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A B S T R A C T

Systems of trapped ions and systems of ultracold Rydberg atoms are
used at the forefront of quantum physics research and they make
strong contenders as platforms for quantum technologies. Trapped
Rydberg ions are a new hybrid technology envisaged to have both the
exquisite control of trapped ion systems and the strong interactions
of Rydberg atoms.

In this work a single trapped Rydberg ion is experimentally invest-
igated. A trapped 88Sr+ ion is excited to Rydberg states using two
ultraviolet lasers. Effects of the strong trapping electric fields on the
sensitive Rydberg ion are studied. After mitigating unwanted trap
effects, the ion is coherently excited to Rydberg states and a quan-
tum gate is demonstrated. This thesis lays much of the experimental
groundwork for research using this novel system.

S A M M A N FAT T N I N G

System med fångade joner och system med ultrakalla Rydbergatomer
används i framkanten av kvantfysikforskning, och är starka kandida-
ter som plattformar för kvantteknologier. Fångade Rydbergjoner är
en ny hybridteknologi som förutses kunna kontrollera system med
fångade joner, och samtidigt ha Rydbergatomers starka interaktioner.

I detta arbete undersöks en ensam fångad Rydbergjon experimen-
tellt. En fångad 88Sr+-jon exciteras till Rydbergtillstånd med två ult-
ravioletta lasrar. Effekter från de starka elektriska fångstfälten på de
känsliga Rydbergjonerna undersöks. Efter dämpning av fällans oöns-
kade effekter exciteras jonen koherent till Rydbergtillstånd och en
kvantgrind demonstreras. Denna avhandling utgör en experimentell
grund för forskning som använder detta nya system.



Z U S A M M E N FA S S U N G

Systeme gefangener Ionen und ultrakalter Rydbergatome finden An-
wendung im Spitzenfeld quantenphysikalischer Forschung. Beide
sind vielversprechende Kandidaten für quantentechnologische An-
wendungen. Gefangene Rydbergionen bilden eine neuartige, hybri-
de Technologie. Sie versprechen, die außerordentlichen Kontrollmög-
lichkeiten gefangener Ionen mit den starken Wechselwirkungen von
Rydbergatomen zu kombinieren.

Die vorliegende Arbeit befasst sich mit der experimentellen Un-
tersuchung eines einzelnen gefangenen Rydbergions. Ein gefangenes
88Sr+ Ion wird mittels zweier ultravioletter Laser in Rydbergzustände
angeregt, wobei die Auswirkungen der starken elektrischen Fallenfel-
der auf das empfindliche Rydbergion untersucht werden. Nachdem
unerwünschte Falleneffekte hinreichend abgeschwächt sind, wird das
Ion kohärent in einen Rydbergzustand angeregt sowie ein Quanten-
gatter demonstriert. Diese Doktorarbeit legt einen Großteil des techni-
schen Grundstocks für zukünftige Forschung mit diesem neuartigen
System.
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1
I N T R O D U C T I O N

In the last decades researchers have achieved exquisite control of dif-
ferent quantum systems. This has allowed fundamental tests to be
carried out, including studies of quantum measurements [1, 2], quan-
tum contextuality [3] and the quantum wavefunction [4, 5]; as well
as Bell test experiments [6–8]. New technologies which take advant-
age of highly-controlled quantum systems are being pursued [9], and
proof of principle devices capable of quantum computation [10, 11],
quantum simulation [12], quantum communication [13] and quantum
metrology [14] have been demonstrated.

Some systems are more suitable than others as platforms for par-
ticular quantum technologies, just as some systems are more suit-
able than others for carrying out particular fundamental tests. For
instance, the long coherence times of trapped ion qubits make for
excellent quantum memories [15], while the propagation speed of
photonic qubits allows the locality loophole to be closed in Bell test ex-
periments. My thesis is concerned with a new experimental platform,
namely a system of trapped Rydberg ions. This platform combines
two established systems: trapped atomic ions and Rydberg atoms. In
this opening chapter aspects of the two constituent technologies are
summarised before trapped Rydberg ions are introduced.

1.1 trapped atomic ions

Atomic ions may be trapped in electromagnetic fields. The trap con-
figuration typically used for quantum information purposes is called
a linear Paul trap [16]. In such a trap a string of ions is confined by
a combination of oscillating and static electric fields. Quantum bits
(qubits) are stored in electronic states of the ions. Qubits are coher-
ently manipulated using lasers (and sometimes microwaves) which
drive transitions between electronic states. Ions can be well isolated
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from the environment; they are trapped in ultra-high vacuum, usu-
ally around 30μm to 300μm from any surface [17]. Owing in part to
this, trapped ion qubits show excellent coherence properties; coher-
ence times of several minutes have been demonstrated [15]. Ions can
be confined for days in the deep potential of a Paul trap [18].

Ion qubits can be prepared, manipulated and read-out with high
fidelity [19]. Entanglement operations between ion qubits can be car-
ried out with low errors [20, 21]. A system of 14 trapped ion qubits
holds the record for the largest genuine multipartite entangled state
stored on separate particles.1 The trapped ion architecture is a lead-
ing contender for quantum computation and simulations.

Quantum simulations with trapped ions have allowed researchers
to study exotic phenomena, such as particle-antiparticle production
in a lattice gauge field model [23], a discrete time crystal [24], many-
body localisation [25] and a dynamical phase transition involving
53 spins [26]. Systems of trapped ions have been used to simu-
late open quantum systems [27], to study statistical mechanics in
quantum systems [28–30] and to investigate thermodynamics at the
level of a single atom [31]. They may be employed in the future for
experimental investigations in the emerging field of quantum ther-
modynamics. Quantum simulators are also of commercial interest;
they may be utilised to find molecular energies and this may assist
pharmaceutical research [32]. A trapped ion quantum simulator has
already been used to find the energies of a simple diatomic molecule
[33].

Trapped ions have been used as proof-of-principle quantum com-
puters. Of the various algorithms proposed for quantum computers,
Shor’s factorisation algorithm has generated the most interest, since it
could be used to break public-key cryptography schemes. While con-
densed versions of this algorithm have been demonstrated on various
platforms [34–37], the first scalable demonstration was carried out
with trapped ions [11]. Various quantum error correction codes have
been demonstrated in systems of trapped ions [38–40], this shows

1 A recent preprint reports a genuine multipartite entangled state of 18 qubits stored
on 6 photons [22].
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fault-tolerant quantum computing may be feasible if technological
hurdles are overcome.

Trapped ions may be employed in the future for quantum com-
munication. The workings of a quantum network in which photons
transport quantum information between trapped ion memories has
been demonstrated [13].

Another potential application of trapped ions is in quantum met-
rology; entangled states have been engineered for precision spectro-
scopy with enhanced sensitivity [41] and with less susceptibility to
noise [42]. Further, some of the most accurate atomic clocks are
trapped ion systems [43, 44].

Trapped ion quantum computers and simulators have yet to out-
perform classical computers. One of the sticking points is that ma-
nipulation of the entanglement of trapped ion qubits becomes more
difficult as the number of ions in a string is increased. Entanglement
manipulation in trapped ion systems commonly involves addressing
of individual motional modes [45]. As the number of ions in a string
is increased the number of motional modes increases and longer laser
pulses are required for individual modes to be frequency-resolved
[46]. Entanglement manipulation may also be carried out by coup-
ling electronic degrees of freedom to many motional modes simultan-
eously, however this strategy also requires longer laser pulses as the
number of ions in a string is increased [47]. As the duration of quan-
tum operations increases, errors from decoherence become significant
and quantum operations become unfeasible.

To scale up trapped ion quantum systems to the point where they
out-perform classical computers, several groups are working towards
a ‘quantum charge-coupled device’ architecture in which ions are
shuttled between interconnected traps and the entanglement of small
numbers of ion qubits are manipulated at a time [48]. Such an archi-
tecture likely involves a two-dimensional trapping geometry and may
be better suited for simulation of a two-dimensional quantum system
than the one-dimensional trapping geometry of a single linear Paul
trap [12].

An alternate path to a scalable system was proposed by Müller et al.
[49]. They suggest combining trapped ion and Rydberg atom systems
to give a novel platform, the experimental investigation of which is
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the topic of this thesis. Neutral Rydberg atoms are introduced in
the next section and the proposal from Müller et al. is described in
Section 1.3.1.

1.2 rydberg atoms

Atomic states with high principal quantum numbers n � 1 are called
Rydberg states. Rydberg atoms have exaggerated properties which
follow scaling relations. Some of these properties are presented in
Table 1.1.

Property n-scaling Z-scaling

Binding energy En n−2 Z2

Energy separation En+1 − En n−3 Z2

Fine structure splitting n−3 Z4

Orbital size 〈r〉 n2 Z−1

Electric quadrupole moment Θ ∼ 〈r2〉 n4 Z−2

Natural lifetime τnat n3 Z−4

Blackbody radiation limited lifetime τBBR n2 Z−4

Transition dipole moment of Rydberg ex-
citation transition 〈g|er|nLJ〉

n−3/2 Z−1

Transition dipole moment 〈nL ′J ′|er|nLJ〉 n2 Z−1

Dipole-dipole interaction strength n4 Z−2

Electric polarisability ρ n7 Z−4

Van der Waals coefficient C6 n11 Z−6

Table 1.1: Scaling of properties of Rydberg atoms and ions in terms of the
principal quantum number n and the core charge (also called ef-
fective nuclear charge) Z [50, 51]. Z = +1 for neutral Rydberg
atoms, Z = +2 for Rydberg ions with +e overall charge.

Much of the current research with Rydberg atoms employs strong,
long-range, dipole-dipole interactions between them [52]. Depending
on the separation between Rydberg atoms and the relation between
the Rydberg states employed, dipole-dipole interactions are manifest
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as van der Waals interactions, Förster interactions or resonant dipole-
dipole interactions. Individual trapped atoms excited to strongly-
interacting Rydberg states have been used for the first deterministic
generation of entanglement between two neutral atoms [53], for two-
qubit Rydberg gates [54] and for experimental investigations of many-
body spin models [55]. Atoms have been individually trapped and ex-
cited to Rydberg states from arrays of optical tweezers, arrays of mag-
netic traps and from optical lattices [56]. Two-dimensional trapping
configurations are often used, which, in terms of quantum computing
and simulation, has scalability advantages over the one-dimensional
configuration typical of trapped ion systems.

In a Rydberg atom quantum computer qubits are encoded in Zee-
man sublevels or hyperfine sublevels of the ground states of atoms.
Single-qubit rotations are carried out using microwaves (MWs) or by
two-photon Raman transitions, and two-qubit manipulations are car-
ried out using the strong interactions between atoms excited to Ry-
dberg states.

Neutral Rydberg atom quantum computers and simulators have
technological hurdles that need to be overcome before they can com-
pete with trapped ion quantum computers and simulators, let alone
out-perform classical computers. A major obstacle in these systems
is loss of ground state atoms from the trapping potential and atom
loss during Rydberg excitation; these challenges are reviewed in [56].
Atom loss during Rydberg excitation also poses a problem in trapped
Rydberg ion systems, as is discussed in Chapter 5.

Optical nonlinearities are generally too weak for nonlinear optical
phenomena, such as photon-photon gates, to be observed at the few-
photon level. Strong interactions between Rydberg atoms mean that
strong optical nonlinearities can be experienced by just a few photons
resonant with a transition to a Rydberg state in an atomic cloud [57].2

2 While Rydberg-mediated nonlinear quantum optics is an exciting research field, it
is unlikely to be closely linked to the novel trapped Rydberg ion system explored in
this thesis. This is because trapped ion systems have much lower optical depths than
atomic clouds. However, cavities could conceivably be used to enhance coupling
between ions and either ultraviolet (UV) Rydberg-excitation photons or MW photons
which couple Rydberg states [58, 59], to allow for nonlinear quantum optics medi-
ated by Rydberg ions.
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Strong Rydberg interactions give rise to exotic states of matter; as
a result of strong interaction between Rydberg atoms and ground
state atoms weakly-bound molecules have been produced with bond
lengths of thousands of Bohr radii [60], and with giant electric dipole
moments [61].

In terms of metrology, Rydberg atoms have potential as quantum-
enhanced sensors of electric fields [14] and as surface probes [62, 63]
owing to their high electric polarisabilities. High transition dipole mo-
ments between Rydberg states make Rydberg atoms excellent sensors
of weak radiofrequency (RF) fields [64].

1.3 trapped rydberg ions

Compared with Rydberg atoms, Rydberg ions have historically re-
ceived little attention. The valence electron of a positively-charged
ion, with core charge (also called effective nuclear charge) Z = +2, is
more tightly bound than the valence electron in an atom, which has
Z = +1. Thus, more energy is required for excitation of Rydberg ions
than for Rydberg atoms. Other differences between Rydberg atom
and Rydberg ion properties in terms of Z are shown in Table 1.1.

Rydberg ion spectra were first studied systematically in the eighties
[65–67]. Atoms from atomic beams were photoionised using pulsed
lasers and then excited to Rydberg states via multi-photon transitions.
Rydberg ions were then doubly-ionised and detected. These studies
were motivated by a desire to provide insights into “planetary atoms”
with two Rydberg electrons, which are difficult to model because of
electron correlations [67].

The high sensitivity of Rydberg states to electric fields and the pro-
hibitive Rydberg excitation energy requirements did little to encour-
age experimentalists to excite trapped ions to Rydberg states. This
changed after a theoretical investigation by Müller et al. [49] pre-
dicted trapping of Rydberg ions is feasible and strong interactions
between Rydberg-excited ions may be used for fast quantum gates.
This prompted two experiments to strive for trapped Rydberg ions;
it has also encouraged further theoretical investigations. The theoret-
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ical investigations are reviewed in Section 1.3.1 and the experiments
are introduced and compared in Section 1.3.2.

1.3.1 Theoretical investigations

In 2008 Müller et al. [49] predicted it is feasible to Rydberg-excite ions
confined in a linear Paul trap, despite the high sensitivity of Rydberg
states to electric fields (see Table 1.1). Although strong field gradients
(∼109 V m−2) are used for trapping, ions are well localised to within
tens of nanometres from the electric field null. Müller et al. predicted
for Rydberg ions up to at least n = 50 the electric field of the ionic
core dwarfs the field of the trap and Rydberg electrons are bound to
the ionic core.

They did, however, predict two effects of the trap on the Rydberg
ion, which are studied in Chapter 6. Firstly, Rydberg ions experience
a different trapping potential to low-lying ions due to their large
electric polarisabilities, and so the trapping frequencies in Rydberg
states are altered. This causes unwanted entanglement to be gener-
ated between electronic and motional degrees of freedom of ions dur-
ing Rydberg excitation. Secondly, states with J > 1

2 have giant electric
quadrupole moments and the strong electric quadrupole fields used
for ion trapping strongly couple such Rydberg states. Müller et al.
suggest mitigating this second trap effect by using states with J = 1

2 :
nS1/2 and nP1/2.

Müller et al. pointed out that although van der Waals interactions
are significantly weaker between Rydberg ions than they are between
neutral Rydberg atoms (see Table 1.1), sizeable interactions between
Rydberg ions may be generated by using MW radiation to couple Ry-
dberg nS1/2 and n ′P1/2 states. The MW-dressed states can have large
dipole moments which rotate with the frequency of the MW radiation.
Two MW-dressed Rydberg ions may then interact strongly via dipole-
dipole interaction. Müller et al. proposed a trapped ion quantum
computer in which qubits are stored in low-lying electronic states
and two-qubit gates are carried out by exciting ion qubits to strongly-
interacting Rydberg states, similar to the Rydberg gates implemented
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in a system of neutral atoms [54].3 Such Rydberg gates are envis-
aged to be fast (see Section 2.6) and offer an alternate route towards
a scalable trapped ion quantum computer or simulator. They also
proposed a scheme for simulating a spin model in a chain of trapped
Rydberg ions.

To mitigate unwanted entanglement between electronic and mo-
tional degrees of freedom of ions which is generated during Rydberg
excitation (discussed by Müller et al. [49]), in 2014 Li et al. [68] pro-
posed engineering interacting MW-dressed Rydberg states with van-
ishing electric polarisabilities. Such dressed states should exist be-
cause nS1/2 and n ′P1/2 states have polarisabilities with opposite
signs.4 Unfortunately such dressed states have non-maximal dipole
moments and thus they do not produce the strongest interactions.

In 2013 Li et al. [69] proposed shaping the motional mode spectrum
of an ion crystal using Rydberg ions. They showed that the motional
mode structure of a linear string of 100 ions is significantly altered
when two ions are excited to Rydberg states, due to the altered trap-
ping potential experienced by Rydberg ions [49]. Motional modes ap-
pear which are localised on the ions that lie between the Rydberg ions.
The entanglement between these Rydberg-flanked ions may then be
manipulated using the common protocol in which the localised mo-
tional modes are used as an intermediary [45]. After deexcitation
from the Rydberg state the vibrational mode spectrum returns to nor-
mal. In this proposal Rydberg ions are not used directly for qubit
manipulation, but rather for segmenting the string. In 2015 Nath
et al. [70] suggested using the shaping of the motional mode spec-
trum by Rydberg ions as a way to implement a quantum magnetism
simulation in a two-dimensional ion crystal [70].

In a linear Paul trap ions may form linear strings or zigzag crystals,
depending on the ratio of the radial mode frequencies and the axial
mode frequency. A transition between these two structures can be

3 Rydberg states are not used for storing qubits because the lifetimes of the low-lying
states typically used as qubits (∼1 s) are around five orders of magnitude longer
than Rydberg states with n = 50 (∼10μs), while similar Rabi frequencies are used to
manipulate low-lying states and to excite Rydberg states (∼2π× 1MHz).

4 Throughout this thesis Russell-Saunders term symbols LJ describe total angular mo-
mentum quantum numbers. The multiplicity 2S+ 1 = 2 is omitted.
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induced by changing the radial mode frequencies. In 2012 Li et al.
[71] proposed starting with a system close to the structural transition
and inducing the structural phase transition by exciting an ion to a
Rydberg state, then reversing the transition by deexcitation. The trans-
ition is induced because the Rydberg ion experiences altered trapping
frequencies [49]. Large coherent forces accompany the transition and
a range of potential applications are detailed in the proposal.

The principle behind Rydberg mode shaping and Rydberg-induced
structural phase transitions was experimentally demonstrated in [72],
though Rydberg ions were not used. Instead 40Ca+ ions were irre-
versibly doubly-ionised and a 40Ca+ ion crystal was compared with
a mixed species ion crystal of 40Ca+ and 40Ca2+.

1.3.2 Experimental realisations

Trapped ions are excited to Rydberg states in two experiments: 40Ca+

ions are used in the group of Ferdinand Schmidt-Kaler at the Uni-
versity of Mainz and 88Sr+ ions are excited in the group of Markus
Hennrich, which started in 2012 at the University of Innsbruck and
moved to Stockholm University in 2015. This thesis was carried out
in the 88Sr+ experiment.

Both ion species are alkaline earth metals, with one valence elec-
tron. Both have S1/2 ground states and metastable D3/2 and D5/2

states with lifetimes ∼1 s. Neither species has a hyperfine structure,
and in each species optical qubits are stored in a Zeeman sublevel of
the S1/2 ground state and a Zeeman sublevel of the metastable D5/2

state. In both experiments ions are excited to Rydberg states from
either of the D-states.

In the 40Ca+ experiment ions are excited to Rydberg states by driv-
ing a single-photon transition using vacuum-ultraviolet (VUV) laser
light between 122nm and 123nm. From the metastable 3D-states
electric dipole transition selection rules allow excitation to either Ry-
dberg P- or Rydberg F-states. Thus far they have excited only Rydberg
F-states; they do not know why P-states have been unattainable.

In the 88Sr+ experiment we excite ions in a two-photon excitation
scheme using 243nm and 304nm to 309nm ultraviolet (UV) laser light.
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Excitation proceeds from the metastable 4D-states to Rydberg S- or
Rydberg D-states using excitation laser light which is detuned from
resonance with the intermediate 6P-states, as shown in Fig. 1.1.

quench

  854 nm

5S
1/2

4D
3/2

4D
5/2

5P
1/2

5P
3/2

nS
1/2

6P
3/2

6P
1/2

88Sr+

4S
1/2

3D
3/2

3D
5/2

4P
1/2

4P
3/2

nP
3/2

40Ca+

nP
1/2

nF
7/2

nF
5/2

nD
5/2

nD
3/2

Rydberg

    304 nm –

        309 nm

Rydberg

  243 nm

Rydberg

  122 nm –

    124 nm

quench

 1033 nm
repump

866 nm

repump

1092 nm

qubit

674 nm

qubit

729 nm

397 nm422 nm
pumping

393 nm

Figure 1.1: The ion species and laser systems in the two trapped Rydberg
ion experiments. In Stockholm S- and D-Rydberg states of 88Sr+

are excited via two-photon transitions, while in Mainz P- and F-
Rydberg states of 40Ca+ may be excited via single-photon transi-
tions. In both systems qubits are stored in sublevels of the
ground state and the metastable D5/2 state.

The 40Ca+ experiment began first and achieved the first trapped
Rydberg ions [73, 74]. Further progress in this experiment has been
impeded by the broad linewidths of their Rydberg resonance lines
(≈2π × 4MHz for 22F, 2π × 60MHz for 52F [75]), which makes in-
vestigation of trap effects difficult and coherent excitation of Rydberg
states unobtainable. The linewidths have technical contributions, in-
cluding the VUV laser linewidth, uncompensated electric dipole fields
which perturb the Rydberg state, and the poorly-defined VUV laser
polarisation which causes multiple non-degenerate transitions to be
driven – these transitions are not individually resolved. The line-
widths are also Doppler broadened because the relatively high mo-
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mentum of a VUV photon makes it difficult to access the Lamb-Dicke
regime (Section 3.1.1). Additionally the oscillating electric trapping
field couples different Rydberg states, this leads to non-resolved Flo-
quet sidebands (Section 6.2) which also contribute to the linewidth of
the 52F resonance. A further experimental obstacle is the difficulty of
maintaining the VUV Rydberg-excitation laser.

In the 88Sr+ experiment we have progressed further. We measure
narrower Rydberg resonances (≈2π × 300kHz, likely limited by the
Rydberg-excitation lasers linewidths) thanks to our state-of-the-art
ion trap (Section 3.2), the counter-propagating two-photon Rydberg
excitation setup (Section 4.4), addressing of individual transitions
(Section 4.5) and near-ground-state cooling which allows effects of
the trapping electric fields on the highly-polarisable Rydberg ion to
be mitigated (Section 6.1). The narrow Rydberg resonances allow us
to investigate effects of the trap on a Rydberg ion (Chapter 6) and to
coherently excite Rydberg states (Chapter 7).

Our experiment proceeds despite an objection raised to the two-
photon excitation scheme; higher laser powers are required in a multi-
photon excitation scheme, which in turn make ion loss by photoion-
isation more likely [76]. Ion loss is the topic of Chapter 5.





2
P R O P E RT I E S O F S T R O N T I U M RY D B E R G I O N S

In this chapter the electronic structure of Rydberg ions is described
before key properties are reviewed. The relevant length scales in a
Rydberg ion system are described in Section 2.3, Rydberg state life-
times are presented in Section 2.4, and the interaction strength of
MW-dressed Rydberg ions and the fidelity of a two-qubit Rydberg
gate are discussed in Section 2.6.

2.1 electronic structure

88Sr+ is a multi-electron system; 37 electrons orbit the nucleus of
charge +38. Rydberg states are well-described by a single valence elec-
tron orbiting a spherical core with charge Z = +2, since the other 36
electrons form closed shells and shield the nuclear charge. Rydberg
states of 88Sr+ thus follow the Rydberg scaling relations in Table 1.1.
Because the valence electron wavefunction extends inside the core,
the core electrons do not completely shield the nucleus. As a result
the scaling relations are followed in terms of the effective principal
quantum number n∗ = n − μ, where the quantum defect μ is de-
termined empirically.1 μ depends on the atomic species as well as
the angular momentum quantum numbers L and J. For example the
binding energy formula is adapted as follows:

E = −
Z2R

n2
→ −

Z2R

(n− μ)2
, (2.1)

where R is the Rydberg constant. Sr+ energy series are displayed in
Fig. 2.1, literature values are used for μ [67]. The 88Sr+ nS1/2 energy
series is measured in this work, the results are in Section 4.6.

1 The symbol δ is commonly used for the quantum defect. In this work μ is used to
avoid confusion with the partial derivative symbol in Section 4.6.
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Figure 2.1: Rydberg state energies depend on the principal quantum number
and the quantum defect μ. The energy levels of a hydrogen-
like system with Z = +2 and of different 88Sr+ series do not
match because the quantum defects (μ) are different. Principal
quantum numbers (n) are labelled and μ values are taken from
[67].

2.2 atomic wavefunctions

Atomic wavefunctions describing the multi-electron 88Sr+ ion are de-
rived by reducing the many-body problem to a two-body problem;
the inner electrons form closed shells which screen the nuclear Cou-
lomb potential and thus the valence electron experiences a screened
Coulomb potential. The screened Coulomb potential is described by
parameters from [77]. The Schrödinger equation for the valence elec-
tron moving around the core is solved numerically to give atomic
wavefunctions. This method is described more completely in [76].

Wavefunctions of 88Sr+ were calculated by Weibin Li at the Univer-
sity of Nottingham and used to produce theoretical values of Rydberg
state polarisabilities (Section 6.1), quadrupole moments (Section 6.2),
and natural lifetimes (Section 7.4.2), as well as branching ratios of
decays from excited states. I calculated similar wavefunctions and
Rydberg state properties by adapting the Python package ARC [78]
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which was developed for calculations of neutral Rydberg atom prop-
erties.

2.3 length scales

The Rydberg orbital radius scales with n∗2, and so Rydberg ions are
much bigger than ground state ions. The Rydberg ion experiments
(Section 1.3.2) and most of the theory proposals (Section 1.3.1) involve
a string of ions confined in a linear Paul trap (Section 3.2), with ions
separated by ∼5μm. For the Rydberg states considered in this work
(n < 60), the orbital radius is much less than the inter-ion spacing
and thus the overlap of two Rydberg-ion wavefunctions is negligible,
as shown in Fig. 2.2.

Each ion is trapped in a 3D pseudo-harmonic potential. Unlike
point-like ground-state ions, the Rydberg orbital radius (≈100nm for
53S1/2) exceeds the extent of the ion motion (∼10nm) and trap effects
specific to Rydberg ions emerge (Chapter 6).

200 pm

~100 nm

~10 nm

+ +

~5 μm

-

2+

Figure 2.2: Ground state ions (yellow) are much smaller than the extent of
a trapped ion’s motion (green). The orbital radius of Rydberg
states considered in this thesis is larger than the extent of the ion
motion and smaller than the separation between two trapped
ions. The Rydberg electron orbital is classically represented. The
orbital radius is ≈100nm for 53S1/2.
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2.4 state lifetime

The natural lifetime of a trapped Rydberg ion may be shortened by
transitions driven by blackbody radiation and transitions driven by
the trapping electric fields.

The natural lifetime of an atomic state m is given by the inverse of
the sum of radiative decay rates

τm,nat =

(∑
m ′

Amm ′

)−1

, (2.2)

where the Einstein A-coefficient Amm ′ is the radiative decay rate from
m to m ′. Radiative decay of Rydberg states is strongest to low-lying
states. Higher Rydberg states overlap less with low-lying states and
as a result higher Rydberg states have higher natural lifetimes. The
natural lifetime scales as n∗3, as shown in Fig. 2.3.
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Figure 2.3: Lifetimes of Rydberg S1/2- and P1/2-states of 88Sr+ with differ-
ent temperatures of surroundings. Natural lifetimes scale with
n∗3, lifetimes limited by blackbody radiation scale with n∗2.
Trap effects do not affect the lifetimes of the states which are
shown. Logarithmic scales are used.
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Blackbody radiation drives transitions between states and shortens
the lifetime of atomic state m [79]

τm,BBR =

(∑
m ′

Amm ′ +
∑
m ′

Amm ′n̄+
∑
m ′′

Am ′′mn̄

)−1

, (2.3)

where the photon occupation number is

n̄ =
(
eΔ/kT − 1

)−1
(2.4)

and Δ is the energy difference between the states m and m ′ or m

and m ′′. While population only moves to states lower in energy
(m ′) by radiative decay, blackbody radiation also drives transitions
to higher-energy states (m ′′). Because of the n̄-dependence, black-
body radiation drives transitions between energetically-similar states
most strongly. Rydberg state lifetimes scale as n∗2 if they are limited
by blackbody radiation, as shown in Fig. 2.3.

The trapping electric fields strongly drive transitions between Ry-
dberg states with J > 1

2 , since these states have large electric quadru-
pole moments (see Section 6.2). The lifetimes of Rydberg states with
J > 1

2 are thus significantly shortened by trapping electric fields [76].
Transitions driven by typical trapping fields are negligible for J = 1

2

Rydberg states up to at least n = 50 [49]; as a result J = 1
2 Rydberg

states have longer lifetimes, which are limited by natural decay or
blackbody radiation driven transitions. Because Rydberg gate fidel-
ities are higher for longer lived Rydberg states [80] the Rydberg ion
gate proposals (Section 1.3.1) employ nS1/2 and nP1/2 states (which
have J = 1

2 ).
As shown in Fig. 2.3 Rydberg states 50S1/2 and 50P1/2 have life-

times ∼10μs when the temperature of the surroundings is 300K (sim-
ilar to the laboratory temperature). Coherent Rydberg excitation and
Rydberg gates thus require Rabi frequencies > ∼2π× 1MHz.

In Section 7.4.2 the measurement of the 42S1/2 lifetime is shown.

2.5 rydberg excitation rabi frequency

As the principal quantum number is increased the overlap of a Ry-
dberg state with a low-lying state is reduced, and as a result the trans-
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ition dipole moment between a low-lying state and a Rydberg state
becomes smaller. The transition dipole moment and the Rydberg-
excitation Rabi frequency scale as n∗−3/2, as shown in Fig. 2.4.

~ n*-3/2

Principal quantum number  n

120

30

60

302520 40 50

Figure 2.4: It becomes progressively more difficult to drive a transition
between a low-lying state and a Rydberg state as the prin-
cipal quantum number n is increased. The Rabi frequencies
for 6P3/2, mJ = −3

2 ↔ nS1/2, mJ = −1
2 transitions driven by

10mW of laser light focussed to a 10μm beam waist are shown.
These transitions are constituents of the two-photon transitions
used in the experiment. The plotted Rabi frequencies use calcu-
lated dipole moments of the 6P3/2, mJ = −3

2 ↔ nS1/2, mJ =

−1
2 transition. Logarithmic scales are used.

Provided the Rydberg state decay rate is limited by natural decay
or by blackbody radiation-induced transitions, coherent excitation of
higher Rydberg states may be achieved with lower laser light intensit-
ies, due to difference in scaling between the Rydberg excitation Rabi
frequency (n∗−3/2) and the Rydberg state decay rate (n∗−3 for nat-
ural decay or n∗−2 for blackbody radiation-induced decay).

2.6 two-qubit rydberg gate

The Rydberg ion gate proposals (Section 1.3.1) involve coupling nS1/2
and nP1/2 states using MW radiation. The coupled states have dipole
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moments, with magnitudes which scale as n∗2. Orbital sizes and
the transition dipole moment 〈nLJ|er|nL ′J ′〉 scale in the same fash-
ion. The strength of the dipole-dipole interaction between two MW-
dressed Rydberg states thus scales as n∗4, as shown in Fig. 2.5(a). The
interaction strength also depends on the separation between the ions
Δz; the strength varies as Δz−3.

Two-qubit Rydberg gates using the dipole-dipole interaction are
more efficient when higher Rydberg states with stronger interactions
and longer lifetimes are used,2 as shown in Fig. 2.5(b). A Rydberg
blockade gate is described in [80]; the gate error is proportional to
(Uτr)

−2/3, where U is the interaction strength and τr is the Rydberg
state lifetime. This gate requires higher Rydberg excitation Rabi fre-
quencies for higher Rydberg states; the optimal Rabi frequency is

proportional to 3

√
U2

τ . This means higher laser light intensities are
required when higher Rydberg states are used for the blockade gate.
A Rydberg interaction gate is described in [81]; the gate error is pro-
portional to (Uτr)

−1. The future implementation of such a gate in
our system is discussed at the end of Section 7.4.3.

These gates may be carried out over sub-microsecond timescales,
as shown in Fig. 2.5(c). The time required for the blockade gate is in-
versely proportional to the Rydberg excitation Rabi frequency, while
the time required for the interaction gate is inversely proportional to
the interaction strength.

2 Higher principal quantum number states have longer lifetimes provided they are
limited by natural decay or blackbody radiation-induced transitions.
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Figure 2.5: Higher Rydberg states interact more strongly and can be used
for faster gates with lower errors. (a) The dipole-dipole interac-
tion strength is calculated for two MW-dressed ions separated by
4μm; the rest of the calculations use the same ion separation. For
the blockade gate, higher Rydberg states require higher Rydberg
excitation Rabi frequencies. (b) The gate errors are lower for
higher Rydberg states with stronger interactions and longer life-
times; the states considered here have lifetimes limited by natural
decay. (c) Sub-microsecond gate times may be obtained. Logar-
ithmic scales are used.
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E X P E R I M E N TA L S E T U P

This chapter deals with the main parts of the laboratory and how they
come together for experiments to be carried out. During experiments
trapped ions are manipulated using laser pulses. In Section 3.1 gen-
eral experimental sequences are described and experimental require-
ments are established. In the subsequent sections systems developed
to meet these requirements are presented, namely the linear Paul trap
(Section 3.2), laser systems (Section 3.3) and electronic control systems
(Section 3.4).

3.1 experiments with a single trapped ion

A single trapped ion is probed in most of the experiments in this
thesis. Experiments involve sequences of laser pulses which drive
transitions between states of an ion. The laser-driven transitions are
described in Section 3.1.1, thereafter the key steps in an experiment
are introduced. A typical experiment consists of the following steps:

1. Laser cooling

2. State initialisation

3. Transitions are driven by the Rydberg-excitation lasers or the
qubit laser

4. Measurement

The laser cooling, state initialisation and measurement steps are de-
scribed in Sections 3.1.2, 3.1.3 and 3.1.4 respectively.

3.1.1 Laser-driven transitions

Within a linear Paul trap ions are confined in effective harmonic trap-
ping potentials in the three spatial dimensions. The trapping po-
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tentials are described in more detail in Section 6.1.1. Trapped ions
have electronic degrees of freedom and motional degrees of freedom;
laser light is used to drive transitions between electronic and motional
states.

Electronic states of 88Sr+

The eigenenergies of different electronic states are represented in the
level scheme in Fig. 3.1. A magnetic field splits the levels into Zeeman
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Figure 3.1: 88Sr+ level scheme including natural decay rates and the lasers
used for driving transitions. Natural decay rates Γ/2π are taken
from [82–85] and the 6P3/2 decay rate is measured in Sec-
tion 4.1.1. Zeeman sublevels are not shown.
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sublevels, which are labelled by the magnetic quantum number mJ

(see Section 3.2.6).
A Zeeman sublevel of the ground state 5S1/2 and a Zeeman sub-

level of 4D5/2 are used to store an ion qubit. Electric quadrupole
transitions between 5S1/2 and 4D5/2 sublevels are driven by 674nm
laser light with Rabi frequencies ∼2π× 100kHz. These Rabi frequen-
cies greatly exceed the 4D5/2 natural decay rate 2π × 410mHz [84],
and thus qubit coherence times can greatly exceed quantum gate
times. 5S1/2 ↔ 4D5/2 transitions are also used for resolved sideband
cooling (Section 3.1.2), optical pumping (Section 3.1.3), micromotion
compensation (Section 3.2.8) and ion temperature measurements (de-
scribed later in this section).

The rest of the lasers are used to drive electric dipole transitions.
The 2π× 22MHz natural decay rate of 5P1/2 [85] means photons are
scattered at a high rate when the 5S1/2 ↔ 5P1/2 transition is strongly
driven by 422nm laser light. Owing in part to this, the 5S1/2 ↔ 5P1/2
transition is used for ion measurement (which relies on detection of
scattered photons, see Section 3.1.4) as well as Doppler cooling (Sec-
tion 3.1.2).

When the 422nm laser is employed 1092nm laser light is often used
to prevent optical pumping to 4D3/2, which is caused by decay from
5P1/2 to 4D3/2 in 6% of cases [86]. 1033nm laser light is used to re-
move population from 4D5/2 and initialise the system (Section 3.1.3),
it is also used for carrying out resolved sideband cooling.

Laser light at 243nm and 304nm to 309nm is used to drive two-
photon transitions from either of the metastable 4D states to Rydberg
S- or D-states (Chapter 4).

Laser-driven transitions between electronic and motional states

Spectra include carrier lines which are flanked by sidebands. A car-
rier line corresponds to a transition in which the electronic state is
changed and the number of phonons is kept the same. When a side-
band transition is excited the electronic state and the number of phon-
ons are changed. Blue sidebands are more energetic and correspond
to transitions in which the phonon number is increased, red side-
bands are less energetic and correspond to transitions in which the
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phonon number is decreased. Phonon-number-changing transitions
occur because of the momentum kick imparted to the trapped ion
when a photon is absorbed. These transitions are shown in Fig. 3.2.
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Figure 3.2: (a) Laser light drives transitions between electronic states and
motional states. (b) Spectrum showing the 5S1/2, mJ = −1

2 ↔
4D5/2, mJ = −3

2 carrier transition resonance and axial side-
bands. The axial frequency is ωz = 2π × 867kHz. Only first-
order sidebands are shown in (a) and (b). Error bars indicate
quantum projection noise (68% confidence interval).

The relative strength with which phonon-number-changing transi-
tions are driven depends on the ratio of the recoil energy to the spa-
cing of the quantum harmonic oscillator energy levels. This is de-
scribed by the Lamb-Dicke parameter η [87]

η2 =

(
�h2k2 cos2φ

2M

)/
�hω

=
�hk2 cos2φ

2Mω
.

(3.1)

Here M is the ion mass, ω is the frequency of a particular motional
mode, k is the laser light wavevector and φ is the angle between
the laser beam and the mode axis. When the recoil energy is much
smaller than the quantised energy spacing, the Lamb-Dicke para-
meter is small and phonon-number-changing transitions are driven
less strongly. The Lamb-Dicke parameter is different for different
transitions, as well as different motional modes.



3.1 experiments with a single trapped ion 25

The relative strength with which sideband transitions and carrier
transitions are driven depends not only on the Lamb-Dicke parameter,
but also on the number of phonons in a particular mode, n.1 The
Lamb-Dicke regime is defined by the inequality

η2(2n+ 1) � 1. (3.2)

Within the Lamb-Dicke regime transitions which change the motional
quantum number by more than one are strongly suppressed.

Working within the Lamb-Dicke regime is required for transitions
to be driven coherently with high efficiency (since unwanted driving
of sideband transitions causes dephasing), for resolved sideband cool-
ing (which requires the phonon number to be usually preserved dur-
ing spontaneous decay, see Section 3.1.2) and it is advantageous for
high-precision spectroscopy (to avoid Doppler broadening of reson-
ance lines). The Lamb-Dicke parameter for the axial motional mode
and a 674nm laser beam (used to drive the qubit transition) at 45°
to the trap axis is 0.05 when typical trapping parameters are used
(for typical trapping parameters see Section 3.2.1). This laser beam
is represented in Fig. 3.3(a). After Doppler cooling (Section 3.1.2) an
ion has ≈16 phonons in the axial mode and the Lamb-Dicke regime
inequality [Eq. (3.2)] is satisfied for this particular laser beam and the
axial motional mode.

Within the Lamb-Dicke regime the relative strengths with which
carrier transitions and first-order sideband transitions are driven are
given by [87]

Ωn→n =
(
1− η2n

)
Ω0,

Ωn→n+1 = η
√
n+ 1Ω0,

Ωn→n−1 = η
√
nΩ0,

(3.3)

written to second order in
(
η
√
n
)
; Ω0 is the Rabi frequency of carrier

transitions when n = 0. The ion temperature, that is the mean pho-
non number, is determined by comparing the Rabi frequencies with
which sideband transitions are driven [87].

1 This n-dependence can be understood in terms of the n-dependence of the ladder
operators â and â†.
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Two-photon transitions between 4D states and Rydberg states are
described by an effective Lamb-Dicke parameter, which is introduced
in Section 4.4.

3.1.2 Laser cooling

At the beginning of each experiment run the ion is Doppler cooled. In
many experiments resolved sideband cooling is also employed. Dop-
pler cooling is used to cool an ion to the Lamb-Dicke regime2 while
resolved sideband cooling is used to cool an ion below the Doppler
cooling limit close to the motional ground state.

Doppler cooling

Doppler cooling proceeds as follows [87]: Due to the Doppler effect,
the absorption coefficient of a laser-driven transition depends on the
ion velocity. If a laser is appropriately detuned from the transition
resonance, the radiation pressure force exerted by the laser light on
the ion behaves as a drag force. The kinetic energy of the ion is then
reduced and the ion is cooled.

In our lab the ion is Doppler cooled using 422nm laser light red-
detuned from the 5S1/2 ↔ 5P1/2 resonance. The 422nm laser beam
k-vector has components along all three of the trap axes [Fig. 3.3(a)],
this allows Doppler cooling in all directions with a single 422nm laser
beam [87]. After Doppler cooling the mean phonon number in the
axial mode is n̄z ≈ 16 and the mean phonon numbers in the radial
modes are n̄x, n̄y ≈ 12 when typical trapping frequencies are used.
The mean phonon numbers dictate the temperatures of the motional
modes, and they are determined as described in Section 3.1.1.

1033nm and 1092nm laser light is used together with 422nm laser
light; 1092nm laser light prevents optical pumping to 4D3/2, while
1033nm laser light removes any ion population which was initially
in 4D5/2. Doppler cooling is typically carried out for 1ms.

2 with regards the transitions driven in the experiment and the typical trapping fre-
quencies used.
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Resolved sideband cooling

Resolved sideband cooling is a process in which ion population is
optically pumped close to the motional ground state [87]. The process
proceeds as follows (schematic in Fig. 3.4): The red sideband of a
5S1/2 ↔ 4D5/2 transition is driven; each excitation to 4D5/2 reduces
the phonon number by 1. From 4D5/2 population may be driven back
to 5S1/2 (and the lost phonon is regained) or population may decay to
5S1/2. Within the Lamb-Dicke regime the decay usually preserves the
phonon number and thus on average the phonon number is reduced
during the process. The process is sped up by coupling 4D5/2 and
5P3/2 such that the effective lifetime of 4D5/2 is reduced.
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Figure 3.4: During sideband cooling each excitation from 5S1/2 to 4D5/2

reduces the phonon number (n) by 1, and decay to 5S1/2 usually
preserves the phonon number (within the Lamb-Dicke regime).
The effective lifetime of the excited state is shortened by coupling
4D5/2 and 5P3/2. The energy spacing of the motional levels is
�hω.

The radial 674nm laser beam in Fig. 3.3 is used to cool radial mo-
tional modes, the angled beam is used to cool the axial motional
mode. Typically sideband cooling is carried out for 1ms for the axial
mode and for 1ms for the two radial modes. After sideband cooling
the mean phonon numbers in the radial modes and in the axial mode
are n̄x, n̄y, n̄z ≈ 0.2 when typical trapping frequencies are used.
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3.1.3 State initialisation

Different experiments require the ion to be initialised in different
states. The initialisation procedures are described in this section.

Initialisation in |1〉 ≡ 5S1/2, mJ = −1
2 by frequency-resolved optical pump-

ing

There are two 5S1/2 states, labelled by mJ = ±1
2 . State 5S1/2, mJ =

−1
2 ≡ |1〉 is used together with 4D5/2, mJ = −5

2 ≡ |0〉 to store a qu-
bit. Initialisation in |1〉 proceeds as follows: First, any ion population
residing in the metastable 4D states is removed and sent to 5S1/2 via
the 5P states using 1033nm and 1092nm laser light. Then any ion
population residing in 5S1/2, mJ = +1

2 is optically pumped to qubit
state |1〉 ≡ 5S1/2, mJ = −1

2 by driving the following cycle ∼10 times:

1. A π pulse is applied on the frequency-resolved 5S1/2, mJ =

+1
2 ↔ 4D5/2, mJ = −3

2 transition. Any population residing in
|1〉 is unaffected, while population in 5S1/2, mJ = +1

2 is excited
to 4D5/2, mJ = −3

2 .

2. Population is removed from the 4D states and returned to 5S1/2
via the 5P states using 1033nm and 1092nm laser light.

Initialisation in |0〉 ≡ 4D5/2, mJ = −5
2

The ion is prepared in |1〉 by optical pumping and then excited to
qubit state |0〉 ≡ 4D5/2, mJ = −5

2 by applying a π pulse on the 674nm
|1〉 ↔ |0〉 transition. Electron shelving (Section 3.1.4) is then used to
confirm excitation to |0〉; cases in which initialisation is unsuccessful
are removed during data analysis.

Initialisation in |1〉+ eiφ|0〉
The ion is prepared in |1〉 by optical pumping and then the superposi-
tion |1〉+ eiφ|0〉 is excited by driving a π

2 pulse on the 674nm |1〉 ↔ |0〉
transition with laser phase φ+ π

2 .
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Initialisation in a phonon number state

The ion is prepared in a state with nx and ny radial phonons in the
x and y radial modes as follows:

1. The radial motional modes are sideband cooled close to their
ground states.

2. The ion is prepared in |1〉 by optical pumping.

3. The following cycle is carried out nx times:

a) A π pulse is applied on the x-motional mode blue sideband
of the |1〉 ↔ |0〉 transition. The pulse length accounts for
the phonon-number-dependent Rabi frequency described
by Eq. (3.3).

b) Electron shelving is used to confirm excitation to |0〉.
c) A π pulse is applied on the |1〉 ↔ |0〉 carrier transition to

return population to |1〉.
d) 1033nm and 1092nm laser light is used to remove any re-

sidual population from the 4D states.

4. The cycle is repeated ny times, this time the y-motional mode
blue sideband is driven.

5. In some experiments the ion is then transferred to |0〉 by driving
a π pulse on the |1〉 ↔ |0〉 transition.

This method allows us to prepare an ion with 40 radial phonons
with ≈20% efficiency. We check the initialisation by preparing an
ion in |1〉 with ny phonons in the y-mode and then driving Rabi
oscillations on the y-motional mode blue sideband of the |1〉 ↔ |0〉
transition, results are shown in Fig. 3.5. The Rabi frequency scales as√

ny + 1, as expected from Eq. (3.3).

Initialisation in 4D3/2

Population is optically pumped from 5S1/2 to 4D3/2 by driving the
422nm 5S1/2 ↔ 5P1/2 transition; from 5P1/2 the ion decays to 4D3/2

in 6% of the cases [86]. A mixture of 4D3/2 Zeeman sublevels is
populated.
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Figure 3.5: Preparation of phonon number states is demonstrated by driv-
ing high-contrast Rabi oscillations on a 5S1/2 ↔ 4D5/2 blue mo-
tional sideband transition and observing the

√
ny + 1-scaling of

the Rabi frequency with the phonon number ny in the y radial
mode. (a) The horizontal axis is the excitation time, (b) the time
axis is scaled to make the

√
ny + 1-dependence clear. Sinusoidal

fit functions in (a) serve to guide the eye. Error bars indicate
quantum projection noise (68% confidence interval).

3.1.4 Measurement

Measurements involve a technique called electron shelving. Electron
shelving distinguishes an ion in state 4D5/2 from an ion in states
5S1/2 or 4D3/2, as described below.
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In terms of a qubit stored in 5S1/2 and 4D5/2, electron shelving
is a projective measurement in the σ̂z basis. By driving a π

2 pulse
on the |1〉 ↔ |0〉 transition with laser phase 0 (π2 ) before carrying out
electron shelving, a projective measurement in the -σ̂y (-σ̂x) basis is
carried out. Measurements in different bases allow us to carry out
quantum state tomography and quantum process tomography, these
techniques are described in Section 7.4.3.

To distinguish population in 5S1/2 and 4D3/2 we first transfer pop-
ulation from the 5S1/2 sublevels to 4D5/2 sublevels by driving 674nm
transitions and then we use electron shelving.

Electron shelving

The ion is illuminated by 422nm and 1092nm laser light and we look
for scattered 422nm photons using a PMT. When the PMT detects a
photon it sends a digital signal to a counter, which is connected to
a PC (Section 3.4). If the ion was initially in 5S1/2 or 4D3/2 422nm
photons are scattered by the ion, whereas if the ion is in state 4D5/2

no light is scattered by the ion and the PMT shows only a background
signal due to background light and PMT dark counts. Measuring for
500μs allows us to distinguish between an ion in state 4D5/2 and
an ion in state 5S1/2 or 4D3/2 with ∼99.9% efficiency, as shown in
Fig. 3.6. The 500μs detection time greatly exceeds the lifetimes of
all the atomic states except for the metastable 4D states (lifetimes
∼400ms [82, 84]) and the ground state 5S1/2.

The states of multiple ions are measured by imaging the ions on a
camera and using the electron shelving technique. However, most of
the measurements in this thesis are concerned with a single ion.

3.2 linear paul trap

In this experiment ions are trapped in a macroscopic linear Paul trap
in an ultra-high vacuum (<10−10 mbar). In this section key features
of the trap are presented. Information about the assembly of the
trap and the vacuum chamber may be found in the master’s thesis of
Fabian Pokorny [88].
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Figure 3.6: Electron shelving using photon counts measured with the PMT.
If 4 or more counts are recorded during the 500μs measurement
time the ion is most probably in state 5S1/2 (qubit state |1〉). If
3 or fewer counts are recorded the ion is likely in state 4D5/2

(qubit state |0〉). The data is described well by two Poissonian
distributions with mean values 0.3 and 14, the overlap of the
distributions is 0.04%. This overlap as well as decay from 4D5/2

during the measurement time cause errors ∼0.1%.

3.2.1 Ions in the trapping potential

The linear Paul trap uses a combination of static and oscillating elec-
tric quadrupole fields which result in effective harmonic trapping po-
tentials in the three spatial dimensions, as described in Section 6.1.1.
The oscillating field is driven at Ωrf = 2π × 18.2MHz. Typically
the oscillating field has gradient α ≈ 8.4× 108 V m−2 and the static
field has gradient β ≈ 6.8× 106 V m−2. Trapping frequencies ωx,y ≈
2π× 1.7MHz and ωz ≈ 2π× 840kHz result, where x and y are the ra-
dial directions and z is the axial direction of the trap (see Fig. 3.3). The
confinement is weaker along the trap axis such that multiple trapped
ions form a string; the mutual repulsion between the ions keeps them
apart by ≈5μm.
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coated electrodes. We use similar powers for driving the oscillating
trapping field in our experiment and we expect similar temperature
changes (∼1.4 ◦C).

3.2.4 Photo electrons induced by UV light

The gold coating on the electrodes also means photo electrons are
unlikely to be produced by stray UV laser light illuminating an elec-
trode surface, owing to the high work function of gold >5.1 eV [91],
cf. 243nm photons carry 5.1 eV energy.

Photo electrons cause the build-up of stray charges inside the cham-
ber which disturb the trapping potential (Section 3.2.8), additionally
a flux of photo electrons may perturb highly-sensitive Rydberg states
[75].

In one of the traps used in the Rydberg ion experiment in Mainz
stray charges were generated by VUV laser light hitting surfaces; these
charges disturbed the trapping potential and this contributed to their
broad Rydberg resonance linewidths [73] (see Section 1.3.2).

3.2.5 Motional heating

Motional heating is detrimental to quantum manipulation of trapped
ions [17] and is likely harmful in trapped Rydberg ions systems since
the energy for Rydberg excitation depends on the number of phonons
in the system (Section 6.1). Furthermore motional heating is itself
a symptom of electric field noise which may perturb Rydberg ions
directly.

The upper bounds of heating rates in our trap are relatively low;
in the axial mode the rate is <18phonon s−1 and in the radial modes
the rate is <4phonon s−1 when ωx,y ≈ 2π× 1.7MHz and ωz = 2π×
870kHz. The heating rate is inferred by first cooling the ion and
then measuring the ion temperature (Section 3.1.1) after different time
delays, the same method is used in [92]. The heating rate is not
precisely determined because servo bumps of the qubit laser drive
off-resonant transitions making temperature measurements difficult
for phonon numbers < ∼0.2.
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3.2.6 Magnetic field

Coils outside the chamber apply a magnetic field along the trap axis
with strength ∼0.3mT at the position of trapped ions. Since the mag-
netic quantum number is a good quantum number in our system (for
low-lying states and Rydberg S-states), the field defines the quantisa-
tion axis. The magnetic field is aligned along the trap axis as follows:
A beam of circularly-polarised 422nm laser light is sent along the
trap axis through holes in the endcap electrodes. When the magnetic
field direction is collinear with the laser beam propagation the 422nm
laser light drives only one σ-transition between 5S1/2 and 5P1/2 sub-
levels, and a sublevel of 5S1/2 becomes a dark state. Currents in the
coils are varied until a dark state appears and the ion fluorescence is
minimised.

3.2.7 Ion loading

In our experiment a trapped 88Sr+ ion is lost by double ionisation
after typically several hundred excitations to a Rydberg state (see
Chapter 5). Double ionisation occurs once in every ∼300 excitations
to a Rydberg state in the Mainz experiment [75]. Rydberg ion experi-
ments thus require fast and reliable ion loading.

Until recently, and for most of the experiments in this thesis, single
88Sr+ ions were loaded by resistively heating a strontium oven to
produce a beam of strontium atoms which passes through the trap,
atoms were then ionised in a two-step photoionisation process [93]
and the ions were Doppler cooled (see Section 3.1.2). Around 10
minutes were spent loading a 88Sr+ ion. After loading we let the
oven cool for an additional 10 minutes before carrying out Rydberg
experiments, since we suspect blackbody radiation increases the like-
lihood of losing a Rydberg ion by double-ionisation.

Recently laser ablation loading was introduced to our system and
now ions are loaded in less than 30 seconds without the system being
heated.
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3.2.8 Micromotion compensation

In a linear Paul trap ions are confined in a combination of oscillating
and static electric quadrupole fields. Ideally the nulls of the electric
quadrupole fields overlap and the ion is trapped at the null where the
electric field strength is zero. Imperfections in the construction of the
trap and stray charges (Section 3.2.4) cause the nulls of the quadru-
pole fields to be at different positions. This results in oscillating and
static electric dipole fields at the average position of the ion which
drive motion called ‘excess micromotion’ [94, 95].

Excess micromotion alters atomic transition lineshapes, disrupts
laser cooling and shifts resonance frequencies [94, 95]. In quantum
information processing experiments and atomic clock experiments
steps are taken to minimise excess micromotion. Rydberg ions have
extremely large polarisabilities; electric fields cause Rydberg reson-
ance lineshapes to be altered (see Section 6.1) and they can also cause
field ionisation [49]. Minimisation of micromotion and thus the elec-
tric fields experienced by the Rydberg ion is important in our experi-
ment.

Our linear Paul trap has electrodes for minimisation of radial mi-
cromotion [see Fig. 3.3(b)]. By applying appropriate static voltages to
these electrodes the position of the null of the static electric quadru-
pole field is made to overlap with the null of the oscillating electric
quadrupole field.

We find appropriate voltages for minimisation of micromotion us-
ing established techniques [94, 95]; we monitor the displacement of a
trapped ion as the trap depth is changed by imaging the ion on the
EMCCD camera, we use the cross-correlation technique, and we em-
ploy the resolved sideband method using the 5S1/2 ↔ 4D5/2 trans-
ition. After minimising micromotion using the resolved sideband
method the typical strength of the residual oscillating field at the po-
sition of the ion is ∼10V m−1 when typical trapping frequencies are
used.

In Section 6.1.2 we investigate the effects of non-overlapping elec-
tric quadrupole trapping fields on a Rydberg ion and introduce a
novel method for minimising micromotion using a trapped Rydberg
ion.
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3.3 laser systems

Laser systems are described in this section. Laser beams pass from
the laser sources (Section 3.3.1), through acousto-optic modulators
(AOMs) used for laser pulse shaping (Section 3.3.2) before they are
brought close the to the experiment chamber via single-mode optical
fibres (Section 3.3.3). Laser pulses then enter the chamber through
viewports (Fig. 3.3) and are focussed onto trapped ions.

So that the transitions in Fig. 3.1 may be driven efficiently laser fre-
quencies are stabilised by using optical resonators as frequency refer-
ences (Section 3.3.4). A schematic of a typical beam path is shown in
Fig. 3.8.
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Figure 3.8: Schematic of a typical laser setup. Highly-reflective and partially-
reflective mirrors are labelled HR and PR. Wavelength meter
HighFinesse WS6-200 is used.

3.3.1 Laser sources

Laser light for driving the transitions between low-lying states is com-
mon to other 88Sr+ experiments which study quantum computing
[96–98] and atomic clocks [99, 100]. UV laser light for Rydberg excita-
tion is specific to our experiment.
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Laser light for transitions between low-lying states

We use diode lasers5 to produce 422nm, 1033nm and 1092nm laser
light and a diode-laser-pumped tapered-amplifier system to produce
674nm laser light.6

Laser light for the first Rydberg-excitation step

Laser light at 243nm for the first Rydberg-excitation step is produced
in a commercial system,7 as follows: Laser light at 970nm is produced
by a diode-laser-pumped tapered-amplifier system. Two cascaded
second harmonic generation (SHG) stages are used to upconvert the
970nm fundamental to 243nm laser light. Each SHG stage consists of
a nonlinear crystal in a bow-tie cavity. Crystals of lithium triborate
(LBO) and barium metaborate (BBO) are used in the first and second
stages respectively. Similar laser systems are used for spectroscopy of
atomic hydrogen [101].

Laser light for the second Rydberg-excitation step

Tunable laser light between 304nm and 309nm is required for the
second Rydberg-excitation step. The tunability allows a range of
states to be excited, from principal quantum number n = 24 up to
the second ionisation threshold. This laser light is produced in two
steps:

5 Toptica DL pro
6 Toptica TA pro; a high-power source is used because the 674nm 5S1/2 ↔ 4D5/2

transition is electric-dipole-forbidden and relatively high laser light intensities are
required to drive it.

7 Toptica TA-FHG pro
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First 1551nm laser light from a diode-laser8 fibre-amplifier9 system
and tunable laser light between 1000nm and 1030nm from a diode-
laser-pumped tapered-amplifier system10 pass through a periodically-
poled lithium niobate (PPLN) crystal11 and tunable laser light in the
range 608nm to 618nm is produced by sum frequency generation
(SFG). To achieve quasi-phase matching across the entire 608nm to
618nm range the crystal temperature is varied and crystal channels
with different poling periodicities are used. This first step was the
master’s thesis work of Christine Maier [102].

In the second step 608nm to 618nm laser light is upconverted to
304nm to 309nm laser light in a commercial system consisting of a
LBO crystal in a bow-tie cavity,12 here angle-phase matching is used.
Similar laser systems are used in experiments with trapped 9Be+ ions
[103, 104].

Laser light for photoionisation of 88Sr atoms

Ion loading (Section 3.2.7) involves two-step photoionisation of neut-
ral 88Sr atoms using laser light produced by diode lasers at 405nm13

and 461nm.14

8 Originally a TeraXion PS-NLL DFB semiconductor laser was used. The power spec-
trum consists of a Lorentzian line superposed onto a broad envelope. While 80%
of the laser power lies within 2π × 12 kHz of the centre frequency, 8% of the laser
power lies outside 2π × 1MHz of the centre frequency (using an observation time
of 1ms). The broad envelope does not allow stable locking of the 608nm to 618nm
laser light to the reference cavity, and it inhibits coherent excitation of Rydberg states
using 304nm to 309nm laser light. We now use a NKT Koheras BASIK E15 DFB fibre
laser which has a narrow power spectrum and allows stable locking of the 608nm
to 618nm laser light.

9 Manlight EYFA-CW-SLM-P-TKS
10 Toptica TA pro
11 Covesion MSFG612-0.5-40
12 Toptica SHG pro
13 InsaneWare blu-ray diode used originally, recently replaced by a fibre-coupled sys-

tem Thorlabs LP405-SF10.
14 Toptica DL pro
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3.3.2 Laser pulse generation using AOMs

Most of the lasers setups include AOMs in double-pass configurations
[105]. Laser pulses are engineered by controlling the amplitude, fre-
quency and phase of radiofrequency AOM drive signals (Section 3.4).
Laser pulses can be produced with constant phase relations between
them. The time taken for sound waves in an AOM crystal to move
across a laser beam limits the minimum pulse length to ∼50ns.

3.3.3 Optical fibres

Single-mode fibres allow stable beam pointing onto the ions and they
also clean up the laser beams. Polarisation-maintaining single-mode
step-index fibres transmit 405nm, 422nm, 461nm, 674nm, 1033nm
and 1092nm laser light close to the experiment chamber. Before fo-
cussing onto the ions 422nm, 1033nm and 1092nm laser light is over-
lapped in an endlessly single-mode photonic crystal fibre.15

Single-mode fibres for UV laser light

Conventional single-mode step-index fibres made of silicon dioxide
are unsuitable for transmitting UV laser light; they degrade due to ul-
traviolet solarisation. We use hydrogen-loaded photonic crystal fibres
with relatively large mode field diameters ∼8μm which resist UV sol-
arisation [106].15 Details can be found in the master’s thesis of Jo-
hannes Haag [107].

Typically up to 3mW of 243nm laser light and 50mW of 304nm
to 309nm laser light is focussed onto the ions. Techniques developed
for focussing these laser beams onto trapped ions are described in
Section 4.2.

3.3.4 Laser frequency stabilisation

To efficiently drive the transitions in Fig. 3.1 lasers must be resonant
with the transitions and their linewidths must be lower than the cor-

15 NKT LMA-10-UV
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responding transition linewidths. Most of the diode lasers have free-
running linewidths ∼2π×200kHz. The lasers’ linewidths are reduced
and their centre frequencies are controlled by using optical resonat-
ors as frequency references. The Pound-Drever-Hall (PDH) technique
[108, 109] is used to confer the stability of the lengths of optical res-
onators onto the frequency stability of lasers.

Most of the lasers are stabilised using optical resonators built in-
house. The 674nm laser is locked to a highly-stable commercial op-
tical resonator which has a high finesse.

Stabilisation using optical resonators built in-house

Eight optical resonators with stable lengths were built following the
design in [110]. A clear schematic is in [111].

In each optical resonator setup one of the mirrors is mounted on
piezoelectric rings; by changing the voltages applied to the piezo
rings the length of each resonator is controlled. Each resonator is
used to stabilise the frequency of one laser. Because the length of
each resonator can be changed by more than half of the laser wave-
length, the stabilised lasers can be tuned to any frequency.

The eight optical resonators were designed for eight different wave-
lengths of laser light: 422nm, 608nm to 618nm, 674nm, 970nm,
1000nm to 1030nm, 1033nm, 1092nm and 1550nm. The mirror coat-
ings of each of the resonators were chosen for a particular laser wave-
length.

The 422nm, 1033nm and 1092nm lasers are stabilised to optical
resonators with finesses ∼1000 and the stabilised laser linewidths are
∼2π× 100kHz. The 608nm to 618nm and 970nm laser light is stabil-
ised to optical resonators with finesses ∼15 000. The 608nm to 618nm
laser light is locked by sending feedback to the 1000nm to 1030nm
fundamental laser. The frequency stability of the fundamental lasers
is conferred onto the Rydberg-excitation laser light; this results in
laser light with linewidth ∼2π × 100kHz at both 243nm and 304nm
to 309nm.

Optical resonators for 1000nm to 1030nm and 1550nm laser light
are used for diagnostic purposes. An optical resonator for 674nm
laser light was set up. It has finesse ∼10 000 and it may be used in the
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future to implement a two-stage laser lock [111, 112] together with
the commercial high-finesse optical resonator described below.

The stabilised laser linewidths are estimated by an in-loop method:
the gradient of the PDH error signal is used to convert the standard
deviation of the error signal of a locked laser to a laser linewidth.

Sidebands are required for laser frequency stabilisation by the PDH

technique. Sidebands are introduced by modulating the laser di-
ode current of the 422nm, 970nm, 1000nm to 1030nm, 1033nm and
1092nm lasers. The sidebands persist in the laser light produced by
SFG and SHG, and they are used to stabilise the lengths of the SHG

bow-tie cavities to the laser frequencies by employing the PDH tech-
nique.

Stabilisation using the high-finesse resonator

For coherent operations between the qubit states (sublevels of 5S1/2
and 4D5/2) it is necessary to have a highly-stable 674nm laser. Using
a commercial optical resonator16 with a high-finesse ∼100 000 the laser
frequency was stabilised to ∼2π × 1kHz during the master’s thesis
work of Florian Kress [113].

Because sidebands in the laser light would disrupt coherent manip-
ulation of the ion, we introduce sidebands to the 674nm laser using
an electro-optic modulator immediately before the optical resonator.
The length of the high-finesse cavity cannot be scanned; to make up
for the ≈2π× 1.41GHz mismatch between the high-finesse cavity res-
onance and the 5S1/2 ↔ 4D5/2 atomic resonance multiple AOMs are
used.

Frequency drifts of the high-finesse resonator are countered by us-
ing the ion as a frequency reference in a Ramsey-type scheme de-
scribed in [114, 115]. This method also allows fluctuations in the
magnetic field strength at the position of the ion to be compensated
such that transitions between different Zeeman sublevels of 5S1/2 and
4D5/2 may be resonantly driven.

16 Stable Laser Systems
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3.4 electronics for experimental control

A PC controls two electronic systems which are used for running
experiments: the pulse sequencer box and a bus system. The pulse
sequencer box controls the timing of each experiment run. It outputs
digital signals and RF signals with a timing resolution of 10ns. It
is described in detail in [116, 117]. The bus system also controls RF

signals, though its outputs are updated over microsecond timescales.
It is described in detail in [111, 118]. A schematic representation of
the control systems is in Fig. 3.9. We use the Trapped Ion Control
Software (TrICS) developed by the Blatt group in Innsbruck as a user
interface for controlling these systems and collecting experimental
data.
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Figure 3.9: Schematic of electronic control systems.

During a single experiment run a sequence of laser pulses is ap-
plied to trapped ions and then the ions’ states are measured (Sec-
tion 3.1). The laser pulses are produced by driving AOMs with RF
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signals (Section 3.3.2). RF signals with 10ns timing resolution are out-
put directly from the pulse sequencer box or they are produced by
switching the RF signals from the bus system using digital signals
from the pulse sequencer box. Measurements are choreographed by
using digital signals from the pulse sequencer box to gate the photon
counter and to trigger the EMCCD camera.

The radiofrequency AOM drive signals are produced by direct di-
gital synthesizer (DDS) chips. The DDS chips are either programmed
via the bus system or they are included in the pulse sequencer box.
The “smart” DDS boards within the pulse sequencer box produce
versatile AOM drive signals which allow phase-coherent frequency
switching and amplitude shaping of laser pulses during a single ex-
periment run. Phase-coherent frequency switching is required for
coherent manipulation of an ion state involving different transitions
[117]. The amplitude shaping has bandwidth ≈2π × 5MHz. The
“smart” DDSs are usually reserved for control of the 674nm laser
beams and the Rydberg-excitation lasers.

Digital signals from the pulse sequencer box are used to trigger and
switch other devices, such as arbitrary waveform generators used to
shape laser pulses with high bandwidth (∼2π× 20MHz) for coherent
Rydberg excitations (Chapter 7).

Experiment runs are typically repeated ∼100 times with the same
experimental parameters, and sets of experiment runs are repeated
as a parameter is scanned. Laser frequencies, powers and phases are
scanned by reprogramming the bus system DDSs or the pulse sequen-
cer box settings between sets of experiment runs.

The PC communicates with the bus system via National Instru-
ments card 6534 and it communicates with the pulse sequencer box
via National Instruments card 6733 and an Ethernet connection. Card
6733 includes the counter which records signals from the PMT (see Sec-
tion 3.1.4) and it supplies analogue voltages which control the lengths
of the optical resonators used as frequency references (Section 3.3.4).
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T W O - P H O T O N RY D B E R G E X C I TAT I O N

This chapter is concerned with the first Rydberg ion experiments car-
ried out in our laboratory. We use a two-photon excitation scheme,
which differs notably from the single-photon excitation scheme used
in the experiment in Mainz, described in Section 1.3.2. The two-
photon excitation scheme allows for a lower light-induced coupling
between internal and external degrees of freedom compared with the
single-photon excitation scheme (Section 4.3). This allows us to ob-
serve narrower Rydberg resonances than the Mainz experiment and
to resolve resonance structure.

The experimental techniques developed in this chapter allow us
to investigate Rydberg ion-trap effects (Chapter 6) and to coherently
control Rydberg ions (Chapter 7).

4.1 the first excitation step

In our experiment a trapped 88Sr+ ion is excited to Rydberg S- and D-
states by two-photon excitation, driven by 243nm and ∼307nm laser
light (see Fig. 3.1). 243nm laser light drives the first excitation step
from the metastable state 4D5/2 near to 6P3/2 or from the metastable
state 4D3/2 near to 6P1/2.

4.1.1 4D5/2 ↔ 6P3/2 transition

The 4D5/2 ↔ 6P3/2 transition is probed as follows [schematic in
Fig. 4.1(a)]:

0. The ion is prepared in a Zeeman sublevel of 4D5/2, as described
in Section 3.1.3.

1. The 4D5/2 ↔ 6P3/2 transition is driven by 243nm laser light;
excited population decays mostly to 5S1/2.
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2. Electron shelving: Detection of fluorescence from the 5S1/2 ↔
5P1/2 transition heralds successful excitation to 6P3/2 (see Sec-
tion 3.1.4).

Using calculated electronic wavefunctions (Section 2.2) we find popu-
lation in 6P3/2 decays mostly to 5S1/2 by multi-step decay processes.
The resonance lineshape is shown in Fig. 4.1(b).
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Figure 4.1: Measurement of the 4D5/2 ↔ 6P3/2 resonance. (a) First 243nm
light drives the transition to 6P3/2 and population in 6P3/2 de-
cays to 5S1/2, the ion state is then measured by electron shelving.
(b) Because detection of successful excitation involves absorption
of a 243nm photon and optical pumping out of 4D5/2, the res-
onance lineshape is the Lorentzian absorption profile in the ex-
ponent of the exponential function. Error bars indicate quantum
projection noise (68% confidence interval).

The excitation proceeds incoherently because the transition Rabi
frequency is much lower than the 6P3/2 decay rate. The entire process
can be viewed as optical pumping from 4D5/2 to 5S1/2 and to 4D3/2

via 6P3/2, and the population in 4D5/2 decays according to

P4D5/2
= e−R(ω243)tex , (4.1)

where the frequency-dependent absorption rate

R
(
ω243

)
=

Ω2
1

Γ6P3/2

(
1+

4
(
ω243 −ω0

)2
Γ26P3/2

)−1

(4.2)
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and tex is the excitation time, Ω1 is the transition Rabi frequency,
Γ6P3/2

is the natural decay rate of 6P3/2, ω243 is the 243nm laser fre-
quency and ω0 is the resonance frequency of the transition. R

(
ω243

)
has a Lorentzian profile with linewidth Γ6P3/2

unless there is Doppler
broadening. From the fit in Fig. 4.1(b) we extract Γ6P3/2

= 2π× (4.9±
0.4)MHz, the theoretically-determined values are 2π× 4.71MHz [82]
and 2π× 4.26MHz [83]. We also extract Ω1 and ω0 from the fit.

4.1.2 4D3/2 ↔ 6P1/2 transition

The 4D3/2 → 6P1/2 transition is probed as follows [schematic in
Fig. 4.2(a)]:

0. The ion is prepared in a mixture of the four Zeeman sublevels
of 4D3/2 (Section 3.1.3).

1. Laser light at 243nm drives the 4D3/2 ↔ 6P1/2 transition, pop-
ulation excited to 6P1/2 decays mostly to 5S1/2.

2. Population in 5S1/2 is transferred to 4D5/2.

3. Electron shelving: Successful excitation to 6P1/2 is heralded
when no fluorescence from the 5S1/2 ↔ 5P1/2 transition is de-
tected (Section 3.1.4).

Using calculated electronic wavefunctions (Section 2.2) we find popu-
lation in 6P1/2 decays mostly to 5S1/2 by multi-step decay processes.
Resonance lineshapes are shown in Fig. 4.2(b).

At the position of the ion the 243nm laser beam propagation is
parallel with the magnetic field and thus laser light with circular po-
larisation drives the two 4D3/2, mJ = −3

2 → 6P1/2, mJ = −1
2 and

4D3/2, mJ = −1
2 → 6P1/2, mJ = 1

2 σ+ transitions or the two respect-
ive σ− transitions.

Each peak in Fig. 4.2(b) corresponds to two overlapping reson-
ances which are not individually resolved because the 2π× 670kHz-
Zeeman splitting of the resonance frequencies (in a magnetic field of
strength 0.36mT 1) is much less than the theory value of the resonance

1 Throughout this work Landé g-factors are used for magnetic moments.
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4.2 focussing rydberg excitation lasers on an ion

4.2.1 UV laser setups at the experiment chamber

Rydberg excitation laser light is delivered near to the experiment
chamber through single-mode fibres, as described in Section 3.3.3.

After each fibre each laser beam propagates through two identical
achromatic lenses and into the experiment chamber. The laser beams
propagate through holes in the endcap electrodes [Fig. 3.3(a)]. The
lenses image the fibre modes (with diameters ∼8μm) onto trapped
ions with magnification 1. Because the lenses are achromatic the laser
beams may be sent from either direction, or both may be sent from the
same direction. A single ion is used to optimise the focussing of each
Rydberg excitation laser as described in the following subsections.

4.2.2 Focussing 243nm light on an ion

The focussing of 243nm light onto the ion is optimised by moving
the two lenses (which are mounted on translation stages between
the fibre output and the experiment chamber) and maximising the
strength with which the 4D ↔ 6P transitions in Section 4.1 are driven.

The ion is also used to profile the laser beam: The strength with
which the 243nm laser drives the 4D ↔ 6P transitions is recorded as
the laser beam is shifted. The laser beam is shifted by displacing the
second lens in the directions perpendicular to the laser beam propaga-
tion direction. Because the laser beam is collimated at the position of
the second lens, displacement of this lens displaces the focus by the
same amount at the position of the ion. A beam profile measured
using the ion is shown in Fig. 4.3.

At the ion position the beam is elliptical, with Gaussian beam
waists wx = 4.9μm and wy = 10.7μm. The laser beam propagates
through holes in the trap endcaps which limit the numerical aperture
to 0.058. In principle a focus with waist 1.3μm may be attained with
an improved optical setup.



52 two-photon rydberg excitation

In
te

n
si

ty
 /

 W
 m

-2

Horizontal position / μm

V
er

ti
ca

l p
o

si
ti

o
n

 /
 μ

m

–10 –5 0 5

40

80

–5

0

5

0

Figure 4.3: The 243nm laser beam profile at the position of the ion is determ-
ined by moving the laser beam and measuring the strength with
which the 4D5/2 ↔ 6P3/2 transition is driven. The dashed green
line represents the 1/e2 beam waist. The relative intensity is con-
verted to the absolute laser light intensity with 44% uncertainty.
This uncertainty arises because the laser power is not measured
at the ion position; rather the laser power is measured before and
after the chamber and the surrounding optics, and only 32% of
the laser power [(1− 0.44)2] is transmitted through the system.

4.2.3 Focussing ∼307nm light on an ion

Laser light near 307nm is required for the second Rydberg excitation
step. This laser light shifts the energies of 5S1/2 and 4D5/2 Zee-
man sublevels according to the ac-Stark effect, by an amount which
is proportional to the 307nm laser light intensity. The focussing of
∼307nm light onto the ion is optimised by moving the two lenses and
maximising the resonance frequency shift induced onto one of the
5S1/2 ↔ 4D5/2 transitions. The resonance frequency shift is meas-
ured in a Ramsey experiment.

This Ramsey-type method is also used to measure the 307nm laser
beam profile at the position of the ion, which is shown in Fig. 4.4.
The beam is near-round, with Gaussian beam waists wx = 5.3μm
and wy = 6.1μm. With the current setup the focus likely cannot be
improved, given the expected fibre mode field diameter ≈8μm.
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Figure 4.4: The 307nm laser beam profile at the position of the ion is determ-
ined by moving the laser beam and at each position the relative
307nm laser light intensity is measured in a Ramsey-type exper-
iment. The dashed green line represents the 1/e2 beam waist.
The relative intensity is converted to the absolute laser light in-
tensity with 16% uncertainty. This uncertainty arises because
the laser power is not measured at the ion position; rather the
laser power is measured before and after the chamber and the
surrounding optics, and 70% of the laser power [(1− 0.16)2] is
transmitted through the system. The intensity scale includes non-
physical negative values, this is due to statistical fluctuations of
the Ramsey measurement results.

This laser beam also propagates through holes in the trap endcaps
which limit the numerical aperture to 0.058, and thus a beam waist of
1.7μm can be attained for this laser beam with an improved optical
setup.

4.3 two-photon resonance condition

Rydberg states are excited and detected using a similar methodology
as in Section 4.1; UV laser light at 243nm and ∼307nm drives a two-
photon transitions from a metastable 4D-state to a Rydberg S- or D-
state. Each UV laser is detuned from resonance to the intermediate
6P state by typically 2π × 200MHz, the detunings are opposite such
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that two-photon resonance is achieved. Using calculated electronic
wavefunctions (Section 2.2) we find population in Rydberg S- and
D-states decays mostly to 5S1/2 by multi-step decay processes.

The effective Rabi frequency of the two-photon transition is

Ωeff =
Ω1Ω2

2Δ
, (4.3)

where Δ is the magnitude of the detuning of each laser from the
intermediate state. This formula is derived in Section 7.3.1.

We use Δ � Ω1, Γ6P to minimise scattering off the intermediate
state which causes a background signal. The rate at which population
from the initial state scatters off the intermediate state is

Γscat =
Ω2

1 Γ6P
4Δ2

. (4.4)

Results are shown in Fig. 4.5 for the excitation from 4D3/2 →
25S1/2 which exemplify the two-photon resonance condition. In each
dataset the frequency of the 243nm laser has a different intermediate-
state detuning while the frequency of the 309nm laser is scanned; the
Rydberg resonance structure is observed when the two-photon res-
onance condition is met. Each dataset shows a four-peak resonance
structure corresponding to four Zeeman-split transitions, this struc-
ture is explained in Section 4.5.

4.4 counterpropagating rydberg-excitation lasers

The two UV laser beams counterpropagate along the trap axis, collin-
ear with the magnetic field [Fig. 3.3(a)]. On two-photon absorption
the momentum kicks from the two photons on the ion largely cancel
and the ion motion is not greatly disturbed. This means phonon-
number-changing transitions (Section 3.1.1) are less likely to occur
with counterpropagating laser beams than with copropagating laser
beams or with a single Rydberg excitation step. More thoroughly, it
is easier to achieve excitation within the Lamb-Dicke regime when
counterpropagating laser beams are used. By adapting Eq. (3.1) we
find the effective Lamb-Dicke parameter

ηeff = (k1 − k2)

√
�h

2Mωz
, (4.5)
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The opportunity to lower the effective Lamb-Dicke parameter by
using counterpropagating laser beams is a major advantage of the
two-photon excitation scheme. In the Mainz experiment ∼122nm
laser light drives the single-photon Rydberg-excitation transition and
sub-Doppler cooling is required to prepare an ion in the Lamb-Dicke
regime. Phonon-number-changing transitions are driven during Ry-
dberg excitation in their experiment; this contributes to their relat-
ively broad resonances (see Section 1.3.2).

4.5 zeeman-split rydberg S-state resonances

Transitions driven by the trapping electric fields (Section 6.2) are neg-
ligible for Rydberg S-states up to at least n = 50 [49], and thus mJ is
a ‘good’ quantum number both for low-lying states and for the Ry-
dberg S-states investigated in this work. The Zeeman effect describes
the ion in a magnetic field; field strengths ≈0.3mT are used.2

The resonance structure obtained when a Rydberg S-state is ex-
cited is understood in terms of the Zeeman effect: The four reson-
ance peaks in Figs. 4.5 and 4.6(a) correspond to the four transitions
between sublevels of 4D3/2 and sublevels of nS1/2. The transitions
are non-degenerate because the sublevels of 4D3/2 and of nS1/2 are
Zeeman-split.

The configuration of the laser beams determines the transitions that
may be driven [displayed in Fig. 4.6(b)]: The two Rydberg-excitation
laser beams counterpropagate along the trap axis, collinear with the
magnetic field. Each laser beam may drive σ+ transitions, σ− transi-
tions, or both transitions depending on the laser light polarisation.
The different amplitudes of the resonance peaks result from the differ-
ent Clebsch-Gordan coefficients of the constituent transitions, which
are shown in Fig. 4.6(b).

A single transition between Zeeman sublevels may be driven by
using the appropriate UV laser polarisations, as shown in Fig. 4.6(a),
or by relying on the transition being frequency-resolved. When using
high Rabi frequencies and short pulse lengths for coherent Rydberg

2 The Zeeman effect is much smaller than the fine-structure splitting until n ∼ 200.
The paramagnetic Zeeman term dominates the diamagnetic term also until n ∼ 200.
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4.6 rydberg energy series

We have excited a trapped 88Sr+ ion to Rydberg S-states with prin-
cipal quantum numbers in the range 25 to 57. The state energies
are determined by employing a wavelength meter3 to measure the
frequencies of the fundamental lasers used to generate the Rydberg
excitation lasers. Uncertainties in the wavelength measurements limit
the determination of the state energies to �h 2π× 300MHz.

The state energies EnLJ are fit following the methodology of [67]
with the Rydberg energy series formula

EnLJ = I++ −
Z2RM

(n− μ(EnLJ))
2

, (4.6)

where I++ is the second ionisation threshold and the Rydberg con-
stant for 88Sr+ with mass M = 87.9u [119] is

RM = R∞ M

M+me
, (4.7)

R∞ is the Rydberg constant, me is the electron mass, and the quantum
defect is a linear function of the binding energy

μ(EnLJ) = μ(I++) +
∂μ

∂E
(EnLJ − I++) (4.8)

= μ(I++) −
∂μ

∂E

Z2RM

(n− μ(EnLJ))
2

(4.9)

≈ μ(I++) −
∂μ

∂E

Z2RM

(n− μ(I++))2
. (4.10)

The energy series and the mismatch between measured values and
the fit are shown in Fig. 4.7. Resonance frequency shifts due to trap
effects (Chapter 6) and the ac-Stark effect are small compared with
the wavelength meter uncertainty.

The energy series of Rydberg S-, D-, F- and G-states of Sr+ in free
space were previously measured by Lange et al. [67]. They measured
states energies accurate to �h 2π× 6GHz, limited by the linewidth of

3 HighFinesse WS6-200
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Figure 4.7: 88Sr+ S-state energies are described well by the Rydberg energy
series formula. State energies are measured using excitation
from 4D3/2 and from 4D5/2. (a) Binding energies scale as n∗−2.
(b) Differences between the data and the fit are generally within
the 68% confidence interval indicated by the error bars. Exper-
imental uncertainties are likely correlated; they are dominated
by the wavelength meter which contributes 2π× 300MHz to the
error bars.

their Rydberg-excitation laser at ∼280nm. Our estimates of the double
ionisation threshold and the S-state quantum defect are consistent
with the previous experimental investigation, as shown in Table 4.1.

We have also excited two Rydberg D-states and estimate quan-
tum defects μ(24D3/2) = 1.4563± 0.0003 and μ(27D3/2) = 1.4563 ±
0.0004, which are consistent with the values from Lange et al.

Improved spectroscopy allows for more accurate calculations of
electronic wavefunctions (Section 2.2) and thus more accurate theoret-
ical predictions of Rydberg state properties. Our institute has recently
purchased a wavelength meter accurate to 2π × 2MHz.4 We plan to
repeat the energy series measurement of Rydberg S-states, as well as
Rydberg P- and D-states.5

4 HighFinesse WS8-2
5 Rydberg P-states were recently excited in our experiment using two UV photons and

one MW photon; this work forms part of the PhD thesis project of Fabian Pokorny,
see the Outlook in Chapter 8.
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This work Lange et al. [67]

Double ionisation threshold
I++/cm−1

88 965.022± 0.011 88 965.18± 0.02

S-series quantum defect
μ(I++)

2.7063± 0.0009 2.707± 0.002

S-series quantum defect
gradient (∂μ/∂E)/ Ryd−1

−0.04± 0.09 −0.055± 0.015

Table 4.1: The 88Sr+ double ionisation threshold and S-state quantum defect
determined in this work is consistent with previous work [67].
Our value of I++ uses the 4D5/2 level energy from [99].
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I O N L O S S B Y D O U B L E I O N I S AT I O N

In our experiment a trapped 88Sr+ ion is lost by double ionisation
after typically several hundred excitations to a Rydberg state. Simil-
arly double ionisation occurs in ∼0.3% excitations to a Rydberg state
in the Mainz experiment [75]. Double ionisation thus presents an
obstacle in trapped Rydberg ion experiments, discussed in Section 5.1.
We know the ion is lost by double ionisation by measuring the final
product to be 88Sr2+, these measurements are described in Section 5.2.

We suspect Rydberg states with higher principal quantum numbers
are more prone to double ionisation loss and that blackbody radiation
increases the likelihood of double ionisation, though we have yet to
carry out a systematic investigation of the effects of different para-
meters on the ion loss rate. Müller et al. [49] briefly discuss double
ionisation driven by the electric fields of the trap.

5.1 obstacles presented by ion loss

Ion loss has made data collection in this experiment cumbersome.
Until recently ion loading was carried out using a resistively-heated
oven (Section 3.2.7) and each double ionisation event caused the ex-
periment to be interrupted by around 20 minutes. During these re-
current interruptions the frequencies of the Rydberg excitation lasers
drifted by ∼2π× 300kHz because the lengths of the optical resonator
frequency references (Section 3.3.4) are not perfectly stable. Interrup-
tions due to ion loss are now reduced to less than 30 seconds through
introduction of laser ablation loading. A Rydberg ion quantum com-
puter would certainly require faster ablation loading [120, 121] or fast
loading from an ion reservoir [75].

Ion loss threatens the gate fidelity in a Rydberg ion quantum com-
puter, though it may be tolerable. Provided the loss rate is below
a threshold value, quantum error correction protocols may be used
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to correct for ion loss. For instance a single ionic qubit lost due to
double ionisation may be replaced by shuttling an ion in state |1〉
from a reservoir [48], the qubit state may then be corrected using the
same quantum error correction protocols which correct for qubit state
decay |0〉 → |1〉 [122].

Atom loss presents similar difficulties in neutral Rydberg atom ex-
periments [52, 56]. In optical traps intense trapping fields drive pho-
toionisation of Rydberg states at rates which may exceed radiative
decay rates [123–125]. To get around this problem optical traps are
routinely switched off during Rydberg excitation,1 and some research-
ers are pursuing blue-detuned (dark) optical traps [56, 80]. Blackbody
radiation also drives photoionisation of Rydberg atoms [126]. Addi-
tionally ground-state atoms are lost from optical traps due to colli-
sions with background gas particles.

5.2 measurements of the loss product

We know the ion is lost by double ionisation because we measure
the loss product to be 88Sr2+. In Section 5.2.1 we establish the loss
product has charge +2 e by imaging ions on an electron-multiplying
charge-coupled device (EMCCD) camera. In Section 5.2.2 we find the
loss product has the same mass as 88Sr+ by measuring motional mode
frequencies.

We also find that ions may be doubly-ionised not only from a Ry-
dberg state, but also from a metastable 4D state when intense 243nm
laser light is used. In such cases double ionisation likely proceeds via
absorption of two 243nm photons.

5.2.1 Imaging ions with an EMCCD camera

88Sr+ ions scatter 422nm laser light, and are imaged on an EMCCD

camera, as shown in Fig. 5.1. Multiple trapped ions crystallise as
a linear string along the trap axis when the confining potential is

1 Switching off the trap is not an option in our experiment because Coulomb repulsion
between two ions initially separated by 5μm would cause them to become separated
by 30μm in just 1μs.
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Figure 5.1: 88Sr+–88Sr+ ion crystal compared with 88Sr+–88Sr2+ crystals.
88Sr+ ions are imaged on an EMCCD camera using scattered
422nm laser light, 88Sr2+ ions are not observed directly. In the
lower two images the distance of the 88Sr+ ion from the trap
centre is consistent with a mixed crystal containing a doubly-
charged ion. In each image the X marks the spot where the
88Sr2+ ion lies.

much weaker in the axial direction than the radial directions. The
equilibrium positions of multiple trapped ions are found by balancing
the Coulomb repulsion between the ions and the confining harmonic
trap forces [127].

Two ions each with charge +e have equilibrium positions ±2−2/3L

relative to the trap centre, where

L = 3

√
e2

4πε0Mω2
z

, (5.1)

e is the elementary charge, M is the ion mass and ωz is the axial mode
frequency. ωz is determined by spectroscopy on the qubit transition
or by ‘tickling’ the trap electrons (see Section 5.2.2). By imaging two
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ions on the EMCCD camera2 the image magnification is determined to
be 19.2.

The equilibrium positions of ions with different charges is determ-
ined by generalising the calculation in [127]. An ion with charge +e
and an ion with charge +2 e form crystals with equilibrium positions
{±2× 3−2/3L, ∓3−2/3L} relative to the trap centre.

We start with two trapped 88Sr+ ions, shown in Fig. 5.1. We then
alter one of the ions during Rydberg excitation. The altered ion re-
mains trapped, although it does not scatter 422nm laser light. The
unmodified 88Sr+ ion is still visible on the EMCCD camera and may
be stably trapped at positions ±2 × 3−2/3L, as shown in the lower
images of Fig. 5.1. From this we determine the altered ion (which is
not imaged) has +2 e charge.

Crystals consisting of one ion with charge +e and one ion with
charge +2 e are also obtained when we begin with only one 88Sr+ ion
in the trap and then alter it during Rydberg excitation before loading
another 88Sr+ ion into the trap. This indicates the double ionisation
process does not rely upon having two ions in the trap. The same
crystal is also obtained when intense 243nm laser light is used to
doubly-ionise an ion and no 307nm laser light is employed.

The equilibrium ion positions are obtained by balancing electro-
static forces; they do not depend upon ion masses. Eq. (5.1) shows
no mass dependence, since ω2 ∼ 1

M . The mass of the doubly-charged
ion is determined by measuring motional mode frequencies, as is de-
scribed in the following section.

5.2.2 Measuring the axial mode frequency by tickling electrodes

We measure the mass of the altered ion to determine the loss product
is 88Sr2+ rather than some other (possibly molecular) doubly-charged
species. We measure the mass of the altered ion with accuracy better
than 1u, and find the mass is consistent with the mass of 88Sr+. We
do so by measuring the frequency of a motional mode shared by a
88Sr+ ion and the doubly-charged loss product.

2 Andor iXon3 897 with pixel size 16μm.
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The motional modes of N ions of the same mass and charge con-
fined in a harmonic potential and arranged in a linear string is found
in [127] by first using the potential of the N-ion system to find the
equilibrium positions {zi,0}, then writing the Lagrangian in terms of
small displacements from the equilibrium positions; for the ith ion the
displacement qi(t) = zi(t) − zi,0. Generalising this to a string of ions
with different masses and different charges involves writing the Lag-
rangian in terms of mass-weighted displacements pi(t) =

√
Miqi(t).

The same rescaling is applied in [128] to find the motional modes of
different species of ions in an anharmonic trap.

Two ions with the same mass and the same charge trapped in a har-
monic trap with frequency ω have motional modes with frequencies
ω (the centre-of-mass mode) and

√
3ω (the breathing mode). If the

mass and charge of one of the ions is different, the motional mode fre-
quencies change. We calculate the centre-of-mass mode frequencies
for one 88Sr+ ion (charge +e, mass 87.9u [119]) trapped together with
an ion with charge +2 e and mass M2; results are shown in Fig. 5.2. A
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Figure 5.2: Motional mode frequencies depend on the ion masses. Shown
here is the calculated ratio of the centre-of-mass mode frequency
for a 88Sr+–88Sr+ crystal and a mixed crystal containing 88Sr+

and a doubly-charged ion of variable mass M2. This ratio is
measured in the experiment to find that the mass of the loss
product is consistent with the mass of 88Sr+ (87.9u [119]).
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change in M2 of 1u results in a change in the mixed-species centre-of-
mass mode frequency of around 2× 10−3 ×ω. In the experiment we
measure the centre-of-mass frequencies of both the 88Sr+–88Sr+ crys-
tal and the mixed-species crystal. We determine the ratio between
these frequencies with accuracy <2× 10−4 and find no significant dif-
ference between the loss product mass M2 and the 88Sr+ mass 87.9u.
In this way we determine the loss product is 88Sr2+.

The motional frequencies can be determined from the frequencies
of motional sidebands in the 5S1/2 ↔ 4D5/2 spectrum, however this
requires ac-Stark shifts to be carefully accounted for. Instead we use
the ‘tickle’ method [129]: a RF voltage is applied to the endcap elec-
trodes, if it is resonant with a motional mode in the axial direction
the axial motion is driven and the width of the ions in the EMCCD

camera image is increased. The widths of the ions are recorded as
the frequency of the ‘tickle’ voltage is scanned and in this fashion the
motional mode frequencies are accurately measured. Typical results
are shown in Fig. 5.3.
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Figure 5.3: A driving field causes the ion crystal to heat if the field is reson-
ant with a motional mode. The ions then become diffuse in the
image. The data displayed is generated by fitting image data by a
two-dimensional Gaussian function; error bars indicate fit uncer-
tainties (68% confidence interval). This data is in turn fit by the
Gaussian function shown in green; motional mode frequencies
are then determined to 1 part in 7000.



6
T R A P E F F E C T S

Rydberg states are extremely sensitive to electric fields. In the sem-
inal theoretical investigation by Müller et al. [49] effects of strong elec-
tric trapping fields on highly-sensitive Rydberg ions were predicted.
Experimental observation of these effects is presented here. In this
chapter we also investigate a Rydberg ion in trapping regimes beyond
the consideration of Müller et al.; both theoretically and experiment-
ally.

Two classes of trap effects emerge, one related to the Rydberg ion
electric polarisability, the other related to the Rydberg ion electric
quadrupole moment.

The Rydberg state polarisability scales as n7, this makes Rydberg
atoms sensitive electric field probes [14]. Effects of the trapping elec-
tric fields on highly-polarisable Rydberg ions are explored in Sec-
tion 6.1.

Rydberg states with J > 1
2 have large electric quadrupole moments,

which scale as n4. Effects of the trapping electric quadrupole fields
on states with large electric quadrupole moments (in particular a Ry-
dberg D3/2 state) are explored in Section 6.2. This second class of
effects is negligible for J = 1

2 states, namely nS1/2 and nP1/2, with
n < 50 [49].

6.1 effects on highly-polarisable rydberg ions

Owing to their large polarisabilities, Rydberg ions experience a differ-
ent trapping pseudopotential than ions in low-lying states. This leads
to different effects, which depend on whether or not the nulls of the
oscillating and static electric quadrupole fields overlap.

Trap effects were theoretically studied in [49] for a trap in which
the electric field nulls overlap. This corresponds to the case with
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no excess micromotion. We experimentally investigated these effects
[130], the results are presented in Section 6.1.1.

We have also experimentally investigated the effects which appear
when the field nulls do not overlap, and explain the results by extend-
ing the theory. When the field nulls do not overlap there is excess
micromotion in the system. This work is described in Section 6.1.2.

6.1.1 With overlapping quadrupole field nulls

Due to the large Rydberg state electric polarisability, the radial trap-
ping frequencies of a Rydberg ion are different to the radial trapping
frequencies of an ion in a low-lying state. This means the energy re-
quired for Rydberg excitation depends on the number of phonons in
radial motional modes. Before the experimental results are presen-
ted, this effect is described using a semi-classical approach. A full
quantum mechanical description is found in [49, 68, 130].

Description using semi-classical theory

Near the centre of a linear Paul trap the electric trapping potential Φ
is composed of two electric quadrupole potentials, one which oscil-
lates and one which is static:

Φ = α cosΩrft(x
2 − y2) −β[(1+ ε)x2 + (1− ε)y2 − 2z2], (6.1)

where α is the time-dependent field gradient which oscillates with
radiofrequency Ωrf, β is the static field gradient, and the parameter
ε breaks the axial symmetry of the trap and lifts the radial mode
degeneracy.

In the axial direction the trapping potential is harmonic with fre-
quency ωz given by

ω2
z =

4eβ

M
, (6.2)

where e is the elementary charge (i.e. the ion charge) and M is the
ion mass.

The radial motion of an ion near the centre of the trapping potential

is described in terms of the Mathieu equation. When β � α � MΩ2
rf

4e
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the first-order solution describes ion motion in each radial direction
composed of two parts: harmonic motion with frequency ωx, ωy

called secular motion and driven motion with frequency Ωrf called
micromotion, where

ω2
x = 2

(
eα

MΩrf

)2

−
2eβ (1+ ε)

M
,

ω2
y = 2

(
eα

MΩrf

)2

−
2eβ (1− ε)

M
.

(6.3)

The secular approximation involves neglecting the fast oscillating
micromotion and interpreting the secular motion as generated by a
time-independent harmonic pseudopotential

Utrap = 1
2M(ω2

xx
2 +ω2

yy
2 +ω2

zz
2). (6.4)

The equilibrium position of a trapped ion is �r0 =
(
0 0 0

)
; at this

position both electric quadrupole potentials have saddle points and
thus both electric quadrupole fields have nulls.

Rydberg ions have giant polarisabilities ρ which scale with the prin-
cipal quantum number as n7. In an electric field of strength E a Ry-
dberg ion experiences an energy shift due to the quadratic Stark effect

ΔE = −1
2ρE

2. (6.5)

From Eq. (6.1) the trapping electric field is given by

�E = −�∇Φ = −2α cosΩrft

⎛
⎜⎜⎝

x

−y

0

⎞
⎟⎟⎠+ 2β

⎛
⎜⎜⎝
(1+ ε)x

(1− ε)y

−2z

⎞
⎟⎟⎠ . (6.6)

Rydberg excitation is carried out over a much longer timescale than

the trap period [
(
Ωeff
2π

)−1
�
(
Ωrf
2π

)−1
= 55ns in this system] and thus

we time-average the squared electric field strength, and use α2 � 2β2

to find

〈E2〉 ≈ 2α2
(
x2 + y2

)
. (6.7)
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And thus in addition to the trap pseudopotential [Eq. (6.4)] the highly-
polarisable Rydberg ion experiences the additional harmonic poten-
tial

Uadd = −
1

2
ρ〈E2〉 ≈ −ρα2(x2 + y2), (6.8)

and thus the radial trapping frequencies become

ωx → ω ′
x ≈

√
ω2

x −
2ρα2

M
,

ωy → ω ′
y ≈

√
ω2

y −
2ρα2

M
,

(6.9)

while the axial trapping frequency is still described by Eq. (6.2), be-
cause the z-dependence in Eq. (6.7) is negligible.

The energy for Rydberg excitation is thus shifted depending on
radial phonon numbers

ΔE = nx�hΔωx +ny�hΔωy, (6.10)

where

Δωx = ω ′
x −ωx,

Δωy = ω ′
y −ωy,

(6.11)

as sketched in Fig. 6.1(a).
The altered trapping pseudopotential also causes phonon-number-

changing transitions to be driven more strongly during Rydberg excit-
ation. This effect is more noticeable when the nulls of the quadrupole
trapping fields do not overlap, and it is discussed in Section 6.1.2.

Experimental results

The dependence of the energy required for Rydberg excitation on the
number of radial phonons [Eq. (6.10)] is observed directly by prepar-
ing an ion with a known number of radial phonons (nx and ny) and
measuring the Rydberg resonance frequency. The results in Fig. 6.1(b)
are consistent with Eq. (6.10). Preparation of phonon-number Fock
states is described in Section 3.1.3.
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Figure 6.2: (a) Because the Rydberg excitation transition frequency depends
on the number of phonons in radial modes, the Rydberg res-
onance linewidth is broader for a Doppler-cooled ion (with
broad phonon distributions) than a sideband-cooled ion (with
narrow phonon distributions). The fit of the Doppler cooled ion
resonance lineshape reflects thermal phonon distributions with
n̄x = n̄y = 23.1 ± 2.1. The expected lineshape of the Doppler
cooled ion resonance does not match the data as well, it uses in-
dependent estimates of n̄x = 14.7± 0.9, n̄y = 9.5± 0.8 and no fit
parameters. The 42S1/2 polarisability and the trap parameters
used result in Δωx ≈ Δωy = −2π× 20 kHz. Error bars indicate
quantum projection noise (68% confidence interval). Distribu-
tions of the total number of radial phonons are shown in (b).

6.1.2 With non-overlapping quadrupole field nulls

Stray electric fields can cause the electric quadrupole field nulls to
be separated [94], and excess micromotion results from this (see Sec-
tion 3.2.8). When the electric quadrupole field nulls do not overlap
additional effects emerge on a trapped Rydberg ion: phonon-number-
changing transitions are driven more strongly during Rydberg excita-
tion, and the energy required for Rydberg excitation depends on the
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distance between the field nulls. These effects stem from the altered
trapping pseudopotential of the Rydberg ion.

Before the experimental observation of these effects is shown, the
theory underlying these effects is presented.

Background theory

In this regime the null of the oscillating electric quadrupole field (�rrf)
and the null of the static electric quadrupole field (�rdc) do not overlap
(�rrf = �rdc). Then the equilibrium position of an ion in a low-lying
state (�rg) does not correspond to either null (�rg = �rrf,�rdc). Due to the
large Rydberg state electric polarisability the equilibrium position of
the Rydberg ion (�rR) does not overlap with the equilibrium position
of an ion in a low-lying state (�rR =�rg).

When the oscillating component of the trapping potential is centred
along the z-axis �rrf =

(
0 0 z

)
and the static trapping potential is

centred on �rdc =
(
xdc ydc 0

)
the total electric trapping potential is

modified from Eq. (6.1) and becomes

Φ = α cosΩrft(x
2−y2)−β[(1+ε)(x−xdc)

2+(1−ε)(y−ydc)
2−2z2].

(6.12)

The oscillating and static electric quadrupole fields (given by �E =

−�∇Φ) then have nulls which do not overlap. The separation between
�rrf and �rdc may be introduced by a static electric field

�Eoffset = −2β

⎛
⎜⎜⎝
(1+ ε)xdc

(1− ε)ydc

0

⎞
⎟⎟⎠ . (6.13)

For an ion in a low-lying state the trapping pseudopotential is then
centred on �rg =

(
xg yg 0

)
[94]

Utrap = 1
2M(ω2

x

(
x− xg

)2
+ω2

y

(
y− yg

)2
+ω2

zz
2), (6.14)
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where1

xg = −
2eβ (1+ ε) xdc

Mω2
x

,

yg = −
2eβ (1− ε)ydc

Mω2
y

.
(6.15)

Owing to its high polarisability, a Rydberg ion experiences an ad-
ditional harmonic potential which is centred on �rrf [since the approx-
imation in Eq. (6.7) still holds]

U ′
trap = Utrap −

1

2
ρ〈E2〉

≈ Utrap − ρα2(x2 + y2).
(6.16)

After some simple algebra, we find the trapping pseudopotential of
a Rydberg ion is centred on �rR =

(
xR yR 0

)
, and it is shifted in

energy (relative to the pseudopotential of the ion in a low-lying elec-
tronic state) by ΔU

U ′
trap = 1

2M(ω ′
x
2
(x− xR)

2 +ω ′
y
2
(y− yR)

2 +ω2
zz

2) +ΔU, (6.17)

where

xR = xg

(
1−

2ρα2

Mω2
x

)−1

,

yR = yg

(
1−

2ρα2

Mω2
y

)−1

,

(6.18)

ΔU = 1
2M

(
ω2

xx
2
g +ω2

yy
2
g −ω ′

x
2
x2R −ω ′

y
2
y2

R

)
≈ −ρα2(x2g + y2

g)

≈ −ρα2(x2R + y2
R) = −1

2ρ〈E(�rR)
2〉,

(6.19)

and ω ′
x and ω ′

y are unchanged from Eq. (6.9). The approximations

in Eq. (6.19) are valid when 2ρα2

Mω2
x

� 1 and 2ρα2

Mω2
y

� 1. From Eq. (6.19)

1 Generally ωx = ωy and ε = 0 and thus �rrf, �rdc and �rg are not collinear.
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we understand that the energy shift ΔU results from the electric field
at �rR acting on the highly-polarisable Rydberg ion.

Due to differences between the equilibrium positions �rg, and �rR

phonon-number-changing transitions may be driven strongly. Ry-
dberg resonance frequency shifts result from ΔU. These phenomena
(which stem from the Rydberg ion polarisability) are presented in the
following subsections.

Phonon-number-changing transitions

The motional components of the total ion wavefunction are described
by the eigenstates of the quantum harmonic oscillator. These eigen-
states are symmetric about the pseudopotential centre and they de-
pend on the phonon number and the pseudopotential frequency. Due
to the difference in trapping pseudopotentials, the radial motional
wavefunctions of ions in low-lying electronic states |nx〉, |ny〉 and
ions in Rydberg states |m ′

x〉, |m ′
y〉 do not overlap perfectly 〈m ′

x|nx〉 =
δmxnx , 〈m ′

y|ny〉 = δmyny . As a result phonon-number-changing
transitions may be driven during Rydberg excitation, with strengths
described by the overlap of the motional wavefunctions. The overlap
integrals are called Franck-Condon factors.2

Phonon-number-changing transitions are expected both when the
trapping field nulls overlap and when the nulls do not overlap. When
the nulls do not overlap the Franck-Condon factors may be signific-
antly higher and phonon-number-changing transitions may be driven
more strongly. This is shown in Fig. 6.3.

In the experiment we introduce an additional static electric field
[Eq. (6.13)] so that the saddle points of the electric quadrupole poten-
tials in Eq. (6.12) do not overlap (�rrf = �rdc). This means the pseudo-
potential centres do not overlap (�rR =�rg) and strong phonon-number-
changing transitions are observed in the Rydberg excitation spectrum,
shown in Fig. 6.4.

2 Since the Rydberg-excitation lasers counter-propagate (Section 4.4), the contribution
to phonon-number-changing transitions described by the Lamb-Dicke parameter is
small compared with the Franck-Condon factors considered in this section.
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Figure 6.3: Phonon-number-changing transitions are driven more strongly
during Rydberg excitation when the number of phonons is
higher and when the field nulls do not overlap. The strength
is given by the overlap of motional mode states (Franck-Condon
factors). Here a single radial mode is considered, and the trap-
ping frequencies obey ω ′ = 0.975 × ω. In (a) only transitions
which change the phonon-number by an even number are driven,
due to symmetry. In (b) the pseudopotential minima of a Ry-

dberg state and a low-lying state are separated by 0.2
√

�h
Mω .

During typical operation of the experiment we expect this sep-

aration to be ∼0.04
√

�h
Mω as a result of imperfect minimisation

of micromotion.

Using ΔU to minimise micromotion

Ion micromotion is introduced in Section 3.2.8. The amplitude of mi-
cromotion depends on the separation of the ion equilibrium position
and the RF field null |�rg −�rrf| [94]. Micromotion is minimised by in-
troducing static electric fields such that the distances between �rrf and
�rdc (and thus �rg and �rR) are minimised. The linear Paul trap has two
electrodes used to introduce these fields [see Fig. 3.3(b)]. Appropri-
ate compensation fields are found using a range of established tech-
niques, described in Section 3.2.8. Here we introduce a novel method
for micromotion minimisation: The separation |�rg −�rrf| causes a shift
in the energy required for Rydberg excitation ΔU [see Eq. (6.17)]; by
minimising this energy shift, micromotion is minimised.
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Figure 6.5: The Rydberg resonance frequency depends on the distance
between the electric quadrupole field nulls. (a) The Rydberg res-
onance frequency varies quadratically with the voltages applied
to micromotion compensation electrodes. The maximum reson-
ance frequency corresponds to the case with overlapping field
nulls (when micromotion is minimised). Here the horizontal mi-
cromotion compensation electrode voltage is varied. Error bars
are barely discernible on this graph, they result from laser fre-
quency drifts (68% confidence interval). (b) The Rydberg res-
onance frequency shift is proportional to the squared distance
between the ground state ion equilibrium position and the RF

field null, with gradient −ρα2/�h [according to Eq. (6.19)]. The
gradient thus depends on the Rydberg state polarisability. The
horizontal error bars result from uncertainty in the conversion
between voltage and distance (68% confidence interval).

Rydberg-excitation lasers. Laser frequency drifts (∼2π × 300Hz s−1)
limit the accuracy with which resonance frequencies are determined
and thus the accuracy with which ΔU is determined to ∼�h 2π ×
100kHz. Using Rydberg state 46S1/2 (with polarisability ρ46S =

6× 10−31 C m2 V−1) the residual oscillating electric field strength at
the equilibrium position of the ion �rg is reduced to Erf ∼ 20V m−1.
With the best micromotion minimisation techniques the residual field
strength can be reduced to Erf ∼ 0.3V m−1 [95].
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This method may allow significantly lower residual field strengths
to be reached if the frequency stability of the UV lasers was improved
and if Rydberg states with higher polarisabilities were used. With
laser frequency drifts <2π × 1Hz s−1 (this is experimentally realis-
able) ΔU may be determined with precision ∼�h 2π× 1kHz (provided
the Rydberg state resonance is narrow enough). nP1/2 states have po-
larisabilities ∼5 times higher than nS1/2 states and have been excited
in our lab (see the Outlook in Chapter 8). State 59P1/2 has linewidth
Γ ≈ 2π × 2kHz at 300K and polarisability ρ ≈ −1010 C m2 V−1. By
using 59P1/2 as a probe and with more stable frequency references
residual field strengths may be reduced to Erf ∼ 0.3V m−1.

In Fig. 6.5(b) we confirm Eq. (6.19) is followed quantitatively. The
voltage axis in Fig. 6.5(a) is converted to a distance in Fig. 6.5(b) using
the EMCCD camera image of a trapped ion. This method relies on
knowledge of the image magnification, which is measured using two
ions as described in Section 5.2.1.

6.2 effects on rydberg ions with large quadrupole mo-
ments

Rich resonance structures are observed when Rydberg D-states are
excited. The structures include Floquet sidebands, which result from
coupling between levels driven by the time-dependent electric quad-
rupole trapping field. The strength of this coupling depends on the
electric quadrupole moments of the states in question; effects of the
coupling are best observed with J > 1

2 states (such as nD3/2) which
have sizeable quadrupole moments.

The coupling is negligible for J = 1
2 states (nS1/2 and nP1/2) with

n < 50 [49], since J = 1
2 states have negligible quadrupole moments

and the energy separation between J = 1
2 and J > 1

2 states makes
coupling between them weak. The experiments proposed in Sec-
tion 1.3.1 are concerned with Rydberg S1/2- and P1/2-states because
they are simpler systems.

The theory behind the trap-induced coupling is presented in Sec-
tion 6.2.1. The observed effects of this coupling are understood in
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terms of Floquet theory; this theory is introduced in Section 6.2.2.
Experimental results are shown in Section 6.2.3.

6.2.1 Theory behind the trap-induced coupling

The Rydberg electron interacts with the trapping electric quadrupole
fields according to

HeQ = −eΦ (6.20)

= eβ
(
x2 + y2 − 2z2

)
− eα cosΩrft

(
x2 − y2

)
(6.21)

= −4

√
π

5
er2βY0

2 − 2

√
2π

15
er2α cosΩrft

(
Y2
2 + Y−2

2

)
(6.22)

=
∑
q

Aq︸︷︷︸
E-field

gradient

× er2Y
q
2︸ ︷︷ ︸

spherical electric
quadrupole moment

, (6.23)

where for clarity we define

A0 = −4

√
π

5
β, A±2 = −2

√
2π

15
α cosΩrft. (6.24)

We use the trapping potential from Eq. (6.1) and neglect the trap an-
isotropy ε. By writing HeQ in terms of spherical harmonics we see
HeQ is composed of spherical electric quadrupole moments and elec-
tric field gradients.

For Rydberg D-states the strength of HeQ (which scales as n4) is
much weaker than the fine structure splitting (∼n−3) until n ≈ 45. We
experimentally investigate 24D3/2 and 27D3/2, and thus to describe
the results we need only consider the manifold of states described by
quantum numbers {n,L,S, J} which have different mJ.
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In our experiment the trap axis coincides with the quantisation
axis (defined by the magnetic field, see Section 3.2.6) and the matrix
elements of the components of HeQ are

〈nLSJm ′
J|Aqer

2Y
q
2 |nLSJmJ〉

= Aqe〈nLJ|r2|nLJ〉〈LSJm ′
J|Y

q
2 |LSJmJ〉

(6.25)

= (−1)J−m ′
JAqe〈r2〉(LSJ||Y2||LSJ)

(
J 2 J

−m ′
J q mJ

)
(6.26)

= (−1)J−m ′
J+1 1

2

√
5

π
AqΘ(nLSJ)

×
(

J 2 J

−J 0 J

)−1(
J 2 J

−m ′
J q mJ

)
.

(6.27)

In Eq. (6.25) we make use of the separability of the atomic wavefunc-
tion and in Eqs. (6.26, 6.27) the Wigner-Eckard theorem is used. The
electric quadrupole moment of |nLSJ〉 is defined by the diagonal mat-
rix element of the state with mJ = J [131]

Θ(nLSJ) = −
e

2
〈nLSJJ|3z2 − r2|nLSJJ〉 (6.28)

= −2

√
π

5
e〈r2〉〈SLJJ|Y0

2 |SLJJ〉 (6.29)

= −2

√
π

5
e〈r2〉(SLJJ||Y2||SLJJ)

(
J 2 J

−J 0 J

)
. (6.30)

Whenever the trap axis and the quantisation axis do not coincide,
the matrix elements of HeQ are found by rotating between the bases
set by the trap axis and the quantisation basis. In the experiment the
axes coincide and so we do not need to rotate between bases here.

Selection rules become apparent through the properties of Wigner-
3j symbols. The electric quadrupole moment Θ(nLSJ) and the matrix
elements of Eq. (6.27) are zero when the triangle inequality |J− 2| � J

is not satisfied, i.e. for J = 1
2 states. This is why we do not observe

quadrupole effects in the excitation spectra of Rydberg S1/2-states.
Non-zero matrix elements must satisfy m ′

J = mJ + q and thus the
q = 0 term has only on-diagonal elements which cause levels to be
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shifted in energy, while the q = ±2 terms have only off-diagonal
elements which couple states which differ in mJ by 2. The coupling
oscillates with frequency Ωrf.

Hamiltonian HeQ is not only relevant in trapped Rydberg ion exper-
iments; trapped ion atomic clocks must account for quadrupole shifts
in transitions frequencies which result from HeQ [131]. Perturbation
theory is used to describe these shifts of ∼2π × 10Hz. The effects of
HeQ are more dramatic in Rydberg states because Θ(nLSJ) scales with
n4, for example Θ(27D3/2) = 5.3× 104 e a0

2 (calculated using the-
oretical wavefunctions, see Section 2.2), while Θ(4D5/2) = 3.0 e a0

2

[132] and Θ(4D3/2) = 2.0 e a0
2 [133].

The q = 0 term of HeQ causes the Zeeman sublevels of a nD3/2

state to be shifted according to

Es = (−1)|mJ|+1/22βΘ(nD3/2). (6.31)

This formula holds for a single trapped ion in the absence of micromo-
tion. When multiple ions are trapped the Coulombic fields contribute
to the static electric quadrupole fields [90].

The q = ±2 components of HeQ can be written as

Hrf = �hC cosΩrft

3/2∑
mJ=1/2

|nD3/2(mJ − 2)〉〈nD3/2mJ|

+ |nD3/2(mJ + 2)〉〈nD3/2mJ|,

(6.32)

where

C =
2αΘ(nD3/2)√

3�h
. (6.33)

The two effects are represented in Fig. 6.6.
When we excite 24D3/2 and 27D3/2 Rydberg states in the labor-

atory we observe rich resonance structures containing Floquet side-
bands. The sidebands appear because the coupling strength C is
comparable with the trap drive Ωrf and thus effects of Hrf extend bey-
ond what may be described within the rotating wave approximation.
Floquet theory is introduced next, before the experimental results are
shown in Section 6.2.3.
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Figure 6.6: The static electric quadrupole field shifts the energies of Rydberg
D3/2-state sublevels. When the trap axis and magnetic field are
collinear the RF oscillating field couples next-neighbouring sub-
levels. In the absence of trap effects sublevels are split because
of the Zeeman effect.

6.2.2 Floquet theory

The energy spectrum of a periodically-driven system, with drive fre-
quency Ω, shows sidebands at integer multiples of �hΩ. These side-
bands may be understood in terms of Floquet theory, which is out-
lined here following the approach in [134].

The Hamiltonian of a periodically-driven system satisfies

H(�r, t) = H(�r, t+ T), (6.34)

where T = 2π
Ω . The periodicity of H suggests looking for solutions

of the time-dependent Schrödinger equation ψ(�r, t) with the same
periodicity (to within a phase factor)

ψ(�r, t) = e−iεt/�hφε(�r, t), (6.35)

where

φε(�r, t) = φε(�r, t+ T). (6.36)

By substituting Eq. (6.35) into the time-dependent Schrödinger equa-

tion Hψ = i�h
∂ψ

∂t
we see

(
H− i�h

∂

∂t

)
φε = εφε (6.37)
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and thus φε is an eigenstate of

H = H− i�h
∂

∂t
. (6.38)

The eigenvalue ε is called a quasi-energy and the solution of Eq. (6.37)
is a quasi-energy state or Floquet state. For each eigenstate φε of
H with eigenvalue ε there is a family of eigenstates φεe

ikΩt which
belong to the same Floquet state. The states have eigenvalues ε+k�hΩ

and k takes integer values.
Floquet states form a convenient basis for modelling a periodically-

driven system; the time-dependence of the drive is transferred onto
the basis states, such that the coupling between Floquet states is time-
independent. This means methods for solving the time-independent
Schrödinger equation or Liouville equation may be used. The down-
side is that the dimension of a system is larger in the Floquet basis
than in the bare state basis [135].

The Floquet basis may be used to gain insight into a periodically-
driven system. In Fig. 6.7 a manifold of Rydberg nD3/2 states is
expanded in the Floquet basis and the coupling of Eq. (6.32) is repres-
ented. The difference in quasi-energy between coupled levels is given

Quasi-

energy

m
J
 = nD

3/2
3
2

1
2 + 1

2 + 3
2

coupling

k=-1

k=0

k=1

..
.

..
.

Figure 6.7: Quadrupole field-driven coupling between levels shown in the
Floquet basis: k is an index which labels Floquet modes, states
with ΔmJ = 2 and Δk = 1 are coupled. For clarity only coupling
between mJ = −1

2 and 3
2 states is shown.

by both �hΩrf and the Zeeman splitting of the levels. As a result the
excitation spectra of Rydberg D3/2-states include Floquet sidebands
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which are positioned at ±Ωrf relative to next-neighbouring Zeeman
sublevels (ΔmJ = ±2).

6.2.3 Experimental results

The coupling between Rydberg states driven by the oscillating quad-
rupole field is observed in the excitation spectrum of 27D3/2. The
ion is prepared in a mixture of 4D3/2 sublevels. The data shown
in Fig. 6.8(a) is recorded using UV laser light which drives the two-
photon transitions 4D3/2, mJ =

3
2 ↔ 27D3/2, mJ =

3
2 and 4D3/2, mJ =

1
2 ↔ 27D3/2, mJ = 1

2 . These transitions are selected by using ap-
propriate polarisations of the UV laser beams (see Section 4.5). The
excitation spectra corresponding to these two transitions overlap, this
is because neither transition is affected by the Zeeman effect, and be-
cause both Rydberg states couple to the next-neighbouring sublevel
with ΔmJ = −2.

Spectra are measured using two different strengths of trapping
fields; Floquet sidebands are observed in both cases. When stronger
trapping fields are used the coupling C between the levels is higher
and the sidebands are more pronounced. The sidebands appear near
to multiples of the frequency of the oscillating trapping electric field
Ωrf = 2π× 18.2MHz.
Hrf couples states with ΔmJ = ±2. As shown in Fig. 6.8(b), the first-

order sidebands are offset from the next-neighbouring Zeeman levels
by ±Ωrf and thus the offset from the carrier transition is (±Ωrf − 2π×
6.5MHz) in the magnetic field of strength B = 0.29mT. The second-
order sidebands are offset from the carrier transition by ±2Ωrf.

Using the theory value of the quadrupole moment Θ(27D3/2) =

5.3× 104 e a0
2 (see Section 2.2) and Eqs. (6.31, 6.33) we can estim-

ate the coupling strength C and the energy shift |Es|: With relatively
strong trapping fields (field gradients α = 8.2× 108 V m−2 and β =

6.8× 106 V m−2) C = 2π × 34MHz and |Es|/�h = 2π × 490kHz. With
weaker trapping fields (α = 3.3× 108 V m−2 and β = 5.7× 105 V m−2)
C = 2π × 14MHz and |Es|/�h = 2π × 41 kHz. Floquet sidebands
emerge because C � Ωrf. The energy shifts |Es| are not resolved.
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Figure 6.8: (a) The oscillating quadrupole trapping field couples the 27D3/2

sublevels, this results in Floquet sidebands in 27D3/2 excitation
spectra. The trapping field oscillates at Ωrf = 2π × 18.2MHz;
first-order Floquet sidebands are observed around 2π× 18MHz
from the carrier resonance, second-order sidebands are observed
around 2π× 36MHz from the carrier. The sidebands are stronger
when stronger trapping fields are used. The frequency axis
has uncertainty ≈2π× 2MHz in the centre frequency and ∼10%
uncertainty in a frequency range, as explained in the body
text. Error bars indicate quantum projection noise (68% confid-
ence interval). (b) The relevant trap-induced coupling for state
nD3/2, mJ = 3

2 is shown in the Floquet basis. First-order Flo-
quet sidebands (red) result from coupling to the mJ = −1

2 sub-
level. Second-order sidebands (green) result from coupling first
to the mJ = −1

2 sublevel then to the mJ =
3
2 sublevel.

The frequency axis in Fig. 6.8(a) has uncertainty ≈2π × 2MHz in
the centre frequency and ∼10% uncertainty in a frequency range.
These uncertainties result because of the method used to scan the
307nm laser frequency: The frequency was scanned by changing
the length of the 615nm laser frequency reference using piezoelec-
tric rings (Section 3.3.4); the piezoelectric rings respond linearly only
to a first approximation, they also show hysteresis effects. The centre
frequency is estimated by measuring excitation spectra between other
sublevels of 4D3/2 and 27D3/2 using different UV laser light polarisa-
tions, then taking the average centre frequency of all the excitation
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spectra. Further data has been collected since introduction of the
AOM used to scan the 307nm laser frequency. This data is published
in [130] and shows excitation spectra of 24D3/2. The spectra are, how-
ever, less easy to interpret because of ac-Stark shifts.





7
C O H E R E N T E X C I TAT I O N O F RY D B E R G S TAT E S

In neutral Rydberg atom systems a host of quantum mechanical phe-
nomena have been investigated, several of which are reviewed in Sec-
tion 1.2. Quantum mechanical phenomena are observed most easily
in isolated systems with strong coupling between only a few levels.
With our understanding of Rydberg ion trap effects (see Chapter 6)
we isolate a single Rydberg level and couple it with two other atomic
levels using light fields; we then investigate the quantum-mechanical
phenomena which appear.

While coupling between two levels gives rise to Rabi oscillations,
coupling between the levels of a three-level system results in a range
of phenomena [136], including the Autler-Townes effect (reported
in Section 7.2), electromagnetically-induced transparency (EIT), two-
photon Rabi oscillations (Section 7.3), as well as stimulated Raman
adiabatic passage (STIRAP) (Section 7.4). Using STIRAP for coherent
Rydberg excitation and deexcitation we measure the Rydberg state
lifetime (Section 7.4.2) and carry out a single-qubit Rydberg phase
gate (Section 7.4.3). This gate demonstrates the basic workings of a
Rydberg ion quantum computer. Many of the results in this chapter
are published in Physical Review Letters [137].

Before describing the results, the three-level system is introduced
in Section 7.1.

7.1 the three-level system

A single Rydberg level is coupled to two other atomic levels using two
UV laser fields. To isolate a single Rydberg level we avoid trap-driven
coupling between Rydberg states (Section 6.2) by using a Rydberg
S-state and we mitigate effects of the trap on the highly-polarisable
Rydberg state (Section 6.1) by employing radial sideband cooling and
by minimising micromotion.
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The three levels coupled by light fields are |0〉 ≡ 4D5/2, mJ = −5
2 ,

|e〉 ≡ 6P3/2, mJ = −3
2 and |r〉 ≡ nS1/2, mJ = −1

2 . A sublevel of
4D5/2 is used rather than a sublevel of 4D3/2 since population may
be initialised in a single 4D5/2 sublevel (Section 3.1.3). The levels are
in a ladder configuration, as shown in Fig. 7.1.

2

304 nm –

309 nm

1

243 nm
5P

1/2
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1/2

 – | 〉
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3/2

 – | 〉

4D
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 – |0〉
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 – |1〉

2

1

674 nm

Γ

Γ

Figure 7.1: Three atomic levels of 88Sr+ are coupled by two UV laser fields.
Population in |e〉 or |r〉 decays mostly to 5S1/2; detection of
scattered 422nm light heralds excitation from |0〉 and decay to
5S1/2. A 4D5/2 sublevel and a 5S1/2 sublevel are used to store
a qubit.

Within the rotating wave approximation the coupling Hamiltonian
describing the light-matter interaction is given by

Hc =
�h

2

⎛
⎜⎜⎝

0 Ω1 0

Ω1 2Δ1 Ω2e
iφ

0 Ω2e
−iφ 2Δ1 + 2Δ2

⎞
⎟⎟⎠ (7.1)

in the basis {|0〉, |e〉, |r〉}. Ω1, Ω2, Δ1 and Δ2 are the Rabi frequencies
and detunings from resonance of the first and second Rydberg excita-
tion laser fields, and φ is the relative phase of the Rydberg excitation
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laser fields within the rotating frame. The lifetimes and decay rates
of |e〉 and |r〉 are given by τe, Γe and τr, Γr.

7.2 autler-townes effect

When two levels of a three-level system are coupled by an intense
field, the absorption peak of a transition involving the third level,
probed by a weak field, is split [138]. This phenomenon is called the
Autler-Townes effect.

The first Rydberg excitation laser field probes the |0〉 ↔ |e〉 trans-
ition while the second Rydberg excitation laser field couples |e〉 and
|r〉. The |0〉 ↔ |e〉 resonance lineshape is observed by scanning the
frequency of the probe laser across the resonance, with Ω1 � Γe, as
is described in Section 4.1.1. When the |e〉 and |r〉 levels are strongly
coupled (Ω2 > Γe, Γr), the absorption profile of the probe field shows
two peaks. When the coupling field is resonant with the |e〉 ↔ |r〉
transition (Δ2 = 0) the splitting of the peaks is given by the coupling
field Rabi frequency Ω2. This effect is shown in Fig. 7.2.

When Ω2 > Γe � Ω1 the eigenstates and eigenvalues of Eq. (7.1)
are

|φ0〉 = |0〉 E0 = 0 (7.2)

|φ±〉 = −Δ2 ±
√

Δ2
2 +Ω2

2

Ω2
|e〉+ |r〉 E± =

�h

2

(
Δ2 ±

√
Δ2

2 +Ω2
2

)
.

(7.3)

|φ0〉 is the bare atomic state |0〉, |φ±〉 are light-dressed states. When
Δ2 = 0 the dressed eigenstates simplify to |φ±〉 = |e〉 ± |r〉 and the
difference between the eigenenergies becomes E+ − E− = �hΩ2. Thus
the resonance peaks in Fig. 7.2 correspond to excitation of the dressed
states |e〉± |r〉, split by Ω2. When |Δ2| � Ω2 the eigenenergies E± take
the familiar form of the ac-Stark shift.

By fitting a model of the resonance structure to the experimental
data we can extract Ω2 and Δ2. The model is derived by including
decay channels from |e〉 and |r〉 to the 5S1/2 state. The derivation in-
volves adiabatic elimination of |e〉 and |r〉, which is justified as follows:
The decay rates of the dressed states are of similar magnitudes as the
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Figure 7.2: Autler-Townes splitting in the three-level system. The ion is
prepared in |0〉 and illuminated by the probe laser light. The
Lorentzian absorption profile of |0〉 ↔ |e〉 is observed when the
coupling laser field is switched off. When the resonant coupling
field is switched on an Autler-Townes doublet emerges, with
splitting Ω2. The solid lines are fits to the data; the fits re-
turn Ω2 = 2π × (7.88 ± 0.25)MHz for the blue data points and
Ω2 = 2π× (20.9± 0.4)MHz for the dark blue data points. Here
|r〉 = 42S1/2, mJ = −1

2 . Error bars indicate quantum projection
noise (68% confidence interval).

decay rate of |e〉, which greatly exceeds Ω1; Γe � Ω1. This means
that the dressed states do not become significantly populated, and
thus the levels |e〉 and |r〉 do not become significantly populated. As
is shown in Fig. 7.2 the model describes the experimental data well.

The measurement of the resonance structure is repeated as Δ2 is
varied; results are shown in Fig. 7.3. The resonance positions follow
the ac-Stark formula. The results show the avoided crossing of the
dressed states’ eigenenergies E±.
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lines. A fit to the data returns Ω2 = 2π × (12.08 ± 0.08)MHz.
Here |r〉 = 42S1/2, mJ = −1

2 .

7.3 two-photon rabi oscillations

The theory proposals for systems of trapped Rydberg ions in Sec-
tion 1.3.1 involve coherent excitation and deexcitation of Rydberg
states. Coherent excitation and deexcitation is demonstrated in this
section by two-photon Rabi oscillations. In Section 7.4 coherent ex-
citation and deexcitation is carried out using stimulated Raman adia-
batic passage (STIRAP). The two approaches use notably different laser
parameters, for instance, synchronous UV laser pulses are used in this
section, while STIRAP involves a sequence of laser pulses.

This section proceeds as follows: Experimental requirements are
explained in terms of the theory behind two-photon Rabi oscillations
in Section 7.3.1. Experimental results are discussed in Section 7.3.2.
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7.3.1 Theoretical background

This method results in coherent transfer of population between |0〉
and |r〉 without the lossy state |e〉 becoming populated. To avoid
populating |e〉 the Rabi frequencies and detunings satisfy Ω1 � |Δ1|

and Ω2 � |Δ2|. Two-photon Rabi oscillations also require that the
two-photon detuning between |0〉 and |r〉 Δ2-photon ≈ Δ1 +Δ2 is small
compared with the effective two-photon Rabi frequency Ωeff.

Population is unlikely to be transferred to |e〉. Because of fast radiat-
ive decay out of the lossy state |e〉, with rate Γe, significant population
cannot build up in |e〉. We can assume the rate of change of popula-
tion in |e〉 is zero and adiabatically eliminate this state. The coupling
Hamiltonian Hc [Eq. (7.1)] then becomes

H ′
c =

�h

2

(
−

Ω2
1

2Δ1
−Ω1Ω2

2Δ1

−Ω1Ω2
2Δ1

−
Ω2

2
2Δ1

+ 2Δ1 + 2Δ2

)
(7.4)

in the basis {|0〉, |r〉}. The condition for two-photon resonance comes
from the diagonal elements

Δ2-photon = Δ1 +Δ2 +
Ω2

1−Ω2
2

4Δ1︸ ︷︷ ︸
ac-Stark shifts

= 0. (7.5)

This condition already accounts for level shifts which result from the
ac-Stark effect.1

The off-diagonal elements present the coupling between |0〉 and |r〉
with effective Rabi frequency

Ωeff =
Ω1Ω2

2Δ1
. (7.6)

Unwanted off-resonant excitation of |e〉 from |0〉 and from |r〉 occurs
with rates [139]

R0→e =
Γe

4

Ω2
1

Δ2
1 +

Ω2
1

2 + Γ2
e

4

≈ ΓeΩ
2
1

4Δ2
1

,

Rr→e =
Γe

4

Ω2
2

Δ2
2 +

Ω2
2

2 + Γ2
e

4

≈ ΓeΩ
2
2

4Δ2
2

.
(7.7)

1 Interestingly these shifts cancel when Ω1 = Ω2 for a three-level ladder system,
provided that coupling to levels outside the three-level system can be ignored.
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Efficient transfer of population between |0〉 and |r〉 requires Ωeff �
R0→e, Rr→e. The ratios of Ωeff to R0→e and to Rr→e can be increased
by increasing the magnitudes of the detunings Δ1 and Δ2.

There is, however, a detrimental effect of increasing |Δ1|; Ωeff de-
pends inversely on |Δ1| [from Eq. (7.6)] and if Ωeff is too small then
Rydberg state decay Γr limits the transfer efficiency. And thus when
choosing Δ1 and Δ2 a compromise must be reached between losses
due to scattering off |e〉 and losses due to Rydberg state decay.

Finally laser linewidths Δlaser contribute to the two-photon detun-
ing and must be small compared with the two-photon Rabi frequency
for efficient transfer between |0〉 and |r〉.

In summary, to achieve high-visibility two-photon Rabi oscillations
we require

Ωeff � Γr, R0→e, Rr→e, Δ2-photon, Δlaser. (7.8)

7.3.2 Experimental results

Two-photon Rabi oscillations between |0〉 and |r〉 = 46S1/2, mJ = −1
2

are observed for a sideband cooled ion, but not for a Doppler cooled
ion, as shown in Fig. 7.4.

We use Ωeff = 2π × (1.23 ± 0.09)MHz � Γ46S = 2π × 34.4kHz
(calculated using wavefunctions described in Section 2.2), R0→e =

(15.4± 2.0)μs−1, Rr→e = (88± 8)μs−1 and Δlaser ≈ 2π× 100kHz (for
each of the UV lasers – see Section 3.3.4).

The two-photon detuning Δ2-photon depends on the number of ra-
dial phonons, due to effects of the additional trapping potential ex-
perienced by the highly-polarisable Rydberg ion (Section 6.1). After
radial sideband cooling, an ion has narrow radial phonon distribu-
tions and Rydberg resonances are narrow. The two-photon detuning
is then Δ2-photon = 2π × (0 ± 150)kHz � Ωeff. The criteria for two-
photon Rabi oscillations [Eq. (7.8)] are satisfied and the Rabi oscilla-
tions are shown in Fig. 7.4.

The Doppler cooled ion has broader radial phonon distributions
and the two-photon detuning depends on the number of radial phon-
ons in each experimental run. The mean absolute detuning is not
much smaller than the effective Rabi frequency |Δ2-photon| ≈ 2π ×
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Simulations of the experiment

To find what limits the Rabi oscillation visibility, the experiment is
simulated by numerically solving the Lindblad master equation us-
ing the Python framework QuTiP [140]. Experimentally-determined
parameters are used.

To simulate the sideband cooled ion, the simulation includes four
electronic levels {|0〉, |e〉, |r〉, 5S1/2} and eight dimensions which rep-
resent the motional degrees of freedom in the radial directions; popu-
lation is assumed to be spread over the motional degrees of freedom
according to thermal distributions with an average of 0.2 phonons
in each mode. The change of the trapping potential experienced by
Rydberg ions is included by a phonon-number-dependent resonance
shift and by phonon-number-changing transitions coupled with the
Rydberg excitation. The strengths of the phonon-number-changing
transitions are determined by Franck-Condon factors, and the contri-
bution from any mismatch between the positions of the nulls of the
two quadrupole trapping fields is neglected (see Section 6.1.2).

Uncertainties in the experimental parameters are accounted for us-
ing a Monte Carlo method: parameters are drawn from Gaussian
probability distributions (the widths of the distributions are given by
the uncertainties of the experimental parameters) and the simulation
is repeated 500 times. From the set of simulations the 68% confidence
interval for the |0〉 population at each simulation step is determined
and plotted as the shaded area in Fig. 7.4. The simulation results
match the experimental results well.

Higher visibility Rabi oscillations between low-lying states and Ry-
dberg states have been carried out in neutral Rydberg atom experi-
ments [52]. Further simulations indicate the oscillation visibility in
our experiment is mainly limited by the Rydberg excitation lasers
linewidths as well as Rydberg state decay. The visibility may be im-
proved by exciting higher Rydberg states with longer lifetimes, by
reducing the linewidths of the UV lasers and by using higher effective
two-photon Rabi frequencies.

Trap effects related to the high Rydberg state polarisability (Sec-
tion 6.1) are effectively mitigated by radial sideband cooling; simula-
tions which do not account for trap effects return oscillations with
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only marginally higher visibilities (0.1% higher) than simulations
which include trap effects.

The experiment with a Doppler cooled ion is also simulated using
experimentally-determined parameters and a Monte Carlo method.
The Doppler cooled ion has population spread over many more pho-
non number states than the sideband cooled ion; to speed up the
Monte Carlo simulations phonon-number-changing transitions are
not included. This is justified because simulations indicate that the
effect of phonon-number-changing transitions on the oscillation vis-
ibility is dwarfed by the effect of the phonon-number-dependent res-
onance shift, provided that the positions of the nulls of the two quad-
rupole trapping fields overlap (Section 6.1.1).

The simulations predict low-visibility Rabi oscillations, which are
not observed experimentally. It may be that the nulls of the quad-
rupole trapping fields are significantly separated, and that strongly-
driven phonon-number-changing transitions cause dephasing which
dampens the oscillations such that oscillations are not resolved (Sec-
tion 6.1.2). Such phonon-number-changing transitions are stronger
for high phonon number states than for low phonon number states
(see Fig. 6.3). This means the phonon-number-changing transitions
may be negligible for a sideband cooled ion while they may signific-
antly decrease the oscillation visibility for a Doppler cooled ion.

7.4 stimulated raman adiabatic passage

In addition to using synchronous UV laser pulses (as in Section 7.3),
the |0〉 ↔ |r〉 transition can be driven coherently using a sequence
of pulses in a technique called stimulated Raman adiabatic passage
(STIRAP).

STIRAP is a method for transferring population between two quan-
tum states; the transfer proceeds by using light fields to couple the
two states to a third intermediate state. When implemented correctly,
population is transferred between the two states without the interme-
diate state becoming populated. And thus the transfer process does
not suffer from losses due to spontaneous emission from the inter-
mediate state, even when the STIRAP transfer occurs over timescales
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longer than the intermediate state lifetime. STIRAP has the additional
advantage that it is insensitive to small variations of experimental
parameters including laser powers, laser frequencies, pulse timing
and pulse shapes [141].

In Section 7.4.1 the method is described further and population
transfer between |0〉 and |r〉 with (91 ± 3)% efficiency is shown. In
Section 7.4.2 STIRAP is used to measure a Rydberg state lifetime. Fi-
nally in Section 7.4.3 geometric phases are introduced to a qubit state
via Rydberg excitation and deexcitation by STIRAP and a single-qubit
geometric gate is carried out. This gate demonstrates the basic opera-
tion of a Rydberg ion quantum computer.

7.4.1 Coherent Rydberg excitation using STIRAP

When the UV laser detunings cancel each other (Δ1 + Δ2 = 0) the
coupling Hamiltonian [Eq. (7.1)] has a “dark” eigenstate

|Φdark〉 = Ω2e
iφ|0〉−Ω1|r〉. (7.9)

The dark state is named so because it does not contain any component
of |e〉 and thus the Rydberg excitation laser light is not scattered by
an ion in the dark state during timescales much less than the Rydberg
state lifetime τr.

Population transfer by STIRAP proceeds by having the state vector
follow the dark state as the ratio Ω1

Ω2
is varied and the character of

the dark state is changed between |0〉 and |r〉. The state vector follows
the dark state provided the dark state changes adiabatically. The
adiabaticity criterion [142] is

|θ̇(t)| �
√

Ω1(t)2 +Ω2(t)2, (7.10)

where the mixing angle θ(t) is given by

tan θ(t) =
Ω1(t)

Ω2(t)
. (7.11)
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STIRAP pulse sequence

We implement STIRAP by varying Ω1 and Ω2 sinusoidally during the
rise time trise. While 0 � t � trise

Ω1(t) = Ωpeak sin
πt

2trise
,

Ω2(t) = Ωpeak cos
πt

2trise
,

(7.12)

where the peak Rabi frequencies Ωpeak are the same for both Ω1

and Ω2. Pulse shaping is achieved by driving acousto-optic mod-
ulators (AOMs) using arbitrary waveform generators (Section 3.3.2).
The shapes and the temporal overlap of the pulses are checked using
photodiodes. Pulse sequences are shown in Fig. 7.5.

The order of the pulses is counter-intuitive; to transfer population
from |0〉 → |r〉 the 306nm laser pulse is applied before the 243nm
laser pulse. Because the pulses are sinusoidally-shaped the mixing
angle [Eq. (7.11)] changes at a constant rate during the rise time trise

θ(t) =
πt

2trise
(7.13)

and the adiabaticity criterion takes the simple form

π

2trise
� Ωpeak. (7.14)

In the experiment the Rabi frequencies Ω1, Ω2 and the detunings
Δ1, Δ2 are found using the methods in Sections 4.1.1 and 7.2. The
requirement Δ1 + Δ2 = 0 is met by setting Δ1 = Δ2 = 0. Ωpeak is
limited by the maximum value of Ω1 and thus by the 243nm laser
light intensity at the position of the ion. We use trise = 200ns and
Ωpeak ≈ 2π × 47MHz and satisfy the adiabaticity criterion π

2trise
=

2π × 1.25MHz � Ωpeak = 2π × 47MHz. trise must be long for the
state vector to adiabatically follow the dark state, however if it is too
long there are losses from Rydberg state decay (τr ≈ 2.3μs for 42S1/2)
and from decoherence due to finite laser linewidths. trise = 200ns is
chosen as a compromise. The Rydberg excitation lasers linewidths
are each estimated to be ∼2π× 100kHz (Section 3.3.4).
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Figure 7.5: STIRAP pulse sequences. The evolution of the dark state is written
beneath each pulse sequence. The third sequence is a condensed
version of the second sequence.

Detection of population transfer by STIRAP

State detection in our system takes longer than the lifetime of |r〉. As
is described in Sections 4.1.1 and 4.3, detection of population excited
from |0〉 to |e〉 or from |0〉 to |r〉 relies on decay from |e〉 or |r〉 to 5S1/2
and 4D3/2; population in 5S1/2 and 4D3/2 is then distinguished from
population in |0〉 by electron shelving (Section 3.1.4). This method
does not distinguish successful transfer to |r〉 from scattering off |e〉;
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in both cases there is decay to 5S1/2 and 4D3/2 and thus this method
is not able to confirm population transfer by STIRAP.

Instead population transfer is detected by comparing the popula-
tion residing in |0〉 after application of the single STIRAP pulse se-
quence and application of the double STIRAP pulse sequence (pulse
sequences are shown in Fig. 7.5). After the single STIRAP pulse se-
quence (95+2

−5)% of the population is removed from |0〉. After the
double STIRAP pulse sequence up to 58% of the population resides in
state |0〉. This indicates the second set of pulses in the double STIRAP

pulse sequence returns population to |0〉 and thus demonstrates excit-
ation and deexcitation by STIRAP. These results are shown in Fig. 7.6.
The return of population to |0〉 is not perfect because the state vector

single

STIRAP

sequence

double STIRAP sequence

               experimental data

 = (2.3–0.4) μs

               theory  = 3.5 μs
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Figure 7.6: Coherent Rydberg excitation by STIRAP shown by comparing the
results of applying the single and the double STIRAP pulse se-
quences to an ion initially in state |0〉. (5+5

−3)% of the population
remains in |0〉 after the single STIRAP pulse sequence; the rest of
the population is transferred to 5S1/2 via |e〉 or |r〉. Most of the
population may lie in |0〉 after the double STIRAP pulse sequence,
this shows population is successfully excited to the Rydberg state
|r〉 = 42S1/2, mJ = −1

2 then de-excited to |0〉. The 42S1/2 state
lifetime is obtained by varying the wait time between the two
sets of STIRAP pulses and measuring the returned population.
Error bars indicate quantum projection noise (68% confidence
interval).
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does not follow the dark state perfectly, due to Rydberg state decay,
finite laser linewidths and the short trise.

Using the shortened double STIRAP pulse sequence in Fig. 7.5(c) the
detrimental effect of Rydberg state decay is reduced and (83+5

−6)% of
the population is returned to |0〉. This indicates a transfer efficiency√

(83+5
−6)% = (91±3)%, which exceeds the highest STIRAP efficiencies

reported in systems of neutral Rydberg atoms (60%) [143–145]. In
Section 7.4.3 ways to improve the transfer efficiency are discussed.

7.4.2 Measurement of a Rydberg state lifetime

In this section the first lifetime measurement of a trapped Rydberg
ion is described. This measurement relies upon coherent Rydberg
excitation and deexcitation using STIRAP.

During the wait time between the two sets of pulses in the double
STIRAP pulse sequence [see Fig. 7.5(b)] population may decay from
|r〉; this population is not returned to |0〉 by the second set of STIRAP

pulses. We determine the lifetime of |r〉 by measuring the popula-
tion returned to |0〉 as the wait time is varied. We measure τexp =

(2.3+0.5
−0.4)μs for 42S1/2, as shown in Fig. 7.6.

The theoretical value for the lifetime of 42S1/2 is τ300K = 3.5μs
when the surroundings have temperature 300K (similar to the labor-
atory temperature). This value accounts for radiative decay as well as
transitions driven by blackbody radiation (see Section 2.4).

The discrepancy between the theory value and the experimental
value of the lifetime may be due to imperfect extinction of 306nm
laser light during the wait time of the double STIRAP pulse sequence.
During this time weak 306nm laser light could drive the |r〉 ↔ |e〉
transition and population may be lost due to decay from |e〉. As a
result the measured lifetime of 42S1/2 would be shortened.

Comparison between the theoretical value and the experimental
value of the lifetime suggests there is no significant lifetime reduc-
tion because of confinement in the trap. This is an important result;
if the Rydberg state lifetime was significantly shortened by the trap
the viability of Rydberg ions as a quantum technology may be lim-
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ited, since Rydberg state lifetimes place fundamental limits on gate
fidelities [80] and resonance linewidths.

7.4.3 Geometric phase measurements

A geometric phase is introduced to qubit state |0〉 via Rydberg excita-
tion and deexcitation using a STIRAP pulse sequence. This section pro-
ceeds as follows: the theory behind geometric phases is established,
the experimental implementation is then described, the measurement
of the geometric phase using a Ramsey-type experiment is presen-
ted, and finally a single-qubit Rydberg gate which uses the geometric
phase is discussed.

Theory behind geometric phases

When a quantum system is changed slowly in a cyclic fashion the
eigenstates of the Hamiltonian accumulate dynamic and geometric
phases [146]. The dynamic phase φdyn results from the evolution of
an eigenenergy; the eigenstate |n(t)〉 with eigenenergy εn(t) which
evolves during a cycle with period T accumulates dynamic phase

φdyn = −
1
�h

∫T
0

εn(t
′)dt ′. (7.15)

The geometric phase accumulated is given by

γ = i

∫T
0

〈n
(
�R(t ′)

)
|
d

dt ′
|n
(
�R(t ′)

)
〉dt ′ (7.16)

= i

∮
C

〈n
(
�R(t ′)

)
|�∇�Rn

(
�R(t ′)

)
〉 · d�R, (7.17)

where the quantum system is parameterised by a set of parameters �R
and the system follows the closed path C in the parameter space such
that �R(T) = �R(0). Unlike the dynamic phase, the geometric phase
does not depend on the rate at which the system evolves along C.

Introduction of a geometric phase in the experiment

In our system we accumulate a geometric phase during the shortened
double STIRAP pulse sequence by varying the mixing angle θ [see
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Eq. (7.11)] and the phase difference between the UV laser fields within
the rotating frame φ in a closed cycle, following a protocol recently
used with a solid-state qubit [147]. The cycle is parameterised by

�R =

(
θ

φ

)
and follows

(
0

0

)
→
(
π

0

)
→
(
π

Φ

)
→
(
0

Φ

)
→
(
0

0

)
. (7.18)

During the cycle the dark state traverses the surface of the Bloch
sphere spanned by |0〉 and |r〉 in Fig. 7.7(a); the mixing angle θ corres-
ponds to the polar angle, the phase difference φ corresponds to the
azimuthal angle.

The dark state moves from the 0-pole to the r-pole, then back to
the 0-pole. The phase of the second Rydberg excitation laser light
is changed by Φ when the dark state is at the r-pole, that is when
Ω2 = 0, and the dark state returns to the 0-pole along a different
meridian (line of constant φ). The complete path takes the form of
a tangerine slice with wedge angle Φ.2 The path circumscribes solid
angle 2Φ and from Eqs. (7.9, 7.17) the geometric phase −Φ is accu-
mulated throughout the process [147]. During the cycle the dark state
changes from |0〉 → −|r〉 → e−iΦ|0〉.

Measurement of the geometric phase

While the global phase of a quantum state cannot be measured, phase
differences between quantum states can be measured. The geometric
phase introduced to qubit state |0〉 during the cycle is measured via a
Ramsey experiment (which uses the qubit state |1〉 ≡ 5S1/2, mJ = −1

2

as a phase reference) as follows:

1. The ion is prepared in superposition state |ψ〉 = |0〉 + |1〉 as
described in Section 3.1.3.

2 Note that φ represents the variable phase difference between the two UV laser fields
within the rotating frame, while Φ represents the phase step introduced to the
306nm laser light during the sequence and thus the wedge angle of the path fol-
lowed by the dark state in Fig. 7.7(a).
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Figure 7.7: Accumulation of a geometric phase during a Rydberg excitation
process. (a) During the shortened double STIRAP pulse sequence
the dark state moves in a ‘tangerine-slice’ trajectory on the sur-
face of the Bloch sphere spanned by |0〉 and |r〉. The wedge angle
is determined by the phase step of the 306nm laser light. The
mixing angle in Eq. (7.11) corresponds to the polar angle on
the Bloch sphere. A geometric phase results from the curvature
of the area enclosed by the trajectory. (b) The geometric phase
is measured by using the qubit state |1〉 as a phase reference,
and measuring the phase difference between |0〉 and |1〉 by a σ̂y-
measurement. Here |r〉 = 42S1/2, mJ = −1

2 . Error bars indicate
quantum projection noise (68% confidence interval).

2. The shortened double STIRAP pulse sequence is carried out and
the state evolves to |ψ〉 = e−iΦ|0〉 + |1〉 (with perfect transfer
efficiency).

3. A measurement in the σ̂x-basis carried out: the state is rotated
about the ŷ axis by π

2 to become |ψ〉 = − sin Φ
2 |0〉 + cos Φ

2 |1〉
and then electron shelving is used to distinguish population in
the {|0〉, |1〉} basis (Section 3.1.4). The fraction of the population
projected onto |0〉 is sin2 Φ

2 .

This Ramsey experiment is repeated as the laser phase step Φ is
varied, the results are shown in Fig. 7.7(b). Oscillatory behaviour is
observed, confirming that a geometric phase is acquired during the
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shortened double STIRAP pulse sequence. The contrast of the oscilla-
tion C = (82± 4)% is less than unity because of the imperfect STIRAP

transfer efficiency and decoherence due to finite laser linewidths. The
average of the oscillation is less than 0.5 because population decays
from |r〉 outside the {|0〉, |1〉} manifold (mostly to 5S1/2, mJ = +1

2 ).
This experiment is simulated by numerically solving the Lindblad

master equation for the five-level system {|0〉, |e〉, |r〉, |1〉, 5S1/2, mJ =

+1
2 } using experimentally-determined parameters with the Python

framework QuTiP [140]. Excellent agreement is observed between the
experimental and simulation results. Further simulations indicate the
dynamic phase offset in the experimental data φdyn = (18± 4)◦ may
be accounted for by a small two-photon detuning (∼2π × 100kHz)
from the |0〉 ↔ |r〉 resonance and by the light shift from the second
Rydberg excitation laser field on |1〉.

The simulation results show a lower contrast than the experimental
results. Using the experimentally-determined parameters, simula-
tions predict STIRAP transfer efficiency 90%. Repeating the simula-
tions with Rydberg excitation laser linewidths 2π× 64 kHz the simu-
lation contrast matches the experimental contrast and the simulations
predict STIRAP transfer efficiency 91%. The good agreement between
simulation results and experimental results indicate the simulations
model our system well.

Simulations indicate the STIRAP transfer efficiency is limited by Ry-
dberg state decay, Rydberg excitation laser linewidths and imperfect
adiabatic following during the rise time trise. The transfer efficiency
may be improved by using higher Rydberg-excitation laser light in-
tensities, by exciting higher Rydberg states with longer lifetimes and
by improving the frequency stabilisation of the Rydberg-excitation
lasers.

Single-qubit Rydberg gate

The geometric phase accumulated during a cycle is insensitive to
small changes in the path followed and thus geometric manipulation
of quantum systems may allow noise-resilient quantum computation
[148, 149].
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We use the shortened STIRAP pulse sequence [Fig. 7.5(c)] to imple-
ment a single-qubit geometric phase gate. This gate is characterised
using quantum process tomography for the case with phase step
Φ = π. Descriptions of quantum state tomography and quantum
process tomography are available in [150, 151], brief descriptions of
the techniques follow.

Quantum state tomography allows an unknown quantum state to
be reconstructed. The same unknown state is prepared multiple times
and measured using different measurement operators. The measure-
ment operators must form a complete basis set in the Hilbert space
of the system. In our system we measure a single qubit and use the
Pauli operators {σ̂x, σ̂y, σ̂z} as measurement operators, as described
in Section 3.1.4. Measurements with the same measurement operator
are typically repeated ≈50 times. Each measurement produces a bin-
ary outcome; measurements must be repeated for quantum states to
be determined accurately.

With quantum process tomography a process is characterised by
carrying out the process on known states then carrying out quantum
state tomography on the post-process states. For a system with a
d-dimensional Hilbert space copies of d2 input states are required.
Input states are chosen such that their density matrices form a basis
set for the space of matrices. For our single-qubit system d = 2 and
thus we prepare copies of the four input states |0〉, |0〉+ |1〉, |0〉+ i|1〉
and |1〉. State preparation is described in Section 3.1.3.

A process is conventionally described by a process matrix or χ-
matrix. We use a maximum likelihood estimation in determining the
χ-matrix. The reconstructed χ-matrix is shown in Fig. 7.8(a). The
ideal process is equivalent to a σ̂z rotation. The process fidelity of
(78 ± 4)% is the overlap of the reconstructed χ-matrix with the χ-
matrix for a σ̂z rotation. The errors are estimated by a Monte Carlo
method; due to quantum projection noise the measurement results
have uncertainties described by binomial probability distributions.
Samples are repeatedly drawn from the probability distributions and
χ is repeatedly reconstructed. The process fidelities of the different
χ-matrices are found and their distribution is used to estimate the
uncertainty in the estimate of the process fidelity.
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Figure 7.8: Process tomography of the shortened double STIRAP pulse se-
quence using Φ = π. (a) The absolute value of the reconstructed
process matrix is shown. In the ideal process the ZZ-bar height
is 1, the measured process fidelity is (78 ± 4)%. (b) The pro-
cess matrix is visualised by comparing the pre-process (meshed)
and post-process (blue) Bloch spheres: the Bloch sphere is ro-
tated about the z-axis by ≈π and inefficiencies cause the sphere
to shrink. Here |r〉 = 42S1/2, mJ = −1

2 .

The reconstructed χ-matrix may be used to predict the effect of the
process on any qubit state. This is represented in Fig. 7.8(b); initial
qubit states sitting on the meshed Bloch sphere are transformed by
the process and the output states sit on the solid Bloch sphere. In the
ideal process the solid Bloch sphere would be rotated about the z-axis
by π; the imperfect rotation in Fig. 7.8(b) is due to the dynamic phase
φdyn. The imperfect STIRAP efficiency causes shrinking of the 0-pole
of the Bloch sphere. The asymmetry about the z-axis is likely caused
by imperfect Ramsey pulses.

This single-qubit phase gate is not the most efficient way to intro-
duce a π-phase to a single qubit; this is rather a demonstration of
a quantum gate involving a trapped Rydberg ion. This single-qubit
gate may be extended to a two-qubit phase gate in which phases are
generated by strong interaction between Rydberg ions. Such a gate
— which involves excitation of Rydberg states via STIRAP — was pro-
posed in [152, 153]. This gate requires strong interaction between
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Rydberg ions. MW-dressed Rydberg states can have large dipole mo-
ments [49, 68]. Strong dipole-dipole interaction between such MW-
dressed Rydberg states have recently been measured in our laborat-
ory. We are currently trying to implement the two-qubit phase gate.
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The theory investigation by Müller et al. [49] predicted that trapping
of Rydberg ions in a linear Paul trap is feasible and that strong inter-
actions between trapped Rydberg ions may be used for carrying out
fast quantum gates. Trapped Rydberg ions are thus an interesting
platform for quantum information processing, and various other pro-
posals are summarised in Section 1.3.1. These proposals have motiv-
ated two experimental investigations of trapped Rydberg ions: 40Ca+

ions are excited to Rydberg states using a single-photon excitation
scheme in Mainz, while 88Sr+ ions are excited to Rydberg states by
two-photon transitions in the experiment described in this disserta-
tion.

The two-photon excitation scheme makes it easier to work within
the Lamb-Dicke regime, as discussed in Chapter 4. This allows us
to attain narrower Rydberg resonance lines than the Mainz experi-
ment. With narrow resonance lines we have investigated effects of the
strong trapping electric fields on the sensitive Rydberg ions, which
are presented in Chapter 6. After trap effects were mitigated, Ry-
dberg states were coherently excited and a single-qubit phase gate
was carried out, as described in Chapter 7.

The next step towards using trapped Rydberg ions for quantum
information processing is to carry out two-qubit gates which take ad-
vantage of strong Rydberg interactions. This is the PhD thesis work
of Fabian Pokorny. Towards this goal Fabian and Chi Zhang have
coupled Rydberg S1/2- and P1/2-states using MW radiation. The MW-
dressed states have dipole moments and ions in these states interact
strongly with each other by dipole-dipole interaction. When Rabi os-
cillations are driven between the low-lying state |0〉 and a MW-dressed
Rydberg state Fabian and Chi have observed a partial Rydberg block-
ade – this is a signature of interacting Rydberg ions.

Different two-qubit gates may be implemented using strong Ry-
dberg interactions. A Rydberg blockade gate can be carried out if
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the Rydberg-excitation Rabi frequency is much lower than the inter-
action strength, as was done with neutral Rydberg atoms [54]. The
phase gate demonstrated in Section 7.4.3 may be extended to a two-
qubit controlled phase gate [152, 153] if a Rydberg-excitation Rabi
frequency much higher than the interaction strength is used.

After typically several hundred excitations to Rydberg states ions
are lost by double ionisation. Until recently these events interrupted
the experiment by around 20 minutes and made it cumbersome to
collect data. Ablation loading of 88Sr+ ions has been introduced to
the experiment by Andreas Pöschl and Quentin Bodart, and the ion
loading time is reduced; double ionisation events now interrupt the
experiment by less than 30 seconds. Future Rydberg ion experiments
may find it invaluable to shuttle trapped ions between a loading zone
containing an ion reservoir and an experiment zone, as was envisaged
in a Mainz design [75].
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