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A B S T R A C T

Computers are devices that have revolutionized our daily lives in many different ways.
Although processing power has tremendously increased, the underlying principle of storing
information in a binary format based on 0’s and 1’s is the same. In contrast to this classical
way of information processing, a more general way of describing computers might be
more powerful. One such non-classical option are quantum computers, where information
is stored in quantum binary digits (qubits). In fact, algorithms have been found to work
exponentially faster on quantum computers than any known algorithm for classical devices.
With Shor’s algorithm, for example, it would be possible to factorize a large prime number
within minutes on a quantum computer, which takes thousands of years on the best classical
computer.

The realization of such complex algorithms requires quantum computers with thousands
to millions of qubits. Although quantum computers have been proven to work in principle,
today’s devices are limited to perform quantum operations with tens of qubits. On the way
to sufficiently large and thus useful quantum computers there are several difficulties to
overcome. In this work, we investigate two important open questions using a quantum
information processor based on trapped atomic ions.

The first open milestone is the characterization of quantum operations acting on many
qubits. Early techniques require resources that scale exponentially with the qubit number
and are therefore unsuitable for practical implementation on large quantum computers. We
present a technique that allows us to rigorously characterize quantum processes in a very
short time. We demonstrate that our method, called Cycle Benchmarking, does not depend
on the qubit number and is thus an important tool for the development of large quantum
computers in the future.

The second open milestone is the mitigation and correction of errors. In real-world
devices, noise that can affect the computation is unavoidable. Fortunately, techniques have
been developed to make quantum computers robust against any kind of noise. One way
to detect and correct errors is to distribute the information across multiple qubits. Here
we present a technique that allows us to split and to stitch blocks of qubits arranged on
a two-dimensional lattice. This method, called Lattice Surgery, enables us to work with
error-corrected qubits while requiring fewer computational steps than before.
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Z U S A M M E N FA S S U N G

Computer haben unser tägliches Leben in verschiedensten Formen revolutioniert. Obwohl
sich die Rechenleistung enorm gesteigert hat, ist das zugrundeliegende Prinzip der Spei-
cherung von Information in einem binären Format, das auf den Werten 0 und 1 basiert,
das gleiche. Im Gegensatz zu dieser klassischen Art der Informationsverarbeitung könnte
eine allgemeinere Art der Beschreibung von Computern leistungsfähiger sein. Eine sol-
che nicht-klassische Möglichkeit sind Quantencomputer, bei denen die Information in
Quanten-Bits (Qubits) gespeichert wird. Tatsächlich hat man Algorithmen gefunden, die
auf Quantencomputern exponentiell schneller arbeiten als alle bekannten Algorithmen für
klassische Rechner. Mit dem Shor’schen Alogrithmus zum Beispiel wäre es möglich, eine
große Primzahl innerhalb von Minuten auf einem Quantencomputer zu faktorisieren, was
auf dem besten klassischen Computer Tausende von Jahren dauert.

Die Realisierung solch komplexer Algorithmen erfordert Quantencomputer mit Tausen-
den bis Millionen von Qubits. Obwohl die prinzipielle Funktionsfähigkeit von Quantencom-
putern bewiesen ist, sind die heutigen Rechner auf die Durchführung von Quantenoperatio-
nen mit einigen zehn Qubits beschränkt. Auf dem Weg zu ausreichend großen und damit
auch für relevante Probleme nützlichen Quantencomputern gibt es mehrere Schwierigkeiten
zu überwinden. In dieser Arbeit untersuchen wir zwei wichtige offene Meilensteine in der
Realisierung von funktionsfähigen Quanteninformationsprozessoren. Die Untersuchungen
beruhen dabei auf Experimente mit gespeicherten atomaren Ionen.

Der erste offene Meilenstein ist die Charakterisierung von Quantenprozessen, die auf
viele Qubits wirken. Gängige Tomographie-Methoden erfordern jedoch Ressourcen, die
exponentiell mit der Anzahl der Qubits skalieren und daher ungeeignet für die praktische
Umsetzung auf großen Quantencomputern sind. Daher stellen wir eine Technik vor, die
es uns erlaubt, Quantenprozesse in sehr kurzer Zeit rigoros zu charakterisieren. Wir de-
monstrieren, dass unsere Methode, genannt Cycle Benchmarking, nicht von der Qubit-Zahl
abhängt und somit ein wichtiges Werkzeug für die Entwicklung großer Quantencomputer
in der Zukunft ist.

Der zweite offene Meilenstein ist die Korrektur von Fehlern. In realen Geräten ist Rau-
schen, das die Berechnung beeinflussen kann, unvermeidbar. Glücklicherweise wurden
Techniken entwickelt, um Quantencomputer fehlertolerant zu machen. Eine Möglichkeit,
Fehler zu erkennen und zu korrigieren, besteht darin, die Information auf mehrere Qubits
zu verteilen. Hier stellen wir eine Technik vor, die es uns erlaubt, Blöcke von Qubits, die auf
einem zweidimensionalen Gitter angeordnet sind, zu vernähen und wieder aufzutrennen.
Diese Methode, Gitterchirurgie genannt, ermöglicht es uns, mit fehlerkorrigierten Qubits zu
arbeiten und dabei weniger Rechenschritte als bisher zu benötigen.
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1
I N T R O D U C T I O N

The development of the computer is one of the great success stories of the 20th century.
As technology improved, computers evolved from room filling systems, able to run basic
algorithms, to processors, which fit in our pockets and can be programmed to perform
complex algorithms. Because these processing units got smaller, more powerful and more
affordable over time, they found usage in almost any sector of modern live.

The description of currently available information processing devices is based on the
classical theory of computation, essentially the universal Turing machine [1]. Such a machine
can compute any possible algorithm, as stated by D. Deutsch [2]“A universal computer is a
single machine that can perform any physically possible computation”. Although the development
of classical information theory and the growth of computing power have been tremendous
in recent decades, some problems have been found that cannot be solved by classical
computers in a reasonable time.

Therefore, people have begun to explore more general ways to describe computers
that might be more powerful. One approach is to store and manipulate information in
quantum systems. Quantum information processing theory describes algorithms as quantum
operations acting on quantum bits (qubits), in analogy to binary digits (bits) in which
information is stored in classical devices. In chapter 2 a introduction into the theory of
quantum information processing is given.

In the following, we highlight three arguments why quantum computers can be advanta-
geous compared to classical devices. Note that these arguments are based on fundamental
differences between the two theories, but we focus here on possible applications that arise
from these differences.

First, quantum algorithms have been found, e.g. Shor’s algorithm for factorization [3],
which perform exponentially faster than any known classical algorithm. This has far-
reaching consequences, since, for example, widely used encryption algorithms today are
based on factorization and a quantum computer is able to break this encryption in a short
time.

Second, it is believed that quantum mechanical problems cannot be simulated efficiently
on classical computers, since the required resources scale exponentially with the system
size. The idea of simulating quantum mechanical problems with quantum machines goes
back to a lecture by Richard Feynman in 1982 and his famous quote “Nature isn’t classical,
dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical,
and by golly it’s a wonderful problem, because it doesn’t look so easy.” [4].

Third, quantum information processing allows us to perform quantum cryptography [5–7],
a task beyond the capabilities of classical devices.

In summary, quantum computers would be of extraordinary interest for many applications.
On the way to successfully realize quantum computers there are still some technical
challenges to overcome. Although the best suited physical platform and the related concepts
are yet to be found, it should be possible to build quantum information processors in
principle. In order to process relevant problems, a quantum computer needs a large number
of qubits. The ability to add more and more qubits without loosing the capability to process
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2 introduction

quantum information is termed scalability. As explained below, this thesis addresses two
specific aspects of scalability and is organized as follows.

After discussing the general concepts of quantum computation in chapter 2, the impor-
tance of characterizing quantum computers is summarized. Then, the challenges of building
and characterizing quantum computers are considered in the context of system size scaling.
Finally, techniques to make quantum computers robust against errors are motivated.

The theoretical description of quantum information processors is very general and admits
many different physical realizations. In chapter 3, we discuss the requirements that a
physical system must meet in order to perform meaningful quantum computations. In this
chapter, we then present a suitable and very promising physical platform based on trapped
atomic ions. Specifically, we outline how individual 40Ca+ ions are confined in a trap and
how quantum information is stored in the electronic degrees of freedom of the ions. We
then present how lasers can be used to prepare, coherently manipulate, and read out the
quantum state of the trapped ions.

In chapter 4, the experimental building blocks of our trapped ion quantum computer are
presented. In detail, the design of the ultra-high vacuum chamber enclosing the ion trap, the
laser systems used, and the constructions for generating a bias magnetic field are discussed.

This thesis is primarily concerned with two major issues affecting the development of
future quantum computers.

First, important techniques to characterize quantum computers are introduced in chapter 5.
Here, the well-established but not scalable methods Quantum State Tomography and
Quantum Process Tomography are discussed. Then a scalable technique called Randomized
Benchmarking and a recently developed derivative thereof called Cycle Benchmarking is
presented. In chapter 6, the first experimental implementation of characterizing large-scale
quantum computers using Cycle Benchmarking is demonstrated.

Second, the principles of Quantum Error Correction are explained in chapter 7. As a
specific example of Quantum Error Correction codes the so called surface code is dis-
cussed. Finally, an experimental implementation of Lattice Surgery, a promising technique
to efficiently manipulate encoded quantum information is presented in chapter 8.



2
Q UA N T U M I N F O R M AT I O N P R O C E S S I N G

Information is physical.

— Rolf Landauer, 1991 [8]

Processing information is a task, electronic devices perform routinely in our everyday lives.
As mentioned in the introduction, these processors can be described by the classical theory
of information processing. In contrast, quantum information processing is formulated in the
language of quantum mechanics. In this chapter we give a brief introduction to the theory of
quantum computation in section 2.1. Afterwards, the importance of the characterization and
scalability of quantum computers are discussed in sections 2.2 and 2.3 Finally in section 2.4,
we outline Quantum Error Correction, a procedure that makes quantum computers robust
against errors.

2.1 quantum computation

In a classical computer the central carrier of information is the binary digit (bit), which can
take the values of either 0 or 1. Programmed algorithms can be solved by sending strings of
bits through circuits of computational gates.

Quantum computation can be formulated in a similar fashion. The smallest carrier of
information is the quantum bit (qubit). The quantum mechanical description of a qubit is a
two-level system (e.g. a spin 1/2 particle). Hence, the state of a qubit can be described as a
superposition of two states |0〉 and |1〉 as [9]

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where α, β ∈ C with |α|2 + |β|2 = 1. The states |0〉 and |1〉 are orthonormal and hence form
a basis in the two dimensional complex vector space, called the Hilbert space. If we measure
the qubit, we find it either in the state |0〉 and obtain the outcome 0 with probability |α|2
or the qubit is projected into the state |1〉 and we receive the outcome 1 with probability
|β|2. Since the total probability of finding the qubit in one of the states has to be 1, a valid
qubit state has to fulfill the normalization condition |α|2 + |β|2 = 1. The state of the qubit is
a state of the two dimensional complex vector space and thus it can be represented by the
Pauli matrices [9]

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (2.2)

The Pauli matrices are Hermitian, where a Hermitian matrix A fulfills the equation A = A†,
with A† being the transposed and complex conjugated matrix of A. Hermitian matrices
have real eigenvalues, which ensures that quantum measurements have real outcomes.
Furthermore, the Pauli matrices obey the commutation relations [σj, σk] = 2i ∑3

l=1 εjklσl and
the anti-commutation relations {σj, σk} = 0.

3



4 quantum information processing

Together with the identity matrix σI = 1 the Pauli matrices form a basis for the real vector
space of 2× 2 Hermitian matrices. Therefore, any single qubit state can be parameterized
by its density operator or density matrix as [9]

ρ =
1
2
(1 +~r ·~σ) (2.3)

where~r ∈ R3 with |~r| ≤ 1 is the three dimensional Bloch vector and~σ = (σx, σy, σz)T [9]. If the
Bloch vector of a state has unity length |~r| = 1 the state is called pure. Suppose, a quantum
system is in a superposition of an ensemble of pure states {pi, |ψi〉} with probability
amplitudes pi, where a pure state is exactly known and satisfies tr

(
(|ψi〉〈ψi|)2) = 1. The

density matrix of the quantum system is then described by a so called mixture of pure states
as [9]

ρ = ∑
i

pi|ψi〉〈ψi|. (2.4)

Geometrically the state of a single qubit can be described with a Bloch vector inside the
Bloch sphere, as depicted in fig. 2.1. Note that throughout this thesis we also use the
following notation for the Pauli matrices σI = I, σx = X, σy = Y, σz = Z.

 

Figure 2.1: Bloch sphere. The state of the qubit can be represented by the Bloch vector (red arrow),
where the vector can point towards any point inside the Bloch sphere.

An important measure of the distance between two quantum states is the so called state
fidelity. We often use the state fidelity to describe how close an experimentally prepared
state is to an ideal state. In theory, the fidelity between the states ρ = |ψ〉〈ψ| and σ = |φ〉〈φ|
is defined as [9]

F =
√√

σρ
√

σ ≥
√
〈ψ|σ〉. (2.5)

We now consider two arbitrary quantum systems A and B with respective Hilbert spaces
HA and HB. Then the Hilbert space of the composite system is described by the tensor
product of the individual Hilbert spaces HA ⊗ HB. If the states {|i〉A} form a basis for
system A and {|j〉B} form a basis for system B, the spectral decomposition of the composite
system is defined as [9]

|ψ〉AB = ∑
i,j

cij |i〉A ⊗ |j〉B . (2.6)

If the states of the systems A and B are pure states |ψ〉A = ∑i cA
i |i〉A and |φ〉B = ∑j cB

j |j〉B,
also the state of the composite system is a pure state |ψ〉AB = |ψ〉A ⊗ |φ〉B and is called



2.2 characterization of quantum computers 5

separable [9]. In this case the equation cij = cA
i cB

j applies to the state coefficients. If there
exists any pair of coefficients such that cij 6= cA

i cB
j the composite state cannot be written as a

product of pure states of the individual systems and the composite state is called inseparable
or entangled [9]. The Bell state |ψ〉AB = 1/

√
2 (|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) for example is an

entangled state.
In general, an N-qubit state |ψ〉N can be described by a linear combination of 2N basis

states {|i〉} as [9]

|ψ〉N =
2N

∑
i=1

ai |i〉 , (2.7)

where the probability amplitudes ai fulfill the normalization condition ∑i |ai|2 = 1. Note that
the dimension d = 2N of the complex Hilbert space grows exponentially with qubit number
N. This implies that in general there exists an exponential number of complex probability
amplitudes, which makes it hard to simulate large quantum systems on a classical computer.

At the beginning of the computation the qubits are prepared in some state, e.g. |ψ〉 =
|01〉 ⊗ |02〉 ⊗ · · · ⊗ |0N〉 = |0〉⊗N . An algorithm is realized by the implementation of quantum
gates (short for quantum gate operations), which are operations that act on the state of
the qubits. A quantum gate can be expressed as a matrix U acting on the state |ψ〉 by
|ψ′〉 = U |ψ〉 [9]. Since the state |ψ′〉 as well as the state |ψ〉 have to fulfill the normalization
condition, U has to be unitary, requiring U†U = 1 [9]. A quantum algorithm typically
contains a sequence of unitary operations, which can be described by the circuit model, as
depicted in fig. 2.2.

It can be shown, that any N-qubit unitary operation UN ∈ SU(2N) can be decomposed
into a sequence of gates from a set, that includes all 1-qubit gates U1 ∈ SU(2) and one
entangling 2-qubit gate U2 ∈ SU(4) [9, 10]. Such a set of gates is called a universal gate
set. Furthermore the Solovay-Kitaev theorem states, that even with a finite set of gates an
arbitrary 1-qubit unitary (SU(2)) can be efficiently approximated to an accuracy ε with only
O = logc(1/ε) gates [9], where c is a constant factor. Hence the Solovay-Kitaev theorem
implies that a circuit containing m 2-qubit gates and 1-qubit operations can be approximated
to an accuracy ε by O = m logc(m/ε) gates from a finite gate set [9]. However, in general
not all unitary transformations can be approximated by a quantum circuit efficiently. A
commonly used finite and universal gate set {H, P, T, CNOT} contains the Hadamard-, the
Phase-, the T- and the CNOT-gate, where these gates are described in detail in section 3.4.

At the end of the computation the qubits are measured individually. Quantum mea-
surements are described by a set of measurement operators {Mm} with eigenvalues or
outcomes m. If a state |ψ〉 is measured, the probability p(m) to get the outcome m can
be calculated by p(m) = 〈ψ|M†

m Mm|ψ〉. The state of the qubit after the measurement is
|ψ′〉 = Mm |ψ〉 /

√
p(m). Since all measurement probabilities have to sum up to 1, the

measurement operators have to fulfill the completeness equation ∑m M†
m Mm = 1. In the

computational basis {|0〉 , |1〉} the projectors are M0 = |0〉 〈0| and M1 = |1〉 〈1|.

2.2 characterization of quantum computers

Like any physical device, quantum computers suffer from imperfect control and noisy
environments that limit their computational power. The characterization of operations in a
quantum computer offers the ability to find limitations and to possibly eliminate them in the
future. Hence, a lot of effort in the field of quantum information science is put into the inves-
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Figure 2.2: Quantum gate sequence in the circuit representation. In the circuit representation an
algorithm starts with a register of quits, all prepared in an individual initial state. Then
a sequence of discrete gates is applied to the qubits (e.g. a 1-qubit Hadamard gate and
2-qubit CNOT gates, as described in section 3.4), where the time of application is from
left to right. In the end the qubits are measured and a classical outcome for each qubit is
obtained.

tigation on how to rigorously characterize quantum processes. There exist various methods
to fully describe quantum processes, for example, quantum process tomography [11] or gate
set tomography [12–14]. However, any protocol for fully characterizing a quantum process
requires a number of experiments that grows exponentially with the number of qubits,
even with improvements such as compressed sensing [15, 16]. For example, it would take
∼ 4000 years to perform the measurements for process tomography of one specific 10-qubit
quantum operation in our ion trap quantum computer. As a result, the largest quantum
processes that have been fully characterized to date acted only on three qubits [17, 18].

The exponential resources required for a full characterization can be circumvented by
extracting partial information about quantum processes. A partial characterization typically
yields some figure of merit comparing the noisy implementation of a quantum process to
the desired operation. We will consider the process fidelity (also known as the entanglement
fidelity), which is equivalent to the average gate fidelity up to a dimensional factor that is
approximately 1 [19, 20]. The process fidelity can be efficiently estimated by e.g. Randomized
Benchmarking (RB) [21–23].

However, implementing an operation in RB requires O(N2/ log N) primitive two-qubit
operations [24], so that RB provides very coarse information about the primitive operations.
Furthermore, for error rates as low as 0.1% per two-qubit operation, a single 10-qubit
Clifford operation will have a cumulative error rate on the order of 10%, which substantially
increases the number of measurements required to accurately estimate the process fidelity.

One method to overcome this practical limitation is to only perform gates in fixed modes
of parallel operation. We refer to a parallel set of gates as a cycle, in analogy with a digital
clock cycle and introduce a technique called Cycle Benchmarking (CB) [25].

In chapters 5 and 6 we present an overview about the characterization of quantum
computers, as well as the detailed methods and the experimental results of the Cycle
Benchmarking project.

2.3 scalability issues

As discussed in the introduction, it is believed that quantum computers can outperform
classical computers. A natural question that arises is, under which circumstances this
will happen. The company Quantum Benchmark Inc. presented an estimate of a classical
“Horizon”, above which quantum computers will be better than their classical counterparts,
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see fig. 2.3. The illustration compares two figures of merit. The first one is the circuit depth,
which describes how many quantum gates a successful circuit implementation contains. For
a single qubit the circuit depth corresponds to number of gates that can be implemented
before the result gets meaningless. Typically results are a called meaningless if the success
probability is below 1/2 or 2/3. The second figure of merit is the number of qubits, which
expresses how many qubits can interact in the system in a controllable manner.

Although the classical “Horizon” is a blurry threshold, we can see in fig. 2.3 that a
quantum computer with an error rate of 10−3 per operation and a register size of 72 will
probably have an advantage over any classical device. In general, the performance of a
quantum computer increases with increasing circuit depth and greater qubit number.

In practice, the achievable circuit depth is limited by the fidelity of the implemented
quantum operations. Since the fidelity of current devices is limited to values of F = 1− 10−3,
it is not possible to outperform classical computers even with a 49 qubit system. One way
to improve the fidelity of quantum operations significantly is to use a technique called
Quantum Error Correction, which shall be outlined in the next section.

Figure 2.3: Quantum computing performance. Plotted is the circuit depth (number of implemented
gates) against the number of qubits for three different experimental platforms. Initially
the circuit depth corresponds to the inverse of the error rate per operation. The classical
"Horizon" is a blurry line which indicates when quantum computation can outperform
classical computers. By courtesy of Quantum Benchmark Inc. 2019.

2.4 quantum error correction

Real-world quantum devices are prone to errors, due to imperfect calibration, instabilities
in the experimental apparatus or unwanted coupling to the noisy environment. Quantum
Error Correction (QEC) was developed to protect quantum computers against arbitrary
errors. The basic idea of QEC is the same as for classical error correction, namely to encode
information redundantly on many qubits [9, 26]. The general scheme is to use blocks of
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physical qubits to encode e.g. a single logical qubit. These logical qubits are constructed
such that they can be treated in the same way as physical qubits.

Remarkably, it can be shown that quantum information can be protected against noise
while being stored in an encoded qubit, and also during the action of noisy quantum
operations [26–28]. Even the operations implemented to do QEC themselves are allowed to
be imperfect. QEC techniques that are able to protect quantum information in the presence
of noisy quantum operations (including state preparation, quantum gates, readout, etc.) are
called fault-tolerant [9, 26–28]. The basic design principle in fault-tolerant QEC schemes is
that local errors do not propagate to other physical qubits from the same block.

An important technique to facilitate fault-tolerance is the local and bit-wise application of
logical gates, called transversality [29]. If a logical gate can be implemented transversally, it
is sufficient to implement only gates acting on a single qubit per block at a time.

One of the most important findings related to fault-tolerant quantum computation is
the threshold theorem [9, 30, 31]. The theorem states that if the error rate of every quantum
operation is below a certain error threshold, arbitrary accurate computation can be achieved.
Hence, if enough physical qubits are available and reasonable assumptions about the noise
in the underlying hardware hold [9, 30] this finding paves to way for practical quantum
computation.

Most quantum computing platforms, such as quantum dots [32, 33], superconducting
qubits [34, 35], trapped atoms [36], nitrogen–vacancy diamond arrays [37], and some ion trap
architectures [38], are limited to next-neighbour (NN) interactions. Although ion trap setups
offer all-to-all coupling on small scales (up to 100 qubits), scalable ion trap architectures
also have limited connectivity [39, 40]. The limited connectivity between qubits typically
introduces an overhead in the require resources, such as the number of gates and qubits
needed for one round of QEC [41].

In conclusion, the performance of error correction depends on the error threshold, on
the transversely implementable gates and on the required connectivity of the underlying
hardware. The search for the best possible protection against errors in realistic devices has
led to the development of a number of different Quantum Error Correction Codes (QECCs).

The first QECCs were the 9-qubit code proposed by Peter Shor [42] and the 7-qubit
code proposed by Andrew Steane [43]. Although these codes already support a number of
transversal gates, the error thresholds are very low around 10−5 [44]. The smallest possible
code to protect against arbitrary errors is the 5-qubit code [45]. This code is very efficient in
the number of required qubits, but suffers from the fact that complex entangling operations
are required to implement logical gates.

An important step to support the limited NN connectivity in today’s architectures was
the development of lattice codes. In the first version, the Kitaev toric code [46], qubits are
arranged in a regular lattice pattern on the surface of a torus. This code was also the first
topological QECC. The basic idea of topological codes is to encode quantum information
in global degrees of freedom protected against local errors. Moreover, is the number of
encoded qubits dictated by the topology of the code [47]. Shortly afterwards, the toric code
was further developed into the surface code [48, 49]. In contrast to the toric code, the surface
code is defined on a planar 2D lattice with open boundaries, which relates perfectly to
realistic architectures. The surface code is one of the most promising QECCs, because it
offers the highest known thresholds of up to 0.7− 1.4 % [44, 50–52]. Note that the exact
error threshold depends on a number of parameters such as e.g. the underlying noise model
and the implemented error syndrome decoder. One drawback of the surface code is, that it
does only support very few transversal gates.
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Another promising QECC is the color code [53, 54]. The color code also offers a high error
threshold of up to 0.2 % [52] and in addition allows the transversal implementation of a
large class of operations.

Unfortunately, it was shown, that no 2D QECC can support a universal gate set by using
unitary operations only [55]. Hence dissipative techniques such as the distillation of magic
states [56] were proposed to enable universal fault-tolerant quantum computation in 2D.

Another challenge when using lattice codes is, that even if multi-qubit operations can be
implemented transversally, they require long-range interactions. If we are restricted to NN
interactions, resource intensive techniques [57, 58] have to be implemented. In the surface
code for example, these techniques require more than three times the number of qubits
compared to the transversal implementation using long-range interactions [41].

Therefore, one of the most resource efficient ways to implement logical multi-qubit
operations is to only utilize operations along the boundary of encoded qubits [41, 59, 60].
With this technique, called lattice surgery, it is possible to generate entanglement and to
teleport logical information between encoded qubits.

In chapter 7 an introduction into QEC in general is given. As a specific example, that
is also implemented experimentally as described in the following chapter, the surface
code is discussed. In chapter 8 we report on the experimental realization of lattice surgery
between two topologically encoded qubits in our ion trap quantum information processor.
In particular, we demonstrate the creation of entanglement between two logical qubits and
we implement logical state teleportation.





3
T H E T R A P P E D I O N Q UA N T U M C O M P U T E R

In the first place it is fair to state
that we are not experimenting with single particles
any more than we can raise Ichtyosauria in the zoo.

— Erwin Schrödinger, 1952 [61]

In contrast to the nineteen fifties it is now possible to experiment with single particles.
One way to perform experiments with single atoms is to use electro-magnetic potentials
to trap single atomic ions. In addition, it is possible to use radio-frequency fields or lasers
to manipulate the state of the atoms. Such a system is an ideal candidate for quantum
computation, because trapped ions offer long coherence times [62, 63].

Around 2000, DiVincenzo published a collection of requirements for the physical imple-
mentation of quantum computation [64]. The following list is a summary of the upcoming
sections, which illustrates how our ion trap architecture meets these criteria.

1. A scalable system with well defined qubits: The linear Paul trap in section 3.1 and the
40Ca+ ion in section 3.2. Note that scalability requires more advanced trap architec-
tures [39, 40] than a linear Paul trap.

2. The ability to initialize the state of the qubits in a simple fiducial state: Laser cooling
in section 3.6 and state preparation in section 3.7

3. Long relevant coherence time: The 40Ca+ ion in section 3.2 and in chapter 4

4. A universal set of quantum gates: Coherent laser-ion interaction in section 3.3

5. A qubit specific measurement capability: Readout in section 3.7

3.1 linear paul trap

A central building block of our apparatus is the ion trap. Specifically, we utilize a Paul
trap, named after its inventor Wolfgang Paul [65]. The Paul trap employs a combination
of time varying and static electric fields to confine charged particles in 3D. Typically, the
dynamic electric field frequencies are in the Radio Frequency (RF) domain, in the range
of 1 . . . 100 MHz. In our experiment we use a so-called linear Paul trap [66], as illustrated
in fig. 3.1. In this design the ions are strongly bound in the x, y direction, but weakly bound
in an harmonic potential along the z direction. In such a potential the equilibrium positions
of the ions form a linear string along the z axis, thus the design is called the linear Paul trap.

In practice an RF signal is connected to four parallel electrodes, which are extruded in
the z (axial) direction. These RF-electrodes generate an electric quadrupole field in the x/y
(radial) plane and nearly a zero-field in the center of the electrodes along the z direction.
In addition, two electrodes are placed symmetrically around the center along the axial
direction. These end-caps provide an axial parabolic field, which ensures the confinement
in the z direction. By applying the RF voltage VRF cos ΩRFt and the DC voltage UR (usually

11
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zero) to the RF electrodes and the constant DC voltage UDC to the end-caps the following
approximate potentials ΦRF and ΦDC for charged particles is generated [67]

ΦRF(r, t) = (VRF cos ΩRFt + UR)

(
1
r2

0
(αxx2 − αyy2) +

1
z2

0
αzz2

)
, (3.1)

ΦDC(r) =
βzUDC

2z2
0

(2z2 − x2 − y2), (3.2)

where r0 =
√

x2
0 + y2

0 is the radial distance to the RF electrodes, z0 the distance from the
trap center to the end-caps, (αx, αy, αz, βz) are geometric factors [67] given by the trap design
and r = (x, y, z) describes the position of the particle. For infinitely long hyperbolic RF
electrodes the geometric factors are αx,y = 1, αz = 0, βz = 0. The equations of motion for a
single charged particle with mass M and charge Q obey F = −Q∇Φ = Mr̈ and we can
derive the Mathieu equations [67]

d2u
dτ2 + (au + 2qu cos(2τ)) u = 0, (3.3)

where u ∈ {x, y, z} and we have made the following substitutions

az = −2ax,y =
8QUDCβz

Mz2
0Ω2

RF
, (3.4)

qx = −qy =
4QVRFαx,y

Mr2
0Ω2

RF
, qz =

4QVRFαz

Mz2
0Ω2

RF
, (3.5)

τ =
ΩRFt

2
. (3.6)

Stable solutions can be found for 0 < au < qu . 1 and the ion’s trajectories can be
approximated as [67]

ru(t) ≈ ru,0 cos (ωut + φu)
(

1 +
qu

2
cos ΩRFt

)
, (3.7)

where ru,0 and φu are determined by the initial position of the particle and the motional
frequencies ωu are described as

ωz =
ΩRF

2

√
az +

q2
z

2
=
√

ω2
z,0 + ω2

z,RF

=

√
2QUDCβz

Mz2
0

+
2Q2V2

RFα2
z

M2z4
0Ω2

RF
,

(3.8)

ωx,y =
ΩRF

2

√
q2

x,y

2
+ ax,y =

√
ω2

x,y,0 −
ω2

z,0

2

=

√
2Q2V2

RFα2
x,y

M2r4
0Ω2

RF
− QUDCβz

Mz2
0

,

(3.9)

where ωz,0 is the axial frequency without the RF contribution ωz,RF and ωx,0, ωy,0 are the
radial frequencies without end-cap voltages. As can be seen from eqs. (3.8) and (3.9), the RF
potential supports a small additional confinement in z direction, whereas the DC potential
acts anti-confining in the x, y direction.
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Figure 3.1: Linear Paul trap setup. The trap holder (made from Macor©) supports the RF electrodes
A, the compensation electrodes C (manufactured from stainless steel) and the end-caps B
(fabricated from Molybdenum) [68]. The distance between the end-caps is 2z0 = 5.0 mm
and the distance of the RF electrodes is 1.6 mm which corresponds to a distance r0 =
1.131 mm from one RF electrode to the trap axis [68].

As can be seen in eq. (3.7), the oscillation of the particle can be approximately described
by two separate motions, one with amplitude ru,0 and frequency ωu called the secular motion
and one with an amplitude modulated motion with frequency Ω called micro-motion. If
the particle position is close to the trapping axis, where the RF-field is nearly zero, the
micro-motion can be neglected and the trap acts as a harmonic pseudo-potential V(~r) for a
charged particle

V(~r) = ∑
u∈{x,y,z}

1
2

Mω2
ur2

u. (3.10)

The experiments presented in this thesis were carried out in the trap depicted in fig. 3.1.
The trap features an ion to RF-electrode distance of r0 = 1.131 mm and an ion to end-cap
distance of z0 = 2.5 mm, where details of the trap design considerations are given in
Ref. [68].

In the harmonic potential approximation we can write the equation of motion as [67]

M
d2x
dt2 = −Mω2

xx = −Q
dDx

dx
, (3.11)

Dx =
∫ r0

0

dDx

dx
dx =

M
2Q

ω2
xr2

0 ≈
QV2

RFα2
x

2Mr2
0Ω2

RF
, (3.12)

with Dx being the parabolic pseudo-potential in radial direction. For a single 40Ca+ ion
with a typical motional frequency of ωx = (2π) 4 MHz this corresponds to a trap depth of
QDx = Mω2

xr2
0/2 ≈ 168 eV ≈ 2 · 106 K/kB.

We now consider multiple ions in a linear Paul trap, which experience the global potential
generated by the trap electrodes as well as a repelling force between each other due to the
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Coulomb interaction. For N ions in the linear Paul trap the potential energy is described
as [69]

V =
N

∑
i=1

1
2

Mω2
z zi(t)2 +

N

∑
i,j=1
i 6=j

Q2

8πε0

1
|zi(t)− zj(t)|

, (3.13)

where zi(t) is the position of the ith ion and ε0 is the permittivity of free space. Assuming
that the ions are sufficiently cold, the ions experience only a small displacement qi(t) around
their equilibrium position z0

i and their position can be approximated as zi(t) ≈ z0
i + qi(t).

Importantly, the motion of the ions can be quantized into normal motional modes [69].
Since the equations of motion in the principle directions x, y, z are separable, there exist 3N
independent modes with N modes in each direction. The displacement from the equilibrium
position of ion i and mode j in direction q ∈ {x, y, z} can be described as [69]

q̂i(t) = i

√
h̄

2Mωq

N

∑
j=1

~bi,j
4
√

µj

(
âje−iωjt − â†

j e−iωjt
)

, (3.14)

where â†, â are the quantum mechanical creation and annihilation operators of motion, µj is
the eigenvalue that defines the eigenfrequency ωq,j =

√
µjωq and~bi,j the eigenvector that

defines the amplitude of the motion of ion i.
The calculation of the respective eigenfrequencies and eigenvectors of the ion’s motion is

explained in detail in Ref. [69]. In the first motional mode, for example, the ions move all
together as if they would be rigidly connected, hence this mode is often called the Centre Of
Mass (COM) mode. In a two ion crystal for example, the two modes in the axial direction z
are the COM mode characterized by the eigenfrequency ωz,1 = ωz and motional eigenvector
~b(1,2),1 = 1/

√
2(1, 1)T and the breathing mode described by the eigenfrequency ωz,2 =

√
3ωz

and motional eigenvector~b(1,2),2 = 1/
√

2(1,−1)T. The first 10 axial eigenfrequencies relative
to the COM frequency are ωz,j ∈ {1, 1.73, 2.42, 3.07, 3.69, 4.30, 4.88, 5.46, 6.02, 6.58} ·ωz [69].

In this picture of a quantum mechanical harmonic oscillator, the motional state |ψ〉 of the
ion can be expressed in terms of number or Fock states |n〉 as [70]

|ψ〉 =
∞

∑
n=0

cn |n〉 , (3.15)

where â† â |n〉 = n |n〉 and the motional ground state of the ion is described as |ψ〉 = |0〉.
Assuming a thermal phonon distribution, the parameters cn can be completely described by
the mean phonon number n̄ as [70]

cn =
n̄n

(n̄ + 1)n+1 . (3.16)
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3.2 the calcium ion

The choice of the atomic species is important for several reasons. For example are the
trapping frequencies determined by the mass of the particles, see section 3.1. In practice it
is also important to have lasers available to drive the atomic transitions. In addition, it is
necessary that the species has transitions to cool the ions, to encode quantum information
and to read out the stored quantum information, as discussed in detail in the following.

Singly ionized Calcium has a hydrogen-like energy diagram, where the 42S1/2 ground
state, the short lived 42P1/2, 42P3/2 and the meta-stable 32D3/2, 32D5/2 states are depicted
in fig. 3.2. Note that in the presence of a bias magnetic field, the degeneracy of the fine
structure levels is lifted due the Zeeman effect, as discussed in appendix A.

The 42S1/2 ↔ 42P1/2 transition with a wavelength around 397 nm in combination with
the 32D3/2 ↔ 42P1/2 transition with a wavelength of 866 nm offers a closed loop cycling
transition, which can be utilized for various laser cooling schemes. For trapped ion ex-
periments the available laser cooling techniques are Doppler cooling (see section 3.6.1),
polarization gradient cooling (see section 3.6.2), electromagnetically induced transparency
cooling [71–73] or sideband cooling [74]. In addition, this transition can be employed for
state preparation and state detection (see section 3.7).

The 42S1/2 ↔ 32D5/2 transition with a wavelength around 729 nm in combination with the
32D5/2 ↔ 42P3/2 transition at 854 nm can also be used to for state preparation (see section 3.7)
and for resolved sideband cooling (see section 3.6.3). Importantly, the long lived meta-stable
32D5/2 state is well suited to store quantum information. Because the 42S1/2(mj = −1/2)↔
32D5/2(mj = −1/2) transition experiences the smallest frequency shift in the presence
of an external magnetic field (see appendix B), we typically encode a qubit in the states
|0〉 = 42S1/2(mj = −1/2) and |1〉 = 32D5/2(mj = −1/2) of a single ion. In order to
manipulate the state of the qubit we utilize optical transitions around 729 nm, as outlined
in section 3.3.1. Important transition properties in 40Ca+ , the corresponding g-factors and
the frequency shifts due to a bias magnetic field are summarized in appendix B. Further
details can be found in other PhD theses [75–77].
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Figure 3.2: 40Ca+ energy level diagram. The lasers used to drive optical transitions are depicted by
blue and red arrows labelled with their approximate wavelengths. For the excited states
the approximate lifetimes as well as the Zeeman sublevels are presented. The sublevels
are labelled with the respective total angular momentum quantum number mj and the
approximate frequency shift in the presence of a bias magnetic field is given. Detailed
state and transition properties are described in appendix B.
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3.3 laser-ion interaction

According to DiVincenzo’s criteria, introduced in the beginning of this chapter, it is essential
in quantum computation to be able to manipulate the state of the qubit. In our experiment
we use interactions between lasers and the trapped ions to manipulate the quantum state.
This laser-ion interaction has been discussed in many references [70, 78–80], thus only the
basic principles will be reviewed in this section.

A trapped ion has motional degrees of freedom, due to the confining potential of the
Paul trap, as well as electronic degrees of freedom, specifically the internal quantum states
of 40Ca+ presented in section 3.2. In the simplest case, the ion can be seen as a two level
system, which consists of a ground state e.g. |0〉 = |S〉 and an excited state e.g. |1〉 = |D〉
separated by the energy E = h̄ω0. In the semi-classical description the laser is modeled as
monochromatic wave E(z, t) = E0 cos(kzz−ωLt + φ) coupled to the ion, with frequency ωL,
phase φ and kz = k cos θ being the projection of the wave vector along the direction of the
ion motion. The motion of the ion along the z-direction in the trap can be approximated by
a harmonic oscillator with frequency ωz. For now we assume that the coherence time of the
laser and the ion motion is much longer than the typical interaction time.

The Hamiltonian of this system contains a stationary part describing the harmonic
potential generated by the trap Ht and the internal electronic potential of the ion He. The
dynamic part is determined by the interaction the laser and the ion Hi. The total Hamiltonian
is then defined as [70]

H =Ht + He + Hi

=h̄ωz(â† â +
1
2
)

+
h̄ω0

2
σz

+
h̄Ω
2

(σ+ + σ−)
(

ei(kz ẑ−ωLt+φ) + e−i(kz ẑ−ωLt+φ)
)

,

(3.17)

where â†, â are the motional creation and annihilation operators, n̂ = â† â is the number
operator of motional quanta (phonons), σ+ = σx + iσy and σ− = σx − iσy are the electronic
creation and annihilation operators with σx, σy, σz being the Pauli operators, Ω the Rabi
frequency is related to the interaction strength between the electric moment of the transition
and the electromagnetic wave of the laser (e.g. h̄Ω = −µdE0/4 for an electric dipole
transition with dipole moment µd and electric field amplitude E0), and ẑ = z0(â† + â)
describes the motion in the harmonic trapping potential, where z0 =

√
h̄/2Mωz is the

spread of the ground state wave function with the ground state energy h̄ωz/2. At a trap
frequency of ωz = (2π) 1 MHz the ground state wave function of a 40Ca+ ion has a size
z0 ≈ 11 nm.

The interaction part Hi of the Hamiltonian in eq. (3.17) couples the electronic quantum
states with the motional state, as illustrated in fig. 3.3 a). The wavefunction of the coupled
system can be described by a superposition of tensor products of the electronic states |0〉,
|1〉 and the motional state |n〉 as

|ψ(t)〉 = ∑
mz=0,1

∞

∑
n=0

Cmz,n(t) |mz, n〉 , (3.18)
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Figure 3.3: Laser-ion interaction. a) The quantum state of the ion can be coupled to the motion,
which is expressed by the tensor product of the electronic and the motional state, e.g.
|0〉 ⊗ |n〉 =̂ |0, n〉. b) The coupled system can be seen as a ladder of many two-level
systems, where the red and the blue sideband can be used to increase or decrease the
phononic excitation.

where n is the motional quantum number. By changing to the rotating frame of the ion and
doing the rotating wave approximation (neglecting the sum-frequency terms e±i(ω0+ωL)t)
the interaction Hamiltonian HI can be approximated as [70]

HI = U†
0 HiU0 ≈

h̄Ω
2

(
σ+ei[η(âe−iωzt+â†eiωzt)−∆t+φ] + h.c.

)
, (3.19)

where U0 = e−i(Ht+He)t/h̄ is the unitary operator of the time-independent part of the
Hamiltonian H, η = kzz0 is the Lamb-Dicke (LD) parameter and ∆ = ωL −ω0 describes the
detuning of the laser with respect to the electronic transition. The LD parameter η can be
interpreted as the ratio between the wave packet size z0 of an ion in the motional ground
state and the laser wavelength λ as [70]

η = kzz0 = 2π cos θ
z0

λ
=

2π cos θ

λ

√
h̄

2Mωz
, (3.20)

where θ is the angle between the wave vector and the direction of the ion motion. In our
experiment we use laser beams with various wavelengths that are coupled to the ions
from different directions. Typically the LD parameter for 40Ca+ ions is in the range of
η = 0.02 . . . 0.09, see table 3.1.

Table 3.1: Lamb-Dicke parameters. Theoretical LD parameters η for 40Ca+ with typical trapping
frequencies ω, where θ describes the angle between the wave vector of the laser and the
direction of the ion motion. We list laser beams for qubit manipulation at a wavelength of
729 nm and the Doppler Cooling (DC) beam at a wavelength of 397 nm. The laser beam
alignment is illustrated in fig. 4.1.

Motional mode Global 729 nm Addressed 729 nm DC 397 nm

Axial θ = 22.5◦ θ = 67.5◦ θ = 67.5◦

ωz = (2π) 1 MHz η = 0.090 η = 0.037 η = 0.068

Radial θ = 67.5◦ θ = 22.5◦ θ = 22.5◦

ωx = (2π) 4 MHz η = 0.019 η = 0.045 η = 0.082
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The dynamics of the state |ψ(t)〉 are given by the Schrödinger equation ih̄ d
dt |ψ(t)〉 =

H |ψ(t)〉, which yields the unitary time evolution:

|ψ(t)〉 = U(t) |ψ(0)〉 = e−iHIt/h̄ |ψ(0)〉 . (3.21)

If we assume that the laser is tuned close to a resonant transition with detuning ∆ =

(n′ − n)ωz + δ, where n and n′ are integers and δ � ωz, the transition |0, n〉 ↔ |1, n′〉 is
coherently driven and the coefficients in eq. (3.18) can be calculated as

Ċ1,n′ = −i1+|n′−n|e−i(δt−φ)Ωn,n′C0,n, (3.22)

Ċ0,n = −i1−|n′−n|ei(δt−φ)Ωn,n′C1,n′ , (3.23)

with the Rabi frequencies Ωn,n′ described as [70]

Ωn,n′ = Ωn′,n = Ω| 〈n′| eiη(â+â†) |n〉 |

= Ωe−η2/2η|n
′−n|

√
n<!
n>!

L|n
′−n|

n< (η2),
(3.24)

where n< is the lesser, n> the greater of n′ and n, and L(α)
n (x) are the generalized Laguerre

polynomials

L(α)
n (x) =

n

∑
i=0

(−1)i
(

n + α

n− i

)
xi

i!
. (3.25)

The coupled system of eqs. (3.22) and (3.23) can be solved using Laplace transforms. The
solutions are the so called Rabi oscillations [9] that transform the state of the ion as

|ψ(t)〉 = Tn,n′(t) |ψ(0)〉 , (3.26)

where the unitary matrix Tn,n′(t) can be described as [70]

Tn,n′(t) =

e−iδt/2
[

cos(Ω̃n,n′ t/2) + i δ
Ω̃n,n′

sin(Ω̃n,n′ t/2)
]

−i Ωn,n′

Ω̃n,n′
ei(φ+|n′−n|π/2−δt/2) sin(Ω̃n,n′ t/2)

−i Ωn,n′

Ω̃n,n′
e−i(φ+|n′−n|π/2−δt/2) sin(Ω̃n,n′ t/2) eiδt/2

[
cos(Ω̃n,n′ t/2)− i δ

Ω̃n,n′
sin(Ω̃n,n′ t/2)

]
 ,

(3.27)

with the effective Rabi frequency Ω̃n,n′ =
√

Ω2
n,n′ + δ2.

An important regime is where the extent of the wave packet of the ion ∆z = z0
√

n + 1/2
is much smaller than the wavelength λ/(2π) (up to 2π) of the laser. In this, so called
Lamb-Dicke regime, the relationship ∆z � λ/(2π) → η2(2n + 1) � 1 holds for all times
and thus we can simplify the interaction Hamiltonian from eq. (3.19) as [70]

e±iη(âe−iωzt+â†eiωzt) ≈ 1± η(âe−iωzt + â†eiωzt) +O(η2), (3.28)

→ HI ≈
h̄Ω
2

(
σ+{1 + η(âe−iωzt + â†eiωzt)}e−i(∆t−φ) + h.c.

)
. (3.29)

In eq. (3.29) we can identify three different laser detunings ∆ = 0,±ωz where we find special
transitions. The respective Hamiltonian and the Rabi frequencies of these three transitions
are illustrated in fig. 3.3 b) and they are described as:
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1. Carrier (C) transition |0, n〉 ↔ |1, n〉:
Detuning ∆ = 0

HC =
h̄Ω
2

(
σ+eiφ + σ−e−iφ

)
,

Ωn,n = Ω(1− nη2)1.
(3.30)

2. Red-sideband (RSB) transition |0, n〉 ↔ |1, n− 1〉:
Detuning ∆ = −ωz

HRSB =
ih̄Ωη

2

(
âσ+eiφ + â†σ−e−iφ

)
,

Ωn,n−1 =
√

nηΩ.
(3.31)

3. Blue-sideband (BSB) transition |0, n〉 ↔ |1, n + 1〉:
Detuning ∆ = +ωz

HBSB =
ih̄Ωη

2

(
â†σ+eiφ + âσ−e−iφ

)
,

Ωn,n+1 =
√

n + 1ηΩ.
(3.32)

1Note, to determine the reduction of the Rabi frequency with ∝ nη2 one has to take into account the O(η2)
terms in the Lamb-Dicke approximation in eq. (3.28)
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3.3.1 Coherent laser-ion interaction

Quantum operations that change the state of a qubit require coherent interactions between
the laser and the ion. Typically, such quantum operations are carried out on a carrier
transition of an ion in the LD regime, where the interaction Hamiltonian from eq. (3.29)
simplifies to

HI =
h̄Ω
2

(
σ+e−i(∆t−φ) + σ−e+i(∆t−φ)

)
. (3.33)

Figure 3.4: Rabi oscillations. The plot shows the probability P1(t) of finding the ion in the excited
state after switching on the laser-ion interaction for the time t for three different detunings
∆.

Starting from the initial state |ψ(0)〉 = |S〉 = |0〉 the probability P0 of finding the ion in
the ground state |0〉 after time t for ∆� ωz can be calculated using eqs. (3.26) and (3.27) as

P0(t) = |〈ψ(t) |ψ(0)〉|2 =
Ω2

Ω̃2
cos2(Ω̃t/2), (3.34)

with the effective Rabi-frequency Ω̃ =
√

Ω2 + ∆2, Rabi-frequency Ω = Ωn,n and laser
detuning ∆ from the carrier transition frequency. The probability P1 of finding the ion in
the excited state |D〉 = |1〉 can be calculated by

P1(t) = 1− P0(t) =
Ω2

Ω̃2
sin2(Ω̃t/2). (3.35)

The effective frequency of the Rabi oscillation increases with larger detunings, whereas the
amplitude decreases, as depicted in fig. 3.4.

For a given phonon distribution, the Rabi oscillations on resonance (∆ = 0) are described
as

P1(t) = ∑
n

cn sin2(Ωn,n′ t/2), (3.36)

where cn describes the probability that the ion is measured in the motional Fock state |n〉
and Ωn,n′ defines the Rabi frequency of a given transition according to eq. (3.24).

If the ion is not cooled close to the motional ground state, we can assume a thermal
distribution of the phononic excitation as described in eq. (3.16). Such a thermal occupation
of the phononic state leads to an exponential decay of the Rabi oscillation, as can be seen
in fig. 3.11.
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3.3.1.1 Resonant qubit operations

The time evolution of a resonant laser beam (carrier HC with ∆ = 0) interacting with two
levels of an ion can be described by the following unitaries

U(t) = e−iHCt/h̄ (3.37)

R(θ, φ) = e−iθ(Sx cos φ+Sy sin φ), (3.38)

where the interaction Hamiltonian HC is defined in eq. (3.30), θ = Ωt is the rotation angle,
φ is the laser phase which defines the rotation axis in the x,y-plane of the Bloch sphere and
Sx,y = σx,y/2 correspond to the spin operators. If we choose the phase φ ∈ {0, π/2} the
Bloch-vector oscillates around the {x, y} axis as

Rx(θ) = X(θ) = U(θ, 0) = e−iθSx

=

(
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

)
(3.39)

Ry(θ) = Y(θ) = U(θ, π/2) = e−iθSy

=

(
cos(θ/2) − sin(θ/2)

− sin(θ/2) cos(θ/2)

)
.

(3.40)

Following eq. (3.39) for example, a resonant X(π) rotation requires the implementation of a
laser pulse with length t and electric field amplitude E0 that defines the Rabi frequency as
Ω ∝ E0 such that the pulse area fulfills the criterion θ = Ωt = π.

If a set A of ions with size |A| ≤ N of a string containing N ions is illuminated by the
laser, the resonant qubit operations can be readily extended by expanding the spin operator
to

Sx,y =
1
2 ∑

i∈A
...⊗ 1(i−1) ⊗ σ

(i)
x,y ⊗ 1(i+1) ⊗ ... (3.41)

with σ
(i)
x,y acting on qubits i.

3.3.1.2 Off-resonant qubit operations

For a large enough laser detuning (∆ � Ω) from a transition, the resonant coupling to
the transition can be neglected, as can be seen in eq. (3.35). But a far detuned laser beam
changes the energy difference between atomic levels, due to the so called AC-Stark effect.
The AC-Stark shift can be calculated by using second-order time-independent perturbation
theory [81]. For non-degenerated states with interaction Hamiltonian HI the energy shift of
a state i with unperturbed energy Ei can be estimated by

∆Ei = ∑
j 6=i

|〈j|HI |i〉|2

Ei − Ej
(3.42)

For a laser with electric field ~E coupling for example to a single dipole transition between a
ground state |g〉 and an excited state |e〉 with dipole moment ~µ the dipole matrix element
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is 〈e|~µ~E |g〉 = h̄Ω/2. The energy shift of the involved states can be calculated according
to eq. (3.42) as

∆E = ±| 〈e|~µ
~E |g〉 |2

h̄∆
= ± h̄Ω2

4∆
(3.43)

Compared to the unperturbed rotating frame of the ion, the AC-Stark shift induces an
effective rotation around the z-axis during the interaction with Rabi frequency

ΩAC =
Ω2

2∆
. (3.44)

Note that in the experiment one needs to take into account all relevant transitions to which
the laser couples off-resonantly (all Zeeman transitions in the 42S1/2 ↔ 32D5/2 manifold
and the dipole transitions 42S1/2 ↔ 42P1/2, 42S1/2 ↔ 42P3/2, 32D5/2 ↔ 42P3/2) [82].

The effective rotation around the z-axis is (up to a global phase) described by the following
unitary operation

Rz(θ) = Z(θ) = e−iθSz =

(
1 0

0 eiθ

)
, (3.45)

where θ = ΩACt is the rotation angle. Similar to eq. (3.41), a rotation around the z-axis can
be extended to a register containing many ions by expanding the spin operator Sz.

3.3.1.3 Entangling qubit operations

In our experiment we utilize the so called Mølmer-Sørensen (MS)-gate [83, 84] to entangle
the electronic states of the ions. The MS-gate employs a spin-dependent force by using
the motional degrees of freedom of the ions. To realize this gate two laser beams with
opposite detunings from the carrier ω0 −ωL = ±∆ interact with the ions. The interaction
Hamiltonian from eq. (3.19) can then be written as [84]

HI = 2ΩSy cos(∆t)−
√

2ηΩSx[x̂ cos(ωz − ∆)t + x̂ cos(ωz + ∆)t

+ p̂ sin(ωz − ∆)t + p̂ sin(ωz + ∆)t],
(3.46)

where Sx,y correspond to the spin operators defined in eq. (3.41), x̂ = 1/
√

2(â + â†) is the
position operator and p̂ = i/

√
2(â† − â) is the momentum operator. If we use laser beams

with small enough intensities Ω � ∆ and tune the laser close to the motional frequency
δ = ωz − ∆� ∆ we can neglect the Sy term and the fast oscillating terms (ωz + ∆) and the
interaction Hamiltonian simplifies to

HI = f (t)Sx x̂ + g(t)Sx p̂, (3.47)

with f (t) = −
√

2ηΩ cos δt and g(t) = −
√

2ηΩ sin δt. As can be seen in eq. (3.47), the ions
experience a state-dependent force and they follow a circular trajectory in phase-space
during the interaction, as shown in fig. 3.5 a). If the ions undergo a complete circle in
phase-space we refer to this as one loop. The unitary time evolution can be described by the
following propagator

UMS(t) = e−iA(t)S2
x e−iF(t)Sx x̂e−iG(t)Sx p̂, (3.48)

with A(t) = − η2Ω2

δ

[
t− 1

2δ sin 2δt
]
, F(t) = −

√
2ηΩ
δ sin δt and G(t) = −

√
2ηΩ
δ [1− cos δt].
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Since we encode quantum information only in the electronic states of the ions, the
electronic states should not be entangled with the motion after the gate evolution. Therefore
we tune the experimental parameters such that after a specific gate time τ the terms
in eq. (3.48) vanish, i.e. F(τ) = G(τ) = 0. The motion is disentangled from the electronic
states after times τ = 2πK/δ, where K is an integer and defines the number of loops the
ions make in phase-space.

The action of the MS gate on the electric states of two ions is described (up to a global
phase) as

MS(θ) = e−iθS2
x

=


cos(θ/2) 0 0 −i sin(θ/2)

0 cos(θ/2) −i sin(θ/2) 0

0 −i sin(θ/2) cos(θ/2) 0

−i sin(θ/2) 0 0 cos(θ/2)

 ,
(3.49)

with the spin operator Sx = 1/2(σx ⊗ 1 + 1⊗ σx) for two ions, as defined in eq. (3.41). In
the experiment it is also possible to set the phase φ of the laser beams allowing us to change
the rotation axis of the MS-gate as

MSφ(θ) = e−iθ(Sx cos φ+Sy sin φ)2
. (3.50)

Figure 3.5: MS-gate evolution. a) Trajectory describing the state evolution in phase-space from 0

to π/2 (light blue to dark blue) corresponding to K = 1 loop. b) Time evolution of the
state populations during a 2-qubit MS-gate from 0 to 2π corresponding to K = 4 loops in
phase-space.
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3.4 quantum gate operations

As mentioned in the introduction, algorithms in quantum computation are realized by a
series of gate operations acting on register of qubits. These discrete gates can be schematically
described by the circuit model.

A commonly used finite and universal gate set {H, P, T, CNOT} contains the Hadamard-
, the Phase-, the T- and the CNOT-gate, where the 1-qubit operations are described
in fig. 3.6 and the CNOT-gate is depicted in fig. 3.7. Another, slightly smaller set of
gates {H, P, CNOT} is also quite important in quantum information theory, since it can be
simulated efficiently on a classical computer and thus plays an important role in quantum
benchmarking (see chapter 5) and quantum error correction (see chapter 7). The generation
and other details of the so-called Clifford group is described in appendix E.

The Pauli operations X, Y, Z can be implemented by laser pulses, which rotate the state
of the qubit by an angle of π, as X = Rx(π), Y = Rx(π), Z = Rz(π). The Hadamard gate is
realized by a π/2 rotation around the y-axis followed by a π pulse around the z-axis, as
H = Rz(π)Ry(π/2). A π/4 rotation about the z-axis corresponds to the T = Rz(π/4) gate,
which is an important gate since together with the gates from the Clifford group a universal
set of gates is formed. The CNOT-gate is implemented by a fully entangling MS(π/2) gate
dressed with four local gates, as illustrated in fig. 3.7.

Since the set of gates {H, P, T, CNOT} can be implemented in our ion trap apparatus, our
architecture provides a universal set of gates for quantum computation.

Figure 3.6: 1-qubit quantum gates. Name, standard circuit model symbols, ion gate implementation
and matrix representation of frequently used quantum gates.

Figure 3.7: 2-qubit Controlled-NOT (CNOT)-gate. Standard circuit model symbol, ion gate imple-
mentation and matrix representation of the CNOT-gate. Depending on the state of qubit
1 (control qubit), qubit 2 (target qubit) is inverted (by an X operation) or not.
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3.5 ramsey spectroscopy

Ramsey’s technique of separated oscillatory fields [85] is an efficient tool to estimate the
phase coherence of atomic transitions and the driving fields. The idea is to generate an
equal superposition of two specific states, let this state evolve for a certain time τ and bring
the population back into one of the two states to measure the resulting population.

Figure 3.8: Pulse sequence for Ramsey spectroscopy. The qubit is prepared in the state |0〉, then a
π/2 rotation R(π

2 , 0) is applied to the qubit. After a waiting time τ a second π/2 rotation
R(π

2 , φ) with phase φ is implemented before the qubit is measured.

Experimentally we implement the sequence R(π/2, 0) → Wait(τ) → R(π/2, φ), as
depicted in fig. 3.8. Using eq. (3.35), we can calculate the probability to excite the ion to the
state |1〉 as [76]

P1(τ) =
4Ω2

Ω̃2
sin2(Ω̃t′/2)

[
cos(Ω̃t′/2) cos(∆τ/2 + φ)

+
∆
Ω̃

sin(Ω̃t′/2) sin(∆τ/2 + φ)

]2

,

(3.51)

where Ω̃ =
√

Ω2 + ∆2 is the effective Rabi-frequency, ∆ the detuning, t′ the π/2 pulse
duration, τ the Ramsey waiting time and φ describes the phase difference between the two
π/2 pulses. For typical experiments we can assume that the detuning is small compared
to the Rabi frequency ∆ � Ω and that the π/2 pulse duration is much smaller than the
Ramsey time t′ � τ and eq. (3.51) simplifies to [76]

P1(τ) =
1
2
[1 + C(τ) cos(∆τ + 2φ)] sin2(Ω̃t′/2), (3.52)

where we have introduced the waiting time dependent contrast C(τ). If we assume for
example, that the detuning ∆ of the laser fluctuates slowly from shot to shot, the measured
state depends on the realized phase ei∆τ of each single shot. If we average over these
individual realizations, the contrast C(τ) is reduced. If the specific phase is not correlated
from shot to shot, the contrast can be estimated as the expectation value of this random
phase as [76]

C(τ) =
∣∣∣〈ei∆τ〉

∣∣∣ = ∣∣∣∣∫ ∞

−∞
p(∆)ei∆τd∆

∣∣∣∣ , (3.53)

where we average the random phase over a probability density function p(∆). The frequency
fluctuations of a laser can typically be modeled by a Lorentzian function as [76]

p(∆) =
1
π

γ

γ2 + ∆2 , (3.54)

where γ describes the half width at half maximum (HWHM). Note that eq. (3.53) basically
describes the Fourier transform of the probability density function p(∆), which results in
an exponential decay in the case of a Lorentzian laser linewidth as [76]

C(τ) = e−γτ = e−
τ

T2 , (3.55)
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where T2 = 1/γ is the coherence time. Since the full width at half maximum (FWHM)
from eq. (3.54) can be described as 2γ = ∆ωFWHM = 2π∆νFWHM, the coherence time is
related to the FWHM laser linewidth as

T2 =
1
γ
=

1
π∆νFWHM

. (3.56)

In a similar fashion the frequency fluctuations can be modeled by a Gaussian distribution
as [76]

p(∆) =
1

σ
√

π
exp

(
−∆2

σ2

)
(3.57)

and for the time dependent contrast follows [76]

C(τ) = exp
(
−σ2τ2

4

)
. (3.58)

Using the FWHM definition 2π∆νFWHM = 2
√

ln2σ and that T2 is the time for which the
contrast reduces to 1/e of the initial value, the corresponding coherence time is given by

T2 =
2
√

ln2
π∆νFWHM

. (3.59)

If we assume that the frequency fluctuations are induce by magnetic field fluctuations, we
can exchange the term ∆νFWHM = µ∆B/h, since the frequency shift depends linearly on the
magnetic field, as discussed in appendix A.

In reality, fluctuations are rarely perfectly described by a Gaussian noise process as
assumed in the cases above. Typically, in the laboratory there are additional components
in the frequency spectrum, such as e.g. 50 Hz noise components and harmonics thereof
originating from the AC power line or other noise peaks in various frequency domains
coming from electronic devices.

For a given power spectral density A(ω) of the noise, we can compute the Ramsey
contrast C(τ) as [86, 87]

C(τ) = exp
{
−
∫ ∞

0

A(ω)2

ω2 sin2(ωτ/2)dω

}
. (3.60)

Note, that for constant noise spectrum A(ω) = a the integral is
∫ ∞

0
A(ω)2

ω2 sin2(ωτ/2)dω =

a2πτ/4 and the Ramsey contrast decays exponentially in agreement with eq. (3.55).
If we want to cancel noise that is slower varying than half the Ramsey waiting time, we

add a π pulse at half the waiting time, that will refocus the slow noise in the second half of
the experiment. This Ramsey spectroscopy with spin-echo [88] is for example helpful when
the transition frequency changes slowly compared to the waiting time. Experimentally we
implement the sequence R(π/2, 0)→Wait(τ/2)→ R(π, 0)→Wait(τ/2)→ R(π/2, φ), as
depicted in fig. 3.9.

The Ramsey contrast with spin-echo can be estimated as [89]

C(τ) = exp
{
−4

∫ ∞

0

A(ω)2

ω2 sin4(ωτ/4)dω

}
. (3.61)

Note, that similar to the case before, a constant noise spectrum A(ω) = a leads to an
exponential decay with decay constant T2 = 4/(a2π).
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Figure 3.9: Pulse sequence for Ramsey spectroscopy with spin-echo. The qubit is prepared in the
state |0〉, then a R(π

2 , 0) rotation is applied to the qubit. After half the waiting time τ/2
a R(π, 0) pulse is applied. Finally, after a second waiting τ/2 a R(π

2 , φ) rotation with
phase φ is implemented before the qubit is measured.

In general, we model peaks in the noise spectrum with either a Lorentzian L(ω, ω0, Γ) or
a Gaussian G(ω, ω0, σ) function as

L(ω, ω0, Γ) =
Γ2

Γ2 + (ω−ω0)2 , (3.62)

G(ω, ω0, σ) = exp
{
− (ω−ω0)2

σ2

}
, (3.63)

where Γ and σ describe the widths and ω0 the center of the distributions. As an example
the noise spectrum can be modeled as

A(ω) = a + bG(ω, ω0, σ) + cL(ω, ω′0, Γ). (3.64)

3.6 laser cooling

Coherent laser-ion interaction, as described in section 3.3.1, requires the trapped ions to be
inside the Lamb-Dicke regime. As outlined in section 3.3.1 this means that the ions must be
cold enough such that the spatial spread of the ion’s wave function is small compared to the
wavelength of the interacting laser. In order to realize high-fidelity quantum computation it
is even necessary that the ions are close to their motional ground state. Experimentally, this
can be achieved by laser cooling [78, 90–92],. This section gives a brief overview on how to
reduce the temperature of trapped ions from hundreds of Kelvin down to the micro-Kelvin
regime.

After atoms are emitted from the oven with a temperature T ≈ 600 K they are ionized
and confined inside the trap. At these temperature the ions follow chaotic trajectories and
they form a cloud of ions. Inside the trap the ions repel each other due to the Coulomb
force. The Coulomb interactions can be described by the Coulomb correlation parameter
ΓCoul =

Q2

4πε0a0

1
kBT , which is defined as the ratio between the Coulomb interaction energy of

two ions at distance a0 and their kinetic energy [67]. Without cooling the trapped particles
are in the weak coupling regime ΓCoul � 1 and form a cloud. By means of laser cooling
it is possible to reduce the thermal energy of the ions and bring them into the strongly
interacting regime ΓCoul � 1, where the kinetic energy becomes significantly lower than the
Coulomb interaction energy kBT � Q2/4πε0a0 and the particles form a periodic structure,
a so called Coulomb crystal [67, 93–96]. Since the ions localize at the classical equilibrium
position of the effective pseudo-potential, they form a one-dimensional crystal, or a string in
a linear Paul trap. In the experiment the exact crystallization temperature depends on many
factors, such as the particle number, the trapping frequencies and power/detuning of the
cooling laser [67]. In the following we outline three techniques that enable us to decrease
the ion temperature over more than 7 orders of magnitude.

Laser cooling in general utilizes absorption and emission of photons from a laser beam
by the trapped ions. We can characterize laser cooling by two fundamental frequencies:
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the trapping frequency ωz and the rate of spontaneous emission Γ, which determines the
minimum length of a cooling cycle. In our experiment we employ the following three types
of laser cooling subsequently.

1. Doppler Cooling (DC) works in the weak binding or unresolved sideband regime, where
the sideband transitions cannot be addressed individually because the linewidth is
large compared to the motional frequency Γ > ωz. A detailed discussion follows
in section 3.6.1

Note, that at a temperature T ≈ 600 K after loading, all optical transitions are affected
by the so called Doppler broadening ΓD = 1/λ

√
8ln2kBT/M [97]. The 42S1/2 ↔ 42P1/2

transition in 40Ca+ with a wavelength around 397 nm for example is broadened to ΓD ≈
(2π) 330 MHz. Hence DC is typically the first cooling technique of an experimental
sequence.

2. Polarization Gradient Cooling (PGC) also works in the unresolved sideband regime,
where Γ > ωz holds. For PGC to work the extent of the ion wave packet must be
smaller than the wavelength of the cooling laser, as opposed to DC. Hence the ions
are typically pre-cooled before employing PGC. Importantly, the achievable cooling
limit using PGC is lower compared to DC, as outlined in section 3.6.2.

3. Resolved Sideband Cooling (RSC) is employed in the strong binding or resolved sideband
regime, where the sideband transitions can be addressed spectroscopically due to
the narrow linewidth compared to the motional frequency Γ < ωz. With this cooling
technique the ions can be cooled close to their motional ground state, which is
explained in detail in section 3.6.3.

3.6.1 Doppler cooling

Here we utilize the Doppler effect, where the frequency of the laser is shifted in the rest
frame of the ion, if the ion moves relative to the laser source. Hence this technique is called
Doppler Cooling (DC). In the following we use a description of the cooling process that is
derived from free particles, but leads to the same results as more evolved descriptions for
confined particles [70, 78, 90–92].

If we describe the velocity v(t) = v0 cos(ωzt) of the ion classically in the case of a large
linewidth Γ� ωz, we can assume that the velocity does not change significantly during an
absorption-emission cycle t ∝ 1/Γ. The average force Fa acting on the ion can be described
by the momentum change per absorption-emission cycle of photons with momentum h̄k at
rate Γ times the probability ρee = 〈e| ρ |e〉 of the ion to be in the excited state |e〉 as [70]

Fa = 〈
dp
dt
〉 ≈ h̄kΓρee, (3.65)

with the Lorentzian excitation probability

ρee =
s0/2

1 + s0 + 4∆2
eff/Γ2

, (3.66)

where s0 = 2Ω2/Γ2 is the saturation parameter on resonance and ∆eff = ∆ − kv is the
difference between the laser detuning and the Doppler shift. As can be seen in eq. (3.66)
the force is maximized for ∆eff = 0 when the laser detuning matches the Doppler shift. For
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small velocities, where the spatial extend of the ion is comparable to the laser wavelength,
the Doppler broadening vanishes [98] and the Doppler shift becomes small compared to the
natural linewidth kv� Γ and the force Fa can be linearized in v [70]

Fa ≈ F0(1 + κv)

= h̄kΓ
s0/2

1 + s0 + 4∆2/Γ2

(
1 +

8k∆Γ
1 + s0 + 4∆2/Γ2 v

)
,

(3.67)

where Fa becomes a restoring force for red detuning (∆ < 0). Averaging over many oscilla-
tions the cooling rate is defined as [70]

Ėcool = 〈Fav〉 = F0
(
〈v〉+ κ〈v2〉

)
= F0κ〈v2〉, (3.68)

since 〈v〉 = 0 for a particle in a harmonic potential. Due to the recoil energy Erec = h̄2k2/2M
of absorbed and emitted photons there is a diffusion in the kinetic energy of the ion. For
low enough laser intensity, below saturation s0 � 1 (Ω� Γ), the absorption and emission
of photons is not correlated and we can calculate the heating rate Ėheat for small velocities
(v ≈ 0) as [70]

Ėheat = Ėabs + Ėemi = Ėabs(1 + ξ) = ErecΓρee(1 + ξ)

≈ h̄2k2

2M
Γρee(v = 0)(1 + ξ),

(3.69)

where ξ takes into account the anisotropy of the spontaneous emission (ξ = 2/5 for dipole
radiation). In the steady state the heating rate is equal to the cooling rate (Ėcool = Ėheat) and
thus the kinetic energy can be expressed as [70]

M〈v2〉 = kBT =
h̄Γ
8
(1 + ξ)

(
Γ

2∆
(1 + s0) +

2∆
Γ

)
. (3.70)

From eq. (3.70) the temperature limit for DC can be determined as [70]

Tmin =
h̄Γ
√

1 + s0

4kB
(1 + ξ), for ∆ =

Γ
√

1 + s0

2
. (3.71)

If the temperature is not too low, such that h̄ωz � kBT holds, we can relate the minimum
achievable thermal energy from eq. (3.71) to the energy of a harmonic oscillator kBT ≈
h̄ωz(n̄ + 1/2) with mean phonon number n̄ and thus estimate the minimum mean phonon
number as

n̄min ≈
Γ
√

1 + s0

4ωz
(1 + ξ)− 1

2
. (3.72)

The estimated mean phonon number after DC in our experiment is n̄min ≈ 7, with a
linewidth of Γ = (2π) 22.4 MHz, s0 ≈ 0, ωz = (2π) 1 MHz and ξ = 2/5. Although, effects of
the micro-motion [70, 99] and the existence of a third level (D3/2) [100] are neglected, this
limit is a good approximation in many experimental realizations. A more detailed analysis
of the dynamics during DC of a single trapped atom can be found in Ref. [101].

3.6.2 Polarization gradient cooling

Polarization Gradient Cooling (PGC) is a technique routinely used in ultra-cold atom
experiments. After the initial proposal [102], recent experiments demonstrated the usefulness
of PGC also for trapped ion setups [103, 104].
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Figure 3.10: Polarization Gradient Cooling (PGC) scheme. a) Two counter-propagating beams (~E1
and ~E2) with perpendicular linear polarization are overlapped along the z direction,
forming a standing wave. Due to the off-resonant coupling of the standing wave to an
excited state, the energies of the two ground states are shifted with a periodicity of
λ/2. b) The state-dependent potentials (U+ and U−) are shifted and the transition rates
(Γ−→+ and Γ+→−) vary along the z direction. This configuration favours an evolution
like 1.− 4. and the ion is cooled.

PGC uses two counter-propagating laser beams in linear-perpendicular-linear polariza-
tion configuration interacting with the 42S1/2 ↔ 42P1/2 transition in 40Ca+ , as depicted
in fig. 3.10 a). The laser beams form a periodic polarization gradient field along the propa-
gation direction z. If the quantization axis is aligned with the propagation direction of the
lasers, the ion cannot interact with π polarized light. The frequency of the laser beams is
blue detuned by ∆ relative to the 42S1/2 ↔ 42P1/2 transition and gives rise to a periodically
varying AC-Stark shift on the Zeeman ground states |42S1/2, mj = ±1/2〉, where the energy
shifts of the two ground states have a phase difference of π. Combining the axial potential
U = 1/2Mω2

z z2 of the trap and the state-dependent dipole potentials formed by the laser
beams leads to the total potential [104]

U± = 1/2Mω2
z z2 +

1
3

∆s (1∓ sin(2kz + 2φ)) , (3.73)

where k expresses the wave vector, φ defines the phase at z = 0 and s = Ω2/2
Γ2/4+∆2 is

the saturation parameter. In addition to the trapping potential, also the transition rates
Γ±→∓=̂Γ(U± → U∓) between the two ground states change periodically along the z
axis [104]

Γ±→∓ =
1
9

Γs(1∓ sin(2kz + 2φ)), (3.74)

as depicted in fig. 3.10 b). If the ion moves in the periodically varying potential, it’s energy
changes before being transferred from one Zeeman state to the other. On average, the change
of the kinetic energy in this process can be described as [104]

Ė = p+〈Γ+→−(U− −U+)〉+ p−〈Γ−→+(U+ −U−)〉+ Rsch̄ωz, (3.75)

where p± = 1/2(1± sin(2kz + 2φ)) are the populations of the Zeeman ground states in
the steady state and Rsc describes the rate of scattered photons which lead to heating. In
the Lamb-Dicke regime the two main heating effects are photon absorption on the carrier
transition followed by a spontaneously scattered photon on the sideband RSB and photon
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absorption on the sideband followed by a spontaneously emitted photon on the carrier RC.
In the trap center (z = 0) the heating rate of these processes can be defined as [104]

Rsc = RC + RSB =
1
3

η2Γs
[
α(1− sin2 2φ) + (1 + sin2 2φ)

]
, (3.76)

where α takes the spatial emission pattern of the scattered photon into account (α = 1/3
for a dipole transition). In our example, with blue detuned laser beams, the probability of
changing the state is correlated with the potential such that it is likely that the ion climbs
the potential hill and loses kinetic energy before it gets transferred back to the lower lying
potential at rate Rcool. In analogy of the story of King Sisyphus in Greek mythology, who
was punished by being forced to roll a rock up the hill over and over again for eternity, this
process is called the Sisyphus effect.

The opposite case, where the ion gets transferred from a lower to the higher potential
state, together with the spontaneously scattered photons defines the heating rate Rheat. After
expanding eq. (3.75) to first order in kz we obtain the PGC dynamics [104]

Ė = −Rcool(E− E0) = −RcoolE + Rheath̄ωz, (3.77)

Rcool =
16
9

η2Γsξ cos2 2φ, (3.78)

Rheat =
2
9

η2Γs(8ξ2 cos4 2φ + 3− cos2 2φ), (3.79)

with ξ = ∆s
3ωz

. It can be seen that the cooling is most efficient for φ = 0 and vanishes for
φ = ±π/4. The mean phonon number n̄ in the steady state is defined as [104]

n̄ =
Rheat

Rcool
− 1

2
= ξ +

1
4ξ
− 1

2
=

∆s
3ωz

+
3ωz

4∆s
− 1

2
, (3.80)

which is minimized for ξ = 1/2 when the potential well depth equals the trap frequency
2∆s/3 = ωz and a minimum mean phonon number of n̄min = 1/2 is achievable, if the
ion position is at z = 0 where φ = 0. To make the scheme robust against misalignment of
the ion position relative to the standing wave pattern, we detune one of the beams by the
frequency δ to get a moving wave instead of a standing wave. If the cooling and heating
rates are smaller than this detuning and Rheat ≤ Rcool < δ < ωz holds, we can assume that
the ion samples the phase of the moving wave uniformly and for the mean phonon number
follows [104]

n̄ =
3
4

ξ +
5

8ξ
− 1

2
, (3.81)

which is minimized for ξ =
√

5/6 resulting in an achievable minimum mean phonon
number of n̄min =

√
15/8− 1/2 ≈ 0.87 [104].

In our setup we use two counter-propagating beams, blue detuned by ∆ = 206 MHz,
detuned by δ = 200 kHz relative to each other and with an angle of θ = 22.5 ◦ between the
cooling beams and the trap axis/magnetic field axis, as illustrated in fig. 4.1. Since the laser
beams are not aligned along the magnetic field, the ions can also couple to π polarized
light. The π polarized light does not change the potential energy of the ion, as depicted
in fig. 3.10, and thus does not support cooling but only heating due to the scattered photons.
Hence the ratio between cooling and heating rate changes and the minimum achievable
mean phonon number n̄min increases.
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Figure 3.11: Rabi oscillations after cooling. Presented are Rabi oscillations after Doppler cooling
(DC) in blue and Rabi oscillations after polarization gradient cooling (PGC) in orange.
The estimated mean phonon numbers are n̄DC = 25(1) after DC and n̄PGC = 2.3(1) after
PGC.

Experimentally, we utilize PGC right after DC. To estimate the mean phonon number we
measure Rabi oscillations on the |S, mj = −1/2〉 ↔ |D, mj = −1/2〉 transition and fit the
results to an evolution with thermally distributed phonon numbers n, according to eq. (3.36).

We implement PGC for 0.5 ms on a single ion with an axial trapping frequency of
ωz ≈ (2π) 1215 kHz and Lamb-Dicke parameter for the 729 nm laser of η = 0.0837(1).
The measurements are illustrated in fig. 3.11 and we estimate a mean phonon number of
n̄DC = 25(2) with the undisturbed Rabi frequency on the carrier Ω = (2π) 16.84(6) kHz
after DC and n̄PGC = 2.3(1) with Ω = (2π) 16.73(1) kHz after PGC.

Another method to estimate the achievable n̄ is to implement Rabi oscillations on the
red and the blue motional sideband and fit the results again according to eq. (3.36). The
measurements are depicted in fig. 3.12 and we estimate a mean phonon number of n̄PGC =

2.10(6) with a Rabi frequency on the carrier of Ω = (2π) 17.0(5) kHz.

Figure 3.12: Mean phonon number measurements after PGC. Rabi oscillations on the a) red and
b) blue sideband after applying PGC for 0.5 ms. We estimate a mean phonon number of
n̄PGC = 2.10(6).



34 the trapped ion quantum computer

As can be seen in the results, all the estimated Rabi frequencies and mean phonon
numbers agree well with each other. The theoretically achievable mean phonon number
after DC is n̄DC ≈ 6 according to eq. (3.72). Our results of n̄DC = 25(1) reveal that DC was
not optimized, which in turn shows that PGC is a technique to cool the ions below the
Doppler limit to n̄PGC = 2.10(6) in a short time of 0.5 ms even without optimal DC.

3.6.3 Resolved sideband cooling

Resolved Sideband Cooling (RSC) works in the regime where the transition linewidth is
small compared to the motional frequency Γ < ωz. By tuning the laser to the frequency
∆ = −ωz, a photon is absorbed on the red sideband transition and the phonon number
is reduced by the subsequent emission of a photon on the carrier transition, as depicted
in fig. 3.13 [105].

Figure 3.13: Resolved sideband cooling. A frequency selective 729 nm beam pumps the population
from the |S1/2, n〉 to the |D5/2, n− 1〉 level. At the same time the ion gets illuminated
with a 854 nm laser beam, which effectively increases the transition rate to ground state
|S1/2, n− 1〉 according to eq. (3.83) by pumping the ion to the short lived |P3/2, n− 1〉
state.

In the Lamb-Dicke regime (η2(2n + 1) � 1), the excited state predominantly decays
on the carrier transition and by assuming a Lorentzian line shape of the excited state as
in eq. (3.66) with detuning ∆eff = 0 and Rabi frequency ΩRSB =

√
nηΩ the cooling rate is

given by [70]

Rcool = Γρee = Γ
nη2Ω2

Γ2 + 2nη2Ω2 . (3.82)

Note that the cooling rate now depends on the phonon number n and vanishes for n = 0.
The employed narrowband 42S1/2 ↔ 32D5/2 transition at a wavelength of 729 nm has a very
small linewidth on the order of Γ ≈ (2π)136 mHz, which severely limits the cooling rate
to about 0.5 phonons/s. Therefore, the excited state lifetime is shortened by illuminating
the ions with the 854 nm laser driving the 32D5/2 ↔ 42P3/2 transition yielding the effective
linewidth [70]

Γ′ =
Ω2

quench

(Γquench + Γ)2 + 4∆2
quench

, (3.83)
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with a rabi frequency Ωquench and a detuning ∆quench determined by the 854 nm quench
laser, and the linewidth Γquench of the 32D5/2 ↔ 42P3/2 transition.

The main heating mechanisms in this process are off-resonant excitation on the carrier
transition followed by a spontaneous emission on the red sideband and off-resonant excita-
tion on the blue sideband followed by a spontaneous emission on the carrier transition. The
probability of exciting the carrier transition is Ω2/(4ω2

z) for Ω� ∆eff = ωz and the excited
state decays on the red sideband at rate η′2Γ′ leading to a heating rate of η′2Γ′Ω2/(4ω2

z).
Note that the spontaneous emission has a different Lamb-Dicke parameter η′ because the
photon can be scattered into any direction and the emitted photon has a different wavelength
λ′ ∼ 393 nm. The excitation probability on the blue sideband is η2Ω2/(4(2ωz)2) followed
by a decay on the carrier at rate Γ′ causes a heating rate of Γ′η2Ω2/(4(2ωz)2). Therefore the
total heating rate can be described as [70]

Rheat =
Γ′Ω2

4ω2
z

(
η′2 +

η2

4

)
. (3.84)

Note that there exists an additional heating mechanism induced by the ion trap itself due to
noise in the electric field. This heating effect can play a role close to the motional ground
state and can be taking into account in eq. (3.84) to estimate the achievable ground state
population in the experiment.

In equilibrium, the cooling rate equals the heating rate (Rcool = Rheat) and for small
phonon numbers (Γ′2 > 2nη2Ω2) the cooling limit can be estimated by [70]

n̄min ≈
(

Γ′

2ωz

)2
[(

η′

η

)2

+
1
4

]
. (3.85)

Note that the cooling rate in eq. (3.82) as well as the minimum phonon number in eq. (3.85)
depend on the quenched linewidth Γ′, hence there is a trade-off between cooling speed and
cooling limit. In our experiment we can cool a single ion closed to the motional ground
state with a mean phonon number n̄SBC = 0.006(6), as illustrated in fig. 3.14.

Figure 3.14: Resolved sideband cooling results. Rabi oscillations on the a) red and b) blue sideband
after applying SBC. We estimate a mean phonon number of n̄SBC = 0.006(6).
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3.7 state preparation and readout

Prior to every quantum algorithm, it is important to prepare the ion in a specific state
of the Zeeman manifold. Typically, we prepare the ions in the |0〉 = |S1/2, mj = −1/2〉
state. To do so, we tune the frequency of the 729 nm laser to drive the |S1/2, mj = +1/2〉 ↔
|D5/2, mj = −3/2〉 transition. At the same time the 854 nm laser is switched on to effectively
shorten the lifetime of the excited state, as depicted in fig. 3.15 a). From the excited 42P3/2
state the ion decays back into one of the ground states. Once the ion decays into the state
|S1/2, mj = −1/2〉 it is trapped there and the state preparation is finished [86]. In analogy
to pumping water from one bucket to another, this procedure is called optical pumping.

At the end of every sequence the state of ion is measured. The read out is done by shining
a resonant laser beam with a wavelength of 397 nm onto the ions, as illustrated in fig. 3.15

b). At the same time the 866 nm laser is switched on to prevent population trapping in
the long lived |D3/2〉 state. If the ion is projected into the |S1/2〉 state, it scatters 397 nm
photons which can be detected via the Photo Multiplier Tube (PMT) or the Charge-Coupled
Device (CCD) camera. If the ion is projected into the |D5/2〉 state, it does not interact with
the 397 nm laser and therefore remains dark. Hence the |S1/2〉 state is called the bright state
and the |D5/2〉 state is referred to be the dark state.

We repeat every sequence n times to measure the probability P1 = n(P1)/n of finding
the ion in the excited |D5/2〉, where n(P1) is number of times the ion was measured in the
dark state. The statistical uncertainty of this repetition is ∆P1 =

√
P1(1− P1)/n, which is

called the quantum projection noise [106]. Typically, we implement n = 100 cycles of each
experiment to keep the projection noise below 5 %.

Figure 3.15: State preparation and readout techniques. a) Optical pumping using lasers with wave-
lengths of 729 nm and 854 nm to bring the population from the |S1/2, mj = +1/2〉 state
to the |S1/2, mj = −1/2〉 ground state. b) The state of the ion is detected by illumination
with the 397 nm laser. If the ion is projected into the |S1/2〉 state, fluorescence light at
397 nm can be measured. If the ion is projected into the |D5/2〉 state, it remains dark.
The laser at 866 nm is used to prevent population trapping in the |D3/2〉 state.
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3.8 experimental imperfections

Up to now, the tools used in ion-trap quantum computers were described in an idealized
fashion, but real-world devices are prone to errors. In principle, every experimental pa-
rameter can be controlled to finite precision, that will lead to imperfect gate operations. In
Ref. [80] a detailed overview about issues related to trapped ion experiments is given.

In this section we discuss only a few important errors to provide an insight into the main
limiting factors of our experiment. We group them into three different sections, in analogy
to Ref. [80]. First, we outline errors that affect the motional state of the ions in section 3.8.1.
Second, errors affecting the internal electronic states are discussed in section 3.8.2. Third,
we consider operational errors induced by the laser in section 3.8.3.

3.8.1 Errors affecting the motional state

High-fidelity quantum operations, as described in section 3.3.1, require that the ions are
close to the motional ground state n̄ ≈ 0. Otherwise, the Rabi frequencies fluctuate, which
lead to errors in quantum operations, see section 3.8.3. This can be easily observed in fig. 3.11,
where the interference of different Rabi frequencies leads to the decay of Rabi flops. In
addition, the entangling MS operation utilizes the motion to mediate excitations between
ions, as introduced in section 3.3.1.3. Hence, high fidelity entangling operations require low
motional errors, as explained in [84].

In ion trap experiments, there exist many sources of noise that can affect the motional
state of the ions. Here, we discuss two effects, motional heating and fluctuating trapping
frequencies, that limit the coherence of the motional state in our experiment. Many other
mechanims that can be detrimental in principle, but typically do not limit the motional
coherence in our experiment, are outlined in Ref [80].

First we discuss motional heating, that is a limiting factor in many ion-trap experiments.
Motional heating is typically characterize by the heating rate ˙̄n, that describes the number
of phononic excitations per unit of time. A major source inducing motion heating is electric
field noise that interacts with the ions. The effects of electric field noise in ion traps are
discussed in detail in Refs. [107–109]. In our trap, the heating rate is about ˙̄n ∼ 2 phonon/s
at a trapping frequency of ωz = (2π) 1 MHz. This limits the motional coherence time to
Tm ≤ 0.5 s. According to Ref. [84], the measured heating results in an MS gate infidelity of
εMS ∼ 2 · 10−4. Importantly, the heating rate for the COM mode of motion increases linearly
with the ion number N [110], which can severely limit the motional coherence time for long
ion strings.

The MS gate is implemented by tuning two laser beams close to the red and blue sideband
of the ion’s motion, as described in section 3.3.1.3. The detuning between the motional
frequency and the laser frequency defines the ideal MS gate time. Therefore, if the motional
frequency fluctuates, also the ideal MS gate time fluctuates. The motional frequencies ωx, ωy

and ωz in our experiment are defined in eqs. (3.8) and (3.9). For small fluctuations of the
parameters, we can describe the fractional stability of the motional frequencies as [80]

δωx,y

ωx,y
=

δVRF

VRF
+

δΩRF

ΩRF
+

2δr0

r0
, (3.86)

δωz

ωz
=

δUDC

2UDC
+

δz0

z0
, (3.87)
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where VRF is the RF voltage, ΩRF the RF frequency, r0 the distance from the ion to the RF
electrode, UDC the end-cap voltage and z0 the distance from the ion to the end-cap. If we
require the motional coherence time to be better than the coherence time limited by motional
heating of Tm ≥ 0.5 s, the fractional stability of the axial frequency must be better than
δωz
ωz
≤ 2 · 10−6 for ωz = (2π) 1 MHz. Assuming that the distance of the ion to the end-cap

does not fluctuate δz0
z0
≈ 0, the fractional stability of the voltage must be δUDC

UDC
≤ 4 · 10−6.

Hence, the voltage noise must be on the mV level for an end-cap voltage of UDC = 1000 V,
which is already quite demanding and special care must be taken in the electronic voltage
supply2 selection and the filtering.

3.8.2 Errors affecting the internal state

Ideally, quantum information is encoded in a two level system. In such a two level system
we typically use two figures of merit, the longitudinal and transversal relaxation time T1 and
T2, to characterize the coherence properties [9, 111]. Fundamentally both coherence times
are limited by the lifetime of the excited state. For 40Ca+ , the coherence time is limited by
the lifetime of the 32D5/2 to T1 ∼ 1 s and to T2 ≤ 2T1 ∼ 2 s, see section 3.2.

Starting from eq. (3.17) and changing to the interaction picture, noise affecting the internal
electronic state of the ion can be described as

H′ =
1
2

σzβ(t), (3.88)

where we introduce a small time-dependent perturbation β(t). This perturbation can either
come from magnetic field fluctuations β(t) = µ∆B(t) that shift the transition frequency due
to the Zeeman effect (see appendix A) or from frequency fluctuations β(t) = h̄∆ωL(t) of
the interacting laser.

In sections 4.2 and 4.3 we study the effects of laser frequency and magnetic field noise on
the coherence time T2 using Ramsey spectroscopy (see section 3.5).

3.8.3 Operational errors

The imperfect implementation of quantum gates or quantum operations leads to operational
errors. Two major sources of noise are fluctuations in the intensity I and phase φ of the
applied laser pulses. Recalling eq. (3.38), perfect resonant qubit rotations are described as

R(θ, φ) = cos(
θ

2
)I + i sin(

θ

2
)
(
cos φσx + sin φσy

)
. (3.89)

According to eq. (3.27) the time dependent pulse area and the phase can be estimated as

θn,n′(t) =
∫ t

t′=0
Ωn,n′(t′)dt′, (3.90)

φ(t) =
∫ t

t′=0
δ(t′)dt′ + φ′(t), (3.91)

where the Rabi frequency depends on the laser intensity Ωn,n′(t) ∝
√

I(t) and the overall
phase depends on the frequency detuning δ(t) and the laser phase φ′(t). Hence, if I(t), δ(t)
and φ′(t) are known, noisy rotations R(θ(t), φ(t)) can be simulated. Note, that eq. (3.90)

2ISEG EBS C0 30 voltage supply specifications: Ripple and noise < 20 mV peak-to-peak.
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similarly holds for AC-Stark pulses Rz(θ), where the Rabi frequency scales as ΩAC(t) ∝ I(t).
Therefore, AC-Stark pulses are quadratically more sensitive to intensity noise compared to
resonant laser pulses.

For small fluctuations in the control parameters, the fractional error in the rotation angle
and the rotation phase can be estimated as

∆θ

θ
=

∆I
2I

+
∆t
t

, (3.92)

∆φ

φ
=

∆δ

δ
+

∆t
t
+

∆φ′

φ′
, (3.93)

where ∆I
I , ∆t

t , ∆δ
δ , ∆φ′

φ′ � 1 describe relative intensity, timing, frequency and phase fluctua-
tions.

Estimating the fidelity of a quantum state after the implementation of a sequence of noisy
gates is not trivial in general. Solutions for this demanding task are discussed in detail
in chapters 5 and 6. But we can make a crude estimate for the resulting fidelity after a
sequence of M pulses with the following assumptions. If the resulting state fidelity is high
and if the rotation errors are small and distributed approximately random, we can estimate
the fidelity as [80]

F ≈ 1−M

(
Fθ

(
∆θ

θ

)2

+ Fφ

(
∆φ

φ

)2

+ Fθφ
∆θ

θ

∆φ

φ

)
, (3.94)

where ∆θ
θ , ∆φ

φ � π and the coefficients Fθ , Fφ, Fθφ . 1.

As an example we assume that intensity fluctuations on the order of ∆θ
θ ∼

∆I
I ∼ 10−4

are the limiting factor for the fidelity. According to eq. (3.94), we could then implement
Mmax ' θ

∆θ ∼ 108 pulses before the fidelity drops significantly. Note, in the worst case the
errors add coherently and the fidelity reduces linearly with the pulse errors, which reduces
the maximum number of pulses to Mmax ∼ 104.

Importantly, the laser power and hence the intensity fluctuations are fundamentally
limited by the photon shot noise. Following Ref. [80], the intensity fluctuations of an
intensity stabilized laser pulse can be estimated to be ∆I

I ≥
√

h̄ωL/Pτηε(1− ε), where a
fraction ε of the light is sent onto a detector with an efficiency of η, and the laser pulse has
length τ and power P at a frequency of ωL. Using typcial experimental laser puls parameters
of ε = 0.5, η = 0.5, τ = 1 µs, P = 1 mW and ωL = 411 THz we deduce a fractional intensity
error of ∆I

I ≥ 2 · 10−5.
For errors in gates other than the aforementioned resonant pulses, the error budget can

be more complex, as e.g. for the MS gate discussed in Ref. [84].
Another important kind of error when working with strings of multiple ions is crosstalk.

As explained in chapter 4 we use a tightly focused laser beam to address individual ions.
Since the laser beam for single ion addressing can be described by a Gaussian laser beam,
there is always some amount of intensity on the neighbouring ions. In our experiment
the crosstalk is typically around 2− 5 % of the resonant Rabi frequency. A more detailed
discussion about the crosstalk in our setup and about strategies to cancel it are presented in
Ref. [89].
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E X P E R I M E N TA L S E T U P

Der Tag hat 24 Stunden,
und wenn das nicht reicht,

nehmen wir die Nacht noch dazu.

— Rainer Blatt

As one could guess from the citation above, the major part of PhD students life consists
of working on the experimental setup. The basic principles of trapped ion experiments
have been studied extensively in previous works [70, 112]. The better part of the specific
experimental setup is already discussed in a publication [86] and various Master and PhD
theses [68, 76, 77, 89, 113–115]. Thus the following chapter gives a brief overview about the
changes implemented during my PhD studies.

First, the details of the vacuum vessel are presented in section 4.1. Afterwards, the laser
systems utilized to manipulate the ions are described in section 4.2. Finally, the setup used
to generate the bias magnetic field is outlined in section 4.3.

4.1 vacuum vessel

The heart of our experimental setup consists of a steel chamber, enclosing the ion trap in
ultra-high vacuum. The schematic of the vacuum vessel including the viewports supporting
optical access is depicted in fig. 4.1. The flanges supporting the viewports are labeled by
their orientation (north - N, east - E, south - S, west - W).

An Ion Getter Pump (IGP), connected close to the flange N, retains the ultra-high vacuum
with a pressure of ∼ 5 · 10−11 mbar1, measured with the Pressure Gauge (PG) placed
opposite to the pump. On the same side as the PG a Titanium Sublimation Pump (TSP) is
installed.

On flanges SW and NE rings of permanent magnets are mounted, generating the magnetic
field ~Bσ. Another pair of ring magnets is placed on the flanges SE and NW and produces
the magnetic field ~BD. Together these two pairs of ring magnets generate the bias magnetic
field ~B = ~Bσ + ~BD that is rotated 57.5◦ relative to the trap axis. The design considerations
for the permanent magnet setup are discussed in section 4.3.

Through the same viewports SW and NET two counter propagating PGC laser beams are
coupled. Both laser beams have a beam diameter of dPGC ∼ 120 µm, where one laser beam
is horizontally (H) and the other is vertically (V) polarized. The repumping and DC beams
are send through viewports SE and NW with a diameter of dDC ∼ 80 µm in the center.

The flange W embodies an objective2 with an NA ∼ 0.2 and a working distance of
65 mm. This objective images the fluorescence light of the ions onto the Photo Multiplier
Tube (PMT) [116]. The flange E contains an objective3 with an NA = 0.29 and a working
distance of 66 mm. This objective maps the ions onto a CCD camera.

1Agilent XGS-600 Vacuum Gauge Controller
2Nikon MNH-23150 ED Plan 1.5x
3Silloptics S6ASS2241

41



42 experimental setup

Through this objective also a laser beam with a resulting diameter dA ∼ 3 µm [89] and
a wavelength of 729 nm is sent, which is used to address only a single ion. Thus we refer
to this beam as the addressed beam. An elliptically shaped laser beam with dimensions
of dG,y ∼ 100 µm by dG,x ∼ 300 µm and a wavelength of 729 nm illuminates all the ions
through viewport S. Hence, we call this beam the global beam.

 

Figure 4.1: Vacuum vessel setup. Schematic view of the horizontal plane of the vacuum chamber.
Around the center 8 viewports are situated, labelled in accordance of their direction
(north - N, east - E, south - S, west - W). Close the flange N an Ion Getter Pump (IGP),
a Titanium Sublimation Pump (TSP) and a Pressure Gauge (PG) are connected. In the
center of the chamber the ion trap is located at an angle of 22.5◦ with respect to the N-S
axis. Two pairs of ring magnets (Bσ, BD) generate a magnetic field rotated 57.5◦ to the
trap axis ~B = ~Bσ + ~BD. Inside the flanges W and E high NA objectives (Obj.) are mounted.
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4.2 lasers

In this section the laser systems used to manipulate 40Ca+ ions in our experiment are
briefly explained. Details of the optical transitions in 40Ca+ are presented in section 3.2
and appendix B.

4.2.1 Dipole lasers with 397 nm, 866 nm and 854 nm

The lasers driving dipole transitions are commercial systems from Toptica. To generate light
at 397 nm we use a frequency doubled laser system4. There, a laser diode emits 794 nm light,
which is sent through a Tapered Amplifier (TA) and a frequency doubling cavity system.
The TA has an output power of P794 ∼ 700 mW at 794 nm resulting in a output power of
P397 ∼ 300 mW at 397 nm. To reduce the laser linewidth and to achieve long term stability
of the center frequency, the fundamental laser at 794 nm is stabilized to an optical cavity via
the Pound-Drever-Hall (PDH) laser locking technique [117, 118]. The cavity has a finesse of
F ∼ 300 [119] and is hence called the Medium Finesse Cavity (MFC).

The 866 nm laser is generated with a combined system5 comprising a laser diode and a
TA. The light emitted from the laser diode is amplified by the TA and stabilized to the MFC.
The output power is P866 ∼ 100 mW at 866 nm.

The 854 nm laser is produced with a laser diode system6 and a separate TA system7. The
output power of the system is P854 ∼ 50 mW at 854 nm and the laser is also stabilized to the
MFC.

4.2.2 Quadrupole laser with 729 nm

As discussed in section 3.2, we encode quantum information in the Zeeman manifold of the
42S1/2 ↔ 32D5/2 quadrupole transition with a wavelength around 729 nm. See appendix B
for more precise transition wavelengths. In section 3.3 it was outlined how a narrowband
laser can be utilized to cool the ions to the motional ground state as well as to implement
quantum operations for quantum computation.

In quantum computation, a commonly used figure of merit is the coherence time T2 of the
qubit. A simple argument is, that the longer the coherence time is, the more quantum gates
can be implemented before a phase error occurs. If we neglect magnetic field fluctuations,
the coherence time is either limited by the linewidth ∆νL of the laser or by the natural
linewidth ∆ν of the qubit transition, which can be expressed as T2 ≤ 1/(π∆νL) ≤ 1/(π∆ν)

(see section 3.8). To ensure that the laser linewidth is not limiting the coherence time of the
qubit, the laser linewidth has be smaller than the natural linewidth ∆νL ≤ 136 mHz [B] of
the 729 nm quadrupole transition in 40Ca+ .

In addition, the frequency spectrum of the laser should be as clean as possible. If
for example, the laser is coupled to a certain carrier transition, any spurious frequency
component, like e.g. 50 Hz components and harmonics, kHz-noise induced by vibrations
or servo bumps in the kHz to MHz regime, can couple to motional sidebands or to other
carrier transitions and thereby corrupt the desired quantum operation.

4Toptica Tapered Amplifier - Second Harmonic Generation (TA-SHG)
5Toptica TAPro
6Toptica DL100

7Toptica BoosTA
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In the following we discuss how our 729 nm laser system is set up and we highlight the
elements which are important to meet the aforementioned criteria.

We use a Titanium:Sapphire (Ti:Sa) laser system8 which has a high output power of
P729 ∼ 4 W at 729 nm and a narrow intrinsic linewidth of ∆νL,int ∼ 120 kHz [89]. We stabilize
the frequency of the laser to a cavity via the PDH locking technique [117, 118]. This cavity
has a finesse of F = 479500(1600) [76] and is hence called the High Finesse Cavity (HFC).

4

4

Figure 4.2: Optical setup of the 729 nm laser system. The 729 nm light is generated inside the Ti:Sa
and stabilized via a noise-eater (AOM1). Then the light is split into four parts, to the
wavemeter (I), to the experiment (II), to a distribution TA (III) and to the HFC (IV). Fiber
noise cancelling setups are installed in paths (II-IV) containing Photodiodes (PD4-PD6)
and Acousto-Optic Modulators (AOM4-AOM6).

Laser setup. A schematic of the 729 nm laser source and the distribution optics is presented
in fig. 4.2. The Ti:Sa laser8 is pumped by a laser9 with a wavelength at 532 nm. Unfortunately
both pump lasers we used broke after a roughly a year of operation and had to be repaired.
If the pump laser brakes, it has to be replaced. Due to the compact design of the Ti:Sa laser8

the exchange of the pump laser is rather simple and can be done within half a day. With
a pump power of P532 ∼ 15 W at 532 nm an output power of the Ti:Sa laser of P729 ∼ 4 W
at 729 nm can be achieved. Due to contamination of the surface of the laser optics the
output power decreases over time. Hence the laser power at the moment is P729 ∼ 1.5 W
at 729 nm. The first element in the beam path is an Acousto-Optic Modulator (AOM1, +1.
order at ∼ 80 MHz) used as an frequency actuator for the PDH lock, providing a closed-loop
bandwidth of ωAOM ∼ 300 kHz. After this AOM the light is distributed to four locations
(I-IV), which are described in the following.

8M2 SolsTiS
9Lighthouse Sprout or a Coherent Verdi V18
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First, a small part (PWM ∼ 1 mW) of the light is send to the wavemeter10 (I). The rest of
the light is distributed to our experiment (II) (PEXP ∼ 1 W), a TA (III) (PTA ∼ 300 mW) and
the HFC (IV) (PHFC ∼ 100 mW). As depicted in fig. 4.2 we use fibers to send the light to the
respective locations.

Since the optical path length of a fiber changes over time, the linewidth of the laser after
the fiber is broadened [120]. The induced frequency noise can be removed by a technique
called Fiber Noise Cancellation (FNC) [76, 120]. The first element of a FNC setup is a beam
sampler, that picks off 4 % of the incident light which is then retro-reflected by a mirror and
detected by a Photodiode (PD2, PD3 and PD6). Next, the beam passes an AOM (AOM2,
AOM3 and AOM6, +1. order at 80 MHz) and a fiber. At the end of the fiber again 4 % of the
light is reflected and passes the fiber and the AOM a second time. The back propagating
light is reflected by the beam sampler and overlapped with the incident laser and a beat
at 160 MHz is measured by a Photodiode (PD2, PD3 and PD6). The beat signal is used to
generate the error signal for the FNC.

In the path to the HFC (IV) there are two additional double pass AOMs (AOM2 and
AOM2, +1. order at ∼ 318.264 MHz) before the FNC setup, to compensate the difference
frequency between the ion’s transitions frequency and the closest cavity mode. The double
pass AOMs are placed inside a 1:1 telescope containing two lenses with a focal length of
f = 150 mm, to prevent beam direction changes due to frequency changes.

Inside the Ti:Sa laser a Ti:Sa crystal is placed in an optical cavity. The frequency of the
emitted laser thereby depends on the cavity length. Mechanical vibrations can change the
cavity length, which broadens the laser linewidth. To minimize acoustic noise that can excite
mechanical vibrations, we enclose the complete laser setup inside a wooden box. On the
outside of the wooden box we mount heavy acoustic walls to lower the eigenfrequency of
the box and thus improve the acoustic attenuation. To decouple the setup from vibrations
originating from the floor we fill the box with ∼ 500 kg of sand. The breadboard holding
the laser system is placed on an active vibration isolation system11 on the sand.

The temperature of the crystal inside the Ti:Sa laser and the base plate of the pump laser
is stabilized by water cooling systems. As we found out, also the cooling systems induce
vibrations. To reduce acoustic noise that is transported from the water pump to the laser, we
install new water coolers12 with a better pump. Since acoustic waves in water decay with the
distance, we extended the cooling pipes that connect the chillers to the lasers by about 10 m.
Turbulent water flow in the cooling circuit can also induce vibrations. Therefore we install
flow controllers to reduce the water flow to a minimum (1.5 l/min→ 0.41 l/min). Together
these upgrades reduce the acoustic noise on the laser significantly, where the measurements
showing the improvements on the laser characteristics are presented in appendix C.
High finesse cavity setup. The optical setup is depicted in fig. 4.3. The first element is an
Optical Isolator (OI) that prevents back reflections to the laser source and minimizes etalon
effects along the optical pathway, which can introduce residual amplitude modulation [121].
Next, a Polarizing Beam Splitter (PBS) is used to send a part of the light onto a Photodiode
(PD)13, where the signal is utilized to stabilize the laser intensity. Then the beam passes
a Glan-Thompson Polarizer (GTP)14 for polarization cleanup. Then an EOM15 is used to

10HighFinesse WS-7
11Accurion Halcyonics Vario 60-360

12SMC HECR002-A5

13Thorlabs PDA36A
14Polarization extinction ratio ∼ 105 : 1
15Linos PM 25
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4

Figure 4.3: Optical setup of the high finesse cavity. The light comes from the laser via an optical
fiber and is send through an Optical Isolator (OI), a Polarizing Beam Splitter (PBS), a
Glan-Thompson Polarizer (GTP), an EOM, a PBS and a λ/4 waveplate onto the HFC. The
transmitted light after the cavity is divided by a 50:50 Beam Splitter (BS) and detected by
a photodiode (PD3) and a camera (CCD). The first photodiode (PD1) is used to detect
the reflection of the first PBS. The second photodiode (PD2) measures the reflected light
from the cavity.

generate sidebands in the frequency spectrum of the laser, which are needed for the PDH
lock. After the EOM the laser is send through a PBS and a λ/4 wave plate in order to guide
the reflected light of the cavity onto a PD16.

A problem that might occur in this setup is, that if the polarization of the laser beam
is not perfectly aligned with the crystal axis inside the EOM, the polarization of the
laser beam is modulated by the EOM. The polarization modulation is converted into
amplitude modulation by the subsequent PBS, so called Residual Amplitude Modulation
(RAM) [121]. The GTP in front of the EOM ensures a linear polarization and thus minimizes
the modulation of the laser polarization.

Finally the laser is coupled to the HFC. The transmitted light of the cavity is divided with
a 50:50 Beam Splitter (BS) and detected by a photodiode (PD3)17 and a CCD camera. The
CCD and the PD are there for adjustment and monitoring purposes.

The HFC is used as a reference to stabilize the frequency of the 729 nm laser, where
the laser frequency is locked to the frequency of a cavity mode. The fractional frequency
stability of a cavity mode depends on the fractional stability of the optical cavity length
as ∆ν/ν = ∆L/L [97]. The optical length L of the cavity depends on the distance d of the
mirrors and on the refractive index n of the material in between the mirrors as L = d · n.

Pressure fluctuations induce refractive index fluctuations ∆n, which in turn result in cavity
length fluctuations ∆L. To minimize refractive index fluctuations the cavity is mounted
inside a vacuum chamber18. Since vacuum is the best thermal insulator, also temperature
drifts can be made smaller in a vacuum setup, compared to a setup at ambient pressure.

Mechanical vibrations can induce noise in the mirror distance ∆d, which result in noise
optical path length ∆L. To reduce acoustic noise affecting the cavity mirrors, the HFC setup
is enclosed in a wooden box filled with sand. The optical breadboard is placed on a active

16Home-built PD with ∼ 250 MHz bandwidth
17Thorlabs PDA36A
18Pressure ∼ 5 · 10−9 mBar.
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vibration isolation system19. Special care was taken in the design of the HFC holder inside
the vacuum chamber to suppress the acoustic noise that is transferred onto the mirrors. The
details of the hole HFC apparatus can be found in previous theses [76, 122].

The cavity has a design length of L = 77.5 mm and a measured free spectral range FSR=
1.934(2)GHz [76]. The finesse is F = 479500(1600) which results in cavity linewidth of
∆ν = 4.03(2) kHz [76]. As explained in appendix D, the cavity length changes quadratically
with the temperature, which means that there is a zero expansion temperature T0 =

8.38(3) ◦C, where the cavity length does not change with temperature to first order. Due to
material aging [123], which changes the distance between the mirrors, the cavity resonance
changes linearly over time with a rate of 19.426 mHz/s.

We estimate a coherence time of magnetic field insensitive |mS = −1/2〉 ↔ |mD = −1/2〉
transition (1) of T(1)

2 = 0.21(4) s via Ramsey spectroscopy, as depicted in fig. 4.4. Assuming
that magnetic field fluctuations are not limiting the performance, the measured coherence
time results according to eq. (3.56) in an estimated FWHM linewidth of the laser of ∆νL =

1/(π T2) = 1.5(3)Hz, which is roughly a factor of 10 larger than the natural linewidth
of the transition ∆ν ∼ 136 mHz [B]. The estimated linewidth corresponds to a fractional
frequency stability of ∆ν/ν ≈ 3.4 · 10−15. With next generation cavities, a laser linewidth on
the order of tens of mHz (∼ 10−16 fractional stability) can be realized [124–127].
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Figure 4.4: Stability of the laser frequency. Short-term characterization via Ramsey spectroscopy
with an estimated coherence time T(1)

2 = 209(38)ms.

Locking setup. The electronic setup used for PDH-locking is depicted in fig. 4.5. A typical
electronic control loop consists of three parts (I-III). (I) a setup that measures and generates
the error signal. (II) a Proportional–Integral–Derivative (PID) controller that calculates the
feedback signal from the error signal. (III) an actuator that feeds back corrections into
the system. The generation of the error signal is discussed in the next paragraph. As PID
controller we use commercial devices20. In total we have three actuators available. The
Ti:Sa laser offers two actuators, a slow piezo (SP) and fast piezo (FP), with a closed-loop
bandwidth of ωSP ∼ 50 Hz and ωFP ∼ 30 kHz respectively. These piezos are mounted on
mirrors inside the laser, which can be used to change the cavity length and hence the laser

19Accurion Halcyonics
20Toptica FALC110
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Figure 4.5: Electronic setup of the 729 nm laser system. The PDH error signal is generated by
mixing the signals from the radio-frequency generator (RF1) and the photodiode (PD2)
detecting the cavity reflection. The error signal is split and send into a high-bandwidth
and a low bandwidth feedback branch. The high-bandwidth branch contains a High-Pass
(HP) filter with cutoff frequency fC = 1 kHz, a Toptica FALC110 servo and a Voltage-
Controlled Oscillator (VCO), which drives the noise-eater (AOM1). The low-bandwidth
branch consists of a Low-Pass (LP) filter with cutoff frequency fC = 3 kHz and a Toptica
FALC110 servo, where the main output is connected to the fast piezo (FP) and the output
of the unlimited integrator is connected to the slow piezo (SP) via optocoupler (OC).

frequency. Since we were not able to lock the laser to the HFC with the piezos only, we had
to install an additional actuator, the first AOM1 in the beam path. As mentioned before, the
AOM provides a closed-loop bandwidth of ωAOM ∼ 300 kHz.

The RF modulation signal for the PDH stabilization is produced by an RF generator21

(RF2). We use a second, phase-locked, RF generator21 (RF1) to tune the phase of the PDH
error signal. The reflection signal from the HFC (measured with PD2) is mixed with the
signal from RF1 by an RF mixer22. The output of the mixer is the PDH error signal. The
error signal is split up by a Low-Pass (LP) filter ( fC = 7 kHz) and a High-Pass (HP) filter
( fC = 1 kHz) into a slow and a high bandwidth feedback branch.

The low bandwidth (DC. . . 7 kHz) branch comprises a PID controller23, which is set up to
generate high gain at low frequencies (XSLI=1, FLI=8+9). The unlimited integrator output
is connected to the slow piezo of the laser, whereas the main output is connected to fast
piezo of the laser. Note that we use a home-build optocoupler for the connection to the slow
piezo, because otherwise we observed large 50 Hz noise components on the laser frequency.

The high bandwidth (1 . . . 300 kHz) branch consists of a PID controller24 and a Voltage-
Controlled Oscillator (VCO)25, where the VCO converts the DC output signal of the PID
controller into an RF signal, which is connected to the actuator (the first AOM1 in the laser
setup). In the fast branch only the proportional (P) part of the regulator is used.

21SRS DS345 at 12.562 MHz
22Mini-Circuits ZAD-3+ Mixer
23Toptica FALC110

24Toptica FALC110

25Micronetics MW500-1531 VCO
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4.3 magnetic field

Due the anomalous Zeeman effect, discussed in appendix A, the degeneracy of the fine-
structure levels in the ion is lifted. The frequency shift of an electronic level depends on the
projection of the magnetic moment of the electron onto the direction of the bias magnetic
field. Therefore the direction of the magnetic field is called the quantization axis. Since
the frequency shift of a state depends on its total angular quantum number mj, also the
transition frequencies shift depending on the quantum numbers of the involved states.
The magnetic field sensitivity of various states and transitions in 40Ca+ are summarized
in appendix B.

Typically we measure the frequency of the |mS = −1/2〉 ↔ |mD = −1/2〉 transition (1)
with a shift of about µ(1)/h ≈ +0.56 MHz/G and the frequency of the |mS = −1/2〉 ↔
|mD = −5/2〉 transition (2), which shifts about µ(2)/h ≈ −2.80 MHz/G. Using eq. (A.3) we
can estimate the magnitude of the magnetic field as

B =
h∆ν(1−2)

∆µ(1−2)
≈ ∆ν(1−2)

3.36 MHz/G
, (4.1)

where ∆ν(1−2) = ν(1) − ν(2) is the difference frequency and ∆µ(1−2) = µ(1) − µ(2) is the
difference in magnetic field sensitivity of the two transitions.

Since we changed from an electric coil system to a permanent magnet setup, both systems
are described in the upcoming two sections. In fig. 4.6 photographs of the two individual
setups are presented.

Figure 4.6: Photographs of the setup. In white circles there are electric coils in a) and permanent
magnets in b).

4.3.1 Current stabilized coils

In this setup a set of coils is driven by electric currents. The current for each pair of coils is
generated by a highly stable current driver, where Details can be found in Ref. [89]. The
current stabilized coils have the advantage, that the current and thus the magnitude of the
magnetic field can easily be adjusted. The disadvantage is, that current fluctuations lead to
magnetic field fluctuations which induce decoherence.

We perform Ramsey spectroscopy to characterize the short-term stability of the mag-
netic field, as discussed in section 3.5. These Ramsey contrast measurements of the
|mS = −1/2〉 ↔ |mD = −1/2〉 transition (1) and of the |mS = −1/2〉 ↔ |mD = −5/2〉
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transition (2) are depicted in fig. 4.7 a). In the case of transition (2) the Rabi frequencies
were not calibrated perfectly, which is unfortunate but does not corrupt the coherence time
estimate. If we assume a white noise model for the magnetic field fluctuations, the decay
of the Ramsey contrast is described by an exponential function and the coherence time is
linearly dependent on the magnetic field sensitivity of the transition. We thus fit the data
with an exponential function according to eq. (3.55) and we estimate coherence times of
T(1)

2 = 171(45)ms and T(2)
2 = 39(6)ms.

The Zeeman shift of these two transitions differs by the ratio of the magnetic field
sensitivities of δµ = µ(2)/µ(1) ∼ 5. Depending on the correlation time of the noise, the
coherence time depends from linearly T2 ∝ δµ to quadratically T2 ∝ δµ2 on the induced
frequency fluctuations, as discussed in Ref. [113]. If the coherence times are limited by
magnetic field fluctuations, the coherence time ratio of the two transitions differs by
T(1)

2 /T(2)
2 = δµ . . . δµ2 ∼ 5 . . . 25. If the coherence is predominantly restricted by laser

phase fluctuations, the ratio would be T(1)
2 /T(2)

2 ∼ 1. The measured coherence times differ
by a factor ∼ 4.4. Hence, we conclude that the coherence is mainly limited by magnetic field
fluctuations and some laser frequency fluctuations in addition. According to eq. (3.59) we
can estimate the coherence time as T(2)

2 = 2ln(2)h/(2πµB∆B) = 39(6)ms which results in a
short-term magnetic field noise of ∆B ∼ 4 µG and in fractional magnetic field fluctuations
of ∆B/B ∼ 1 · 10−6.

The long-term stability of the magnetic field is shown in fig. 4.7 b). We can observe
that the magnetic field strength is strongly correlated with the temperature. Note that
the temperature sensor26 is placed inside the µ-metal shield where also the coils are
mounted, but the current drivers are outside the shield. Since the resolution of the digital
temperature sensor is 0.03125 K we filter the temperature data with a first-order Sav-
itzky–Golay filter [128]. Over a time span of about 3.5 days the magnetic field changes
by ∆B = 0.37 mG around B = 4.21386(37)G, where ∆B is the standard deviation of the
data set. The temperature changes by ∆T = 0.1 K around T = 24.4(1) ◦C. Correspond-
ingly, the relative magnetic field changes depending on temperature can be estimated as
∆B/B(T) = ∆B/(B∆T) ∼ 9 · 10−4 K−1.

26Microchip MCP9808
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Figure 4.7: Stability of the magnetic field generated by electric coils. a) Short-term characteriza-
tion via Ramsey spectroscopy with estimated coherence times T(1)

2 = 171(45)ms and

T(2)
2 = 39(6)ms (measured with the old Coherent laser). b) Long-term drift of the

temperature and the magnetic field, where the B-field drifts for ∆B = 0.37 mG around
B = 4.21386(37)G over a temperature range of ∆T = 0.1 K around T = 24.4(1) ◦C.
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4.3.2 Permanent Magnets

The bias magnetic field can also be generated using permanent magnets. We adopted the
idea from another 40Ca+ experiment [62], where long coherence times were demonstrated.
In our setup the most feasible option is to replace the electric coils with rings of permanent
magnets, as illustrated in fig. 4.6. The disadvantage with permanent magnets is that the
magnetic field strength cannot be varied easily, as opposed to electric coils. The advantage is,
that the short-term fluctuations in the magnetic field are ought to be orders of magnitudes
smaller compared to the noise of current driven coils, as outlined in the following.

The relative magnetic field fluctuation of permanent magnets27 with a volume of V =

1 cm3 at room temperature is ∆B/B = 2 · 10−12 [129]. In the experiment we use cylindrical
magnets28 with a diameter of 6 mm, a height of 10 mm and a remanence of Br = 1.00(4)T.
Since the fluctuations scale with the volume as ∆B/B ∝

√
1/V [129], the noise of the

magnets we use with a volume of V ∼ 0.28 cm3 is ∆B/B ∼ 3.8 · 10−12. In a setup containing
240 magnets, which is discussed in the following, we estimate the relative magnetic field
fluctuation to be ∆B/B ∼

√
240 · 3.8 · 10−12 ∼ 6 · 10−11. Hence the noise induced by the

permanent magnets is expected to be about four orders of magnitude lower than the noise
estimated for the current driver setup of ∆B/B ∼ 1 · 10−6 (see section 4.3.1).

Consequently, using the fact that the frequency shift is linearly dependent on the magnetic
field ∆ν = 2µB/h∆B (see appendix A) and eq. (3.59), we can estimate an achievable
coherence time of T(2)

2 = 2
√

ln2h̄/(µB · ∆B) ∼ 600 s, if magnetic field fluctuations of
∆B ∼ 3 · 10−10 G in a magnetic field of B ∼ 4.61 G are the only source of noise. In the
laboratory there might be additional magnetic field noise present, originating from electronic
devices, power lines or neighboring experiments, which reduces the achievable coherence
time.

In the following we discuss the simulation of the magnetic field generated by permanent
magnets in order to design the arrangement of the permanent magnets. The magnetic flux
density at location~r for a single permanent magnet at location ~r0 with magnetic moment ~m
is described as [130]

~B(~r, ~r0, ~m) =
µ0

4π

(
3(~r− ~r0)(~m · (~r− ~r0))

|~r− ~r0|5
− ~m
|~r− ~r0|3

)
, (4.2)

where µ0 is the vacuum permeability and the magnetic moment ~m = ~BrV/µ0 of a permanent
magnet can be described by its volume V and residual flux density ~Br. The magnetic field
strength can be increased by arranging N magnets with magnetic moment ~m = (0, 0, mz) in
a circular pattern around the z-axis such that the total magnetic field is determined as

~B(~r, N) =
N−1

∑
i=0

~B(~r, ~r0
i, ~m) with ~r0

i =

r0 cos(2πi/N)

r0 sin(2πi/N)

0

 . (4.3)

For simplicity we only investigate the magnetic field along the z-axis with~r = (0, 0, z). Thus

it follows from eq. (4.3) that ~m · (~r− ~r0
i) = (0, 0, mz(z− z0)) and |~r− ~r0

i| =
√

r2
0 + (z− z0)2

is the same for all individual magnets i and the magnetic field of a ring comprising N
magnets is B(z, N) = N · B(z).

27Estimated for Samarium-Cobalt SmCo5 magnets, where the noise estimation is approximately the same
for the Sm2Co17.

28Samarium-Cobalt XGS24LT from BVI-Magnete
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Importantly, since the transition frequency of the ions depends on the magnetic field
∆ν ∝ |~B(~r)| [B], all the ions in the trap should experience the same magnetic field. Therefore
the magnetic field gradient ~∇~B(~0) in the center of the trap should be as small as possible.
In general the gradient is minimized when the magnetic field curvature is zero ~∆~B(~0) =~0.

In our setup we mount one ring of magnets on a flange at z0 = −d/2 and a second ring
on a flange at z0 = +d/2 symmetrically around the trap center z = 0, where the rings
have a distance of d = 310 mm as depicted in fig. 4.1. Because there are eight neighboring
flanges, the radius of the rings is limited to r0 = 70 mm. The simulated magnetic field
and magnetic field gradient of this configuration comprising 32 magnets in each ring are
depicted in fig. 4.8 (Standard).

z
z

Figure 4.8: Magnetic field simulations for permanent magnets. Two configurations are simulated,
the first (Standard) with one ring (d = 310 mm, 32 magnets at r = 70 mm) and the
second (Compensated) with an additional compensation ring (d = 310 mm, 60 magnets
at r1 = 70 mm, 20 magnets at , r2 = 44.7 mm) a) The absolute value of the magnetic field
along the z-axis. b) The gradient of the magnetic field along the z-axis.

Since we do not know the exact position of the ion trap inside the vacuum chamber and
because the distance of the rings to the trap cannot be measured precisely, we assume in
a worst case scenario that the ions are trapped at a position z = 5 mm. For an absolute
magnetic flux density of |~B| = 4.12 G we estimate a magnetic field gradient of dB(z)/dz =

34 µG/µm, which corresponds to a frequency shift for the |mS = −1/2〉 ↔ |mD = −5/2〉
transition (2) of ∆ν(2)/∆z ∼ 100 Hz/µm. With a typical ion separation of ∆z ∼ 4 µm
this results in a frequency shift of ∆ν(2) ∼ 400 Hz between neighboring ion pairs. Such a
frequency difference is problematic for various reasons, for example if we want to entangle
ions using the MS gate with high fidelity, see section 3.3.1.3.

For the configuration with two rings of permanent magnets at distance d we use a
software program29 to minimize the magnetic field gradient by solving the equation
d2B(z)/dz2|z=0 = 0 for r0, where B(z) = B(z0 = +d/2) + B(z0 = −d/2). We find that there
exist two analytic solutions r0 =

√
1−
√

5/6d ≈ 0.295 d and r′0 =
√

1 +
√

5/6d ≈ 1.383 d
for which the curvature of the field vanishes. In practice it makes sense to use the smaller
radius r0, since the generated magnetic field is two orders of magnitudes stronger than the
one produced from rings with radius r′0. Unfortunately, due to space constraints, we cannot
install rings in our apparatus with a radius of r0 ∼ 0.295 d ∼ 91 mm.

29Wolfram Mathematica



54 experimental setup

Another option to minimize the gradient is to place a smaller ring with N2 magnets and
radius r2 inside the main ring with N1 magnets and radius r1. If the magnetic field of the
inner ring points into the opposite direction compared to the outer ring, the total magnetic
field and the magnetic field gradient is reduced. To find an optimal inner ring radius r2

we numerically solve the equation d2B(z)/dz2|z=0 = 0 with rings placed at a distance
d = 310 mm and for an outer ring radius of r1 = 70 mm. Here, the result for r2 depends on
the ratio N1/N2 of the number of magnets used for each ring. Since we mount the magnetic
rings on CF40 flanges, the radius of the inner ring has to be larger than the radius 35 mm
of the flange. We find a feasible result of r2 = 44.7 mm using a ratio of N1/N2 = 3. The
simulation of the magnetic field and the magnetic field gradient for a configuration with
N2 = 60 and N1 = 20 is shown in fig. 4.8 (Compensated).

For an absolute magnetic flux density of |~B| = 4.12 G we estimate a magnetic field
gradient of dB(z)/dz = 0.034 µG/µm, which corresponds to a frequency shift of ∆ν(2)/∆z =

0.1 Hz/µm for the |mS = −1/2〉 ↔ |mD = −5/2〉 transition (2) at z = 5 mm. Compared to
the configuration without the inner compensation ring, we achieve the the same magnetic
field strength using 2.5 times more magnets with a gradient that is ∼ 1000 times smaller.

The CAD drawing of the holder we designed to mount the permanent magnets on the
vacuum chamber is depicted in fig. 4.9.

Figure 4.9: CAD drawing of the holder for the permanent magnets. The holder consists of four
equal parts fabricated from aluminium. There are cylindrical depressions with diameters
of 6 mm in two circular patterns with radius r1 = 70.00 mm and r2 = 44.70 mm. a) Front
view. b) Side view. c) Isometric projection.
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In addition to the analytical calculations we simulate the magnetic field with a finite
element software30 to recheck the resulting magnetic field strength. For a configuration
with 60 magnets in the outer ring and 20 magnets in reverse direction in the inner ring we
simulate an absolute magnetic field of |~B|Sim,1 ≈ 4.12 G, as depicted in fig. 4.10 a) and b).

Figure 4.10: Magnetic field generated by permanent magnets. Vector components of the magnetic
field for a) the two ring setup and c) the four ring setup. In a) the quantization axis is
aligned with the symmetry axis of the rings where in c) the quantization axis is rotated
by 26.6 ◦ using a second pair of rings containing half the magnets. b) and d) show the
magnetic field strength on a slice in the center normal to the quantization axis. In b)
we simulate a magnetic field of |~B|Sim,1 ≈ 4.12 G whereas in d) the simulation yields a
magnetic field strength of |~B|Sim,2 ≈ 4.61 G.

If we want to align the magnetic field with the trap axis, that is rotated by 22.5 ◦ relative to
the viewports, as depicted in fig. 4.1, we have to tilt the magnetic field. We achieve a rotation
of ∼ 26.6 ◦ of the magnetic field by adding a pair of rings containing half the magnets (30 in
the outer ring and 10 per inner ring) perpendicular to the first pair of rings. As illustrated
in fig. 4.10 c) and d) the simulation shows a magnetic field that is tilted by ∼ 26.6 ◦ with a
magnetic flux density of |~B|Sim,2 ≈ 4.61 G in the center.

Experimentally, we measure magnetic flux densities of |~B|Exp,1 ≈ 4.24 G for the two ring
and |~B|Exp,2 ≈ 4.78 G for the four ring setup. The measured magnetic field strengths are in
good agreement with the simulated values. For the magnetic field gradient we measure
a value of dB(z)/dz ∼ 3 µG/µm, which is at least a factor of 100 too high compared to
the simulation. This discrepancy comes from the fact, that in the experiment the magnetic

30COMSOL Multiphysics
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rings are not the only components that generate or influence magnetic fields. Components
that can alter the magnetic field are e.g. the steel chamber, steel screws, the µ-metal
shield and the ion-getter pump, which has U-shaped permanent magnet built-in. Once
we remove the permanent magnet of the ion-getter pump, we are not able to measure
a magnetic field gradient over a distance of 55 µm and we thus estimate the gradient to
be dB(z)/dz < 0.1 µG/µm. Hence, we think that the main source for the magnetic field
gradient is the ion-getter pump. Since the magnet is necessary for the pump to work, we
decided to mount additional permanent magnets on the outside of the ion-getter pump
until we cannot measure a magnetic field gradient anymore, see fig. 4.6.

If we work with ion strings that contain many ions, the electric field gradient of the
neighboring ions induce a quadrupole shift [131, 132], which is the largest in the center
and get smaller towards the edges of the string. We can minimize this quadrupole shift by
minimizing the term {3 cos2(θ)− 1} with θ ∼ 54.74◦, where θ describes the angle between
the trap axis and the magnetic field. Therefore we recently changed the direction of the
magnetic field, away from the trap axis to an angle of ∼ 57.5◦ as depicted in fig. 4.1.

As in the previous section 4.3.1 about current coils, we estimate the short-term stability of
the magnetic field via Ramsey experiments. Because a neighboring experiment is switching
magnetic fields, which shift our transitions on the order of tens to hundreds of Hz, standard
Ramsey experiments on the times scales of milliseconds are not possible at the moment.
Therefore we do Ramsey experiments with spin-echo (see section 3.5, where a π pulse is
added after half the waiting time τ in the sequence R(π/2, 0)→Wait(τ/2)→ R(π, 0)→
Wait(τ/2)→ R(π/2, φ). Due to the spin-echo, changes in the magnetic field that are slower
than τ/2 get refocused in the second half of the sequence. Hence also DC magnetic field
changes from shot to shot, or from one minute to the next minute do not disturb the Ramsey
contrast measurement.

We perform the experiment on the ground state (|mS = −1/2〉 ↔ |mS = +1/2〉) transition
(3), for which the laser phase and hence laser frequency fluctuations do not play a role
during the waiting time. The results are depicted in fig. 4.11 a). As can be seen in the data,
the main limitation is a noise component at 50 Hz, most likely originating from power lines
or devices outside the µ-metal shield.

First, we fit the data with a constant power spectral density A(ω) = a according
to eq. (3.61), depicted in blue in fig. 4.11 a). Although a simple exponential decay does not
fit the observed data perfectly, we get a rough estimate of the noise level a = 2.8(6) and
of the coherence time T(3)

2 = 4/(a2π) = 162(37)ms. Since the magnetic field sensitivity of
the transition (3) is the same as for the |mS = −1/2〉 ↔ |mD = −5/2〉 transition (2) probed
in section 4.3.1, we can compare the two coherence times. Recalling that the coherence time
with current coils was T(3)

2 = 39(6)ms, we can conclude that the coherence got a factor of
∼ 4 better with the permanent magnet setup.

Second, we fit the data with a constant power spectral density plus a Gaussian peak
at 50 Hz that is described as A(ω) = a + bG(ω, (2π)50 Hz, σ). The fit is depicted in red
in fig. 4.11 a). The fit result is a constant noise level of a = 2.1

√
Hz and a Gaussian 50 Hz

noise peak with an amplitude of b = 70.1
√

Hz and a width of σ = (2π) 0.2 Hz. The constant
noise level a corresponds to a decay time of T(3)

2 = 4/(a2π) = 287 ms.
We should be able to improve the coherence time further by installing an active magnetic

field stabilization system in the future.
Measurements of the long-term stability of the magnetic field are presented in fig. 4.11 b).

The data is acquired in the same fashion as described in section 4.3.1.
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Over the course of about 2.5 days the magnetic field changes by ∆B = 0.58 mG around
B = 4.77372(58)G, where ∆B is the standard deviation of the data set. The temperature
changes by ∆T = 0.16 K around T = 24.16(16) ◦C. Correspondingly, the relative magnetic
field changes depending on temperature can be estimated as ∆B/B(T) = ∆B/(B∆T) ∼ 7 ·
10−4 K−1. This is in the same order of magnitude than the reversible temperature coefficient
(RTC) of (3-5)·10−4 K−1 stated by the manufacturer.
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Figure 4.11: Stability of the magnetic field generated by permanent magnets. a) Short-term spin-
echo Ramsey measurements, where the data is fitted with two different power spectral
densities A(ω) of the noise, see eq. (3.61). In the first fit in blue we assume a constant
noise level a that results in an exponential decay and we estimate a coherence time of
T(3)

2 = 162(37)ms. In the second fit in red we assume a constant noise spectral density
a plus a 50 Hz Gaussian noise peak with amplitude b. From the constant noise level a
we estimate a corresponding coherence time of T(3)

2 = 287 ms. b) Long-term drift of the
temperature and the magnetic field, where the B-field drifts for ∆B = 0.58 mG around
B = 4.77372(58)G over a temperature range of ∆T = 0.16 K around T = 24.16(16) ◦C.
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C H A R A C T E R I Z AT I O N O F Q UA N T U M C O M P U T E R S

Hilbert space is a big place!

— Carlton M. Caves and Christopher A. Fuchs, 1996

A major roadblock for the development of useful quantum computers is to assess and
overcome the inevitable errors that accumulate during the execution of a quantum algorithm.
States and processes in a quantum device can be fully characterized by tomography. The
implementation of Quantum State Tomography (QST) and Quantum Process Tomography
(QPT) is explained in section 5.1.

There are also techniques which only partly yield information about dynamics in a
quantum system, such as direct fidelity estimation [133–135] or randomized benchmark-
ing [21–23], which is outlined in section 5.2.

Due to practical limitations of the aforementioned techniques, the group around Prof.
Joseph Emerson and Prof. Joel J. Wallman, in a fruitful collaboration with our team, devel-
oped a new technique called Cycle Benchmarking (CB), which is able to efficiently characterize
the performance of quantum operations [25]. The details of the CB protocol are outlined
in section 5.3.

5.1 quantum state and process tomography

A quantum state is fully determined by its density matrix ρ, as described in section 2.1. The
goal of QST is to estimate all entries of this 2N × 2N density matrix that defines an arbitrary
N-qubit state. As an example, three 1-qubit density matrices are shown in fig. 5.1 which are
defined as

a) ρ = |0〉 〈0| = 1/2(I + σz), |~r| = 1 (5.1)

b) ρ = 1/2(|0〉 〈0|+ i |0〉 〈1| − i |1〉 〈0|+ |1〉 〈1|)
= 1/2(I − σy), |~r| = 1,

(5.2)

c) ρ = 1/2I, |~r| = 0. (5.3)

As can be seen in eqs. (5.1) and (5.2), these states are eigenstates of the Pauli operators σz

and σy. The state in eq. (5.3) is a completely mixed state with zero off-diagonal elements or
quantum coherences.

Since the density matrix ρ can be expanded as in eq. (2.3), we can reconstruct the density
matrix by measuring the expectation values of the three Pauli operators [9]

ri = 〈σi〉 = tr(ρσi) with i ∈ {x, y, z}. (5.4)

If we can prepare n copies of the state and we employ projective measurements each time
e.g. in z-basis, we get an estimate for the expectation value 〈σz〉, which is the average ∑i zi/n

59
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Figure 5.1: 1-qubit density matrices. a) A pure state |ψ〉 = |0〉, see eq. (5.1). b) A pure state |ψ〉 =
1/
√

2(|0〉 − i |1〉), see eq. (5.2). c) A completely mixed state with ρ = 1/2I, see eq. (5.3).

of the measurement outcomes zi ∈ {+1,−1}. Let p(z1) be the probability to measure the
outcome +1, then the standard deviation of a single measurement (quantum projection
noise) can be calculated as ∆σz =

√
p(z1)(1− p(z1)) [106]. For large enough number of

measurements n, when the results are approximately Gaussian distributed, the standard
deviation of the expectation value is defined as ∆ 〈σz〉 = ∆σz/

√
n =

√
p(z1)(1− p(z1))/n.

In practice, measurement noise (e.g. quantum projection noise) can lead to unphysical
results, like a density matrix with negative eigenvalues or a Bloch vector with |~r| >
1. Therefore we employ statistical methods in the post-processing, like e.g. maximum-
likelihood estimation [136–139], to prevent unphysical results. Physical constraints on the
2N × 2N Hermitian complex matrix ρ are that it has trace one, tr(ρ) = 1, and that it is
positive semi-definite, which means that x∗ρx ≥ 0 for all x ∈ C2N

. In the case of the
maximum-likelihood reconstruction the idea is to find a density matrix that is as close as
possible related to the measurement outcomes and that fulfills the physical constraints at
the same time.

In general, an N-qubit system can be expanded similar to eq. (2.3) as [9]

ρ =
1

2N ∑
~v

tr(σv1 ⊗ σv2 ⊗ · · · ⊗ σvN ρ)σv1 ⊗ σv2 ⊗ · · · ⊗ σvN , (5.5)
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where we sum over the vectors ~v = (v1, . . . , vN) and the components are chosen from the set
vi ∈ {I, X, Y, Z}. Taking into account the three different measurement bases {X, Y, Z} per
qubit, there are 3N measurements necessary to reconstruct the full N-qubit density matrix.

The evolution of a quantum state can be described by the transformation of the initial
density matrix ρ to the output density matrix ρ′ as [9]

ρ′ = E(ρ), (5.6)

where E is a completely positive (CP) and trace preserving (TP) map and describes the
quantum operation or quantum process.

A map E is called positive if it maps positive elements to positive elements ρ ≥ 0 →
E(ρ) ≥ 0, which is a necessary condition that the measurement probabilities stay positive.
The map E is completely positive if E ⊗ IN is positive for all N. The reason why CP is a
necessary physical condition can be made clear with the following example. If the input
state is part of an entangled state |ψ〉AB and EB acts only on the subspace B, the process EB

must also preserve the positivity of the composite system ρAB [138].
To conserve the total probability, E must be trace preserving tr(ρ′) = tr(ρ) [138]. If we

want to describe leakage out of the principle Hilbert space, the TP condition is relaxed to a
non-increasing trace tr(ρ′) ≤ tr(ρ).

Completely positive and trace preserving (CPTP) maps are a very powerful description of
quantum processes, since we can utilize them to express unitary evolution, measurements
and open quantum systems, which are systems that couple to the environment. If we want
to describe an open or noisy quantum system, we can define the quantum process by
a unitary transformation U of the product state between the principle system ρ and the
environment ρenv as E(ρ) = trenv

(
Uρ⊗ ρenvU†). If we assume that the environment starts

in the state ρenv = |e0〉 〈e0| and that {|e〉i} is an orthonormal basis for the state space of the
environment, we can express the quantum process as [9]

E(ρ) = ∑
i

EiρE†
i , (5.7)

where Ei = 〈ei|U|e0〉 is a so called Kraus operator on the state space of the principle system.
Due to the summation over operators in eq. (5.7) this description is referred to as the
operator-sum representation of E . If we choose a fixed basis {Ẽm} such that Ei = ∑m eimẼm,
we can rewrite equation eq. (5.7) as [9]

E(ρ) = ∑
mn

ẼmρẼ†
nχmn, (5.8)

where χmn = ∑i eime∗in are the elements of the chi matrix (χmn) describing the quantum
process. Examples of three different 1-qubit χ matrices are depicted in fig. 5.2, where e.g. a
depolarizing process can be expressed as

E(ρ) = (1− 3p/4)IρI + (p/4)(XρX + YρY + ZρZ), (5.9)

with the depolarization probability p.
Since ρ has to stay Hermitian with trace one, the matrix χ contains in general 24N − 22N

real parameters. Experimentally, we need 3N measurements to determine the density
matrices for 22N pure input states, resulting in 12N measurements in total. In the case of a
single qubit we would need to prepare 4 different pure input states, let the system evolve
under the quantum process E and measure each evolved input state in 3 different bases to
get an estimate of χ for a fixed set of operators {Ẽm}.
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Figure 5.2: 1-qubit process matrices. If the presented processes act on the pure input state |0〉, the
output states can be described by the density matrices in fig. 5.1. a) The identity operation
I. b) The unitary X(π/2) operation. c) A completely depolarizing quantum process,
see eq. (5.9) with p = 1.

As in the case of quantum state tomography, measurement noise can also lead to un-
physical results in the estimation of the χ matrix. An elegant way to deal with this issue,
is to use the Choi-Jamiolkowski isomorphism [140, 141] between the map E acting on the
Hilbert space H and a positive semi-definite operator S acting on a larger Hilbert space
H⊗K. Using this equivalence the problem can be transformed into reconstructing the
higher dimensional density matrix S, where the same techniques as for state tomography,
like e.g. maximum-likelihood estimation, can be employed [138].

In practice it is of great importance to characterize quantum systems and to assess the
noise affecting quantum operations. A severe limitation of state and process tomography
is, that these techniques require an exponential number of measurements with increasing
system size. In our system, with e.g. N = 10 qubits and a duration of 2 s per measurement,
it would take ∼ 1.4 days to do full state tomography and ∼ 4000 years to implement process
tomography, which is clearly not feasible in practice. Hence more efficient techniques are
needed to assess the performance of quantum computers.
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5.2 randomized benchmarking

As outlined in section 5.1, QPT is difficult in the presence of State Preparation and Measure-
ment (SPAM) errors and is not feasible in practice for larger systems due to the exponential
scaling of resources with the system size. RB [21–23] is a technique which was developed to
overcome these difficulties. The idea behind RB is to implement a set of randomly chosen
gates to extract only partial information about the quantum processes. In fact, RB estimates
an average gate fidelity of the implemented set, rather than the fidelity of a specific gate.
Also RB decouples SPAM errors from gate errors.

The gates used for RB are chosen from a finite group CN , the so-called Clifford group [142,
143]. The construction of the Clifford group is discussed in detail in appendix E. The usage
of the Clifford group is motivated by the following aspects.

1. Any Clifford operation can be generated from a small set of single and two qubit
operations (see appendix E).

2. Any quantum computation carried out with elements of the Clifford group can be
simulated efficiently on classical hardware due to the Gottesman-Knill theorem [142].

3. The Clifford group plays an important role in the stabilizer formalism used for QEC,
which is discussed in section 7.2.

Aspect 1. is very practical for experiments, because as can be seen in appendix E only three
different gates must be calibrated in order to implement any Clifford gate.
Aspect 2. implies that we can calculate the expected outcome for any implementation of
Clifford gate sequences. Hence, by keeping track of the implemented Clifford gates, we can
calculate a final gate such that the implemented sequence composes to a desired unitary,
such as e.g. the identity I or a bit flip X.
In the following paragraph the protocol for standard RB is presented after Ref. [23]:

1. Choose m gates uniformly at random from the Clifford group CN . Calculate the
(m + 1)th gate such that the complete sequence S = C1 ◦ · · · ◦ Cm+1 = I composes to
the identity in the ideal case.

2. Measure the success probability P(S) = tr(EψS(ρψ)), where ρψ is the initial state
taking into account preparation errors and Eψ is the Positive Operator-Valued Measure
(POVM) element taking into account measurement errors.

3. Average over n different random realizations to estimate an average sequence fidelity

Fseq(m, ψ) =
1
n

n

∑
i=1

P(Si). (5.10)

4. If we assume that the errors are gate-independent we can estimate the average
sequence fidelity for different sequence lengths m and fit the results with the model

Fseq(m, ψ) = Apm + B, (5.11)

where the coefficient A absorbs state preparation errors and the coefficient B absorbs
errors in the last gate and the measurement.
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After fitting the results the average gate fidelity can be estimated from the decay parameter
p and the Hilbert space dimension d as [23]

Favg = p + (1− p)/d. (5.12)

Note that the only assumption in this protocol is that the noise correlations are negligible
for time scales longer than the time of an operation Ci, meaning that the noise of gate Ci
does not depend on the previous implementations. The scheme of an RB sequence with
length m is depicted in fig. 5.3. Experimentally, we have implemented single qubit RB

Figure 5.3: 1-qubit randomized benchmarking scheme. The qubit is prepared in the state |0〉, then
m Clifford gates Ci are chosen uniformly at random and applied to the qubit. Finally an
inversion gate Cm+1 is implemented before the qubit is measured.

in the same ion trap setup, but with different qubit lasers. The measurement results are
depicted in fig. 5.4, where the estimated average gate infidelity for the old laser system1

is 1− Favg,old = 4.4(4) · 10−3 and for the new laser system2 we estimate an infidelity of
1− Favg,new = 1.37(5) · 10−4. The error rate with the new laser system is improved by a
factor of more than 30, which is the result of smaller phase and intensity fluctuations of the
new laser.
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Figure 5.4: 1-qubit randomized benchmarking. The success probability of the random sequences is
plotted against the sequence length. Results for the old laser system are shown in red,
whereas the results for the new laser system are depicted in blue. The estimated average
gate infidelities are 1− Favg,old = 5.52(6) · 10−3 and 1− Favg,new = 1.18(9) · 10−4 per
single qubit Clifford operation.

1Coherent 899 Ti:Sa
2M2 SolSTis Ti:Sa
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5.3 cycle benchmarking

The content of this section is extracted from Ref. [25]

Cycle Benchmarking (CB) can be seen as a successor of standard RB, which overcomes some
of the limitations of RB. As already mentioned in the introduction, the implementation of
a Clifford gate used in RB requires O(N2/ log N) primitive two-qubit operations, which
is on the order of ∼ 100 for a 10 qubit system. If we assume an error rate of 0.1− 1 % per
two-qubit operation this would lead to an error rate of 10− 63 % per single Clifford gate.
This substantially increases the number of measurements needed to perform the fitting to
the exponential model outlined in section 5.2.

In current physical platforms the two-qubit operations are prone to a bigger error rate
compared to the single qubit gates, which violates the assumption that the noise is gate
independent. Thus the fidelity of an individual Clifford gate strongly depends on number
of two-qubit gates required for the gate and the estimated average gate fidelity is less
representative.

While RB can be performed on small subsets of the qubit register [144], such experiments
do not explore the full Hilbert space and therefore will not detect important performance-
limiting error mechanisms such as cross-talk. Moreover, errors in operations must be
characterized in the context in which they are used because control sequences for a specific
gate are often distorted by other gates performed in parallel.

One method to achieve this is to only perform gates in fixed modes of parallel operation.
We refer to a parallel set of gates as a cycle, in analogy with a digital clock cycle. In typical
architectures, there are two types of cycles, namely, cycles of single-qubit gates and cycles of
multi-qubit gates. Undetected calibration and cross-talk errors will typically lead to coherent
and spatially correlated errors that can lead to substantially larger algorithmic errors and
can require higher overheads in fault-tolerant quantum error correction schemes [145]. Such
errors can be converted to stochastic Pauli errors by randomizing the cycles of single-qubit
gates in such a way that the overall ideal circuit remains unchanged, a technique known as
randomized compiling [146]. The error rate due to the resulting stochastic Pauli errors can
then be accurately quantified by the process fidelity.

In this chapter we introduce CB, a protocol for estimating the process fidelity of a global
noise process affecting a quantum device that occur when a cycle of operations is applied
to a quantum register. Under the assumption of Markovian noise such that the noise on
each cycle of independent single-qubit gates is independent of the specific gates being
implemented (see appendix F.1), we prove that CB is robust to SPAM errors and that the
number of measurements required to estimate the process fidelity to a fixed precision is
approximately independent of the number of qubits. We demonstrate the practicality of CB
for many-qubit systems by using it to experimentally estimate the process fidelity of both
non-entangling Pauli operations and the multi-qubit entangling MS-gate [83, 84] acting on
up to ten qubits. We also confirm that the protocol and analysis methods, derived under
theoretical assumptions, produce consistent results in our experimental system.

5.3.1 Cycle benchmarking protocol

We now outline how the CB protocol can quantify the effect of global and local error
mechanisms affecting different primitive cycle operations of interest.
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Mathematically, the ideal operation of interest is described by the corresponding unitary
matrix G. Its action is expressed by a map G : ρ→ GρG† that acts on the state of the quantum
register, described by the density matrix ρ. We denote the map of an ideal operation by
capital calligraphic letters, such as G, and their noisy experimental implementations will be
indicated by an overset tilde, such as G̃. We denote the composition of gates by the natural
matrix operations for the map representation, so, e.g., RG means first apply G then apply
R, and Gm means apply G a total of m times. A particularly important class of processes
are Pauli cycles P , where the unitary matrix of the process is the N-qubit Pauli matrix P.

We evaluate the quality of a noisy process G̃ by its process fidelity to the ideal target G,
which can be written as [133]

F(G̃,G) = ∑
P∈{I,X,Y,Z}⊗N

4−N FP(G̃,G), (5.13)

where

FP(G̃,G) = 2−N tr
[
G(P)G̃(P)

]
. (5.14)

Each quantity FP(G̃,G) can be experimentally estimated by preparing an eigenstate of P,
applying the noisy gate G̃, and then measuring the expectation value of the ideal outcome
G(P). The process fidelity may be estimated by averaging FP(G̃,G) over a set of Pauli
matrices. However, a sampling protocol (as in direct fidelity estimation [133, 134]) for
estimating these individual terms is not robust to SPAM errors. Robustness to SPAM is
particularly important because SPAM errors can dominate the gate errors.

Inspired by randomized benchmarking [21], SPAM errors can be decoupled from the
process fidelity by applying the noisy operation of interest G̃ a total of m times and extracting
the process fidelity from the decay of FP(G̃m,Gm) as a function of the sequence length m.
Extracting a meaningful error per application of the gate of interest is nontrivial for generic
noise channels [147]. However, decay rates can be extracted straightforwardly for Pauli
noise channels, that is, classical mixtures of Pauli operations that are applied to the register
randomly with given probability. Mathematically, a Pauli noise channel is a map

E : ρ→ ∑
P∈{I,X,Y,Z}⊗N

µ(P)PρP† (5.15)

for some probability distribution µ. Such channels cannot exactly describe, for example,
small over-rotation errors or amplitude damping channels.

Since the noise in our system is generic, we want to engineer the noise such that it can be
described well by a Pauli noise channel. It has been shown that this can be accomplished
by introducing a random Pauli cycle R at each time step between each application of the
cycle of interest G [148](Wallman and Emerson, manuscript in preparation). This additional
random Pauli cycle R comes with an additional overhead that will increase the number
required gates to implement a given algorithm. Randomized Compiling (RC) has been
developed to eliminate this overhead [146]. The resulting noise channel when using RC is
then associated with the composition of G with a random Pauli cycle R, called a dressed
cycle GR, which is an important characterization primitive for any algorithm implemented
via randomized compiling [146]. Therefore CB estimates the average of the process fidelities
of the dressed cycle G̃R̃

FRC(G̃,G) = ∑
R∈{I ,X ,Y ,Z}⊗N

4−N F(G̃R̃,GR). (5.16)



5.3 cycle benchmarking 67

In addition to the dressed cycle fidelity, the process fidelity of the noisy gate G̃ alone
is of interest. The process fidelity of a specific gate G̃ may be estimated by taking the
ratio of the estimates obtained for G̃ and the identity process Ĩ , in analogy to interleaved
benchmarking [149]. It should be noted that this method of estimating the fidelity of
the noise on G̃ alone is generally subject to a large systematic uncertainty [150], so the
CB method is most precise in the important context of characterizing errors on dressed
cycles [146].

...

...

...

...

Figure 5.5: Schematic circuit implementation of the experimental cycle benchmarking protocol.
The protocol can be subdivided into three parts, depicted by the different colors. The green
gates B̃ describe basis changing operations for the State Preparation and Measurement
(SPAM) procedure. The red gates G̃ are the noisy implementations of some gate of interest
(in this work the global MS-gate acting on all qubits). The blue gates are random Pauli
cycles that are introduced to create an effective Pauli channel per application of the gate
of interest, where R̃i,j denotes the jth tensor factor of the ith gate. Creating an effective
Pauli channel per application enables errors to be systematically amplified under m-fold
iterations for more precise and SPAM-free estimation of the errors in the interleaved red
gates G̃. The blue and the red gates together form the random circuit C̃. The sequence
of local operations before the first and last rounds of random Pauli cycles are identified
as conceptually distinct but were compiled into the initial and final round of local gates
in the experiment. The experimental parameters K, m, and L of this work and the exact
definitions of B̃ and R̃ are given in section 6.1.

CB can be used to efficiently characterize non-Clifford gates by selecting random gates
and correction operators using RC [146]. However, the general protocol for non-Clifford
gates is more complex, so a simplified version for characterizing the errors occurring under
a fixed cycle of Clifford gates G composed with a random Pauli cycle R is as follows (the
protocol is illustrated in fig. 5.5, where we explain the motivation for each step further
below):

1. Select a set of N-qubit Pauli matrices P with K = |P| elements.

2. Select two lengths m1 and m2 such that the multiple application of G composes to the
identity Gm1 = Gm2 = I .

3. Perform the following sequence for each Pauli matrix P ∈ P, length m ∈ (m1, m2), and
l ∈ (1, . . . , L), where L describes the number of random sequences per Pauli.

3a. Select m + 1 random N-qubit Pauli cycles R0,R1, . . . ,Rm, and define the randomized
circuit

C(P) = RmGRm−1G . . .R1GR0 (5.17)
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as illustrated in fig. 5.5.

3b. Calculate the expected outcome of the sequence C(P) assuming ideal gate implemen-
tations.

3c. [Main experiment] Implement C(P) and estimate the overlap

fP,m,l = tr[C(P) C̃(ρ)] (5.18)

between the expected outcome and the noisy implementation C̃(ρ) for some initial
state ρ that is a +1-eigenstate of P. State preparation and measurement are realized
by applying the operations B̃P and B̃†

C(P) that are described in appendix F.2.

4. Estimate the composite process fidelity via

FRC(G̃,G) = ∑
P∈P

1
|P|

(
∑L

l=1 fP,m2,l

∑L
l=1 fP,m1,l

) 1
m2−m1

. (5.19)

Step 1 ensures that the action of the N-qubit process is accurately estimated. In ap-
pendix F.5 we prove that the uncertainty of the fidelity estimate is independent of the
number of qubits N, and the number of Pauli matrices K that need to be sampled de-
pends only on the desired precision. This highlights the scalability of the protocol for large
quantum processors.

Step 2 ensures that the measurement procedures for circuits in eq. (5.17) with two different
values of m are the same. Having the same measurement procedures for the two values of
m is crucial to decouple the SPAM errors from the decay in the process fidelity via the ratio
in eq. (5.19). In our experiment, we always choose m1 = 4 and m2 to be an integer multiple
of 4 as, for the considered gates, applying the operation four times subsequently yields the
identity process G4 = I .

In step 3a, we choose random Pauli cycles to engineer an effective Pauli noise process
across the L randomizations. This enables us to extract a process fidelity from the decay
of ∑L

l=1 fP,m,l/L with the sequence length m. Note that unlike typical randomized bench-
marking protocols, the above protocol does not have an inversion gate. Formally, the final
random Pauli can be regarded as a correction gate for the random Pauli gates in the rest of
the circuit composed with another random Pauli that we use to isolate exponential decays
as in character benchmarking [151].

In step 3b, for any Clifford cycle G, Pauli matrix P, and Pauli cycles R0, . . . , Rm the
expected outcome of the ideal implementation C(P) is a Pauli matrix that can be efficiently
calculated. Note that only the sign of C(P) depends on the random Pauli cycles. This
sign is accounted for when estimating the expectation value with the procedure outlined
in appendix F.3. Incorporating the sign engineers a measurement of the expectation value
of C(P) that is robust to SPAM errors, as otherwise the expectation values result from a
multi-exponential decay [147, 151].

In step 3c, we experimentally prepare an eigenstate of a Pauli matrix P, apply a circuit
C̃ with interleaved random Pauli cycles, and measure the expectation value of C(P). The
explicit procedures we use for preparing the eigenstate and measuring the expectation value
are described in appendix F.2. As discussed in appendix F.5, the number of measurements
required to estimate the expectation value to a fixed additive precision is independent of
the number of qubits.



5.3 cycle benchmarking 69

As we prove in appendix F.4, the expected value of FRC(G̃,G) in eq. (5.19) for two values
of m1 and m2 as in step 2 is equal to the composite process fidelity FRC(G̃,G) in eq. (5.16)
up to O([1− FRC(G̃,G)]2), and always provides a lower bound.
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C H A R A C T E R I Z AT I O N O F A S C A L A B L E I O N T R A P Q UA N T U M
C O M P U T E R U S I N G C Y C L E B E N C H M A R K I N G

The content of this chapter is extracted from Ref. [25]

The rigorous characterization of quantum operations offers the ability to compare different
quantum computers and provides means for error analysis that can help to overcome
limitations of current quantum computers. As motivated in chapter 5, Cycle Benchmarking
(CB) is one of the most efficient ways to characterize quantum processes.

Here, we demonstrate the practicality of CB for multi-qubit systems by using it to
experimentally estimate the process fidelity of cycles acting globally on quantum registers
containing 2, 4, 6, 8, and 10 qubits. The specific cycles we consider consist of simultaneous
local Pauli gates and multi-qubit entangling MS-gates combined with simultaneous local
Pauli gates.

6.1 experimental methods

The CB experiments are defined by a sequence of N-qubit Clifford gates according to the
experimental protocol in fig. 5.5. We use two distinct types of Clifford gates, non-entangling
and thus local Clifford gates (gates B̃ in green and gates R̃ in blue in fig. 5.5) and the fully
entangling MS( π

2 )-gates (gates G̃ in red in fig. 5.5), which act on all N-qubits in the register
simultaneously. A local Clifford gate consists of a set R =

⊗N
j=1 Rj of individual single-qubit

Clifford operations Rj acting on qubit j (see appendix E).
Following the protocol outlined in section 5.3.1, we need to implement various random

sequences. These platform independent sequences are then compiled into the actual machine
language [152]. In the presented experiments an elementary single qubit operation consist
of addressed z-rotations sandwiched between two collective rotations around the x- or
y-axis, e.g. X(π/2)1 = X(−π/4)12Z(π)1X(π/4)12Z(π)1 for 2 qubits. The collective x- and
y-rotations can be seen as simple basis changes on the entire register, and thus these basis
changes can be shared by the individual qubit operations. By changing the temporal order
of the collective x-, y-rotations and the individual z-rotations, the number of operations can
be minimized. In fig. 6.1 we show the average number of operations per Clifford depending
on the register size for the direct compilation of every single-qubit Clifford gate alone
and for the optimized compilation, where the N single-qubit Clifford gates are compiled
together. These results are obtained from the analysis of the implemented random sequences
presented in table 6.1.

Since a local N-qubit Clifford operation contains N single-qubit Clifford operations, the
average number of single-qubit rotations per local N-qubit Clifford operation scales linearly
with N. To reduce the number of calibration measurements we only perform π/2 rotations.
Thus e.g. a Z(π)j operation is implemented using two Z(π/2)j operations. On average we
implement 1.27(2) · N addressed π/2 rotations for a local N-qubit Clifford operation in the
optimized case.

In table 6.1 we give an overview of the experimental parameters that were used to
estimate the local CB and the dressed MS fidelities. The number of subspaces K describes

71
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Figure 6.1: Gate count versus register size. Average number of a) Z(π/2)j and b) global operations
needed to implement a local N-qubit Clifford gate. Here we compare the direct compilation
of each single-qubit Clifford gate alone with pulse sequences that are optimized over the
N-qubit register. The error bars represent the standard deviation of operation occurrences,
as each Clifford gate contains a different number of Z(π/2)j and global operations.

the number of individual Pauli channels we explore. For each sequence length m we measure
L different random sequences. We implement each sequence twice, once with and once
without interleaved MS-gates, hence the total number of sequences is T = 2 · K · n(m) · L,
where n(m) is the number of different lengths. We repeat every sequence R = 100 times to
measure the outcome probabilities and to keep the projection noise below 5 %.

Table 6.1: Parameters for the CB experiments. Presented are the number of subspaces K, the se-
quence lengths m and the number of random sequences L for different register sizes. Since
we implement each sequence twice, once with and once without interleaved MS-gates, the
total number of sequences is T = 2 · K · n(m) · L, where n(m) is the number of different
lengths and each individual sequence is repeated R times.

Qubits K m L T R Meas. time (h)

2 15 4, 40 10 600 100 2.6

4 255 4, 20 10 10200 100 15.7

6 43 4, 8, 12 10 2580 100 3.4

8 24 4, 8 10 960 100 2.0

10 21 4, 8 10 840 100 1.9
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6.2 testing the dependence of the estimator on the sequence length

If the noise in the system is memoryless or Markovian, we expect that the measured
expectation values decay exponentially with the sequence length, as can also be seen
for example in the single-qubit RB data in section 5.2. Hence, for Markovian noise, the
estimated process fidelity is independent of the sequence lengths m1 and m2 to within
O([1− FRC(G̃,G)]2) (see theorem 3).

We test the dependence of the fidelity estimates on the sequence length by performing
measurements at 3 different sequence lengths for 6 qubits, as described in table 6.1. We
validate that the estimated process fidelity is independent of m1 and m2 by comparing the
results of three different length pairs (4-8), (4-12) and (8-12). As can be seen in table 6.2, the
estimated fidelities agree to within half a standard deviation, which supports the assumption
that the noise in our experimental apparatus is Markovian.

Table 6.2: 6-qubit process fidelities (%) estimated via CB. The fidelities are estimated using different
pairs of sequence lengths (m1-m2). The results illustrate that the estimated process fidelity
is independent of the sequence lengths used, subject to the constraint in step 2 of the
protocol.

(m1-m2) Local gates Dressed MS-gate

(4-8) 97.0(2) 91.3(5)

(4-12) 97.0(2) 91.2(4)

(8-12) 96.9(4) 91.3(8)

6.3 testing the dependence of the fidelity uncertainty on the register

size

For a benchmarking method to be scalable, it is important that the required resources do
not increase exponentially with the system size. As we have shown in appendix F.5, the
variance of the fidelity estimate is independent of the number of qubits N for constant
resources. According to eq. (F.29), there exists an upper bound for the standard deviation of
the estimated fidelity, that depends on the fidelity itself and the number of Pauli subspaces
that have been investigated. Since the process fidelity is reduced for larger register sizes, also
the variances themselves are expected to increase with N. We can eliminate the dependence
on the fidelity by taking the ratio between the observed standard deviation σ and the
theoretical upper bound thereof σPauli. If the fidelity uncertainty is independent of N, then
also the ratio σ/σPauli must be independent of N.

In fig. 6.2 we plot the ratio between the standard deviation σ of the measured fidelity and
the upper bound σPauli against the number of qubits N in the register. In the data we cannot
observe a clear trend or dependency of the observed variance relative to the worst-case
bound, suggesting that the uncertainty of the fidelity estimate is indeed independent of the
register size N. Moreover, since we experimentally benchmarked our quantum computer
with similar resources for different qubit numbers N (see table 6.1), we can conclude that
CB is scalable.
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Figure 6.2: Ratio of measured and theoretically bound fidelity uncertainties. Ratio between the
uncertainty on the fidelity estimate σ and it’s theoretical upper bound from sampling
Pauli channels σPauli against the register size N.

6.4 analyzing the fidelity long-term behavior

Slow temperature fluctuations on the timescale of minutes to days cause changes in various
components of our experimental apparatus, that can in turn influence the fidelity of the
implemented quantum gates.

One of the major causes for a loss in fidelity is the change of the Rabi frequency over time.
The Rabi frequency depends on the laser intensity at the position of the ion, as described
in section 3.3.1. Temperature fluctuations can for example influence the efficiency of the
AOMs or the alignment of the laser beam relative to the ion position. Since the single
ion addressing laser beam is tightly focused to a spot size of ∼ 2 µm, a misalignment of
∼ 200 nm leads to a change in Rabi frequency of ∼ 10 %.

We analyze the long-term behavior of the fidelity with 4-qubit CB as depicted in fig. 6.3.
The K = 4N − 1 = 255 subspaces were measured in 3 sessions, where the experimental
system was recalibrated at the beginning of each session. We approximate the drift of the
fidelity to be linear in first order and thus can describe the time dependent fidelity as
F(t) = F0 − εt. We obtain an average loss of fidelity of εL = 3.3(5) · 10−3 h−1 for local gates
and εI = 5.4(8) · 10−3 h−1 for the dressed MS-gate, see table 6.3. This measurement suggests
that we can expect a maximum loss of fidelity of 1 % when calibrating the apparatus every
two hours.

Table 6.3: 4-qubit fidelity drift rates. Here εL and εD describe the loss of fidelity per hour for
local gates and the dressed MS-gate. The data corresponds to the estimated linear slopes
of fig. 6.3

Session εL (h−1) εD (h−1)

1 3.9(8) · 10−3 8.9(1.5) · 10−3

2 3.1(5) · 10−3 3.2(6) · 10−3

3 3.0(1.1) · 10−3 4.2(1.7) · 10−3

Average 3.3(5) · 10−3 5.4(8) · 10−3
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6.5 finite sampling effects

The CB protocol is practical to implement on large processors because the fidelity can be
accurately estimated using a number of Pauli matrices that is independent of the number
of qubits N (see appendix F.5). To illustrate the rapid convergence under finite sample
size, we performed CB of local Pauli operations on a 4 qubit register by exhaustively
estimating all 44 − 1 = 255 possible decay rates. We estimate the average fidelities via
eq. (5.19) for multiple subsets P of the set of all Pauli matrices. For each K = 1, . . . , 100, we
evaluate the fidelity for 30 randomly chosen subsets P containing |P| = K Pauli matrices.
The mean and standard deviation of the estimated fidelities as functions of the subset
size are shown in fig. 6.4. In fig. 6.4 (b) we introduce two boundaries between which the
observed standard deviation should lie if we are choosing appropriate sequence lengths
and sample sufficiently many random circuits per sequence length. For the lower bound
we assume quantum projection noise to be the only noise source. We evaluate the shot
noise for the measured data and perform error propagation to calculate the lower bound
σlower = 0.00375(1)/

√
K. This lower limit could be reached if the noise in the system

is completely isotropic (e.g. global depolarizing). Biased noise or drift (see section 6.4)
will lead to uncertainties bigger than those originating from quantum projection noise.
We furthermore test that the fluctuations between different Pauli channels is bounded
by an error model that assumes worst-case fluctuations between channels. This bound
does not depend on the register size but only on the fidelity F and can be estimated via
σPauli = (1− F)/

√
K = 0.0275(8)/

√
K (see appendix F.5).

Figure 6.4: Experimental evidence demonstrating rapid convergence under finite sample size
with favorable constant factors. a) Mean fidelity estimates from 30 randomly sampled
subsets of Pauli matrices as a function of the size K of the subset. The error bars illustrate
the standard deviation of the 30 samples, that is, the standard error of the mean. The
green line describes the mean fidelity F = 97.25(8)% calculated from the complete data
set. b) The standard deviation of the fidelity from plot a) against K including a bound
due to finite sampling of Pauli channels σPauli = 0.0275(8)/

√
K in orange, a fit of the

standard deviation σ = 0.0127(2)/
√

K in green and a fit of the expected projection noise
σlower = 0.00375(1)

√
K in red (see appendix F.5).

The observed standard error of the mean σ = 0.0127(2)/
√

K is larger than the lower
bound given by quantum projection noise, but smaller than the worst-case bound from
sampling finite Pauli channels. The data demonstrate that we can estimate the process
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fidelity F to an uncertainty smaller than (1− F)/
√

K independent of the register size with
other experimental parameters held fixed (the parameters are listed in table 6.1).

6.6 cycle benchmarking results

We performed CB on local operations and with an interleaved MS-gate on registers con-
taining 2, 4, 6, 8, and 10 qubits. The process fidelity as a function of the number of qubits
in the register is shown in fig. 6.5 and table 6.4. While it is expected that the fidelity over
the full register decreases with increasing register size, an important question is whether
the effective error rate per qubit increases, or significant cross-talk effects appear, with
increasing numbers of qubits.

Figure 6.5: Experimental estimates of how rapidly error rates increase as the processor size in-
creases. a) Process fidelities obtained under cycle benchmarking for local gates (blue
circles) and for sequences containing dressed Mølmer-Sørensen (MS) gates (red dia-
monds), that is, MS-gates composed with a random Pauli cycle, plotted against the
number of qubits in the register. The local operations are consistent with independent
errors fitted according to eq. (6.1). b) Estimate of the process fidelity of an MS-gate
obtained by taking the ratio of dressed MS and local process fidelities. The data is fitted
to eq. (6.2) and is consistent with a constant error per two-qubit coupling.

We observe that the fidelity for local CB (blue circles in fig. 6.5 (a)) decays linearly with
register size N, as

F = 1− εPN, (6.1)

with εP = 0.011(2). The linear decay of the fidelity indicates that our single-qubit Pauli
operations do not show increasing error rates per qubit or a significant onset of cross-talk
errors as the register size increases. Each single-qubit Pauli operation requires nS native
gates, where on average 〈nS〉 = 1.27, independent of the system size. Therefore the effective
process fidelity of a native single-qubit gate is 1− εP/〈nS〉 = 0.992(1).

The CB measurements with interleaved MS-gates give the process fidelity of the MS-
gate composed with a round of local randomizing gates as in eq. (5.16) (a dressed MS-
gate, see red diamonds in fig. 6.5 (a)). This determines the error rate when a circuit is
implemented by randomized compiling [146]. The process fidelity of the interleaved gate
can be estimated by the ratio of the dressed MS and local fidelities as in interleaved
randomized benchmarking [149]. The resulting estimates are plotted in fig. 6.5 (b). We note
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that these estimates may have a large systematic error that is on the same order as the
overall error rate [150]. This systematic uncertainty primarily arises due to coherent over-
and under-rotations with similar rotation axes. The MS-gate performs rotations around the
non-local axes σ

(i)
x ⊗ σ

(j)
x , which are substantially different from the single-qubit rotation

axes. Therefore it is unlikely that any coherent errors on the MS-gate accumulate with the
errors on the single-qubit rotations, and so we neglect this systematic error. We conjecture
that the process fidelity of the MS-gate should decay quadratically due to an error in each
of the (N

2 ) couplings between pairs of qubits introduced by the MS-gate. If we assume an
average error rate ε2 per two-qubit coupling, we can describe the MS-gate fidelity as

FMS = 1− ε2
N2 − N

2
. (6.2)

Fitting this model to the results in fig. 6.5 (b) gives an estimated error per two-qubit coupling
of ε2 = 0.0030(2). However, we cannot harness these two-qubit couplings individually in
the experiment and thus they cannot be compared to individually available gates. The
deviations of the fidelity estimates from the model defined in eq. (6.2) are within the
expected statistical uncertainty and we believe that these deviations arise mainly from
day-to-day fluctuations in the experiment.

Table 6.4: Process fidelities (%) estimated via CB. Measured fidelities for local gates, dressed MS-
gates and the inferred MS-gate fidelity as depicted in fig. 6.5.

Qubits Local gates Dressed MS-gate MS-gate

2 99.37(7) 98.92(8) 99.6(1)

4 97.25(8) 94.3(1) 97.0(2)

6 96.9(2) 91.2(3) 94.1(4)

8 92.8(8) 85(1) 91(2)

10 90.9(6) 78(1) 86(2)
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Q UA N T U M E R R O R C O R R E C T I O N P R O T O C O L S

We have learned that it is possible
to fight entanglement with entanglement.

— John Preskill [9]

The content of this chapter is partly extracted from Ref. [153]

The improvement of quantum computing architectures from early designs and current
Noisy Intermediate-Scale Quantum (NISQ) devices [26] to full-fledged quantum computers
hinges on achieving fault-tolerance using QEC [9, 26, 154–156]. The basis of QEC is storing
and manipulating quantum information distributed over blocks of physical qubits that
form logical qubits. A number of experiments have demonstrated significant technological
progress towards Quantum Error Correction (QEC) [157–162], including the creation of
non-trivial QEC codes [163, 164], error detection [165–167], correction of errors [168–171]
and qubit loss [172], and operations on single [173–178] and on two logical qubits in
non-topological codes [179, 180].

The principles of QEC and the resulting scaling of error rates are explained in section 7.1.
As introduced in section 2.4, one of the most promising road towards QEC is offered by
topological codes, which require only short-range interactions in 2D architectures [40, 181,
182]. In section 7.2 the stabilizer formalism, a versatile tool used in many QEC codes, is
presented. One prominent example of topological codes is the surface code [44, 183, 184],
which is outlined in section 7.3.

7.1 principles of quantum error correction

Similar to the concept of classical error correction, the basic idea of QEC is to utilize
redundancy to reduce the effective error rate [9]. In contrast to classical error correction,
due to the non-cloning theorem [9] the information in a quantum computer cannot simply
be copied from one qubit to another. It also not possible to just measure a qubit, to check
whether an error has occured, because the measurement would project any superpostition
into the measurement basis and hence destroy the quantum state.

Furtunately, these difficulties are not a fundamental problem that prevent QEC to work,
as will be explained in the following. An arbitrary single qubit error can be decomposed
into Pauli X and Pauli Z errors, similar to the state of a single qubit described in section 2.1.
For simplicity, we assume first that a single qubit is only affected by an X-type or bit-flip
error with probability p that maps the quantum state ρ as E(ρ) = (1− p)ρ + pXρX e.g.
E(|0〉〈0|) = (1− p)|0〉〈0|+ p|1〉〈1|. The simplest code to protect a qubit against a bit-flip
error is the three qubit repetition code [9, 185]. Note that this code is not able to correct
Z-type (phase-flip) errors.

In the three qubit repetition code we encode a single logical qubit into three phyiscal
or data qubits as |0L〉 = |000〉 and |1L〉 = |111〉. Thus, an arbitrary logical state is defined
as |ψL〉 = α |000〉+ β |111〉 = α |0L〉+ β |1L〉. We assume that single qubit X errors occur
uncorrelated on any of the three data qubits with probability p. After a single qubit error has
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occured, the logical qubit is in one of four possible states, that can be detected by measuring
the following projectors [9]

P0 = |000〉〈000|+ |111〉〈111| No error, (7.1)

P1 = |100〉〈100|+ |011〉〈011| Error on qubit 1, (7.2)

P2 = |010〉〈010|+ |101〉〈101| Error on qubit 2, (7.3)

P3 = |001〉〈001|+ |110〉〈110| Error on qubit 3, (7.4)

where we deduce whether an error has occured on a data qubit via majority voting. The
outcomes of the projective measurements are called error syndromes. If the logical qubit is
e.g. in the corrupted state |ψL〉 = α |100〉+ β |011〉, the measurement 〈ψL|P1|ψL〉 = 1 reveals
that a bit flip has happened on the first qubit. Note that this measurement does not destroy
the qubit state, since the state |ψL〉 = P1 |ψL〉 is the same before and after the measurement.
Knowing what error has occured on which qubit, we can apply a correcting X operation on
qubit 1 to recover the logical qubit state |ψL〉 = α |000〉+ β |111〉. Since qubits can only be
measured individually in the experiment, the measurement projectors in eqs. (7.1) to (7.4)
cannot be implemented directly on the data qubits. Therefore, the error syndroms are
mapped onto auxiliary or syndrome qubits, which can be individually measured in-sequence
without disturbing the state of the data qubits, as explained in section 7.2.1. As can be
seen in eqs. (7.1) to (7.4), in the case of the three qubit repetition code there exist four error
syndroms, which require two auxiliary qubits that can store these two bits of information.

If no or at most one single qubit error occurs, the error correction works perfectly,
otherwise it fails. Since the probability for a single qubit error is p, the combined probability
that any other error (two or more qubit X errors) occurs and the error correction fails is
pe = 3p2(1− p) + p3 [9]. If the error rate is low enough p < 0.5, a single qubit error is more
likely than any other error p > pe and the error correction procedure works on average.
Consequently, the repeated implementation of the three qubit repetition code reduces the
error probability from p to pe ∝ O(p2) on average provided that p < 0.5.

In section 7.3 a more complex code, the surface code is introduced, that is able to correct
arbitrary single qubit errors.

In general, QEC codes are classified by the number triplet [N, k, d], where N is the number
of physical qubits, k describes the number of encoded qubits and d is the code distance.
The distance d of the code is the minimal Hamming distance between codewords, i.e., the
required minimum number of single-qubit Pauli operators mapping any one codeword to
another. Since the correction procedure is based on majority voting, a code with distance d
can generally correct up to (d− 1)/2 errors and detect up to d− 1 errors.

7.2 stabilizer codes

In this section we outline a framework to describe QEC codes in a very compact fashion [9].
If every element of a group G can be written as a product of elements from the subgroup
{g1, ..., gn}, we write G = 〈g1, ..., gn〉 and we call the elements g1, ..., gn the generators of the
group G. Consider the set of single qubit Pauli operators P = {I, X, Y, Z}, then the Pauli
group for a single qubit is defined as the Pauli operators up to multiplication with {±1,±i}
as [9]

P1 =
{
±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ

}
= 〈iI, X, Z〉, (7.5)



7.2 stabilizer codes 81

where the matrices iI, X, Z are the generators of the group. For an N-qubit system the Pauli
group consists of the N-fold tensor products of Pauli matrices as

PN =
{

s · σ1 ⊗ · · · ⊗ σN | s ∈ {±1,±i}; σi ∈ P
}

. (7.6)

Suppose a state |ψ〉 is a +1 eigenstate of an operator S such that S |ψ〉 = +1 |ψ〉, then we
say that the state |ψ〉 is stabilized by the operator S. If a set of states C = {|ψi〉} is stabilized
under the action of elements of the group S = {Si}, S is called a stabilizer [9]. Specifically,
the stabilizer S is a subgroup of the Pauli group PN acting on the vector space C such that

S =
{

Si ∈ PN | Si |ψj〉 = +1 |ψj〉 ∀ |ψj〉 ∈ C
}

. (7.7)

We can now use stabilizers to define QEC codes. Suppose we encode k logical qubits into N
physical qubits, then the [N, k, d] stabilizer code is defined as the code space C stabilized
by the subgroup S of PN such that −I /∈ S and S has N − k independent and commuting
generators S = 〈gi, ..., gN−k〉 [9]. We denote the code as C(S). Finally, for each of the k
encoded qubits we choose the set of logical Pauli operators {XL, ZL} which obey the same
commutation relation as the single qubit Pauli matrices. In principle, we can choose any 2k

orthonormal vectors in C(S) to act as logical operators, but typically we use a systematic
way to define the logical operators as described in Ref. [9].

As an example we come back to the three qubit repetition code introduced in the previous
section with the codewords |0L〉 = |000〉 and |1L〉 = |111〉. The code stabilizers are mutually
commuting operators Si in the three-qubit Pauli group P3 that map the code subspace to
itself while acting as identity on the encoded information, i.e., Si |0L〉 = |0L〉, Si |1L〉 = |1L〉
and [Si, Sj] = 0. Since our code consists of three physical qubits while encoding a single
logical qubit, we can expect to find two independent, commuting Pauli operators with
this property. Indeed, we find S1 = Z1Z2 and S2 = Z2Z3 which can be used to generate a
group S under multiplication, i.e., S = 〈S1, S2〉 = {I, S1, S2, S1S2}. Since the code subspace
is an eigenspace of these operators we can simultaneously measure all stabilizers without
disturbing the logical information. Without errors, measuring stabilizers will always result
in the same outcome, namely +1. However, were an error X1 to occur, the measurement
outcome of stabilizer S1, its so-called syndrome s1, would change sign since {S1, X1} = 0.
The only other combination of X-errors that could possibly lead to the syndromes s1 = −1
and s2 = +1 is a two-qubit error X2X3, that is not correctable. In practice, we collect these
syndromes by measuring auxiliary qubits, so-called syndrome qubits, which encode the
eigenvalues of associated stabilizers. That is, a projective stabilizer measurement can be
performed by entangling data qubits with a syndrome qubit and measuring the latter. As a
result, we end up with the same majority vote as before but without measuring the logical
state of the encoded qubit.

In this formalism, the group of operators that leaves the stabilizer group invariant, called
the normalizer N(S) ⊂ P3, defines the logical operations. We are only considering Pauli
operators and hence, the group of operators that commutes with all stabilizers, called
the centralizer C(S) of S is also the normalizer. Since this definition includes stabilizers
themselves, we define the group of logical operators as a quotient group L = N(S)/S such
that logical operators form equivalence classes under multiplication with stabilizers. In the
three qubit case, the equivalence classes are [I]S , [Z1]S , [X1X2X3]S , i.e., one for each logical
operation.

QEC is done to protect our encoded information from nontrivial logical errors in L. Since
we are only considering products of Pauli operators, elements of L are also just products
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of Pauli operators. This allows us to infer the minimum number of single-qubit errors
composing a logical error, i.e., its distance d. To see this, consider the nontrivial operator
ZL ∈ L and its weight w(ZL) which is the number of nontrivial terms in the product of
Pauli operators. In our example, ZL = Z1, i.e., its weight is 1 and a single-qubit Z-error
can cause a logical Z-error. In other words, the above code can tolerate no Z-errors and its
distance is therefore d = 1. However, w.r.t. logical X-operators [X1X2X3]S , the minimum
weight of any logical X-operator is d = 3 such that the code can correct 1 and detect 2

X-errors.
In summary, stabilizer codes require us to measure stabilizers and extract syndromes

throughout a quantum computation. The syndromes are then analyzed by a majority vote
to infer the errors that have occurred. Logical operators are operators that commute with all
stabilizers but are not stabilizers themselves.
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7.2.1 Stabilizer readout

In QEC we need to be able to measure the error syndrome during the computation without
affecting the logical quantum state. This is achieved by mapping the eigenvalue of the
stabilizer onto an auxiliary qubit A. As in the previous section, we use as an example the
three qubit repetition code and encode one logical qubit on three data qubits with the
codewords |0L〉 = |000〉 and |1L〉 = |111〉. In the correction procedure it is necessary to
measure the expectation value of the stabilizer Z2Z3, since it is one of the code stabilizers. A
standard circuit diagram and a circuit diagram for ion trap experiments of the Z2Z3 stabilizer
readout are depicted in fig. 7.1 a) and b). As can be seen in fig. 7.1 a), the circuit consists only
of two CNOT operations between the data and the auxiliary qubits. During computation the
logical qubit is in some unknown state |ψL〉 = α |0L〉+ β |1L〉. Since Z2Z3 |ψL〉 = (−1)m |ψL〉,
the measurement outcome m ∈ {0, 1} of the auxiliary qubit reveals the eigenvalue of the
Z2Z3 stabilizer without disturbing the logical state. Note, that although we use entangling
gates to map the eigenvalue of the stabilizer onto an auxiliary qubit A, ideally this syndrome
qubit does not get entangled with the data qubits.

To measure an X-type stabilizer we introduce basis changing operations on the data
qubits, as illustrated in fig. 7.1 c) and d). More details on stabilizer readout for ion-trap
architectures can be found in Ref. [186].

Figure 7.1: Stabilizer readout. Standard circuit model representation of stabilizer readouts are
presented in a) and c) and the respective implementation thereof in our ion-trap quantum
computer is depicted in b) and d). As an example the Z2Z3 stabilizer readout is shown
in a) and b) and the X2X3 stabilizer measurement is illustrated in c) and d).
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7.3 surface code

Here, we consider a general construction of surface codes in the stabilizer formalism.
Consider N qubits laid out on the vertices V of a bicolored square lattice as displayed in
Fig. 7.2. We associate a stabilizer with each colored plaquette px,z ∈ Px,z as follows,

SX
px

= ∏
v∈N (px)

Xv (7.8)

SZ
pz
= ∏

v∈N (pz)

Zv (7.9)

where N (px,z) ⊂ V is the set of vertices neighboring a plaquette px,z and Px is the set of
orange faces and Pz is the set of every other aquamarine plaquettes. Hence, X-Stabilizers SX

are placed on orange plaquettes while Z-Stabilizers SZ are placed on aquamarine plaquettes.
Since neighboring plaquettes always share two vertices, stabilizers commute for all p ∈ P =

Px ∪ Pz. For the lattice under consideration, there are s = N − 1 independent, commuting

Figure 7.2: Standard surface code of distance 3. The standard surface code is defined on a square
lattice with (data) qubits located on vertices. Stabilizers are associated with faces and
boundaries. Aquamarine faces and boundaries indicate Z-type stabilizers as in eq. (7.9).
Orange faces and boundaries indicate X-type stabilizers as in eq. (7.8). The dashed line
in red describes a logical Pauli-X operator and the dashed green line defines a logical
Pauli-Z operator. The two operators anti-commute at the crossing drawn in yellow.

stabilizers. Therefore, the Hilbert space, which is the simultaneous +1 eigenspace of all
stabilizers, has N − s = 1 degree of freedom. This degree of freedom is a qubit since we can
define logical XL and ZL Pauli-operators. In the case of the surface code, logical operators
are products of Pauli-operators connecting opposite boundaries of the lattice. To see this,
consider a line drawn on the lattice connecting top and bottom boundaries as indicated by
dashed frames in Fig. 7.2. Placing X-operators on vertices crossed by this line, we obtain an
operator commuting with all stabilizers but which is not a stabilizer itself. Therefore, this
operator corresponds to a logical operator XL. At the same time, we can analogously draw
a line for the dual lattice connecting left and right boundary. Placing Z-operators along this
line, we obtain an operator commuting with all stabilizers but anti-commuting with XL.
Therefore, this product of Pauli-Z operators defines the logical Z-operator ZL. Note that
the shortest line connecting opposite boundaries crosses 3 vertices. Therefore, the code can
correct up to one single-qubit error and has distance d = 3.

In order to perform QEC, we continuously measure the code stabilizers. Whenever a
stabilizer measurement result, i.e., its syndrome, changes sign from +1 to −1, we have
detected an error. Assuming that less than (d− 1)/2 errors have occurred, we can associate
with each syndrome a correction procedure which recovers the state of all +1 stabilizers
from the erroneous state without causing a logical error.
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L AT T I C E S U R G E RY

The content of this chapter is extracted from Ref. [153]

As motivated in section 2.4, Lattice Surgery (LS) [41, 59, 60] is one of the most resource
efficient ways to implement logical operations, where groups of physical qubits, arranged
on lattices, can be merged and split. In LS, the QEC code itself is altered by merging and
splitting initially separate encodings, rather than operating on all physical qubits. We outline
the procedure at the specific expample of LS on two surface code qubits in section 8.1.

Such code modifications can be used to efficiently manipulate logical qubits, or to adapt
the robustness of a specific code to different noise processes [187]. LS further enables entan-
glement generation between logical qubits and can be complemented with measurement-
based protocols [57, 188, 189] for logical state teleportation and manipulation [59], as
outlined in section 8.1.

8.1 lattice surgery with surface code qubits

Here, we consider Lattice Surgery (LS) in general as a method to project seperated logical
qubits onto a joint eigenstate of their respective logical Pauli operators. In this section
we outline only the basic operations of the LS procedure and we give a more detailed
description of the experimental implementation thereof in section 8.2.

We illustrate the concept of LS using two 2× 2 stabilizer QEC codes SA,SB with logical
Pauli operators PA

L ∈ {XA
L , ZA

L }, P̃B
L ∈ {XB

L , ZB
L}, as depicted in fig. 8.1 A. Note that this

codes have a distance of d = 2, such that they can detect up to 1 single qubit error. The
minimum instance of the surface code that is able to correct one single qubit error, is a 3× 3
code with distance d = 3.

LS proceeds in two steps: Merging and splitting.
First we merge the two separated codes SA,SB into a new stabilizer code SM by projecting

onto a joint eigenstate PA
L ⊗ P̃B

L . In order for this to be fault-tolerant, we measure a number
of so-called merging stabilizers {SM

i }i across the boundary such that ∏i SM
i = PA

L ⊗ P̃B
L , as

depicted in fig. 8.1 B.
Note that surface code LS usually distinguishes Z-type and X-type LS in association with

the respective boundaries along which LS is performed. Note that, Z-type and X-type LS
therefore refers to a projection onto an XA

L XB
L or ZA

L ZB
L eigenstate. Let us further point out

that one may encounter a different terminology in terms of rough and smooth LS in the
literature [41, 155]. That notation is due to a different surface code representation and may
be associated with what we call Z- and X-type LS, respectively.

After the projection, the merged code is just a new surface code SM on an asymmetric
lattice, as e.g. a 2× 4 surface code depicted in fig. 8.1 B, a or a 4× 2 surface code illustrated
in fig. 8.1 B, b. The merging stabilizers are just surface code stabilizers at the interface
between the two codes. Stabilizers at the boundary that do not commute with the merging
stabilizers {SM

i }i are discarded from the stabilizer group SM and only the product of
boundary operators remain since they commute. Notably, the merged code encodes only a
single logical qubit and PA

L ⊗ P̃B
L is contained as a stabilizer. That is, this procedure projects
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A Encoded B   Merged C   Split
X

-t
y
p

e
Z

-t
y
p

e

... data qubit ... Z stabilizer

... X stabilizer

... measured Z stabilizer
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... ZL operator
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Figure 8.1: Surface code lattice surgery in theory. Surface code LS between Z-type and X-type
boundaries implementing logical joint measurements M±

PP̃
= (I± PA

L PB
L )/2 with PL = XL

(top) and PL = ZL (bottom), respectively. Encoded: The two initial surface codes are
defined on 2× 2 lattices where X-stabilizers are associated with orange faces and Z-
stabilizer with aquamarine faces. Logical operators are products of Pauli operators
connecting opposite boundaries. Merged: Treating the two codes as a single (asymmetric)
surface code, (merging) stabilizers along the boundaries are measured (indicated in
red/green) such that their product is PA

L PB
L . Split: In order to split the merged code

while preserving the eigenstate of PA
L PB

L , the boundary stabilizers of the original code are
measured (indicated in green/red).

onto an eigenstate of ±PA
L ⊗ P̃B

L . The eigenvalue ±1 is determined by the measurement
outcome of the product of merging stabilizers.

Now, we want to recover the two initial logical qubits while remaining in an eigenstate of
PA

L ⊗ P̃B
L . To this end, we split the merged code by measuring stabilizers of the separated

codes SA,SB along the aligned boundaries as illustrated in fig. 8.1 C. Since these stabilizers
anti-commute with merging stabilizers, the set {SM

i }i is discarded from the stabilizer groups
and we recover the original two codes. However, since all stabilizers always commute with
the logical operators, the resulting state remains an eigenstate of PA

L ⊗ P̃B
L .

In conclusion, LS acts as a joint measurement M±PP̃ = (I± PA
L ⊗ P̃B

L )/
√

2 which can be
implemented fault-tolerantly.

We can utilize the operation (I± XA
L XB

L)/
√

2 (Z-type) and (I± ZA
L ZB

L)/
√

2 (X-type) to
generate entangled logic states. In our experiment we implement (I + XA

L XB
L)/
√

2 (Z-type)
and (I + ZA

L ZB
L)/
√

2 (X-type) and hence we are able to generate three out of four logical
Bell states depending on the initial encodings,

|φ+
L 〉 =

1√
2

(
|0A

L 0B
L〉+ |1A

L 1B
L〉
)

,

|φ−L 〉 =
1√
2

(
|0A

L 0B
L〉 − |1A

L 1B
L〉
)

,

|ψ+
L 〉 =

1√
2

(
|0A

L 1B
L〉+ |1A

L 0B
L〉
)

.

(8.1)
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The fidelity of the generated state with respect to the logical Bell states can be estimated
by measuring the expectation values of the three common stabilizers 〈ZA

L ZB
L , XA

L XB
L , YA

L YB
L 〉

and evaluating the results as follows [190]

F
(
|φ+

L 〉
)
= 1

4

(
1 + 〈ZA

L ZB
L〉+ 〈XA

L XB
L〉 − 〈YA

L YB
L 〉
)

,

F
(
|φ−L 〉

)
= 1

4

(
1 + 〈ZA

L ZB
L〉 − 〈XA

L XB
L〉+ 〈YA

L YB
L 〉
)

,

F
(
|ψ+

L 〉
)
= 1

4

(
1− 〈ZA

L ZB
L〉 − 〈XA

L XB
L〉 − 〈YA

L YB
L 〉
)

.

(8.2)

In addition, the joint Pauli measurements M±PP̃ = (I± PA
L ⊗ P̃B

L )/
√

2 can be used to
implement a logical CNOT gate and a logical Hadamard H gate as well as to implement
state teleportation through a measurement-based scheme, as illustrated in fig. 8.2.

c   controlled-NOT

b   X-type teleportationa   Hadamard

Figure 8.2: Fault-tolerant logic gates with lattice surgery. LS enables measurement-based imple-
mentations of logic gates and logical state teleportation. LS operations are logical joint
measurements of the form MPP̃ = (I± PP̃)/

√
2. Thick lines indicate logical qubits in the

circuit model and double lines represent classical bits indicating measurement outcomes
mi = 0, 1. Pauli-corrections need to be applied which are conditioned on the measurement
outcomes as Pmi

L . ⊕ represents an XOR-gate between classical bits. a, Measurement-based
implementation of a logical Hadamard gate H based on the teleportation protocol. b,
Measurement-based teleportation protocol for state teleportation between two logical
qubits using X-type LS. c, Measurement-based implementation of a logical CNOT-gate
between arbitrary control and target qubits requiring an auxiliary qubit in the |+L〉-state.

8.2 entanglement of logical qubits

We consider the minimal instance of a surface code — a 4-qubit code encoding a single
logical qubit —as the central component of our experimental implementation, as introduced
in section 8.1. We define the stabilizer codes SA and SB for two initially separate logical
qubits labelled A and B as

SA = 〈SA
1 , SA

2 , SA
3 〉 = 〈−Z1Z2,−Z3Z4,+X1X2X3X4〉,

SB = 〈SB
1 , SB

2 , SB
3 〉 = 〈−Z5Z6,−Z7Z8,+X5X6X7X8〉.

(8.3)
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The logical states |ψA/B
L 〉 spanning the respective code spaces for A and B are defined as

the simultaneous +1 eigenstates of all stabilizers, i.e., SA/B
i |ψA/B

L 〉 = |ψA/B
L 〉, ∀i ∈ {1, 2, 3}.

Therefore, we find that each surface encodes a single logical qubit in the two codewords

|0L〉 =
1√
2
(|0101〉+ |1010〉), (8.4)

|1L〉 =
1√
2
(|1001〉+ |0110〉). (8.5)

Note that we choose a negative sign for the Z stabilizers in eq. (8.3), because this encodes
the logical qubits in a Decoherence-Free-Subspace (DFS) which is advantageous for the
experiemental implementation.

As outlined in section 7.3, logical operators are Pauli operations acting on data qubits
connecting opposite boundaries. Therefore, the logical operators are defined up to multipli-
cation with other logical operators, stabilizers and the imaginary unit i as

LA = 〈i, ZA
L , XA

L 〉/SA = 〈i, Z1Z3, X1X2〉/SA,

LB = 〈i, ZB
L , XB

L〉/SB = 〈i, Z5Z7, X5X6〉/SB,
(8.6)

where 〈PL〉/S indicates that logical Pauli operators PL form equivalence classes defined
up to multiplication with stabilizers. The logical Y-operator is determined as YL := iZLXL

and we find YA
L = Y1X2Z3 and YB

L = Y5X6Z7. The action of logical operators is to map
codewords to codewords. For instance, a logical bit-flip operator XA

L = X1X2 maps |0〉AL to
|1〉AL .

As explained in chapter 3, our available gate set includes local single-qubit Z rotations,
multi-qubit X and Y rotations and a multi-qubit entangling MS-gate. The local operations
can also be employed on various different Zeeman-transitions in order to spectroscopically
decouple and recouple specific qubits from the computational subspace. As an example we
present the corresponding circuit diagram for the LS procedure along the Z-type boundary
in fig. 8.3, which is used for the implementations presented fig. 8.4, and in fig. 8.7 (Z-type).
Each local operation (depicted in green and blue in fig. 8.3) consists of a series of multi-qubit
X or Y rotations and single-qubit Z rotations. When performing an MS-gate, only a subset
of qubits is present in the computational subspace (depicted in red in fig. 8.3).

We start with the encoding procdure by preparing each logical qubit in the state |0L〉 =
1√
2
(|0101〉+ |1010〉) utilizing one 4-qubit MS-gate plus a number of local gates. For the

stabilizer measurements in the merging and splitting steps we employ 6 3-qubit MS-gates
plus a number of local gates. In between the aforementioned operations we also implement
gates that couple the qubits in or out of the computational subspace.

As a first example, we present experimental results for case where the logical qubits
are prepared in the state |0A

L 0B
L〉. We can create encoded states with average stabilizer

expectation values of 〈|Si|〉 = 0.868(4), see fig. 8.4 A, b. We make use of the obtained
stabilizer information and post-select our data on states with valid code stabilizers as
explained in the following.

Since the utilized surface code comprising 4 data qubits is an error detection code with
distance d = 2, the code can detect arbitrary single qubit errors in theory. To detect all
single qubit errors, one needs to measure all three code stabilizers of one logical qubit. This
requires additional stabilizer measurements and auxiliary qubits. Since the focus of this
work is to show the processing capabilities of LS rather than the error detection capability
of the surface code, we leave this for future investigations. Nevertheless, we can already
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A    Encoding

B   Merging

C   Splitting

Figure 8.3: Example circuit used for lattice surgery. Gate sequence for A encoding the state |0A
L 0B

L〉
and performing B the merging and C the splitting along the Z-type boundary. We employ
decoupling (D in green) and recoupling (R in green) operations to move qubits in or out
of the computational subspace. The local operations are depicted in blue. The multi-qubit
entangling MS-gates are pictured in red. We implement one in-sequence measurement
on the auxiliary qubits right after merging the two logical qubits and one measurement
of all qubits at the end of the sequence.

make use of the measurements we perform to detect whether or not stabilizers have been
correct. For example, if we measure logical qubit A in the Z-basis, we also check stabilizers
S1 = Z1Z2 and S2 = Z3Z4 and therefore, detect any single-qubit X-error on any of the 4

data qubits. Analogously, measuring in the X-basis allows us to detect single-qubit Z-errors
by checking the stabilizer S3 = X1X2X3X4. If we measure in the Y-basis we check the
stabilizer S2 = Z3Z4 and detect any single-qubit X-error on data qubits 3 and 4, but ignore
errors on qubit 1 and 2. In general, we are not able to detect any 2-qubit or multi-qubit
errors. Discarding the measurements with erroneous stabilizer values introduces a reduced
survival probability, but increases the fidelities significantly compared to the raw fidelities
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without post selection, as can be observed in all logical stabilizers plots throughout this
chapter.
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Encoded Merged Split

Figure 8.4: Experimental Z-type surface code lattice surgery. Experimental results and schematics
for LS between Z-type boundaries. Error detected and post-selected measurements are
presented in light colored bars. A Encoded. a, Two surface codes defined on 2× 2 lattices
with b, average code stabilizer values of 〈|Si|〉 = 0.868(4). c, We observe (raw|post
selected) state fidelities F (|0A

L 〉) = 93.8(4)|99.3(2)% and F (|0B
L〉) = 93.4(5)|99.4(2)%

for the encodings |0A
L 〉, |0B

L〉, respectively. B Merged. a, The stabilizers SM
6 , SM

7 along
the boundaries are measured (dark red) using auxiliary qubits A1,A2. b, We observe
average stabilizer values and c, logical state fidelities of 〈|Si|〉 = 0.669(8) and F (|0M

L 〉) =
86.4(1.0)|97.9(5)%, respectively. C Split. a, One boundary stabilizer SA

2 of the original
code is measured (green) reusing auxiliary qubit A1 and the associated syndrome is
observed. In this way, we recover the original codes with b, average stabilizer values of
〈|Si|〉 = 0.603(3) which are now in a logical Bell state |φ+

L 〉 with c, fidelity F (|φ+
L 〉) =

58.0(1.6)|75.3(1.6)%.

For the encoded states |0A
L 〉 and |0B

L〉 we infer fidelities of F (|0A
L 〉) = 93.8(4)|99.3(2)%

and F (|0B
L〉) = 93.4(5)|99.4(2)%, where the first value describes the raw fidelity, while

the second represents the observed fidelity after post-selection and we use this format
throughout this chapter to present fidelities of both uncorrected and post-selected data.

We now outline the Z-type LS procedure in detail and show how to utilize the protocol to
perform a logical joint measurement M±XX = (I± XA

L XB
L)/
√

2. The procedure is illustrated
again in fig. 8.4 B, a and C, a for the two introduced 2× 2 surface codes SA and SB. We first
merge the two separate codes SA,SB into a new stabilizer code SM by measuring merging
stabilizers SM

6 = X3X5 and SM
7 = X4X6 between the boundaries. These stabilizers commute

with all stabilizers of the original codes except SA
2 and SB

1 , and are chosen such that their
joint measurement corresponds to the joint logical measurement MXX, i.e., SM

6 SM
7 = XA

L XB
L .
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As a result, we obtain the new code by discarding all stabilizers that anti-commute with the
merging stabilizers, depicted in fig. 8.4 B, a,

SM = 〈SM
1 , SM

2 , SM
3 , SM

4 , SM
5 , SM

6 , SM
7 〉

= 〈SA
1 , SA

3 , SB
2 , SB

3 , SA
2 SB

1 ,+X3X5,+X4X6〉. (8.7)

Note that this code already encodes the desired joint logical eigenstate since XA
L XB

L is
included as a stabilizer in the merged code SM. In fact, the measurement outcomes m, m′ ∈
{0, 1} of SM

6 , SM
7 , respectively, are random such that m1 = m + m′ specifies the eigenvalue

associated with XA
L XB

L as (−1)m1 . The merged code is an asymmetric 2× 4 surface code
encoding a single logical qubit, where the logical operators are defined as

LM = 〈i, ZM
L , XM

L 〉/SM = 〈i, ZA
L ZB

L , XA
L 〉/SM, (8.8)

and YM
L = YA

L ZB
L .

With the Z-type merge we effectively merged the logical Z-operators and performed the
desired logical joint measurement M±XX. Its expectation value ±1 is given by the product of
expectation values of merging stabilizers SM

6 , SM
7 .

Performing the measurement of the SM
6 = X3X5 and SM

7 = X4X6 stabilizers requires
Quantum-Non-Demolition (QND) measurements implemented by series of local and en-
tangling gates, as described in section 7.2.1. Considering two merging stabilizers mapped
onto auxiliary qubits A1 and A2, we have the possibility to detect one of four possible
outcomes (m, m′) = (0, 0), (0, 1), (1, 0), (1, 1). In the Supplementary Information, we present
data for all possible outcomes for the chosen input state. For experimental simplicity the
following results are for the case (m, m′) = (0, 0). The merged surface code, as defined
in eq. (8.7), is illustrated in fig. 8.4 B, b. The data confirms the merged stabilizers with
an average stabilizer expectation value of 〈|Si|〉 = 0.669(8). Starting from the state |0A

L 0B
L〉,

the merged logical state is a +1 eigenstate of the logical ZM
L = ZA

L ZB
L operator, as can be

seen in fig. 8.4 B, c. The data reveals a state fidelity of F (|0M
L 〉) = 86.4(1.0)|97.9(5)% after

merging.
Now, we must recover the two initial logical qubits while keeping the previously obtained

expectation value of XA
L XB

L . To this end, we split the merged code by measuring Z-stabilizers
SA

2 or SB
1 along the merged boundaries as depicted in fig. 8.4 C, a. These operators commute

with all stabilizers in SM that define the separated logical qubits SA,SB. In particular, the
measured stabilizers all commute with XA

L , XB
L , i.e., the code remains in an eigenstate of

XA
L XB

L . The stabilizer measurement has random outcomes m′′ ∈ {0, 1}, where a corretion
operation in case of m′′ = 1 needs to be implemented.

We perform the spliting by mapping SA
2 onto auxiliary qubit A1 for the case m′′ = 0.

Thereby we restore the initial code space with an average stabilizer expectation value
of 〈|Si|〉 = 0.603(3), shown in fig. 8.4 C, b. The resulting projective measurement (I +

XA
L XB

L)/
√

2 maps the initial product state |0A
L 0B

L〉 onto a maximally entangled, logical
Bell state |φ+

L 〉 =
1√
2

(
|0A

L 0B
L〉+ |1A

L 1B
L〉
)
. In order to deduce the fidelity of the generated

state with respect to the logical Bell state, we measure the common logical stabilizers
〈ZA

L ZB
L , XA

L XB
L ,−YA

L YB
L 〉 obtaining the fidelity accrding to eq. (8.2). In fig. 8.4 C, c, we present

the results for the Bell state generation. From the common stabilizer measurements, we
infer a logical Bell state fidelity of F (|φ+

L 〉) = 58.0(1.6)|75.3(1.6)%, where the raw fidelity
exceeds the separability limit of 50 % [191] by 5 sigma.

X-type LS implements the joint measurement M+
ZZ ∝ I + ZA

L ZB
L and differs from Z-type

LS only in so far that both codes are considered to be rotated by 90 degrees before LS.
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Equivalently, one can understand X-type lattices surgery as merging and splitting along
the upper/lower instead of the left/right boundaries, as illustrated in fig. 8.5 a. In the case
of two 2× 2 surface codes, measuring the merging stabilizer SM

7 = Z2Z4Z5Z7, we obtain a
4× 2 asymmetric surface code

S̄M = 〈S̄M
1 , S̄M

2 , S̄M
3 , S̄M

4 , S̄M
5 , S̄M

6 , S̄M
7 〉

= SA × SB × 〈+Z2Z4Z5Z7〉. (8.9)

which can be split by discarding the merging stabilizer. It is worth noting that the merging
operation already concludes the LS since the merging stabilizer is in fact ZA

L ⊗ ZB
L . This is

an artifact of reducing the general LS procedure for a larger surface code to a distance d = 2
surface code. Nevertheless, the general procedure requires the measurement of X-stabilizers
along the boundary which is why we still include here. The results for the X-type LS are
presented in fig. 8.5 and we report a Bell state fidelity of F (|φ+

L 〉) = 63.9(2.8)|78.0(2.7)%.
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Figure 8.5: Experimental X-type surface code lattice surgery. Experimental results and schematics
for LS between X-type boundaries. Error detected and post-selected measurements are
presented in light colored bars. A Encoded. a, Two surface codes defined on 2× 2 lattices
with b, average code stabilizer values of 〈|Si|〉 = 0.813(4). c, We observe (raw|post
selected) state fidelities F (|+A

L 〉) = 93.3(5)|98.7(2)% for logical qubit A and F (|+B
L〉) =

92.4(5)|97.9(3)% for logical qubit B. B Merged. a, The stabilizer SM
7 along the boundaries

are measured (green) using auxiliary qubit A1. b, We observe average stabilizer values
and c, logical state fidelities of 〈|Si|〉 = 0.719(5) and F (|+M

L 〉) = 76.2(8)|93.1(6)%,
respectively. C Split. a, We measure the stabilizer S̄M

6 by using auxiliary qubit A2 as
syndrome qubit to perform the splitting and obtain b, average stabilizer values of
〈|Si|〉 = 0.763(5). c, The fidelity of the generated state to the logical Bell state is F (|ψ+

L 〉) =
63.9(2.8)|78.0(2.7)%.
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8.3 quantum state teleporation between logical qubits

We demonstrate quantum state teleportation for the input states |0A
L 0B

L〉, |1A
L 0B

L〉, and |+A
L 0B

L〉.
After performing Z-type LS (i.e., encoding, merging, splitting), we measure logical qubit A in
the Z-basis and apply a logical XL gate on qubit B if qubit A was found in |1A

L 〉 (see fig. 8.6).
Succeeding the teleportation protocol, we measure logical state fidelities for qubit B of
F
(
|0B

L〉
)
= 87(2)|97(1)%, F

(
|1B

L〉
)
= 81(2)|93(2)% and F

(
|+B

L〉
)
= 71(1)|85(2)%, given

the input states |0A
L 0B

L〉, |1A
L 0B

L〉, and |+A
L 0B

L〉, respectively.
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Figure 8.6: Teleportation of quantum information via LS. We prepare the logical qubits A, B in
the states |0A

L 0B
L〉, |1A

L 0B
L〉, and |+A

L 0B
L〉, and use LS to teleport the state from logical

qubit A to logical qubit B. We measure fidelities of the teleported quantum states of
F
(
|0B

L〉
)
= 87(2)|97(1)% F

(
|1B

L〉
)
= 81(2)|93(2)%, and F

(
|+B

L〉
)
= 71(1)|85(2)%.

8.4 additional bell state experiments

As explained in section 8.2, the LS procedure consists of two main parts: first, merging two
logical qubits into a single logical qubit, and second, splitting the logical qubit again into
two logical qubits. In total, this procedure corresponds to the operation (I± XA

L XB
L)/
√

2
(Z-type) or (I± ZA

L ZB
L)/
√

2 (X-type).
In addition to the experiments presented in section 8.2, we also performed LS along the

Z-type boundary for input states |0A
L 0B

L〉, |0A
L 1B

L〉, |1A
L 0B

L〉, and |1A
L 1B

L〉 and along the X-type
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boundary for input states |+A
L +

B
L〉, |+A

L−B
L〉, |−A

L +
B
L〉 and |−A

L−B
L〉. The results are presented

in fig. 8.7 and in table 8.1. We observe that the resulting state fidelity FBell for the initial
state |−A

L +
B
L〉 is significantly lower than for the other input states. We suspect that imperfect

calibration is responsible for the decreased fidelity.
In general the individual code stabilizers Si have different absolute values because some

stabilizers include two physical qubits, whereas others comprise four physical qubits.
Moreover, some physical qubits are involved more frequently in error prone physical gates
than others. Hence we do not expect the stabilizer values to be uniformly distributed and
we use error propagation to calculate the error of the mean stabilizer values 〈|Si|〉.

If we use the error-detecting capabilities of the 2 × 2 surface code, we can discard
measurements where we find a single qubit error. This introduces a survival probabilities
(SP) for each LS procedure, that would be 100 % if there would be no single qubit errors. We
present the measured survival probabilities (SP) also in table 8.1. Since we use multi-qubit
MS-gates to implement LS, we expect to have multi-qubit errors which cannot be detected
and hence reduce the efficiency of the error detection.

As mentioned in section 8.2, we can detect single qubit errors on any qubit in X- and
Z-basis, but only on two qubits in the Y-basis. As can be seen in the data, we indeed detect
less single qubit errors in the Y-basis and thus we get a higher survival probability SPY
compared to SPX and SPZ.

Note, that we expect the multi-qubit MS-gates to introduce multi-qubit errors, which
cannot be detected. This can be seen in section 8.2, where the SPX values are higher for X-
type LS compared to Z-type LS, because the merging procedure for the X-type LS requires
two 5-qubit MS gates, whereas the merging for Z-type LS needs four 3-qubit MS gates.

In summary, using the error detection capabilities of the implemented surface code
increases the fidelities by 28(3)% with Survival Probabilitys (SPs) of 64(4)% on average.
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Figure 8.7: Generation of logical Bell states. Bell state generation with various input states along the
Z-type (left) and the X-type (right) boundary associated with projections (I+ XA

L XB
L)/
√

2
and (I + ZA

L ZB
L)/
√

2, respectively. Detailed information about code stabilizers, fidelities
and survival probabilities is given in table 8.1. These results should be understood in the
same way as fig. 8.4 and fig. 8.5 before and after LS.
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8.5 experimental methods

The experimental circuit to implement the LS procdure is outlined in section 8.2. We recall
that we employ one 4-qubit MS-gate plus a number of local gates to prepare the state |0L〉.
To prepare the state |1L〉 we implement the same number of gates as for the state |0L〉 but on
different qubits. The state |+L〉 is implemented using two 2-qubit MS-gates plus a number
of local gates. Again, to prepare the state |−L〉 we use the same number of gates as for the
state |+L〉 but on different qubits. The total number of gates required to implement the
different experiments is presented in table 8.2.

To get an estimated of the expected fidelities we neglect small multi-qubit gate errors,
assume a single-qubit gate fidelity of 99.7 % and use the known MS-gate fidelities [25]. By
simple multiplication of the fidelities of the individual gates we infer expected Bell state
fidelities of ∼ 63 % (Z-type) and ∼ 57 % (X-type). The measured state fidelities of this work
of 58(2)% (Z-type) and 64(3)% (X-type) reflect the expected fidelities very well. We suspect
that the main reason for the deviation between expected and measured fidelities is the DFS
in which the individual encodings reside, which was not taken into account for the above
considerations.

Table 8.2: Implemented gates for lattice surgery. Number of gates used for the complete LS circuit
(encoding, merging and splitting). We present the number of local 1-qubit gates, local
N-qubit gates and N-qubit MS-gates. Note that the input states |0L〉 , |1L〉 as well as
|+L〉 , |−L〉 require the same amount of physical gates.

Boundary Input 1-qubit N-qubit 2-MS 3-MS 4-MS 5-MS

Z-type |0A
L 0B

L〉 101 52 0 6 2 0

Z-type |+A
L 0B

L〉 116 60 2 6 1 0

X-type |+A
L +

B
L〉 121 60 4 0 0 4

Another experimental detail concerns the in-sequence measurment of the auxiliary qubits.
As mentioned in section 8.2, the presented results only account for the cases where the
auxiliary qubits A1 and A2 reveal a measurement outcome of m, m′ = 0. We limited the
experiments to those outcomes for the following reasons.

When merging the two logical qubits, we map the merging stabilizer information onto
the auxiliary qubits A1 and A2. Subsequently, we decouple all the data qubits from the
computational subspace and perform a projective measurement only on the auxiliary qubits.
The measurement is realized by illuminating the ion string with the 397 nm laser and
collecting the fluorescence light of the ions. Since this is an in-sequence measurement,
which means that we will continue with coherent operations after the measurement, the
measurement procedure should be as short as possible that the qubits are not exposed to
decoherence processes for too long. The fastet way to detect 397 nm light in our experiement
is to use the fast photo-multiplier-tube.

Due to this experimental procedure, the in-sequence measurements come with two
difficulties. First, this measurement reveals information about how many ions are bright,
but not which ones. Second, the ion chain heats up and the qubits partially leave the
computational subspace if the ions scatter 397 nm light. Without an in-sequence cooling and
state preparation technique we cannot do any high-fidelity gate operations after the detection.
Hence, we can only proceed with the algorithm in the case where both auxiliary qubits are
found in the dark state |1〉, where no 397 nm photons are scattered. Therefore, we actually
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only use data where both auxiliary qubits were measured to be m = m′ = 1. If necessary, we
invert the state of the individual auxiliary qubits right before the measurement to investigate
all possible syndrome measurement outcomes (m, m′) = (0, 0), (0, 1), (1, 0), (1, 1). In fig. 8.8
we verify the change in the code stabilizers and logical operators for the different outcome
combinations of m and m′. In our data we observe the expected behaviour, that the stabilizers
SM

6 and SM
7 change sign depending on the measurement outcomes. By splitting the merged

qubit again we implement the operation (I + (−1)m+m′XA
L XB

L)/2 (see fig. 8.8) such that the
Bell state |φ+〉 or |φ−〉 is generated, depending on the outcomes m, m′.

Since we cannot measure all possible syndrome outcomes, the experimental implementa-
tions have a Survival Probability (SP) of lower than 100 %. When merging the logical qubits
along the Z-type boundary we measure two auxiliary qubits, where we only use one of
four possible outcomes. In theory this leaves us with a SP of 25 %. If we merge the qubits
along the X-type boundary we only use one auxiliary qubit and we are left with 50 % of the
data in theory. In practice, we expect this numbers to be lower due to imperfections in the
spectroscopic decoupling of the data qubits from the measurement. While this lowers the
SP, this also increases the fidelity because we detect and discard the measurement if a data
qubit is not in the decoupled subspace. When splitting the logical qubit, we map stabilizer
information onto one auxiliary qubit, which again results in a SP of 50 %. In practice, the
reduction of the SPs can be eliminated by introducing re-cooling and state preparation
techniques into the experimental apparatus.

We measure each sequence in the three logical Pauli bases {X, Y, Z} to get an estimate for
all individual stabilizers and logical operators. All measured SPs are summarized in table 8.3.
In addition, the SP is further reduced if we make use of the error-detection capability of the
implemented surface code, as already described in section 8.2.

Table 8.3: Survival probabilities of stabilizer measurements. We present Survival Probabilities (SP)
for various input states after merging SPM

σ and after splitting SPS
σ, where σ ∈ {X, Y, Z}

denotes the respective logical Pauli measurement basis and 〈SP〉 describes the average
value. For each measurement basis and input state we perform 9000 measurements in total.
The values are given in (%).

Input SPM
Z SPM

X SPM
Y 〈SPM〉 SPS

Z SPS
X SPS

Y 〈SPS〉
|0A

L 0B
L〉 22.5 22.7 21.9 22.4(3) 49.5 47.6 45.7 47.6(19)

|0A
L 1B

L〉 23.5 22.3 22.8 22.8(5) 47.4 49.1 47.9 48.2(9)

|1A
L 0B

L〉 22 22.7 21.6 22.1(4) 47 48.8 47.7 47.9(9)

|1A
L 1B

L〉 21.6 22.2 21 21.6(5) 49.1 46.5 47.6 47.7(13)
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Figure 8.8: Auxiliary qubit outcomes. Measurements for different outcomes m, m′ of the auxiliary
qubits A1, A2 during Z-type merging. Starting in the state |0A

L 0B
L〉, different measurement

outcomes are selected by inverting the state of the auxiliary qubits right before mea-
surement of the merging stabilizers. The data verifies the expected change of stabilizers
SM

6 and SM
7 in the merged state and the different resulting Bell states depending on

implemented interaction (I + (−1)m+m′XA
L XB

L)/
√

2.





9
S U M M A RY A N D O U T L O O K

Alea iacta est. (The die has been cast.)

— Gaius Iulius Caesar

In this thesis, two major milestones towards scalable quantum computation are presented.
The first milestone is the experimental implementation of the rigorous characterization of a
large-scale quantum computer via Cycle Benchmarking (CB), outlined in chapters 5 and 6.
The second milestone focuses on the first demonstration of entangling logical qubits with
Lattice Surgery (LS), presented in chapters 7 and 8.

The CB protocol is a robust and efficient technique to estimate the fidelity of multi-qubit
quantum processes. The fidelity corresponds to the effective error rate under Randomized
Compiling (RC). The protocol is robust in the sense, that it gives faithful results in presence
of SPAM and coherent errors. It should be noted that the performance of the same operation
in a circuit without RC can differ significantly from the estimated fidelity of its constituents
due to the addition or cancellation of coherent errors [192]. This is a general issue with
performance metrics for quantum operations [193] and we want to emphasize that RC has
been designed to eliminate these coherent errors. The protocol is efficient, because the total
experimental time and post-processing resources required for our implementation were
approximately independent of the number of qubits, after accounting for the additional
tests performed on specific numbers of qubits. This is achieved because the uncertainty of
the fidelity estimate is independent of the number of qubits N, and the number of Pauli
matrices K that need to be sampled depends only on the desired precision. CB also provides
insight into how noise scales within a fixed architecture. In our ion trap, the fidelity of local
gates across the whole register decreased linearly with N, demonstrating that our native
single-qubit gates have an average fidelity of 99.2(1)% and do not deteriorate with the
register size. Thus we have demonstrated a scalable method to validate a major requirement
for fault-tolerant quantum computation. In addition, we performed interleaved CB protocols
to estimate the performance of the multi-qubit entangling MS gate. From the ratio between
the dressed MS and the local CB fidelities we infer entangling gate fidelities ranging from
99.6(1)% to 86(2)% for 2 to 10 qubits. The data from CB also gives estimates of the diagonal
of the Pauli-Liouville representation of the effective noise. A natural open question is how
to use this procedure to reconstruct the underlying noise model, which we leave for future
work.

LS enables entanglement generation between logical qubits and can be complemented
with measurement-based protocols for logical state teleportation and manipulation. In this
thesis, we have demonstrated entanglement generation and teleportation via LS between
two logical qubits, each encoded in a 4-qubit surface code, on a 10-qubit ion trap quantum
information processor. We have implemented both the Z- and X-type variants of LS [44, 59],
a technique that is considered [60, 194] to be key for operating future fault-tolerant quan-
tum computers. For current NISQ-era devices, certification of logical entanglement [195]
generated via LS can provide means for benchmarking. Besides increasing the numbers
of physical and logical qubits, future challenges lie in the implementation of LS between
arbitrary topological codes [59] to exploit different features such as transversal gate imple-
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102 summary and outlook

mentation or high noise tolerance of the respective codes. In this way, LS can function as a
fault-tolerant interface between quantum memories and quantum processors.

For the future, there are still many open and interesting challenges in building a scalable
quantum computer. Essentially, it will come down to increasing the fidelity of the quantum
processes and connecting more and more qubits. Along the way, we need to find the most
suitable atomic species to combine with the best available toolbox. A good combination
must provide the fastest and most error-free state preparation, state detection, and qubit
manipulation techniques. To increase the number of qubits, new trap architectures are
needed that enable advanced ion arrangements and techniques such as ion shuttling or
ion position reconfiguration. Features integrated into the trap, such as optics, microwave
antennas, and photodetection electronics, would enrich the available toolbox. Another
interesting possibility would be to use a larger Hilbert space by using more than two
quantum states. Together with improvements in quantum error correction protocols and
algorithmic advances, future quantum computers could outperform classical computers in
the evaluation of complex problems.



A
T H E Z E E M A N E F F E C T

The magnetic moment ~µj = ~µl + ~µs of an electron in an atom is the sum of the orbital
angular momentum ~µl and the spin angular momentum ~µs of the electron. The anomalous
Zeeman effect [97] describes the coupling of the total angular momentum ~µj to a weak bias
magnetic field ~B. The perturbed part of the Hamiltonian can be described as HM = −~µj · ~B,
which means that the interaction changes the electronic energy depending on the projection
of the magnetic moment onto the direction of the magnetic field. If we assume that the
magnetic field is aligned in the z direction with strength |~B| = B, then the time average of
the magnetic moment projection along z is 〈µj〉z = −mjgjµB and the frequency shift of an
electronic state is defined as [97]

∆ν = mjgj
µB

h
B, (A.1)

where mj is the z-projection of the total angular momentum, gj describes the Landé factor, µB

is the Bohr magneton and h is the Planck constant. Note the value of µB/h ≈ 1.3996 MHz/G.
In eq. (A.1) we can see that the degeneracy of the fine structure levels is lifted when a bias
magnetic field is applied.

The frequency shift of a given transition can be calculated by the difference of the shifts
of the involved states |ψ〉 and |ψ′〉 as

∆ν(|ψ〉 ↔ |ψ′〉) = µB

h
B
(
mJ gJ −m′J g

′
J
)
=

µ

h
B, (A.2)

where µ describes the sensitivity of the respective transition. Values for transitions typically
used in the experiment are given in table B.4. Using eq. (A.2) and measuring two transition
frequencies ν(1) = ν0 + ∆ν(1) and ν(2) = ν0 + ∆ν(2) we can estimate the magnitude of the
magnetic field as

B =
h(ν(1) − ν(2))

µ(1) − µ(2)
=

h(∆ν(1) − ∆ν(2))

µ(1) − µ(2)
. (A.3)
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B
P R O P E RT I E S O F C A L C I U M I I

In table B.1 some important transition properties for ion trapping experiments with 40Ca+

are presented. Properties of the lowest energy state are shown in table B.2 and in table B.3.
In table B.4 the Zeeman shift of various transitions in 40Ca+ are listed.

Table B.1: Optical transitions in 40Ca+ and 40Ca. Presented are observed wavelengths in air and
transition branching ratios. AOM frequency shift describes the difference frequency
between the light measured at the wavelength meter and the light sent to the ion.

Transition Wavelength (nm) Branching ratio (%) Shift (MHz)

40Ca+

42S1/2 ↔ 42P3/2 393.366 [196] 93.47(3) [197] ...

42S1/2 ↔ 42P1/2 396.847 [196] 93.565(7) [198] 0/ + 200

42S1/2 ↔ 32D5/2 729.147
1 [196] +620

42S1/2 ↔ 32D3/2 732.389 [196]

32D3/2 ↔ 42P3/2 849.802 [196] 0.661(4) [197]

32D5/2 ↔ 42P3/2 854.209 [196] 5.87(2) [197] +400

32D3/2 ↔ 42P1/2 866.214 [196] 6.435(7) [198] +400

40Ca
4s1S0 ↔ 4p1P1 422.673 [200]

4p1P1 ↔ cont. ∼ 375

Table B.2: Lifetimes in 40Ca+ . Lifetimes and resulting linewidths of the five lowest lying quantum
states in 40Ca+ .

State Lifetime (s) Linewidth (Hz)

42P3/2 6.92(2) · 10−9 [201] 23 · 106

42P1/2 7.10(2) · 10−9 [201] 22.4 · 106

32D3/2 1.20(1) [202] 0.133

32D5/2 1.168(7) [202] 0.136

42S1/2 − −

1A precisely measured value of the 42S1/2 ↔ 32D5/2 transition frequency in 40Ca+ is ν =
411 042 129 776 393.2(1.0)Hz [199]
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Table B.3: g-factors in 40Ca+ . gj-factors and the result Zeeman shift of the five lowest lying quantum
states in 40Ca+ .

State gj-factor ∆νZeeman (MHz/G)

42P3/2 ∼ 4/3 ∼ 1.87

42P1/2 ∼ 2/3 ∼ 0.93

32D3/2 ∼ 4/5 ∼ 1.12

32D5/2 1.2003340(2) [199] ∼ 1.68

42S1/2 2.00225664(9) [203] ∼ 2.80

Table B.4: Magnetic field shifts in 40Ca+ . First order Zeeman shift of the |S1/2, mj〉 =̂ |mS〉 to
|D5/2, mj〉 =̂ |mD〉 transitions.

Transition Zeeman shift (MHz/G)

|mS = −1/2〉 ↔ |mD = −5/2〉 −2.80

|mS = −1/2〉 ↔ |mD = −3/2〉 −1.12

|mS = −1/2〉 ↔ |mD = −1/2〉 +0.56

|mS = −1/2〉 ↔ |mD = +1/2〉 +2.24

|mS = −1/2〉 ↔ |mD = +3/2〉 +3.92

|mS = +1/2〉 ↔ |mD = −3/2〉 −3.92

|mS = +1/2〉 ↔ |mD = −1/2〉 −2.24

|mS = +1/2〉 ↔ |mD = +1/2〉 −0.56

|mS = +1/2〉 ↔ |mD = +3/2〉 +1.12

|mS = +1/2〉 ↔ |mD = +5/2〉 +2.80

|mS = −1/2〉 ↔ |mS = +1/2〉 +2.80

|mD = −1/2〉 ↔ |mD = +1/2〉 +1.68

|mD = −5/2〉 ↔ |mD = +5/2〉 +8.40



C
L A S E R N O I S E I N D U C E D B Y T H E WAT E R C O O L E R

Mechanical vibrations affecting the Ti:Sa laser can induce frequency fluctuations. As dis-
cussed in section 4.2.2, the water cooling system used to temperature stabilize the Ti:Sa
crystal induces vibrations. To suppress this acoustic noise we replace the former water
cooler1 with a new water cooling system2. Since the PDH error signal reflects the noise that
the servo loop has to compensate, we can use the error signal to measure the frequency
noise induced by the water cooling system. In fig. C.1 we analyze the frequency spectrum
of the PDH error signal for different water cooling settings. In fig. C.1 a) a comparison
between the former (ThermoTek) and the current (SMC) cooling system is illustrated. As
can be seen the error signal with the current cooling system is considerably lower in the
frequency range up to 10 kHz. In fig. C.1 b) measurements of the error signal with different
water flows in the current cooling system (SMC) are presented. With the reduced water flow
of 0.43 l/min compared to a flow of 1.5 l/min almost all noise induced by the water cooling
system can be removed.
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Figure C.1: 729 nm laser error signal spectrum. Frequency spectrum of PDH error signal of the
729 nm laser stabilized to the HFC cavity. a) Comparison between the former (Ther-
moTek), the current (SMC) and the cooling system being switched off (Chiller off). b)
Comparison between two water flows of 1.5 l/min and 0.43 l/min in the current (SMC)
cooling system.

1ThermoTek T255P-3CR
2SMC HECR002-A5
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D
H I G H F I N E S S E C AV I T Y D E TA I L S

As discussed in section 4.2.2 the 729 nm laser is stabilized to a high finesse cavity (HFC).
Since the distance of the cavity mirrors defines the frequency reference for the laser, it is
important that the optical length of the cavity changes as little as possible. Therefore the
spacer between the cavity mirrors is made from ultra low expansion (ULE1) material, which
has a zero coefficient of thermal expansion (CTE) to first order at a certain temperature [123].
We characterize the temperature dependence of the HFC by changing the cavity temperature
and observing the frequency difference between the ion and the laser locked to the HFC, as
depicted in fig. D.1. The temperature is measured from a NTC 10 kΩ thermistor2 inside the
heat shield and stabilized with a SRS PTC10 controller driving peltier elements inside the
vacuum chamber. We assume a quadratic temperature dependence of the cavity length and
estimate the zero expansion temperature T0 = 8.38(3) ◦C.
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Figure D.1: HFC temperature dependence. The frequency difference between the laser locked to
cavity and the ion was measured via Ramsey spectroscopy over the course of about
one month relative to the cavity temperature. From a quadratic fit f = A + B(T − T0)

2

we estimate the zero expansion temperature T0 = 8.38(3) ◦C. Since the thermalization
time of the ULE spacer inside the vacuum chamber is several days, and the frequency
measurements were done at different waiting periods after changing the temperature,
the error bars are omitted.

1Corning, ULE, titania silicate glass
2Steinhart-Hart coefficients: A=2.108508173e-3, B=0.7979204727e-4, C=6.535076315e-7 calculated at

https://www.thinksrs.com/downloads/programs/therm%20calc/ntccalibrator/ntccalculator.html
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Since the mirrors and the ULE spacer relax and age inside the vacuum chamber, the cavity
length changes over time [123]. This drift is extremely slow and we can assume it to be
linear, as can be seen in fig. D.2. Over the course of about half year we measure a linear drift
of 19.426 mHz/s, which corresponds to an increase in the cavity length of 3.66 · 10−18 m/s
or about one classical proton diameter per second. We compensate this drift by setting a
phase continuous sweep on the frequency generator3 driving the two double pass AOMs
before the HFC (see fig. 4.2).
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Figure D.2: HFC drift over time. The center frequency of the pulsed double pass AOM relative to
the |S1/2〉 ↔ |D5/2〉 transition at ~B = 0 G. Data was taken from the 04.01.2020 to the
16.06.2020 and we estimate a linear drift of −19.426 mHz/s.

3Rohde & Schwarz SMB100B increases frequency with 0.1 Hz step size every 2.0512 s.



E
T H E C L I F F O R D G R O U P

In the literature one finds various slightly different notations for the Clifford group, in the
this work we will follow the derivation from Ref. [143]. To construct the Clifford group
we use the N-qubit Pauli matrices which are defined with the single-qubit Pauli operators
P = {I, X, Y, Z} as [143]

PN = {σ1 ⊗ · · · ⊗ σN | σi ∈ P}. (E.1)

In simple terms, an element C of the Clifford group is a unitary operation that maps non-
identity Pauli matrices P∗N = PN\{I⊗N} onto non-identity Pauli matrices via conjugation
as [143]

CN = {C ∈ U(2N) | σ ∈ ±P∗N ⇒ CσC† ∈ ±P∗N}/U(1), (E.2)

up to a multiplication with a global complex phase U(1). Note, that Pauli matrices are also
Clifford matrices since PQP† = ±QPP† = ±Q for all Pauli matrices P, Q.

In the single-qubit case (N = 1) we have ±P∗1 = {±X,±Y,±Z}. Because of the conjuga-
tion rule, the fact that XZ = iY and also that CXC† and CZC† anti-commute, the Clifford
elements are completely determined by the images of X and Z. If we consider that X can be
mapped to any element in ±P∗1 , then Z can be mapped to the elements ±P∗1 \{±CXC†} and
we have |C1| = 6 · 4 distinct Clifford gates C ∈ C1. All the 24 single-qubit Clifford operations
are listed in table E.1.

For the N-qubit case it can be shown, that the number of Clifford gates grows exponen-
tially as [143]

|CN | = 2N2+2N
N

∏
J=1

(4j − 1). (E.3)

Another important point is that the Clifford group can be constructed from a very small
gate set [143]

CN = 〈Hi, Pi, CNOTij〉/U(1), (E.4)

where the Hadamard Hi and the Phase gate Pi act on qubit i, and the CNOTij acts on qubits
i, j. Thus, experimentally it is only necessary to calibrate three different gates to implement
any Clifford operation.
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112 the clifford group

Table E.1: Single-qubit Clifford operations. The 24 single-qubit Clifford unitaries that map a specific
Pauli operation onto another Pauli operation and their decomposition into elementary
rotations as defined in section 3.3.1 [204].

X Y Z Decomposition

+X +Y +Z I

+X −Y −Z X(π)

−X +Y −Z Y(π)

−X −Y +Z Z(π)

+X −Z +Y X(π
2 )

+X +Z −Y X(−π
2 )

−X −Z −Y Z(π)X(π
2 )

−X +Z +Y Z(π)X(−π
2 )

+Z +Y −X Y(π
2 )

−Z +Y +X Y(−π
2 )

+Z −Y +X Z(π)Y(π
2 )

−Z −Y −X Z(π)Y(−π
2 )

−Y +X +Z Z(π
2 )

+Y −X +Z Z(−π
2 )

+Y +X −Z X(π)Z(π
2 )

−Y −X −Z X(π)Z(−π
2 )

−Y −Z +X Z(π
2 )X(π

2 )

+Y −Z −X Z(π
2 )X(−π

2 )

−Y +Z −X Z(−π
2 )X(π

2 )

+Y +Z +X Z(−π
2 )X(−π

2 )

+Z +X +Y Z(π
2 )Y(

π
2 )

−Z +X −Y Z(π
2 )Y(−

π
2 )

+Z −X −Y Z(−π
2 )Y(

π
2 )

−Z −X +Y Z(−π
2 )Y(−

π
2 )



F
C Y C L E B E N C H M A R K I N G S U P P L E M E N T

The content of this chapter is extracted from the supplemental material of Ref. [25]

f.1 mathematical assumptions

In this section, we specify the state preparation and measurement (SPAM) procedures,
obtain expressions for the expected values of steps in the protocol over the set of all Pauli
matrices PN = {I, X, Y, Z}⊗N , and analyze the uncertainties in experimental estimates of
those expected values. We conclude by giving a simple expression for the ideal MS gate
that facilitates the calculation of C(P).

For this appendix only, we abuse notation slightly by implicitly defining the channel
P(A) = PAP† for any Pauli matrix P, so that we can use expressions such as ∑P P .

We begin by specifying the mathematical assumptions we use in our analysis. We assume
that initializing N ions into the ground state corresponds to preparing a mixed state ρ that is
independent of any subsequent control operations to be applied. We assume that measuring
the ions in the computational basis corresponds to performing a fixed positive-operator-
valued measurement (POVM) that depends only upon the number of ions in the trap and not
on any prior control operations. We assume that the noise in our implementations of a cycle
is Markovian on the timescale of the cycle and is independent and identically distributed
each time a cycle is applied. These three assumptions are standard in benchmarking and
tomography literature.

Finally, we also assume that the noise in a cycle of independent single-qubit gates is
independent of the specific single-qubit gates being implemented. Specifically, we assume
that the noisy Markovian implementation C̃ of a cycle C of single-qubit gates can be written
as C̃ = AC for some fixed completely positive and trace-preserving map A. The assumption
of gate-independent noise on the random Pauli gates is weaker than the corresponding
assumption in randomized benchmarking, namely, that the noisy implementation of any
N-qubit Clifford gate CN can be written as C̃N = ACN , independent of the number of
entangling gates required to implement CN . We expect that this assumption can be further
relaxed using the analysis of Ref. [146] at the cost of more cumbersome notation. This will
be subject of future research.

f.2 state preparation and measurement procedures

In our experiment, we can only directly perform noisy preparations and measurements
in the N-qubit computational basis {|z〉 : z ∈ ZN

2 }. We now specify the basis changes and
coarse graining we use to perform other preparations and measurements. For an N-qubit
matrix Q (e.g., P, C(P) from the main text), let BQ rotate the computational basis to an
eigenbasis of Q such that

∑
z∈ZN

2

tr [BQ(|z〉〈z|)Q]BQ(|z〉〈z|) = Q. (F.1)
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For the processes we investigated, C(P) is always an N-qubit Pauli matrix. Therefore, we
only need to prepare eigenstates of Pauli matrices P and measure the expectation value of
Pauli matrices C(P). Consequently, our SPAM procedures are fully specified by defining BQ
for arbitrary Pauli matrices Q. We choose to construct the BQ out of local Clifford operators
to maximize the SPAM coefficients (which results in a smaller statistical uncertainty).
Specifically, let P|j denote the jth tensor factor of a matrix, AI = AZ = I and

AX(Z) = X, AX(X) = Y

AY(Z) = Y, AY(Y) = X.

Then we choose the basis-changing gate for an N-qubit Pauli matrix Q to be

BQ =
N⊗

j=1

AQ|j . (F.2)

Note that the basis changing procedure is independent of the sign of Q.
We now specify the coarse-graining procedure we use to measure the expectation value of

observables. Suppose a system is in a state ρ and let Pr(z|Q) be the probability of observing
the computational basis outcome z after applying the process B†

Q. One measures the expec-
tation value of Q [e.g., Q = C(P)] by applying B†

Q, measuring in the computational basis,
and averaging the probabilities of the outcomes weighted by the coefficients tr [BQ(|z〉〈z|)Q],
where the weights are computed from the ideal quantities. From eq. (F.1) and by the linearity
of the trace,

tr[Qρ] = ∑
z∈ZN

2

tr [BQ(|z〉〈z|)Q]Pr(z|Q). (F.3)

Note that as we average the relative frequencies over all outcomes and tr [BQ(|z〉〈z|)Q] is
in the unit disc, the number of measurements required to estimate the expectation value
of Q to a fixed additive precision is independent of the number of qubits N by a standard
application of, e.g., Hoeffding’s inequality [205].

The above estimation procedure will include several sources of SPAM error per qubit,
including errors in qubit initialization, measuring qubits in the computational basis, and in
the local processes used to change the basis. Consequently, a protocol has to be robust to
SPAM errors to provide a practical characterization of a multi-qubit gate.

f.3 modelling the decay as a function of the sequence length

We now determine the expected value of ∑L
l=1 fP,m,l/L for fixed values of P and m under

the assumptions specified in appendix F.1.

Theorem 1. Let G be a Clifford cycle and G̃ be an implementation of G with Markovian noise.
Suppose there exists a process A such that R̃ = AR for any Pauli process R. Then for a fixed
Pauli matrix P and positive integer m, the expected value of fP,m,l from step 3c of the protocol over
all random Pauli processes R0, . . . , Rm is

〈 fP,m,l〉 = β
m−1

∏
j=0

FG j(P)(E , I),

where E = G†G̃A and β is a scalar that depends only on P and Gm(P). Moreover, β = 1 in the
absence of SPAM errors.
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Proof. Substituting R̃i = ARi into the noisy version of eq. (5.17) (i.e., overset each operator
with a ∼), the average superoperator applied over all sequences for a fixed choice of random
sequences is

C̃ = ARmG̃ . . .AR1G̃AR0. (F.4)

Inserting GG† between the ideal Pauli processes Ri and the adjacent G̃ gives

C̃ = ARmGE . . .R1GER0 (F.5)

where E = G†G̃A. We can now do a standard relabelling of the randomizing gates to obtain
a twirl by setting T0 = R0 and recursively defining

Ri = TiGT †
i−1G† (F.6)

for i > 0. With this relabelling,

C̃ = ATmGT †
m−1ETm−1 . . . T †

1 ET1GT †
0 ET0. (F.7)

The Ti are all Pauli processes because GPG† is a Pauli process for any Pauli process P and
any Clifford process G. Moreover, the Ti are uniformly random because the Pauli processes
are sampled uniformly at random and form a group. Therefore averaging independently
over all T0, . . . , Tm−1 for a fixed choice of Tm results in the effective superoperator

ATm(GẼ)m, (F.8)

where

Ẽ = 4−N ∑
P∈PN

P†EP . (F.9)

Now note that Ẽ is invariant under conjugation by Pauli operators and so Ẽ(Q) ∝ Q for all
Q ∈ PN [206]. As the Pauli matrices form a trace-orthogonal basis for the set of matrices,

Ẽ(Q) = 2−N tr
[

Q†Ẽ(Q)
]

Q

= 4−N ∑
P∈PN

2−N tr
[

QP†EP(Q)
]

Q

= 4−N ∑
P∈PN

2−N tr [P(Q)EP(Q)] Q

= 4−N ∑
P∈PN

2−N tr [QE(Q)] Q

= FQ(E , I)Q, (F.10)

for any Q ∈ PN , where we have used the fact that P(Q) = PQP† = ±Q for any Pauli
matrices P, Q and eq. (5.14) .

For any two Pauli matrices P, Q ∈ PN , let

η(Q, P) =

1 if QP = PQ

−1 otherwise.
(F.11)
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Then, from eq. (F.8) with P′ = Gm(P) for convenience, the expected outcome of the ideal
circuit is C = η(Tm, P)P′. Now note that under measurement errors and noisy changes of
basis [i.e., errors in the Pr(z|Q)] and folding the residual A into the measurement, eq. (F.3)
gives the expectation value of some operator P̃′ (which is not uniquely defined). Since
only the weights in eq. (F.3) depend on the sign of P′ and are calculated from the ideal
expressions, the noisy measurement for −P′ gives the expectation value of −P̃′ by linearity.

Let ρ be the prepared state after applying a noisy change of basis. Then the expectation
value of fP,m,l in step 3c over all sequences is

〈 fP,m,l〉 = 4−N ∑
Tm∈PN

η(Tm, P′) tr
[
T †

m (P̃′)(GẼ)m(ρ)
]

= αP tr
[
P′(GẼ)m(ρ)

]
(F.12)

by Lemma 2 below, where αP = 2−N tr[PP̃′] is 1 in the absence of errors.
Expanding ρ = ∑Q∈PN ρQQ and noting that G is a Clifford cycle, eq. (F.12) reduces to

〈 fP,m,l〉 = ∑
Q∈PN

αPρQ tr
[
P′Gm(Q)

] m−1

∏
j=0

FG j(Q)(E , I). (F.13)

As the Pauli matrices are trace-orthogonal and P′ = Gm(P), tr [Gm(Q)P′] = 2NδQ,P. There-
fore

〈 fP,m,l〉 = 2NαPρP

m−1

∏
j=0

FG j(P)(E , I), (F.14)

where ρP = 2−N in the absence of SPAM errors, so that β = 2NαPρP = 1 in the absence of
SPAM errors.

In the above proof, we make use of the following lemma proven and applied to random-
ized benchmarking in Ref. [207].

Lemma 2. For any matrix M and any Pauli matrix P,

4−N ∑
Q∈PN

η(Q, P)Q(M) = 2−N tr [PM] P.

Proof. As the Pauli matrices form an orthogonal basis for the space of matrices, we can write

M = ∑
R∈P⊗N

mRR, (F.15)

where mR = 2−N tr(RM). As Q(R) = η(Q, R)R for any Pauli matrix R,

4−N ∑
Q∈PN

η(Q, P)Q(M) = ∑
R∈P⊗N

mR(ηP · ηR)R (F.16)

by linearity, where

ηP · ηR = 4−N ∑
Q∈PN

η(Q, R)η(P, R). (F.17)

As η(Q, P) is a real 1-dimensional representation of the Pauli group for any fixed Pauli
matrix P and η(Q, P) and η(Q, R) are inequivalent as representations for P 6= R,

4−N ∑
Q

η(P(m), Q)η(P, Q) = δ(P, R) (F.18)

by Schur’s orthogonality relations.
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f.4 estimating the process fidelity

We now prove that the expectation value of eq. (5.19) provides an accurate, yet conservative,
estimate of the process fidelity in eq. (5.16) under the same assumptions as in eq. (5.14) .

Theorem 3. Let

F̂ = 4−N ∑
P∈PN

( 〈 fP,m2,l〉
〈 fP,m1,l〉

) 1
m2−m1

be the expected outcome of the cycle benchmarking protocol over all randomizations. Let G be a
Clifford cycle and G̃ be an implementation of G with Markovian noise. Suppose there exists a process
A such that R̃ = AR for any Pauli process R. Then F̂ ≤ FRC(G̃,G) and

F̂− FRC(G̃,G) = O
(
[1− FRC(G̃,G)]2

)
.

Proof. First, recall that the process fidelity is linear and for any unitary process U ,

F(G̃,U ) = F(U †G̃, I).

Therefore from eq. (5.16) ,

FRC(G̃,G) = 4−N ∑
R∈PN

F(G̃R̃,GR)

= 4−N ∑
R∈PN

F(RG†G̃AR, I)

= F(Ẽ , I).

Moreover, F(E , I) = F(Ẽ , I) by eq. (5.13) and eq. (F.10), and so we will prove statements for
F(E , I).

Now fix a Pauli matrix P and note that if m1 and m2 = m1 + δm are chosen so that
P′ = Gm2(P) = Gm1(P) (guaranteed by step 2 of the protocol), then( 〈 fP,m2,l〉

〈 fP,m1,l〉

)1/δm

=
δm−1

∏
j=0

FG j(P′)(E , I)1/δm (F.19)

by Theorem 1, as the scalar is the same for m1 and m2. That is, the terms being averaged
over in eq. (5.19) are themselves geometric means of FQ(Ẽ , Ĩ) for different Pauli matrices Q
obtained by applying G to the sampled P. Formally, let w(Q|P′, δm) be the relative frequency
of Q in the list (G j(P′) : j = 0, . . . , δm− 1). Then( 〈 fP,m2,l〉

〈 fP,m1,l〉

)1/δm

= ∏
Q∈PN

FQ(E , I)ω(Q|Gm1 (P),δm) (F.20)

By the inequality of the weighted arithmetic and geometric means,( 〈 fP,m2,l〉
〈 fP,m1,l〉

)1/δm

≤ ∑
Q∈PN

w(Q|P, δm)FQ(E , I). (F.21)
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As G is a Clifford matrix, ∑P∈PN ω(Q|P, δm) = 1 for all Pauli matrices Q. Therefore summing
eq. (F.21) over all input Pauli matrices P gives F̂ ≤ F(E , I). To prove the approximate
statement, let rQ = 1− FQ(E , I). Expanding eq. (F.20) to second order in the rQ gives( 〈 fP,m2,l〉

〈 fP,m1,l〉

)1/δm

= 1− ∑
Q∈PN

ω(Q|P, δm)rQ +O(r2
Q).

The approximate claim then holds as O(r2
Q) = O([1− F(E , I)]2) by Lemma 4 below.

Lemma 4. For any completely positive and trace-preserving map E and any Pauli matrix P,

0 ≤ 1− FP(E , I) ≤ 2− 2F(E , I).

Proof. Note that eq. (F.10) holds for any completely positive and trace preserving map E
with Ẽ as defined in eq. (F.9). In particular, FP(Ẽ , I) = FP(E , I) for all P ∈ PN and so
F(Ẽ , I) = F(E , I) by eq. (5.13) . As Ẽ is covariant under Pauli channels, there exists a
probability distribution p(Q) over the set of Pauli matrices such that [206].

Ẽ(A) = ∑
Q

p(Q)QAQ†. (F.22)

For any Kraus operator decomposition, the process fidelity can be written as [20]

F(Ẽ , I) = ∑
Q

p(Q)| tr Q|2/4N = p(I). (F.23)

Substituting eq. (F.22) into eq. (5.14) and using [P, I] = 0, p(Q) ≥ 0, and eq. (F.23) gives

FP(Ẽ , I) = ∑
Q:[Q,P]=0

2p(Q)− 1

≥ 2p(I)− 1 = 2F(Ẽ , I)− 1. (F.24)

The lower bound follows as the FP(Ẽ , I) are eigenvalues of Ẽ and hence are in the unit
disc [208].

f.5 finite sampling effects

We now consider the effect of finite samples. Specifically, we will show that with appropriate
choices of sequence lengths, the uncertainty in the estimate F̂ obtained via eq. (5.13) will
scale as O([1− F]/

√
K) where the implicit constants are independent of the number of

qubits. We will also show that if the experimental parameters are chosen appropriately,
the implicit constant should be at most 1, that is, σ ≤ (1− F)/

√
K. All the “approximately

normal” statements in this section can be replaced by rigorous statements using the results
of [209], Hoeffding’s inequality [205] and the union bound, at the expense of additional
notation and less favorable (but pessimistic) constants.

First, note that estimating the expectation value of the sequence labelled by l with a finite
number of measurements R will produce an estimate of each expectation value 〈 fP,m,l〉
with an error εP,m,l that is approximately normally distributed with the standard deviation
σP,m,l ∝ 1/

√
R independent of the number of qubits by the central limit theorem. Averaging

the estimated expectation values 〈 fP,m,l〉 over a finite number L of random sequences will
give an estimate of 〈 fP,m,l〉 with an error εP,m that is approximately normally distributed
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with standard deviation σP,m ∝ 1/
√

L that is independent of the number of qubits, again by
the central limit theorem. Formally, the error in 〈 fP,m,l〉 can be divided into the average of a
number of normally distributed random variables (the errors on the individual estimates),
which contributes O(1/

√
LR) to σP,m, and the error from sampling a finite number of

random sequences, which contributes O(1/
√

L) to σP,m. Hence, the error will be dominated
by the finite number of random sequences. Using a series expansion of the ratio

F̂P :=
( 〈 fP,m2,l〉+ εP,m2

〈 fP,m1,l〉+ εP,m1

)1/δm

,

the estimated process fidelity obtained by averaging F̂P over K Pauli matrices will satisfy

F̂ =
1
K ∑

P
F̂P

≈∑
P

FP

K
+ ∑

P

δεP

Kδm
, (F.25)

where we define δεP = εP,m2 − εP,m1 . Note that δεP is a difference between two approximately
normal random variables with standard deviation O(1/

√
L) (neglecting the subleading

term O[1/
√

LR]) and so V(δεP) = O(1/L). Assuming that the δεP and FP are independent,
the expected variance of the estimate F̂ over K Pauli matrices sampled uniformly with
replacement is

V2(F̂) ≈ K V2
P

(
FP

K

)
+ K V2

(
δεP

Kδm

)
≈ V2

P(FP)

K
+

V2 (δεP)

Kδm2 . (F.26)

We now show that both terms in eq. (F.26) can be made to scale as (1− F)2/K by choosing
parameters appropriately. The first term satisfies

V2(F̂P) ≤ [1− F(E , I)]2 (F.27)

since for any Pauli matrix P,

|F(E , I)− FP(E , I)| ≤ max
Q∈PN

|F(E , I)− FP(E , I)|

≤ 1− F(E , I) (F.28)

by Lemma 4. Furthermore, if the δm are chosen to be proportional to 1/(1 − F), then
the variance of F̂ is proportional to (1− F)2, so that we can efficiently estimate 1− F to
multiplicative precision. The values of m in table 6.1 approximately satisfy this condition.
With such choices of δm, we then have V2(F̂) = O[(1− F)2/K]. Furthermore, if L and R are
sufficiently large so that V2(δεP) is negligible, than the variance of the estimator will satisfy

V2(F̂) ≤ (1− F)2/K =: σ2
Pauli. (F.29)

It can be seen in fig. 6.4 that the standard deviation decreases with the square-root of the
sampled subspaces K, with a least squares fit giving σ = 0.0127(2)/

√
K. This is consistent

with the above analysis, which was based on the assumption that the δεP and FP are
independent. If we assume quantum projection noise (

√
p(1− p)/R) to be the only error
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source in the experiments, where p is the probability of measuring a certain outcome and R
is the number of times a sequence is repeated, we can calculate a lower bound σlower for the
measured data. This lower bound could be reached if the noise in the noise in the system is
completely isotropic (e.g. global depolarizing). Biased noise or drift (see fig. 6.3) will lead to
uncertainties bigger than those originating from quantum projection noise.

The observed standard deviation σ is larger than the lower bound given by quan-
tum projection noise σlower = 0.00375(1)/

√
K but smaller than the upper bound σPauli =

0.0275(8)/
√

K on the contribution from sampling a finite number of Pauli matrices. This
suggests that the other source of statistical uncertainty, namely, a finite number of random-
izations L and measurements per sequence R, is sufficiently small to allow us to accurately
estimate the process fidelity.

f.6 correction operators for the ms gate

We performed cycle benchmarking for the identity and MS gates. The MS gate satisfies
MS4 = I, so that we can restrict m to be an integral multiple of 4. Indeed, MS2 ∝ X⊗N so that
we could restrict m to be even numbers by keeping track of the sign (which would depend
on the Pauli matrix P). To compute the expectation value of C(P), we need to know how an
arbitrary Pauli operator Q propagates through the MS gate. Using MS ∝ (I − iX⊗N)/

√
2

for even N gives

MS(Q) = MSQMS†

=

Q if QX⊗N = X⊗NQ

iQX⊗NMS otherwise.
(F.30)
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