from the electronic ground state, the
red motional sideband of some electronic transition is addressed, thus
exciting the electronic state of the ions and removing one excitation
(phonon) from the motional degree of freedom. The ions then decay
again to the ground electronic state, without changing their motional
state with high probability.

The cooling rate Rn for SBC for a state with a phonon number n is
given by [4]:

Rn = Γ
(η
√
nΩ)2

2(η
√
nΩ)2 + Γ2

, (105)

where Ω is the Rabi frequency of the transition, η its Lamb-Dicke
parameter, and Γ its effective decay rate. This cooling rate is balanced
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Figure 25: Level scheme for sideband cooling.

by off-resonant excitation of the carrier and the first blue sideband,
reaching a steady state mean phonon number [4]:

〈n〉 =
(
Γ

2ν

)2 [(
η̃

η

)2
+
1

4

]
, (106)

where ν is the trap frequency, and η̃ is the Lamb-Dicke parameter
corresponding to the decay process.

Suppose now that we want to implement SBC on a dipole transi-
tion, such as 42S1/2 to 42P1/2 for 40Ca+ ions. This avoids the need to
scatter photons from the qubit transition 42S1/2 to 32D5/2, thus pre-
serving quantum information stored there. Moreover, the coupling
strength and Lamb-Dicke factors are bigger on the dipole transition,
so faster cooling rates can be achieved. However, typical trap frequen-
cies ν are on the order of a few MHz, while the spontaneous width Γ
of dipole allowed transitions is typically on the order of tens or hun-
dreds of MHz, so the motional sidebands cannot be resolved. This is-
sue can be circumvented, so as to reach the resolved sideband regime,
by reducing the effective spontaneous decay rate of the transition.
One way to achieve this is to couple two atomic ground states with a
Raman transition far detuned from a fast decaying excited state [90].

Let us consider a three-level Λ system, as depicted in Figure 26

for 40Ca+. The two-photon Raman coupling is formally equivalent to
a single-photon transition if one considers the frequency difference
of the applied light fields ∆ω as the transition frequency, and the
wave vector difference ∆~k as the wave vector of the driving field. In
this way, the same sideband cooling scheme already described can
be applied: the red sideband n → n− 1 of the transition is excited
using σ+- and π-polarized beams. The spontaneous decay is realized
by optically pumping the ion back to the ground state with a σ−-
polarized beam close to resonance.

The Lamb-Dicke parameter η for the interaction with the effective
two-level transition is given by:

η = |∆~k ·~x0|, (107)
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Figure 26: Three-level Λ system.
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Figure 27: Spatial arrangement of the three Raman cooling beams. The π
beam is perpendicular to the σ beams, and α = 22.5°.

where ∆~k is the difference between the wave vectors of the σ+ and π
beams, and ~x0 is a vector along the trap axis with magnitude corre-
sponding to the extension of the ground-state wavefunction:

x0 =

√
 h

2mωtrap
, (108)

which yields x0 ≈ 11nm for our experimental parameters. Consider-
ing our beam geometry, as shown in Figure 27, we obtain η ≈ 22.7%,
compared to η ≈ 8.8% for the 729 nm qubit transition. Because of this
bigger Lamb-Dicke parameter, we can achieve faster cooling using
the Raman transition.
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Figure 28: Optical setup for producing and tuning the Raman cooling light.

optical setup

The stimulated Raman process requires σ+- and π-polarized beams
whose frequency has to be tunable to be resonant with the Raman
transition. For generating and tuning this light the setup shown in
Figure 28 was assembled. The laser source is a laser diode (Toptica
TA-SHG 110) with a wavelength of 793.699 nm, frequency doubled
with a non-linear crystal in a bow-tie cavity to produce about 100 mWNever fire a laser at

a mirror. —Larry
Niven [91]

of light with a wavelength of 396.8495 nm, resonant with the 42S1/2 to
42P1/2 transition of 40Ca+. The beam is split into two independent
paths, each of which passes an acousto-optic modulator (AOM) in
double-pass configuration to tune the light frequency. Both paths are
then coupled into optical fibers to deliver the light to the ion string.
The beam geometry is shown in Figure 27. Right before the trap, the
intensity of the σ+ beam is stabilized with a sample and hold (S/H)
circuit, described in detail in Ref. [92].

The Raman cooling light must also be stabilized against frequency
drifts. Most of the lasers in our laboratory are frequency-locked by
means of the Pound-Drever-Hall (PDH) technique [93] to stabilization
cavities. An alternative to this is to use a frequency-offset stabilization
(or offset lock) method, where the frequency difference of two lasers is
stabilized. In this way, a laser (slave) can be locked to another one (mas-
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ter) that is already stabilized. In this case, the master laser is the laser
used for state detection, that is close to resonance with the dipole
transition. This technique avoids the experimental overhead of stabi-
lizing the laser to an additional optical cavity. A thorough overview
of methods for offset locking can be found in Ref. [94].

To stabilize the Raman laser described here, we use the offset lock
method presented in Ref. [95]. This technique consists in measur-
ing the beat signal of both lasers with a photodiode and then trans-
forming the frequency of this signal into an electric error signal. The
scheme to do this is shown in Figure 29. The beat signal, of frequency
ω∆, is first mixed down with a local oscillator of frequency ωlo to
the intermediate frequency ω = ω∆ −ωlo. Then, this signal is split
in two paths with a length difference ∆L, where it acquires a phase
difference ∆φ = ω∆L, proportional to the frequency ω. This phase
difference is converted with a phase detector (or mixer) to a voltage
that can be used as an error signal. A sketch of the resulting error
signal is shown in Figure 30.
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Figure 29: Offset lock scheme for stabilizing the Raman cooling laser to an
already locked laser.
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Figure 30: A sketch of the error signal after conversion of the beat frequency
to voltage. The dot indicates one of the lock points (crossings of
the error signal with 0). Locking to the center crossing is inadvis-
able since it corresponds to a zero-frequency signal.
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The error signal is split in two parts, for slow and fast feedback
respectively. The first part is used as the input of a Proportional-
Integral-Differential (PID) controller, whose output is fed back to a
piezo actuator that controls the laser diode grating. This provides a
slow feedback loop with a bandwidth of a few kHz, which corrects
for slow thermal and acoustic drifts. The second part of the error
signal is fed directly into a field-effect transistor (FET) current con-
trol that modulates the DC current of the laser diode. This provides a
proportional controller with a bandwidth of 5 MHz, and provides fast
feedback to narrow the linewidth of the laser. The achieved linewidth
of the beat between the slave and master lasers is on the order of
200 kHz.

This locking method is simple and inexpensive to implement, since
everything can be achieved with commercial off-the-shelf electronic
components. Moreover, the capture range and slope of the error sig-
nal can be tuned by simply changing the length of the cable. However,
this also means that the slope and the capture range cannot be tuned
independently.

experimental implementation of raman cooling

The first step is to focus and align the cooling beams on the ions. For
this purpose, we set the frequency of each beam several MHz red-
detuned from the dipole transition and maximized the fluorescence
counts from the ions. Next, the polarization of the beams was ad-
justed. The polarization of the π beam is adjusted by maximizing the
fluorescence counts. Next, the σ− beam can be adjusted by turning
only this one on, and adjusting the polarization to minimize the fluo-
rescence counts, since this pumps the population out from the 42S1/2
(m = +1/2) state. Finally, the σ+ is turned on together with the σ−

beam and its polarization is adjusted to maximize the fluorescence
counts.

Next, we detuned both lasers ∆ = 2.84GHz to the red from the
dipole transition. The frequencies of the σ+ and π beams must be fine-
tuned so that their frequency difference is resonant with the 42S1/2
(m = −1/2) to 42S1/2(m = +1/2) transition. For this purpose, the
qubit is initialized in the 42S1/2(m = −1/2) state and then the σ+

and π beams are turned on to excite the Raman transition to 42S1/2
(m = +1/2). To measure the excitation of the 42S1/2(m = +1/2) state,
we apply a π pulse on the 42S1/2(m = −1/2) to 32D5/2(m = −1/2)

transition, and then perform a fluorescence measurement. Figure 31

shows an excitation spectrum measured in this way, which shows the
carrier transition (∆n = 0), as well as the red (∆n = −1) and blue
(∆n = +1) motional sidebands.

Since we have a single light source for both σ+ and π beams, the
optical power must be distributed between them to optimize the
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Figure 31: Excitation spectrum of the Raman transition 42S1/2(m = −1/2)

to 42S1/2(m = +1/2) (without sideband cooling). Dataset from
2013-11-08, qc1106.

cooling efficiency. The effective Rabi frequency Ω of the Raman pro-
cess is proportional to the product of the Rabi frequencies of both
beams, so it is maximized whenever Ωσ+ = Ωπ. These Rabi fre-
quencies can be measured by optically pumping population from the
42S1/2(m = −1/2) level by an excitation of the 42P1/2 levels and
spontaneous decay. The σ+ beam completely pumps away the pop-
ulation from the 42S1/2(m = −1/2) state, while the π beam pumps
only half of the population. The effective decay rates of the popula-
tion in the 42S1/2(m = −1/2) level are given by the product of the
excitation rates and the decay rates to the 42S1/2(m = +1/2) level:

Γσ+ =
1

3
ΓP→S

(
Ωσ+

2∆

)2
, (109)

Γπ =
2

3
ΓP→S

(
Ωπ

2∆

)2
. (110)

The Rabi frequencies of the beams can therefore be extracted from
a measurement of this decay time, as shown in Figure 32. In this
case we have: Ωσ+ = (58.2± 0.7)MHz, Ωπ = (50.5± 1.6)MHz. The
effective Rabi frequency of the two-photon process is then:

Ω =
Ωσ+Ωπ

2∆
≈ (517± 23) kHz. (111)

The optimal frequency difference for the Raman cooling lasers can
be found by minimizing the excitation probability of the red motional
sideband after cooling. This excitation is shown in Figure 33 as a
function of the detuning of the π-polarized beam.

To estimate the performance of the Raman cooling scheme more
precisely, we studied Rabi oscillations on the blue sideband on the
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Figure 32: Exponential decays of the 42S1/2(m = −1/2) population for: a)
σ+ beam, decay time τ = (110± 3)µs (dataset from 2013-11-08,
qc1421). b) π beam, decay time of τ = (292± 19)µs (dataset from
2013-11-08, qc1423).

qubit transition 42S1/2 to 32D5/2, as shown in Figure 34. For a phonon
distribution with populations cn, these oscillations are described by
[18]:

p1 =
∑
n

cn sin2
(

ηΩ0

2
√
n+ 1

t

)
, (112)

where η is the Lamb-Dicke parameter and Ω0 is the Rabi frequency
on the carrier transition. If we assume a thermal distribution, the
populations are given by:

cn =
〈n〉n

(〈n〉+ 1)n+1
. (113)

From a fit with this distribution we measured a mean phonon number
〈n〉 = 0.17± 0.02.
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Figure 33: Frequency scan around the Raman cooling transition. This data
was taken for a different σ+ power as Fig. 31, so the optimal cool-
ing frequency differs from the red sideband frequency. Dataset
from 2013-11-08, qc1146.
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Figure 34: Rabi flops on the blue sideband of the qubit transition (dataset
from 2013-11-08, qc1150). The fit indicates a mean phonon num-
ber of 〈n〉 = 0.17± 0.02.





7
R E A L I Z AT I O N O F A S C A L A B L E S H O R A L G O R I T H M

The contents of this chapter are extracted from Ref. [76].
As we have seen in Chapter 3, Shor’s algorithm for factoring inte-

gers [7] is one example in which a quantum computer (QC) outper-
forms the most efficient known classical algorithms. Experimentally,
its implementation is highly demanding [96–101] as it requires both
a sufficiently large quantum register and high-fidelity control. Such
challenging requirements raise the question whether optimizations
and experimental shortcuts are possible. Optimizations, especially
system-specific or architectural, are certainly possible. However, for
a demonstration of Shor’s algorithm in a scalable manner, special
care has to be taken not to oversimplify the implementation – for in-
stance by employing knowledge about the solution prior to the actual
experimental implementation – as pointed out in Ref. [102].

Let us remember the basic scheme presented in Chapter 3. First,
we consider a classical factoring recipe, assuming as an example that
the number we want to factor is N = 15. We pick a random num-
ber a ∈ [2,N − 1] (the base), say, a = 7. We check if the greatest
common divisor gcd(a,N) = 1; if not, a factor is already determined.
This is the case for a = {3, 5, 6, 9, 10, 12}, and thus we can stop here.
For all other values of q, we calculate the modular exponentiation
axmodN for x = 0, 1, 2... and find its period r: the first x > 0 such
that axmodN = 1. Given r, finding the factors of N requires cal-
culating the greatest common divisors of ar/2 ± 1 and N, which is
efficiently possible classically – for instance, using Euclid’s algorithm.
For our example (N = 15,a = 7) the modular exponentiation yields
1, 7, 4, 13, 1, ..., which has period 4. The greatest common divisors of
ar/2 ± 1 = 74/2 ± 1 = {48, 50} and N = 15 are {3, 5}, the non-trivial
factors of N. In this example, the cases a = {4, 11, 14} have periodicity
r = 2 and require a single multiplication step (a2modN = 1), which
is considered an “easy” case [102].

How can this recipe be implemented in a QC? A QC has to calcu-
late axmodN in a computational register for x = 0, 1, 2... and then
extract r. Using the quantum Fourier transform (QFT), applied to the
period register, the period of axmodN can be extracted from O(1)

measurements.

requirements for a scalable implementation

What are the requirements and challenges to implement Shor’s al-
gorithm? We first focus on the period register and will subsequently

61
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Figure 35: Quantum circuits of Shor’s algorithm for factoring 15: a) generic
text-book approach; b) Kitaev’s approach for a generic base a; c)
the actual implementation for factoring 15 to base 11, optimized
for the single input state it is subject to; d) Kitaev’s approach
to Shor’s algorithm for the bases {2, 7, 8, 13}. Here, the optimized
map of the first multiplier is identical in all 4 cases, and the last
multiplier is implemented with full modular multipliers as de-
picted in e). In all cases, the single QFT qubit is used three times,
which, together with four qubits in the computation register, adds
up to seven effective qubits. e) Circuit diagrams of the modular
multipliers of the form amodN for bases a = {2, 7, 8, 11, 13}.
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Figure 36: Experimentally obtained truth table of the controlled 2mod 15
multiplier: a) with the control-qubit being in state 0, the truth ta-
ble corresponds to the identity operation; b) when the control
qubit triggers the multiplication, the truth table illustrates the
multiplication of the input state with 2mod 15. The mean fidelity
with respect to the expected output state is 48(5)%.

address modular exponentiation in the computational register. Factor-
ingN, which can be described by n = dlog2(N)e classical bits (with d e
rounding up to next integer number), requires a minimum of n qubits
in the computational register (to store the results of axmodN) and
generally about 2n qubits in the period register [6, 19]. Thus, even a
seemingly simple example such as factoring 15 (an n = 4-bit number),
requires 3n = 12 qubits. These qubits then have to be manipulated
with high fidelity gate operations. Given the current state-of-the-art
control over quantum systems [23], such an approach would likely
yield an unsatisfactory performance. However, a full quantum imple-
mentation of the order finding part of the algorithm is not necessary.
In Ref. [44], Kitaev notes that, if only the classical information of the
QFT (such as the period r) is of interest, 2n qubits subject to a QFT can
be replaced by a single qubit, as already explained in Chapter 3. This
approach, however, requires qubit recycling (specifically: in-sequence
single-qubit readout and reinitialization) paired with feed-forward.

In the following, Kitaev’s QFT will be referred to as KQFT(M); it
replaces a QFT acting on M qubits with a semiclassical QFT acting re-
peatedly on a single qubit. Similar applications of Kitaev’s approach
to a semiclassical QFT in quantum algorithms have been investigated
in Refs. [103–105]. For the implementation of Shor’s algorithm, Ki-
taev’s approach provides a reduction from the previous n computa-
tional qubits and 2n QFT qubits (in total, 3n qubits) to only n com-
putational qubits and 1 KQFT(2n) qubit (in total, n+ 1 qubits).

A notably more challenging aspect than the QFT, and the second
key ingredient of Shor’s algorithm, is modular exponentiation, which
admits the following general simplifications:
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1. Considering Kitaev’s approach (see Fig. 35), the input state |1〉
(in decimal representation) is subject to a conditional multiplica-
tion based on the most significant bit k of the period register. At
most, there will be two results after this first step. It follows that,
for the very first step, it is sufficient to implement an optimized
operation that conditionally maps |1〉 → |a2

k
modN〉.

2. Subsequent multipliers could, in principle, also be replaced with
maps by considering only possible outputs of the previous mul-
tiplications. However, using such maps will become intractable,
as the number of input and output states to be considered grows
exponentially with the number of steps: after n steps, 2n > N
possible outcomes need to be considered, a numerical task as
challenging as factoring N by classical means. Thus, to ensure
scalability, full controlled modular multipliers need to be imple-
mented. Fig. 36 shows the experimentally obtained truth table
for the modular multiplier (2mod 15) (see also Appendix B for
modular multipliers with bases {7, 8, 11, 13}). These quantum cir-
cuits can be efficiently derived from classical procedures using
a variety of standard techniques for reversible quantum arith-
metic and local logic optimization [106, 107].

3. The very last multiplier allows one more simplification: Con-
sidering that the results of the modular exponentiation are not
required for Shor’s algorithm (as only the period encoded in
the period register is of interest), the last multiplier only has to
create the correct correlations between the period register and
the computation register. Local operations after the conditional
(entangling) operations may be discarded to facilitate the final
multiplication without affecting the results of the implementa-
tion.

4. In rare cases, certain qubits are not subject to operations in the
computation. Thus, these qubits can be removed from the algo-
rithm entirely.

For large-scale quantum computation, optimization steps 1, 3 and
4 will only marginally affect the performance of the implementation.
They represent only a small subset of the entire computation which
mainly consists of the full modular multipliers. Thus, the realization
of these modular multipliers is a core requirement for the implemen-
tation of a scalable Shor algorithm. Furthermore, Kitaev’s approach
requires in-sequence measurements, qubit recycling to reset the mea-
sured qubit, feed-forward of gate settings based on previous mea-
surement results, as well as controlled quantum operations – tasks
that have not been realized in a combined experiment so far.
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experimental implementation

These techniques are demonstrated in a realization of Shor’s algo-
rithm in an ion-trap quantum computer, with five 40Ca+ ions in a
linear Paul trap, as introduced in Chapter 2. The qubit is encoded in
the ground state 42S1/2 and the metastable state 32D5/2 (for more
details see Appendix B and Ref. [23]). Unitary operations, illustrated
in Fig. 35, are decomposed into a sequence of experimentally avail-
able gates described in Section 2.4, using the techniques described in
Chapter 5 or in Ref. [34].

To complete the toolbox necessary for Kitaev’s approach to Shor’s
algorithm, we also implement: single-qubit readout, by transferring
all other qubits to the {|D〉 , |D ′〉} subspace and subsequent electron
shelving [31] on the S1/2 ↔ P1/2 transition. Classical feed-forward
can be realized by storing counts detected during the single-qubit
readout [108] in a classical register and applying subsequent condi-
tional laser pulses. The measured qubit is reinitialized using optical
pumping for the electronic state, and Raman cooling (see Chapter 6

and Refs. [17, 90]) for the motional state of the ions. The pulse se-
quences and additional information on the implementation of the
modular multipliers are available in Appendix B.

Electron-shelving [31] on the S1/2 ↔ P1/2 transition addresses, and
thus projects, all qubits of the quantum register. For Kitaev’s imple-
mentation, however, only one qubit needs to be measured. With col-
lective illumination, this can be achieved by transferring quantum
information encoded in qubits that should not be measured into the
D-state manifold. Here, the quantum information is protected against
shelving light on the S1/2 ↔ P1/2 transition – the ion will not scat-
ter any photons. Using light resonant with the S1/2(m = −1/2) ↔
D5/2(m = −5/2) transition (denoted by R2(θ,φ)), a refocusing se-
quence of the form R2(0.5, 0) ·Sz(1, j) ·R2(0.5, 0) efficiently encodes all
but qubit j in D5/2(m = −1/2) and D5/2(m = −5/2). Subsequently,
the entire quantum register may be subject to shelving light, yet only
qubit i will be projected.

When all qubits that need to be protected against projection have
been encoded in the {D5/2(m = −1/2),D5/2(m = −5/2)} manifold,
light at 397 nm resonant with the S1/2 ↔ P1/2 transition scatters pho-
tons on the remaining ion-qubits depending on the electronic state.
The illumination time is set to 300 µs. A histogram of the photon
counts detected at the photomultiplier tube is shown in Figure 38.
Using counter electronics with discriminator set at 4 counts within
the detection window, the states in the D5/2 manifold with a mean
count rate of 0.24 counts/ms (or 0.07 counts within the detection win-
dow) and states in the S1/2 manifold with a mean count rate of
48 counts/ms (or 14.4 counts in the detection window) which leads to
a detection fidelity better than 99.8%. The Boolean output of the dis-
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Figure 37: Setup for performing conditional operations depending on the
state of the ions. The so-called “beam machine” is an device that
counts pulses coming from the PMT. If these are above a prede-
fined threshold, the device allows RF pulses to go through. For
technical details, see Ref. [109, p. 127].

criminator is subsequently used in the electronics for state-dependent
pulses and thus state-dependent operations, as illustrated in Figure 37.

Scattering photons during the detection window heats up the ion
string and reduces the quality of subsequent quantum operations ap-
plied to the register. Therefore recooling of the ion-string after the
illumination with electron-shelving light is necessary. However, this
recooling must not destroy any quantum information stored in the
other qubits. Considering that, after the measurement, the remaining
quantum information is stored in the D5/2 manifold, we can employ
three-beam Raman cooling (see Chapter 6) in the S1/2 ↔ P1/2 mani-
fold without affecting the information. The Raman light field, consist-
ing of σ+ and π light with respect to the quantization axis, is detuned
by 1.5 GHz from the resonant S1/2 ↔ P1/2 transition. The relative
detuning between σ+ and π is chosen such that it creates resonant
coupling between S1/2(m = −1/2)⊗ |n〉 ↔ S1/2(m = 1/2)⊗ |n− 1〉,
with |n〉 representing the quantized axial state of motion of the ion.
The transfer is reset by resonant σ− light. Raman cooling is employed
for 500 µs. The qubit is reinitialized to the S1/2(m = −1/2) after cool-
ing by an additional 50 µs of resonant σ− light. However, if the mea-
sured qubit was found to be in the D5/2 manifold, neither does the
measurement heat the ion string nor does the Raman cooling affect
the register. To reinitialize the measured qubit, it is transferred from
D5/2(m = −1/2) to S1/2(m = 1/2) (which was depleted by the pre-
vious 50 µs of σ−). An additional pulse of σ− light for 50 µs finally
initializes the qubit, regardless whether it was projected onto the S
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Figure 38: In-sequence photon-count histogram. Using a detection window
of 300 µs, the photomultiplier tube collects on average 0.07 counts
when the qubit is in state D and 14.4 counts when it is in state S.
As can be seen in the figure, these two Poisson distributions are
well distinguishable.
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Figure 39: Results and correct order-assign probability for the different im-
plementations to factor 15: a) Three-digit results (in decimal rep-
resentation) of Shor’s algorithm for the different bases. The ideal
data (red) for period {2, 4} is superimposed on the raw data (blue).
The squared statistical overlap is larger than 90% for all cases.

or D manifolds. During the entire time when the qubit is subject to
Raman cooling or initializing σ− light, a repump laser at 866 nm is
applied to prevent population trapping in the D3/2 manifold due to
spontaneous decay from the P1/2 state to D3/2.

results

The measurement results for the output of the QFT for bases a =

{2, 7, 8, 11, 13} with periods r = {4, 4, 4, 2, 4} are shown in Fig. 39. In or-
der to quantify the performance of the implementation, previous real-
izations mainly focused on the squared statistical overlap (SSO) [110],
the classical equivalent to the Uhlmann fidelity [6]. While an SSO
of {0.968(1), 0.964(1), 0.966(1), 0.901(1), 0.972(1)} was achieved for the
cases a = {2, 7, 8, 11, 13}, this does not answer the question of a user
in front of the quantum computer: “What is the period?” Shor’s al-
gorithm allows one to deduce the period with high probability from
a single-shot measurement, since the output of the QFT, x, is, in the
exact case, a ratio of integers, where the denominator gives the de-
sired period. This period is extracted using a continued fraction ex-
pansion applied to x/2k, a good approximation of the ideal case when
k, the number of qubits, is sufficiently large. In our realizations with
bases a = {2, 7, 8, 11, 13}, the probabilities (and their error estimates
in parenthesis) to obtain output states that allow the derivation of
the correct period are {56(2), 51(2), 54(2), 47(2), 50(2)}%. Thus, a con-
fidence at a level of more than 99% that the correct periodicity is
obtained requires the experiment to run about eight times.
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To sum up, a realization of Kitaev’s vision of Shor’s algorithm was
presented here, based on scalable building blocks with three-digit
resolution to factor 15 using bases {2, 7, 8, 11, 13}. Here, a semiclassi-
cal QFT combined with single-qubit readout, feed-forward and qubit
recycling was successfully employed. Compared to the traditional ap-
proach, this algorithm reduces the required number of qubits by al-
most a factor of three. Furthermore, the entire quantum register has
been subject to the computation without requiring previous knowl-
edge of the result. Employing the equivalent of a quantum cache by
spectroscopic decoupling significantly facilitated the derivation of the
necessary pulse sequences to achieve high-fidelity results. This scal-
able algorithm implementation, combined with a scalable trap archi-
tecture [25] and quantum error correction, has the potential to enable
factoring of large integers that are not feasible on classical computers.
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The contents of this chapter are extracted from Ref. [111].

introduction

As discussed in Chapter 4, gauge theories are fundamental to our
understanding of interactions between the elementary constituents
of matter as mediated by gauge bosons [8, 9]. However, computing
the real-time dynamics in gauge theories is a notorious challenge for
classical computational methods. In the spirit of Feynman’s vision
of a quantum simulator [10, 11], this has recently stimulated theo-
retical effort to devise schemes for simulating such theories on en-
gineered quantum devices, with the difficulty that gauge invariance
and the associated local conservation laws (Gauss laws) need to be
implemented [60, 62, 112].

In this chapter, the first experimental demonstration of a digital
quantum simulation of a lattice gauge theory is reported. The theory
we consider is quantum electrodynamics (QED) in 1+ 1 dimensions
(one spatial dimension plus time), known as the Schwinger model [13,
14], which we already studied in Chapter 4. We are interested in
the real-time evolution of the Schwinger mechanism [113, 114], de-
scribing the instability of the bare vacuum due to quantum fluctua-
tions, which manifests itself in the creation of electron-positron pairs.
To make efficient use of the quantum resources available, the orig-
inal problem is mapped to a spin model by eliminating the gauge
fields [66] in favor of exotic long-range interactions, which have a di-
rect and efficient implementation on an ion trap architecture [115].
The Schwinger mechanism of particle-antiparticle generation is ex-
plored by monitoring the mass production and the vacuum persis-
tence amplitude. Moreover, the real-time evolution of entanglement
in the system is tracked, which illustrates how particle creation and
entanglement generation are directly related. This work represents
a first step towards quantum simulating high-energy theories with
atomic physics experiments, the long-term vision being the extension
to real-time quantum simulations of non-Abelian lattice gauge theo-
ries.

This few-qubit demonstration is a first step towards simulating real
time dynamics in gauge theories, which is fundamental for the under-
standing of many physical phenomena including the thermalization
after heavy-ion collisions and pair creation studied at high-intensity
laser facilities such as the ELI and the XCELS [58, 60]. While exist-

71
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ing classical numerical methods such as Quantum Monte Carlo tech-
niques have been remarkably successful for describing equilibrium
phenomena, no systematic techniques exist to study the dynamical
long-time behavior of all but very small systems. Quantum simula-
tions aim at the long-term goal of solving the specific yet fundamen-
tal class of problems that currently cannot be tackled by these classi-
cal techniques. The digital approach employed here is based on the
Hamiltonian formulation of gauge theories [14], and enables direct
access to the system wavefunction. As I show below, this allows one
to investigate quantities that are not accessible in high-energy exper-
iments, such as entanglement generation during particle-antiparticle
production. This emphasizes a novel perspective on the dynamics of
the Schwinger mechanism [9].

Digital quantum simulations described here are conceptually dif-
ferent from, and fundamentally more challenging than, previously re-
ported condensed matter-motivated simulations of spin and Hubbard-
type models [11, 116, 117]. In gauge theories, local symmetries lead to
the introduction of dynamical gauge fields obeying a Gauss law [60].
Formally, this crucial feature is described by local symmetry genera-
tors {Ĝi} that commute with the Hamiltonian of the system and re-
strict the dynamics to a subspace of physical states which satisfy:

Ĝi |Ψphysical〉 = qi |Ψphysical〉 , (114)

where qi are background (static) charges. We will be interested in the
case qi = 0 for all i (zero background charges).

Realizing such constrained dynamics on a quantum simulator is
demanding and has been the focus of theoretical research [60, 62, 114,
118–121]. To optimally use the finite resources represented by a few
qubits of existing quantum hardware, we encode the gauge degrees of
freedom in a long-range interaction between the fermions, which can
be implemented efficiently on our experimental platform. This allows
us to explore quantum simulation of coherent real-time dynamics
with four qubits, exemplified here by the creation of electron-positron
pairs.

encoding of the schwinger model

We have studied in Chapter 4 the Kogut-Susskind formulation of the
Schwinger model [13, 14], where it is discretized to a one-dimensional
spatial lattice. As explained there, for realizing this model we map
the fermions (particles and antiparticles) and gauge fields to a spin
model. The particles and antiparticles are mapped to spin 1/2 par-
ticles on the sites of a one-dimensional lattice, whose states (up or
down) represent the presence or absence of fermions, following the
encoding depicted in Figure 40. The gauge fields, which are encoded
in the links between the sites, are eliminated by a gauge transforma-
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tion, as explained in Chapter 4. This procedure results in an effective
long-range interaction that reflects the Coulomb interactions between
the simulated particles. In this way we obtain, as in Eq. (81), a pure
spin Hamiltonian involving only the fermionic degrees of freedom:

ĤS =
m

2

N∑
n=1

(−1)nσ̂zn +w

N−1∑
n=1

[
σ̂+n σ̂

−
n+1 + H.c.

]
+ J

N−1∑
n=1

[
E0 +

1

2

n∑
m=1

[σ̂zm + (−1)m]

]2
. (115)

The first term corresponds to the rest mass m of the fermions, and
obtains a staggered sign because of the alternating placement of par-
ticles and antiparticles on the lattice. The second term corresponds
to the creation and annihilation of particle-antiparticle pairs, and the
third term reflects the energy stored in the electric field. Their energy
scales w = 1/(2a) and J = g2a/2 depend on the lattice spacing a and
the fermion-light coupling constant g. We use natural units  h = c = 1;
therefore, a and t have the dimension of length, while w, J, m and g
have the dimension of inverse length.

σ1 σ2 σ3 σ4

0 -1 -1 -1 0
|e-〉 |0〉 |0〉 |e+〉

Odd lattice sites Even lattice sites
= |0〉

= |e-〉

= |e+〉

= |0〉

Ln = Ln-1

Ln = Ln-1 - 1 Ln = Ln-1

Ln = Ln-1 + 1

Figure 40: Encoding fermions in Wilson’s lattice gauge theories into spins.

This encoding allows an efficient use of resources, sinceN spins can
be used to simulate N particles and their accompanying N− 1 gauge
fields. However, as shown in Figure 41, the required couplings and
local terms have a very unusual distance and position dependence.
The challenge has thus been moved from engineering a constrained
dynamics of 2N− 1 quantum systems on a gauge-invariant Hilbert
space to the realization of an exotic and asymmetric interaction of N
spins.

Our platform is ideally suited for this task, since long-range interac-
tions and precise single qubit operations are available in trapped-ion
systems. These capabilities allow us to realize the required interac-
tions by means of a digital quantum simulation scheme, known as the
Trotter scheme [12]. To this end, the desired Hamiltonian is split into
parts that can be directly implemented and are applied separately in
subsequent time windows, as explained in Section 2.5. By repeating
the sequence multiple times, the resulting time evolution of the sys-
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Figure 41: Effective long-range interactions emerging from the elimination
of the gauge fields.

tem U(t) closely resembles an evolution where the individual parts
of the Hamiltonian act simultaneously.

The scheme is depicted in Figures 42 and 43. It allows for an effi-
cient realization of the required dynamics and implements the cou-
pling matrix of the long-range interactions (shown in Figure 41) with
a minimal number of time steps, scaling only linearly in the num-
ber of sites N. The scheme is therefore scalable to larger systems. A
discussion of finite size effects can be found in Section 8.7.

Figure 42: Time-discretization scheme for the digital quantum simulation
of our model.

implementation of the encoded schwinger model

The experimental platform for realizing the simulation is the trapped
40Ca+ quantum information processor described in Chapter 2. There,
each qubit is encoded in the electronic states |↓〉 = 42S1/2 (with
magnetic quantum number m = −1/2), |↑〉 = 32D5/2(m = −1/2)

of a single ion. As explained in Section 2.4, a universal set of high-
fidelity quantum operations is available, consisting of collective ro-
tations around the equator of the Bloch sphere, addressed rotations
around the Z axis and entangling MS gates [30]. With a sequence
of these gates, arbitrary unitary operations can be implemented [18].
Thus, we are able to simulate the required interactions by means of
digital quantum simulation techniques, as shown in Figure 42. Each
of the implemented time evolutions consists of a sequence of over
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Figure 43: Implementation of the long-range interactions by means of MS
gates.

200 quantum gates (see Figure 44). In order to realize the non-local
interactions Hzz and H± with their specific long-range interactions,
we use global MS entangling gates together with a spectroscopic de-
coupling method to tailor the range of the interaction. There, the pop-
ulation of the ions that are not involved in the specific operations are
shelved into additional electronic states that are not affected by the
light for the entangling operations (see Section 2.4). The local terms
in Hz correspond to Z rotations that are directly available in our set
of operations. The strength of all terms can be tuned by changing the
duration of the laser pulses corresponding to the physical operations.

We implement the Hamiltonian ĤS given in Eq. (115) by means of
a digital quantum simulation scheme, as explained in Section 2.5. For
convenience, we express the simulated Hamiltonian in the form

ĤS = ĤZZ + Ĥ± + ĤZ, (116)

where the three parts of the Hamiltonian correspond to the two differ-
ent types of two-body couplings ĤZZ and Ĥ±, as well as local terms
ĤZ,

ĤZZ = J
∑
n<m

cnmσ̂
z
nσ̂
z
m,

Ĥ± = w
∑
n

(
σ̂+n σ̂

−
n+1 + σ̂

+
n+1σ̂

−
n

)
,

ĤZ = m
∑
n

cnσ̂
z
n + J

∑
n

c̃nσ̂
z
n.

The simulation protocol is based on time coarse-graining, where
the desired dynamics of the Hamiltonian given by Eq. (115) is ob-
tained within a time-averaged description. As illustrated in Figure 42,
the total simulation time tsim is divided into individual time windows
of duration T . During each of these time windows, a full cycle of the
protocol that is described below is performed. This cycle is repeated
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INITIAL PREPARATION PER EVOLUTION STEP (x 4) FINAL RECOUPLING
% VACUUM PREPARATION %% H± TERM %% % DECOUPLE 4 % RECOUPLE 3
R(π,0,1) % SIGMA± ON 1,2 HidingA(π,0,4) HidingC(π,π,3)
R(π,0,3) MS(Δt,0,all) HidingB(π,0,4) HidingB(π,π,3)
R(0.07π,0.65π,2) MS(Δt,π/2,all) HidingC(π,0,4) HidingA(π,π,3)
R(0.01π,0.9π,4) HidingA(0.06π,0.6π,3)

% RECOUPLE 4, 3 HidingB(0.06π,0.6π,3) % RECOUPLE 4
% DECOUPLE 4 HidingC(π,π,4) HidingC(π,π,4)
HidingA(π,0,4) HidingB(π,π,4) % SIGMA± ON 2,3 HidingB(π,π,4)
HidingB(π,0,4) HidingA(π,π,4) MS(Δt,0,all) HidingA(π,π,4)
HidingC(π,0,4) HidingC(0.02π,1.5π,3) MS(Δt,π/2,all)

HidingA(0.02π,1.5π,3)
% DECOUPLE 3 HidingC(π,π,3) % RECOUPLE 1
HidingA(π,0,3) HidingB(π,π,3) HidingC(π,π,1)
HidingB(π,0,3) HidingA(π,π,3) HidingB(π,π,1)
HidingC(π,0,3) HidingB(0.03π,1.65π,2) HidingA(π,π,1)
HidingB(0.04π,0.65π,2) HidingA(0.03π,1.65π,2)
HidingA(0.04π,0.65π,2) %% HZ TERM %%

% DECOUPLE 1, 2 Z((2m+2J)Δt,1)
HidingA(π,0,1) Z(JΔt,2)
HidingB(π,0,1) Z((2m+J)Δt,3)
HidingC(π,0,1)
HidingC(0.03π,0.6π,1) %% HZZ TERM %%
HidingA(0.03π,0.6π,1) % MSZ GATE ON 1,2,3
HidingB(0.02π,0.65π,2) R(π/2,π/2,all)
HidingA(0.02π,0.65π,2) MS(Δt,0,all)
HidingA(π,0,2) R(π/2,-π/2,all)
HidingB(π,0,2)
HidingC(π,0,2) % DECOUPLE 3

HidingA(π,0,3)
% SIGMA± ON 3,4 HidingB(π,0,3)
MS(Δt,0,all) HidingC(π,0,3)
MS(Δt,π/2,all)

% MSZ GATE ON 1,2
% RECOUPLE 2 R(π/2,π/2,all)
HidingC(π,π,2) MS(Δt,0,all)
HidingB(π,π,2) R(π/2,-π/2,all)
HidingA(π,π,2)
HidingC(0.04π,0.1π,1)
HidingA(0.04π,0.1π,1)

(continues next column)

-5/2m =
-3/2

-1/2

-1/2
+1/2

A

C B

R

...

Figure 44: Experimental pulse sequence. The pulses are listed in the order in
which they are applied. The operations shown in the middle box
are repeated once per evolution step, resulting in a total num-
ber of 12 + 51 × 4 + 6 = 222 pulses for 4 evolution steps. The
pulses are labeled in the form Pulse(θ,φ, target qubit), where θ
is the rotation angle (length) of the pulse, φ its phase, and the
target qubit is an integer from 1 to 4 for addressed operations
or “all” for global operations. “R” denotes a pulse on the qubit
transition 4S1/2(m = −1/2) to 3D5/2(m = −1/2). “MS” corre-
sponds to a Mølmer-Sørensen gate on the same transition. The
hiding pulses “HidingA,B,C” are applied on the transitions: A)
4S1/2(m = −1/2) to 3D5/2(m = −5/2), B) 4S1/2(m = +1/2) to
3D5/2(m = −1/2), C) 4S1/2(m = +1/2) to 3D5/2(m = −3/2).
The pulses shown in italics serve the purpose of correcting ad-
dressing crosstalk.
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multiple times from t = 0 to t = tsim and consists of three sections.
Each of these sections corresponds to one of the three parts of the
desired Hamiltonian given by Eq. (116). In the first section, ĤZZ is
simulated, in the second, the nearest neighbor terms Ĥ± are realized
and in the third, the single particle rotations ĤZ are performed. In
this way, the simulation scheme uses only two types of interactions,
local rotations and an infinite-range entangling operation

ĤMSX = J0
∑
n,m

σ̂xnσ̂
x
m, (117)

which is routinely implemented in trapped ions by means of MS
gates [30]. Below, we explain how the individual parts of the encoded
Kogut-Susskind Hamiltonian (115) are realized.

Long-range interactions ĤZZ

The first part of Eq. (116) originates from the third term in Eq. (115)
representing the electric-field energy. It takes the form

ĤZZ =
J

2

N−2∑
m=1

N−1∑
n=m+1

(N−n)σ̂zmσ̂
z
n, (118)

and describes two-body interactions with an asymmetric distance de-
pendence, where each spin interacts with constant strength with all
spins to its left, while the coupling to the spins on its right decreases
linearly with distance (see Figure 41). As the number of elements in
the spin coupling matrix is proportional to N2, a brute force digital
simulation approach to this problem would require N2 time steps.
Using our protocol, which is inspired by techniques put forward
in [122], the required resources scale only linearly in N. This is ac-
complished using the scheme illustrated in Figure 42. We introduce
N− 2 time windows, which can be shown to be the minimal number
of time steps required to simulate the Hamiltonian in Eq. (118). Each
elementary time window has length ∆tI. In the n-th time window,
the Hamiltonian

Ĥ
(n)
MSZ = J0

n+1∑
i,j

σ̂zi σ̂
z
j (119)

is applied. Ĥ(n)
MSZ is realized by applying the Hamiltonian given in

Eq. (117) in combination with local rotations, R(y)ĤMSXR
†(y) = ĤMSZ,

where R(y) = exp(iπ4
∑N
i=1 σ̂

y
i ). The resulting time-averaged Hamil-

tonian for the first section of the time interval T ,

H̄I =
1

N− 2

N−2∑
n=1

Ĥ
(n)
MSZ, (120)
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is proportional to the desired Hamiltonian in Eq. (118),

H̄I =
2

N− 2

J0
J
HZZ. (121)

As shown in Figure 43, only ions 1 to n + 1 participate in the
entangling interaction in time step n. Since the interaction is im-
plemented via a global beam that couples to the entire ion string,
ions n + 2 to N are decoupled by applying hiding pulses, as ex-
plained in Section 2.4. The population in the qubit states of these
ions is transferred to electronic levels that are not affected by the
interaction using suitable laser pulses. The population in the state
|↓〉 = 4S1/2 (magnetic number m = −1/2) is transferred to the state
3D5/2 (m = −5/2), and the population in |↑〉 = 3D5/2 (m = −1/2) is
transferred to the state 3D5/2 (m = −3/2) via 4S1/2 (m = +1/2).

Nearest neighbor terms Ĥ±

The second part of Eq. (116),

Ĥ± = w

N−1∑
n=1

(
σ̂+n σ̂

−
n+1 + H.c.

)
(122)

corresponds to the creation and annihilation of particle-antiparticle
pairs. For realizing this Hamiltonian, the interaction given in Eq. (117)
needs to be modified not only in range, but also regarding the type
of coupling. This is accomplished by dividing the time window dedi-
cated to realizing Ĥ± into N− 1 elementary time slots of length ∆tII.
Each of these is used for inducing the required type of interaction
between a specific pair of neighboring ions. For example, the first el-
ementary time slot of length ∆tII is used to engineer an interaction
of the type Ĥij ∝ σ̂i+σ−j +H.c. between the first and the second spin,
the second time slot is used to do the same for the second and the
third spin, and so on. This can be done by applying suitable hiding
pulses, to all spins except for a selected pair of ions i and j. The
selected pair undergoes a sequence of gates, which transforms the
σ̂xi σ̂

x
j -type coupling in Eq. (117) into an interaction of the required

form and consists of four steps:

1. a single qubit operation on the two selected spins i and j,
U = ei

π
4 (σ̂

z
i+σ̂

z
j )

2. an evolution under the Hamiltonian given in Eq. (117) for the

selected pair of spins, Ĥ(ij)
MSX during a time ∆tII/2, e−iĤ

(ij)
MSX∆tII/2

3. another single qubit operation U† = e−i
π
4 (σ̂

z
i+σ̂

z
j ) and finally

4. another two-qubit gate eiĤ
(ij)
MSX∆tII/2.
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The time evolution operator associated with the described sequence

of gates is given by eiH
(ij)
II ∆tII with

Ĥ
(ij)
II =

1

2

(
Ĥ

(ij)
MSX +U

†Ĥ
(ij)
MSXU

)
(123)

= J0

(
σ̂+i σ̂

−
j + H.c.

)
, (124)

as desired. The relative strength of the nearest neighbor terms Ĥ±
and the long-range couplings ĤZZ, w/J can be adjusted by tuning
the ratio of the lengths of the elementary time windows ∆II/∆I.

Single particle terms ĤZ

The last contribution to the Hamiltonian in Eq. (116) consists of two
terms ĤZ = m

∑
n cnσ̂

z
n + J

∑
n c̃nσ̂

z
n. The first term in this expres-

sion reflects the rest masses of the fermions. The second term is an
effective single-particle contribution originating from the third part of
Eq. (115) and corresponds to a change in the effective fermion masses
due to the elimination of the electric fields. The local terms of the
simulated Hamiltonian are given by

ĤZ =
m

2

N∑
n=1

(−1)nσ̂zn −
J

2

N−1∑
n=1

(nmod 2)
n∑
l=1

σ̂zl .

These are implemented by means of AC-Stark shifts, induced by laser
pulses that are about 20MHz red-detuned from the qubit transition [18,
115].

measurement and postselection

For each set of system parameters and number of simulation time
steps, we perform a full state tomography to determine the density
matrix that corresponds to the quantum state of the system. The elec-
tronic state of the ions is detected via a fluorescence measurement us-
ing the electron shelving technique [18]. The entire string is imaged
by a charge coupled device (CCD) camera, performing a full projec-
tive measurement in the Z basis. This procedure is repeated 100 times
to gather sufficient statistics.

As a consequence of charge conservation, an equal number of par-
ticles and antiparticles is created during the ideal dynamics of the
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system. Since our evolution starts with the vacuum state, the physi-
cal Hilbert space of the simulation is spanned by the six states:

|↑↓↑↓〉 = |0000〉 (125)

|↓↑↑↓〉 = |e−e+00〉 (126)

|↑↑↓↓〉 = |0e+e−0〉 (127)

|↑↓↓↑〉 = |00e−e+〉 (128)

|↓↓↑↑〉 = |e−00e+〉 (129)

|↓↑↓↑〉 = |e−e+e−e+〉 , (130)

where |0〉 denotes the vacuum, |e−〉 a particle and |e+〉 an antiparticle.
However, experimental errors during the simulation produce leakage
from this subspace, such that nonphysical states like |e−000〉 = |↓↓↑↓〉
get populated. Therefore, the raw measured density matrices ρraw are
projected onto the Hilbert space spanned by the physical states and
normalized,

ρphys =
PρrawP

tr(PρrawP)
,

where P is the projector onto the physical subspace. All experimental
data presented in this work correspond to physical density matrices
ρphys postselected in this way.

experimental results

To simulate the dynamics of pair creation we consider, as is usual [9,
113], the bare vacuum as initial state, where matter is completely ab-
sent, |vacuum〉 = |0000〉. In the spin representation this state is given
by |↑↓↑↓〉 accordingly. Note that the bare vacuum is different from the
dressed vacuum state, which is the ground state of the full Hamiltonian.

After initializing the system in this state, which corresponds to the
ground state for m → ∞ (see Fig. 45(a)), we apply the Hamiltonian
ĤS for different masses and coupling strengths. As a first step, we
measure the particle number density

ν(t) =
1

2N

N∑
l=1

(−1)l 〈σ̂zl (t)〉+ 1 (131)

generated after a simulated time evolution of duration t. The value
ν = 1/2 corresponds to a state containing on average one pair (see
Figure 40). As Fig. 45c shows, an initial phase of rapid pair creation
is followed by a reduction of ν(t) due to recombination effects. The
measured evolution shows excellent agreement with theoretical pre-
dictions, assuming uncorrelated dephasing with an error probabil-
ity p = 0.038 per qubit and per step, as explained in Section 8.6.
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In Fig. 45b, we probe the particle-antiparticle generation for a broad
range of masses m. Larger values of m increase the energy cost of
pair production and thus lead to faster oscillations with a suppressed
magnitude.
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Figure 45: Time evolution of the particle number density ν. (a) We show
the ideal evolution under the Schwinger Hamiltonian ĤS, the
ideal evolution using discrete time steps, the expected evolution
including an experimental error model (see Section 8.6) and the
experimental data for electric field energy J = w and particle
mass m = 0.5w. After postselection of the experimental data,
the remaining populations are {86± 2, 79± 1, 73± 1, 69± 1}% af-
ter {1, 2, 3, 4} time steps (averaged over all datasets). Error bars
correspond to standard deviations estimated from a Monte Carlo
bootstrapping procedure. The insets show the initial state of the
simulation, corresponding to the bare vacuum with particle num-
ber density ν = 0, as well as one example of a state containing one
pair, i.e. a state with ν = 0.5. (b) Experimental data and (c) theo-
retical prediction for the evolution of the particle number density
ν as a function of the dimensionless time wt and the dimension-
less particle mass m/w, with J = w.
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Our platform allows direct measurements of the vacuum persis-
tence amplitude and of the generated entanglement. The natural quan-
tity characterizing the decay of the unstable vacuum is the vacuum
persistence amplitude, introduced by J. Schwinger [54], which is de-
fined as the overlap of the initial state |Ψ(0)〉 = |vacuum〉 with the
time-evolved state:

G(t) = 〈vacuum| e−iĤSt |vacuum〉 . (132)

The associated probability |G(t)|2 shown in Fig. 46a,c, also known
as the Loschmidt echo, is important in contexts such as quantum
chaos [123] and dynamical critical phenomena far from equilibrium
[124].

In its original formulation, the Schwinger mechanism was consid-
ered for the continuum system and a classical electric field of strength
E [54]. There, it has been shown that the particle number density ν(t)
is directly related to the rate function λ(t), that characterizes the de-
cay of the vacuum persistence probability

∣∣G(t)∣∣2,

λ(t) = − lim
N→∞ 1

N
log
[∣∣G(t)∣∣2]. (133)

Specifically, in the limit of large fermion masses m�
√
qE with q the

electric charge, as relevant in the high-energy context, λ(t) = ν(t) for
thermodynamically large systems in the continuum.

Since vacuum persistence amplitudes have so far not been mea-
sured, this connection between λ(t) and ν(t) has not yet been tested
experimentally. In Figure 47, we show the measured rate function
λ(t) and find good qualitative agreement with ν(t), even for the few
qubits in our digital quantum simulation.

The vacuum decay continuously produces entanglement, as parti-
cles and antiparticles are constantly generated and propagate away
from each other, thus correlating distant parts of the system. Entan-
glement plays a crucial role in the characterization of dynamical pro-
cesses in quantum many-body systems, and its analysis permits us to
quantify the quantum character of the generated correlations. To this
end, we reconstruct the density matrix after each time step by full
state tomography, and evaluate the entanglement of one half of the
system with the other by calculating the logarithmic negativity. This
quantity is an entanglement measure for mixed states [125], which
is defined as the sum of the negative eigenvalues of the partially
transposed density matrix. The entanglement between two contigu-
ous blocks of our spin system is equivalent to the entanglement in
the simulated fermionic system described by Eq. (115), i.e. including
the gauge fields [126].

In Fig. 46b,d, we show the real-time dynamics of the logarithmic
negativity for different parameter regimes. Entanglement between the
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Figure 46: Time evolution of the vacuum persistence amplitude and entan-
glement. We show the square of the vacuum persistence ampli-
tude |G(t)|2 (the Loschmidt echo), which quantifies the decay of
the unstable vacuum, and the logarithmic negativity En, a mea-
sure of the entanglement between the left and right half of the
system. Panels (a) and (b) show the time evolution of these quan-
tities for different values of the particle mass m and fixed electric
field energy J = w, where w is the rate of particle-antiparticle cre-
ation and annihilation. Panels (c) and (d) show how the time evo-
lution of |G(t)|2 and En changes for different values of J and fixed
particle mass m = 0. Circles correspond to the experimental data
and squares connected by solid lines to the expected evolution
assuming an experimental error model explained in Section 8.6.
Error bars correspond to standard deviations estimated from a
Monte Carlo bootstrapping procedure.

two halves of the system is due to the presence of a pair distributed
across them. Accordingly, less entanglement is produced for increas-
ing particle masses m and field energies J. The latter has a stronger
influence, as it not only raises the energy cost for the creation of a pair,
but also for increasing the distance between particle and antiparticle.
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Figure 47: Comparison of the evolutions of the particle number density ν(t)
and the rate function λ(t). The decay of the vacuum persistence
probability is characterized by the rate function λ(t), defined by∣∣G(t)∣∣2 = e−Nλ(t). Panels (a) and (b) show the time evolution of
these quantities for different values of the particle mass m and
fixed electric field energy J = w, where w is the rate of particle-
antiparticle creation and annihilation. Panels (c) and (d) show
the evolution of ν(t) and λ(t) for different values of J and fixed
particle mass m = 0 as a function of the dimensionless time wt.
Panel (e) compares the evolutions of ν(t) and λ(t) for J = w
and masses m = 0 (upper two curves) and m = w/2 (lower two
curves). Error bars correspond to standard deviations estimated
from a Monte Carlo bootstrapping procedure.

experimental errors

The bulk of the quantum gates in the simulation consists of hid-
ing/unhiding pulses and MS gates (see Figure 44). Each π pulse on
a hiding transition has a fidelity of around 99.5%, and there are 30

such pulses per step, yielding a lower bound on the fidelity per step
of (0.995)30 = 0.86. The fidelity of a fully-entangling (π/2) MS gate
on 4 ions is around 97.5%, and one simulation step has 8 quarter-
entangling (π/8) gates, yielding a lower bound of (0.975)8/4 = 0.95.
The total lower bound for the fidelity per step is F = (0.995)30 ·
(0.975)8/4 = 76%; it is indeed lower than the average fidelity of the
raw (not postselected) state after the first step, which is 89%. The
sequence performs better than might be expected from the raw fideli-
ties; this is probably owing to the fact that the ideal evolution stays at
all times in a decoherence-free subspace.

A useful measure of the performance of the evolution is the popu-
lation leakage from the physical subspace. After {1, 2, 3, 4} evolution
time steps, the measured populations remaining in the physical sub-
space were on average {86± 2, 79± 1, 73± 1, 69± 1}% of the popula-
tions before postselection (the average is taken over the 7 simulation
runs shown in the paper). Comparing the performance of the first
simulation step with the total infidelity of the hiding/unhiding oper-
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ations, the population loss per simulation step seems consistent with
it.

The remaining errors can be quantified by the average fidelity of
the postselected state with the ideal state. After the first evolution
step this is 96%, which is consistent with the total fidelity of the MS
gates. To quantify the performance of the simulation along the whole
evolution, we compare the experimental data to a simple phenomeno-
logical error model. Since the postselection already partially corrects
for population errors, an error model that consists of uncorrelated
dephasing was considered, parameterized with an phase flip error
probability p per qubit and per evolution time step. The density ma-
trix ρ is then, at each evolution step, subject to the composition of the
error channels Ei for each qubit,

ρ→ E4 ◦ E3 ◦ E2 ◦ E1(ρ), where:

Ei(ρ) = (1− p)ρ+ pσziρσ
z
i .

The value for the error probability p was extracted from a fit to all of
the experimental data collected. For all the data taken with nonzero
J a value of p = 0.038 is found. Whenever J = 0, the simulation
does not require any ZZ interactions. Thus, several entangling gates
are omitted from the sequence and consequently higher fidelities are
expected. Indeed, for this case the error probability per time step was
found to be p = 0.031.

finite size effects

In the following, the dependence of the results on the number of
lattice sites N is discussed. Figure 48 shows the time evolution of the
particle number density and the entanglement for different system
sizes N.

Already for our experimental system with N = 4, there is qual-
itative agreement with respect to the results expected for larger N.
By scaling up the system, the dynamics quickly converges for the
considered parameters. The continuum limit a→ 0, N→∞ for fixed
values of the coupling g and the massm is addressed in a manuscript
in preparation [126].
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Figure 48: Evolution of the particle number density ν and the logarithmic
negativity En for different system sizes N. The logarithmic neg-
ativity is evaluated with respect to a cut in the middle of the
considered spin chain und quantifies the entanglement between
the two halves of the system. Both quantities are shown as a func-
tion of the dimensionless time wt for J = m = w. The shaded
area corresponds to the time interval explored in the experiment.
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S I M U L AT I O N O F A Q U A N T U M L I N K M O D E L

Quantum link models (QLMs), as already introduced in Chapter 4,
are lattice gauge theories (LGTs) where the degrees of freedom of
both the fermions and the gauge fields are encoded as spins [65,
127, 128]. QLMs provide a non-perturbative formulation of dynam-
ical gauge field theories in particle physics [65, 129, 130]. Moreover,
they are also relevant for the study of condensed matter systems that
cannot be treated by perturbative methods, such as spin liquids and
frustrated systems [131–133]. In this chapter, the experimental sim-
ulation of a QLM is reported, following the proposal in Ref. [120]
and adapting it to an ion trap quantum information processor. In
Section 9.1, the model to simulate is described: QED in one spatial
dimension. Then, in Section 9.2 the experimental implementation of
the simulation and its results are shown.

the schwinger model

The concrete QLM we consider describes QED in 1+ 1 dimensions
(the Schwinger model): a single species of fermions in a one-dimensional
lattice coupled to the electric field, as depicted in Figure 49. We have
also studied this model in Chapter 8, encoding the gauge fields as
long-range interactions. Here, instead, we encode the gauge fields as
spins on a lattice, and will also track them dynamically. This approach
is more flexible than the encoding used in Chapter 8, and can be ap-
plied to any lattice gauge theory. However, it has the disadvantage
that additional qubits are required to simulate the same number of
fermionic lattice sites; owing to the additional ones that are required
for the gauge fields.

The spins that encode the fermions occupy every second site in the
lattice, and the spins corresponding to the gauge fields are located
between the fermions. The odd fermionic sites correspond to parti-
cles and the even sites to antiparticles. The fermions we will consider
have only one degree of freedom per lattice site and will be repre-
sented by a single spin 1/2 particle ψ, whose two states represent the
presence or absence of a particle. In our particular implementation,
the gauge fields will be represented by particles U of spin 1/2, whose
state represents the value of the field. For simulating a more realistic
field, one would need to use spin-J particles for the gauge fields, and
in the limit J → ∞ one would recover a continuously-valued field.
A lattice with L sites can be represented with 2L+ 1 particles of the
appropriate spins: L spin 1/2 particles for the sites plus L− 1 spin J

87
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particles for the links. Each spin-J particle can also be represented as
a system of 2J qubits.

e- e+ e+e-

=

=

=

=

e+=
=

e-

b

a

Figure 49: a) Encoding of the fermions and gauge fields into spins 1/2 (|↑〉
and |↓〉). b) An example of a 1D lattice for a minimal QLM.

Our model is described by the Hamiltonian (74) derived in Chap-
ter 4:

H =
1

2a

∑
n

[σ+(n)eiθ(n)σ−(n+ 1) + H.c.]+

+m
∑
n

(−1)n
(
1+ σz(n)

2

)
+
g2a

2

∑
n

L2(n), (134)

where the sums are taken over the fermionic lattice sites n, and a is
the lattice spacing. The first term consists of three-body interactions
with coupling

k =
1

2a
(135)

that induce tunneling of fermions from one site to the next, increasing
or reducing the value of the field L between these sites by one unit.
The second is a mass term, where m is the fermion mass, which has
opposite signs for odd and even fermionic sites, corresponding to
particles and antiparticles. The last term is the self-energy of the fields,
where g is the gauge coupling.

The minimal instance of this model requires three spins-1/2 for
simulation: a particle at lattice site 1, an antiparticle at lattice site 3

and a gauge field in between, at lattice site 2. The only physical states
allowed by Gauss’ law in this minimal system are either a particle-
antiparticle pair with a gauge field in the middle, or the vacuum, with-
out any particles nor field. The encoding of these states are depicted
in Figure 50. The interaction induces tunneling between these two
states with strength k, and the states have a relative energy difference
given by the mass m of the particles. In this model the field energy
would effectively only add to this detuning, and can be absorbed by
a redefinition of the mass. Therefore, in what follows we set g = 0.
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The dynamics of the system in terms of the spins are then given by
the Hamiltonian:

H = kσ+1 σ
+
2 σ

−
3 + H.c. −

m

2
(σz1 − σ

z
3). (136)

 

k

m

vacuum
e-e+

Figure 50: The two physical states of our minimal QLM.

This model is effectively a two-level system spanned by the states
|↓↓↑〉 (vacuum) and |↑↑↓〉 (e−e+ pair). Figure 51 shows the expected
dynamics of the system. If the interaction is turned on, one should
observe oscillations between the vacuum state and the e−e+ state,
equivalent to detuned Rabi oscillations. These dynamics simulate the
creation of particle-antiparticle pairs from vacuum fluctuations [134].
For m = 0 the excitation of the e−e+ state should reach 1, whereas
for m > 0 there is an energy cost to create massive particles, and thus
the maximum population of the excited state decreases. The added
energy detuning also increases the frequency of the oscillations. Ex-
plicitely, the frequency of the oscillations is given by:

Ω =
√
k2 +m2, (137)

and their amplitude (the maximum e−e+ state population) by:

A =
k2

Ω2
. (138)

A 2π/Ω

1

0 Time
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ati
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Figure 51: Excitation of the e−e+ state as a function of time.
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experimental implementation and results

The experiment carried out is a simulation of the three-ion model
explained in Section 9.1. Each time step of the interaction was im-
plemented using the sequence of laser pulses shown in Figure 52.
The mass term corresponds to a rotation around the Z axis and was
implemented with an addressed off-resonant pulse, as explained in
Section 2.4, where the value of the mass corresponds to the length of
the pulse. For 7 different values of the mass m in the range from 0

to 1.5k an increasing number of evolution steps of fixed length was
applied and the populations of the vacuum state and the e+e− state
were measured. These two states are the only valid states allowed by
Gauss’ law, so we can postselect results that belong to the Hilbert
space spanned by these. After 6 steps, consisting of 24 entangling
gates, the population of the valid subspace was over 60%. The evolu-
tion of the populations is shown in Figure 53 for different values of
the mass. As can be seen, the amplitude of the oscillations decreases
and their frequency increases for increasing mass, in agreement with
the theory predictions (compare with Figure 51).

Figure 52: Pulse sequence for the experimental implementation of the QLM
simulation.

In order to quantify the dynamics of the system for different masses,
a theoretical model was fitted to the measured data consisting of
damped oscillations with steady state value 0.5. This model describes
an effective depolarizing noise in our system. The parameters ex-
tracted from such fits are plotted as a function of the mass in Fig-
ure 54. The qualitative dependence of the fitted parameters on the
mass predicted by the theory can be clearly observed. However, there
seems to be a systematic shift in the observed parameters, with fre-
quencies appearing to be lower and amplitudes bigger than expected.
The reason for this is not yet fully clear. At the time of the experi-
ment, a systematic frequency shift on the order of 100 Hz was found
between the middle ion and the outer ions, which originates from the
quadrupole shift of the D5/2(m = −1/2) state. This shift could be a
source of systematic errors.

In the next months, further experiments on QLMs are planned
with four ions. The model to be simulated consists of a fermion-
antifermion pair and two gauge fields with periodic boundary con-
ditions, as depicted in Figure 55. This model has a richer Hilbert
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Figure 53: Discretized time evolutions for masses = {0, 0.5, 1, 1.5}. Dots: ex-
perimental data, solid lines: fit from theoretical model.

space than the already simulated one, since it has three physically
allowable states: the vacuum, and a particle-antiparticle pair with ei-
ther gauge field excited. Moreover, periodic boundary conditions are
convenient from a theoretical point of view to avoid boundary effects
in the simulation.
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Figure 54: Observed evolution parameters as a function of the mass. Green:
exact theoretical model, red: theoretical model including errors
coming from time discretization, blue: experimental data from fit
parameters.
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Figure 55: Quantum link model with periodic boundary conditions, consist-
ing of a fermion-antifermion pair and two gauge fields. The peri-
odic boundary conditions are implemented by carrying out inter-
action steps between sites {1, 2, 3} and {3, 4, 1}.
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So long, and thanks.
—Douglas Adams, So Long, and Thanks for All the Fish [135]

In this thesis, recent contributions to experimental quantum infor-
mation processing with trapped ions have been presented, consisting
of both technical developments and experiments. The experiments
shown in this thesis explore the applications of quantum technolo-
gies in two directions: computation (Shor’s algorithm, Chapter 7 and
simulation (lattice gauge theories, Chapters 8 and 9).

The quantum compiler explained in Chapter 5 has proven to be a
useful tool in several recent experiments, for instance those reported
in Refs. [18, 92, 136]. This compiler is particularly suitable for optimiz-
ing sequenecs for error correction experiments and state and process
tomographies. Further improvements to the compiler are desirable:
the capability to consider spectroscopic decoupling of qubits, and the
optimization of sequences with respect to experimental noise sources.
For instance, the compilation process could attempt to maximize the
time spent in decoherence-free subspaces during a sequence, or other-
wise favor spin-echo-like sequences to improve coherence. Such fea-
tures would greatly improve the usefulness of this tool. Moreover,
some fundamental questions remain open: Is there an analytical pro-
cedure to compile general quantum unitaries in terms of multi-qubit
gates, as there is for two-qubit gates? Which unitaries are “easy” and
which are “hard” to implement using such gates? Answers to this
questions would be, not only of fundamental interest for quantum
information theory, but also of great practical importance for finding
efficient implementations of quantum operations.

The scalable implementation of Shor’s algorithm, explained in Chap-
ter 7, is the first demonstration of the algorithm without requiring
previous knowledge of the answer. Namely, all meaningful combina-
tions of the gates required to implement Shor’s algorithm were tested
without any unfair optimization.

The experiments described in Chapters 8 and 9 are the first quan-
tum simulation of a lattice gauge theory. Such theories are fundamen-
tal to understanding interactions between elementary particles, but
studying their real-time dynamics for large system sizes is not fea-
sible on classical computers. These experiments show that quantum
simulation of these theories can be performed on a quantum com-
puter, and open up a promising line of research. As we scale our
system up, we will be able to tackle problems that are still insoluble
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with classical computers. The long-term goal is to solve problems like
hadronization and confinement in quantum chromodynamics, which
are of fundamental interest for understanding the basic constituents
of nature, but difficult to study using current approaches.

The technical advances and experiments shown in this thesis are
stepping stones in the quest for a useful quantum computer. Many
challenges lie ahead, and technological improvements to the experi-
mental setup, as well as architectural changes, are required to real-
ize the goal of outperforming classical computers with a quantum
device. Current efforts by our team to improve the fidelity of our
quantum gates show promising results. A new laser setup installed
recently offers coherence times on the order of 200 ms, almost twice
as long as during the experiments shown in this thesis. We have also
found and reduced sources of laser intensity fluctuations. Moreover,
we plan to install permanent magnets to achieve more stable mag-
netic fields, and to actively stabilize the radial trapping frequency.
We expect that these improvements will allow us to perform even
more complex experiments in the near future, like extensions of the
quantum link model experiments mentioned in Chapter 9.
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A P P E N D I X T O T H E Q U A N T U M C O M P I L E R

The contents of this appendix are extracted from Ref. [70].

compiling local unitaries

Finding basis changes

In this appendix we will show how to satisfy equation (89). We need
to find a rotation C around the equator of the Bloch sphere such that:

u = C−1σzC, (139)

where u is the generator of a given known unitary U, and it can
always be written as:

u = sin θ cosφσx + sin θ sinφσy + cos θσz, (140)

for some angles θ, φ.
In general C is of the form:

C = e−iγc/2, (141)

where γ is its rotation angle and c its generator, which must lie on the
equator and thus be a linear combination of σx and σy. If we propose:

c = sinφσx − cosφσy, (142)

and replace in equation (139), we find that the angle of rotation must
be:

γ = θ. (143)

Writing a unitary as a product of two equatorial rotations

We will show here how to decompose an arbitrary unitary as a prod-
uct of two rotations around the equator of the Bloch sphere, namely:

U = C2C1. (144)
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The target unitary can be written as:

U = cos
(
β

2

)
1 − i sin

(
β

2

)
×

× (sin θ cosφ σx + sin θ sinφ σy + cos θ σz), (145)

where β is its rotation angle,and θ,φ determine its rotation axis. Sim-
ilarly, the equatorial rotations can be written as:

Ci = cos
(αi
2

)
1 − i sin

(αi
2

)
(cosφ ′i σx + sinφ ′i σy), (146)

for some rotation angles αi and phases φ ′i.
We shall asume that:

α1 = α2 = α, (147)

φ ′1 = φ+∆/2, (148)

φ ′2 = φ−∆/2. (149)

Replacing these into (144) and solving for α and ∆ we obtain:

cos2
(α
2

)
=
1

2

(
cos
(
β

2

)
+ 1

)
sin2 θ, (150)

cos∆ =
cos2

(
α
2

)
− cos

(
β
2

)
1− cos2

(
α
2

) . (151)

Unitaries up to a collective Z rotation

Suppose that the unitary U we want to implement is followed by
gates whose phase can be freely chosen. Then it must only be speci-
fied up to an arbitrary collective rotation Z ′, since this phase can be
absorbed in the following gates. To compile U, we shall consider a
decomposition of the form (82):

U = Z ′CNZN−1CN−1 · · ·Z2C2Z1C1. (152)

Such a decomposition is more convenient is this case because the last
addressed pulse ZN has been eliminated by taking advantage of the
additional degree of freedom provided by Z ′. We can now follow the
same steps as in section 5.1. The unitary CN is given by:

CN = Z ′−1UNC
−1
1 C−1

2 · · ·C
−1
N−1, (153)
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and eliminating this factor from the rest of the equations we obtain:

U−1
N U1 = C

−1
1 Z1C1, (154)

U−1
N U2 = C

−1
1 C−1

2 Z2C2C1,
...

U−1
N UN−1 = C

−1
1 C−1

2 · · ·C
−1
N−1ZN−1CN−1 · · ·C2C1.

Equations (154) can be satisfied in exactly the same way as ex-
plained in section 5.1. In order to satisfy equation (153) we need to
find a rotation Z ′ such that the generator of CN lies on the equator.
This can be done as follows.

We wish to find how to satisfy equation (153). For this we need to
find a rotation Z around the Z axis and a rotation C around an axis
on the equator of the Bloch sphere such that, for a given unitary U,
the following equation holds:

C = ZU. (155)

U is in general of the form:

U = e−iαu/2, (156)

and Z is of the form:

Z = e−iβσz/2. (157)

We will first find the angle of rotation β. If we write out (155) in
terms of the generators of U and Z we have:

C =

(
cos
(
β

2

)
1 − i sin

(
β

2

)
σz

)
×

×
(

cos
(α
2

)
1 − i sin

(α
2

)
u
)

. (158)

Since the axis of rotation of C lies on the equator, its generator must
not have any Z component, and thus:

0 = sin
(
β

2

)
cos
(α
2

)
+ cos

(
β

2

)
sin
(α
2

)
uz, (159)

that is:

β = −2 arctan
(

tan
(α
2

)
uz

)
. (160)

Once β is known, the unitary on the right-hand side of (155) is fully
determined, and thus C as well.
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Unitaries up to independent Z rotations

Finally, suppose that the unitary we want to implement is defined up
to arbitrary independent rotations for each qubit around the Z axis.
This is useful if the unitary is followed by a projective measurement,
since any final rotation around the measurement axis for any qubit
simply adds a phase and will not change the measured probabilities.

Let us again consider a sequence of the form (82). The decomposi-
tion must now satisfy, for each qubit:

Z ′1U1 = CN · · ·C2Z1C1, (161)

Z ′2U2 = CN · · ·Z2C2C1,
...

Z ′NUN = ZNCN · · ·C2C1,

where the Z ′i are arbitrary rotations around the Z axis. As before, we
can set ZN = 1 and find CN:

CN = Z ′NUNC
−1
1 C−1

2 · · ·C
−1
N−1. (162)

Eliminating CN from the remaining equations we obtain:

U−1
N Z ′−1N Z ′1U1 = C

−1
1 Z1C1, (163)

U−1
N Z ′−1N Z ′2U2 = C

−1
1 C−1

2 Z2C2C1,
...

U−1
N Z ′−1N Z ′N−1UN−1 = C

−1
1 · · ·C

−1
N−1ZN−1CN−1 · · ·C1.

Each equation has now an extra degree of freedom coming from
the angle of the Z ′k rotation. Let us for simplicity consider the case
where the number of qubits N is odd. If we group equations (163) in
pairs we get two degrees of freedom per pair, which can be used to
remove one of the global operations. Therefore we will discard every
even-numbered global operation C2k from our decomposition and
look for the solution of the following system of equations:

U−1
N Z ′′1U1 = C

−1
1 Z1C1, (164)

U−1
N Z ′′2U2 = C

−1
1 Z2C1,

U−1
N Z ′′3U3 = C

−1
1 C−1

3 Z3C3C1,

U−1
N Z ′′4U4 = C

−1
1 C−1

3 Z4C3C1,
...

U−1
N Z ′′N−2UN−2 = C

−1
1 · · ·C

−1
N−2ZN−2CN−2 · · ·C1,

U−1
N Z ′′N−1UN−1 = C

−1
1 · · ·C

−1
N−2ZN−1CN−2 · · ·C1,
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where Z ′′k = Z ′−1N Z ′k. If the number of qubits N is even, then the last
equation is simply left unpaired. It is easy to verify that for each pair
of equations the right-hand sides commute, and therefore we must
have:

[U−1
N Z ′′2k−1U2k−1,U−1

N Z ′′2kU2k] = 0, (165)

or equivalently:

[Z ′′2k−1U2k−1U
−1
N ,Z ′′2kU2kU

−1
N ] = 0. (166)

In order to solve equation (166) we need to find rotations Z1 =

Z(β1), Z2 = Z(β2) that satisfy a general equation of the form:

[Z1U1,Z2U2] = 0, (167)

for given arbitrary U1, U2, whose generators are u1 and u2 respec-
tively.

Let us define:

Vi = ZiUi, (168)

and let vi be the generators of the Vi. In order to satisfy (167), the vi
must satisfy:

v1 = v2 = v, (169)

since if two unitaries commute their generators must be the same.
Our first goal is to determine the generator v. Let us consider the
unitary:

Wi = Z
1/2
i UiZ

1/2
i . (170)

By writing down Wi explicitly in terms of the generators of each
factor, it can be seen that its generator wi satisfies:

{wi, [σz,ui]} = 0. (171)

Since we have:

Vi = Z
1/2
i WiZ

−1/2
i , (172)

from equation (171) we see that:{
v,Z1/2i [σz,ui]Z

−1/2
i

}
= 0. (173)

The geometrical meaning of this equation is that the vector defined by
v on the Bloch sphere is perpendicular to that defined by Z1/2i [σz,ui]Z

−1/2
i .
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Since (173) must hold for i = 1, 2, vmust correspond to the cross prod-
uct of these vectors:

v = N
[
Z
1/2
1 [z,u1]Z

−1/2
1 ,Z1/22 [σz,u2]Z

−1/2
2

]
, (174)

where N is chosen such that:

1

2
tr(v2) = 1. (175)

Having found v, it remains to find the rotation angles βi. Now, v
must satisfy [ZiUi, v] = 0, and therefore:

UivU
−1
i = Z(βi)

−1vZ(βi). (176)

Both v and Ui are known, so v and UivU
−1
i can be written down

explicitely as:

v = sin θ cosφσx + sin θ sinφσy + cos θσz, (177)

UivU
−1
i = sin θ cosφ ′i σx + sin θ sinφ ′i σy + cos θσz, (178)

and therefore:

βi = φ−φ ′i. (179)

We have shown how to find suitable rotations Z ′′ that fulfill condi-
tion (166). Once these are found, all the left-hand sides of (164) are
known unitaries and the system can be solved as before. The last
collective rotation CN can be determined from (162) as shown in ap-
pendix A.1.3. We have thus shown how to compile the sought unitary
U into a sequence of the form:

U =

CNZN−1ZN−2CN−2 · · ·C3Z2Z1C1 for odd N,

CNZN−1CN−1 · · ·C3Z2Z1C1 for even N.
(180)
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The contents of this appendix are extracted from Ref. [76].

pulse sequence optimisation

For a sufficiently large Hilbert-space it will no longer be possible to
directly optimize unitary operations acting on the entire register, as
the quantum state of the register will not fit into memory. Decompos-
ing the necessary unitary operations into building blocks acting on
smaller register sizes will allow one the use of optimized pulse se-
quences for large-scale quantum computation. From a methodologi-
cal point of view it may be preferred to physically decouple the qubits
from any interactions (for instance by splitting and moving part of
ion-qubit quantum register out of an interaction region, such as pro-
posed in Ref. [25]). However, given the technical requirements and
challenges for splitting and moving ion-strings, we focus on spectro-
scopically decoupling certain ion-qubits from the interaction. In par-
ticular, we spectroscopically decouple an ion from subsequent inter-
actions by transferring any quantum information from the {S1/2(m =

−1/2),D5/2(m = −1/2)} manifold to the {S1/2(m = 1/2),D5/2(m =

−5/2)} manifold using refocusing techniques on the D5/2(m = −1/2)

to S1/2(m = 1/2) and S1/2(m = −1/2) to D5/2(m = −5/2) transi-
tions. Using this approach, we optimise the controlled SWAP oper-
ation in a three-qubit Hilbert space rather than a five-qubit Hilbert
space.

controlled-swap

The controlled-SWAP operation, also known as Fredkin operation,
plays a crucial role in the modular multiplication. For its implemen-
tation, however, we could not derive a pulse sequence that can incor-
porate an arbitrary number of spectator qubits – qubits, that should
be subject to the identity operation – in the presented case, i.e. two
spectator qubits in the computational register. However, using decou-
pling of spectator qubits, this additional requirement on the imple-
mentation is not necessary. Using pulse sequence optimization [34],
we obtained a sequence for the exact three-qubit case as shown in
Table 1. In total the sequence consists of 18 pulses, including four MS
interactions.
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Pulse Nr. Pulse Pulse Nr. Pulse

1 R(1/2, 1/2) 10 R(1/2, 1)
2 Sz(3/2, 3) 11 Sz(1/4, 2)
3 MS(4/8) 12 Sz(3/2, 3)
4 Sz(3/2, 2) 13 MS(4/8)

5 Sz(1/2, 3) 14 Sz(3/2, 2)
6 R(3/4, 0) 15 Sz(3/2, 1)
7 MS(6/8) 16 R(1/2, 1)
8 Sz(3/2, 2) 17 Sz(3/2, 1)
9 MS(4/8) 18 Sz(3/2, 2)

Table 1: Controlled SWAP operation: In a system of three ion-qubits, qubit
1 represents the control qubit and qubits {2, 3} are to be swapped
depending on the state of the first qubit. Note that this sequence
only works for three-qubit systems. Spectator qubits would not ex-
perience the identity operation.

Pulse Nr. Pulse Pulse Nr. Pulse

1 R(1/2, 1) 6 MS(1/4)

2 Sz(3/2, 1) 7 R(3/4, 0)
3 MS(3/4) 8 Sz(3/2, 1)
4 R(5/4, 1) 9 R(1/2, 0)
5 Sz(1, 1)

Table 2: Four-target controlled NOT: Depending on the state of qubit one,
the remaining four qubits {2–5} are subject to a conditional NOT
operation.

four-target controlled-not

The modular multipliers (7 mod 15) and (13 mod 15) require, be-
sides Fredkin operations, CNOT operations which act on one qubit
as the control and on the rest of qubits in the computational register
as targets. Such an operation can be implemented (see Ref. [34], p.90,
eq. 5.21) with two MS operations plus local operations only, regard-
less of the size of the computational register. The respective sequence
is shown in Tab. 2.

two-target controlled-not

There exists an analytic solution to realize multi-target controlled-
NOT operations in the presence of spectator qubits with the pre-
sented set of gates [34], as required for the {2, 7, 8, 13}2 mod 15 mul-
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tiplier. However, we find that performing decoupling of subsets of
qubits of the quantum register prior to the application of the multi-
target controlled-NOT operation presented above both facilitates the
optimisation, and improves the performance of the realisation of a
two-target controlled-NOT operation. Thus, the required two-target
controlled-NOT operation is implemented via (i) decoupling qubits 2

and 4, (ii) performing a multi-target controlled-not on all qubits with
the first qubit acting as control, and (iii) recoupling of qubits 2 and 4.
Here, again, decoupling scales linearily with the system size.

Note that all presented building blocks (Controlled-SWAP, Four-
Target Controlled-NOT, Two-Target Controlled-NOT) have been real-
ized in a scalable way, applicable on arbitrarily large ion-strings.

controlled quantum modular multipliers

Based on the decomposition shown in Fig. 35d and the respective
pulse sequences outlined in the previous section, we investigate the
performance of the building blocks as well as the respective condi-
tional multipliers. In the following, the fidelities are defined as mean
probabilities and standard deviations to observe the correct output
state. The elements in the respective truth tables have been obtained
as average over 200 repetitions.

• The Fredkin operation, controlled by qubit 1 and acting on
qubits ij ∈ {35, 23, 34, 45}, yields fidelities of {76(4), 73(6), 72(4),
68(7)}%. These numbers are consistent with MS gate interac-
tions at a fidelity of about 95% acting on three ions (in the pres-
ence of two decoupled ions) and local operations at a fidelity of
99.3%.

• The 4-target CNOT gate operates at a fidelity of 86(3)%.

• Considering the quality for modular multipliers of ({2, 7, 8, 11,
13} mod 15), we find fidelities of {48(5), 40(5), 50(6), 46(5), 38(5)}%.
This performance is consistent with the multiplication of the
performance of the individual building blocks: {37(6), 36(5), 37(6),
48(5), 36(5)}%.

The experimentally obtained truth tables of the five modular multi-
pliers are presented in Fig. 56.
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Figure 56: Controlled modular multipliers: While the full truth tables have
been obtained, for improved visibility only the subset of data
for the computational register (in decimal basis) is presented for
modular multipliers ({2, 7, 8, 11, 13} mod 15) where the control
bit maps from |0〉 to |0〉 (a,c,e,g,i) as well as when |1〉 maps onto
|1〉 (b,d,f,h,j). When the control qubit is in state |0〉, one expects to
find the identity operation implemented, as shown in (a,c,e,g,i). If
the control qubit is in state |1〉, the input state gets multiplied by
({2, 7, 8, 11, 13}) mod 15. This behaviour is visually demonstrated
as the output state increases in steps of {2, 7, 8, 11, 13} until it
reaches 15, where the output is then returned to its value modulo
15.
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