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Abstract

The recent progress that has been made in quantum information science, with regards to
moving towards realising quantum computers and simulators which can provide an advan-
tage over classical computers and simulators, is without question remarkable. This thesis
reports on several experiments and improvements/extensions to a pre-existing quantum
simulation experiment in order to help further move towards the end goal of achieving
such a ‘quantum advantage’. This thesis is based on the use of a pre-existing, trapped ion
experiment which uses an optical transition in singly ionised calcium-40, 40Ca+, to encode
a qubit and implement coherent quantum interactions.

Three experiments which are detailed in this thesis use randomised measurements in order
to characterise such quantum dynamics. The experiments involve (i) determining the
presence of bipartite entanglement in the system (on 10 ion partitions of strings of up
to 20 ions) (ii) looking at the spread of quantum information in chains of 10 ions (iii)
performing a proof-of-principle verification experiment on chains of 10 ions between two,
ideally identical, states prepared sequentially on the experimental platform. The ability
to perform such characterisation measurements is becoming of increasing importance as
quantum simulators and computers move into regimes which are too computationally
intensive to be classically simulated.

The final section of the thesis describes the implementation and characterisation of a new
extension to the existing setup – the Raman setup. This new extension allows quantum
information to be encoded in the ground states of 40Ca+, leading to significant increases in
both the coherence time of the system as well as the speed of the entangling interactions
which are generated.

The thesis concludes with a brief summary and discussion of the major avenues of future
work which can be undertaken in the near future.



Kurzfassung

Der Fortschritt, der in den letzten Jahren im Gebiet der Quanteninformationsforschung
im Bezug auf die Realisierung von Quantencomputern und -simulatoren, welche einen
Vorteil gegen¥uber klassischen Computern und Simulatoren haben, gemacht wurde, ist
ausser Frage betr¥achtlich. Diese Arbeit umfasst neue Experimente sowie Fortschritte und
Erweiterungen von schon existierenden Experimenten zur Quantensimulation mit dem
Ziel dem ‘Quanten-Vorteil’ n¥aher zu kommen. Diese Arbeit basiert auf einem schon ex-
isiterendem Experiment mit Ionenfallen, welches einen optischen ¥Ubergang in einfach
ionisierten Kalzium-40 (40Ca+) benutzt, um ein Quantenbit zu kodieren und um koh¥arente
Wechselwirkungen zu erzeugen.

Drei der in dieser Arbeit beschriebenen Experimente machen Gebrauch von randomisierten
Messungen, um die Dynamik solcher Quantensysteme zu charakterisieren. Diese Experi-
mente umfassen: (i) Die Best¥atigung bipartiter Verschränkung in einem System (zwischen
10 Ionen die Teil einer Kette von 20 Ionen sind). (ii) Die Betrachtung der Verteilung
von Quanteninformation in Ketten von 10 Ionen. (iii) Die Durchf¥uhrung eines Proof-
of-Principle Experiments zur Verifikation mit Ketten von 10 Ionen zwischen zwei, ide-
alerweise identischen, Zust¥anden, welche sequenziell präpariert werden. Die F¥ahigkeit
solche Experimente durchf¥uhren zu k¥onnen wird je l¥anger je wichtiger da Quantensimu-
latoren und Quantencomputer sich Bereichen n¥ahern, in welchen klassische Simulationen
zu rechenintensiv sind.

Der letzte Abschnitt der Arbeit befasst sich mit der Implementierung und Charakterisation
von neuen Erweiterungen zu einem existierenden Aufbau - dem Raman Aufbau. Diese
Erweiterung erm¥oglicht die Kodierung von Quanteninformation in Grundzust¥anden von
40Ca+. Dies erm¥oglicht eine signifikante Steigerung der Koh¥arenzzeit des Systems und der
Geschwindigkeit mit der Verschr¥ankung generiert wird.

Dieses Werk endet mit einer kurzen Zusammenfassung und Diskussion der wichtigen
Forschungsrichtungen auf diesem Gebiet, welche in naher Zukunft erschlossen werden
k¥onnen.



Contents

1 Introduction 1

2 Background Theory 5

2.1 Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Quantum Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Quantum Correlations, Entanglement, & Noise . . . . . . . . . . . 9

2.2 Trapped Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Paul Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Quantum Harmonic Oscillators and Coherent States of Motion . . 17

2.2.3 40Ca+ as a qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Laser-Ion Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Interaction of a Two-Level Atom with a Laser Field . . . . . . . . . 22

2.3.2 Interaction of a Trapped Atom in a Laser Field . . . . . . . . . . . 26

2.4 Stimulated Raman Transitions for an Ideal Atom . . . . . . . . . . . . . . . 30

2.4.1 Co-propagating Raman Fields . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Counter-propagating Beams . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Entangling Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Bichromatic Light Field and Single-Ion Motional Cat States . . . . 35

2.5.2 The Mølmer-Sørensen Interaction . . . . . . . . . . . . . . . . . . . 38

2.5.3 E�ective Transverse-Field Ising Hamiltonian . . . . . . . . . . . . . 41

2.5.4 Tunable-Range Interactions and the Spin-Spin Coupling Matrix . . 42

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



vi CONTENTS

3 Experimental Setup & Characterisations 45

3.1 Overview of the Existing Setup . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Trap, Vacuum Vessel, and Major Laser Systems . . . . . . . . . . . 45

3.1.2 Major 729 nm Beam Paths: Radial Beam and Single-Ion
Addressing Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Raman Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Generation of 788 nm Light from the SolsTiS Cavity . . . . . . . . . 49

3.2.2 Generation of 394 nm Light . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Raman Optical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Copropagating Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Counterpropagating Fields . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Installation of Permanent Magnets . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Design & Implementation . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Coherence Time Measurements . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Long-term Magnetic Field Stability . . . . . . . . . . . . . . . . . . 66

3.4.4 Additional Coils for Linear Gradient Compensation . . . . . . . . . 67

4 Gate Set Tomography & Beam Path Characterisations 69

4.1 Single-Qubit Characterisation Protocols . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Quantum State Tomography . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Quantum Process Tomography . . . . . . . . . . . . . . . . . . . . . 71

4.1.3 Randomised Benchmarking . . . . . . . . . . . . . . . . . . . . . . 73

4.1.4 Gate Set Tomography Protocol . . . . . . . . . . . . . . . . . . . . . 74

4.1.5 Experimental Implementation for 729 nm Qubit Rotations . . . . . 78

4.1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Characterisation of Beam Drifts using GST . . . . . . . . . . . . . . . . . . 85

4.2.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Characterisation of the 729 nm Beam Path Stability . . . . . . . . . . . . . 89

5 Theoretical Consideration of Randomised Measurements 93

5.1 Statistical Correlations between Randomised Measurements . . . . . . . . 94



CONTENTS vii

5.2 The Second-Order Rényi Entropy . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Obtaining the Second-Order Rényi Entropy from RandomisedMea-
surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Entanglement Information from the Second-Order Rényi Entropy . 99

5.2.3 Scaling of the Number of Measurements . . . . . . . . . . . . . . . 100

5.3 Mapping Statistical Correlations to Out of Time Ordered Correlators . . . 101

5.3.1 Measuring statistical correlations: The “Modified OTOC” . . . . . 102

5.4 Cross-Platform Verification through Local
Randomised Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Two-Platform Fidelity Estimation . . . . . . . . . . . . . . . . . . . . 108

5.4.2 Fidelity Estimation from Statistical Correlations . . . . . . . . . . . 108

5.4.3 Scaling of the Number of Measurements . . . . . . . . . . . . . . . 110

5.5 Conclusion & Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Probing Entanglement Entropies via Randomised Measurements 113

6.1 Quantum Simulation with Ion Strings . . . . . . . . . . . . . . . . . . . . . 114

6.1.1 Implementing Transverse Ising and XY-Models . . . . . . . . . . . 114

6.1.2 Estimating the Coupling Matrix, Dispersion Relation, and " . . . . 117

6.2 Probing Rényi Entanglement Entropy via RandomisedMeasurements: Mea-
surement Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.1 10- and 20-ion Experimental Results . . . . . . . . . . . . . . . . . . 118

6.3 Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.1 Anderson (Non-Interacting) and Many-Body Localisation . . . . . . 123

6.3.2 10-ion Entanglement Spreading with Disorder . . . . . . . . . . . . 125

6.3.3 Magnetisation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.4 Spread of Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Characterisation of System Dynamics . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 Conservation of Excitation Number and Decoherence . . . . . . . . 129

6.4.2 Characterisation of Local Random Unitaries . . . . . . . . . . . . . 131



viii CONTENTS

7 Probing Scrambling and Cross-PlatformVeri�cation using RandomisedMea-
surements 135

7.1 Probing Scrambling through Out-of-Time-Ordered Correlators . . . . . . . 136

7.1.1 Measurement Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.3 Dynamics of Operator Spreading . . . . . . . . . . . . . . . . . . . 140

7.1.4 Detecting Scrambling via Statistical Auto-Correlations . . . . . . . 141

7.1.5 Robustness to Decoherence . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 Cross-Platform Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.1 Theory-Theory Verification . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.2 Experiment-Theory Results . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.3 Experiment-Experiment Results . . . . . . . . . . . . . . . . . . . . 147

7.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Implementation and Characterisation of a Stimulated Raman Transition
Setup 149

8.1 Stimulated Raman Transitions for a Real Atom . . . . . . . . . . . . . . . . 151

8.1.1 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1.2 AC-Stark Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.1.3 Raman Rabi Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3 Characterisation of the Raman Transitions . . . . . . . . . . . . . . . . . . 159

8.3.1 Beam Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3.2 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.3.3 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3.4 Di�erential AC-Stark shift . . . . . . . . . . . . . . . . . . . . . . . 162

8.3.5 Coherence Measurements between the two Ground States . . . . . 164

8.3.6 Sideband spectrum of two qubits . . . . . . . . . . . . . . . . . . . . 167

8.4 Entangling Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.4.1 Single-ion Motional Cat States . . . . . . . . . . . . . . . . . . . . . 168

8.4.2 Two-Ion Mølmer Sørensen Gate . . . . . . . . . . . . . . . . . . . . 169



CONTENTS ix

8.4.3 Evolution of a 3-ion chain under NXY . . . . . . . . . . . . . . . . . 172

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9 Outlook 175

Appendices 175

A List of Publications 179

B Explicit Background Derivations 181

B.1 Moving to the Rotating Frame . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.2 Atom-Laser in the Interaction Frame . . . . . . . . . . . . . . . . . . . . . . 182

B.3 Explicit Calculation of Resonant Evolution . . . . . . . . . . . . . . . . . . 184

B.4 Explicit Calculation of O�-Resonant Transitions:
Frame Rotating at 8L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.5 Explicit Calculation of the Interaction Hamiltonian for a Trapped Atom
Interacting with a Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.5.1 Simplification of the motional part . . . . . . . . . . . . . . . . . . . 186

B.5.2 Simplification of the electronic part . . . . . . . . . . . . . . . . . . 187

B.6 Relations for Annihilation and Creation Operators . . . . . . . . . . . . . . 188

C Generating Random Unitaries 189

C.1 Generation of Random Unitaries . . . . . . . . . . . . . . . . . . . . . . . . 189

C.2 Concatenated Unitaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

D Explicit Calculation of Lamb-Dicke Parameters 192

D.1 Calculation of Lamb-Dicke Parameters for copropagating and counterprop-
agating Raman transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

D.2 Intensity Stabilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

References 195





Acknowledgements

There are always a huge number of people to thank for any thesis, and not nearly enough
space to mention them all. Unending thanks must first be given to my wonderful parents,
Helena and Chris, and fantastic sister and brother-in-law Beki and Phil, who are the ones
who have always supported me in realising my dream of becoming a scientist. Thank you
for always believing in me and not being too disturbed when I started dissecting ants in
the kitchen.

Huge thanks must of course go to my supervisors Rainer Blatt and Christian Roos, who
o�ered me this wonderful opportunity to complete my PhD with them. It has been a true
privilege to work under the guidance of the best physicists in the field, and an experience
I am truly glad to have had. Thanks to my predecessors Christine, Petar, and Ben, who
taught me much of the experiment, put up with my many questions without becoming
(visibly) frustrated, and were a great support to me throughout my time here. It’s been
fantastic to be able to work with all three of you, and I hope to have as much fun in my
future work as I did in the lab with you. In addition, although only here for a short period,
I had the most wonderful time in the lab with Aurélien, who is one of the most brilliant
people I’ve had the good fortune to meet and work with. Allons-y!

Thanks must also go to my successors Johannes and Florian who have both shown them-
selves to be great people to work with, as well as being extremely competent. It is a
wonderful feeling to know that the experiment will be left in safe hands under their future
guidance.

Many thanks to Philipp Schindler who helped with a very large number of elements in this
thesis, and volunteered a significant amount of his time in helping out; he is a rare gem.
Huge thanks also to the wonderful administrative sta� at IQOQI, including Elisabeth,
Klaus, Valentin, and Mr Knabl, who always managed to smoothly resolve even the most
headache-inducing administrative problems.

Finally, the true driver of this work has been my incredible husband James. He has been
the biggest support one could imagine, keeping me going through the dark times and cel-
ebrating with me in the good times. To be able to have a partner and best friend who you
can discuss physics with is a true privilege, and not more so when they are as insightful
and brilliant as James is. I dedicate this work to you, and to all our future adventures
together.





List of Abbreviations

AC Alternating Current

AOD Acousto-Optic Deflector

AOM Acousto-Optic Modulator

COM Centre of Mass

CP Complete Positivity

CUE Circular Unitary Ensemble

DC Direct Current

DDS Direct Digital Synthesiser

EMCCD Electron Multiplying Charged Coupled Device

GST Gate Set Tomography

IR Infrared

LBO Lithium Triborate

LGST Linear Inversion Gate Set Tomography

MLE Maximum Likelihood Estimation

MBL Many-Body Localisation

MS Mølmer-Sørensen (gate operation)

NISQ Noisy Intermediate-Scale Quantum (devices)



OTOC Out-of-Time-Ordered Correlator

PBS Polarising Beam Splitter

PD Photodiode

PI Photoionisation

PMT Photomultiplier Tube

QPT Quantum Process Tomography

QST Quantum State Tomography

RWA Rotating Wave Approximation

SPAM State Preparation and Measurement (gates/errors)

TP Trace Preservation

RF Radio Frequency



Chapter 1

Introduction

Since their conceptualisation and primitive invention by Charles Babbage in the early
19th century, computers have without doubt revolutionised the modern world, ushering in
a new age of information and technology. Moore’s Law – a well-known trend in computer
science – states that, through the miniaturisation of transistors, the number of transistors
in a computer, and thus its computing power, doubles roughly every two years [1]. This
has enabled computers to become smaller and faster at an almost exponential rate. How-
ever, at some point the miniaturisation of computers will reach a limit where e�ects from
quantum physics need to be taken into account. Although at first the feature of quantum
physics appears to be a limitation, in reality it opens up new possibilities for information
processing through a di�erent kind of computing – quantum computing. The 1980s were
where it all kicked o� for quantum computing, with Benio� [2], Feynman [3], and Deutsch
[4] all making historic contributions to the development not only of the notion of quantum
computing, but also to the quantum theory of computation [5].

Later on in the 1990s, Shor proposed a ‘quantum algorithm’ which, when implemented on
a quantum device, allows the factorisation of large numbers [6, 7]. The ground-breaking
part of this algorithm is that it outperforms even the most e�cient classical algorithms
that are currently known. Shor’s algorithm, and its related extensions, have already been
experimentally demonstrated many times and on multiple di�erent platforms [8–11]. How-
ever, these demonstrations are still only ‘proof-of-principle’ – that is, they have only been
demonstrated in regimes which are still easily accessible to classical computers, such as in
factoring the number 15 [11]. As such, extensive further research is required in the area
of quantum computing in order to develop this technology into a regime which classical
computers cannot reach.

Feynman noticed that quantum computers also have the potential to simulate quantum
systems whose properties are too complex to be calculated with a classical computer –
so-called quantum simulators [3]. Simulation of large quantum systems is problematic
for classical computers as the computation time grows exponentially with the size of the
system [12]. Instead, quantum simulators, which manipulate a well-controlled quantum
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2 Chapter 1. Introduction

system such that properties of a di�erent quantum system of interest can be emulated, are
predicted to be of great importance [3, 13]. Quantum simulators, unlike quantum comput-
ers, are analogue quantum devices which evolve under controlled, engineered dynamics.
As such, they cannot solve general problems (being non-universal), but are instead tai-
lored to e�ciently solve a particular set of physical problems of interest [14, 15].

Quantum simulation with trapped ions in particular is one of the most promising platforms
for quantum technology so far, o�ering almost unrivalled control at the single-particle
level [14, 16, 17]. It is of particular interest in the near-future with the development of
noisy intermediate-scale quantum (NISQ) devices [18]. These are quantum devices comprised
of 50-100 qubits, however are ‘noisy’ in that they will be limited by noise from imperfect
control over the qubits. In fact, experiments using such devices (implemented, however,
on a superconducting platform) have already been announced by Google [19] and IBM
[20]. NISQ devices are interesting as they are predicted to operate in a regime which is be-
yond the simulation/calculation capabilities of even the most powerful classical computers
[21]. While opening up a world of possibilities, this regime also presents problems when it
comes to verifying that a quantum device is performing as expected – that is, confirming
that the result from a ‘computation’ on such a machine is correct when it can no longer
be verified through direct comparison to classical simulations.

The experiments presented in this thesis are performed on a pre-existing trapped-ion quan-
tum simulation platform. Laser-driven interactions implement the transverse field Ising
Hamiltonian and XY-model of interacting bosons with tunable-range interactions [22, 23]
on chains of up to 20 ions. A major component of the experiments presented in this thesis
is the use of randomised measurements to characterise the many-body dynamics resulting
from evolution of the ion chains under these Hamiltonians. In particular, the experiments
perform measurements of the Rényi entropy, indicating the presence of bipartite entan-
glement in the system [24], measurements of out-of-time-ordered correlators (OTOCs) in
order to probe information scrambling in the system [25], and ‘proof-of-principle’ cross-
platform verification of a prepared quantum state [26]. These experiments aim to help in
the above-mentioned problem of characterising NISQ devices; they provide ways to char-
acterise quantities of interest in quantum many-body systems comprised of tens of ions,
as well as in performing a direct comparison between a state prepared on one quantum
device and a state prepared on a separate device at potentially very di�erent points in time
and space. Such protocols will become of ever-increasing importance in the NISQ regime.
In parallel to these experiments, a significant amount of technical work was carried out on
the experimental system, with the aim of upgrading the system in order to move towards
the NISQ regime. The upgrades detailed in this thesis will allow the laser-driven dynam-
ics to proceed at significantly increased speeds, so allowing the potential for interesting,
many-body states on up to 50 qubits to be realised in the near future.
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This thesis is organised as follows:

Chapter 2 introduces the core theoretical concepts underpinning quantum information,
ion trapping, and quantum optics, upon which the remainder of the thesis is based.

Chapter 3 gives an overview of the major components of the experimental setup relevant
to this thesis. It goes on to describe two major experimental upgrades implemented
during the course of this thesis: the Raman laser and optical setup to implement
Raman transitions (Sections 3.2 & 3.3), and installation of permanent magnets to
replace the magnetic field coils (Section 3.4).

Chapter 4 introduces the theoretical background to gate set tomography and its sub-
sequent implementation, providing a characteristion of the single-qubit operations
implemented in the experimental system. In addition, the stability of two of the
major beam paths used for qubit manipulation is investigated.

Chapter 5 introduces three theoretical protocols using statistical correlations between
randomised measurements to obtain quantities of interest. The first of these allows
a measurement of the Rényi entanglement entropy, with the second investigating
scrambling in chains of ions. The final protocol looks at performing cross-platform
verification between two quantum devices. These three protocols are subsequently
experimentally implemented in Chapters 6 & 7.

Chapter 6 reports on the experimental implementation of the first of the random mea-
surement protocols to measure the Rényi entanglement entropy on 10-ion partitions
of strings of up to 20 ions.

Chapter 7 describes the implementation of the second and third random measurement
protocols on strings of 10 ions. The third protocol is a ‘proof-of-principle’ demon-
stration of cross-platform verification between quantum devices, demonstrated using
only a single experimental system.

Chapter 8 details the implementation of the new Raman setup, including characterisa-
tion measurements of the setup as well as the implementation of entangling gates.

Chapter 9 concludes by summarising the work presented in this thesis, and outlining
the next major avenues of future work to be looked at.





Chapter 2

Background Theory

This Chapter will introduce the basic theoretical concepts upon which the remainder
of this thesis is based. It will cover topics in quantum information, ion trapping, and
quantum optics that are used throughout the thesis to explain the various experiments
described therein. As such, this Chapter aims to create a solid basis upon which to build
an understanding of the remaining Chapters.

2.1 Quantum Information

The first of these concepts to be introduced is the field of quantum information. This
term includes a broad range of topics, however this Section will focus in particular on
introducing the quanta of information used for quantum computing and simulation. It will
look at how these quanta can (and are) used to perform computations and simulations, and
the various problems such as error processes which arise during practical implementation
of these technologies.

2.1.1 Quantum Bits

In classical information science, information is encoded in fundamental units of informa-
tion known as bits which can take the values ‘0’ or ‘1’. There is a quantum-mechanical
analogue to classical binary bits termed the quantum bit, or qubit. In contrast to classical
bits, qubits can take on values between 0 and 1 – they can be in what are known as co-
herent superpositions of both states, an infinite number of which exist. Mathematically, a
general, pure-state qubit can be expressed as:

|k〉 = U |0〉 + V |1〉, (2.1)

where U and V are two complex numbers such that |U |2 + |V |2 = 1. Equation 2.1 represents
that, upon asking the question “is |k〉 in the state 0 or 1?", the probability for the answer to
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6 Chapter 2. Background Theory

be 0 is |U |2, and to find the the answer to be 1 is |V |2. Here, the short form notation for a

vector, known as Dirac-notation or ‘Bra-ket’ notation, has been used where |0〉 =
(
1
0

)
and

〈0| =
(
1 0

)
, |1〉 =

(
0
1

)
and 〈1| =

(
0 1

)
.

Equation 2.1 can also be written in terms of spherical coordinates, where it takes the form:

|k〉 = 4−8U
[
sin(\/2) |0〉 + 4−8qcos(\/2) |1〉

]
, (2.2)

where U, \ and q are real numbers. U is a global phase which has no absolute reference
point and so can be set to any arbitrary value. Normally, the most straightforward value
to assign to the global phase is U = 0. Equation 2.2 is a very useful way of expressing
a qubit as it can be shown visually on a sphere. The sphere which contains all possible
single-qubit |k〉s is termed the Bloch sphere, and provides a simple, yet extremely powerful,
way to visualise single-qubit behaviour. Figure 2.1 shows an example of the Bloch sphere,
where the basis states |0〉 and |1〉 are here defined as being at the poles of the sphere. A
qubit can occupy all states on the surface of the sphere (the pure states), as well as inside
the sphere (so-called mixed states). Shown on the surface of the sphere in Figure 2.1 is an
example of a pure state, |k〉. Each state has an associated Bloch vector, which is a vector
pointing to the state in question, shown in the Figure as a black arrow pointing to |k〉.
The Bloch vector is defined as:

®A = AGfG + AHfH + AIfI, (2.3)

where f8 are the Pauli matrices, a set of matrices forming an orthogonal basis and spanning
the Hilbert space H, defined as

I =

(
1 0
0 1

)
, fG =

(
0 1
1 0

)
, fH =

(
0 −8
8 0

)
, fI =

(
1 0
0 −1

)
. (2.4)

For a pure state, the length of the Bloch vector is 1 – i.e. |®A |2 = A2
G + A2

H + A2
I = 1. Thus, for

single-qubit states, a pure state will always lie on the surface of the Bloch sphere.

A convenient way of describing quantum states is through the density matrix. This rep-
resentation is particularly useful when considering states which are not pure, known as
mixed states, as well as for multi-qubit states. The density matrix for a pure quantum
state, |k〉, can be expressed as:

d = |k〉〈k |. (2.5)

Mixed states are statistical mixtures of pure states, such that:
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Figure 2.1: The Bloch Sphere. The Bloch sphere graphically represents all possible states
a single qubit can occupy. The qubit can occupy states on the surface of the sphere (pure
states) as well as inside the sphere (mixed states). The black dot signifies a pure state, |k〉,
on the surface of the Bloch sphere, with its associated Bloch vector (shown by the black
arrow).

dmix =
∑
8

%8 |k8〉〈k8 |, (2.6)

where %8 |k8〉〈k8 | is the contribution of the 8th pure state to the mixture (equivalent to the
probability of that particular pure state being present in the mixture), and

∑
8 %8 = 1.

Mixed states have a Bloch vector whose length is less than one, |®A |2 < 1 – that is, mixed
states lie inside the Bloch sphere.

The purity of a state is a useful quantity which will come up often throughout this thesis.
It gives a measure of how much the state is mixed and is defined, for a single qubit state
d, by:

%(d) = Tr(d2) = 1

2
(1 + |®A |2), (2.7)

where Tr is the trace and |®A |2 is the single-qubit Bloch-vector length. If a single-qubit state
is completely pure, its purity is equal to 1. Conversely, if it is completely mixed (so lying
at the centre of the Bloch sphere), its purity is equal to 1/2.

For multiple qubits, the total Hilbert space expands as the tensor product of all the indi-
vidual Hilbert spaces. For example, take N qubits; the total Hilbert space, H# , is given
by:
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H# = H⊗#= = H= ⊗H=−1 ⊗ . . . ⊗H1, (2.8)

where H8 are the Hilbert spaces of the individual qubits. The purity of a multiqubit state
is likewise found from %(d) = Tr(d2), with the purity for a completely mixed state given
by 1/2# (i.e. %(d) ∈

[
1, 1

2#

]
).

Quantum Operations, Gates, and Hamiltonians

A quantum operation is a linear map which takes an arbitrary initial state d to another
output state Λ(d), where both d and Λ(d) belong to the same Hilbert space, H. In the con-
text presented here, these maps will represent physical processes that can be performed
in the experimental system. In order to represent physical processes, these maps have
two requirements: (i) for any initial state d, the end state Λ(d) must always be positive
semi-definite (i.e. the eigenstate of any observable must have a non-negative probability)
such that Λ(d) is a valid density operator for any initial state d. These properties should
remain true even if the operation is applied only to a subsystem of the total system, a
requirement known as Complete Positivity, CP (ii) the total probability must be conserved
such that, for a quantum operation �8,

∑
8 �
†
8
�8 = I (Trace Preservation, TP) [12]. The

combination of these two requirements is that the map must be CPTP.

A quantum gate is an example of such a linear map acting on a quantum system. Some of
the most famous quantum gates are the Pauli operators introduced in Equation 2.4. These
operators are unitary operators, and can be used to rotate a qubit to di�erent points on
the Bloch sphere. For example, consider a qubit prepared in the initial state |k0〉 = |0〉.
Application of a fG gate will rotate the state of this qubit around the Bloch sphere to the
final state |k 5 〉 = |1〉. Combinations of all the Pauli operators allow an arbitrary initial
pure state to be rotated to any other arbitrary pure state on the surface of the Bloch sphere.

An interesting question to now consider is how to describe the evolution of a single-qubit
state in time. Imagine a simple example of a state, |k〉, described by a two level system
with states labelled |0〉 and |1〉. One of the most important properties to know about a
quantum system is its energy, which is described by its Hamiltonian, �. The Hamiltonian
of this two-level system can be described by:

� =
ℏl

2
fI, (2.9)

where ℏl is the energy splitting between the two states |0〉 and |1〉. The evolution of the
state under the influence of a Hamiltonian can be subsequently described by a propagator.
In general, a propagator can be expressed as:

* = 4−8�C/ℏ. (2.10)
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As � is Hermitian, the propagator must be unitary, which has interesting consequences
for quantum systems: namely, unitarity shows that the propagator must have an inverse,
and so every quantum evolution is reversible.

Therefore, using the propagator * = 4−8lCfI/2, at a later time C an initial state |k0〉 =
U |0〉 + V |1〉 will have evolved into:

|k(C)〉 = * |k0〉 = U |0〉4−8lC/2 + V |1〉48lC/2. (2.11)

2.1.2 Quantum Correlations, Entanglement, & Noise

Quantum computers and simulators are predicted to be able to solve some problems with
an exponential speed-up compared to their classical counterparts [7, 27, 28]. However,
it has been shown that pure product states, as well as those systems which generate only
a small amount of entanglement, can still be e�ciently simulated using a classical com-
puter [29]. As such, quantum computers and simulators must generate large amounts of
entanglement between their parts in order to achieve this fabled exponential speed-up.
However, it seems that entanglement alone may not be entirely responsible for this speed-
up, with general quantum correlations theorised to be necessary [30, 31]. This Section will
now look at quantum correlations and entanglement, as well as noise processes which can
interfere with the performance of such computations and simulations.

Entropy, Information, and Quantum Correlations

As quantum systems can be in both pure and mixed states, the question can be asked
as to how to quantify the amount of information contained in such a state. Both entropy
and correlations are frequently encountered in a classical setting, which will be considered
first here before being generalised to the quantum setting. A famous example is that of
the Shannon entropy [32, 33], which expresses the amount of information known about
a certain event. Take a random variable - which has = possible outcomes, G1, . . . , G=. If
each of these possible outcomes occurs with probability ?(G8), then the Shannon entropy
is given by [33]:

((-) = ((?(G)) = −
=∑
8

?(G8) log2 ?(G8). (2.12)

The Shannon entropy provides a quantification of the amount of uncertainty in X. The
amount of correlation between - and a second random variable . – that is the amount of
relation there is between - and . – can then be quantified using their joint distribution
[33]:

((-,. ) = ((?(G, H)) = −
∑
8, 9

?(G8, H 9 ) log2 ?(G8, H 9 ), (2.13)
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where ?(G8, H 9 ) is the probability of obtaining outcomes G8 and H 9 . Further intuition as to
the degree of correlation between - and . can then be obtained from a quantity known
as the mutual information. This is defined as:

� (- : . ) = ((?(G)) + ((?(H)) − ((?(G, H)), (2.14)

where � (- : . ) ≥ 0. What this equation shows is that the sum of the uncertainties of ?(G)
and ?(H) is always equal to, or larger than, the uncertainty of their joint distribution [33].
For classical information, the maximum value the mutual information can take is log2(2).

Analogous concepts to both of these quantities exist with regards to quantum states. The
first of these is the quantum analogy to the Shannon entropy, and is termed the von
Neumann entropy. The von Neumann entropy of a state d is defined to be [34]:

((d) = −Tr(dlog2(d)) = −
=∑
8

_8log(_8), (2.15)

where _8 are the eigenvalues of d. From comparing these two expressions it can be seen that
density operators take the role of probability distributions in the Shannon entropy. The
von Neumann entropy is zero for pure states, and greater than zero for mixed states. The
maximum value the entropy can take is when a state is completely mixed – i.e. d = I/3,
where 3 is the dimension of the Hilbert space – in which case ((d) = log2(3).

The concept of mutual information can also be extended to the quantum setting. Consider
a bipartite state d��; that is, a state comprised of two parts � and �, where the state of
� is represented by d� = Tr� (d��) and the state of � is represented by d� = Tr� (d��).
The information content between the two subsystems can be expressed in terms of the von
Neumann mutual information. The von Neumann mutual information between d� and
d� is defined as:

� (d� : d�) = ((d�) + ((d�) − ((d��). (2.16)

This mutual information quantifies the correlation between the subsystems d� and d�.

Entanglement

Entanglement is one of the most interesting features of quantum information. In order
for quantum computers and quantum simulators to provide advantages over their classi-
cal analogues, large amounts of entanglement must be generated within their constituent
parts [29].

Entanglement is a fascinating phenomenon, whereby multiple particles cannot be de-
scribed independently of one another. That is, in a system comprised of two particles,
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say � and �, the state of the combined system, ��, cannot be described by the states
of the two individual particles – i.e. d�� ≠ d� ⊗ d� [35, 36]. Such a state is known as
non-separable.

A simple example which can demonstrate this is one of the well-known Bell states:

|Ψ〉 = 1
√

2
( |00〉 + |11〉) . (2.17)

Here it can be seen that it is not possible to write Equation 2.17 as a product of the two
individual qubits. For a pure quantum state such as the one in Equation 2.17, the amount
of entanglement can be quantified using the von Neumann entropy. To understand this
relation, again consider a bipartite system containing two qubits, labelled � and �, with
the total system described by the density matrix d��. The state of qubit A can be rep-
resented as d� and the state of qubit B as d�. If d�� is a pure, separable state, then
((d��) = ((d�) = ((d�) = 0. However, if instead d�� is an entangled state, then a mea-
surement of d� will not contain the whole information of the system. As such, this e�ective
‘loss of information’ can be seen as an increase in the entropy of the subsystem, and so
((d��) < ((d�) = ((d�). As such, if the subsystems of a bipartite system d�� have greater
entropy than the entropy of the whole system, then entanglement exists between d� and d� [36].
The entanglement can be viewed as the lack of information of the reduced states, when
compared to that of the whole state d��. The more entanglement contained in d��, the
less information it is possible to have about the system from measurements of the states of
d� and d� [33]. For a maximally entangled pure state, ((d��) = 0, however the subsystems
will be maximally mixed, with ((d�) = ((d�) = I/2.

The distinction between classical and quantum correlations can be highlighted by looking
at the mutual information of a classical and entangled state. For a classical state, the
maximum possible Shannon mutual information between two random variables is log2(2).
Conversely, the von Neumann mutual information for a maximally entangled state has
a value of 2log2(2) (although for more weakly entangled states this value is reduced)
[33]. It is this potential for the existence of stronger correlations in certain quantum
systems than classical systems which are generally considered to be the crucial resource
for quantum information processing, and its associated predicted speed-up compared to
classical systems.

Coherent & Incoherent Errors

Practically, operations on qubits are subject to many di�erent error processes. For exam-
ple, crosstalk between qubits and environmental noise, to name many others, can cause
the single qubit Bloch sphere to appear to shrink along one or more of its axes. In work-
ing towards fully realising quantum computation and simulation, it is therefore important
to identify and, if possible, to eliminate such errors in order to implement better qubit
operations.
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One type of error which can arise in quantum systems are so-called coherent errors. These
are errors which preserve the purity of the initial state and so are unitary operations, leav-
ing the Bloch sphere of the qubit unchanged. A common example of a coherent error is
an over/under rotation of an implemented gate – e.g. where, rather than implementing a
c rotation on a state on the Bloch sphere, a c ± X rotation is instead implemented. Other
examples of such coherent errors are cross-talk between qubits and unwanted qubit-qubit
interactions [37].

In a perfect world, all the quantum gates and evolution dynamics discussed so far would
be unitary – i.e. the Bloch vector length would remain unchanged throughout all gate
processes and evolution of the system. However, unwanted interactions of the system with
the environment can cause this evolution to not be truly unitary, a process which is col-
lectively termed decoherence. When decoherence a�ects a system, the state of the system,
|k〉, is known only probabilistically and the system becomes mixed, with the Bloch vector
length correspondingly being less than one. Decoherence can be a major problem in the
realisation of quantum computers and simulators as the errors which arise from it can
cause information to be lost. As such, the understanding and control of decoherence is
crucial in being able to utilise the full potential of these technologies.

As incoherent errors cannot be described by unitary operations, instead the evolution must
be considered in terms of density matrices. Consider an initial state, d, which undergoes
an incoherent error operation such that d → Λ(d). A general CPTP map (see Section
2.1.1) representing this process can be written as [38]:

Λ(d) =
=∑
9=1

 9 d 
†
9
. (2.18)

Here, the operators  1, . . . ,  = are the Kraus operators which model quantum operations,
and = ≤ 32 for a system of Hilbert space dimension 3. To ensure Equation 2.18 fulfils the
trace-preserving condition, the Kraus operators must satisfy

∑
8  
†
8
 8 = I.

A common example of such incoherent noise processes is known as dephasing, where the
environment induces random phase changes in the state of the qubit. It is caused when
the energy splitting of a qubit changes as a function of time, for example due to environ-
mental influences such as laser frequency fluctuations and changes in the magnetic field.
Dephasing can be represented by a phase-flip channel [12], where phase information is
lost with a probability ?, with the identity operation performed with probability 1 − ?.
In this situation, the phase, q, of the state becomes more uncertain with time and phase
coherence is lost. Figure 2.2 a) shows a graphical representation of this process. The
Bloch sphere e�ectively shrinks around the equator, being projected onto the / -axis of the
Bloch sphere, while remaining unchanged at the poles.
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(a) Dephasing
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Figure 2.2: Noise Processes a�ecting the Bloch Sphere. a) The e�ect of dephasing
on the Bloch Sphere. The sphere shrinks uniformly about the equator, with the / -axis
remaining una�ected. b) The e�ect of depolarisation on the Bloch Sphere. The sphere
shrinks uniformly around all three axes. Shown in light grey is an outline of the shape of
the un-deformed Bloch sphere for comparison.

Dephasing can be described by a quantum map given by [38]:

Λdeph(d) =
(
1 − ?

2

)
d + ?

2
fIdfI, (2.19)

which takes the initial state d to Λdeph(d). The Kraus operators for this operation are:

 0 =

√
1 − ?

2
I and  1 =

√
?

2
fI . (2.20)

Another common source of noise in such systems is depolarisation, which can be modelled
by an associated depolarising noise channel. Depolarisation is a process where information
is completely lost with some probability ?, remaining unchanged with probability 1 − ?.
This is a quantum operation which replaces the initial input state, d, with the maximally
mixed state with probability ?, implementing the identity operation with probability 1− ?
[12]. Figure 2.2 b) shows the e�ect of this operation on the Bloch sphere, where the
depolarising noise can be seen to cause a uniform shrinking of the Bloch sphere. The
quantum map which represents this process is given by [12]:

Λdep(d) =
(
1 − 3

4
?

)
d + ?

4
(fGdfG + fHdfH + fIdfI). (2.21)

For this operation, the Kraus operators are:

 0 =

√
1 − 3?

4
I,  1 =

√
?

2
fG ,  2 =

√
?

2
fH, and  3 =

√
?

2
fI . (2.22)
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The final noise process discussed here is that of spontaneous emission (also known as
amplitude damping). It e�ectively describes a loss of energy from a quantum system,
with a common example of spontaneous emission being the transition of an atom from its
excited state to its ground state with the emission of a photon [12]. Spontaneous emission
occurs at a random point in time, however at a rate which can be determined, and is
unique to the species of ion as well as the excited state in question. For spontaneous
emission, the Kraus operators are given by:

 0 =

(
1 0
0
√

1 − ?

)
and  1 =

(
0
√
?

0 0

)
. (2.23)

This Section has given an overview of some of the most important aspects of quantum
information which are necessary for understanding the remainder of this thesis. The next
Section will now go on to look at trapped ions, which are one of the many platforms
available for encoding quantum information, and which are the platform of choice for the
work presented in this thesis.

2.2 Trapped Ions

Trapped ions are one of the most attractive platforms for quantum information processing.
Their charge enables them to be e�ectively confined and spatially manipulated, allowing
almost unrivalled control at the single-particle level. There are two main types of trap
which are typically used for low-energy applications – the radio frequency (RF) trap and
the Penning trap [39]. Penning traps use a combination of electric and magnetic fields
to confine charged particles, and were first pioneered by Hans Dehmelt in the 1960s [40].
RF-traps, in contrast, use a combination of static and time-dependent electric fields, with
one of the most famous of such traps being the Paul trap, developed by Wolfgang Paul
[41, 42]. As ion trapping, including in linear Paul traps, has been treated in great detail
in references such as [39, 42, 43], only a brief overview of the major points will be given
in the following Section.

2.2.1 Paul Traps

To be confined in three dimensions, charged particles require there to be a potential energy
minimum at some region in space. This ensures that the corresponding restoring force on
the particle is directed towards that region in all three dimensions. As such, if the particle
makes an excursion away from the minimum point, it experiences a force which pushes
it back towards the minimum once more. A convenient form for this binding potential
is that of a harmonic well, where the restoring force increases linearly with the particle’s
excursion away from the minimum:

�D = −:DD, for D = G, H, I , (2.24)
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Figure 2.3: Linear Paul Trap a) Schematic representation of a standard linear Paul trap.
The electrodes labelled ‘A’ are at the same potential (e.g. q+), and those labelled ‘B’ are
likewise at the same potential with opposite sign to the A electrodes (e.g. q−). These volt-
ages then oscillate between q+ and q− at an RF frequency. This creates a time-dependent
saddle potential where the ion is confined. The two tip electrodes, held at a constant
DC voltage, provide confinement along the axial direction. b) RF-potential formed by the
RF electrodes as viewed along the axial direction. The saddle potential formed by this
arrangement provides a stable minimum at the centre where trapping can occur.

with :D the force constant. As ®� = −®∇Φ, the general potential Φ associated with this force
has a harmonic form such that:

Φ(G, H, I) = Φ0(UG2 + VH2 + WI2), (2.25)

where U, V and W are constant coe�cients, and Φ0 can be a time-dependent function. In
free space, where no electric charges are present, Laplace’s equation ®∇2Φ = 0 must be sat-
isfied. In order to satisfy Laplace’s equation, this implies that the coe�cients of Equation
2.25 must themselves then satisfy U + V + W = 0, and so at least one coe�cient must be
negative, implying the potential has a metastable saddle point. A stable trapping potential
can then be generated in two main ways: Firstly, by using a combination of electric and
magnetic fields, as with the Penning trap [40]. Secondly, and more importantly for this
work, by using electric fields where Φ0 is time-varying in one or more directions, forming
a ‘time-dependent saddle potential’, as is the case with the Paul trap.

Figure 2.3 a) shows a schematic of a common design for linear Paul traps. In such a Paul
trap, the time-varying electric field is generated by applying voltages oscillating at RF
frequencies to the four rod electrodes labelled A and B. The electrodes labelled A have
the same voltage, which is opposite in sign to those labelled B. The tip electrodes provide
a constant confinement in the axial direction. The potential, Φ, can be correspondingly
divided into a time-dependent radial part, Φr, and a static axial part, Φa, such that [43]:
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Φr(G, H, I, C) =
*RF ++RFcos(ΩC)

2

(
UGG

2 + UHH2 + UII2
)

(2.26)

Φa(G, H, I) =
*DC

2

(
VGG

2 + VHH2 + VII2
)
. (2.27)

Here, *RF and +RF are a static splitting voltage and peak amplitude of an alternating volt-
age respectively, both of which are applied to the rod electrodes. Ω is the frequency at
which the RF field oscillates, and *DC is the static voltage applied to the tip electrodes
to provide axial confinement. Figure 2.3 b) shows the radial potential formed by such
an arrangement of RF rod electrodes: A stable minimum is formed at the centre of this
time-dependent saddle-potential, allowing confinement of a charged particle at the centre.

The oscillation of the time-dependent potential must be made rapid enough such that the
charged particle undergoes an oscillatory motion between the electrodes, without ever
making contact with them [44]. The motion of a particle in such a confinement is then
given by a di�erential equation of the form:

32D

3C2
+ Ω

2

4
(0D − 2@DcosΩC)D = 0, where D = G, H, I. (2.28)

0D and @D are determined solely by the experimental parameters. Assuming the potential
is rotationally invariant about the axial direction, then these parameters can be expressed
as [45]:

0G = 0H = −
1

2
0I = −

8&*DC

<(A2
0 + 2I20)Ω2

, (2.29)

@G = @H = −
1

2
@I =

4&+RF

<(A2
0 + 2I20)Ω2

, (2.30)

where & is the charge of the particle to be confined. Equation 2.28 has very well-known,
stable solutions [46], determined solely by the parameters 0D and @D. In the limit of
0 < 0D < @D < 1, these solutions can be approximated as:

D(C) = �Dcos(lDC + qD)
(
1 + @D

2
cos(ΩC)

)
, (2.31)

where �D is a constant and lD = VDΩ/2 is the secular frequency, with VD =
√
(0D + @2D

2 ).

The motion of a single particle under this potential can be understood as being com-
prised of two motions. The first of these is a harmonic motion at the secular frequency,
lD, which is known as the secular motion. The second is a fast, driven motion at the
trapping frequency Ω, and is known as micromotion. The amplitude of this micromotion
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is proportional to the distance of the particle from the RF-null (i.e. from the centre of the
trap).

Paul traps are often used for confinement of multiple ions. For a linear string of ions to
be formed, the confinement in the radial direction must be su�ciently higher than in the
axial direction, corresponding to the radial secular centre-of-mass (COM) frequency being
significantly higher than the axial COM frequency [47].

2.2.2 Quantum Harmonic Oscillators and Coherent States of Mo-
tion

The previous Section has introduced the functionality of the linear Paul trap, including
its 3-dimensional confinement using a radial harmonic pseudo-potential, and an axial har-
monic potential. Paul traps often have excellent optical access, which allows laser cooling
of ions to be performed [48]. Due to the low temperature regime resulting from such cool-
ing (on the order of 0.5K for Doppler cooling, and even to the ground state for sideband
cooling [49]), a quantum description of the ion motional energy is therefore needed.

One of the most well-known classical harmonic oscillators is the example of a particle of
mass < oscillating in a quadratic potential of the form + (G) = <l2G2/2, with G the spatial
coordinate and l the oscillation frequency of the particle in the potential. This motion can
also be represented in phase space, where the oscillator traces out a circle. Figure 2.4 a)
shows an example of this situation, with the particle following the relation U(C) = |U |48lC ,
where U = G + 8? and ? is the momentum.

The quantum harmonic oscillator is the quantum analogue to the classical harmonic os-
cillator, an excellent treatment of which is given in [50]. In the regime where the kinetic
energy of a harmonically confined particle becomes comparable to ℏl, its motion be-
comes quantised. The Hamiltonian describing the motion of the particle is then a sum
of its kinetic and potential energy, with the position and momentum operators, Ĝ and ?̂,
replacing their classical counterparts:

� =
1

2
<l2Ĝ2 + 1

2<
?̂2, (2.32)

where < is the mass of the particle and l the frequency of oscillation. By introducing the
well-known creation and annihilation operators:

0† =
1

√
2<ℏl

(<lĜ − 8 ?̂), 0 =
1

√
2<ℏl

(<lĜ + 8 ?̂), (2.33)

the position and momentum operators can be re-expressed as:
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(a) Classical Simple Har-
monic Oscillator

(b) Driven Harmonic Oscil-
lator

(c) Displacement Operator

Figure 2.4: Phase Space Representations a) Trajectory of the classical simple harmonic
oscillator. For a non-driven system, the particle follows a circular trajectory, with a com-
plete circle corresponding to a single period of oscillation. b) The resonantly driven
harmonic oscillator follows a path in phase space which spirals outwards with time, due
to the constantly increasing amplitude. c) In moving to a frame which rotates at the drive
frequency, l� , displacements of the initial motional ground state, |0〉, create a coherent
state, |U〉. The angle of this displacement is determined by the phase of the driving force,
q� .

Ĝ = (0 + 0†)G0 and ?̂ = 8
ℏ

2G0
(0† − 0), (2.34)

with G0 =
√
ℏ/(2<l). G0 represents a characteristic length scale which, for the case of a

trapped ion, corresponds to the root-mean-square extent of the ion’s ground-state wave-
function. Equation 2.32 can then be expressed as:

�qho = ℏl

(
0†0 + 1

2

)
= ℏl

(
=̂ + 1

2

)
, (2.35)

with =̂ = 0†0 the number operator. This Hamiltonian has a distinctive ladder-like energy
spectrum with the eigenstates, |=〉 (also known as Fock states or number states), separated
by an amount ℏl. The application of the creation and annihilation operators (defined
in Equation 2.33) to a given eigenstate, |=〉, raises or lowers the energy of the harmonic
oscillator by one phonon respectively [50]:

0† |=〉 =
√
= + 1|= + 1〉, 0 |=〉 =

√
=|= − 1〉 with 0 |0〉 = 0. (2.36)

By applying the creation operator 0† =-times to the ground state |0〉, any Fock state |=〉
can be created via:

|=〉 = 1
√
=!
(0†)= |0〉. (2.37)
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Driven Quantum Harmonic Oscillator

States which will be shown to be of significant interest later in this Chapter can be formed
by considering the action of time-dependent forces on the quantum harmonic oscillator.
Consider an external, time-dependent (classical) force of the form:

� (C) = �sin(l� C + q�) =
�

28

(
48(l� C+q� ) − 4−8(l� C+q� )

)
, (2.38)

with amplitude �, drive frequency l� , and phase q� . When this force is applied to a quan-
tum harmonic oscillator, the Hamiltonian of Equation 2.35 needs to be extended such that
� = �qho+�� (C), where �� (C) = Ĝ� (C). If the frequency of the driving force is made equal
to the oscillation frequency of the particle, i.e. l� = l, then the particle follows a spiral
trajectory in phase space, as shown in Figure 2.4 b).

The e�ect of this force can best be seen by moving to the interaction picture using the
transformation * = 4−8�qhoC/ℏ, such that * |k〉 = |k′〉. Transformations into the interaction
picture are explained and explicitly derived in Appendix B.1. The Hamiltonian in the
interaction picture is then given by:

�int = *
†�* =

(
04−8lC + 0†48lC

)
G0� (C). (2.39)

For l� = l, the rotating wave approximation (RWA) – where rapidly rotating terms are
neglected – can subsequently be used to simplify Equation 2.39 to:

�int = −
�G0

28

(
04−8q� + 0†48q�

)
. (2.40)

The time-evolution of a state under this Hamiltonian, given by * = 4−8�intC/ℏ, can then be
expressed by the unitary operator:

� (U) = 4U0†−U∗0 where U = −�G0C

2ℏ
4−8q� . (2.41)

This propagator is known as the displacement operator. When this displacement operator is
applied to the ground state of motion, |0〉, the result is a displaced coherent state [50]:

|U〉 = � (U) |0〉 = 4−|U |2/2
∑
=

U=
√
=!
|=〉. (2.42)

If such a state is viewed in the frame which rotates at the same frequency as that of the
drive frequency, as shown in Figure 2.4, then the displacement operator can be seen to act
such that it displaces the state linearly in phase space, with the direction of displacement
dependent on the phase of the driving force q� .
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Coherent states are the closest ‘quantum’ analogy to the classical states of a harmonic
oscillator [50]. The creation and annihilation operators act on them such that:

0 |U〉 = U |U〉, and 〈U |0† = U∗〈U |. (2.43)

This Section has described how the motion of particles in low temperature regimes, such
as those achieved through laser cooling of an ion in a linear Paul trap, requires a quantum
description. The motion of such a particle can be described (approximately) using the
quantum harmonic oscillator, with coherent states of motion created through application
of a resonant driving force to the particle. The following Section will now give an overview
of the ion used to encode quantum information in this thesis, detailing the relevant atomic
structure and properties which make it an ideal candidate for use in quantum simulation.

2.2.3 40Ca+ as a qubit

The experiments presented in this thesis use singly-ionised calcium-40, 40Ca+, to encode
quantum information. 40Ca+ has a hydrogen-like electronic energy structure, and is ideal
for use as a qubit for multiple reasons, such as its relatively simple level structure, easily
accessible optical transitions, and metastable levels. It has a nuclear spin of zero, meaning
it has no hyperfine structure. 40Ca+ is formed by a two-step ionisation process of neutral
calcium, using lasers at wavelengths of 422 nm and 375 nm.

Figure 2.5 shows a simplified level structure of 40Ca+, containing the most relevant elec-
tronic energy levels and transitions for this thesis. The four main levels of importance to
this thesis are the |S1/2〉, |D5/2〉, |P1/2〉, and |P3/2〉 levels. Each of these levels are split into
Zeeman levels by application of an external magnetic field. As the lifetime of the |P1/2〉
and |P3/2〉 levels is extremely short (∼7 ns), the splitting between the Zeeman levels of
these levels is smaller than the width of the level itself, and so the Zeeman substructure is
not shown in the Figure. In contrast, the |D5/2〉 level is a so-called ‘metastable state’, with
a lifetime on the order of 1 s. This state is ideal for use in quantum information due to
its long-lifetime. As such, an optical qubit can be encoded in 40Ca+ using the electronic
ground state |S1/2〉 as |0〉 and the metastable |D5/2〉 state as |1〉, coupled using a narrow
linewidth laser at 729 nm. Lasers at 866 nm and 854 nm optically pump population out of
the |D3/2〉 and |D5/2〉 respectively to allow initialisation of the optical qubit in |S1/2〉. This
optical qubit will form a major part of the following Chapters in this thesis.

A qubit can also be encoded in 40Ca+ using the Zeeman levels of the ground state |S1/2〉.
It will be seen in Chapter 8 that the two Zeeman levels, given by |S1/2,mj = −1/2〉 and
|S1/2,mj = +1/2〉, can be coupled using two lasers at ∼393 nm.

The three main transitions of importance to this work are from these ground state Zee-
man levels to the |P1/2〉 level (via the 397 nm transition), to the |P3/2〉 level (via the 393 nm
transition), and to the |D5/2〉 manifold of Zeeman levels, through the 729 nm transition.
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|S1/2〉

|P1/2〉

|P3/2〉

|D3/2〉

|D5/2〉

397 nm
393 nm

729 nm

854 nm

866 nm

Figure 2.5: 40Ca+ Level Structure. Shown is a simplified diagram of the level structure
of 40Ca+, with only the most relevant transitions for this thesis shown. Of particular
importance is the |S1/2〉 to |D5/2〉 transition at 729 nm. The metastable nature of the
|D5/2〉 state means an optical qubit can be encoded using these two states. The 866 nm
and 854 nm transitions optically pump population from the |D3/2〉 and |D5/2〉 respectively
to allow initialisation of the qubit in |S1/2〉.

Both the 393 nm and 397 nm transitions are dipole transitions, with the 729 nm transition
being a ‘forbidden’ quadrupole transition. For further details see [49, 51–54].

Having now introduced ion-trapping in linear Paul traps and how 40Ca+ can be used to
encode quantum information, the following Section will look at the interaction between a
generic atom with an incident laser beam. This interaction will reveal interesting dynamics
which can subsequently be used to implement quantum gates on single and multiple ions.

2.3 Laser-Ion Interaction

The following Section will detail the interaction between a two-level atom, held in a fixed
location in space, and a monochromatic laser field. It will closely follow the derivation
given in sources such as [47, 49, 55]. The atom’s ground state is labelled |↓〉 ≡ |0〉 and
its excited state |↑〉 ≡ |1〉, and it is assumed spontaneous emission can be neglected for
the time-scales of interest here. It will be shown that the e�ect of the incident light field
is to cause transitions between the two di�erent energy levels in the atom, however these
transitions will occur only when the frequency of the light is tuned to closely match the
energy gap between the levels.

The first of these Sections will look at the general interaction of a laser field with a free
atom. The second Section will extend this case to interaction of a laser field with a two-
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level trapped atom.

2.3.1 Interaction of a Two-Level Atom with a Laser Field

Consider a two-level atom (a quantum mechanical system), described by the Hamiltonian
�0, which is subjected to the oscillating electric field of a laser. The field is a time-varying
perturbation which perturbs the eigenstates of �0. The full Hamiltonian of this system
can be written as the sum of a time-independent and time-dependent part, such that
� = �0 + �1(C).

If the zero point of energy is chosen to be halfway between the two states of the system, then
the free evolution of the unperturbed two level system is described by the Hamiltonian:

�0 =
ℏl0

2
fI =

ℏl0

2

(
1 0
0 −1

)
, (2.44)

where ℏl0 is the energy di�erence between the two states. The time-dependent term
representing the oscillating electric field of the laser can be written as:

�1 = ℏΩcos(lLC + qL)fG = ℏΩ
(

0 cos(lLC + qL)
cos(lLC + qL) 0

)
, (2.45)

where lL is the frequency of the incident light field. Therefore, the total Hamiltonian is
given by

� = �0 + �1 =

(
ℏl0

2 ℏΩcos(lLC + qL)
ℏΩcos(lLC + qL) −ℏl0

2

)
. (2.46)

It is useful to consider the transitions between the two states of this system using an
approach based on transforming the problem into a rotating frame, covered explicitly in
Appendix B.1, where the transformation is chosen such that the new basis states rotate in
synchrony with the splitting between the two energy states. Such a transformation into a
frame rotating at l0 takes the form:

* = 4−8�0Cℏ = 4−8l0CfI/2 = cos(l0C/2)I − 8sin(l0C/2)fI, (2.47)

where the final step uses the well-known relation 48\fU = cos(\)I + 8sin(\)fU for fU =
{fG , fH, fI, I}. The so-called ‘interaction Hamiltonian’ associated with this is found from:

�int = *
†�* + 8ℏ

(
m*†

mC

)
* =

ℏΩ

2
(cos(XC + q!)fG + sin(XC + q!)fH), (2.48)
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where X = lL − l0, with this derivation shown explicitly in Appendix B.2. This Hamil-
tonian can be understood from a more physical perspective by considering two di�erent
cases: the resonant case where X = 0 and the o�-resonant case where X ≠ 0.

Resonant Transitions

The first case, where X = 0, is the case when the applied laser field is at the same fre-
quency as the energy gap between the two eigenstates – i.e. l! = l0. For this case, the
Hamiltonian of the system in the rotating basis simplifies to:

�int =
ℏΩ

2
(cos(q!)fG + sin(q!)fH). (2.49)

A natural question to ask is how a general state, |k〉, evolves under this Hamiltonian.
Using the method of propagators (see Section 2.1.1) the (unitary) evolution under this
Hamiltonian is:

* = 4−8�intC/ℏ =

(
cos (ΩC/2) −84−8qLsin (ΩC/2)

−848qLsin (ΩC/2) cos (ΩC/2)

)
, (2.50)

where this evaluation is shown explicitly in Appendix B.3. Therefore, the e�ect of such a
Hamiltonian on the ground state | ↓〉 is:

|k(C)〉 = * | ↓〉 =
(

cos (ΩC/2)
−84−8qLsin (ΩC/2)

)
. (2.51)

Therefore, the state dynamically evolves from | ↓〉 into | ↑〉 through a fG rotation (when qL =
0). When C = c/Ω, the state has rotated completely to | ↑〉. This process of dynamically
evolving from the ground to excited state and back again in a sinusoidal manner is a
process known as resonant Rabi �opping. In a similar manner, a fH rotation can instead
be implemented by altering the phase qL.

O�-resonant Transitions

To see the e�ect for when the laser beam is o�-resonant with respect to the splitting
between the two energy levels, it is useful to move to a frame rotating in synchrony with
one of the components of the light field – i.e. a frame rotating at speed lL = l0 + X. The
interaction Hamiltonian in this frame is found to be:

�int =

(
−1

2ℏX
1
2ℏΩ

1
2ℏΩ

1
2ℏX

)
= −ℏX

2
fI +

ℏΩ

2
fG , (2.52)

with X = lL − l0, and where this derivation is shown explicitly in Appendix B.4. The
propagator for this Hamiltonian is then given by:
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* =

(
cos(Ωe�C/2) + 8 X

Ωe�
sin(Ωe�C/2) −8 Ω

Ωe�
sin(Ωe�C/2)

−8 Ω
Ωe�

sin(Ωe�C/2) cos(Ωe�C/2) − 8 X
Ωe�

sin(Ωe�C/2)

)
, (2.53)

where Ωe� =
√
X2 +Ω2 is the ‘o�-resonant Rabi frequency’. To again understand the e�ect

of this propagator, apply it once more to the ground state | ↓〉:

|k(C)〉 = *
(

1
0

)
=

(
cos(Ωe�C/2) + 8 X

Ωe�
sin(Ωe�C/2)

−8 Ω
Ωe�

sin(Ωe�C/2)

)
. (2.54)

From the form of Eq. 2.54, it can be seen that ‘o�-resonant Rabi flops’ occur at a rate of
Ωe�. In the o�-resonant case, Ωe� > Ω, and so the frequency of these o�-resonant Rabi
flops is increased with respect to the resonant flops. However, due to the presence of the
8 X
Ωe�

sin(Ωe�C/2) term, it can be seen that the oscillations will never fully reach |↑〉 when
starting from the initial state | ↓〉, being reduced in e�ciency by a factor of 1/Ωe�.

The AC-Stark E�ect

The application of such a non-resonant perturbing field leads to a shift in the atomic
energy levels due to the AC-Stark e�ect. To see how such a shift arises, first consider
the eigenvalues of the interaction Hamiltonian in Equation 2.52. The equation for the
eigenvalues, _, of this equation is given by:���� −X/2 − _ Ω/2

Ω/2 X/2 − _

���� = _2 −
(
X

2

)2

−
(
Ω

2

)2

= 0. (2.55)

The solutions to this equation are _ = ±(X2 + Ω2)1/2/2. Often, such perturbing fields are
of relevance when they are significantly detuned from resonance, i.e. when |X | � Ω. In
this limit, the eigenvalues simplify to:

_ = ±
(
X

2
+ Ω

2

4X

)
. (2.56)

The unperturbed eigenvalues are X/2, and so the applied light field shifts the states from
their unperturbed frequencies by an amount ±Ω2/4X. As such, a single energy level expe-
riences a frequency shift from an applied perturbing light field of:

ΔlEL = ±
Ω2

4X
. (2.57)

As both the lower and upper energy levels of the transition will be shifted by ±Ω2/4X, then
the change in the transition frequency is twice this amount, and so the total shift in the
atomic transition is subsequently:
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|0〉

|1〉

(a) c/2 pulse rotates the qubit
into the equatorial plane

|0〉

|1〉

(b) The state evolves freely
for a time g

|0〉

|1〉

(c) A final pulse c/2 with vari-
able phase q

Figure 2.6: Ramsey experiments Shown is an illustration of a Ramsey-type experiment.
a) The qubit, initialised in |0〉, is rotated into the equatorial plane by a c/2 pulse. b) The
qubit is allowed to evolve freely for a time g. If the first c/2 pulse was o�-resonant with
respect to the energy splitting of the levels – i.e. if lL ≠ l0 – the qubit will precess around
the equator of the Bloch sphere. c) A final c/2 is applied, the phase of which is often
varied for a fixed free-evolution time g.

Δlac = 2ΔlEL = ±
Ω2

2X
. (2.58)

Ramsey Experiments

This understanding of an atom in a laser field is extremely useful when using trapped
ions for quantum information, not least for identifying noise processes. With so many
di�erent types and sources of noise as discussed in Section 2.1.2, it is important to have
techniques in order to detect and characterise them. The atom-laser interaction can pro-
vide a straightforward method to investigate such noise process through the use of Ramsey
experiments [56]. Ramsey experiments not only give key insights into the lifetime of an
ion-qubit (quantified by the coherence time of the system), but can also provide information
into the type and strength of noise processes which may be present. Ramsey fringes occur
when two pulses with di�erent phases are applied to a qubit, separated by a time period
during which the system is allowed to evolve freely. Figure 2.6 illustrates this process: a
qubit, initially prepared in |0〉, is rotated by a c/2 pulse into the equatorial plane of the
Bloch sphere. This state is allowed to evolve freely for a period of time, g, before a final
c/2 pulse with variable phase is applied.

To best see the e�ect of this sequence, it is useful to consider this situation again in the
rotating frame. From Equation 2.52, the Hamiltonian of the free evolution part is given
by:
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� =

(
−1

2ℏX 0
0 1

2ℏX

)
= −ℏXfI/2, (2.59)

where X = lL − l0 is the detuning of the first pulse from the resonance frequency of the
atom. The evolution of the atom under this Hamiltonian is then:

* = exp(−8�C/ℏ) = exp(8XCfI/2) = cos(XC/2)I + 8sin(XC/2)fI . (2.60)

Therefore, applying an initial c/2 pulse, followed by a free evolution for a time g, and
a final c/2 pulse which is, for example, 90◦ out of phase with the initial one, gives a
combined unitary of:

* = 4−8cfG/448XgfI/24−8cfH/4. (2.61)

Assuming the state initially begins in |k0〉 = |↓〉, the probability of the ion being found in
| ↑〉, when a detuning of X is present, is then given by:

%↑ = |〈↑ |*k0〉|2 =
1

2
(1 − sin(Xg)). (2.62)

Therefore, if the probability for the ion to be found in | ↑〉 is measured as a function of the
free-evolution time g, then sinusoidal oscillations will occur at a frequency given by the
detuning X. Such a technique can be used to detect detunings caused by instabilities in the
incident laser frequency as well as from ambient magnetic fields, as shown in Chapters 3
and 8.

This Section has introduced the interaction of an atom, which can be described as an
ideal two-level system, with an incident laser beam. So far, only a free atom has been
considered, where e�ects from confinement of the atom – such as from using an ion trap
– have no e�ect. This treatment will now be extended in the following Section to include
the e�ect of such a trap on this system.

2.3.2 Interaction of a Trapped Atom in a Laser Field

So far, the interaction of a bare atom with a laser field has been derived. In the following
Section, the added complexity of placing the atom in a harmonic trapping potential, such
as a linear Paul trap as discussed in Section 2.2.2, will be considered. When a bare atom
is placed in a harmonic trapping potential as described in Equation 2.35, the resulting
unperturbed Hamiltonian can be written as the combination of the two systems:

�0 = ℏ
l0

2
fI + ℏl(0†0 +

1

2
), (2.63)
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where l0 is the transition frequency of the atom and l is the motional frequency of the
atom. This additional oscillation from the motion of the trapped atom leads to a frequency
modulation of l0, generating motional sidebands either side of the atomic transition at
l0 ± l.

A simple physical understanding of why these sidebands occur can be gained from con-
sidering an atom confined in a one-dimensional well, which can radiate in all directions
with electric field � = �04

8(:G−l0C) . If the atom moves at a speed a between the con-
fines of the trap, then G becomes a function of time, and the wave emitted by the atom
is frequency modulated due to this motion. As such, G can be replaced by a function
representing the ion motion: G → G0 + Dsin(aC). The radiated electric field therefore be-
comes: � = �04

8:G04−8l0C48:Dsin(aC) . As terms of the form 48:sin(\) can be expressed in terms
of a Fourier series, with Bessel functions as the coe�cients, so the electric field can sub-
sequently be expressed as: � = �04

8:G04−8l0C
∑∞
==−∞ �= (V)48=aC , where = is an integer and

V = :D. This expression is a discrete Fourier spectrum, consisting of a central line (the un-
modulated transition frequency at l0) with sidebands consisting of equally spaced lines,
extending with diminishing amplitude to infinity. These sidebands occur at the transition
frequency, plus or minus integer multiples of the oscillation frequency. A more rigorous
treatment of this situation will now be given in the following Section.

Interaction of a Trapped Ion with a Light Field

With the addition of a light field, a perturbation of the form �1 = ℏΩcos(lLC + :Ĝ + qL)fG
is added (note the similarity to the perturbation in the previous section, however with the
addition of :Ĝ, as now the motional state must be taken into account). The Hamiltonian
of the system is therefore:

� = �0 + �1 =
ℏl0

2
fI + ℏl(0†0 +

1

2
) + ℏΩcos(lLC + :Ĝ + qL)fG , (2.64)

where now the perturbation includes the position-dependent term :Ĝ. It is again useful
to move into the frame rotating at the same frequency as the free evolution of the atom
in order to understand the interesting interactions which arise from such a Hamiltonian.
When moving into the interaction picture rotating at �0, this part of the Hamiltonian
drops out (see Section 2.3.1), and so only �1 needs be considered. Therefore, by using
the transformation * = 4−8�0C/ℏ, the interaction Hamiltonian is given by:

�int = *
†�1* = ℏΩ48(�

†
04+�

†
0<)C/ℏcos(lLC + [(0 + 0†) + qL)fG4−8(�04+�0<)C/ℏ, (2.65)

where �04 is the Hamiltonian for the electronic state of the bare atom, �0< the Hamiltonian
for the trapping potential (i.e. the Hamiltonian for the motional state of the ion), and the
relations Ĝ = G0(0 + 0†) and [ = :G0 have been used. [ is of particular importance and will
be discussed in more detail below. By expressing the cosine in terms of exponentials, this
Hamiltonian can be written as:
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�int =
ℏΩ

2
48(�

†
04+�

†
0<)C/ℏ [48(lLC+[(0+0†)+qL) + 4−8(lLC+[(0+0†)+qL)]fG4−8(�04+�0<)C/ℏ. (2.66)

As the electronic and motional parts of the bare Hamiltonian commute with each other,
these terms can be separated out. The subsequent evaluation of these parts is given
explicitly in Appendix B.5, with the final Hamiltonian simplifying to:

�int =
ℏΩ

2

(
4−8(XC−qL)f+4

8[(04−8lC+0†48lC ) + ℎ.2.

)
, (2.67)

where X = lL − l0. The o�-diagonal terms of this expression represent coupling between
the ground and excited states, with the form of this expression showing that the internal
state and the motional state are coupled.

The Lamb-Dicke Regime

Equation 2.67 can be simplified further when the atom is in what is known as the Lamb-
Dicke regime. This is a regime where the spatial extent of the ground-state wavefunction, G0,
is much smaller than the wavelength of the transition frequency l0. A useful parameter
to characterise such a regime is the so-called Lamb-Dicke parameter, [, which is defined
as [ = ®: · ®G for a single ion, with ®: the wavevector of the incident light field, and ®G =
G0

√
ℏ/2<l ®A. l is the trap frequency, < the mass of the ion, and ®A the direction of the

ion’s motion in cartesian coordinates. The Lamb-Dicke regime is then defined such that
[2(2= + 1) � 1. As [ is very small in such a regime, then the exponential terms in [ in
Equation 2.67 can be Taylor expanded to first order, giving:

�int =
ℏΩ

2

(
4−8(XC−qL)f+(1 + 8[(04−8lC + 0†48lC)) + ℎ.2.

)
. (2.68)

Therefore, processes which alter the motional state of the qubit by more than one phonon
are strongly suppressed.

There are three interesting regimes which can be investigated using Equation 2.68 in the
limit of l � Ω: those of the carrier transition (X = 0), the blue sideband transition (X = l),
and the red sideband transition (X = −l).

Carrier transition

The carrier transition occurs when the exciting radiation is resonant with the transition
frequency of the ion – that is, X = 0. In this case, the Hamiltonian reduces to:

�carr =
ℏΩ=

2

(
f+4

8qL + f−4−8qL
)
. (2.69)
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This Hamiltonian couples | ↓, =〉 ↔ | ↑, =〉. The strength of this coupling is given by
Ω= ≈ Ω(1− [2=), where the reduction in coupling strength arises from higher order terms
in Equation 2.68.

Blue Sideband Transition

The blue sideband transition occurs when the exciting radiation is positively detuned from
the carrier frequency by the ion motional frequency – i.e. X = l and so lL = l0 + X. For
this case, Equation 2.68 simplifies to:

�b =
ℏΩ=,=+1

2

(
f+ [4−8(lC−qL) + 8[(04−8(2lC−qL) + 0†48qL)]

+f− [48(lC−qL) − 8[(04−8qL + 0†48(2lC−qL))]
)
. (2.70)

If l � Ω (the so-called resolved sideband limit), then a second rotating wave approximation
can be made, where terms oscillating at frequencies of order l can be neglected. In this
situation, the above Equation reduces to:

�b = 8[ℏ
Ω=,=+1

2

(
f+0

†48qL − f−04−8qL
)
. (2.71)

From this, it can be seen that an excitation of the ion to the upper electronic state also
increases the vibrational quantum number by one; that is, this Hamiltonian couples
| ↓, =〉 ↔ |↑, = + 1〉 with strength Ω=,=+1 = [

√
= + 1Ω.

Red Sideband Transition

Similarly, the red sideband transition occurs when the exciting radiation is negatively
detuned from the carrier frequency by an amount equal to the motional frequency of the
ion – i.e. X = −l. In this situation, after again the second rotating wave approximation,
the Hamiltonian is of the form:

�r = 8[ℏ
Ω=,=−1

2

(
f+04

8qL − f−0†4−8qL
)
. (2.72)

When the ion is excited to the upper electronic state, the vibrational quantum number
decreases by one quantum of motion, that is this Hamiltonian couples | ↓, =〉 ↔ | ↑, = − 1〉
with strength Ω=,=−1 = [

√
=Ω.

This Section has introduced the interaction between a trapped atom with an incident
light field, leading to coupling between the electronic and motional modes. This will be
of particular importance in Section 2.5, where such interactions are shown to have the
potential to implement entangling interactions between multiple ions.
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Figure 2.7: Raman Transitions. Schematic of an ideal Raman transition between two
ground state levels, |1〉 and |2〉, mediated by an auxiliary level |3〉, where the phonon
number is unchanged. E�ective Rabi flops between |1〉 and |2〉 can be driven at a rate of
Ω' using two beams, detuned from the auxiliary level by an amount Δ.

2.4 Stimulated Raman Transitions for an Ideal Atom

The following Section will now present a theoretical discussion of an ideal stimulated Ra-
man transition in a three-level system. A stimulated Raman transition is a two photon
process involving three levels, as shown in Figure 2.7. The first Raman beam (Raman
beam 1) has frequency l1 and drives the |1〉 ↔ |3〉 transition with Rabi frequency Ω1.
The second beam (Raman beam 2), with frequency l2, drives the |2〉 ↔ |3〉 transition with
Rabi frequency Ω2. The Raman transition involves population transfer between states |1〉
and |2〉 using the auxiliary level, |3〉, to mediate the process. It is important to note that
this auxiliary level contains (in the ideal case) a negligible amount of population1.

For an ideal Raman transition, an atom will interact with an electric field comprised of
two components, with the Hamiltonian of this perturbation given by:

�P = ℏΩ1cos(l1C) ( |1〉〈3| + |3〉〈1|) + ℏΩ2cos(l2C) ( |2〉〈3| + |3〉〈2|). (2.73)

Therefore, writing the cosine in terms of exponentials, the total Hamiltonian for the bare
atom as well as this perturbation is:

1In a real ion, each Raman beam couples the two ground state levels to the multiple Zeeman levels of
the auxiliary level. This is discussed in more detail in Chapter 8.
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� = �Atom + �P =
ℏ

2

©«
0 0 Ω1(48l1C + 4−8l1C)
0 2l0 Ω2(48l2C + 4−8l2C)

Ω1(48l1C + 4−8l1C) Ω2(48l2C + 4−8l2C) 2l′

ª®¬ , (2.74)

where the zero-energy level has been set at the |1〉 state. The interaction picture can now
be moved to by using a suitable splitting of �Atom, such that �0 is given by [57]:

�0 = ℏ
©«
X1 0 0
0 l0 + X 0
0 0 l′ − Δ

ª®¬ . (2.75)

The interaction Hamiltonian between the fields and ion is then found from:

�int = 4
8�0C/ℏ(� − �0)4−8�0C/ℏ,

=⇒ �int =
ℏ

2
48�0C/ℏ ©«

−2X1 0 Ω1(48l1C + 4−8l1C)
0 −2X Ω2(48l2C + 4−8l2C)

Ω1(48l1C + 4−8l1C) Ω2(48l2C + 4−8l2C) 2Δ

ª®¬ 4−8�0C/ℏ,

=⇒ �int =
ℏ

2
(Ω1( |1〉〈3| + |3〉〈1|) +Ω2( |2〉〈3| + |3〉〈2|) − 2X1 |1〉〈1| − 2X |2〉〈2| + 2Δ|3〉〈3|) ,

where in the final step the rotating wave approximation has been applied. However, as Δ
is free to be chosen, it can be set such that X1 = 0, and so the interaction Hamiltonian
correspondingly simplifies to:

�int =
ℏ

2
(Ω1( |1〉〈3| + |3〉〈1|) +Ω2( |2〉〈3| + |3〉〈2|) − 2X |2〉〈2| + 2Δ|3〉〈3|) . (2.76)

If Δ is much larger than the line-width of that state, Γ, then this interaction Hamiltonian
can be reduced to an e�ect two-level system by adiabatic elimination of the auxiliary level,
|3〉. For a three-level system, the general state of the wavefunction at any point in time can
be written as |k(C)〉 = 21(C) |1〉 + 22(C) |2〉 + 23(C) |3〉. The time-evolution of these coe�cients
can be found through using the time-dependent Schr¥odinger equation, such that:

8 ¤21 =
Ω1

2
23(C),

8 ¤22 =
Ω2

2
23(C) − X22(C),

8 ¤23 =
Ω1

2
21(C) +

Ω2

2
22(C) + Δ23(C).



32 Chapter 2. Background Theory

In the regime where Δ � Γ, there will only be a small likelihood of spontaneous emission
from the excited state. The fast dynamics of the excited state therefore average to zero,
and so |3〉 can be adiabatically eliminated (i.e. ¤23 = 0). The coe�cients can consequently
be rewritten such that:

Ω1

2
21 +

Ω2

2
22 + Δ23 = 0, =⇒ 23 = −

1

Δ

(
Ω1

2
21 +

Ω2

2
22

)
. (2.77)

The coe�cients can then be written as:

8 ¤21 = −
Ω1

2Δ

(
Ω1

2
21(C) +

Ω2

2
22(C)

)
= − 1

4Δ

(
Ω2

121(C) +Ω1Ω222(C)
)
,

8 ¤22 = −
Ω2

2Δ

(
Ω1

2
21(C) +

Ω2

2
22(C)

)
− X22(C) = −

1

4Δ

(
Ω1Ω221(C) + (Ω2

2 + 4ΔX)22(C)
)
.

The final Hamiltonian after this adiabatic elimination is therefore given by:

� = −ℏ
2

(
Ω2

1

2Δ
|1〉〈1| +

(
Ω2

2

2Δ
+ 2X

)
|2〉〈2| + Ω1Ω2

2Δ
( |1〉〈2| + |2〉〈1|)

)
. (2.78)

This is an e�ective two-level system with an e�ective Rabi frequency between the states
|1〉 and |2〉 given by the coe�cients of the o�-diagonal terms:

Ω' =
Ω1Ω2

2Δ
. (2.79)

As such, the three-level system can now be treated as a far simpler two-level system, with
coupling between the states given by Equation 2.79.

The diagonal terms in Equation 2.78 represent an energy shift of the |1〉 and |2〉 states by
amounts:

ℏΩ2
1

4Δ
and

ℏΩ2
2

4Δ
+ ℏX, (2.80)

respectively. These shifts are the AC-Stark shifts on states |1〉 and |2〉 due to the presence
of Raman beams 1 and 2 respectively. However, in reality, Raman beam 1 will also induce
an AC-Stark shift on state |2〉, as well as Raman beam 2 inducing an AC-Stark shift on
state |1〉. Equation 2.81 can be straightforwardly extended to include these e�ects, such
that:

ℏ

4

(
Ω2

1

Δ
+

Ω2
2

Δ − l0

)
and

ℏ

4

(
Ω2

2

Δ
+

Ω2
1

Δ + l0

)
+ ℏX. (2.81)
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When used with two ground-state levels, Raman transitions have a very narrow line-width
due to the negligible spontaneous decay rate from these states. Thus, if the same laser
is used for both Raman beams, a narrow line-width can be maintained without the need
for sophisticated external frequency stabilisation. This is in contrast to, for example, the
729 nm transition used for manipulation of the optical qubit [58]. Instead, the line-width
of the Raman transition is determined by the length of the interaction time due to the
Fourier limit:

ΔaLW ≈
_

g
, (2.82)

where g is the duration of the Raman pulse.

Spontaneous Scattering

Even when Δ is made to be very large, in reality there will always be a non-zero transfer of
population to the auxiliary state |3〉. As |3〉 is an excited state, which will generally decay
very quickly, this will lead to decoherence due to spontaneous scattering.

The rate of scattering is equal to the decay rate from the excited state, multiplied by the
fraction of population in that state – i.e. ' = Γd, where Γ is the rate of decay from
the excited state and d is the population of the excited state. For the ideal 3-level sys-
tem presented here with X = 0, and with the approximations that |Δ| � Γ, l0, then this
spontaneous decay rate is given by [59]:

' ' Γ
4

(
Ω2

1

Δ2
+

Ω2
2

(Δ − X)2

)
. (2.83)

2.4.1 Co-propagating Raman Fields

The geometry which the two Raman fields possess with respect to each other can have a
significant impact on the nature of the transitions which can be driven. The first geometry
which will be considered is that of co-propagating Raman beams, where the two beams
propagate parallel to each other. In such a geometry, the di�erence in k-vector of these
two beams is zero, and so the Lamb-Dicke factor is e�ectively zero, causing the electronic
excitation to be insensitive to the ion’s motion. This can be viewed in terms of momentum
transfer, as the ion absorbs a photon from one field and emits a photon into the other field
in the process of making the transition. If the absorbed and emitted photon propogate in
the same direction, as is the case here, then there is no net transfer of momentum to the
ion. In a similar way, if the vector di�erence ®Δ: is not zero, however ®Δ: · ®I0 is zero, then
there is no component in the direction of oscillation and so no coupling to the motion
in that direction. In this scenario, only carrier transitions can be driven by the Raman
beams, where the vibrational state remains unchanged (i.e. Δ= = 0). As the Lamb-Dicke
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Figure 2.8: Schematic of Sideband Raman Transitions. a) A blue-sideband transition,
where the final phonon number increases by 1. b) Raman transition displayed in Figure 2.7
b), where there is no change in the motional state of the ion. c) A red-sideband transition,
where the motional state decreases by 1.

parameter gives a measure of the coupling strength between the electronic and motional
states of the ion, so a low value of [ is expected for this geometry, as only transitions which
leave the motional state of the ion unchanged are allowed.

2.4.2 Counter-propagating Beams

As with one-photon transitions, transitions can also be driven on the red- and blue-
sidebands using Raman transitions. In order to drive transitions which change the mo-
tional state of the ion, the geometrical configuration of the two beams must be such that
there is coupling to the motional modes of the ion – i.e. some component of the : -vector
must lie along the same direction as the motional modes. This can be seen when consid-
ering Equation 2.67. This Equation is equally applicable to Raman transitions, which can
be most easily seen when considering the Raman transitions in the context of the two-level
Hamiltonian given in Equation 2.78. In this situation, the [ = :G0 term in Equation 2.67
must be replaced by the di�erence in : -vector between the two beams : → Δ: = | ®:1 − ®:2 |.
Such a non-zero : -vector can be achieved by having the second beam propagate in a di-
rection which has a component which is not parallel to the first beam. Figure 2.8 shows
schematics of the subsequent transitions which can then be driven. Figure 2.8 a) shows
a blue-sideband transition, where the frequency of the second Raman beam, Ω2, is blue-
detuned leading to a change in phonon number of +1. Figure b) shows a transition where
Ω2 is resonant with the carrier transition, and so the motional number remains unchanged,
even though this transition still couples to the motional modes. Finally, Figure c) shows
a red-sideband transition, with Ω2 correspondingly red-detuned, leading to a change in
phonon number of -1.
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The final Section of this Chapter will now introduce how entangling operations can be
implemented on multiple ions. These interactions can be implemented using both single-
photon as well as two-photon transitions, such as the stimulated Raman transitions just
discussed. .

2.5 Entangling Interactions

One of DiVincenzo’s criteria for constructing a universal quantum computer is the avail-
ability of a universal set of quantum gates [60]. However, a universal set of quantum gates
cannot be made solely from single-qubit quantum gates, requiring at least a two-qubit gate
[61]. The following Section will now introduce one of the most well-known multi-qubit
gates, the Mølmer-Sørensen (MS) gate [62], which enables multi-qubit entangling opera-
tions to be implemented using a bichromatic light field. The Section will first describe the
logistics of how such a gate can be implemented, firstly on a single ion in order to give a
thorough understanding of the situation. Following this, the implementation of the gate
on two qubits will be discussed. Finally, extensions of the MS gate to other Hamiltonians
such as the transverse Ising and XY models will be detailed.

2.5.1 Bichromatic Light Field and Single-Ion Motional Cat States

One of the most well-known schemes for generating entanglement between ions uses the
collective motional modes to provide a coupling between the ions, whilst minimising the
motional excitation [62, 63]. Such an interaction can be achieved by using a bichromatic
light field, where a field containing two frequencies is used to couple to the motional modes.

A bichromatic light field is a field containing two frequencies. This can be very simply
generated by summing two light fields with di�erent frequencies, detuned by Δ from a
common centre frequency l0. For the purposes of the entangling gates discussed here,
the most relevant detuning is when these two frequencies are near to the frequencies of
the red and blue sidebands.

The resulting Hamiltonian from this light field is then simply the sum of the Hamiltonians
of the red and blue sidebands. Using Equation 2.68 with two light fields at the red and
blue sideband frequencies, ±(l+Δ), and with Ω=,=+1 = Ω=,=−1 = Ω this can be seen to take
the form:

�bic =
8[ℏΩ

2

(
f+0

†4−8ΔC48q1 − f−048ΔC4−8q1 + f+048ΔC48qA − f−0†4−8ΔC4−8qA
)
, (2.84)

where q1 and qA are the phases of the blue and red detuned light fields respectively. By
defining the two phases q+ =

q1+qA+c
2 and q− =

q1−qA
2 , Equation 2.84 can be rearranged

into the form:
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�bic =
[ℏΩ

2

{(
48q+f+ + 4−8q+f−

) (
0†4−8ΔC48q− + 048ΔC4−8q−

)}
. (2.85)

As q+ and q− are independent they are free to be chosen. The simplest value to choose is
to set both of these phases equal to 0, and so Equation 2.85 can be simplified to:

�bic = ℏ[ΩfG

(
0†4−8ΔC + 048ΔC

)
. (2.86)

This bichromatic Hamiltonian can be understood as an o�-resonantly driven quantum har-
monic oscillator (see Section 2.2.2). Instead of the linear displacement arising from a
resonantly driven harmonic oscillator, the o�-resonant bichromatic driving causes the
wavefunctions to move on circular trajectories in phase space. The spin operators in
Equations 2.85 and 2.86 cause this bichromatic driving force to depend on the internal
(electronic) state of the ion, a quality which will be shown to give rise to particularly
interesting dynamics in the following Sections.

Single-ion Motional Cat States

Superpositions of distinguishable, macroscopic quantum states were first introduced by Er-
win Schr¥odinger back in the 1930s with his famous thought experiment involving a both
dead and alive cat [64]. Since this point, superpositions of macroscopic, distinguishable
quantum states have been referred to as “Schr¥odinger cat states". Such states resembling
these cat states can be created using a single ion trapped in a harmonic potential by ex-
ploiting coupling between the electronic and motional states of the particle. The first
experiment of cat-like states using what the authors termed a ‘mesoscopic’ or ‘intermedi-
ate size’ system entangled an ion’s motional state with its internal electronic states [65].
Cat states can be prepared through the use of a single, bichromatic laser pulse [49, 66].
To understand how a bichromatic light field can create such states, first consider an ion
initialised in the electronic ground state and motional ground state:

|k0〉 = | ↓〉|0〉<, (2.87)

where |↓〉 is the electronic ground state, and |0〉< is the motional ground state. As will
become clear below, it is instructive to consider this state when the electronic state is
written in terms of the eigenstates of the bichromatic Hamiltonian – from Equation 2.86
it can be seen that these are the - -basis states. In this case,
| ↓〉 = 1/

√
2( | ↓ + ↑〉 − | ↓ − ↑〉) = 1/

√
2( |+〉 − |−〉), and so:

|k0〉 =
1
√

2
( | ↓ + ↑〉 − | ↓ − ↑〉) |0〉< =

1
√

2
( |+〉 − |−〉) |0〉< . (2.88)

Figure 2.9 a) shows this motional ground state (blue sphere), which has a Gaussian distri-
bution in position-momentum space.
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(a) (b) (c)

Figure 2.9: Phase Space Representation of a Single-Ion Motional Cat State a) The
motional ground state has a Gaussian distribution in position-momentum space (blue
sphere). b) When under the influence of a bichromatic light field, a state-dependent force
acts on the motional ground state. The two orthogonal spin states, |+〉 and |−〉, are dis-
placed in opposite directions, following circular trajectories in phase space. c) A complete
circle is obtained every g = 2c/X, where X is the detuning of the bichromatic beam.

Consider now the application of a detuned bichromatic light beam with frequencies l0 ±
(lsb+Δ), and Hamiltonian given by Equation 2.86, to this state. The propagator describing
the evolution of the system under this Hamiltonian is subsequently [67]:

* (C) = � (U(C)) |+〉〈+| + � (−U(C)) |−〉〈−|, (2.89)

where � (U(C)) = 4U0
†−U∗0 is a displacement operator (see Equation 2.41) with time-

dependent amplitude U(C) = [Ω

2X (1−4
−8ΔC). The bichromatic beam acts in a state-dependent

way on the motional degree of freedom, |0〉<, resulting in:

|k〉 = � (U(C)) |k0〉 =
1
√

2
( |+〉|U(C)〉 + |−〉| − U(C)〉). (2.90)

This is a motional cat state, where it can be seen that the |+〉 state has become entangled
with a coherent state displaced to |U(C)〉, and the |−〉 state has become entangled with a
coherent state displaced to | − U(C)〉. Figures 2.9 b) and c) show a pictorial representation
of this. The two orthogonal spin states, |+〉 and |−〉 move in opposite directions in phase
space. After application of the bichromatic beam for a time g = 2c/X, a complete circle
in phase space is made and the two spin states recombine at the origin. The phase picked
up, Φ, is proportional to the area enclosed by these trajectories. Both phases have the
same sign as the states rotate in the same direction.

The probability for the ion to be found in the | ↑〉 state after application of the bichromat
beam is then:
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%|↑〉 = |〈+|k〉|2 =
1

2
− 1

2
exp

(
−2

����[Ω2Δ (1 − 4−8ΔC)����2
)
, (2.91)

where Ω is the Rabi frequency of each beam on the carrier transition (assumed to be
equal), and Δ is the (equal) detuning of each beam from its respective sideband.

2.5.2 The Mølmer-Sørensen Interaction

The application of the bichromatic beam to a single ion described above can now be ex-
tended to explore the dynamics from application of such a beam to multiple ions – so
forming the basis for the Mølmer-Sørensen (MS) gate [62]. The MS gate will form the
basis for many of the interactions considered in the remainder of this thesis, and so it is
important that a thorough understanding is gained.

The MS gate couples spins through o�-resonant excitation of vibrational modes [62], and
is an extension to the motional cat state preparation described above. By again detuning
the laser frequency by an amount close to the frequency of the common mode, so sitting at
frequencies equal to l0± (lsb+Δ), entanglement can be deterministically created between
the internal and motional states of the ion. The motional states of the ions then act as an
e�ective ‘bus’ system for entanglement.

Figure 2.10 a) gives a pictorial illustration of the MS gate. In the Figure, the case for two
ions is shown for simplicity (however the gate generalises to the multi-qubit case) with
the bichromatic laser beam tuned away from the blue and red sidebands by an amount
±Δ respectively. Consider the initial two-qubit state where both qubits are in the elec-
tronic ground state with phonon number =, i.e. | ↓↓, =〉. If this state absorbs a photon
from the negatively detuned laser beam, −lsb − Δ, it will be o�-resonantly excited to ei-
ther of the states | ↑↓, = − 1〉 (following path P1) or | ↓↑, = − 1〉 (following path P1’) with
equal probability. If these states now absorb a photon from the positively detuned laser
beam, lsb +Δ, then they will transition to | ↑↑, =〉. The same result occurs when the initial
state first absorbs a photon from the positively detuned laser beam (following paths P2
or P2’), followed by a photon from the negatively detuned laser beam. It is crucial that
the detuning of the two frequencies in the bichromat beam is the same, such that the sum
of the two beat-note frequencies is 2l0. As such, providing the detuning Δ is su�ciently
large to suppress population in the intermediate states, the ions undergo the transition
| ↓↓, =〉 ↔ |↑↑, =〉.

The subsequent Hamiltonian of this bichromatic beam applied to two ions, with one of
their shared motional centre-of-mass (COM) modes used for the interaction, is the sum of
Equation 2.86 for each ion:
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Figure 2.10: Illustration of the MS-Gate. a) Two qubits illuminated by a bichromatic
beam detuned from the red and blue sidebands by Δ. For two qubits which start in the
electronic state | ↓↓〉 and motional state =, there are four possible paths which can be fol-
lowed: P1, P1’, P2, and P2’. Along the first path, P1, the first qubit e�ectively undergoes
a transition detuned by −Δ from the red sideband, with the second qubit e�ectively un-
dergoing a transition detuned by +Δ from the blue sideband. In path P2, the first qubit
e�ectively undergoes a transition detuned by +Δ from the blue sideband, with the second
qubit e�ectively undergoing a transition detuned by −Δ from the red sideband. Paths
P1’ and P2’ are identical to P1 and P2 respectively, except with the order of the qubits
reversed. b) Phase-space representation of the MS-gate. The two electronic eigenstates
|+ +〉 and | − −〉 (blue spheres) experience a state dependent force, pushing them around
circular trajectories in phase space. | + −〉 and | − +〉 (green) remain stationary during this
interaction.

�MS = ℏ[Ω

(
fG1 (04

8ΔC + 0†4−8ΔC) + fG2 (04
8ΔC + 0†4−8ΔC)

)
= ℏ[Ω(fG1 + f

G
2 ) (04

8ΔC + 0†4−8ΔC). (2.92)

The evolution of the state under this Hamiltonian is obtained by again calculating the
propagator, yielding [68]:

* (C) = 4−8�MSC/ℏ = 4(W(C)0
†−W(C)∗0)C = � (U(G)48Φ(C)(

2
G , (2.93)

where � (U) = 4U0†−U∗0 is a displacement operator with time-dependent amplitude
U(C) =

∫ C

0
3C1W(C1) = [Ω

Δ

(
4−8ΔC − 1

)
, (G = fG1 + f

G
2 is the spin operator,

Φ(C) = Im
∫ C

0
3C1W(C1)

∫ C1

0
3C2W

∗(C2) =
(
[Ω

Δ

)2
(sin(ΔC) − ΔC) is a time-dependent geometri-

cal phase, and W(C) = −8[Ω4−8ΔC(G . Figure 2.10 b) shows a phase space representation of
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how this propagator acts. The two electronic eigenstates | + +〉 and | − −〉 (blue spheres)
move in opposite directions in phase space, picking up a geometrical phase of Φ. | + −〉
and | − +〉 (green) remain stationary throughout these dynamics. At time C = g = 2c/Δ,
� (U) goes to zero, and the two wavefunctions return to the origin once more, having
made a complete loop in phase space. At this point, the electronic and motional degrees
of freedom of the ions become decoupled, with the motional degree of freedom returning
to its initial state. The wavefunction, however, has picked up a phase Φ equal to:

Φ(g) = 2c<

(
[Ω

Δ

)2

, (2.94)

where < is an integer. As the motional degree of freedom has returned to its initial state,
this phase is part of the electronic state. By substituting this phase into Equation 2.93,
�MS reduces to an e�ective Hamiltonian given by:

�MSe� = −ℏ�fG1 ⊗ f
G
2 , (2.95)

where � = ([Ω)2/Δ is the strength of the interaction between the two spins. It can be seen
that this Hamiltonian describes pair-wise spin-flips, where spin 2 only flips if spin 1 flips,
due to the fG1 ⊗ f

G
2 interaction.

If the sideband frequency is set such that Ω = Δ/4[, then at g = 2c/Δ a maximally
entangled Bell state is formed for any initial motional state |=〉.

Practical Considerations for the MS Gate

Equation 2.95 will cause a maximally entangled Bell state to occur half-way through the
dynamics as long as the intermediate states, | ↓↑〉 and | ↑↓〉, are negligibly occupied. This
occurs when the actual motional excitation induced by the gate is minimised. Such a
situation can be achieved by having a very large detuning, Δ, with respect to the Rabi
frequency, Ω, when driving at the sideband frequency, lsb. However, in increasing Δ, the
Rabi frequency of the MS gate, Ω̃MS, is reduced. As such, it is often advantageous to have
a smaller Δ in order to retain a relatively fast gate-time (as will be seen in Chapter 8, a
fast gate-time is on the order of 100 `s for this work) in which case there will no longer be
a non-negligible population in | ↓↑〉 and | ↓↑〉. However, by choosing specific values for Δ,
which are dependent on the Rabi frequency, Ω, when driving at the sideband frequency
lsb, the population in these states can be made to go to zero at the point of maximal
entanglement. The value of Δ for which this occurs is given by:

ΔME = 2
√
<[Ω, (2.96)

where < is an integer. The maximum excitation which can be achieved during the inter-
action will then have mean quantum number =̃ = </2.
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Extension beyond two qubits

The MS gate described above has only considered a two-qubit state, however it can be
straightforwardly extended to an # -qubit state. To do this, the Pauli matrices should be
extended to the spin operators, defined such that (G

#
=

∑#
8 f

G
8
. In doing so, the MS-

interaction produces entangled states of the form [69]:

|Φ〉 = ( |0〉⊗# + |1〉⊗# ). (2.97)

2.5.3 E�ective Transverse-Field Ising Hamiltonian

The MS gate forms the basis for many interesting Hamiltonians, one of which is the
transverse-field quantum Ising model. The Ising model can be obtained by adding an
asymmetric detuning, X, to the bichromat beam used to implement the MS interaction,
so creating an additional e�ective transverse magnetic field. In adding this asymmetric
detuning, the Hamiltonian for a qubit experiencing the bichromatic beam (Equation 2.86)
becomes:

� =
ℏ[Ω

2
(f+4−8XC + f−48XC) (0†4−8ΔC + 048ΔC). (2.98)

An interesting point to now consider is how this Hamiltonian can be extended for more
than one qubit – for example, for application of the bichromatic beam to a string of N
qubits. In this case, the f± operators can be replaced by the collective operators which
act on the N qubits, (± =

∑#
8 f

±
8
. In this case, Equation 2.99 becomes:

� =
ℏ[Ω

2
((+4−8XC + (−48XC) (0†4−8ΔC + 048ΔC). (2.99)

The time evolution of this Equation can be determined by using the Magnus expansion,
the detailed derivation of which is left to sources such as [47]. When in the weak coupling
regime, characterised by [Ω � Δ (i.e. the detuning from the sidebands is much greater
than their respective resonant coupling strength), then Equation 2.99 reduces to:

� = ℏ�

#∑
8< 9

(
f+8 f

+
9 4
−28XC + f+8 f−9 + f−8 f+9 + f−8 f−9 428XC

)
, (2.100)

where � = (Ω[)2/Δ is the spin-spin coupling strength. This Hamiltonian is e�ectively
a pure spin-spin Hamiltonian at all times during the dynamics, with the spin motion
becoming virtually entangled. Three regimes of importance can be identified for Equation
2.100.

1. X = 0: In this case, Equation 2.100 straightforwardly reduces to the Hamiltonian of
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the MS interaction:

�MS = ℏ�

#∑
8< 9

(
f+8 f

+
9 + f+8 f−9 + f−8 f+9 + f−8 f−9

)
= ℏ�

#∑
8< 9

fG8 f
G
9 . (2.101)

2. X ≈ �: When the detuning X is non-zero, but on the order of the quantity �, then
an interesting regime is reached. First, Equation 2.100 can be written in a time-
independent form by using �SS = �SS − �0 + �0, where �0 = − X2

∑
8 f

I
8
[47]. Moving

to an interaction picture with respect to �0 then gives:

�Ising = ℏ�
∑
8< 9

fG8 f
G
9 + ℏ�

∑
9

fI
9
, (2.102)

where � = X/2 is the e�ective transverse magnetic �eld strength. This Hamiltonian is the
quantum Ising model.

3. X � �: The final regime is that where the detuning is far greater than �. In this
case, the RWA can be applied to the exponential terms oscillating at 4±28XC , and so
Equation 2.100 simplifies to:

�XY = ℏ�
∑
8< 9

(f+8 f−9 + f−8 f+9 ). (2.103)

This is the XY model of hard-core, hopping bosons [23]. Note that the spin raising
and lowering operators appear together, so as one spin excitation is removed, an-
other one is added. As such, the number of spin excitations initially present in the
system is conserved throughout the course of the dynamics.

2.5.4 Tunable-Range Interactions and the Spin-Spin Coupling Ma-
trix

The above discussions have all considered the ideal case where the bichromatic beam
couples to a single mode – the COM-mode – where the motion of all ions is identical (i.e.
same phase and amplitude). For this situation, the Lamb-Dicke parameter for all ions in
the string is identical. However, in reality it is often the case that the bichromatic beam
will couple to additional modes of motion, such as the ‘stretch’ or ‘rocking’ mode [47]. Un-
like the COM mode, these modes will not a�ect each ion in the same way and, as such, a
non-uniform Lamb-Dicke parameter for each ion, [8, will arise (see Section 3.1.3 of [47] for
a detailed discussion). The structure of these additional modes will directly influence the
spin-spin coupling strength, which becomes dependent on the particular ions, i.e. � → �8 9 .

The physical interpretation of �8 9 is that it describes the transmission of an e�ective spin-
spin interaction through collective vibrational modes [22]. For a particular direction, here
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considered to be the transverse direction (although exactly the same holds for the axial
direction), for a mode, =, �8 9 takes the form [47]:

�8 9 =
Ω8Ω 9

2

2#∑
8, 9

[8=[ 9=

Δ + (l0 − l=)
,

where [8= is the Lamb-Dicke parameter for ion 8 and mode =, l0 is the centre frequency,
and l= is the frequency of the mode =. Here, the sum goes to 2# as the transverse modes
are considered (for which there are two contributions from a linear Paul trap), however
for the axial modes this sum would instead go to # . As such, it can be seen that �8 9 is
determined by the characteristics of the transverse modes of motion and detuning Δ. The
strength of this spin-spin interaction approximately follows a power-law dependence with
distance between the ions [22, 47, 70–72]:

�8 9 ∼
�max

|8 − 9 |U , (2.104)

where |8 − 9 | is the distance between ions 8 and 9 , �max is the maximum value of the cou-
pling matrix such that �max = max|�8 9 |, and U is the interaction range. As the detuning of
the bichromat, Δ, is changed, the coupling to each mode, and therefore the relative con-
tribution of each mode to the dynamics, changes. As such, U can be modified by altering
Δ. This leads to a tunable range interaction, where U can be tuned by altering both Δ and
the frequency of the motional modes.

If only the COM mode is coupled to, then U→ 0, and so �8 9 → �. In this case, an infinite-
range interaction is achieved, where the spin-spin coupling between all ions is the same2.
The counter-regime is when U = 3, a situation where only nearest-neighbour interactions
exist.

2.6 Conclusion

This Chapter has presented the theoretical basis upon which the remainder of this thesis
is based. Perhaps of most relevance are the discussions regarding the interaction of a light
field with a trapped atom, which give rise to a scheme to enable entangling gates to be
implemented on trapped ions. The following Chapter will now introduce the experimental
platform which is used to perform the experiments described in subsequent Chapters,
detailing the most relevant experimental components as well as major upgrades performed
during the course of this thesis.

2Such a regime cannot be achieved using the transverse motional modes of a linear Paul trap, due to the
proximity of the radial modes to one-another. As such, it is not possible to couple solely to the COM-mode,
as there will always be a significant amount of coupling to the other transverse modes. In principle, such
a regime is possible by coupling instead to the axial modes of motion, where the separation between the
motional modes is much greater than Δ.





Chapter 3

Experimental Setup &Characterisations

Having set up the theoretical basis for understanding quantum computations and simula-
tions with trapped ions, this Chapter will now look at the experimental hardware on which
the experiments described in this thesis were performed – termed the quantum simulation
or ‘QSim’ experiment. The QSim experiment uses long, linear strings of calcium-40 ions
confined in a linear Paul trap to implement quantum simulations. The Chapter will first
give a brief overview of the existing setup, before detailing two major upgrades which
were implemented during the course of this thesis. The first of these involves the setup of
the MSquared laser system and optical setup in order to implement Raman gates. Char-
acterisation measurements using this setup are presented in Chapter 8. The second is the
replacement of the magnetic field coils with permanent magnets. Measurements demon-
strating the associated improvement in coherence time will then be presented.

3.1 Overview of the Existing Setup

The major components of the experimental setup, including the ion trap, vacuum cham-
ber, and main laser systems, have been previously well-detailed and characterised in
[49, 58, 73–75]. This Section will therefore provide a brief overview of the major elements
of the experimental system in order to establish a common terminology and understanding
of the system, which is necessary to understand the remainder of this thesis.

3.1.1 Trap, Vacuum Vessel, and Major Laser Systems

The QSim experiment uses a macroscopic linear Paul trap with blade electrodes (often
termed the ‘Innsbruck trap’) where the design has been based on [76]. This trap is distinct
from the more well-known linear Paul traps as shown in Section 2.2 which have cylindrical-
shaped RF electrodes, as the ‘Innsbruck trap’ has distinctive blade-shaped RF electrodes.
Such a design allows increased machining and alignment precision of these electrodes.
The trap has a blade-to-blade distance of 1.3mm and tip electrode separation of 4.5mm

45
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(a)

Blade
Electrodes

Tip
Electrodes

(b)

Figure 3.1: ‘Innsbruck Style’ Macroscopic Linear Paul Trap a) A picture of the trap
itself, taken by M. Rambach. b) Illustrative rendering of the trap (not to scale). Two
opposite blade electrodes receive an RF voltage at typical values on the order of 29MHz,
with the remaining two electrodes held at ground. This creates a ‘time-varying saddle po-
tential’, which provides radial confinement of the ions (blue spheres) with a typical radial
motional frequency around 2c×2.7MHz. Two DC blade electrodes provide axial confine-
ment. Typical voltages for the DC electrodes can vary from 9V to 900V, corresponding
to axial motional frequencies in the range of 2c×118 kHz to 2c×1.2MHz.

[49]. The tip electrodes have holes of diameter 0.5mm drilled in them, allowing optical ac-
cess along the ion string. Full simulations and subsequent characterisation measurements
of the trap are detailed in [49]. Figure 3.1 a) shows a picture of the trap itself, with b)
giving an illustrative rendering. The illustration shows a more expanded view of the trap;
two opposite blade electrodes receive a radio-frequency (RF) voltage, with typical values
for the RF on the order of 29MHz. The two remaining electrodes are held at ground. This
creates a ‘time-dependent saddle potential’, so confining the ions in the radial direction,
with typical radial motional frequencies on the order of 2c×2.7MHz. Two DC electrodes,
supplied with voltages anywhere from 9V to 900V, provide axial confinement of the ions,
resulting in axial frequencies in the range of 2c×118 kHz to 2c×1.2MHz. As a result, the
ions form long, linear chains along the middle of the trap. At present, the trap is able to
hold in excess of 50 ions in a linear chain [77].

Throughout this thesis, the frequency of the radial modes is in the range lr = 2c×2.65-
2.85MHz, and of the axial mode is typically chosen to be lax ≈ 2c×220 kHz. In order
to lift the degeneracy of the two radial modes, a DC-o�set voltage is applied to the two
blade electrodes held at ground. In this thesis, the frequency splitting of the radial modes
induced by this voltage is in the range Δr = 2c×30-500 kHz.

The linear Paul trap is housed in a vacuum vessel with multiple optical access capabili-
ties. Figure 3.2 a) shows a schematic of the vacuum chamber as viewed from above, with
some of the main beam paths shown. The 854 nm and 866 nm ‘repump’ lasers remove
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Figure 3.2: Schematic of the major beam paths into the vacuum chamber. a) The
beam paths as viewed from above the vacuum chamber. b) Beam paths as viewed from
the side of the vacuum chamber. The residual gas analyser (RGA) is no longer in use.

population from the D5/2 and D3/2 levels respectively, and are used for initialisation of
the qubit in the S1/2 state. The 397 nm laser is used for both Doppler cooling of the ion
string as well as read-out of the quantum state (i.e. detection). The fluorescence induced
by this beam is collected via two paths: one leads to a photomultiplier tube (PMT)1, and
the second to an EMCCD Camera2. Also shown in this schematic are two beam paths
from the 729 nm laser. The 729 nm laser is an ultra-stable, narrow linewidth laser which
allows coherent manipulation of the qubit encoded in the |S1/2〉 and |D5/2〉 states. The
laser, its locking schemes, and characterisation measurements are thoroughly described
in [49, 58, 75]. Figure 3.2 a) shows the two most important 729 nm optical access paths
for this thesis: the ‘radial beam’, which couples maximally to the radial modes of motion,
and the ‘single-ion addressing’ beam. Both of these will be discussed in more detail below
(see Section 3.1.2).

Figure 3.2 b) shows a schematic of the vacuum chamber from the side vantagepoint. This
schematic shows the two photoionisation (PI) beams, which pass through a small hole
drilled in one of the tip-electrodes and are used to ionise 40Ca atoms for trapping. Passing
through the hole of the opposite tip-electrode is another 729 nm path, the ‘tip path’ which
couples maximally to the axial modes of motion. The final 729 nm beam path is the
‘vertical’ beam. This in fact enters the chamber at a 60◦ angle to the quantisation axis,
so allowing coupling to both the radial and axial modes of motion when a mixture of
circularly and linearly polarised light is used.

1Sens-Tech P25PC
2Andor iXon “Blue"
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Originally, the South and North viewports had a pair of coils mounted on them, gener-
ating a constant magnetic field of approximately 4G, used to split the 40Ca+ levels into
their Zeeman sub-levels. The axis of this magnetic field, which defines the quantisation
axis, is along the axis of the ion trap, as shown in Figure 3.2. The upgrade of these coils
to permanent magnets is discussed in Section 3.4.

Of these multiple 729 nm beam paths which are shown in the Figure, there are two main
beam paths which are of particular relevance to this thesis, being the primary beams used
in experiments such as those discussed in Chapters 6 and 7. These two paths will now be
discussed in more detail to provide a su�cient understanding of the experimental setup.

3.1.2 Major 729nm Beam Paths: Radial Beam and Single-Ion
Addressing Beam

The 729 nm radial beam is a large beam which has been elliptically shaped through the
use of beam-shaping optics. The elliptical shape of the beam profile allows the power in
the beam to be used more e�ciently, distributing the power such that all ions have ap-
proximately equal Rabi frequencies [47]. The radial beam can be used for implementing
global rotations on the ion strings which a�ects all ions equally. In addition, this beam
path can be used to implement entanglement operations on the ions through the use of
a trichromatic beam (see Chapter 6). The radial beam is perpendicular to the trap axis,
and so has maximum overlap with the radial modes of motion.

The QSim single-ion addressing system used in this thesis has been detailed and charac-
terised thoroughly in [49]. It is a tightly-focussed beam (with a beam waist on the order of
2-3 `m) which allows spatially selective individual addressing of single ions. It is generated
using an Acousto-Optic Deflector (AOD)3. When given an input frequency in the range of
50-100MHz, the AOD deflects the incident beam by an amount proportional to the input
frequency, so allowing the beam to be accurately spatially manipulated.

The single-ion addressing beam used for the experiments detailed in Chapters 6 and 7 was
limited to addressing on the order of 20 ions. This was due to both aberrations arising
from the beam no longer passing through the centre of the optics along the beam path,
as well as clipping of the addressing optics along this path as the angle of deflection was
changed by the AOD. However, the capabilities of the single-ion addressing setup was very
recently upgraded, allowing addressing of over 50 ions to be achieved. The new system is
detailed and characterised in [77].

Having described the major components of the pre-existing setup, the remainder of this
Chapter will now describe two main improvements to the setup: The first of these is the
setup and operation of a new laser, the ‘Raman Laser’, and the optical setup for imple-

3Gooch & Housego: 45060-5-6.5DEG-633
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menting Raman transitions. This will subsequently be used in Chapter 8 to implement
Raman transitions on the ground states of the 40Ca+ ion.

3.2 Raman Laser

This Section will describe the laser system used in the Raman setup, including its locking
schemes, and is intended to be used as a manual for setting up and operating the laser
system. Section 3.3 details the optical setup which this laser system is used with to imple-
ment the Raman gates, with characterisation measurements detailed in Chapter 8.

The Raman laser system consists of a pump laser operating at 532 nm4, seeding a Titanium
Sapphire crystal generating light at 788 nm5. This in turn is further frequency doubled to
394 nm6 by an LBO crystal. Both the SolsTiS and ECD-X modules are controlled through
the ICE-Bloc7 control unit.

3.2.1 Generation of 788nm Light from the SolsTiS Cavity

The 532 nm pump laser is converted to 788 nm light through the use of a titanium-doped
sapphire crystal gain medium in the SolsTiS cavity. Figure 3.3 shows the optical setup
of the pump beam and SolsTiS. The pump laser light (right of image) is coupled into
the SolsTiS cavity using two in-coupling mirrors. The cavity is arranged in a bow-tie
configuration so that the cavity oscillates on a single frequency, so avoiding spatial hole
burning e�ects in the crystal. In addition, an optical diode (green) ensures that the cavity
lases in only a uni-directional manner, so increasing output power and further ensuring
only a travelling wave can exist in the cavity, again minimising spatial-hole burning [78].

Alignment of the pump beam into the SolsTiS

The 532 nm pump beam can be aligned relatively straightforwardly into the SolsTiS cavity.
Using only low pump power (∼100mW), align the pump beam into the SolsTiS using the
X-Y adjustments of the two in-coupling mirrors on the right of Figure 3.3. The Z-alignment
of these mirrors should never be touched. Ensure the beam passes cleanly through the aperture
placed before the SolsTiS cavity. Using a piece of paper, look for a faint green spot at the
output of the cavity along the path to the wavemeter; if this is not present then readjust
the in-coupling to the SolsTiS cavity until this can be seen. Move the second mirror of
the in-coupling optics in both the X and Y directions while observing this spot in order
to determine when clipping occurs, and so where the centre of the adjustment range is,
before positioning the mirror so that the spot is in the centre of this adjustment range.

4Lighthouse Photonics Sprout
5MSquared SolsTiS-SRX
6MSquared ECD-X Doubling Cavity
7MSquared ICE-Bloc® photonic control platform
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Figure 3.3: 788nm light generation. The pump beam at 532 nm is coupled into the
SolsTiS cavity through the in-coupling mirrors. When in the SolsTiS, the pump beam is
converted to 788 nm through use of a titanium-sapphire gain medium. Most of the light at
788 nm is then out-coupled to the ECD-X cavity. The wavelength of the light is stabilised
through locking to the ‘Reference Cavity’, via a pick-o� from the out-coupled light. A
small portion of light is further picked-o� and sent to the wavemeter for monitoring of the
wavelength and mode structure.

While using an IR viewer to look at the piece of paper at the output of the SolsTiS, slowly
increase the pump power to ∼3.5W. If a bright IR spot appears, the SolsTiS is lasing,
and a power-meter can then be used in order to optimise the lasing using the in-coupling
mirrors. If no lasing is seen, move the second mirror by approximately a quarter of a turn
in the X-direction. Continue this if lasing is not seen, however ensure that the edge of
the adjustment range is not neared. If lasing is still not seen, methodically move in the Y-
direction by a small amount, followed by a scan of the X-range (e�ectively forming an X,Y
raster). Again ensure that the edge of the adjustment range is not neared, as clipping on
the internal optics of the SolsTiS with high pump power could potentially cause damage.
When optimally aligned, an output of approximately 4W at 788 nm should be achievable
when the pump is set to 15W. The SolsTiS cavity and reference cavity is a hermetically
sealed unit which prevents humidity and contaminants from the air causing degradation
of the SolsTiS output e�ciency. As such, the lid of the SolsTiS should never be removed.

Once exiting the cavity, there are two options as to where the 788 nm light can be sent:
one option is through the path leading to the wavemeter, with the other path directing
the light to the ECD-X doubling cavity to be further frequency doubled. The amount of
light directed into each of these paths can be adjusted using the half-waveplate, shown in
Figure 3.3.

Setting the Wavelength

The SolsTiS cavity contains a motorised birefringent filter (red), controlled by the ICE-
Bloc. This introduces a wavelength-dependent loss into the cavity, and so rotation of this
element allows coarse tuning of the wavelength of the output light. A polarising beam
splitter at the exit of the cavity is used to direct a portion of the 788 nm light to a waveme-
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ter8, which is used to monitor the frequency and mode of the 788 nm output. Through
using the ICE-Bloc software to rotate the birefringent filter and monitoring the output on
the wavemeter, a suitable setting for the wavelength can be chosen.

Further fine-tuning of the wavelength can then be achieved through adjustment of the spac-
ing of the intracavity etalon (grey), also controlled by the ICE-Bloc. The etalon introduces
a spectral loss to the cavity which can be tuned by adjusting the spacing of the etalon.
This loss is a much sharper function of frequency than the birefringent filter, and so cor-
respondingly provides a much finer-tuning of the wavelength.

This SolsTiS comes with an additional reference cavity module, shown in Figure 3.3. The
788 nm light generated from the SolsTiS can be frequency-locked to this reference cavity,
as will now be described.

Locking the SolsTiS

There are two locking schemes in the SolsTiS module – locking of the etalon and locking
to the reference cavity. A schematic overview of the components involved in the locking
schemes is given in Figure 3.4.

To ensure the SolsTiS is operating single-mode and so maximise power output, the peak of
the intracavity etalon transmission can be locked to the nearest longitudinal mode which
is oscillating in the SolsTiS cavity. In order to achieve this, the spacing of the etalon can
be dithered by a sine-wave with a frequency typically on the order of a few kilohertz. This
causes amplitude fluctuations of the same frequency to be imprinted on the output light
of the etalon, which is detected by the etalon photodiode Pet. This photodiode signal
is then split into two paths: In one path, the signal is multiplied by the squared sine-
wave signal. In the second path, it is multiplied by the squared inverted sine-wave signal.
By subtracting and integrating these two signals, an error signal can be obtained which
depends on the phase di�erence between the two signals [58]. When the etalon drifts
away from the transmission maximum, the phase di�erence between the two signals will
correspondingly change, with this change fed back to the etalon through servo electronics.

The linewidth of the laser can then be further reduced to less than 50 kHz [78] through
locking the SolsTiS to the reference cavity. The reference cavity is an integrated, temper-
ature controlled, sealed design with all optics mounted on Invar [78]. The SolsTiS cavity
length can be locked to this reference cavity using a ‘side-of-fringe’ locking scheme, which
feeds back to the piezo-mounted mirror in the SolsTiS cavity, S3. The major components
of this scheme are shown in Figure 3.4. When the lock is first engaged, S3 is tuned until
the SolsTiS is on resonance with the reference cavity. Once resonance is achieved, the
side-of-fringe locking scheme is activated.

8HighFinesse WS7 MC8
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Figure 3.4: Schematic of the SolsTiS locking schemes. Only the elements relevant
to the locking scheme are shown in the Figure. Etalon locking: The transmission from
the etalon is combined with a sine-squared signal to form an error signal. This is fed
back to the etalon through the servo electronics in order to keep the etalon locked to the
nearest longitudinal mode of the SolsTiS cavity (see text). Side-of-fringe locking: The
transmitted signal on P2 is first normalised by the signal on P1, before being subtracted
from a reference level. As such, fluctuations in the intensity of the signal are directly
proportional to fluctuations in the frequency, generating an error signal. This is fed back
to S3 through servo electronics (see text).

The side-of-fringe locking technique is a simple, well-known method which stabilises the
laser to the side of a cavity fringe [79, 80]. There are two photodiodes in the reference
cavity, P1 and P2, which are used for the side-of-fringe locking, as can be seen in Figure
3.4. P1 monitors the output signal from the SolsTiS cavity, just before it enters the refer-
ence cavity. The transmission through the reference cavity is monitored on photodiode
P2. The half-power point of the transmitted intensity on P2 is directly proportional to fluc-
tuations in the laser frequency [79]. An error signal can then be generated by subtracting
the transmitted signal from a reference level which is set to this half-power point, with the
zero crossing of the error-signal corresponding to the half-power point. This error signal
is fed back to S3 via servo-electronics, so keeping the SolsTiS cavity on resonance with
the reference cavity.

The half-power point may also fluctuate due to changes in the intensity of the output light
of the SolsTiS cavity. In order to di�erentiate frequency fluctuations from changes in the
intensity, two photodiodes are necessary – P1 and P2. As P1 monitors the direct output
from the SolsTiS cavity, it is used to normalise any intensity changes detected on P2 due
to fluctuations in the intensity output of the SolsTiS cavity. This ensures that any changes
in the transmitted half-power are as a direct result of fluctuations in frequency.
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Figure 3.5: Schematic of the 394nm laser generation. The 788 nm light (incident from
the right) is further frequency doubled in the ECD-X Doubling Cavity to 394 nm light
through an LBO crystal (black). The locking path (top) overlaps a reflected path from M1
with a transmitted path through M1 from M4.

When locked, the SolsTiS has a frequency drift due to drift of the reference cavity. This
drift is quoted to be typically < 100 MHz/hr/◦C [78].

3.2.2 Generation of 394nm Light

If the 788 nm is directed to the ECD-X doubling cavity, the frequency can be doubled to
394 nm using an LBO crystal. The wavelength of the output light cannot be independently
tuned as with the SolsTiS, instead being entirely dependent on the input wavelength. As
such, tuning of the frequency of the 394 nm light can only be done through alteration of
the 788 nm frequency. The ECD-X cavity resonantly enhances the frequency doubling by
using a bow-tie arrangement with highly reflective cavity mirrors, with the fundamental
beam mode-matched to the cavity. When well-aligned, the piezo mounted mirror M2 can
then be used to sustain the cavity lock. The ECD-X module uses the H¥ansch-Couillaud
technique [81] in order to lock the doubling cavity to the fundamental 788 nm beam, as
will be discussed later in this Section.

Basic Alignment of the ECD-X Cavity

Unlike the SolsTiS, this cavity can be manually aligned. First, connect an oscilloscope
to channels A and B on the ICE-Bloc. On the IceBloc software, choose the ECD Output
PD for channel A and ECD lock error for channel B. This will give the readout from the
Output PD (see Figure 3.5) and the error signal generated from PA and PB, respectively.
Choose the scan parameters on the software to be approximately 6GHz scan range with
a time of 0.4 s – this moves the piezo on which M2 is mounted in order to scan the cavity.
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Using the in-coupling mirrors and IR viewer, align the 788 nm input beam onto the centre
of M2. Adjust the angle of the input beam such that the beam reflected from the back of
M1 is also cleanly reflected into the locking arm of the cavity. Using the IR viewer, adjust
M2 so that the beam is hitting the centre of M3. Likewise, adjust M3 so that the beam
passes cleanly through the crystal and hits the centre of M4. Finally, follow the beam
reflected from M4 and adjust M4 such that the spot overlaps with the input beam on M1.
At this point, it can be helpful to use a piece of lens tissue to view the beams just after M1.
Enough light will be let through the tissue so that both the transmitted incident beam as
well as the beam which has done a round trip of the cavity are visible. Keep adjusting the
mirrors until the beam which has done a single round trip of the cavity, and subsequently
been reflected from M1, overlaps the original beam at all spots. Once this happens, the
cavity should be nearly closed. Place a piece of paper at the output of the cavity and fluo-
rescence from the crystal should be observed. If the crystal is not fluorescing, repeat the
steps to overlap the beams above. If the cavity is close enough to being closed, a bright,
flashing spot should be visible on the paper. This is the point of cavity-resonance which
is being scanned over.

When the bright, flashing spot is visible on the paper, a peak should be visible on the ECD
Output PD. If not, check that the spot from the pick-o� mirror to the Output PD is centred
on the photodiode and, if not, adjust this mirror accordingly. By tweaking mirrors M2,
M3 and M4, along with the crystal, maximise the peak. At a maximum output of 2W,
this peak should reach approximately 2V. Once this is achieved, the cavity is maximised.

Experience has shown that walking the mirrors either side of the crystal (that is, M2 &
M3, and M3 & M4) is the most e�ective for maximising the output power. Leaving M1
untouched has the added benefit of leaving the locking arm relatively unchanged.

Due to the nature of the locking scheme (discussed in the next Section), the lock of the
ECD-X cavity is very sensitive to the quality of the error signal produced. Ensure that
the error signal is centred around the 0V position, and is symmetric with respect to
the crossing point. If not, ensure there is a signal on both PA and PB, and make small
adjustments to ML in order to centre the signal around 0V.

Locking the ECD-X Cavity – the H¥ansch-Couillaud Technique

In order to frequency lock the doubling cavity to the fundamental laser beam, a locking
method based on the H¥ansch-Couillaud technique is used [81, 82]. The technique uses
a polarisation analyser to detect changes in the polarisation of the reflected light in the
cavity, which can then be directly related to changes in the frequency of the light. In the
ECD-X cavity, such polarisation changes are detected using a polarising beam splitter with
a photodiode on each output arm. When the cavity is resonant, the error signal from the
polarisation analyser will become zero. It is this zero-crossing point which the cavity is
then stabilised to by feeding back to the piezo mounted mirror in the cavity, M2.
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Figure 3.6: Schematic of the ECD-X locking scheme. Only the elements relevant to
the locking scheme are shown in the Figure. The linearly polarised incident beam, �in,
is partly reflected and partly transmitted at mirror M1. For each subsequent round trip
of the cavity, a small amount of the beam will leak out of the cavity at M1. When on
resonance, the light at point X will remain linearly polarised. When out of resonance, the
phase of the leaking light will develop an imaginary component and either lead or lag
behind the incident beam, so leading to an elliptically polarised beam. This ellipticity
will be detected through the _/4 plate, PBS, and two photodetectors. The signal from the
photodiodes is used to generate an error signal, which is fed back to M2 through the servo
electronics.

Consider the input field to the cavity, �in. At mirror M1, part of the input field is trans-
mitted, which can be written as:

�M1 =
√
)M1�in, (3.1)

where )M1 is the power transmission of the mirror. If losses from the mirror are neglected,
i.e. )M1 + 'M1 = 1 where 'M1 is the reflectivity of the mirror, then the input field reflected
by M1, and so contributing to the field at point X in Figure 3.6, is then:

�X,r =
√
'M1�in4

8c . (3.2)

Denoting the average reflectivity of mirrors M2 to M4 at the resonant wavelength as ',
then the total build up of the field at M1 after many round trips of the cavity is given by
[82]:

�M1 =

√
)M1

1 −
√
'M1(1 − W)48q

�in, where W = 1 − '3(1 − 6) (1 − Γcav). (3.3)

W is the round-trip loss (excluding the transmission loss )"1), 6 is the fractional loss per
round-trip from passive processes which don’t include losses from transmission, and Γ20E
is the nonlinear loss due to the crystal. The phase term, q, is given by: q = 2c!/_+q�>DH,
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where ! is the optical length of the cavity, _ is the wavelength of the input beam, and
q�>DH is the Gouy phase shift which is accumulated over the round trip of the cavity [83].

At point X, the contribution to the field due to leakage out of the cavity through M1 is
then given by:

�X,t =
√
)M1(1 − W)48(q+2cΔ!/_)�M1, (3.4)

where Δ! is the cavity length detuning, which accounts for any di�erence in frequency
which may be present between the input field and the field which builds up in the cavity.
Therefore, the total field at point X (i.e. from both the reflected field and from the field
leaking out of the cavity through M1) is given by the sum of Equations 3.2 and 3.4:

�- = �X,r + �X,t =
√
'M1�in4

8c +
√
)M1(1 − W)48(q+2cΔ!/_)�M1. (3.5)

Therefore, when a wave circulating in the ECD-X cavity is on-resonance it remains in phase
with the incident field, i.e. �X,r is in phase with �X,t and has no imaginary part. As such,
�X = �X,r +�X,t remains linearly polarised. If, instead, the wave is out of resonance, there
is a phase di�erence between the circulating field, �X,t, and the incident field, �X,r, with
�X,t being comprised of both a real and imaginary part. Therefore, the total field, �X,
becomes elliptically polarised. This ellipticity can subsequently be detected by the polari-
sation analyser. The detuning of the frequency from the resonant wavelength determines
whether the circulating field leads the incident field or lags behind it, and so determines
the sign of the phase shift. Therefore, depending on whether the light is right-handed or
left-handed elliptically polarised, the sign of the detuning can be determined and subse-
quently corrected for.

Figure 3.6 shows a schematic of how this locking scheme is implemented in the ECD-X
cavity, using the reflected signal from the back of M1 and the leakage from the cavity
through M1. The polarisation is analysed using a quarter-waveplate, a polarising beam-
splitter (PBS), and two photodiodes (PA and PB). The di�erence between the voltage
signals from the photodiodes is then used to form an error signal. This error signal is fed
to servo-electronics, whose output goes to M2. When the ellipticity of the beam changes,
the ratio of intensities incident on the two photodiodes will correspondingly change, and
so the voltage output to M2 will change.

This entire laser system which has just been detailed is primarily used to drive Raman gates
on the 40Ca+ ions. The following Section will detail the optical setup used to implement
these Raman gates, with subsequent characterisation measurements presented in Chapter
8.
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3.3 Raman Optical Setup

The following Section will present the optical setup built and used to enable Raman tran-
sitions to be driven between the ground states in 40Ca+. The Raman transitions can be
driven by two laser beams detuned from the |S1/2〉 to |P3/2〉 dipole transition. Here, the
detuning was chosen to be approximately Δ = 2c×308GHz, such that the transition could
be driven at a relatively fast rate, while spontaneous emission from the |P3/2〉 level was not
a significantly limiting factor (see Chapter 8 for further discussions). The experimental
design used here was inspired by the experiment described in [84].

Figure 3.7 shows a schematic layout of the setup on the optical table. The output from the
laser (not shown), at approximately 1.2W, is coupled into a clean-up fibre. The output
from this fibre (lower left) is split into two main paths by a polarising beam splitter (PBS);
the relative intensities in these two paths can be controlled by a half-wave plate positioned
in front of the PBS. The reflected path passes through an acousto-optic modulator (AOM)
denoted as AOM 19, and forms one arm of the counterpropagating fields, as will be
explained in Section 3.3.2. The path transmitted by this PBS is further split into two
paths, passing through AOMs 2 and 310, which form the copropagating fields as will now
be discussed.

3.3.1 Copropagating Fields

A theoretical explanation of copropagating Raman fields was presented in Section 2.4.1.
The copropagating fields are highlighted in Figure 3.7 by the grey, dotted box. The setup
contained within the grey dotted box e�ectively forms a Mach-Zender interferometer,
where a single, incident beam is split up before being re-interfered on a beam splitter. The
two paths formed by the first PBS in the grey dotted box pass through AOMs 2 and 3
respectively. AOM 2 is driven at a constant frequency of 105MHz11. The frequency of
AOM 3 is provided by the second direct digital synthesiser (DDS) of the Pulse Box [85],
and can be accurately controlled in an experimental sequence via the software [49]. The
minus first order of these AOMs is overlapped at the second PBS in the grey dotted box,
with both beams then coupled into the same fibre.

Figure 3.8 a) shows how these beams are subsequently outcoupled from the fibre and enter
the vacuum chamber from the top viewport, at 60◦ to the trap axis, with the beams propa-
gating parallel to each other. The beams pass through a half-waveplate before entering
the vacuum chamber to allow the polarisation to be appropriately adjusted (see Section
8.1.1). The di�erence in k-vector between these two beams is essentially zero, and so the
Lamb-Dicke factor is also essentially zero. As the Lamb-Dicke parameter gives a measure
of the coupling strength between the electronic and motional states of the ion, if [ ' 0

9Gooch & Housego Crystalline Quartz 110MHz (I-M110-3C10BB-3-GH27)
10Gooch & Housego Crystalline Quartz 110MHz (I-M110-3C10BB-3-GH27)
11Rohde & Schwarz SMC100A Signal Generator
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Figure 3.7: Schematic of the Raman setup on the optical table. The output from the
laser (not shown) enters the optical setup from the clean-up fibre in the lower left corner.
The beam is then split into two main paths by a PBS. The reflected path passes through
AOM 1, forming one arm of the counterpropagating field setup. The transmitted path
is further split into two more arms which pass through AOMs 2 and 3. Together, these
two paths (outlined by the grey, dotted box) form the copropagating fields. Alternatively,
one of these arms (normally the path through AOM 2) can be used in conjunction with
the first path to form the counterpropagating fields. The minus first order of all AOMs is
used.

then the electronic state of the ion is insensitive to the motional state, and so there is
no coupling to the motional modes. Therefore, only carrier transitions can be driven by
the copropagating fields, where the vibrational state remains unchanged. Appendix D.1
shows an explicit calculation of the Lamb-Dicke parameter for these exact experimental
values and geometry.

3.3.2 Counterpropagating Fields

For a theoretical discussion of counterpropagating Raman fields, refer to Section 2.4.2.
Experimentally, the counterpropagating fields are formed using the path reflected from
the first PBS, which passes through AOM 1, in conjunction with the transmitted path
which passes through AOM 2. In this configuration, AOM 2 is again driven at a constant
frequency of 105MHz. AOM 1 can be driven in two ways: firstly by three signal gener-
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RGA

(a) Schematic of the copropagating field geom-
etry.

RGA

(b) Schematic of the counterpropagating field
geometry.

Figure 3.8: Schematics of beam paths into the vacuum chamber. a) The copropagating
beams exit from the same fibre, entering the vacuum chamber from a top viewport at 60◦

to the magnetic field axis. b) One arm of the counterpropagating field enters the chamber
from the top viewport at 60◦ to the magnetic field axis, with the second arm entering
from a bottom viewport, also at 60◦ to the magnetic field axis. The beams subtend an
angle of 120◦ to one-another and have a resultant k-vector lying along the radial direction.
The bottom beam passes through a PBS in order to ensure the polarisation is as pure as
possible before entering the chamber. The top beam is not purified using a PBS so that
two orthogonal polarisations can be used when driving the copropagating transitions. The
residual gas analyser (RGA) is not in use.

ators12, the frequencies of which can be controlled using the experimental software, and
which can be used individually or in conjunction with one-another. In using two signal
generators at the same time, two beams are produced from AOM 1, both of which are
coupled into the same fibre, so producing the bichromatic light field used for generating
entangling interactions. Similarly, if all three signal generators are used, three beams are
consequently produced, so forming the trichromatic light field [47]. Alternatively, AOM 1
can be driven solely by the second DDS of the Pulse Box, producing a single beam. The
minus first orders of the two paths through AOMs 1 and 2 are coupled into separate fibres
leading to the trap.

Figure 3.8 b) shows how these beams enter the vacuum chamber from two di�erent di-
rections: the path from AOM 2 enters from the top, at 60◦ to the trap axis, while the
path from AOM 1 enters from a bottom viewport also at 60◦ to the trap axis. The lower
beam passes first through a half-waveplate to allow the polarisation to be adjusted, and

12Rohde & Schwarz SMCL 01 Signal Generator



60 Chapter 3. Experimental Setup & Characterisations

then through a polarising beam splitter to ensure the polarisation of this beam is as pure
as possible.

In contrast to the copropagating fields, for this geometry the di�erence in k vector between
these two beams is non-zero and lies along the radial direction, with no component of k
lying along the axial direction. The Lamb-Dicke factor in the radial direction is therefore
also correspondingly non-zero, and is calculated to be [ = 0.18 (see Appendix D.1 for
an explicit calculation using the experimental parameters). As such, there is significant
coupling to the radial motional modes, allowing transitions which change the vibrational
state to be driven. It is this coupling to the radial modes of motion which allows entangling
gates to be implemented on the ions, as will be shown in Section 8.4. As no component
of k lies along the axial direction, there is consequently no coupling to the axial modes
of motion.

The radial modes of motion in the QSim system are bunched together into a fairly narrow
frequency window (∼1MHz for 20 ions), and so any applied bichromatic or trichromatic
beam will couple to all modes with di�erent strengths. As such, this geometry, coupling
only to the radial modes rather than the axial modes, was chosen in order to implement
more complex spin-spin interactions, such as those with a tunable interaction range U.

Chapter 8 presents results from characterisation measurements of this Raman setup, as
well as the implementation of entangling gates using Raman transitions. The remainder
of this Chapter will now look at the second major upgrade to the QSim system, and will
describe the replacement of the magnetic field coils with permanent magnets in order to
reduce decoherence experienced by the qubit due to magnetic field fluctuations.

3.4 Installation of Permanent Magnets

The final Section of this Chapter will introduce the second improvement made to the QSim
experiment through installation of permanent magnets in order to reduce the magnetic
field noise. In the QSim experiment, the degeneracy of the Zeeman levels in the 40Ca+ ion
is lifted through application of an external magnetic field, so creating an energy splitting
between the levels and consequently a quantisation axis. Previously, this magnetic field
was generated using a pair of magnetic field coils with 350 windings each, mounted to the
South and North viewports in a non-Helmholtz configuration [49]. A current of 1.4A was
used to produce a magnetic field of 4.10G at the trap centre.

However, the ion is very sensitive to fluctuations in the magnetic field strength it experi-
ences, as any external magnetic-field induces a change in the bare transition frequency,
a0, of:
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Δa =
`�

ℎ

(
6
(1)
9
< (U) − 6(2)

9
< (V)

)
�, (3.6)

where `� is the Bohr magneton (`�/ℎ =1.399MHz/G), 6(8)
9

is the Landé g-factor of level 8

(≈ 2 for the S1/2 level and ≈ 1.2 for the D5/2 level), and < ( 9) the magnetic quantum number
of the Zeeman level 9 . From Equation 3.6 it can be seen that if the strength of the applied
magnetic field changes, then the splitting between the Zeeman levels will correspondingly
fluctuate, and so will consequently the transition frequency of the ion. If this occurs during
a measurement, the ion will move in and out of resonance with the laser and so the qubit
will experience decoherence due to fluctuation of the ion’s transition frequency.

Previous measurements found the strongest noise component produced by the coil ar-
rangement was at the power-line frequency of 50Hz, with a magnitude of 2 × 10−5. This
produced a change in magnitude of the magnetic field at the centre of the trap of 30 to
40 `G [49]. The 50Hz noise component was primarily due to the presence of the electric
cables supplying the coils. In order to reduce this noise component, the magnetic field
coils were replaced with permanent magnets made of samarium cobalt (Sm2Co17)13. This
particular material was chosen due to its low temperature coe�cient (0.015% change of
field per K). A low temperature coe�cient was necessary in order to ensure the magnetic
field would be stable with respect to temperature fluctuations. The setup was influenced
by the design in [86].

3.4.1 Design & Implementation

To hold the magnets in place, two copper holders were designed, with one each attached
to the South and North viewports. Despite the low temperature coe�cient of the magnets,
the magnetic field produced will still be a�ected by temperature and so, to keep the mag-
netic field as constant as possible, it is crucial that temperature changes and gradients are
kept to a minimum. As such, copper was chosen for the holders due to its high thermal
conductivity, allowing any temperature gradients to quickly disperse throughout the ma-
terial.

The copper holders are in turn supported in an outer casing of plastic, also attached to the
South and North viewports of the vacuum vessel. The plastic casing acts as an insulator
to prevent a significant temperature gradient forming between the copper holders and the
environment. This will be of particular importance in the future when active temperature
stabilisation of the magnets is implemented and the holders are no longer in thermal equi-
librium with the environment.

Figure 3.9 shows the design of the copper holders and plastic casing. Figures 3.9 a) and
b) show the copper holders, where the magnets are held in cylindrical holes of dimension

13BVI Magnet GMBH XGS24 LT: Diameter 6mm, length 10mm.
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Figure 3.9: Copper magnet holders and plastic housing. a) & b) Copper Magnet
Holders. Each copper holder contains 72 cylindrical holes of dimension 6mm x 10mm to
hold the magnets. They are arranged in three concentric rings of radius 33mm, 26mm,
and 19mm. The samarium cobalt magnets fit in these cylindrical holes, designed so that
the magnets sit flush against the walls and so are held in by friction. At the back of each of
these cylindrical holes is a small opening, visible in Figure b), which allows the magnets to
be pushed out when removal is necessary. c) Lid to the magnet holders. A spiral groove
in the lid allows the inclusion of a heating wire if necessary. d) & e) Plastic Housing. The
magnet holders are in turn housed in a plastic casing. f) Lid to the plastic holders. The
holes allow the entire fixture to be attached to the screws of the South and North viewports
of the vacuum chamber.

6mm by 10mm. The magnets sit flush against the copper in the cylindrical holes, and
so are held in by friction. The holders have the potential to hold 72 magnets in total,
arranged in three concentric rings of radius 33mm, 26mm, and 19mm. In Figure 3.9
b) it can be seen that at the back of each cylindrical hole is a small opening, allowing
the magnets to be pushed out when removal is necessary. There is a hole in the cen-
tre of the holders which allows optical access to the trap through the South and North
viewports to be maintained. The ‘spokes’ extending from the holders allow attachment
of the holder to the screws of the viewport. A magnetic field of 4.18G is produced at
the centre of the trap by using 30 magnets in the outer ring, 8 magnets in the middle
ring, and 2 magnets in the innermost ring. This value was determined by measuring the
resonance frequency of the |S1/2,mj = +1/2〉 → |D5/2,mj = +5/2〉 transition, and the
|S1/2,mj = +1/2〉 → |D5/2,mj = −3/2〉 transition. By comparing the values of these two



3.4. Installation of Permanent Magnets 63

(a) Expanded view from the front (b) Expanded view from the back

37.5 cm

South & North
Viewports

(c) Expanded view of how the assembly fits onto the South and North viewports

Figure 3.10: Assembly of the magnet holders. The copper holders fit snugly into the
plastic housing. The plastic lid is held on by friction. The small holes at the back of the
cylindrical holes where the magnets fit allow removal of the magnets when necessary. The
whole assembly fits flush against the South and North viewports, mounted on the viewport
screws and separated by 37.5 cm.

transitions, the magnetic field experienced by the ion can be straightforwardly calculated.

Figure 3.9 c) shows the lid for the copper holders. This lid (also made of copper) contains
an additional spiral groove, designed to allow heating wires to be mounted in order to
actively temperature stabilise the magnets in the future. The groove is designed so that
a heating wire will follow the same inwards path as outwards path in order to minimise
current loops which may cause stray magnetic fields.

Figures 3.9 d) and e) show the plastic casing in which the copper holders are housed. These
have a corresponding opening in the centre to allow optical access and holes, allowing
attachment to the screws of the viewports. Figure f) shows the lid for the plastic casing.
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Figure 3.10 shows how the copper holders and plastic casing are assembled. The copper
holder fits snuggly into the plastic housing, with the plastic lid being held on by friction.
The screws from the viewport pass through the spokes of the copper holder and holes in
the plastic housing, as well as their respective lids, to ensure firm fixture of all components.
The small opening in the back of each cylindrical hole, allowing for removal of the magnets
when necessary, can be seen in Figure 3.10 b). Figure 3.10 c) shows how the whole assembly
fits flush against the South and North viewports, being mounted on the viewport screws.
The two assemblies are separated by 37.5 cm.

3.4.2 Coherence Time Measurements

In order to characterise the stability of the new magnetic field produced by the perma-
nent magnets, two di�erent Ramsey measurements (see Section 2.3.1) were performed.
The first of these probed the |S1/2,mj = +1/2〉 to |D5/2,mj = +5/2〉 transition (this will be
referred to as the |S1/2〉 to |D5/2〉 transition in the following for brevity). The second mea-
surement probed the coherence in the D5/2-state manifold, between the |D5/2,mj = −3/2〉
and |D5/2,mj = +5/2〉 Zeeman levels (this will be referred to as the D-state manifold in
the following). For the measurements in the D-state manifold, the laser frequency ap-
proximately drops out, and so this transition is primarily sensitive only to magnetic field
fluctuations, and is relatively insensitive to fluctuations in the laser. As such, a comparison
of the two coherence measurements can give an indication of not only the stability of the
magnetic field, but also of the laser itself.

To perform the coherence measurements on the |S1/2〉 to |D5/2〉 transition, the qubit was
first optically pumped into the |S1/2〉 state, before being prepared in a superposition of
|S1/2〉 and |D5/2〉 by using a c/2 pulse. After a wait-time of g, a final c/2 pulse was ap-
plied, the phase of which was scanned. By using a least-squares sine fit to the phase scan,
the contrast at that particular wait-time g – given by the amplitude of the fit – can be
extracted. An exponential fit to the decay of the contrast for di�erent wait-times provides
an estimate of the coherence time of the system.

To perform the measurements in the D-state manifold, the qubit was again optically
pumped into the |S1/2〉 state, before being prepared in a superposition of |D5/2,mj = −3/2〉
and |D5/2,mj = +5/2〉 using a c/2 pulse on the |S1/2,mj = +1/2〉 to |D5/2,mj = +5/2〉 tran-
sition, followed by a c-pulse on the |S1/2,mj = +1/2〉 to |D5/2,mj = −3/2〉 transition. This
transfers all population from the |S1/2〉 state into the D-state manifold. The same process
as with the |S1/2〉 to |D5/2〉 transition was then followed in order to extract the contrast as
a function of wait-time, and consequently the coherence time.

Figures 3.11 a) and b) show the extracted contrasts as a function of the wait-time g in-
between c/2 pulses for a magnetic field generated by the original coils. The coherence
times were estimated to be 23.9±0.9ms on the |S1/2〉 to |D5/2〉 transition, and 7.9±0.3ms
in the D-state manifold. The implication of the coherence time in the D-state manifold



3.4. Installation of Permanent Magnets 65

0 2 4 6
Time (ms)

0.5

0.6

0.7

0.8

0.9

1.0

C
on

tra
st

τ = 23.9 ± 0.9 ms

y= exp(−t/τ)

(a) Coils: |S1/2〉 to |D5/2〉 transition.
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(b) Coils: D-state manifold.
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(c) Permanent magnets: |S1/2〉 to |D5/2〉
transition.
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(d) Permanent magnets: D-state manifold.

Figure 3.11: Ramsey measurements on the |S1/2〉 to |D5/2〉 transition and in the D-
state manifold. For all plots, the measured contrast (black points) is fitted with a least-
squares exponential decay (blue line) in order to extract the coherence time. a) Coherence
probed with the original coils on the |S1/2〉 to |D5/2〉 transition, with an extracted coherence
time of 23.9±0.9ms. b) Coherence probed with the original coils in the D-state manifold,
with an extracted coherence time of 7.9±0.3ms. c) and d) As with a) and b) but after
exchanging the coils with the permanent magnets. c) Extracted coherence time of 64±3ms.
d) Extracted coherence time of 123±7ms. All fits have been constrained to pass through 1
at 0ms. Errors bars are extracted from the covariance matrix of the sine fit used to extract
the contrast.

being significantly shorter than that of the |S1/2〉 to |D5/2〉 transition is that the main limi-
tation to the qubit coherence in this case is from magnetic field noise, and not laser noise.
However, it should be noted that, as there is no measured data for wait-times close to these
estimated coherence times, there could be additional noise processes causing the contrast
to drop more significantly at later wait times. Therefore, the true coherence time of the
system may actually be shorter than these estimates.
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Figure 3.12: Long-term magnetic �eld behaviour. a) Evolution of the magnetic field
over 4 hours. Top: Without the linear drift subtracted. Middle: With the linear drift sub-
tracted. Bottom: Evolution of the temperature inside the `-metal shielding, measured at
the same time as the magnetic field measurement. b) Histogram showing the distribution
of measured magnetic field jumps. Optimal bin widths were determined using the Knuth
binning method [87].

Figures 3.11 c) and d) show the extracted contrasts as a function of wait-time for a mag-
netic field generated by the permanent magnets. The associated coherence times were
found to be 64±3ms on the |S1/2〉 to |D5/2〉 transition, and 123±7ms in the D-state mani-
fold. There is a marked improvement in the coherence times of both the |S1/2〉 to |D5/2〉
transition and in the D-state manifold, with the most marked improvement seen in the D-
state manifold. Such an improvement in the D-state manifold shows that decoherence due
to magnetic field fluctuations has been significantly reduced. Not only this, but the lower
coherence time on the |S1/2〉 to |D5/2〉 transition compared to the D-state manifold shows
that the coherence of the qubit is now limited by laser noise, rather than the magnetic
field.

3.4.3 Long-term Magnetic Field Stability

Having established a marked improvement in the coherence time of the qubit, the long-
term stability of the magnetic field (on the order of hours) was subsequently measured.
Such measurements aimed to characterise the stability of the magnitude of the magnetic
field experienced by the qubit over long time-scales, as well as determine whether there
were drifts in the magnetic field which could not be explained by changes in temperature.
This stability was investigated by measuring the observed phase shift on 20 ions using
a Ramsey experiment with a g = 10ms wait-time in the D-state manifold. The D-state
manifold was chosen for these measurements due to its relative insensitivity to the laser,
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and so any observed dynamics can be primarily attributed to changes in the magnetic field.

Figure 3.12 a) shows the evolution of the magnetic field at the position of the ions as a func-
tion of time, where a linear drift of approximately 70 `G can be seen in the middle Figure.
At the same time, the temperature inside the closed `-metal shielding was recorded us-
ing an NTC thermistor, with a corresponding increase in temperature of 50mK observed
over this timescale, also shown in Figure 3.12 a) (bottom). Figure 3.12 a) (top) shows
the evolution of the magnetic field with the linear drift additionally subtracted. Without
the linear drift, a much smaller change with a magnitude on the order of 10 `G is observed.

The evolution of the magnetic field also allowed jumps in the magnetic field between
adjacent measurements (separated by approximately 3 s) to be observed. Figure 3.12 b)
shows the distribution of measured magnetic field jumps. From this histogram, it can be
seen that the largest jumps recorded are on the order of 4 `G. These jumps were found
to be caused by the movement of the nearby lift. Smaller, more frequent jumps were
correlated to the movement of chairs within the laboratory area.

3.4.4 Additional Coils for Linear Gradient Compensation

The arrangement of the permanent magnets leads to a linear magnetic field gradient at
the position of the ions. This gradient was measured using a Ramsey-type experiment in
the D-state manifold, and found to be on the order of 0.28G/m. To compensate for this
gradient, a pair of coils14 with 130 windings, mounted to the South and North viewports, is
used to provide a constant linear magnetic field gradient which exactly cancels the gradient
experienced by the ions. These coils are driven with a constant current of 15mA, which
is actively stabilised by a home-built PI-regulator with a stable reference resistor15 [49]. In
addition, to ensure the zero-crossing in this linear gradient coincides with the centre (i.e.
null) of the trap, 4 additional windings are present on the South viewport. This ensures
that no extra DC o�set from these coils a�ects the ions, and so any fluctuations in the
compensation field should have a minimal e�ect on the ions. It can also be seen that any
frequency fluctuations which may be introduced by these coils are not the limiting factor
with regards to the coherence time of the qubit, as from Section 3.4.2 it was concluded
that the coherence time of the qubit is now limited by laser noise, rather than by magnetic
field noise.

14130 Windings per coil, resistance 1.3 Ω per coil.
15Vishay, VCS 302





Chapter 4

Gate Set Tomography & BeamPath Char-
acterisations

In moving to quantum computers and simulaters which may possess an advantage over
their classical counterparts, it is necessary to implement high-fidelity quantum gate op-
erations, often in long sequences [88]. However, in practically performing quantum op-
erations, there will always be errors in their implementation which arise due to noise
processes such as those discussed in Section 2.1.2. Such errors can be either coherent
(such as over/under rotations) or incoherent (e.g. dephasing). By identifying the noise
types present in a system and their various magnitudes, it is possible to implement ways to
correct for or improve upon them, and so improve the performance of the quantum device.

There are many ways in which noise can enter into a quantum system, however this Chapter
will focus on characterising two main sources of errors which can arise from implement-
ing gate operations using the 729 nm laser in the QSim experiment: Imperfections arising
from the single-qubit operations themselves, and drifts in the system from fluctuations in
the beam paths and/or movement of the ion string. The first part of this Chapter will give
an overview of some of the most well-known protocols which can be used to characterise
quantum operations, most notably that of gate set tomography (GST). The GST protocol
will be subsequently used in the main part of this Chapter to provide a characterisation
of the 729 nm single-qubit operations, with its experimental implementation and conse-
quent measurement results being presented. Following this, a characterisation of the drifts
present in the system will be given using two methods. The first of these will use a GST-
like implementation to determine significant drift frequencies which were detected. The
second uses two beam paths to extract information about slow drifts which may be present
in said paths, leading to phase noise in the system.

69
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4.1 Single-Qubit Characterisation Protocols

There are many existing protocols which aim to assess the quality of logic operations
performed on qubits, all of which follow the same basic framework [88]:

1. A set of quantum circuits are experimentally implemented on the qubit(s)

2. The data from these experiments is analysed according to a specific algorithm

3. The outcome from the analysis provides an estimate of some aspects of the quantum
operation on the qubit

Each protocol has its own strengths and weakness. For example, some protocols such
as holistic benchmarking assess the performance of the entire set of qubit(s) and circuits
[89, 90]. Alternatively, protocols such as component benchmarking [91–93] only partially
characterise the system. Finally, there are of course tomographic methods [38, 94–97],
which yield highly detailed, predictive models of each quantum operation. Which protocol
should be chosen is highly situation-dependent; for example if only partial characterisa-
tion of the system is required, then it is more suitable to use a protocol such as component
benchmarking rather than holistic benchmarking.

The following Sections will now discuss several well-known protocols which are often used
in characterising single-qubit operations. A large amount of mathematical notation will
be introduced, which will be needed to understand the subsequent description of GST.

4.1.1 Quantum State Tomography

Quantum state tomography (QST) [94, 95] attempts to characterise an unknown state of in-
terest, d, by experimentally measuring all of its components and using them to reconstruct
d. QST assumes that many identical copies of d are available, and so the reconstruction
can then be achieved by performing a series of measurements on that state which are
termed informationally complete – that is their outcomes, � 9 , collectively span Hilbert-
Schmidt space. Such measurements could be, for example, in the - -, . -, and / -bases. The
probability to observe a certain measurement outcome, � 9 , is then given by:

? 9 (d) = Tr(d� 9 ). (4.1)

However, practically only a finite number of measurements can be performed, and so the
probabilities can only be estimated from the data. The probability of getting a certain
measurement outcome, � 9 , given that the measurements are repeated # times, is then
given by:

? 9 (d) = Pr( 9 | d) ≈
5 9

#
, (4.2)

where 5 9 is the frequency with which the outcome � 9 is observed.
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Linear Inversion

For simplicity, linear algebra can be used to write these expressions in a more useful
format. A state of interest, d = |k〉〈k |, which is to be reconstructed, can be expressed
in this formalism as a Hilbert-Schmidt space vector |d〉〉 = ∑

8 |8〉〉〈〈8 |d〉〉. |d〉〉 is simply a
column vector in the Hilbert-Schmidt space, which is a vector space of 2 × 2 Hermitian
matrices, with 〈〈d | the corresponding row vector [98]. Similarly, the 9th possible outcome
from a measurement on this state can be denoted by 〈〈� 9 |, where 9 = 1 . . . #1 and #1 is the
total number of (distinct) measurement outcomes. Therefore, the probability of obtaining
the 9th outcome can be expressed as:

? 9 = 〈〈� 9 |d〉〉 =
∑
8

〈〈� 9 |8〉〉〈〈8 |d〉〉 = Tr(� 9 d). (4.3)

Equation 4.3 can be simplified by defining a matrix, �, which is comprised of all possible
outcomes 〈〈� 9 |, such that:

� =

©«
〈〈�1 |
〈〈�2 |
...

〈〈�#1 |

ª®®®®¬
. (4.4)

As such, Equation 4.3 can be written as ®? = �|d〉〉, where the 9th element of ®? is ? 9
which is the probability of getting the outcome � 9 . One crucial assumption of QST is that
all measurement e�ects, � 9 , are known/chosen in advance of the state tomography being
performed, and so consequently the matrix � is also known. Then, if � is a square matrix
with all eigenvalues non-zero, it is possible to construct its inverse, and so the state |d〉〉
can be reconstructed from simple linear algebra to be:

|d〉〉 = �−1 ®?. (4.5)

Therefore, by measuring the probabilities to get the outcomes |� 9 〉〉, the matrix � can be
determined, and consequently |d〉〉 can be reconstructed. Figure 4.1 (top) shows a simple
schematic of QST; the state of interest, d, can be characterised by using a set of infor-
mationally complete known measurements, ", which have outcomes � 9 . Informationally
complete refers to the property that each quantum state can be uniquely determined by
its measurement statistics [99].

4.1.2 Quantum Process Tomography

Quantum process tomography (QPT) is conceptually similar to QST, however aims to
characterise a quantum process or gate, �, rather than a state, d [94, 100]. QPT can be
achieved by using a set of informationally complete measurement states with the set of
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Figure 4.1: Schematic of the structure of circuits for QST and QPT. Top: QST. A
state of interest, d, is characterised by using a set of informationally complete and known
measurements, ", with outcomes � 9 . Bottom: QPT. A gate, �, is characterised using
a set of informationally complete " known measurements, and a set of informationally
complete known initial states d. Here, ‘informationally complete’ refers to the property
that each quantum state can be uniquely determined by its measurement statistics [99]. "
and d are coloured red to reflect that, in reality, these measurement and state preparations
are often not exactly known and/or cannot be perfectly implemented.

outcomes {〈〈�8 |}, as well as a set of informationally complete initial states |d8〉〉. Figure
4.1 (bottom) shows a schematic of the process of QPT: an (assumed to be known) initial
state |d8〉〉 is prepared, evolved under the gate to be characterised, �, and finally measured
using (assumed to be known) measurement operators ", with possible outcomes {|� 9 〉〉}.
The probability of observing an outcome � 9 is then given by:

% 98 = Tr(� 9�d8) = 〈〈� 9 |� |d8〉〉. (4.6)

As with QST where the matrix � was defined, a second matrix � can here be defined
which contains the set of initial states d8, such that:

� =

©«
〈〈d1 |
〈〈d2 |
...

〈〈d#2 |

ª®®®®¬
, (4.7)

where #2 is the number of initial quantum states to be used. A matrix %, whose elements
are % 98, can then be constructed such that % = ���.

In a similar manner to QST, it is assumed that all measurement e�ects |� 9 〉〉 are known,
as well as all initial states |d8〉〉, and so therefore all elements of � and � must therefore
also be known. The gate � can then be constructed (again assuming � and � are square
and all eigenvalues are non-zero) from:

� = �−1%�−1. (4.8)
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In QPT, small errors in the calibration of gates used to implement di�erent measurements
can propagate to the final results, and so these results can consequently be invalidated.

4.1.3 Randomised Benchmarking

Both QST and QPT rely on a crucial assumption, that the unknown state or gate is recon-
structed relative to some reference operations, be these prepared states or measurement
operations, which are assumed to be perfectly known and implemented without errors.
However, in practice this is not achievable, and there will always be errors in the state
preparation and measurement operations. It is therefore necessary to consider other tech-
niques which are able to characterise not only states and/or gates, but also the preparation
and measurement operations which are used to implement them.

A widely used method for characterising a set of gates, which also includes state prepa-
ration and measurement (SPAM) errors, is the technique of randomised benchmarking
[92, 101–105]. This is a method whereby many random circuits from the Cli�ord group
[101] are performed on one or more ions in order to measure the error rate of a set of
quantum gates [92, 103, 106]. For a single qubit, the Cli�ord group can be constructed
from the Pauli operations. The mathematical description of randomised benchmarking
is highly involved and not relevant for the remainder of this Chapter, and so is left to
external sources [92, 93, 103].

Randomised benchmarking has been used to characterise both single-qubit gates [102,
105], and multi-qubit gates [104]. There has also been a recent proposal for randomised
benchmarking in the analogue setting, whereby a family of Hamiltonians native to the sys-
tem can be characterised [107], although most randomised benchmarking protocols are
digital in nature. Both randomised benchmarking and GST attempt to characterise gate
sets of interest, however they do this in di�erent ways. Randomised benchmarking specif-
ically randomises sequences of gates from the Cli�ord group in order to gain information
about a noise channel, Λ. It does this by averaging Λ over specific unitary operations,
*, which are chosen according to a certain probability distribution, a process known as
‘twirling’ [108]. However, this causes randomised benchmarking to be intrinsically less
sensitive to coherent errors which can arise through implementation of the gates, such as
low-frequency drift. In addition, the only way to assign error bars to values calculated
from randomised benchmarking is through bootstrapping [109]. In contrast, GST uses
structured, periodic circuits in order to amplify errors in the gate set, making it sensi-
tive to coherent errors, with the ability to provide rigorous confidence-interval error bars
[97, 109]. As such, randomised benchmarking and GST can be viewed as two complimen-
tary protocols which aim to address di�erent needs; randomized benchmarking requires
a fairly simple analysis of the data, however is relatively insensitive to coherent errors,
whereas GST, although being more sensitive to these errors, requires a complex analysis
procedure for the data [88, 109]. For characterising only single-qubit gates in the QSim
system (the analysis of which is correspondingly computationally unintensive), it is advan-
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tageous to be sensitive to both coherent and incoherent errors and consequently it was
decided to implement GST rather than randomised benchmarking in order to achieve this.

4.1.4 Gate Set Tomography Protocol

It was discussed in the previous Sections how both QST and QPT assume the initial states
and final measurement gates are known and can be perfectly implemented. This leads to
a problem if the state preparation and/or measurement gates are faulty, as the resultant
outcomes from the QST and QPT estimates will also then be faulty. GST circumvents
this problem by including SPAM gates in the gate-set which is being estimated, while still
requiring the same number of measurements as QST (and less than QPT) [88], with the
aim to characterise an unknown set of both states and gates. It works by running a specific
set of structured circuits which vary in length in order to generate a data-set, and then
testing various detailed, gate-level error models to see how well they fit the data-set. The
method keeps modifying and testing the models until one is found that agrees as well with
the data as any model (within the specified parameters) can. It has been experimentally
demonstrated multiple times [96, 110], including on trapped ions [97, 98, 111].

The following Section will discuss the relevant theoretical background to the implemen-
tation of GST in the QSim experiment, assuming that every gate operation is Markovian.
The discussion will broadly follow those given in [38, 88, 97, 98], however will be con-
strained to the sections relevant to implementation in the QSim system, with more de-
tailed explanations left to the above-mentioned references.

GST models the quantum system of interest as a ‘black-box’ device. It assumes that the
only operations available are:

• Initialisation of the system

• A two-outcome measurement of the system, where the results can then be determined

• A set of logic gates �1 . . . �:

The method assumes that all of the e�ects of these operations are unknown, and can
only be determined by analysing the data. A gate-set is then defined as being a complete
description of the black box, expressed mathematically as: G = {|d〉〉, 〈〈� |, {�: }}, where
G represents the gate set, and � is the observable being measured. GST aims to recon-
struct Gpurely from the outcomes of measurements on the black box system. Every GST
sequence starts with a ‘preparation’ sequence, and ends with a ‘measurement’ sequence.
In-between these sequences is an ‘operation of interest’. This operation is chosen to be a
short sequence repeated an integer number of times. As GST includes SPAM gates in the
gate-set of interest itself, only a single initial state needs to be prepared, and only a single
measurement basis needs to be used. This is a more realistic approximation to standard
experimental procedures, where the initial state will often be a ground state of the qubit,
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and the measurement is often a fI measurement.

GST can be most optimally performed by using a hybrid scheme to analyse the data-set,
using a combination of linear inversion GST (LGST) and maximum likelihood estimation
(MLE), both of which will be explained in the following Sections. LGST has the bonus that
it cannot become trapped in any local maxima which might exist in a likelihood function,
unlike maximum-likelihood algorithms [88, 98]. However, it has a decreased accuracy in
comparison to MLE, and as such can be used to provide a good starting point for MLE
to optimise on [98].

Linear Inversion GST

LGST is a simple algorithm which can provide a low-precision estimate of the gate set
of interest, G, using measurement outcomes from a specific set of short circuits. These
measurement outcomes can be analysed using linear algebra in a similar manner to the
discussions of QST and QPT given previously [88].

LGST attempts to reconstruct a set of gates denoted as {�: }, where the probability out-
comes for each gate, %: , form the matrix:

[%: ]8 9 = 〈〈�′8 |�: |d′9 〉〉, (4.9)

where d′ and �′ denote that these preparation and measurement outcomes are not known.
Each element of [%: ] can be measured, and d′

9
and �′

8
can be prepared/measured. As with

QST and QPT, the matrices � and � can again be defined, and so Equation 4.9 can be
expressed as:

%: = ��:�. (4.10)

However, the di�erence in the case of LGST is that the elements of � and � are not as-
sumed to be known, in contrast to QST and QPT where this was a crucial underlying
assumption. As neither � nor � are known, so Equation 4.10 cannot be solved directly
for �: .

In order to compensate for this, additional probabilities can instead by measured. It
transpires that the measurements of most use are those which would correspond to per-
forming QPT on the identity operation, the outcome probabilities of which, J8 9 , are given
by a Gram matrix such that:

J8 9 = 〈〈�′8 |d′9 〉〉
=⇒ J = ��. (4.11)
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Assuming � and � are square with all eigenvalues non-zero, Equation 4.11 can then be
inverted so that J−1 = �−1�−1. Multiplying Equation 4.10 by this inversion yields

J−1%: = �
−1�:�,

=⇒ �: = �J
−1%:�

−1, (4.12)

where �: has been solved for in the second line. Equation 4.12 is therefore an expression
for the set of gates {�: } up to a gauge transformation given by �. This gauge transformation
cannot be known, and is also not physically important, as � can be set to any matrix which
is invertible in order to reconstruct the set of gates, up to gauge freedom [88]. Choosing a
suitable gauge will be discussed later in Section 4.1.4. As well as the set of gates �: , the
preparation and measurement gates can also be extracted using LGST by constructing

vectors of observable probabilities [ ®̃d] 9 and [ ®̃�]: such that:

[ ®̃d] 9 = 〈〈�′9 |d〉〉 =⇒ ®̃d = �|d〉〉, (4.13)

[ ®̃�]: = 〈〈� |d′:〉〉 =⇒
®̃
�T = 〈〈� |�, (4.14)

where the unprimed quantities denote the ideal, target preparation and measurement
outcomes, as opposed to the primed, unideal preparation and measurement outcomes
which are actually implemented. These probabilities can be straightforwardly measured
by performing QST on each preparation state, d′, and measurement outcome, �′. By
using Equation 4.11, these Equations can be written as:

|d〉〉 = �J−1 ®̃d, (4.15)

〈〈� | = ®̃�T�−1. (4.16)

Therefore, Equations 4.12, 4.15, and 4.16 show that LGST has reconstructed the gate sets
as well as preparation and measurement gates, up to a gauge transformation �, as the out-
come probabilities from circuits can have multiple equivalent estimates. Any two sets of
gates which are equivalent up to a gauge transformation will describe this set of outcome
probabilities equally well, and will have the same fidelity with regards to the true gate set
[38]. However, such gauge freedom can have a significant e�ect on the matrices which
represent the gates, and correspondingly on the estimated quantities of interest such as
the fidelity. Often, it can be most useful to fix a gauge after performing an initial GST
analysis, and then reanalysing the data. This will be discussed further in Section 4.1.4.

Although the LGST algorithm can obtain self-consistent gate estimates, it is not con-
strained to produce physical estimates – with often an unphysical gate set being a more
optimal fit to the data than a physical one [38]. As such, LGST is a low-accuracy method
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for obtaining an estimate of a feasible gate set. However, it can provide a useful start-
ing point for further methods, such as maximum likelihood estimation, to subsequently
optimise on, as will now be discussed.

Maximum Likelihood Estimation

The practical implementation of GST uses LGST as a starting point for MLE, which then
improves on the estimates provided by LGST. MLE has a number of advantages over
LGST, most notable is that it can be straightforwardly adapted to non-linear data sets,
which are commonly found in GST data sets. Such nonlinearities arise in GST as gates
often appear repeatedly in circuits, and so the probability of getting a certain outcome
from a circuit is a nonlinear function of the parameters of the gate set [88, 98]. Further
to this, LGST is not constrained to produce physical estimates, a problem which can be
straightforwardly solved by using MLE [38]. It is natural to question why LGST is there-
fore even necessary in this context, however in dealing with non-linear data sets, MLE
has a particular drawback; the problem may become NP-hard [98]. By first performing
LGST, although the outcome is not necessarily optimal, it is close to the optimal point,
and therefore provides a reasonable starting point for MLE [98]. In implementing MLE,
the data is assumed to be Markovian; that is, the data sets are assumed to be independent
of one another.

MLE works by taking a theoretical model and maximising the likelihood, L, of observ-
ing the measured data by modifying the parameter values of its model. The algorithm
systematically searches through parameter values, \, for the best estimator, \opt, of the
chosen distribution which maximises the probability of observing the data that has been
measured, i.e. it maximises L for the parameter \.

A likelihood function can be constructed for the gate sets of interest in GST as follows: if
the predicted probability of observing an outcome from implementing a gate sequence, B,
is given by ?B, and the corresponding actual observed frequency of the outcome is given
by 5B, then L is given by [98]:

L(G) =
∏
B

?
# 5B
B (1 − ?B)# (1− 5B) , (4.17)

where # is the number of measurements. In practice, it can often be simpler to deal with
the log-likelihood function, which is correspondingly given by [97]:

ln(L) = #
∑
B

( 5Bln(?B) + (1 − 5B)ln(1 − ?B)). (4.18)

Equation 4.18 therefore compares the theorised set of probability outcomes from the
model, ?B, to the actual set of measured frequencies, 5B, of the data set, for a single
experimental implementation of a gate sequence, B. The GST algorithm consequently
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maximises the log-likelihood of the entire data set, ln(L), in order to produce an estimate
for the gates.

Gauge Fixing

The final part in the theoretical discussion of GST is concerned with the reconstruction of
gate sets up to a gauge transformation. Gauge transformations are a concept which occur
in a wide variety of areas, with one of the most well-known examples arising in electrody-
namics: For example, the magnetic field, H, can be written in terms of the magnetic vector
potential, G, such that H = ∇×G. However, H can just as well be written in terms of G and
an additional potential, ∇q, yielding H = ∇× (G+∇q) = ∇× G (as ®∇× ®∇q = 0). Therefore,
shifting the magnetic vector potential by the gradient of a scalar function yields the same
unique H. This shifting by ∇q is termed a gauge transformation.

A similar situation is found when performing GST experiments. This can be seen more
clearly from Equations 4.12, 4.15, and 4.16, where the true gate-set, initial state, and mea-
surement outcomes were not fully recovered, but rather solved up to a gauge transforma-
tion given by the matrix � [112]. As such, a GST experiment cannot be distinguished from
the same GST experiment performed in another gauge [88]. Therefore, as the choice of
gauge has no bearing on the outcome, the experimenter is free to choose a suitable gauge.
However, care must be taken as, although the choice of gauge transformation has no bear-
ing on the outcome probabilities of the experiment, it can have a large amount of influence
on those quantities which quantify the distance between two gates, such as fidelity [88, 97].

The most optimal way to deal with this problem is to perform gauge optimisation, where
the estimated gate-set returned by GST analysis is reported in a gauge in which a gauge-
dependent metric, which reflects how ‘close’ the estimated gate set is to the ideal gate set,
is optimised. Another way of viewing this is that the gauge is chosen to make the estimated
gates match the true gates as closely as possible [88, 112]. The way in which a suitable
gauge can be practically chosen is discussed in the next Section.

4.1.5 Experimental Implementation for 729nm Qubit Rotations

Thanks to the development of the python pyGSTi1 module by Sandia National Labora-
tories [113], GST has a relatively straightforward experimental implementation, with the
experiments here all performed using a single ion2. This package is (among many other
applications) specifically designed to generate a complete set of gate sequences, G, for
GST, as well as providing an analysis software for the subsequent measurement results.
For the GST used in acquiring the following data, all gate sets use only c/2 single-qubit ro-
tations, with the protocol comprised of three sections: (i) initialisation (ii) a series of gates

1pyGSTi open-source software https://www.pygsti.info/
2There are multiple extensions to this basic variant of GST, including for two qubits.

https://www.pygsti.info/
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termed a ‘gate sequence’ (iii) measurement. The exact gate sequences which are imple-
mented are calculated in order to amplify all physical parameters in the gate set, making
GST intrinsically sensitive to coherent errors, unlike with randomised benchmarking [97].

Two di�erent gate sets were generated in order to analyse all single qubit rotations achiev-
able by using the radial beam (fG , fH rotations) and addressing beam (fI rotations) in
the QSim system (see Section 3.1.2). One gate set analysed c/2 gates around the - - and
. -axes – denoted as GG and GH – and the second analysed c/2 gates around the - - and
/ -axes, denoted as GG and GI. The gate set for analysis of GG and GH was comprised of
793 gate sequences, with lengths up to and including 32 individual gates, and for analysis
of GG and GI 527 gate sequences were used, again with lengths up to and including 32
individual gates. The discrepancy in the number of gate sequences between these two
implementations is due to the qubit being prepared and measured in the / -basis. Because
of this, the - and . rotations are symmetric, however this degeneracy is lifted for the /
rotations, allowing the number of necessary sequences for GG and GI to be reduced.

The experimental protocol used to implement GST is the following: The system is first
initialised in |0〉 (d = |0〉〈0|), before a single gate sequence is applied, with a final state
measurement in fI (� = |1〉〈1|) being performed. Each experiment involving a single gate
sequence was repeated 100 times in order to gain significant statistics. This procedure was
repeated for each of the 793(527) gate sequences necessary for GGGH (GGGI) gate tomog-
raphy. This experimental sequence, when averaged over the repeats, generates 793(527)
data points, each corresponding to the average excitation of the ion from a single gate
sequence. This set of 793(527) data points, as well as the set of gate sequences imple-
mented, can then be analysed using the pyGSTi module.

The pyGSTi module has several ways to choose a suitable gauge (that is, a suitable value
for the matrix � in Equations 4.12, 4.15, and 4.16), either using standard ‘built-in’ tech-
niques, or through user-defined gauge optimisation parameters. For the standard method,
the pyGSTi module first finds an estimate for the gate by performing standard LGST fol-
lowed by MLE without considering a gauge, as discussed in the previous Sections. It then
varies over all possible gauges for this gate set in order to minimise a squared Frobenius
distance [97] between the estimated gate set and the ideal gate set, choosing this minimised
gauge as the final result. The squared Frobenius distance is chosen as a metric to minimise
on due to it being well-behaved as well as reasonably fast to compute, in comparison to
other metrics such as the trace or diamond distance [88].

4.1.6 Results

In analysing the data-set generated from GST, the gates in the optimisation sequence
were modelled to be completely positive trace preserving (CPTP) in order to constrain
the results to be physically realistic [38, 88, 98], and all errors are reported to the 95%
confidence level. There are many metrics calculated through the analysis performed by
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Table 4.1: Infidelity results from GGGH (Left) and GGGI (Right) GST analysis.

Gate Infidelity, A (�)

GG 0.0006(7)

GH 0.0005(7)

Gate Infidelity, A (�)

GG 0.0010(15)

GI 0.0076(45)

the pyGSTi module, not all of which are reported or discussed here.

Average Gate In�delity

In reporting a meaningful error in an implemented gate, a metric must be chosen to quan-
tify this value. There are multiple metrics which can be used, however in the following
the average gate infidelity (referred to in the following simply as the infidelity) has been
chosen, not least due to its relative simplicity as a metric. This infidelity quantifies how
close the experimentally measured outcome is to the theoretical description [114]. Al-
though the infidelity is relatively insensitive to noise which is not strictly stochastic (and
so this metric can be seen as not capturing relevant coherent contributions to the errors)
[115], in the following the noise processes are assumed to be Markovian, and so under
such an assumption this metric well-represents the noise processes. In addition, there are
arguments for it being a more relevant error metric from a computational standpoint than
other error metrics [92].

The infidelity metric is an average over all pure states, k, and the overlap these states have
with an error, � (k). It is defined as [115, 116]:

A (�) = 1 −
∫

dk Tr(k� (k)). (4.19)

This metric corresponds to an error rate for a measurement in an expected eigenbasis of
the system, and so gives a measure of the discrepancy between the expected state and the
measured state [115].

Table 4.1 displays the infidelity results from the implementation of the two GST character-
isation measurements. From the GGGH GST, the average gate infidelity for GG is 0.0006(7)
and for GH is 0.0005(7). For GGGI tomography, GG is 0.0010(15) and GI is 0.0076(45). The
gate infidelities from the GGGH GST are very similar, which is to be expected due to these
rotations being performed with the same beam (the radial beam). The gate infidelities
from the GGGI analysis di�er more substantially, with the increased error associated with
GI expected due to the inherent instability of the addressing beam which implements this
gate, on accounts of its very small beam waist (on the order of 2 `m [77]).
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Table 4.2: SPAM results from GGGH analysis.

GGGH Fidelity Infidelity

Preparation 0.9999(14) 0.0001(14)

Measurement |0〉 0.9999(21) 0.0001(21)

Measurement |1〉 0.9986(66) 0.0014(66)

Table 4.3: SPAM results from GGGI analysis.

GGGI Fidelity Infidelity

Preparation 0.9999(14) 0.0000(14)

Measurement |0〉 0.9999(2) 0.0000(2)

Measurement |1〉 0.9999(2) 0.0000(2)

State Preparation and Measurement (SPAM) Errors

The GST analysis not only provides information on the errors of G: gates, but also allows
an estimation of the SPAM errors. Tables 4.2 and 4.3 show the results from this analysis for
both of the GST measurements, with the errors in state preparation, as well as measure-
ment errors of the two states |0〉 = |↓〉 = |S1/2,mj = +1/2〉 and |1〉 = |↑〉 = |D5/2,mj = +5/2〉
given.

For the GGGH analysis, the probability of successful state preparation (equivalent to the
optical pumping success probability) was found to be 0.9999(14), and for the GGGI mea-
surement, was found to be 0.9999(14), which agree with each other within error. These
values are in agreement with measurements made previously which estimated the prob-
ability of successful state preparation to be on the order of 99.9% [23]. For the GGGH

analysis, the measurement error for |0〉 is 0.0001(21), and for |1〉 is 0.0014(66). For the
GGGI measurement, the measurement error for |0〉 is 0.0000(2) and for |1〉 is 0.0000(2).

Calculation of Error Bars using Con�dence Regions

So far, the discussion has been confined to finding an estimate of a gate set which is as close
as possible to the true gate set being characterised. However, there will of course be an
associated error associated with how good the estimate of the gate set was, a calculation
which can be achieved using GST. Blume-Kohout describes a procedure for assigning
likelihood ratio confidence regions in QST in [117], which forms the basis for calculating
error bars in GST.
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Figure 4.2: Con�dence regions from curvature of the likelihood function. Two sim-
ulated quadratic likelihood functions (red and green) are plotted to demonstrate how the
certainty with which the maximum of the likelihood function can be estimated is depen-
dent on the curvature of the likelihood function itself. The maximum of functions with
greater curvature (e.g. red) can be predicted with much greater accuracy than functions
with more gentle curvature (e.g. green). A confidence level (blue plane) naturally encom-
passes a wider range of values for functions with more gentle curvature, so corresponding
to a larger error bar on values derived from such functions.

Likelihood functions fundamentally assume that the real parameters of the real gate set,
®\T, are close to the optimal parameters obtained through MLE, ®\opt, and so the set of
®\ which have a likelihood above a particular threshold will provide a suitable confidence
region. To determine this region, the log-likelihood function can be approximated as a
quadratic function, whose shape can then be given by the Hessian of the log-likelihood at
the point around the maximum likelihood estimate [97, 109]. The variance of a maximum
likelihood function can then be estimated using this.

The Hessian is the matrix of all second derivatives of the likelihood function, L, with
respect to the parameters, ®\, i.e.
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where ®\ = (\1, \2, . . . , \=) is an =-dimensional vector of parameters. The curvature of the
likelihood function is given by these second derivatives, giving an indication of the cer-
tainty with which parameters can be estimated. Figure 4.2 shows how the curvature of
the likelihood function can dictate the certainty with which the maximum (i.e. optimal
point) can be estimated: if the likelihood function has a greater curvature, as shown by the
red function, then the maximum of this function is estimated with more certainty. Con-
versely, likelihood functions with less curvature, as shown by the green function, have a
greater uncertainty. If a confidence level (blue plane) is then imposed on these functions,
it will encompass a wider range of values for functions with more gentle curvature, so
corresponding to a larger error bar on values derived from such functions. As such, the
Hessian – in representing the curvature of the likelihood function – can be used to give
an indication of the uncertainty with which the parameters have been estimated.

The Hessian can be directly related to the variance of the maximum likelihood function
through the expression:

var( ®\) = (−〈�〉)−1 =

(
−

〈[
m2lnL( ®\)
m\m\′

]〉)−1

, (4.21)

where 〈〉 is the expected value (e.g. the mean). The pyGSTi module calculates error bars
for the quantities derived from the GST analysis using this method. It first calculates � ( ®\)
for ln(L) of the best-estimate gate set. The calculated Hessian is then inverted, and scaled
such that it defines an ellipsoid which coincides with L [88]. This method provides the
errors for all values given in this Section.

Model Violations of the Data Sets

One of the main assumptions underlying GST is that the noise processes experienced by
the qubit is Markovian – that is, the noise in the applied gates is memoryless and uncor-
related in time, as well as being independent of any gates which might have recently been
applied. As such, the state of the qubit at time C + 1 should be determined solely by the
state of the qubit at time C and the operation applied to the qubit at time C. However,
for real quantum systems, the repeated quantum operations are never truly identical, due
to experimental imperfections. This non-repeatability is non-Markovianity, and can be
estimated from GST. There are also many other examples of non-Markovian behaviour
which can a�ect the qubit. For example, slow drifts can introduce non-Markovian noise
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(a) Model violation for GGGH GST

L 2Δln(L) k Nf

1 59.57 37 2.62
2 93.29 77 1.31
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(b) Model violation for GGGI GST

L 2Δln(L) k Nf

1 65.31 33 3.98
2 102.48 62 3.64
4 246.97 135 6.81
8 457.29 250 9.27
16 802.72 379 15.4
32 1458.10 508 29.8

Figure 4.3: Model Violations The amount of model violation, #f, as a function of the
length of the implemented circuit, L. a) For the GGGH gate sequence, there is a relatively
low level of circuit violation, even for circuit lengths up to length 32. b) For the GGGI gate
sequence, there is a significant amount of model violation, especially for longer circuit
lengths. Shown in the tables for both gate sequences are the relevant numerical values
extracted for the calculation of the model violation.

into the system, as well as correlations between errors in consecutive gates. For these
processes, the outcome of GST analysis will be a significant ‘badness of fit’ in the results
(although it is assumed that the data is su�ciently Markovian that the GST estimate will
still be fairly reliable). This can be seen as a violation of the model, and therefore as
non-Markovianity. The pyGSTi module allows an analysis of the non-Markovianity of the
data to be performed.

A measure of how well the estimated model fits the data can be determined from the
log-likelihood function ln(L), calculated during the MLE step in GST, by using Wilks’
theorem [118]. The most optimal fit to the data is the one where, for each gate sequence
B implemented, the probability of observing an outcome, ?B, is equivalent to the actual
observed frequency of that outcome, 5B, i.e. ?B = 5B. This can be obtained by using #B
free parameters in the model, where #B is the number of gate sequences implemented
(i.e. assuming one free parameter per gate sequence). The log-likelihood outcomes from
fitting the estimated model to the data, ln(L), can then be compared with the outcome
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from fitting this optimal fit to the data, ln(Lopt). ln(Lopt) will be the maximum value
possible with the most free parameters [119].

In the context of GST, Wilks’ theorem states that if the gate set model estimated by GST
is a valid, close fit to the data with #? free parameters (where #? < #B), then the compar-
ison between these two likelihood functions, defined as 2(ln(Lopt) − ln(L)) = 2Δln(L),
can be approximated as a random variable drawn from a j2 distribution, with mean :
and standard deviation

√
2: , where : = #B − #? [97].

If 2Δln(L) could reasonably have been sampled from a j2 distribution, that is if it lies
within the interval [: −

√
2:, : +

√
2:], then the estimated GST model fits the data as well

as can be hoped, and so there is no substantial evidence for non-Markovianity. However,
if 2Δln(L) is so high that it is lies outside this range and so is unlikely to have been sam-
pled from a j2 distribution, then there is evidence for non-Markovian processes being
involved in the generation of the data. Therefore, a lower Δln(L) corresponds to a better
agreement between the model and the data.

The amount of model violation can then be quantified by #f, which is the number of
standard deviations by which 2Δln(L) exceeds the expected value when a j2 distribution
is assumed:

#f =
2Δln(L) − :
√

2:
. (4.22)

Figure 4.3 gives an indication of the level of model violation experienced by the two GST
protocols implemented in the previous Section. Figure 4.3 a) shows that, for the GGGH gate
sequence, there is a low level of model violation, as the separation in standard deviations,
#f, between the ideal and measured models is low. This indicates that the assumption of
purely Markovian noise is reasonable. With Figure 4.3 b), it can be seen that the model
violation for the GGGI gate sequence is significantly larger, especially for longer circuit
lengths. For a circuit length of 32, the model violation is on the order of 5 times larger than
for the GGGH gate sequence. These results imply that there may be non-Markovian noise
processes having a significant impact on the results which are not captured by the assumed
model. These results are not necessarily surprising: the addressing beam (implementing
GI gates) has a very small beam waist as noted previously, and so will be highly susceptible
to drifts from beam pointing and movement of the ion in the trap, so manifesting as non-
Markovianity in the data-set. This feature would not be expected to be present in the
GGGH data set as this beam is extremely broad in comparison to a single ion, and so drifts
from beam pointing and movement of the ion should not significantly a�ect the data-set.

4.2 Characterisation of Beam Drifts using GST

The GST analysis discussed so far has assumed a stable, repeatable implementation of
the protocol over the course of the measurement time – which is on the order of hours.
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Figure 4.4: Rastering of data to provide time-series data. Left The data is rastered
in order to provide information as to the drifts which may be present in the data. A
circuit, C1 is implemented once, with the outcome and time at which the measurement
was performed recorded. The second circuit C2 is then implemented, and so on to circuit
C=. The entire set of circuits C1 . . .C= is then repeated many times over the course of
several hours. Right Examples of the circuits which are implemented. These circuits are
the same as used for the GST discussed previously.

However, in reality it is likely there will be drifts occurring due to beam pointing and
movement of the ion in the trap, causing this assumption to break down. In fact, it was
even seen in the previous Section that there is significant non-Markovianity present in the
GGGI data-set. By implementing a slightly modified protocol to the one discussed so far in
order to gather data, the pyGSTi package is able to analyse drifts over time. By looking at
the long term drifts in the data set, the motional stability of the experiment with respect
to the beam paths and ion confinement can be inferred. The following protocol which will
now be outlined is based on [111], where a highly detailed explanation of the protocol and
analysis is given.

4.2.1 Protocol

With the GST implemented so far, a circuit is implemented on the ion, repeated 100
times to acquire significant statistics, before the next circuit is implemented. To look for
evidence of drifts using GST, a subtle change to this experimental protocol is required.
Figure 4.4 shows how this should be done through the use of rastering. A circuit, C1,
should be implemented once, with the outcome recorded, before the next circuit C2 is
implemented, the outcome recorded, and so on to the final circuit C=. This entire set of
circuits C1 . . .C= is then repeated many times, over the course of multiple hours, in order
to determine whether drifts are present in the dataset. The outcome of this implemen-
tation is a sequence of 0s and 1s which may vary with time, denoted as a vector ®G. As
such, this protocol requires the use of time-stamped data – that is, when the outcome from
implementation of a circuit is recorded, the time at which the circuit was measured must
also be recorded. The circuits used for looking for drifts are the same as those used for
standard GST.

Having collected the time-stamped, rastered dataset, ®G, the data is then transformed into
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the frequency domain, first by standardising it through subtracting the mean and dividing
by the variance. The amplitudes in the frequency-domain are then given by [111]:

®̃G =

)̂ (®G−ḠI)√
Ḡ(1−Ḡ)

, for 0 < Ḡ < 1

(0, 1, 1, . . .)ᵀ, otherwise,
(4.23)

where Ḡ is the mean of ®G, and the elements of the matrix )̂ are given by:

)l,< =

√
21−Xl,0

=
cos

(
lc

=

(
< + 1

2

))
, (4.24)

with l, < = 0, . . . , = − 1. )̂ is a discrete cosine transform with orthogonal normalisation.
The power at a given frequency, l, is then given by |G̃l |2. It can therefore be seen that, in
the frequency domain, each G̃l is a weighted sum of = bits. The weightings in Equation
4.24 ensure that the shot noise inherent to such experiments is averaged out [111]. A null
hypothesis test can then be performed on this data to determine whether temporal insta-
bilities are present, as will now be explained.

Each implemented circuit, C8, has an arbitrary probability distribution of possible out-
comes. However, although arbitrary, the crucial point is that this probability distribution
should be static if there are no temporal instabilities present. From Equation 4.23, if there
are no temporal instabilities, then the power spectra of the Fourier-transformed time-series
data would follow a j2

1 distribution, and only contain terms which have an expected value
of 1 due to the presence of shot noise. By looking for values of |G̃l |2 that are larger than
the (1−U) percentile of the j2

1 distribution, where U is a pre-defined confidence level often
chosen to be 5%, powers in the spectra which are too high to be consistent with a dataset
with no drifts can be determined.

To construct a null hypothesis to test for such inconsistencies, it is useful to consider that
the expected value of ®̃G, i.e. 〈®̃G〉, is a probability distribution for a particular circuit: that
is, 〈®̃G〉 = ®̃A. As such, the null hypothesis which can be used is that the change in the prob-
ability distribution of a particular circuit, Ãl, is zero for all non-zero frequencies and for
every circuit which is implemented – i.e. Ãl = 0 (there is no drift present). For each value
of l, and for every circuit C8, a test is then performed to determine the value of Ãl.

In order to determine whether a resulting outcome of Ãl > 0 is statistically significant,
a p-value is calculated [120]. The p-value is a measure of how likely it is to observe that
result (or a result which is even more extreme) if the null hypothesis is true [120, 121]. If
the outcome of the p-value is less than the predefined significance level, U, then there is
a statistical incompatibility between the null hypothesis and the data set. Often, however
somewhat arbitrarily, U is defined to be 5%, such that if ? < 0.05 then the null hypothesis is
rejected [120, 121]. As such, for the data here, if the spectral power is greater than the 95%



88 Chapter 4. Gate Set Tomography & Beam Path Characterisations

Figure 4.5: Spectral power of the drift frequency components from drift analysis.
Plotted are the spectral powers of detected frequencies from implementation of the drift
analysis. Points in grey are those which are below the 95% significance threshold level.
Only one frequency, shown in blue at 351 `Hz with a p-value of 8.68 × 10−5, was found
to be above the 95% significance threshold. The black line is the spectral power expected
due to shot noise with no temporal instabilities present. The red line (at a value of 1.16)
signifies the 95% significance threshold level.

significance level, then it can then be concluded that Ãl > 0, and so the null hypothesis is
violated.

4.2.2 Results

Figure 4.5 shows the results from the implementation of the drift analysis on a single ion,
using GGGI GST circuits over a period of 18 hours and 36 minutes, where 161 repeats
were taken. As the radial beam implementing GG gates is over two orders of magnitude
larger than the addressing beam implementing the GI rotations, any detected instabilities
can be assumed to be due to either drifts of the addressing beam, or drifts in the position
of the ion in the trap. The expected spectral power due to shot noise is shown as a solid
black line at a spectral power value of 1.0. The significance level of (1−U) = 95% is shown
as the solid red line. Frequencies with a spectral power above this level can be considered
inconsistent with the null hypothesis. Only one frequency (shown in the Figure as an
enlarged blue point) exceeded the 95% significance threshold, at 351 `Hz with a p-value
of 8.68 × 10−5 and spectral power of 1.17. This corresponds to drifts on timescales of 5
hours.
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4.3 Characterisation of the 729nm Beam Path Stability

The final Section of this Chapter will look at contributions to the phase noise experienced
by the ions due to instabilities in the 729 nm beam paths. Phase noise detected on the
ions can occur from two main sources: phase noise from the laser itself, or instabilities in
the beam path from laser to ion. These two sources of phase noise can be distinguished
by using a Ramsey-type experiment which exploits two di�erent beam paths as will now
be described.

Consider a single ion addressed by light from two separate beam paths, termed 1 and 2
(restricted to the one dimensional case for clarity, although this of course generalises to
three dimensions). The light incident on the ions from each path has the form e8(l1C1+q1)

and e8(l2C2+q2) respectively. From Section 2.3.1, the probability of being found in the
excited state when a Ramsey experiment is performed, with a waiting time of g, is:
% = 1/2(1 − cos(Δlg + q)), where Δl is the detuning of the laser with respect to the
transition frequency of the ion.

If an experiment is now performed where the first and second pulses of the Ramsey experi-
ment are from two di�erent beam paths, rather than the same beam path as has previously
been assumed (however assuming that the light in both beam paths originates from the
same laser source), then the expression for the probability of being found in the excited
state during a Ramsey experiment becomes % = 1/2(1 − cos(Δlg + (q1 − q2))), assuming
that there is no di�erence in laser frequency between the two paths. Correlations in time
between measurements of consecutive Ramsey experiments can then be expressed in the
form:

C8, 9 = 〈(2%8 − 1) (2% 9 − 1)〉 = 〈cos(ΔlC8 + (q1 − q2)8)cos(ΔlC 9 + (q1 − q2) 9 )〉. (4.25)

Assuming that the laser is exactly resonant with the ion transition frequency (and so
Δl = 0), these correlations simplify to:

C8, 9 = 〈(cos(Δq8)) (cos(Δq 9 ))〉, (4.26)

where Δq8 = (q1 − q2)8. Assuming that the beam path fluctuations in the two paths are
independent, the phases from the two separate beam paths will then be uncorrelated, and
so Equation 4.26 can be expressed as:

C8, 9 = 〈cos(Δq8 − Δq 9 )〉. (4.27)

Therefore, the correlations between two such Ramsey experiments can be used to measure
the di�erences in phases between the first and second laser pulse. As this experiment is
insensitive to laser phase noise for short (on the order of a few microseconds) Ramsey
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Figure 4.6: Auto-correlations from a single-ion experiment. Plotted are both expo-
nential (blue line) and Gaussian (green line) fits to the data (black points). The Gaussian
decay better fits the data, indicating that the decay in correlations is predominantly af-
fected by slow phase noise.

probe times, instabilities in the path lengths are the only contributions to the phase noise,
and so the dynamics of these correlations will reveal information about fluctuations in the
path lengths from one experiment to the next.

Practically, this experiment was implemented using the radial beam path and the address-
ing beam path, separated by a short wait time on the order of 2 `s, with the phase of the
second pulse then scanned over. Correlations between a phase scan at time C8 and time
C 9 were then calculated for the entire duration of the experiment. As each phase-scan is
of a sinusoidal form, correlations between two phase scans are equivalent to the average
over a sine-squared function, which can only have a maximum value of 0.5. Two experi-
ments were performed: firstly on a single ion where auto-correlations were looked at, and
secondly on a four-ion chain which allowed investigations of cross-correlations.

Auto-Correlations from 1 Ion

Figure 4.6 shows the results from performing such an experiment on a one-ion system.
The Figure shows the correlations of the ion with itself as a function of the length of time
separating the two measurements. Shown are two fits to the data: an exponential decay
(blue line) and a Gaussian decay (green line). This provides useful information about the
source of errors producing this decay in the system; for fast frequency noise, an exponen-
tial decay of the correlations can be expected. For low-frequency noise, the decay-curve
is likely to be non-exponential, with a Gaussian shape expected [122]. It can be seen
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(a) Normalised summed correlations
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Figure 4.7: Correlations from a 4-ion experiment. a) The normalised summed corre-
lations over ions 1 & 2, and 3 & 4 as a function of temporal separation (black points).
Plotted are both exponential (blue line) and Gaussian (green line) fits to the data. Inset:
Correlations and associated fits at short times. An additional fit (magenta) of a sum of
exponential and Gaussian decays represents the data better at short times. b) Correlations
between ions 1 & 2 (black points) and ions 3 & 4 (red points) which have been summed
in a). Inset: Correlations at short times. The lack of an appreciable drop in correla-
tions at short times indicates there is no significant contribution to the decay from very
high-frequency noise.

that a Gaussian decay better fits the decay of these correlations over the short time-scales
probed in the experiment, indicating that the correlations here are predominantly a�ected
by slow phase noise. This is consistent with phase noise produced by fluctuations in the
beam path, which would be expected to be slow drifts.

The correlations decay over a time-scale of approximately 300ms, which is much larger
than the current coherence time of the system (on the order of 64ms for the |S〉 to |D〉
transition as discussed in Section 3.4), and so it can be concluded that phase instabilities
introduced by path length fluctuations are not, currently, a dominant source of noise in
the system.

Cross-Correlations from 4 Ions

Although providing a large amount of information as to the path length instabilities present
in the system, the experiments performed with one ion are not able to provide information
for the time C = 0 (as the ion should always be perfectly correlated with itself at this point).
In order to address this issue, experiments can be performed with multiple ions, and the
correlations between the ions at time C = 0 can then be examined, providing information
as to whether very-high frequency noise is present in the system. Figure 4.7 a) shows the
results from a measurement similar to that performed in the previous Section, however
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performed with four ions. The Figure shows the summed correlations between ions 1 & 2
and 3 & 4 (black points), normalised to 1. In the Figure, several di�erent fits to the data are
shown. For long-time separations, the data can be well described by an exponential decay
(blue line). At shorter times, an exponential fit no longer truly captures the behaviour of
the data, however a Gaussian decay (green line) is also not ideal. The most optimal fit to
the data is found to be from a sum of both exponential and Gaussian terms of the form:

H = 0.64−C/g + 0.44−C
2/(2f2) , (4.28)

with g = 249ms and f = 149ms, shown by the magenta line. Such a fit describes the
data well out to at least 300ms. This shows that the decay of correlations between ions
experiences contributions from both higher-frequency, Markovian noise as well as lower-
frequency Gaussian noise. Figure 4.7 b) shows the individiual correlations between ions 1
& 2 (black points) and 3 & 4 (red points). This contains information about the correlations
between the ions at time C = 0. As there is no appreciable drop in correlations at this point,
it can be concluded that there are no significant contributions to the decay from very high-
frequency noise, such as high-frequency acoustic noise, which would lead to a significant
decrease in correlations at very short times.



Chapter 5

Theoretical Consideration of Randomised
Measurements

When performing quantum computations and simulations, it is important to have ways
of characterising the system of interest; to ensure it is performing as intended and to
measure quantum properties of interest. Small systems, comprised of only a few qubits,
are relatively easy to characterise, for example through quantum state tomography (QST)
[95, 123]. For such small systems, QST is readily implementable using an experimentally
feasible number of measurements.

However, the number of measurements necessary to characterise a system of interest us-
ing QST grows exponentially with the number of qubits. This quite clearly leads to a
problem in developing intermediate-scale quantum simulators of up to ∼100 qubits [18].
Indeed, even above about eight qubits [95], the number of measurements required to per-
form quantum state tomograpy simply becomes infeasible to experimentally implement.
With the current progress in developing complex, many-body quantum systems which have
ever-increasing numbers of qubits [124], it is necessary to develop new and evermore so-
phisticated methods to characterise systems of interest. The following Chapter will look at
several novel, theoretical proposals which can be experimentally implemented in order to
characterise quantum systems of several tens of ions, and so extract important information
about these systems.

This Chapter lays the theoretical foundations for the subsequent experiments presented in
Chapters 6 and 7, where the protocols detailed here will be experimentally implemented
on 10-ion partitions of ion-strings of up to 20 ions. The first protocol presented is the
theoretical underpinning for the publication ‘Probing Rényi entanglement entropy via random-
ized measurements’ [24], the second is the theoretical basis for the publication ‘Quantum
Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range Interactions’
[25], and the third is published in ‘Cross-Platform Veri�cation of Intermediate Scale Quantum
Devices’ [26].

93
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Figure 5.1: Illustration of random rotations on the Bloch sphere. a) An initial pure
state, d = |k〉〈k |, under application of a unitary operation drawn from the CUE, *, is
rotated to any other point on the Bloch sphere with equal probability. The Bloch vector
length, |A | = 1, is preserved under this rotation. b) An initial partially mixed state, d<, is
rotated to any other point on the shrunken Bloch sphere with equal probability. For this
state, |A | < 1, however the purity is still preserved under this rotation.

5.1 Statistical Correlations between Randomised Mea-
surements

In attempting to develop more sophisticated methods of characterising larger systems, a
significant amount of e�ort has recently been invested into looking at how statistical cor-
relations between randomised measurements can be used to extract useful information
from many-body quantum systems [26, 125–130]. Randomised measurements are defined
here as unitary operations which are randomly drawn from the circular unitary ensemble
(CUE) [131]. The CUE consists of symmetric = × = unitary matrices together with their
Haar measure (i.e. invariance under left and right translation) [132, 133]. Each element of
the CUE is therefore a Haar-invariant unitary matrix such that, when applied to a single
qubit (and for = = 2), any initial state on the surface of the Bloch sphere is rotated to any
other point on the surface of the Bloch sphere with equal probability. Figure 5.1 gives a
pictoral demonstration of this. In a), an initial pure state, d = |k〉〈k |, which correspond-
ingly has a Bloch vector length |A | = 1 (recall from Section 2.1.2 that the purity of a state,
Tr(d2), is proportional to the length of the Bloch vector), is rotated by a random unitary
* to the state d′ = |k′〉〈k′|, with the purity of the state conserved – that is, d′ also has
length |A | = 1. Figure 5.1 b) shows this process for a partially mixed state, d<. d< can
be visualised on a Bloch sphere with radius less than 1, i.e. |A | < 1. In the same way as
for the pure state, this state will be rotated with equal probability to any other point on
its shrunken Bloch sphere, preserving both the purity of the state and consequently the
length of the Bloch vector.
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(a) Pure state (b) Mixed State

Figure 5.2: Histograms showing the width of the distribution of measurement out-
comes, 〈2z〉, after application of random rotations [. Shown is experimental data
where the relative occurrences of 〈fI〉 measurement outcomes for di�erent random uni-
taries, *, is plotted. a) Measurement outcomes from a pure state. The measurement
outcomes uniformly cover the full range −1 ≤ A ≤ 1, reflecting that the purity of the state
is equal to 1. b) Measurement outcomes from a partially mixed state. The measurement
outcomes cover a smaller range than in a), showing that the Bloch vector length, |A |, is
reduced (i.e. the state lies inside the pure-state Bloch sphere), and so the purity is cor-
respondingly less than 1. Solid lines are a guide to the eye to demonstrate the uniform
distribution.

A physical understanding of how randomised measurements can provide insights into the
properties of an arbitrary state can be obtained from these illustrations. By applying a
random unitary, *, to a single qubit and performing state readout (with su�cient repeti-
tions of this process), and then repeating this process for many di�erent random unitaries,
the shape of the Bloch sphere can e�ectively be mapped out. This information about the
shape of the Bloch sphere can then be extracted from the distribution of measurement
outcomes from performing qubit readout by measuring in 〈fI〉. Figure 5.2 shows exper-
imental data to illustrate the distribution of these probabilities for two di�erent states.
Figure 5.2 a) shows the distribution of 〈fI〉 outcomes for a pure state. As |A |, and so
Tr(d2), is always one, random rotations of this vector lead to a uniform distribution of
measurement outcomes covering the full range −1 ≤ A ≤ 1 . Conversely, Figure 5.2 b)
shows this distribution for a partially mixed state, where |A |, and so also the purity, is
always less than one. As such, the quantum state lies inside the pure-state Bloch sphere,
with random rotations consequently leading to a distribution of measurement outcomes in
a reduced interval. When considering multiple qubits, information about the purity of the
state can also be extracted, except now by using sums of statistical correlations between
the measurement outcomes of the randomised measurements.

When single qubit readout is performed, each qubit is measured in a fixed (logical) ba-
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sis, in this work assumed to be the / -basis. An outcome from a measurement on the
state, denoted by B = (B1, . . . , B# ) (as an example, for a two-qubit state these measurement
outcomes would correspond to 00, 01, 10, 11), is then given by %(B) = Tr

(
*d*† |B〉〈B |

)
=

〈B |*d*† |B〉. The important quantity is the statistical cross-correlations between these mea-
surement outcomes from randomised measurements, with the sum over these correlations
taking the mathematical form,

C =
∑
B,B′

%(B)%(B′). (5.1)

It is these statistical correlations, extracted from randomised measurements, which can
provide information into the dynamics of many-body quantum systems, so providing the
basis for the three, theoretical protocols which will now be detailed in the following Sec-
tions.

5.2 The Second-Order Rényi Entropy

One of the most important quantites to measure in many-body quantum systems is that of
entanglement. Entanglement can be considered an almost crucial property for quantum
simulators and computers, and large amounts must be generated if they are to achieve
advantages over their classical analogues [29]. A widespread question in quantum infor-
mation is how to characterise this entanglement, as well as any correlations which may
exist, in complicated quantum systems comprised of 10s of qubits. The first protocol which
will be introduced aims to gain information about entanglement in a system through ex-
tracting the second-order Rényi entropy using randomised measurements.

At present, there are several methods available in order to probe entanglement in many-
body systems. A well-known example is through the use of matrix product state tomog-
raphy, where short-range correlations between qubits can be used to provide a simplified
description of the wave function of the system [134, 135]. Although requiring far fewer
measurements than full QST, such methods generally require a priori knowledge of the
system, and only work e�ectively on weakly-entangled states.

An alternative method to probe the entanglement structure of a quantum system is through
measuring the second-order Rényi entropy of its di�erent partitions. The following Sec-
tion details a novel, theoretical protocol for measuring the second-order Rényi entropy
through statistical correlations between randomised measurements [125, 127]. This Sec-
tion is the theoretical underpinning for Chapter 6, where this protocol is experimentally
implemented for partitions of up to 10 ions in 10- and 20-ion chains.
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5.2.1 Obtaining the Second-Order Rényi Entropy fromRandomised
Measurements

The Rényi entropy is a well-known entanglement entropy and is the more general form
of the von Neumann entropy introduced in Section 2.1.2, which can be regarded as the
‘quantum analogue’ of the classical Shannon entropy. The general form of the Rényi
entropy for a given quantum system described by density matrix d, is given by [136]:

((U) (d) = 1

1 − U log2

(
=∑
8

?U8

)
, (5.2)

where U is the order of the Rényi entropy, and 8 the possible measurement outcomes of
d with probability ?8. The first-order Rényi entropy from this expression, i.e. in the limit
where U→ 1, is the well-known von Neumann entropy.

Of interest in this Section is the second-order Rényi entropy. For a reduced density matrix,
d�, which describes a subsystem � of the total system d, the second-order Rényi entropy
is then given by

((2) (d�) = −log2Tr(d
2
�). (5.3)

This entropy is particularly useful due to its non-linear dependence on the density matrix,
Tr(d2

�
), as will be discussed later in this Section. It can already be seen that Eq. 5.3

provides a direct relation between the entropy of the system and its purity (and therefore
also to the length of the Bloch vector). For pure quantum states, where Tr(d2) = 1, it can
be seen that ((2) (d) = 0.

Several di�erent protocols already exist enabling a measurement of ((2) (d). For example,
collective measurements can be made on two identical copies d of a quantum system,
as demonstrated in [137–140]. In [139], such a protocol was implemented in a six-site
Bose-Hubbard system, realised with atoms in an optical lattice where it was used to study
entanglement growth and thermalisation.

However, such protocols cannot be practically implemented on all quantum platforms –
for example in trapped ion platforms, it is not usually feasible to prepare two identical
copies of a quantum system at the same time. This motivated the search for an alterna-
tive protocol which would allow a measurement of ((2) (d�) to be performed using only a
single copy of the quantum system at any one time [24, 127]. Such a protocol was conse-
quently developed through extending the proposals of [125–127, 141], using the fact that
information about the second-order Rényi entropies of a system is contained in statistical
correlations between the outcomes of measurements performed in random bases. This is
the protocol which will now be detailed in the remainder of this Section, and correspond-
ingly experimentally implemented in Chapter 6.
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Figure 5.3: Schematic of the measurement procotol. The system is first initialised in
the state d0. A Hamiltonian (pink) is applied, thus evolving the system in time to the state
of interest d. Local, random unitaries, D8 (shown in blue), are applied to each qubit in
the system, before a measurement in the / -basis is performed. This sequence is repeated
multiple times for the same random unitaries in order to gather su�cient statistics. The
entire process is then repeated for many di�erent, randomly drawn local unitaries.

To understand how the protocol works, an example implementation will now be described
which will provide an insight into how the second-order Rényi entropy can be determined
from randomised measurements. Figure 5.3 shows a schematic of the protocol for a system
of # qubits, where the state is prepared in an initial state d0. The system is then evolved
under a Hamiltonian (shown in pink in the Figure) to the state which is of interest, d.
The randomised measurement approach [125] is to then apply local random unitaries, D8
(shown in blue in the Figure), to the individual qubits such that* = D1⊗ ..⊗D# , where each
D8 is drawn independently from the CUE [131]. Single qubit readout is then performed,
where each qubit is measured in a fixed (logical) basis, here assumed to be the / -basis.
An outcome from a measurement on this state, denoted by B = (B1, . . . , B# ), is then given
by %(B) = Tr

(
*d*† |B〉〈B |

)
= 〈B |*d*† |B〉. For each set of random unitaries, *, repeated

measurements are made to obtain su�cient statistics, and the entire process repeated for
many di�erent randomly drawn instances of *. This protocol can then provide access to
the second-order Rényi entropy as will now be discussed.

If a subsystem � comprised of #� qubits is considered, the purity of its reduced density
matrix, d�, is given by Tr(d2

�
). The second-order Rényi entropy of d� can then be found

from the cross-correlations of excitation probabilities using the relation [24, 125]

((2) (d�) = −log2-, with - = 2#�
∑
B�,B

′
�

(−2)−D(B�,B′�)%(B�)%(B′�), (5.4)



5.2. The Second-Order Rényi Entropy 99

where %(B�) = 〈B� |*�d�*†� |B�〉 are the excitation probabilities for the measurement out-
comes B� of partition �,*� = * |� is the restriction of the random unitaries* to �, and . . .
is the ‘ensemble average’ over the cross-correlations of the excitation probabilities %(B�)
(where the average is taken over *). D(B�, B′�) works in essence as a weighting factor,
quantifying the number of spin flips needed to convert B� into B′�. For example, D(B�, B′�)
for the states B� = 0000 and B′

�
= 1000 is 1, as one spin flip is necessary to convert B� to

B′
�
. D(B�, B′�) is known as the Hamming distance.

From comparing Equations 5.3 and 5.4, it can be seen that - is equal to the purity Tr(d2
�
) of

the density matrix d�. As such, the purities can be inferred from the statistical distribution
of the weighted sum of cross correlations

∑
B�,B

′
�
(−2)−D(B�,B′�)%(B�)%(B′�), where an average

over the distribution is then taken. Equation 5.4 therefore provides access to the purity,
and consequently to the second-order Rényi entropy, of a multiqubit state, as well as to
the purities/entropies of all of its subsystems, all at the same time.

5.2.2 Entanglement Information from the Second-Order Rényi En-
tropy

So far, the discussion has been constrained to discussing ((2) (d) and how measurements
of the excitation probabilities can lead to information about the purity and entropy of the
quantum system of interest and its associated subsystems. However, information about
the presence of entanglement can subsequently be extracted from ((2) (d).

The relation between ((2) (d) and entanglement can be understood as follows: Imagine a
two-particle system described by the density matrix d��, as illustrated in Figure 5.4. Figure
5.4 a) depicts a measurement of the density matrix of the system d�� (denoted by the grey,
shaded area), for example through full QST which will allow the entire information of the
system to be accessed. Figure 5.4 b) instead represents measurements of the reduced
density matrices, d� (the blue area) and d� (the green area), where then only the states
of particles � and � respectively can be reconstructed. For a separable (product state),
d�� = d� ⊗ d�, however if entanglement is present between � and � (i.e. the state is
non-separable), then d�� ≠ d� ⊗ d�. For a non-separable state, this separate measurement
of the subsystems can be viewed as, in e�ect, a loss of information with regards to the full
system d��, where the ‘lost information’ is represented in Figure 5.4 b) as the sections of
d�� which aren’t encompassed by either d� or d�. A loss of information from a system
corresponds to an increase in its entropy and, as such, measurements of the subsystems of
an entangled state lead to a loss of information of the whole system, and a corresponding
increase in entropy. Therefore, if the entropy of part � and/or part � is greater than the
entropy of the total system, i.e. if ((2) (d�) = ((2) (d�) > ((2) (d), then it can be concluded
that entanglement (specifically bipartite entanglement) exists between � and � [36]. This
is the crucial insight which allows entanglement information to be deduced from entropy
measurements of a complete system as well as of its subsystems.
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(a) Measurement of the full density matrix
d��.

(b) Measurement of the reduced density ma-
trices, d� and d�.

Figure 5.4: Illustration of extraction of entanglement information from system en-
tropies. For simplicity, a two-qubit system comprised of qubits � and � is considered.
a) A measurement of the combined density matrix, d�� (grey, shaded area) is made,
allowing access to the full information of the system. b) Measurements of the reduced
density matrices, d� (blue area) and d� (green area) are made. For a pure, non-separable
(i.e. entangled) state, d�� ≠ d� ⊗ d�. This is represented in the Figure by the com-
bination of density matrices d� and d� not fully encompassing d��. In this situation,
((2) (d�) = ((2) (d�) > ((2) (d).

5.2.3 Scaling of the Number of Measurements

The number of measurements necessary to access the purity of a multiqubit state is an
important figure of merit to know. The scaling of the number of necessary measurements
for this protocol was determined from numerical simulations [24]. In order to measure
the purity of a pure, product state (or subsystem of a state) of #� qubits with a statistical
error of 0.12, the number of measurements required was found to be,

#meas = 2(0.8±0.1)#�+7.7±0.3. (5.5)

Although still an exponential scaling, this protocol scales far better than QST which re-
quires at least 22= measurements for an =-qubit system [142]. For entangled pure states
the number of required measurements can even be significantly lower [24]. It is therefore
fully feasible to obtain the purity of systems comprised of tens of qubits using this method.

The improved scaling of this protocol compared to QST can be understood as the full
density matrix, d, is not being measured, but rather terms which are non-linear in d, such
as d2, are being measured. As such, not all the information about the system is being
extracted, but rather a reduced amount of (important) information.

This Section has looked at the theoretical background to a novel protocol for determining
whether bipartite entanglement exists in a quantum system. The protocol has several
advantages over previous protocols to determine ((2) (d): It makes no prior assumptions
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(a) Local operator + remains localised, so
commuting with , (C).

(b) Local operator spreads under * (C), and so
+ and , (C) no longer commute.

Figure 5.5: Schematic of operator localisation/spreading and corresponding com-
muting/noncommuting of operators a) A local perturbation, + , is applied to a single
qubit in the system. In the absence of unitary time-evolution, the perturbation remains
localised, and there is correspondingly no overlap between + and a local measurement
operator , (C) = *†(C),* (C) at a later time C. Therefore, + and , (C) commute. b) In
the presence of a unitary time-evolution operator * (C) (shown by the dotted grey box),
the initial local perturbation spreads out over the system, and there is a corresponding
overlap between + and the local measurement operator , (C). As such, , (C) is e�ectively
delocalised, and so no longer commutes with + .

on the state of the system being measured, working for both weakly and strongly entangled
states. This is in contrast to protocols such as matrix product state tomography, which only
work reliably for weakly entangled states [134]. The protocol can also be implemented in
any quantum platform with single particle readout and control.

5.3 Mapping Statistical Correlations to Out of Time Or-
dered Correlators

The second protocol which will now be presented in this Section provides a way to mea-
sure the e�ect of information spreading in a quantum system. When evolving under a
Hamiltonian, quantum information spreads out or ‘scrambles’ across a system’s degrees
of freedom. Such scrambling can be characterised by measuring quantities known as
out-of-time-ordered correlators (OTOCs) [143]. OTOCs are a growing area of interest, es-
pecially in the context of characterising many-body dynamics, and can be used to identify
quantum chaos – furthering the understanding of how quantum information propagates
and scrambles in such systems [144].
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To understand what OTOCs are and how they can be used to characterise quantum chaos,
consider Figure 5.5, which shows a system of # qubits. Figure 5.5 a) shows an initial local
perturbation + to the system at qubit 8. In the absence of evolution under an operator
* (C), this perturbation remains localised, and so commutes at a later time with a mea-
surement operator , on qubit 9 – that is, there is no overlap between operators + and
, . Figure 5.5 b) shows this situation when the system instead undergoes unitary time
evolution under * (C) after application of + and before application of , (C) = *†(C),* (C).
During evolution under * (C), + spreads out over the system such that, at a later time C
there is a non-zero overlap between + and , (C), and so + no longer commutes with , (C)
[145].

The amount of this noncommutativity between + and , (C) – which can also equivalently
describe the amount of scrambling experienced by , (C) – can then be quantified by the
OTOC, which takes the form

$ (C) = Tr(d0, (C)+†, (C)+)
Tr(d0, (C)2+†+)

, (5.6)

where d0 is the initial quantum state. It can be seen that when no scrambling occurs (so
when + and , (C) commute), then $ (C) = 1. The time-dependence of the OTOC in Equa-
tion 5.6 is powerful, as it allows di�erent regimes of scrambling to be identified, such as
‘fast-scrambling’, which has application to black hole physics [146–148], to ‘slow scram-
bling’, which is one of the characteristics of many-body localisation [149–151].

Despite the potential importance of OTOCs in characterising many-body systems, it is still
experimentally challenging to measure these dynamical correlation functions in real space
and time, as their time-dependence means they cannot be measured through directly using
time-ordered correlation functions [143, 152]. Several methods already exist to experimen-
tally measure $ (C), for example by using time-reversal operations [143, 146, 153, 154] or
through the use of auxiliary qubits [155]. However, protocols based on time-reversal are
still challenging to experimentally implement for many experimental platforms – such as
Hubbard systems or those with local interactions.

5.3.1 Measuring statistical correlations: The “Modi�ed OTOC”

The protocol presented in the following Section provides the ability to measure OTOCs
without the need for time-reversal or ancilla qubits/systems. They are instead extracted
through statistical correlations, with these statistical averages meaning the OTOC ex-
tracted through this method is naturally robust against certain types of decoherence and
noise, such as depolarisation and read-out errors. The mathematical basis for this tech-
nique is very involved and so will not be discussed in detail here, however is covered
explicitly in [129].
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The protocol provides a method to measure what are termed “modified OTOCs”. These
modified OTOCs can be expressed in the form [129]:

$= (C) =
∑
�,�=⊆� Tr (, (C)� (+, (C)+)�)∑
�,�=⊆� Tr (, (C)� (, (C))�)

. (5.7)

These summations are performed over all partitions, �, in the system that include the set
�= = {1, · · · , =} of the first = spins. The traces are the reduced traces over the operators
such that , (C)� = Tr� (, (C)), and (+, (C)+)� = Tr� (+, (C)+). Equation 5.7 can then be
interpreted as a sum of out-of-time-ordered functions of the reduced operators , (C)� and
(+, (C)+)�.

Equation 5.7 quickly converges to the unmodified OTOC of Equation 5.6 as =→ # , where
# is the number of qubits in the system [129]. Therefore, in order to measure the unmod-
ified OTOC $ (C), the series of modified OTOCs $0(C), $1(C), . . . can be measured until
the series converges to $ (C).

Full convergence to $ (C) often requires significant experimental e�ort [129], however ap-
proximate convergence to $ (C) can instead be obtained by measuring lower orders of
$= (C) which requires fewer experimental measurements. Therefore, by experimentally
measuring su�cient numbers of the modified OTOCs (it will be seen in Chapter 7 that
measuring up to = = 2 can, in fact, be su�cient), then the unmodified OTOC $ (C) can be
approximated, allowing access to information about scrambling within a quantum system.

The protocol described here is a method to measure the modified OTOCs of Equation
5.7 using statistical correlations between measurements. The protocol uses local unitary
operations to prepare a random initial state, which is then evolved under a many-body
Hamiltonian, before a measurement of , is performed. Figure 5.6 provides an example
schematic of how the protocol can be implemented in a spin-system to first measure $0(C),
to which there are two main steps. In both cases, an initial product state d0 = |:0〉〈:0 | is
prepared, where (for example) |:0〉 = | ↓, ↓, . . . , ↓〉. Local, random unitaries D = D1⊗· · ·⊗D#
are then applied to |:0〉, so preparing the state |k〉D,:0 , where the local unitaries are drawn
randomly from the CUE [131]. The next section then has two variants:

• In Step 1, shown left in Figure 5.6, the system is dynamically evolved under a Hamil-
tonian �, before the operator , is measured. This sequence is repeated many
times with the same random unitaries, so giving access to the operator 〈, (C)〉D,:0 =
D,:0 〈k |, (C) |k〉D,:0 . This operator is the expectation value of , for each set of di�er-
ent unitaries D which have been applied.

• Step 2, shown right in Figure 5.6, is almost identical, however a local operator + is
applied before the time evolution under �. Repeating the second step, again many
times and with the same random unitaries and local operator, provides access to the
operator D,:0 〈k |+†, (C)+ |k〉D,:0 .
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Figure 5.6: Example schematic of how the protocol can be implemented in order to mea-
sure the operators 〈, (C)〉D,:0 and 〈+†, (C)+〉D,:0 in a spin system. The system is first
initialised in state d0 = |:0〉〈:0 |. Local, random unitaries (shown in blue) are then ap-
plied in order to prepare a randomised initial state. Depending on whether Step 1 or Step
2 is being implemented, the perturbation + is applied to a single qubit. The system is
then time-evolved under a Hamiltonian � (shown in pink), where * (C) = 48�C/ℏ, with a
measurement in , finally performed.

Finally, these steps are repeated for many di�erent random unitaries, D. From these mea-
surements, statistical correlations can be constructed of the form:

$0(C) =
1

3
(!)
0

2:0 〈, (C)〉D,:0 〈+†, (C)+〉D,:0 , (5.8)

where 3 (!)0 = 2:0 〈, (C)〉D,:0 〈, (C)〉D,:0 is a normalising factor, with weight 2:0 , and . . . av-
erages over the applied random unitaries D.

Equation 5.8 can be generalised to ‘higher orders’, taking the form [129]:

$= (C) =
1

3
(!)
=

∑
:B∈�=

2:B 〈, (C)〉D,:B 〈+†, (C)+〉D,:0 , (5.9)

where 3 (!)= =
∑
:B∈�= 2:B 〈, (C)〉D,:B 〈, (C)〉D,:0 is a normalising factor, with weights 2:B . $= (C)

is a sum of functions like $0(C), but for di�erent initial states |:B〉. These di�erent initial
states are all product states of the form |:B〉 = | ↑, ↓, . . .〉, such that |:0〉 = | ↓, ↓, . . . , ↓〉,
|:1〉 = | ↑, ↓, . . . , ↓〉, |:2〉 = | ↓, ↑, . . . , ↓〉, |:3〉 = | ↑, ↑, . . . , ↓〉 and so on [129]. To approximate
$= (C), the initial states must belong to the set �= = {:0, ..., :2=−1}, and the same random
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Figure 5.7: Simulated correlations between 〈] (t)〉 and 〈\] (t)\〉 for the initial
state |k0〉 = | ↓ · · · ↓〉. The figures show simulated data for a 6-spin system undergoing
a �Ising-type interaction of the type described in Section 2.5.3, using a coupling strength
of �max = max|�8 9 | = 410 s−1, with randomly drawn unitaries, quantum projection noise,
and assuming 400 repeats for each data point. + = fI is applied to ion 1, and , = fG ap-
plied to ion 4. a) At C = 0, i.e. no evolution under * (C), there are full correlations between
〈, (C)〉 and 〈+, (C)+〉. b) and c) At later times of evolution under * (C), the correlations
between 〈, (C)〉 and 〈+, (C)+〉 decrease, due to the increased overlap between the oper-
ators + and , (C). This can be seen as a shrinking and broadening of the correlations,
which clusters around 0.

unitaries should be used for all di�erent initial states.

The measurement protocol for these higher orders is very similar to $0(C), and as an
example a brief overview of the measurement protocol $1(C) and $2(C) will now be de-
scribed. To measure these terms, additional measurements for di�erent initial states are
also needed. For measuring $1(C), Step 1 in the previous Section is repeated for an ad-
ditional initial state |:1〉. When combined with the results from measurements of $0(C),
Equation 5.7 can then provide access to $1(C). Likewise, for measuring $2(C), Step 1
must be repeated for the initial states |:1〉, |:2〉, and |:3〉. Again, when combined with the
results from measurements of $0(C), Equation 5.7 provides access to $2(C).

Crucially, for 2:B = (−2)−D(:0,:B), where D(:0, :B) is the Hamming distance, Equation 5.8
can be shown to be equivalent to the modified OTOCs of Equation 5.7 (see Appendix A of
[129]). As such, the protocol provides a way to measure modified OTOCs using statistical
correlations.

In order to give context to the above discussions, the following section will demonstrate
the results from simulations which compare modified OTOCs to the exact OTOC. Firstly,
Figure 5.7 shows the expected correlations between 〈, (C)〉 and 〈+, (C)+〉 at di�erent
times during evolution under * (C) for a 6-spin simulated experiment, using 500 di�erent
random unitaries. The perturbation + = fI was applied to spin 1, and measurement op-
erator , = fG applied to spin 4. Unitary evolution from application of a �Ising model
of interacting spins was performed, as detailed in Section 2.5.3, with �max = max|�8 9 | =
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Figure 5.8: Simulated comparison of the exact OTOC, UExact(t), to modi�ed
OTOCs for a 6-spin system. a) Evolution of the exact OTOC, calculated from Equation
5.6, is shown (black line) alongside evolution of $0(C) (blue line). b) Higher order modi-
fied OTOCs, $1(C) (green line) and $2(C) (pink line), are shown for comparison against
the exact OTOC. For all plots, a Hamiltonian of the form �Ising was assumed with �max =

410 s−1, + = fI applied to ion 1, and , = fG applied to ion 4, with the data simulated for
500 random unitaries.

410 s−1. Figure 5.7 a) shows that, at C = 0 (i.e. no evolution under * (C)), there are perfect
correlations between 〈, (C)〉 and 〈+, (C)+〉. This is to be expected as there should be no
overlap between the operators + and , (C) at this point (see again Figure 5.5 a) ). Figures
5.7 b) and c) show how, as the interaction time is then increased, the correlations between
〈, (C)〉 and 〈+, (C)+〉 decrease. This shows that there is a corresponding increase in the
overlap between the + and , (C) operators, due to the delocalisation of , (C).

Figure 5.8 a) shows how the exact OTOC from Equation 5.6, $ (C) = $�G02C (C), and the
0th-order modified OTOC of Equation 5.8, $0(C), both measured at spin-4, evolve as a
function of time, so giving an indication of how well $0(C) approximates the true OTOC
$ (C). The Figure shows the exact solution to Equation 5.6, shown by the black line, along-
side $0(C) (blue line) for the simulated data of the 6-spin system described above. As can
be seen, $0(C) has many of the same features of $ (C), with $0(C) beginning at 1 before
reducing with time. However, $0(C) does not approximate $ (C) particularly well, as the
dynamics are much slower than $ (C).

Figure 5.8 b) shows the higher order modified OTOCs, $1(C) and $2(C), of Equation 5.9,
alongside $0(C) and the exactly solved OTOC (black) for comparison. It can clearly be
seen that the higher orders progressively match the true OTOC increasingly well, with
$2(C) having the best match out of those plotted. It will be shown in Chapter 7 that it is,
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Figure 5.9: Evolution of OTOCs for each ion in a simulated 6-spin system. a) and
b) The evolution of the modified OTOCs $0(C) and $2(C) respectively are shown for each
ion , = f8G with 8 = 1 . . . 6. c) The evolution of the exact OTOC for each ion is shown
for comparison. For all plots, a Hamiltonian of the form �Ising was assumed with �max =

410 s−1, + = fI applied to ion 1, and the data simulated for 500 random unitaries.

in fact, su�cient to measure up to $2(C) to approximate $ (C), and so this is the highest-
order modified OTOC plotted here.

For full completeness, Figure 5.9 shows the modified OTOCs for all ions (i.e. for , = f8G
for 8 = 1 . . . 6). a) and b) show $0 and $2 respectively, with c) showing the exactly solved
OTOC as a comparison. It is clear that the evolution of $0 for each ion, as shown in panel
a), is too slow when compared to the exactly solved OTOC of panel c). The evolution of
$2 for each ion (panel b) ), resembles the exact OTOC far better than $0, with the speed
of the dynamics approximately comparable.

This Section has detailed a theoretical protocol to measure approximations to OTOCs
through statistical correlations. The protocol requires no time-reversal operations or use
of auxiliary qubits, and so is of an advantage in experimental platforms in which protocols
requiring these implementations are challenging to implement. The protocol will be ex-
perimentally implemented in the QSim system on ion strings of up to 10 qubits in Chapter
7.

5.4 Cross-Platform Veri�cation through Local
Randomised Measurements

The final protocol discussed in this Chapter will move away from characterising a single
quantum device, and instead develop a method which will allow the comparison of two
separate quantum platforms through randomised measurements. The motivation will be
to develop a protocol which can be implemented separately in time and space on two (po-
tentially very di�erent) quantum devices, which can allow two separately prepared states
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to be compared.

Recently, various procedures have been developed which allow the performance of a quan-
tum device to be verified, such as direct fidelity estimation [134, 156], and randomised and
cyclic benchmarking [91, 92, 106, 157, 158]. Verification procedures such as these compare
an experimentally implemented (noisy) quantum state/process with a known theoretical
target state/process. However, this requires the target state to be known, and so a key
challenge is the direct comparison of two a priori unknown quantum states prepared on
two separate devices, at di�erent locations in time and space. Such protocols will be-
come of ever-increasing importance as larger many-body systems are developed, and so
comparison to classical simulations requires increasing classical computational power (i.e.
becoming evermore computationally di�cult). In such regimes, it will be necessary to be
able to compare two quantum machines in order to verify their correct operation [26].

5.4.1 Two-Platform Fidelity Estimation

The protocol presented here measures how closely two separate platforms have prepared
the same state, d, through looking at the overlap between the two prepared quantum states
by defining a fidelity �max. A fidelity measure of two pure, quantum states, denoted by |k1〉
and |k2〉, is commonly defined as the overlap between the two states: �pure = |〈k1 |k2〉|2.
However, with the development of quantum technologies leading to ever larger quantum
systems with corresponding exponentially increasing complexity, it is likely that a fidelity
measure for mixed states will become increasingly useful [159]. A set of criteria which
constrain fidelity measures to those which are truly suitable for mixed states was proposed
by Jozsa in 1994 [160]. �max is one such mixed state fidelity measure which satisfies all of
Jozsa’s axioms, and is defined as [159]:

�max(d1, d2) =
Tr(d1d2)

max{Tr(d2
1),Tr(d

2
2)}

. (5.10)

This equation gives a measure of the overlap between the density matrices d1 and d2, nor-
malised by the maximum of their respective purities. In this equation, the density matrices
do not necessarily have to be of the entire system, but can also be of subsystems. �max
can then be used to quantify the degree to which two quantum platforms have prepared
the same, potentially mixed, quantum state.

5.4.2 Fidelity Estimation from Statistical Correlations

The protocol gives a method to obtain �max from statistical correlations between ran-
domised measurements. Whereas in Section 5.2 entanglement entropies were obtained
from the reduced density matrices of single systems, that is, the interest was in Tr(d2), in
this protocol the interest is in the overlap between density operators of two systems – i.e.
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Figure 5.10: Schematic of the �delity estimation protocol using randomised mea-
surements. Two platforms, separated in time and space, prepare an identical state of
interest d. By applying local, random unitaries to this state and measuring 〈fI〉, the
excitation probabilites for these two platforms, P1

* (B1�) and P2
* (B2�), can be accessed. If

identical random unitaries are applied to both platforms, then the overlap between the two
density matrices, Tr(d1d2), can be extracted from these excitation probabilites using Eq.
5.11.

the interest lies in the quantity Tr(d1d2). Although the fidelity �max can be obtained from
full quantum state tomography (QST) of both platforms 1 and 2 [95], in reality the expo-
nential scaling of QST with the system or subsystem size practically limits the system to 8
qubits [95]. Although, as previously discussed, alternative e�cient tomographic methods
have been implemented [134, 135], such methods require previous knowledge of the state
of interest. The protocol presented here, although also scaling exponentially, still scales
much more favourably with the system/subsystem size – as will be shown below – as well
as requiring no a priori knowledge of the state of interest. This allows the possibility of
practical cross-platform verification for systems of tens of qubits which can be currently
realised on state-of-the-art quantum devices.

Figure 5.10 gives a schematic overview of how the protocol could be implemented on two
quantum platforms consisting of #1 and #2 qubits at di�erent locations and at di�erent
points in time. The general protocol is as follows: The quantum platform should first
be initialised in d80, where 8 = 1, 2 represents either Platform 1 or Platform 2. This state
should then undergo a dynamical evolution to the state of interest, d. This dynamical
evolution is not constrained to be solely a unitary evolution under a Hamiltonian na-
tive to the system, but could be a variational process to prepare the state, or some other
feasible form of state preparation such as trotterisation [49, 161]. Following preparation
of the evolved state d, local random unitaries are drawn from the CUE [131] and sent,
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through classical communication, to both quantum platforms. These random unitaries
are applied to spins : = 1, . . . , #� and can be considered as the application of a single
global random unitary *� = ⊗#�:=1*: , which is a product of these local random unitaries.
Finally, single-qubit readout in the Z basis is performed, projecting the system into the
state |B�〉 = |B1 . . . B#�〉. A crucial point to note is that the same random unitaries must
be applied to both platforms in order to extract the fidelity overlap between the two states.

Repeating this protocol many times for the same *� provides an estimate of the outcome
probabilities %8

*
= Tr(*�d8,�8*

†
�
|B�〉〈B� |), where again 8 = 1, 2 represents either Platform

1 or Platform 2. This entire procedure, including the repeats, is then itself repeated for
many di�erent random unitaries *�. From this, the overlap between the two, potentially
reduced, density matrices, Tr(d1,�1 , d2,�2) can be estimated from the second-order cross-
correlations between the two platforms:

Tr(d1,�1 , d2,�2) = 2#�
∑
B1
�
,B2
�

(−2)−D(B1�,B2�)%(1)
*
(B1
�
)%(2)

*
(B2
�
), (5.11)

where #� is the number of qubits, D(B1
�
, B2
�
) is the Hamming distance between B1

�
and B2

�

(see Section 5.2), and . . . is the ensemble average over the random unitaries.

From comparing Equation 5.11 to Equation 5.4, it can be seen there are many similarities.
Equation 5.4 flows naturally from Equation 5.11 when only one platform is used – that
is, when 8 = 9 . In this case, the purity is determined from the auto-correlations between
%8
*
(B�) and %8* (B

′
�
).

This protocol requires the random unitaries and the measurement outcomes to be classi-
cally communicated between the two platforms. It requires no a priori knowledge of the
quantum state of interest, and the states can be both pure or mixed, full states or subsys-
tems. This is of particular significance as it allows the comparison of subsystem fidelities
for various sizes.

5.4.3 Scaling of the Number of Measurements

One of the most important properties of any protocol which aims to determine fidelities
of systems, or between systems, is that of the number of measurements needed in order
to perform the protocol to a statistically significant level. Statistical errors are intrinsic to
this protocol due to the finite number of projective measurements, #m, which are taken
per random unitary, as well as the corresponding finite number of random unitaries, #u,
then applied. The scaling of this protocol with #m and #u can be determined by sim-
ulating experiments of the type shown in Figure 5.10 where #m and #u are varied, and
the resulting statistical error on the fidelity �max then calculated [127]. To infer �max to
a statistical error of ≤ 0.05, with a fixed number of random unitaries of #u = 100, two
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di�erent scalings were found. For pure product states, the number of measurements nec-
essary scaled as #m ∼ 2(0.8±0.1)#�, where #� is the size of the system. For pure entangled
states, the scaling is even better, with the number of necessary measurements given by
#m ∼ 2(0.6±0.1)#� [26]. In comparison, full quantum state tomography scales at least as
22#� [142] in order to achieve similar statistical errors, and so the novel protocol presented
here scales significantly better than QST.

The improved scaling of pure entangled states compared to pure product states implies
that the fidelity estimation of pure entangled states is less susceptible to statistical errors.
This can be understood as fluctuations and errors in the random unitaries which are ap-
plied are less significant for pure entangled states, as the subsystems of these states are
already mixed. In comparison, for pure product states, the subsystems are also corre-
spondingly pure, and so errors from the random unitaries will have a more significant
e�ect on these states.

5.5 Conclusion & Further Work

This Chapter has looked at how statistical correlations from the implementation of local,
random unitaries can provide access to many properties of quantum many-body systems.
It should be clear from this Chapter that randomised measurements have the potential to
provide a vast number of ways to characterise quantum systems, only some of which have
been discussed in this Chapter. Of direct interest for the future is a novel method of using
randomised measurements in detecting mixed state entanglement [162]. As discussed in
Section 5.4, in moving to larger quantum systems, it is likely that characterisation of mixed
states will become of increasing interest [159], and so such protocols to detect entangle-
ment in mixed states will become of increasing importance.

The following two Chapters will now present experimental implementations of the three
protocols described in this Chapter in the QSim system.





Chapter 6

Probing Entanglement Entropies via Ran-
domised Measurements

The ultimate aim of quantum simulators is to be able to study systems which cannot be
investigated classically, for example by being too computationally demanding for clas-
sical machines to feasibly process. There are many platforms which can be used for
quantum simulation and computation, such as photons [163–165], superconducting qubits
[19, 166, 167], optical lattices [168, 169], and trapped ions [14, 17, 170, 171].

A large amount of recent media excitement has focussed on superconducting qubits, espe-
cially given the announcement from Google of ‘quantum supremacy’, where the authors
claimed to have performed a task on their superconducting quantum processor beyond the
capabilities of even the best classical supercomputers [19]1. Trapped-ion based platforms
have many attractive qualities, and are significant rivals to these well-known superconduct-
ing platforms [174], especially with the development of industry-based trapped-ion quan-
tum computers [171]. Trapped ions also have attractive qualities over superconducting
platforms, being almost unrivalled in particular when it comes to single-particle control,
allowing the preparation and manipulation of individual qubits.

This Chapter will now look at the trapped-ion based quantum simulation (QSim) system
from the perspective of its quantum simulation capabilities and will introduce the many-
body dynamics which underpin quantum simulation of spin models in the system. The
experimental implementation of spin models in the QSim system has already been well-
explored in literature such as [47, 49, 175] and so will not be discussed in any detail here.
However the most important techniques, including the experimental implementation of
both the transverse Ising and XY-Models in the QSim system, will be explained and dis-
cussed.

Once a good understanding of how quantum simulations can be performed in the QSim

1Although this claim is disputed in articles such as [172, 173].

113
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system has been gained, the Chapter will go on to introduce the experimental imple-
mentation of the first of the three theoretical protocols described in Chapter 5: Namely,
measuring the second-order Rényi entropy through using randomised measurements (see
Section 5.2). Results from application of the protocol to 10-ion partitions of chains of up
to 20-ions will be presented and discussed. In addition, the application of the protocol to
a 10-ion chain in the presence of disorder will be presented. This will allow a first look
into the potential of the protocol to investigate many-body localised dynamics. The ex-
perimental results discussed in this Chapter were published in ‘Probing Rényi entanglement
entropy via randomized measurements’ [24].

6.1 Quantum Simulation with Ion Strings

Trapped ions are promising platforms for use in quantum simulation for a variety of rea-
sons. They can be easily confined for days on end (in fact, in the QSim system, a single ion
can remain trapped for weeks), with read-out of the quantum-state being a non-destructive
process (in contrast to optical lattices which often use destructive time-of-flight measure-
ments [169]). Trapped ions allow almost unrivalled control of single-particles, allowing
accurate manipulation of the system – a requirement which is particularly crucial when
implementing the theoretical protocols discussed in Chapter 5. The following Section will
now outline how quantum simulations are implemented on chains of trapped ions in the
QSim system, with the aim of the Section to give an indication of how the system is oper-
ated on an ‘everyday’ basis.

6.1.1 Implementing Transverse Ising and XY-Models

The theoretical background to both the transverse Ising and XY-models (see Section 2.5.3)
will not be covered again here. Instead, the implementation of these models in the QSim
system will now be explored. Currently in the QSim system, entangling dynamics are most
often implemented on the radial modes of motion. To implement the pure MS gate, cou-
pling to the axial modes of motion is preferable due to their large frequency separation,
where it is possible to couple to purely the COM mode. In contrast, the radial modes of
motion are bunched together into a fairly narrow frequency window (∼1MHz for 20 ions),
and so any applied bichromatic beam will couple to all modes with di�erent strengths. As
such, the radial modes o�er the possibility to implement more complex spin-spin interac-
tions, such as those with a tunable interaction range, U. Therefore, all motional modes
and entangling gates discussed from this point onwards will refer to the radial modes of
motion, driven with the 729 nm radial beam (see Section 3.1.2).

Both the transverse Ising and XY-Models can be implemented using a bichromatic light
field, in a similar way to that of the MS gate. This bichromatic light field contains the
frequencies l± = l0±(lSB+Δ), where l0 is the resonance frequency of the transition, lSB
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the frequency of a (radial) motional sideband, and Δ the detuning of the bichromatic beam
from that sideband. In the QSim system, these values are typically on the order of lSB =

2c×2.7MHz and Δ = 2c×40 kHz. As the radial modes of motion are not well separated
in frequency space for these trapping parameters, the bichromatic beam o�-resonantly
couples all ions on the qubit transition to all of the transverse collective motional modes
of the ion string. By adding an additional detuning such that the bichromatic frequencies
are then given by l± = l0±(lSB+Δ) +X, the transverse Ising Hamiltonian can be realised,
given by:

�Ising = ℏ
∑
8< 9

�8 9f
G
8 f

G
9 + ℏ�

∑
9

fI
9
, (6.1)

where fV
8
(V = G, H, I) are the spin-1/2 Pauli operators for the 8th spin, �8 9 is the spin-spin

coupling matrix, and � is the e�ective transverse magnetic field strength. It can be seen
that this Hamiltonian describes pair-wise spin-flips (due to the fG

8
fG
9
interaction), with the

transverse magnetic field component, ℏ�
∑
9 f

I
9
, arising from the additional detuning X

where � = X/2. The strength of the spin-spin interactions follows an approximately power-
law dependence with distance between the ions |8 − 9 |, given by �8 9 ∼ �max/|8 − 9 |U where
�max is the maximum value of the coupling matrix, �max = max|�8 9 | [47].

In taking the transverse field component to a regime where � � �max, typically around
X = 2c× 3 kHz for the QSim system, the transverse field Hamiltonian reduces to the XY-
model of interacting spins, given by:

�XY = ℏ
∑
8< 9

�8 9 (f+8 f−9 + f−8 f+9 ), (6.2)

where f+
8
(f−

8
) are the spin-raising(lowering) operators acting on spin 8, and all other pa-

rameters are as defined above. Note that the spin raising and lowering operators appear
together, so as one spin excitation is removed, another one is added. As such, the number
of spin excitations initially present in the system is conserved throughout the course of the
dynamics.

So far, the discussion has been limited to implementing the transverse field and XY-model
Hamiltonians using only a bichromatic light field. However, in reality (and in the QSim
system), if a bichromatic light field is used then unbalanced AC-stark shifts will often arise
from o�-resonant coupling of the 729 nm light field to other transitions in 40Ca+ (predom-
inantly between the S1/2 and P1/2, P3/2 levels, and between the D5/2 and P3/2 level). Such
uncompensated AC-Stark shifts act as additional, local e�ective magnetic fields �BC0A:

9
fI
9
,

which can cause the dynamics to become distorted. In order to balance these AC-stark
shifts, an additional third light field is applied at the same time as the bichromatic light
field to form a trichromatic field. A typical frequency for this third light field in the QSim
system is ltri = l0 + 2c×1.2MHz, with the power of it scanned daily in order to optimally
balance these AC-Stark shifts.
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Figure 6.1: Evolution of a 10-ion string under �XY. a) An initial state was prepared
with ion 5 in | ↑〉 and all other ions in | ↓〉. This state was then evolved under �XY, causing
the excitation to ‘flip-flop’ out over the ion string. The dashed pink lines highlight the
rate at which the excitation spreads out. b) The �8 9 coupling matrix associated with the
evolution shown in a), with �max = 420 s−1. The coupling between ions falls o� with an
approximately power-law decay as the distance between the ions increases.

Figure 6.1 a) shows an example of the XY-model Hamiltonian of Equation 6.2 implemented
on a 10-ion chain in the QSim system using the trichromatic light field. The 10-ion string,
confined with radial frequency lr = 2c×2.71MHz and axial frequency lax ≈ 2c×220 kHz,
was first initialised in the ground state using optical pumping and sideband cooling, before
being prepared in an initial product state with ion 5 in the excited | ↑〉 state, and all other
ions remaining in | ↓〉. Upon application of �XY with Δ = 2c×40 kHz and X = 2c×3 kHz
(termed a ‘quench’), the initial excitation in the system ‘flip-flops’ out through the system.
When the excitation reaches the edges of the ion string it is reflected, causing coherent re-
interference of the excitation e.g. on ion 5 at approximately 6ms interaction time, where a
clear increase in excitation can be seen. The excitation in the string needs a finite amount
of time to initially spread out over the ion string, with this spread indicated by the dashed
pink lines in the Figure.

Figure 6.1 b) shows the corresponding �8 9 coupling matrix between all ions for the 10-ion
evolution shown in Figure 6.1 a). This matrix shows that the coupling between nearest
neighbours is the strongest (highest bars). The coupling strength then falls o� as the dis-
tance between the ions increases, with the weakest coupling between the ions at opposite
ends of the ion string (i.e. ions 1 and 10). For this evolution, �max = 420 s−1.
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6.1.2 Estimating the Coupling Matrix, Dispersion Relation, and "

In order to characterise the many-body dynamics occurring in the system, it is often nec-
essary to know the values of several properties of interest. The importance of this can be
seen, for instance, when several measurements – which are intended to be either similar
or even identical – are being performed over several days. In this case, it is necessary to
know characteristic quantities which can confirm the system is behaving in the same way
on these di�erent days.

One of these properties which can be extracted is the spin-spin coupling matrix, �8 9 , as
shown in Figure 6.1 b). It is possible to directly measure each element of the �8 9 coupling
matrix [47], however this becomes fairly time-intensive for larger spin chains. It is more
common in the QSim system to instead estimate the �8 9 coupling matrix by comparing the
dynamics to a classical simulation. The evolution of an ion string under both �Ising and
�XY can be well-simulated on a classical computer by using the experimental parameters
of the system such as the trapping parameters and bichromatic detunings. The evolution
of this classical simulation can then also be visually checked to be consistent with the
measured evolution in the QSim system. The coupling matrix, �8 9 , which is obtained from
the classical simulation can then be assumed to be a good approximation to that of the
real experimental coupling matrix. All �8 9 values quoted in this thesis are extracted using
this method.

The next property of interest to be discussed is the dispersion relation, often denoted by n: .
The behaviour of a single-ion excitation evolving under �XY is a collective excitation of
the many-body system, and can be treated as a pseudo- or quasiparticle injected into the
system at ion 5 which has particle-like properties. This excitation then propagates out over
the string with an associated group velocity given by a6 = mn:/m: , where n: is the e�ective
dispersion relation and : the wavevector of the quasiparticle [176]. For the general case
of : excitations, the :th-spin wave excitation is formed by acting on the ground state with
the creation operator f+

:
=

∑
9 �

:
9
f+
9
, where �:

9
are the amplitudes of the spin waves such

that |:〉 = f+
:
|0〉. Therefore, the Hamiltonian which describes the state with a single quasi-

particle (i.e. the single-excitation subspace) can be expressed as � =
∑
: n:f

+
:
f−
:
. The

dispersion relation can therefore be extracted by diagonalising the �8 9 coupling matrix
[47]. In and of itself, the dispersion relation is not often used as a characterisation of the
system (or at least not for the purposes of this thesis), however it provides straightforward
access to the power-law decay of the spin-spin interactions, as will now be seen.

The spin-spin coupling interaction should fall o� with an approximately power-law decay,
the exponent of which is given by U. To estimate U, there are several possible methods
which are well-discussed in [47]. However, in the QSim system, the most straightforward
way to estimate this value is through comparison of the experimentally obtained dispersion
relation to a dispersion relation obtained from a theoretical �8 9 matrix with an exact power-
law dependence. Having extracted the experimental dispersion relation, n (exp)

:
, through
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diagonalising the �8 9 matrix, a theoretical �8 9 matrix with an exact power-law dependence,
�
(th)
8 9

= �max/|8 − 9 |U, can be generated for a value of U. By diagonalising this theoretical

matrix, a theoretical dispersion relation, n (th)
:

, can consequently be extracted. Through

minimising the quantity |n (exp)
:
− n (th)

:
| for di�erent values of U, the value of U which de-

scribes the experimental system as best as possible can therefore be obtained.

Having now given an overview of how spin models are practically implemented in the
QSim system, the remainder of this Chapter will now present the experimental results from
measuring the second-order Rényi entropy through using randomised measurements.

6.2 Probing Rényi Entanglement Entropy via Randomised
Measurements: Measurement Protocol

This Section will present results from an experimental implementation of the Rényi pro-
tocol on partitions of up to 10-ions of 20-ion chains. For all experiments, the ion chains
were evolved under the long-range XY model [22] with a transverse field as discussed in
the previous Section. First, results from implementation of the protocol on a 10-ion string
will be presented, followed by results from 10-ion partitions of a 20-ion string. Finally,
results from application of the protocol to a 10-ion system where an additional disorder
was applied during evolution of the ion string under �XY will be presented.

6.2.1 10- and 20-ion Experimental Results

Figure 6.2 shows an example of a 20-ion string where the local, random unitaries are
performed on the middle 10 ions. The experimental implementation of these unitaries is
described in more detail later in this Section and in Section 6.4.2. These unitaries can
be visualised as random rotations of the spin orientations. For a single-spin pure state,
shown left in the Figure by the grey Bloch sphere and histogram, the distribution of 〈fI〉
measurement outcomes spans the full range −1 ≤ 〈fI〉 ≤ 1, corresponding to a Bloch
vector length of |A | = 1. For a single-qubit mixed state, shown by the purple Bloch sphere
and histogram, |A | < 1 and so 〈fI〉 takes on values in a reduced range. For multiple
qubits this understanding can be generalised by now considering the quantity -, where
- = 2#�

∑
B�,B

′
�
(−2)−D(B�,B′�)%(B�)%(B′�) (see Equation 5.4 of Chapter 5). - is the weighted

sum of cross-correlations, whose mean value corresponds to the purity of the (sub)system
in question – i.e. Tr(d2) = - . Cross-correlations for di�erent partition sizes of the 20-
ion string are shown in Figure 6.2 (centre/right) by the histograms. Grey indicates the
distribution for the initial pure state, and purple is the distribution for the state time-
evolved under �XY to 10ms. It can be seen that the mean value of - (dashed line) for the
initial pure state is much larger than for the state time-evolved to 10ms, indicating that
the subsystems are mixed after this evolution.
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D2 = · · · D= =

D1 =

10 Qubits2 Qubits

Figure 6.2: Measurement Protocol. Left: The single-qubit Bloch sphere. The purity is
directly related to the width of the distribution of measurement outcomes after application
of random rotations. Initial pure state (grey) and mixed state (purple) cases are shown.
Centre/Right: Extension of the protocol to multiple qubits. Here, the purity is directly
related to the mean value of the cross-correlations - after application of random rotations.
For an initial pure, product state (grey histograms), the mean value of -, as well as the
spread of the distribution, for the subsystems is much larger than after 10ms evolution
under �XY (purple histograms), where the subsystems are expected to be mixed.

For all measurements, the system was first prepared in the Néel ordered product state,
d0 = |k〉〈k | with |k〉 = | ↑↓↑ . . .↓〉, which has previously been shown to generate interest-
ing entangled states [124]. The state was prepared by addressing every second ion with a
single-ion addressed pulse (implementing a fI rotation) sandwiched between two global
c/2 fG rotations with opposite phase. This state was subsequently time-evolved under �XY
into the state d(C). The coherent interactions arising from this time evolution generated
entanglement in the system. Following this, randomised measurements on d(C) were per-
formed through individual rotations of each qubit by a random unitary, D8, sampled from
the CUE [131].

In order to practically implement these individual rotations on the ions, each random
local unitary, D8, was first decomposed into rotations around the three axes of the Bloch
sphere. Any arbitrary, local unitary can be decomposed into a combination of rotations
(combined with global phase shifts) and so can, e�ectively, be translated into rotation
angles around the - -, . - and / -axes, such that:

D = 'I (\3)'H (\2)'I (\1). (6.3)

Here, the global phase has been dropped, and '8 (\) = 48f8\/2 are rotations by \ around
the 8 = G, H, I axes, with f8 the Pauli matrices. The calculation of these angles is cov-



120 Chapter 6. Probing Entanglement Entropies via Randomised Measurements

(a) Purity (b) Rényi Entropy

Figure 6.3: Purity and second-order Rényi entropies of a 10-qubit system. The mea-
sured purity, (a), and second-order Rényi entropy, (b), of a Néel state, time-evolved under
�XY, are shown as a function of subsystem sizes, �, for 6 di�erent evolution times. Each
subsystem is comprised of those connected partitions which include qubit 1. For all data
points, #" = 150 and #* = 498. Error bars are the standard errors of the mean - .

ered in detail in Appendix C.1. These local rotations around the three axes were phys-
ically implemented through using a combination of global and single-ion rotations. In
the QSim system, the addressing beam can be used to directly implement local fG(fH)
rotations through resonantly addressing a single ion. However, it is more commonly used
to implement local fG(fH) rotations through o�-resonant addressing, which induces an
AC-Stark shift on the ion in question (implementing a fI rotation), so significantly reduc-
ing cross-talk between ions in contrast to resonant addressing [49, 77]. More explicitly,
a local fG(fH) rotation is implemented through this o�-resonant addressing by first using
a global c/2 fG(fH) rotation applied to all the ions using the radial beam, followed by
a local fI on the ion of interest using the addressing beam, followed by a final global
c/2 fG(fH) rotation again on all ions, however with opposite phase to the first one. That

is, '(loc)G (\) = '(glo)G (−c/2)'(loc)I (\)'(glo)G (c/2). For \ = c, this sequence prepares the ad-
dressed ion in the excited state, while returning all other ions to the ground state.

In order to ensure that the implementation of each of the local unitaries, D8, was stable
against small drifts of physical parameters (such as beam pointing instabilities or drifts
of the ion string), two random unitaries were concatenated to form D′

8
= D

(1)
8
D
(2)
8
. This

concatenated unitary was then implemented as one single, random unitary (see Section
6.4.2 for further details on this aspect). Having applied these concatenated unitaries, a
state measurement in the / -basis was performed. To measure the entropy of a quantum
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Figure 6.4: Second-order Rényi entropy, Y(2) (1G), of all 210 − 1 = 1023210 − 1 = 1023210 − 1 = 1023 partitions at
t = 5ms. #� denotes the number of ions in each subsystem. #" = 150 and #* = 498. The
solid blue lines are at three standard deviations below the smallest measured entropy for
subsystems 1-9. The red line is at three standard deviations above the full system entropy.

state of # ions, #* sets of single-qubit random unitaries, where * = D1 ⊗ .. ⊗ D# , were
applied. For each set of applied unitaries, *, the measurement was repeated #" times in
order to gain su�cient statistics.

The results from application of the protocol to 10-ion partitions of both 10- and 20-ion
chains will now be presented.

10-ion Results

The 10-qubit state, d0, was prepared and subsequently time-evolved under �-. , for g =
0, ...,5 ms in steps of 1ms. Figure 6.3 shows the measured purities a) and entropies b) of
all those connected partitions which include qubit 1 during this quench – for example,
the two qubit subsystem, � = 2, is simply ion 1 and ion 2. It can be seen that the overall
purity (and therefore entropy) of the entire 10 qubit system remained at a constant value
of Tr(d2) = 0.74 ± 0.07, within error, throughout the entire time evolution. This implies
that the time evolution was approximately unitary. Figure 6.3 shows that, even at short
evolution times, the single-spin subsystem becomes quickly entangled with the rest of the
system. This can be seen through the rapid decrease (increase) of the single-spin purity
(entropy) up until the single-qubit state becomes completely mixed. For a single-qubit sys-
tem, the fully mixed state has a purity (entropy) of Tr(d2) = 1/2 (((2) (d) = 1). At longer
times, the purity (entropy) of larger subsystems continues to decrease (increase), as they
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Figure 6.5: Second-order Rényi entropy of 1- to 10-qubit partitions of a 20-qubit
system. The initial low-entropy Néel state evolves under �XY within 10ms into a state
with high-entropy partitions, corresponding to nearly fully mixed subsystems. The data
points for partitions � = 14-15 at 6ms and partitions � = 13-15 at 10ms time evolution
are not shown due to their large statistical error bars. For all data points, #" = 150 and
#* = 498.

become entangled with the rest of the system.

In addition to accessing the entropy of those connected partitions including qubit 1, the
protocol also allowed access to the entropy of all 210−1 = 1023 partitions. Figure 6.4 shows
the entropy for all partitions (not just the connected partitions) of the system at C = 5ms
evolution time. Shown in the Figure is the entropy for each subsystem, with the solid lines
representing the point three standard deviations below the smallest measured entropy for
subsystems 1-9. For the 10-ion entropy the red line represents the point three standard
deviations above the full system entropy. Since the second-order Rényi entropy of every
subsystem is, within this three standard deviation figure, larger than for the total 10-qubit
system, this demonstrates that entanglement exists between all 29 − 1 = 511 bipartitions
of the 10-qubit system to the three standard deviation level.

20-ion Results

Following the 10-qubit experiment, a 20-qubit experiment was performed in a similar
manner. The entropy growth of the central part of the chain was measured after time-
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evolution under the XY Hamiltonian for partitions of up to 10 qubits. Figure 6.5 (top)
shows a schematic of this, where the measured partitions are those connected partitions
which include ion 6. Figure 6.5 shows the resulting entropy growth of these partitions
after di�erent evolution times under �XY for up to 10ms, with the results consistent with
the formation of highly entangled states. The entropy is seen to increase rapidly over the
10ms time evolution, with the reduced density matrices of up to 7 qubits becoming nearly
fully mixed. The results for partitions 14-15 at 6ms and partitions 13-15 at 10ms time
evolution are not shown due to their large statistical error bars. Such errors, arising from
Δ(Tr(d2))/Tr(d2), are due to the very small values of Tr(d2) which occur for these highly
mixed, large subsystems. The small values of Tr(d2) naturally lead to large statistical er-
rors.

This 20-ion measurement clearly highlights the ability of the protocol to access the entropy
of highly mixed states, despite the larger statistical errors compared to pure states.

6.3 Disorder

Recently, quantum thermalisation and many-body localisation have drawn increasing at-
tention, with substantial e�orts being invested in understanding these two, related con-
cepts [177]. Following a quench, quantum systems will often approach a state of thermal
equilibrium, where quantum correlations which form at short times become scrambled
over the system. However, a many-body localised (MBL) system is one that does not
thermalise, instead retaining these initial quantum correlations even to long times [177].
The MBL phase is predicted to exist in the presence of strong disorder and su�ciently
short-ranged interactions [178] for one-dimensional systems [179].

Before detailing the e�ects of disorder on the protocol, it is important to first discuss two
regimes which can arise from the presence of disorder: Anderson localisation and many-
body localisation. The following Section will now discuss the distinctions between these
two localised phases.

6.3.1 Anderson (Non-Interacting) and Many-Body Localisation

In order for a closed quantum system to achieve thermalisation purely through its own
dynamical evolution, the system must be acting as its own reservoir [180]. However, closed
systems exist where this is not the case. Such ‘localised’ systems were first identified by
Anderson in 1958, who suggested that materials may undergo a phase transition from con-
ducting to insulating when changes in the disorder in the material are made [181]. Such
systems then do not act as reservoirs for themselves, and so do not thermalise. They can re-
tain a ‘memory’ of the initial state of the system, whereas the local properties of a system’s
initial state are ‘hidden’ for a system which has thermalised under unitary time evolution
[180]. Anderson’s localised systems, and a large amount of the consequent research into
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(a) No disorder: Extended wavefunction

(b) Disorder: Anderson Localisation (c) Disorder: Many-body Localisation

Figure 6.6: Illustration of Anderson localisation and many-body localisation. a) A
chain of ten ions with no disorder. After a quench, an initial excitation on ion 5 (shown
in pink) is able to spread over the entire ion chain, due to the extended wavefunction
(shown by the red, sinusoidal line). Blue lines indicate the propagation of correlations
across the string. b) When disorder is present, the energy levels of each ion are shifted out
of resonance with one-another, and the single-particle states become localised (red lines).
The initial excitation consequently becomes localised, with no propagation of information
across the chain. c) For highly-excited systems, the disordered system remains interacting,
with correlations and entanglement still propagating through the system, albeit at a slower
rate than for the case without disorder. This is a hallmark of the many-body localised
phase.

localised systems, only considered non-interacting systems or those in the low-temperature
limit. However, localisation can occur in highly-excited states of strongly-interacting many-
body systems, a phenomenon which has been termed ‘many-body localisation’. Many-body
localised systems also do not thermalise, however interactions still exist within these sys-
tems, unlike in Anderson localised systems.

Figure 6.6 illustrates these three di�erent regimes (non-localised, Anderson localised, and
many-body localised). a) illustrates an example of a chain of 10 ions with an initial excita-
tion at ion 5, where no disorder is present. Here the eigenstates are extended (represented
by the red, sinusoidal function) and, under application of a Hamiltonian such as �XY, an
initial excitation can spread out over the ion-chain, with thermalisation being achieved
at long evolution times. If an amount of disorder is now added which randomly changes
the energy levels of the single ions in the chain, as shown in Figure 6.6 b), then the
single-particle eigenstates become exponentially localised. The propagation of an initial
excitation over the ion chain is subsequently hindered, and no inter-particle interactions
occur, leading to Anderson localisation. Anderson localisation occurs at low energies, and
so a single excitation in a 10-ion chain is well within this regime. In an Anderson localised
phase, the many-particle eigenstates can be expressed as products of single-particle eigen-
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states. Crucially, there is no propagation of correlations or entanglement over the chain.

Many-body localisation can be thought of as almost a ‘high-energy’ version of Anderson
localisation, where interactions remain present in the system. Figure 6.6 c) illustrates the
case where the system becomes many-body localised. As MBL occurs at high-energy, here
an initial Néel ordered state is considered instead of a single excitation. With many-body
localisation, the single-particle states can still be assumed to be localised as with Ander-
son localisation. However, the system remains interacting, allowing the propagation of
correlations and entanglement through the system. A many-body localised system will not
thermalise, even at very long times, retaining a memory of its initial state [182].

In order to study the dynamical properties of these many-body states, the entropy growth
of arbitrary, highly entangled states during their time-evolution can be used as a universal
tool [183]. The rate at which entropy grows can be used to distinguish between thermalised
states and localised states in interacting many-body quantum systems. In a thermalising
system, such as in interacting many-body systems without disorder, a linear entropy growth
is generally predicted following a quantum quench [177, 183]. This linear entropy growth
is assumed to persist until a saturation point is reached, which signals thermalisation of
the system. In contrast, the MBL phase is characterised by the absence of thermalisation,
the system’s remembrance on the initial state [182] at late times and, in particular, a log-
arithmic entropy growth [184, 185] which constitutes the distinguishing feature between a
MBL state and a non-interacting Anderson insulator.

Experiments to probe this entropy growth have already been realised with superconducting
qubits using tomography [186], and in ultracold atoms based on full-counting statistics of
particle numbers [187]. However, for long-range interacting models, the situation is less
clear, with an ongoing theoretical debate into the persistence and stability of localisation
in such systems [139, 179, 188], alongside first experimental investigations [189]. Currently,
the measurement of a long-time entropy growth rate is beyond the present capabilities of
the QSim system, due to its limited coherence time. However, as a first investigation into
the applicability of the measurement protocol in probing MBL in long-range interacting
systems, an observation of the strong diminishing e�ect of local, random disorder on
the entropy growth rate at early times, and the emergence of localisation, will now be
presented.

6.3.2 10-ion Entanglement Spreading with Disorder

To look at the e�ects of disorder on entropy growth in a 10-ion system, an additional
disorder term was added to the �XY Hamiltonian, such that � = �XY +�D. The disorder
potentials were generated using the single-ion addressing beam to implement independent
AC-Stark shifts on all the ions simultaneously. By applying multiple frequencies to the
AOD (see Section 3.1.2), multiple beams are consequently produced, allowing application
of independent beams to multiple ions at the same time. These AC-Stark shifts introduce
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(a) Half-chain entropy growth (b) Mutual Information

Figure 6.7: Spread of quantum correlations under NXY both in the presence and
absence of disorder. (a) Entropy growth of the subsystem comprised of ions 1-5 as a
function of time without disorder (blue points) and with disorder (black points). (b)
Second-order Rényi mutual information of selected subsystems versus time (see Equation
6.5). The decrease of the mutual information � (2) (d�1 , d�2) with distance between subsys-
tems is a manifestation of the inhibition of correlation spreading by local disorder. Lines
are a simulation of the system dynamics including the e�ects of decoherence.

a time-independent alteration to the transverse field term in the Hamiltonian, with the
disordered Hamiltonian then taking the explicit form:

� = ℏ
∑
8< 9

�8 9 (f+8 f−9 + f−8 f+9 ) + ℏ
∑
9

Δ 9f
I
9
, (6.4)

with Δ 9 the magnitude of disorder applied to ion 9 and fI
9
the spin-1/2 Pauli operator.

This additional disorder term e�ectively implements local f8I rotations on all ions during
evolution of the system under �XY.

The initial Néel state was quenched with the new Hamiltonian � = �XY + �D, where a
static, random disorder strength Δ 9 was drawn uniformly from the range [−3�max, 3�max],
for �max = 420 s−1. Ten sets of single-qubit random unitaries, * = D1 ⊗ .. ⊗ D# , were
subsequently applied for a single instance of the static random disorder, where #" = 150
repeats of each set of random unitaries were again taken in order to gather su�cient
statistics. This procedure was repeated for 35 instances of static random disorder, each
measured for 10 di�erent single-qubit random unitaries. The combined ensemble average
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was taken over both the random unitaries and static random disorders in order to access
the disorder-averaged purity, and consequently the disorder-averaged second-order Rényi
entropy. Figure 6.7 a) shows the measured evolution of the second-order Rényi entropy of
the subsystem � = 1, . . . , 5 with the remainder of the system as a function of time. Shown in
the plot is the behaviour in both the absence (blue) and presence (black) of local random
disorder. In the absence of disorder, it can be seen that the entropy exhibitis a rapid,
linear growth. This is consistent with the expected behaviour of a thermalising, many-
body system. In the presence of disorder, after an initial rapid evolution, a considerable
slowing of the dynamics is observed, with a small, but non-vanishing, growth rate at later
times; a behaviour consistent with the formation of a MBL system.

6.3.3 Magnetisation Dynamics

The di�erence in dynamics between the systems with and without disorder can be fur-
ther highlighted by looking at the magnetisation dynamics under the evolution of �XY
and �XY + �D. Figure 6.8 a) and c) show the dynamical evolution of the magnetisation
〈f8I〉, which is proportional to the probability of finding a qubit excitation at site 8, under
application of �XY and �XY + �D respectively. The plots display how the 5 excitations of
the initial 10-ion Néel ordered state disperse under application of the respective Hamil-
tonians. For the disordered Hamiltonian, a single instance of disorder was first applied,
and the state subsequently time evolved to generate the magnetisation dynamics. This
was repeated for all 35 randomly drawn disorder patters, and the dynamics averaged over
the disorder. The averaged dynamics retain many of the same characteristics of the initial
Néel ordered state, indicating that there is a remembrance of the initial state during the
dynamics. This is a scenario consistent with an MBL phase. In addition to this, Figures
6.8 b) and d) show the corresponding evolution of the single-spin magnetisation, both
without disorder and in the presence of disorder. With no disorder present, the initially
localised excitations rapidly disperse throughout the system, resulting in an approximately
equal magnetisation for all ions at longer times. In the presence of disorder, a stationary
magnetisation is observed, showing evidence of a localised phase.

6.3.4 Spread of Correlations

The existence of a localised phase within a system can also be indicated by the spread,
and corresponding decay, of correlations. The total amount of both classical and quantum
correlations between two subsystems, �1 and �2, can be characterised using the second-
order Rényi mutual information, � (2) (d�1 : d�2), defined as [138]:

� (2) (d�1 : d�2) = ((2) (d�1) + ((2) (d�2) − ((2) (d�1�2). (6.5)

Figure 6.7 b) shows the evolution of � (2) for various pairs of subsystems in the presence
of disorder – the darker the line colour, the further away the subsystems are from each
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(a) Magnetisation dynamics (b) Spatially-resolved magnetisation dynamics

(c) Disordered magnetisation dynamics (d) Spatially resolved magnetisation dynamics
in the presence of disorder

Figure 6.8: Magnetisation dynamics both in the presence and absence of disorder.
Shown are the time-evolutions of a 10-ion initial Néel ordered state under the Hamilto-
nians �XY and �XY + �D. a) and b) With no disorder present, the initially localised
excitations disperse rapidly throughout the system. c) and d) Magnetisation dynamics in
the presence of disorder, averaged over all 35 random realisations of disorder. A stationary
magnetisation arises, showing evidence of a localised phase.
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other. The Figure shows that, for all pairs of subsystems, � (2) saturates quickly to an
approximately constant value, with this constant value decreasing the further away the
two subsystems are. This decay of correlations indicates localisation has occurred as a
result of the presence of disorder in the system.

6.4 Characterisation of System Dynamics

The following Section will present several measurements of the system and its dynamics
which aid in characterising the measurement protocol. These measurements look at the
increase/decrease of spin excitation number during evolution under �XY, decoherence
which arises from application of the random unitaries, and cross-talk between ions arising
from the single-ion addressing beam.

6.4.1 Conservation of Excitation Number and Decoherence

The number of excitations in the system should be conserved under a time evolution
governed by an ideal XY Hamiltonian. However, this conservation of excitation can be
violated due to two main reasons. First is the finite lifetime of the excited D5/2 state, re-
sulting in decay to the S1/2 state. Second are imperfections in the laser-ion interaction,
for example high-frequency laser phase noise or a disruption of the spin-spin coupling
due to motional heating, which can give rise to spin flips. To probe whether these ef-
fects caused the conservation of excitations to be violated, a 20-ion Néel ordered initial
state was evolved under �XY from 0 to 60ms, with the number of excitations at varying
time-steps during this evolution plotted. Figure 6.9 shows the corresponding dynamics of
the number of excitations in the system as a function of the evolution time under �XY.
From the Figure, it can be seen that the excitation number, given by the data (points), is
not strictly conserved throughout the course of the dynamics, with the probability for 10
excitations in the system falling throughout the dynamics, and the probability for other
numbers of excitations (most significantly 9 excitations) increasing.

The excitation number dynamics can be modelled by assuming a spontaneous decay rate
from the D5/2 state of Γ, and an additional incoherent spin flip rate, W 5 ;8?, which is assumed
to be independent of the electronic state (i.e. the same for both D5/2 and S1/2). Therefore,
the probability, ?, for a single ion to be in the excited state evolves according to:

3?

3C
= −(Γ + W 5 ;8?)? + W 5 ;8? (1 − ?). (6.6)

The solution to this equation is of the form:

?(C) = ?4@ + (?0 − ?4@)4−_C , (6.7)

where ?4@ = W 5 ;8?/_ is the steady-state probability, ?0 is the probability of being initially



130 Chapter 6. Probing Entanglement Entropies via Randomised Measurements

Figure 6.9: Excitation number dynamics under the XY Hamiltonian, starting from
a 20-ion Néel ordered state. During the course of the dynamics, the probability for 10
excitations to be present in the system (blue points) falls, with the probability for other
excitations to be present correspondingly increasing. A fit of the model given in Equation
6.8 (lines) to the data (points) is shown for 8 to 12 excitations.

in the excited state, and _ = 2W 5 ;8? + Γ.

This model can be extended to explain the dynamics with # ions. Assume that #1 ions
are initially in the excited state, each with probability ?1(C) = ?4@ + (1 − ?4@)4−_C to be
found in the excited state at a later time C. Consequently there will be #2 = # − #1 ions
initially in the ground state, each with probability ?2(C) = ?4@ (1−4−_C) to be in the excited
state at a later time C.

At a given time C, the probability for : ions to be in the excited state, ?: (C), can be
expressed as a function of :1, which represents the ions which were initially excited, and
:2, which is the number of ions which were initially in the ground state, with : = :1 + :2.
?: (C) can then be expressed as:

?: (C) =
:<0G∑

:1=:<8=

?
:1
1 (1 − ?1)#1−:1 ?:22 (1 − ?2)#2−:2

(
#1

:1

) (
#2

:2

)
, (6.8)

where :<8= = max(0, : − #2) and :<0G = min(:, #1). Figure 6.9 fits Equation 6.8 to the
data (lines) assuming a spontaneous decay rate of Γ = g−1 with g = 1.17 s [49]. This
fit is optimised for a single-ion spin flip rate of W 5 ;8? = 0.69 s−1. Therefore, for a 20-ion
Coulomb crystal prepared in the Néel-ordered state and illuminated by a bichromatic
beam with Δ = 2c×40 kHz detuning, it would take on average 70ms for an unwanted spin
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flip caused by laser-ion interactions to occur. This is in contrast to the average time for a
spin flip caused by spontaneous decay to occur, which is about every 100ms.

6.4.2 Characterisation of Local Random Unitaries

The local unitaries applied to each ion were drawn randomly from the CUE [131]. In the
ideal case, this will rotate the Bloch vector describing a single qubit (prepared in a pure
state) to any other point on the Bloch sphere with equal likelihood. As such, the distri-
bution of measured spin projections should be uniform along any direction of projection.
However, systematic errors, such as minor miscalibrations of the global c/2-pulses, will
a�ect the distribution of random unitaries. This can then give rise to erroneous (or even
unphysical) purity values when using the random measurement protocol to determine the
purity of a given qubit state. A second source of errors that can also bias the purity
estimates towards lower values is decoherence occurring during application of the local
random unitaries. Both of these e�ects can be detected by a straightforward measurement
which looks at the distribution of measured spin projections after application of the ran-
dom unitaries to a qubit in an initial pure state, as will be shown in this Section.

To make the drawing of random unitaries from the CUE more robust against miscalibra-
tions or drifts of experimental control parameters, two random unitaries (assumed to be
drawn from a possibly imperfect distribution) were concatenated to obtain a random uni-
tary with a distribution that is closer to the ideal one – i.e. the applied random unitary
is given by D′

8
= D
(1)
8
D
(2)
8

where D(1)
8

and D(2)
8

are both random unitaries drawn from the CUE.

The explicit sequence of pulses which the QSim system would in principle use to imple-
ment two such concatenated unitaries is given in Equation C.4 of Appendix C.1. However,
this pulse-sequence can be simplified by merging the two consecutive rotations around the
/ -axis into a single rotation. In addition, as the final readout measurement is performed
in the / -basis, the final / -rotation in Equation C.4 will have no e�ect on the measurement
result, and so this final rotation can be dropped. Therefore, the local concatenated unitary
which is physically implemented in the QSim system takes the form:

D = 'H (−c/2)'I (\4)'H (c/2) 'I (\3) 'H (−c/2)'I (\2)'H (c/2) 'I (\1). (6.9)

Here, the local rotations around the . -axis have been replaced by a combination of a local
fI rotation sandwiched between two global c/2 rotations around the . -axis with opposite
phase, (see Section 6.2). The single-ion addressing beam can only implement fI rotations
of a positive rotation angle. As such, when a negative rotation angle, \, was necessary,
these were replaced by a rotation angle of 2c − \.

In order to minimise decoherence which can arise from implementation of the local uni-
taries, it was advantageous to minimise the duration of the total pulse length of the single-
ion addressing beam. The total pulse length was naturally given by the sum of the single-
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Figure 6.10: Single-qubit spin projections into the ^-, _-, and `-bases after applica-
tion of randomised unitaries. Randomised measurements were performed on a 10-ion
string where all spins were initially prepared in | ↓〉. Shown are the resultant measured
single-qubit outcomes when projective measurements in fG, fH, and fI were made. A
fit to the data (red line) takes into account decoherence from application of the random
unitaries, as well as quantum projection noise. j2 tests to evaluate the goodness-of-fit for
each distribution are consistent with the expected value of j2

8340;
= 149.

ion addressed pulses on each ion. To minimise the duration of the total rotation, \, all
rotation angles were shifted by a fixed amount, such that \ → \̃ = mod(\8 − U, 2c), where
U minimizes the function

∑
8 \̃ and 8 indexes the ions. In addition, the rotation axis of

subsequent resonant global pulses in the equatorial plane was shifted accordingly by the
angle U.

Decoherence from Application of Randomised Unitaries

In the ideal case, the distribution of measured spin projections arising from application of
the random unitaries should be uniform along any direction of projection. However, the
concatenation of random unitaries which was performed in order to improve the robust-
ness of the implemented distribution also increases decoherence as it naturally requires
more rotations. To investigate these e�ects, a 10-ion string was optically pumped into a
nearly perfectly pure state (with probability ∼99.9% [47]) before applying the laser pulses
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implementing the (double) random unitaries, and carrying out a subsequent quantum
measurement detecting the spin projections in either fG, fH, or fI. A total of #* = 498
di�erent unitaries were used for the measurement. For each unitary, the quantum state
was prepared and measured #" = 150 times. Figure 6.10 shows the three resulting spin
projection distributions from this measurement. The histograms show, for finding an ion
< times (0 ≤ < ≤ #") in the D5/2 state, the number of times this was observed. It can be
seen that all three histograms are reasonably flat, however the distribution falls o� towards
the extreme values in all cases, indicating that the state produced after application of the
random unitaries is not perfectly pure. Therefore, there is some decoherence present aris-
ing from implementation of the concatenated random unitaries.

This decoherence can be modelled as a depolarising channel, d → _d + 1−_
2 I. The prob-

ability distribution for finding the ion in the excited state, 5 (?), can then be fitted with
a box-like distribution which is convolved with quantum projection noise. The box-like
distribution is defined as:

5 (?) =
{

0, ? < ?;8< or ? > 1 − ?;8<
1/(1 − 2?;8<), ?;8< < ? < 1 − ?;8< .

(6.10)

Figure 6.10 shows the fit of such a box-like distribution which is subsequently convolved
with quantum projection noise to the three measured distributions. From the fits, it was
found that ?G

;8<
= 0.011, ?H

;8<
= 0.010, and ?I

;8<
= 0.008 when detecting in the - -, . -, or

/ -bases respectively. The corresponding average loss of purity per qubit is then found
to be W = 0.019. This results in a reconstructed purity for a 10-qubit product state of
(1−W)10 ≈ 0.82. For testing the goodness-of-fit of this model to the measured distributions,
a j2-test was performed. For each of the distributions, the resulting j2 was found to be
j2
-
= 146, j2

.
= 141, and j2

/
= 146. These values are all consistent with the expected value

of j2
8340;

= 149.

Cross-talk Between Neighbouring Ions

The final test performed to characterise the system was to investigate whether cross-talk be-
tween neighbouring ions, induced by imperfect focusing of the strongly-focused single-ion
laser beam, could give rise to correlations between the recorded probabilities on di�erent
ions.

In order to quantify potential correlations which may exist, the Pearson correlation coef-
ficient was calculated, which gives a measure of the strength of association between two
(assumed to be normally distributed) quantities. Here, these two quantities are the prob-
abilities ?U

8
, ?U

9
of ions 8 and 9 being found in the excited state, for a measurement in U

(where U ∈ {fG , fH, fI}). The strength of these correlations are defined as:

dU8 9 = cov(?U8 , ?U9 )/(f?U8 f?U9 ), (6.11)
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(a) Measurement in fG
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(b) Measurement in fH
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(c) Measurement in fI

Figure 6.11: Correlations between ions when measuring in all three bases. Ran-
domised measurements were performed on 10 ions all prepared in | ↓〉. Shown are the
correlations between the outcome probabilities ?8, ? 9 for ion 8 and 9 being found in the
excited state for measurements in all three bases.

where cov(?U
8
, ?U

9
) = 〈?U

8
?U
8
〉 − 〈?U

8
〉〈?U

9
〉 is the covariance between ?U

8
and ?U

9
, and f?U

8

(f?U
9
) is the standard deviation of ?U

8
(?U

9
). The Pearson coe�cient can therefore be seen

as a normalised covariance. The results from this calculation are shown in Figure 6.11 for
measurements in fG, fH, and fI (the same dataset is used as in the previous Figure). It
can be seen visually that the correlation coe�cients between ?U

8
and ?U

9
do not appear to

be significant.

However, in order to more rigorously quantify whether these correlations are significant
or not, Fisher’s combined probability test can be used. First, a null hypothesis is stated,
which in this case is that there are no correlations present (i.e. no cross-talk between ions). The ?-
value of each correlation value is then calculated, where the ?-value is the probability that
the correlation value in question would have been obtained if there were no correlations
present. Fisher’s test combines the p-values for all d8 9s from the measurements in one basis
into one test statistic, allowing easier evaluation of the results, and is calculated using:

j2 = −2
∑
8< 9

ln?8 9 , (6.12)

where ?8 9 is the ?-value for the correlation between ions 8 and 9 .

First, the ‘threshold’ value of j2 should be calculated – i.e. the maximum value of j2

which it is possible to have assuming the data is uncorrelated. This value was calculated
by simulating 10,000 uncorrelated datasets of 498 values and found to be j2

B8<
= 89.9±0.13

where the error is the standard error. The values of j2 for the datasets shown in Figure
6.11 were then calculated to be: j2

G = 75.2, j2
H = 87.4, and j2

I = 78.5. As all three of these
values are below the threshold of j2

B8<
, it can be concluded that this test did not detect

significant correlations between the operations carried out on di�erent ions.



Chapter 7

Probing Scrambling and Cross-Platform
Veri�cation using RandomisedMeasure-
ments

This Chapter will detail the experimental implementation of the second and third theoret-
ical protocols described in Chapter 5. The first of these protocols to be discussed will look
at how scrambling in a many-body quantum system can be probed through statistical cor-
relations between randomised measurements. The experimental implementation of this
protocol will investigate operator spreading in chains of up to 10 ions by measuring mod-
ified OTOCs up to the second order. The measurements are performed for two di�erent
interaction ranges, allowing investigations into operator spreading in both ballistic and
non-ballistic regimes. The experimental results discussed in the Chapter were published
in ‘Quantum Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range
Interactions’ [25], with the theoretical basis for the protocol published in [129].

In the second part of this Chapter the experimental implementation of the third proto-
col, which allows a direct comparison of two quantum states prepared on two (potentially
very di�erent) quantum devices, will be presented. Through a fidelity measurement using
randomised measurements, the overlap of the two quantum states can be obtained, with
the application of the protocol shown in ‘proof-of-principle’ experiments on chains of 10
ions. The protocol will first be demonstrated for two classically simulated quantum de-
vices, before comparison of an experimentally prepared quantum state with a classically
simulated quantum state will be presented. Following this, a comparison between two
quantum states prepared sequentially on the same experimental platform will be shown.
The theoretical basis to this protocol, as well as the experimental results, were published
in ‘Cross-Platform Veri�cation of Intermediate Scale Quantum Devices’ [26], with the data from
[24] (also shown in Chapter 6) used as the experimental device.

135
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Randomised Measurements

7.1 Probing Scrambling throughOut-of-Time-Ordered Cor-
relators

This Section will present results from the application of the protocol described in Section
5.3 to chains of ten ions. The measurements presented in this Section look at scrambling
in a 10-ion string under evolution of the Ising Hamiltonian for two di�erent power-law
exponents, U = 0.85 and U = 1.21. This explores the e�ect of scrambling for a long-range
interaction (U = 1.21) and for an even longer-range interaction (U = 0.85). The Section
will present results from measurements of modified OTOCs up to order 2 (i.e. $0(C),
$1(C), and $2(C)), and compare them to the exact OTOC, $ (C).

7.1.1 Measurement Protocol

As a reminder from Section 5.3, the modified OTOCs are defined as:

$= (C) =
∑
:B∈�= 2:B 〈, (C)〉D,:B 〈+†, (C)+〉D,:0∑
:B∈�= 2:B 〈, (C)〉D,:B 〈, (C)〉D,:0

, (7.1)

with weights 2:B chosen such that 2:B = (−2)−D(:0,:B) . Equation 7.1 quickly converges to
the true OTOC $ (C) as = → # , where # is the number of qubits in the system [129]. As
full convergence to $ (C) would require significant experimental e�ort [129], an approxi-
mate convergence to $ (C) was instead investigated, with measurements of $0(C), $1(C),
and $2(C) performed, all of which required less experimental e�ort. This allowed an ap-
proximation to $ (C) to be obtained using Equation 7.1. The three experimental protocols
for measuring $0(C), $1(C), and $2(C) are very similar, however $1(C) and $2(C) require
multiple initial states to be used, in combination with the measurement results from $0(C).
The measurement protocol to measure $0(C) will therefore first be explicitly described,
with the necessary modifications for measurements of $1(C) and $2(C) explained after.

Measuring U0(t)

To measure $0(C), the system was first initialised in the ground state, d0 = |:0〉〈:0 |, with
|:0〉 = | ↓↓ . . .↓〉. Local, random unitaries D = D1⊗ ..⊗D# were applied to |:0〉, so preparing
the state |k〉D,:0 , where the local unitaries were drawn randomly from the CUE [131]. The
next step then had two variants:

1. The system was dynamically evolved under �Ising. The operator , = fG
8
, for ions

8 = 1 . . . # , was then measured by applying a fG rotation to all ions, before standard
state-readout in the / -basis was performed.

2. A local operator + = fI1 was applied to ion 1 before the system was dynamically
evolved under �Ising. The operator , = fG

8
, for ions 8 = 1 . . . # , was then measured
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by applying a fG rotation to all ions, before standard state-readout in the / -basis
was performed.

The same random unitaries were used in both Steps 1 and 2. Each step was repeated #< = 150
times, and then the whole process was itself repeated for #D = 500 random unitaries. The
local unitaries were applied by using a combination of global rotations and o�-resonant,
single-ion addressed pulses (see Section 6.2).

When averaged over the repetitions, #<, Step 1 is a measurement of 〈, (C)〉D,:0 and Step 2 a
measurement of 〈+†, (C)+〉D,:0 . Therefore, by combining both of these steps and averaging
over the random unitaries, the 0th order modified OTOC, $0(C), can be calculated using
Equation 7.1.

Measurement Protocol for U1(t) and U2(t)

The measurement protocol for $1(C) and $2(C) is very similar to the protocol described in
the previous Section, however additional measurements for di�erent initial states are also
needed. For measuring $1(C), Step 1 in the previous Section is repeated for an additional
initial state |:1〉 = | ↑↓ . . . ↓〉. When combined with the results from measurements of
$0(C), Equation 7.1 can then provide access to $1(C). Likewise, for measuring $2(C),
Step 1 must be repeated for the initial states |:1〉 = | ↑↓ . . . ↓〉, |:2〉 = | ↓↑ . . . ↓〉, and
|:3〉 = | ↑↑ . . . ↓〉. Again, when combined with the results from measurements of $0(C),
Equation 7.1 provides access to $2(C). For all initial states, the same random unitaries
were used.

7.1.2 Results

The first measurement using OTOCs as a probe of scrambling used the measurement
protocol for $0(C) (described above) to investigate how a measurement of , = fG at
ion 5 is a�ected by the application of operator + = fI at ion 1, for a single initial state
|:0〉. This can be seen in the decay of correlations between 〈, (C)〉D,k0 and 〈+†, (C)+〉D,k0
as the system is evolved under �Ising. Figure 7.1 shows the measured expectation values
〈, (C)〉D,k0 against the values 〈+†, (C)+〉D,k0 for di�erent evolution times under �Ising. At
time C = 0, the system has not evolved under �Ising, and so the perturbation + applied
to ion 1 therefore has not spread out over the system. Consequently, the measurement of
, at ion 5 is una�ected by whether the perturbation + has been applied or not, and so
strong correlations can be seen (limited by quantum projection noise) between 〈, (C)〉D,k0
and 〈+†, (C)+〉D,k0 , as seen in Figure 7.1 a). Figures b) and c) show these same correla-
tions after evolution of the system under �Ising for times C = 2ms and C = 5ms. At later
times, the perturbation + at ion 1 has spread over the system, and so has a�ected the mea-
surement of , at ion 5. Therefore, the correlations between 〈, (C)〉D,k0 and 〈+†, (C)+〉D,k0
correspondingly decrease, with almost no correlations present by time C = 5ms.
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Figure 7.1: Operator spreading under NIsing. Correlations between 〈, (C)〉D,:0 and
〈+†, (C)+〉D,k0 for di�erent evolution times under �Ising (�8 9 = 380 s−1, U = 1.21, and
X = 2c×3 kHz). a) Initially at C = 0ms, there are almost perfect correlations between the
two observables. b) and c) With increasing evolution time, these correlations decrease,
until at C = 5ms almost no correlations are left between the two observables. All measure-
ments were repeated 150 times, with 500 random unitaries used. Error bars (denoted by
the crosses) are calculated from quantum projection noise.

These measurements can also be compared to Figure 5.7 in Section 5.3, where correla-
tions between 〈, (C)〉 and 〈+, (C)+〉 were presented for simulated data on a 6-qubit sys-
tem. Similar dynamics are present between the simulated and measured systems, with the
correlations decreasing in time before virtually no correlations are present after several
milliseconds evolution under �Ising.

The rigorous mathematical relation between exact OTOCs and modified OTOCs is not
discussed in this thesis, being shown explicitly in [129]. Instead, the remainder of this
Section will now show measurements of the modified OTOC in a 10-ion system in order
to provide insights into operator spreading under di�erent interaction ranges in the QSim
system. Figure 7.2 shows the results of the modified OTOCmeasurements for two di�erent
power law exponents, following the measurement protocol described previously. Shown
in the Figures are the 0th, 1st, and 2nd order OTOCs, as well as the exactly solved OTOC
(bottom) for each ion as a function of evolution time under �Ising. The left column shows
the OTOCs for U = 0.85, and the right column for U = 1.21. Also shown in the Figures as
dashed lines are the simulated dynamics of the system. It can be seen that, for all ions,
the modified OTOCs $0(C), $1(C), and $2(C) display qualitatively similar behaviour to the
exact OTOC, $ (C), shown in the bottom panel. At C = 0ms, near-perfect anti-correlations
are present for ion 1 and near-perfect correlations for all other ions, for both values of U
and all orders of modified OTOC. However, there are clear di�erences between the dy-
namics for the di�erent U values. Most obviously, the spreading of the operator wavefront
is significantly faster for U = 0.85 than for U = 1.21.

The most natural aspect to consider next is how well the measured modified OTOCs
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Figure 7.2: Measured evolution of modi�ed OTOCs, U0(t), U1(t), and U2(t) for
U = 0.85U = 0.85U = 0.85 and U = 1.21U = 1.21U = 1.21. For all measurements, the local operators were + = fI1 and, = fG

8

for ion 8 = 1, 2, . . . , 10. For U = 0.85, �8 9 = 510 s−1, and for U = 1.21, �8 9 = 380 s−1. The top
row shows the 0th order modified OTOC, $0(C), for both values of U. 2nd and 3rd rows
show the corresponding measurements for $1(C) and $2(C) respectively. The bottom row
shows the exact OTOC $ (C). Dashed lines are numerical simulations assuming unitary
dynamics. Errorbars are calculated from Jackknife sampling [190].
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Figure 7.3: Dynamics of operator spreading. Plotted are the evolution of OTOCs plotted
against rescaled time for U = 0.85 and U = 1.21. For all measurements, the local operators
were + = fI1 and , (C) = fG

8
for ion 8 = 2, . . . , 5. a2 was fitted such that the best collapse

of the data was obtained at the $2(C) = 0.5 level (see text). Dashed lines are numerical
simulations. Error bars are calculated from Jackknife sampling [190].

approximate the exact OTOC $ (C). From Figure 7.2 it can be seen that, for both values of
U, the dynamics of $0(C) progress at a much slower rate than those of $ (C). However, by
comparing $2(C) to the exact OTOC $ (C), it can be seen that an approximate convergence
to $ (C) is obtained for = = 2. This agrees with what would be expected from theory, where
$0(C) would be expected to be a poorer approximation to $ (C) than higher-order terms
such as $2(C) [129]. At later evolution times such as C = 4, 5ms, the measurements of $2(C)
do begin to di�er more substantially from the exact OTOC $ (C). This can be attributed
to slight mismatches in the Hamiltonian parameters (such as �8 9 and U) used to calculate
$ (C) in comparison to the true parameters implemented in the experiment. Mismatches
between these parameters are to be expected, as the standard techniques used to measure
the experimental parameters of the QSim system are only estimates of the true values (see
Section 6.1).

7.1.3 Dynamics of Operator Spreading

The spreading of the operator wavefront in a system with the long-range interactions im-
plemented in the QSim system is not expected to be purely ballistic [191]. The exact
shape and dynamics of the spatial-temporal profile of both time ordered [176, 192] and
out-of-time-ordered [193–198] correlations is currently the subject of intense theoretical
investigation. This protocol has the ability to provide further insight into such open ques-
tions, as information as to the nature of the operator wavefront expansion can be extracted
by looking at the collapsed dynamics. The time axis of the $2(C) data shown in Figure
7.2 can be rescaled such that C → C − (8 − 1)/a2, where 8 is the individual ion and a2 is
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Figure 7.4: Decay of Statistical Auto-Correlations. Shown are the statistical auto-
correlations, 〈, (C)〉2D,:0 = 〈f

G
8
(C)〉2

D,:0
, averaged over all ions 8 = 1, . . . , 10, as a function

of evolution time under �Ising. Experimental data is shown in red, alongside the simulated
dynamics both with (blue) and without (purple) decoherence. Lines are a guide to the
eye.

the velocity at which $2(C) spreads out over the ion string. Figure 7.3 shows this rescaled
data for ions 8 = 2, . . . , 5 and both values of U. The values of a2 for each U were extracted
through generating data by interpolating the OTOC for all time-steps, and then extracting
the time for which $2(Ca) = 0.5. By fitting this data with the linear function Ca = (8−1)/a2,
a value for a2 can be extracted [25].

In Figure 7.3 a) (U = 0.85) it can be seen that the data does not collapse to a single
curve. This implies that the shape of the operator wavefront is not conserved in both time
and space, and so the dynamics cannot be ballistic. Instead, the decay of $2(C) appears
to broaden over the course of the dynamics, an observation consistent with theoretical
predictions of the dynamics for U < 1 [198]. In contrast, it can be seen in Figure 7.2
b) (U = 1.21) that the dynamics do collapse to approximately a single curve. This is
consistent with a ballistic spreading of the operator wavefront with an extracted velocity
of a2 = 1000±200 s−1.

7.1.4 Detecting Scrambling via Statistical Auto-Correlations

As a final probe of quantum information scrambling in a many-body system, the decay of
statistical moments of the form 〈, (C)〉2D,:0 can be looked at. 〈, (C)〉2D,:0 can be accessed
through considering statistical auto-correlations between the randomised measurements
in Step 1 of the measurement protocol for the initial state |:0〉.
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Figure 7.4 shows the measurement of 〈, (C)〉2D,:0 = 〈f
G
8
(C)〉2

D,:0
at di�erent evolution times

under �Ising, where 〈, (C)〉2D,:0 has been averaged over all ions 8 = 1, . . . , 10. 〈, (C)〉2D,:0
can be seen to decay with increasing evolution time under �Ising. For unitary dynam-
ics, this would be a direct signature of operator spreading and, hence, scrambling [199].
However, it should be noted that 〈, (C)〉2D,:0 decays not only through scrambling but
also through decoherence, which causes the system to move towards a state with reduced
magnetisation. Therefore, the decay of 〈, (C)〉2D,:0 seen in Figure 7.4 is driven both by
scrambling and by decoherence. This can be seen by comparing the measured decay of
〈, (C)〉2D,:0 to simulated decays of the operator under purely unitary dynamics, and also
dynamics with decoherence included. Figure 7.4 also shows such dynamics (purple and
blue points respectively), where it can be seen the experiment matches well the simulated
dynamics under decoherence.

7.1.5 Robustness to Decoherence

The presence of decoherence in the system dynamics will drive the system towards a
steady state that has a reduced magnetisation, compared to evolution under purely uni-
tary dynamics. In this way, both decoherence and scrambling lead to a decay of the

operator 〈, (C)〉2
D,:0

. However, the modified OTOC given in Equation. 7.1 is normalised

with respect to 〈, (C)〉2
D,:0

, and as such is robust to forms of decoherence which reduce this
operator, such as depolarising noise and read-out errors.

For a more quantitative example of the robustness of the protocol to decoherence, it should
be noted that the numerical simulations shown in Figure 7.2 are for unitary dynamics,
and so explicitly do not include the e�ects of decoherence in the system. Given the good
agreement between the simulation and measured data, this implies that the measurement
protocol is not a�ected by global dephasing of the experimental system.

7.1.6 Conclusion

This Section has detailed the experimental implementation of the theoretical protocol
described in Section 5.3 on chains of 10 ions. It has shown how the dynamics of operator
spreading over an ion chain under evolution of �Ising can be accessed by using the protocol.
Further, it provides insights into the ballistic/non-ballistic nature of operator spreading
in the QSim system, which is determined by the interaction range U. The speed with
which the operator wavefront spreads through the system can also be extracted through
examining the spatial-temporal profile of the OTOC. The protocol has been shown to
be robust to certain types of decoherence, including through comparison of the data to
unitary dynamics, showing that global dephasing of the experimental system has no e�ect
on the protocol.
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7.2 Cross-Platform Veri�cation

The second part of this Chapter will now be devoted to the final protocol, described in
Section 5.4. The protocol provides a way to verify a quantum state prepared on two
di�erent quantum devices, where the state can be prepared at potentially very di�erent
points in time and space. This will become of ever-increasing importance as technological
developments continue to move towards regimes where comparison with classical simu-
lations will become too computationally demanding to be feasibly realised. In order to
provide a ‘proof-of-principle’ demonstration of the cross-platform verification protocol de-
tailed in Section 5.4, the following Sections will present three examples of the process. The
first of these will present purely classically simulated data, with the fidelity between two
classically simulated states presented. Following this, an experiment-theory verification
will be performed, where experimental data will be compared to a classical simulation of
the experiment (both with and without decoherence e�ects included). The final Section
will present the results from experiment-experiment verifications, where one set of data
taken from the experiment will be split into two equal partitions, with these two partitions
subsequently compared against one another. The experimental data used for these proof-
of-principle demonstrations is the same data as that used in Chapter 6 and [24], where a
10-ion chain is evolved under �XY.

7.2.1 Theory-Theory Veri�cation

For the theory-theory verification, two classically-prepared states, which are simulated as
though prepared using the dynamics of the QSim experiment, are compared using the pro-
tocol. The classical simulation solved the master equation, where decoherence including
decay from the excited state (Γ = g−1 with g = 1.17 s) as well as e�ects from unwanted spin
flips (assumed rate of W 5 ;8? = 0.69 s−1) were included (see Section 6.4.1). These two theory
states should be identical, however e�ects from finite sampling mean the calculated fidelity
will never be exactly equal to one. Therefore, a comparison of the two theory states gives
an indication of how errors from finite sampling processes will impact the final fidelity
estimation results.

As a reminder from Section 5.4, the mixed state fidelity which will be used to quantify the
overlap between two (possibly mixed) states, d1 and d2, is:

�max(d1, d2) =
Tr(d1d2)

max{Tr(d2
1),Tr(d

2
2)}

. (7.2)

To estimate Tr(d1, d2) the same local, random unitaries D = D1 ⊗ .. ⊗ D#�, where #� is the
number of qubits in the (sub)system, are applied to the two di�erent devices. The overlap
between the two (potentially reduced) density matrices can then be estimated from the
cross-correlations between the two devices using:
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Figure 7.5: Theory-Theory Veri�cation. Plotted is the calculated fidelity, �max, as a
function of subsystem size, #�, for di�erent evolution times under �XY for two classically
simulated states. For all data points, #* = 500 and #" = 150. Error bars are calculated
from the standard deviation.

Tr(d1,�1 , d2,�2) = 2#�
∑
B1
�
,B2
�

(−2)−D(B1�,B2�)%(1)
*
(B1
�
)%(2)

*
(B2
�
) , (7.3)

where #� is the number of qubits, B� = (B1, . . . , B#�) is an outcome from a measurement
on the state, D(B1

�
, B2
�
) is the Hamming distance, and . . . is the ensemble average over

the random unitaries. Therefore, Equation 7.2 gives a measure of the overlap between the
two density matrices d1 and d2, normalised by their purities. Consequently, it gives an es-
timation of the degree to which two quantum platforms have prepared the same, possibly
mixed, state.

Figure 7.5 shows the results from calculating this fidelity for two classically simulated
states. The states were initialised in the Néel-ordered configuration and subsequently
evolved under �XY for up to 5ms. The simulation was performed assuming 500 random
unitaries, each with 150 repeat measurements, as is the case with the real experimental
data shown in the following Sections. As such, it can be seen that the drop in fidelity
occurring from implementation of the protocol and finite sampling is <0.5%. Therefore, it
can be assumed that repeat measurements on the order of 150 will be su�cient to provide
a reasonable estimate of �max.

7.2.2 Experiment-Theory Results

In a first proof-of-principle demonstration of how the protocol can be used with real exper-
imental data, the data used in Chapter 6 and [24] for chains of 10 ions was compared with
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(a) Simulated unitary dynamics (b) Simulated dynamics including decoher-
ence

(c) Néel State Preparation

Figure 7.6: Experiment-Theory Veri�cation. Shown are the estimated fidelities �max
as a function of subsystem size #� for di�erent evolution times under �XY. In a) the
theoretical simulation is performed for unitary dynamics. In b), it is performed with
decoherence included. For both sets of data, #* = 485, #" = 150, �max = 420 s−1, and
U = 1.24. Errorbars are calculated from Bootstrap sampling [190]. c) Initial Néel State
fidelity. Each point is the probability of a successful Néel state preparation calculated
for 50 repeat measurements. This was repeated sequentially 20 times. Error bars are
calculated from quantum projection noise.

a classical simulation of the experiment to demonstrate the protocol. The experimental
data was used as d1, with the classical simulation being d2. As a reminder of the experi-
mental data, a 10-ion initial Néel-ordered state was evolved under �XY for up to 5ms to
the state d. Randomised rotations were subsequently performed on the evolved state d
and a measurement in the / -basis performed (see Section 6.2). The classical simulation
was the same as that described in the previous Section.

Figure 7.6 shows the estimated fidelity results from applying the protocol to the experi-
mental data and classical simulation. Figure 7.6 a) shows the results from a comparison
of the experimental data and a classical simulation with purely unitary dynamics. Figure
7.6 b) shows the results where the classical simulation contained additional decoherence.
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Figure 7.7: Experiment-Experiment Veri�cation. Plotted are the estimated fidelities
�max, of two states prepared sequentially in the same experiment as a function of reduced
subsystem size #� = 1, . . . , 5 for di�erent evolution times under �XY. For all data points,
#* = 485 , #" = 75, �max = 420 s−1, and U = 1.24. Error bars are estimated from Bootstrap
sampling with 500 repetitions [190].

In both cases, the classical simulation was performed by solving the master equation.

Figure 7.6 c) shows the results from an independent fidelity measurement of an experimen-
tally prepared initial Néel-ordered state in the QSim system. The calculated fidelity from
this measurement was found to be 0.971 ± 0.037. This fidelity was obtained by calculating
the overlap between the measured state and the ideal state, which is straightforward as the
Néel state is a simple product state. The fidelity of the initial Néel state preparation was
re-checked each time five random unitaries had been applied. If the fidelity was found to
be less than 97% then the system was recalibrated. This ensured that the initial state was
always prepared to a high standard.

However, it can be seen in Figure 7.6 a) and b) that, even at 0ms when the system has
not undergone any evolution under �XY, there is a decrease in the estimated fidelity �max
with the size of the subsystem. Given the experimentally verified high preparation fidelity
of the initial Néel-ordered state, the decrease in fidelity with system size must therefore be
primarily due to experimental imperfections in the application of the random unitaries.
Such experimental imperfections can take two forms: First are errors from over/under
rotations. This is, in e�ect, a di�erence between the experimentally applied unitary, and
the ideal unitary used in the simulation. From Section 4.1.6, it can be seen that the most
significant errors in the implemented gates are from fI rotations, and so such over/under
rotations are most likely to occur from use of the single-ion addressing beam. The second
source of error is depolarising noise from application of the unitaries. For further discus-
sions and characterisations of such errors, see Chapters 4 and 6. Further discussions on
how such errors can influence the protocol itself are left to [26].



7.2. Cross-Platform Veri�cation 147

(a) 0ms evolution time (b) 5ms evolution time

Figure 7.8: Experiment-Experiment Veri�cation and Experiment-Theory Veri�ca-
tion. Experiment-experiment fidelities plotted alongside experiment-theory fidelities from
Figure 7.6 for reduced subsystems #� = 1, . . . , 5. a) Plotted are the estimated fidelities
�max at 0ms. b) Estimated fidelities at 5ms evolution under �XY. For all data points,
#* = 485. For experiment-experiment data points #" = 75, and for experiment-theory
data points #" = 150. Error bars are estimated from Bootstrap sampling [190].

Even out to 5ms evolution time, where the initial Néel ordered state has evolved into
a highly entangled state, there is still a relatively high fidelity between the experiment
and classically simulated system – with fidelities on the order of 70% for the case where
the simulated system includes decoherence. This is quite remarkable given the complex
many-body dynamics the system has undergone during this process, suggesting that the
many-body dynamics in the QSim system are relatively well understood.

7.2.3 Experiment-Experiment Results

As a second demonstration of the usefulness of the protocol in the cross-platform verifica-
tion of two independent quantum devices, the fidelities of two sets of experimental data,
obtained sequentially on the same experimental platform, were compared. The data from
Chapter 6 and [24] for chains of 10 ions was again used for this demonstration. In this
case, a single data set with 150 repeat measurements was split into two equal partitions,
corresponding to the states d1 and d2, each with 75 repeat measurements.

Figure 7.7 shows the results from estimations of the fidelities for these experimental
datasets as a function of reduced subsystem size #� = 1, . . . , 5. It can be seen from
the Figure that, at all evolution times under �XY, the fidelity remains high, at around 90%
or above. Figure 7.8 a) shows the experiment-experiment fidelities plotted alongside the
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experiment-theory fidelities from Figure 7.6 for 0ms, with b) showing the same for 5ms.
It can be clearly seen that the experiment-experiment fidelities are significantly higher
than the theory-experiment fidelities, even for the situation where decoherence is included
in the classical simulation. This implies that, even though there is a di�erence between
the unitaries prepared in the QSim system and the ones which are classically simulated
(as deduced from Figure 7.6), the random unitaries implemented in the QSim system are
highly repeatable, being well-reproduced each time.

7.2.4 Conclusion

The final Section of this Chapter has presented a first experimental implementation of the
cross-platform verification protocol (introduced in Chapter 5), which allows a direct fidelity
measurement between two quantum devices. The protocol was demonstrated through sev-
eral proof-of-principle implementations using experimental data from the QSim system.
Initially, the protocol was demonstrated on two classically simulated states which aimed
to implement the dynamics of the QSim system in a theoretical system. Following this,
experimental data from chains of 10 ions was compared to a classically simulated state,
both with and without the e�ects of decoherence. For the simulation with decoherence,
fidelities for the overlap of the two states were on the order of 70%, even after several
milliseconds of evolution under �XY. This is quite remarkable, as by this point the exper-
imental system had undergone complex, many-body dynamics, so evolving into a highly
entangled state. In a second implementation, the fidelities of two sets of experimental
data, prepared sequentially in the QSim system, were compared. The fidelity results from
application of the protocol to these data sets was significantly higher than when comparing
the classically simulated and experimental states. From this, it can be concluded that the
unitaries implemented in the QSim system di�er from those implemented in the classical
simulation. However, the unitaries which were implemented in the QSim system were
highly-repeatable and well-reproduced each time.

The protocol itself is advantageous as it requires significantly fewer measurements than
other protocols such as quantum state tomography, and requires no previous knowledge of
the states being compared. As such, it is expected that the protocol can provide a useful
verification technique for quantum simulators and computers consisting of several tens of
qubits.



Chapter 8

Implementation and Characterisation of
a Stimulated Raman Transition Setup

In attempting to demonstrate the advantages quantum simulators may have over their
classical counterparts, a huge amount of e�ort is currently being invested in the realisa-
tion of scalable quantum simulation [19, 200, 201]. With regards to trapped-ion platforms,
demonstrations of the usefulness of quantum simulators in comparison to their classical
counterparts will most likely require the use of larger numbers of ions [202], for example
with longer strings of ions or trap geometries creating 2D ion crystals [203, 204]. Although
moving to larger numbers of ions has the potential to increase the ‘computing power’ of a
quantum simulator, working with increasing numbers of ions comes with its own technical
challenges which must be overcome.

One such challenge which is particularly relevant to the QSim experiment is that of the
speed with which entangling gates can be implemented on long strings of ions. It is im-
portant that the interaction time required to implement such entangling gates is shorter
than the coherence time of the system, in order to allow correlations to propagate over the
entire ion string. The coherence time of the optical qubit discussed so far is limited by a
number of e�ects, such as noise from frequency and intensity fluctuations of the 729 nm
laser system, as well as environmental noise due to magnetic field fluctuations. In addition
to this, the excited state of the optical qubit, the |D5/2〉 state, has an intrinsic finite lifetime
of ∼1 s, which is limited by spontaneous decay from this state. Therefore, the entangling
gates must occur on timescales which are at least shorter than this lifetime.

However, the optical qubit has a relatively small Lamb-Dicke parameter, on the order of
[ = 0.041 for a single ion at the standard trap parameters used in the QSim experiment
(where the radial trapping frequency is on the order of lr = 2c× 2.7MHz). This results in
a relatively low coupling strength between the electronic and motional modes, so limiting
the speed of multi-qubit gates. As such, it is prudent to consider whether an alternative
qubit can be used for performing quantum operations.

149
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The level scheme of 40Ca+ allows a qubit to be encoded in several ways. An alternative
approach to the optical qubit is to encode the qubit in the Zeeman levels of the ion’s
electronic ground state, |S1/2,mj = ±1/2〉, with the splitting between these levels induced
by an externally applied magnetic field. By encoding the qubit in these two ground state
Zeeman levels, there is (in the ideal case) no decay due to spontaneous emission from the
excited state. As such, encoding the qubit in the ground states of the ion has the potential
for a drastically increased coherence time compared to the optical qubit.

For the QSim system, the splitting between the ground states in 40Ca+ is relatively small,
on the order of 11MHz1. Transitions between these ground states can be driven by RF ra-
diation resonant with the transition. However, in practice there are several disadvantages
to this: One of the most relevant to this discussion is that, due to the long wavelength
of RF radiation, the Lamb-Dicke parameter is very small, and so entangling gates would
occur on significantly longer timescales than those which can be currently implemented
using the optical qubit for similar incident radiation powers. Therefore, extremely large
incident RF radiation powers would be necessary to drive entangling operations on time-
scales which are significantly shorter than those currently achievable with the optical qubit.
In addition, the wavelength of RF radiation is so large that spatially selective excitation
is essentially impossible. Therefore, if a single-ion addressing scheme for the ground-state
qubit were to be required in the future, this would not be possible using a highly-focussed
beam of RF radiation, as is used for the optical qubit (there are, however, schemes for
addressing single ions in frequency space rather than position space using RF radiation
and a spatially varying magnetic field [205–207]).

Given all these considerations, it was decided to implement a setup where the qubit was en-
coded in the ground states of 40Ca+, with coherent manipulations of these levels performed
using a stimulated Raman transition scheme. These Raman transitions use UV-radiation,
which has a significantly (on the order of 5 times as much for the parameters used here) in-
creased Lamb-Dicke parameter in comparison to the 729 nm transition used in the optical
qubit. This has the potential to allow entangling operations to occur on timescales which
are several times shorter than currently achievable with the optical qubit. Raman tran-
sitions have already been successfully demonstrated by many groups using wavelengths
between 393 nm and 400 nm [84, 208–211].

The following Chapter will present results from the implementation of a new stimulated
Raman transition setup in the QSim experiment. The new experimental setup is detailed
in Chapter 3. The Chapter will first discuss how the qubit can be encoded in the electronic
levels of a 40Ca+ ion and manipulated with Raman transitions, as well as the considerations
which must be taken into account when using a qubit encoded in an ion, as opposed
to the ideal 3-level system discussed in Section 2.4. Following this, experimental data
for characterisation measurements of the setup will be presented and discussed. Finally,
entangling gates will be experimentally demonstrated on the ground state qubit for up to

1For the currently applied magnetic field of 4.18G
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(b) Clebsch-Gordan coupling coe�cients be-
tween the |S1/2〉 and |P3/2〉 states.

Figure 8.1: Schematic of Raman transitions in 40Ca+. a) The |S1/2〉 level is split into two
non-degenerate Zeeman levels, and the |P3/2〉 level is split into four non-degenerate Zee-
man levels. The two ground state levels are coupled through two light fields at ∼393.5 nm.
b) The Clebsch-Gordan coe�cients between the |S1/2〉 and |P3/2〉 levels, which influence
the coupling strengths between these levels. All values are positive.

three ions. Both MS gates and Ising-type interactions will be demonstrated.

8.1 Stimulated Raman Transitions for a Real Atom

In reality, stimulated Raman transitions are more complicated than the ideal 3-level system
described in Section 2.4. Figure 8.1 a) illustrates how Raman transitions can be driven
in 40Ca+. Here, the two ground state electronic levels of 40Ca+, |S1/2,mj = −1/2〉 and
|S1/2,mj = +1/2〉, are used to encode the qubit states |0〉 ≡ |↓〉 and |1〉 ≡ |↑〉 respectively.
The |P3/2〉 electronic level is used as the auxiliary state. The ground states couple to the
|P3/2〉 state through electric dipole transitions at wavelengths of ∼393.5 nm. It can be seen
from Figure 8.1 a) that the |P3/2〉 state is not a single level, as was assumed in Section
2.4, but is split into four Zeeman levels, and so a 6-level system must actually be consid-
ered. Each of these Zeeman levels has a di�erent coupling strength to the ground state
levels, which depends on both the Clebsch-Gordan coe�cients as well as the polarisation
of the driving field. Figure 8.1 b) shows the relevant Clebsch-Gordan couplings between
the |S1/2〉 and |P3/2〉 levels.

Another way in which the Raman transition in 40Ca+ di�ers from the ideal scenario ex-
plored in Section 2.4 is through decay from the auxiliary level. For the ideal qubit, it was
assumed that the decay from this auxiliary state was negligible, however when encoding
the qubit in an ion this is no longer true. The |P3/2〉 level has a lifetime of g = 6.9 ns [49].



152
Chapter 8. Implementation and Characterisation of a Stimulated Raman

Transition Setup

|S1/2,mj=1/2〉

|mj = −3/2〉
|mj = −1/2〉

|mj = 1/2〉
|mj = 3/2〉

|P3/2〉

|S1/2,mj=−1/2〉

−f c

+f

+f
c

−f

Figure 8.2: Schematic of the polarisations which drive transitions between the Zee-
man levels. Due to selection rules, transitions between the Zeeman levels must be driven
with specific polarisations, shown in the Figure.

The rate at which photons are scattered from this state during a Raman transition is given
by ' = Γ

4Δ2
(Ω2

1 + Ω
2
2), where Γ = 1/g is the decay rate, Ω8 is the Rabi frequency of beam

8 when resonant with the |S1/2〉 to |P3/2〉 transition, and Δ is the detuning of the beams
from the |P3/2〉 state (see Section 2.4). Here, any Ω is defined as being 2c multiplied by
the inverse of the time taken to go from |↓〉 to |↑〉 and return back to |↓〉 again – that is,
Ω = 2c/) with ) the time period of the transition. The decay from application of the
Raman beams is a significant quantity as it will lead to decoherence of the qubit, and so
it is crucial to reduce this rate as much as possible in comparison to the rate at which
Raman transitions can be driven. The decay rate from |P3/2〉 during a Raman transition
can be reduced by increasing the Raman detuning Δ, however this in itself can be prob-
lematic as moving further away from |P3/2〉 reduces the Raman Rabi frequency, defined as
Ω' =

Ω1Ω2
2Δ . As such, a balance must be struck where the dynamics can proceed at a rate

which is fast enough in order to not su�er from qubit decoherence due to factors such as
magnetic field fluctuations, without su�ering from significanct decoherence due to decay
from the |P3/2〉 state.

8.1.1 Polarisation

The polarisation vector of the incident light field, & , plays a crucial role in determining the
Rabi frequency of a particular transition between the |S1/2〉 and |P3/2〉 Zeeman manifolds
[49, 212]. Therefore, for a Raman transition to occur, the polarisation vector of the beams
must be chosen such that one or more transitions which couple to both ground states
are allowed by selection rules. The following Section will show how the optimal polarisa-
tion of the beams can be determined by considering both the polarisation vector of the
incident light field as well as its direction of propagation with respect to the magnetic field.



8.1. Stimulated Raman Transitions for a Real Atom 153

Figure 8.3: De�nition of the propagation and polarisation vectors. The z-axis is
aligned along the quantisation axis. Left Linearly polarised light alongside left-handed
circularly polarised light with respect to an ion. Right Linearly polarised light alongside
right-handed circularly polarised light. The vector k̂ defines the direction of propagation.

Figure 8.2 shows which polarisations drive the relevant transitions in 40Ca+, with c-polarised
light driving Δmj = 0 transitions and circularly polarised light driving Δmj = ±1 transi-
tions. It can be seen that for a Raman transition to occur between the ground states, one
beam must have components of c-polarised light, and one beam components of either ±f-
polarised light. However, not only the polarisation vector but also the angle the incident
light makes to the magnetic field – termed the ‘propagation vector’ k̂ – must be considered
when determining whether a specific transition will be driven by the incident light field.
An incident light field propagating at an arbitrary angle to the magnetic field axis will
now be considered for di�erent polarisations, and the corresponding contributions such
a light field makes to driving the Δmj = 0,±1 transitions will be derived. For reasons of
simplicity, the incident light field will be constrained to propagate in the y-z plane.

The polarisation vector of any laser field can be expressed in terms of three polarisation
basis vectors. A natural set of basis states to use is that where the three polarisations cor-
respond to the three possible changes in projection of the angular momentum eigenvalue
which can occur in a dipole transition – i.e. Δmj = 0,±1 [211]. Defining the z-axis by
the quantisation axis (which is along the magnetic field direction and trap axis), then a
suitable set of three basis states can be written as:

&0 =
©«
0

0

1

ª®®¬ = ẑ, &+ =
1
√

2

©«
1

8

0

ª®®¬ =
1
√

2
(x̂ + 8 ŷ), &− =

1
√

2

©«
1

−8
0

ª®®¬ =
1
√

2
(x̂ − 8 ŷ), (8.1)

where &0 drives the Δmj = 0 transition, &+ drives the Δmj = +1 transition, &− drives the
Δmj = −1 transition, and x̂, ŷ, ẑ are the Cartesian unit vectors. An example of this can be
seen pictorally in Fig. 8.3. The linearly polarised light in this Figure propagates along ŷ,
while oscillating in ẑ, with the polarisation vector then given by & = &0. The right- and
left- handed circularly polarised fields oscillate in the x-y plane while propagating along
ẑ, and as such have polarisation vectors of & = &± respectively.



154
Chapter 8. Implementation and Characterisation of a Stimulated Raman

Transition Setup

(a) Linearly polarised vec-
tor with polarisation in the
y-z plane

(b) Linearly polarised vec-
tor with polarisation per-
pendicular to the magnetic
field axis

(c) Left-handed elliptically
polarised vector.

Figure 8.4: Polarisation vectors propagating at an arbitrary angle ) to the quanti-
sation axis. a) A linearly polarised vector with a component of the polarisation vector
parallel to the quantisation axis. b) A linearly polarised vector where the polarisation
vector is always perpendicular to the quantisation axis. c) An elliptically polarised field.
In all Figures, the z-axis is aligned along the quantisation axis.

Any polarisation vector propagating at an arbitrary angle \ to the quantisation axis can
then be expressed in terms of these three basis states, where \ is defined as being the angle
between the direction of propagation, k̂, and the magnetic field axis ẑ (shown in Figure
8.4). Three useful examples of this will now be given. The first two of these consider only
linearly polarised light, and will be of significance later on in Sections 8.1.3 and 8.3.2. The
final example gives the general case for an elliptically polarised beam.

First, consider Fig. 8.4 a), which depicts a polarisation vector linearly polarised in the
plane formed by the direction of propagation of the beam and ẑ (i.e. the y-z plane). The
propagation direction k̂ can be resolved along ŷ and ẑ. When k̂ is resolved along ŷ, &
oscillates solely along ẑ, and so & = sin\ ẑ = sin\&0. When resolved along ẑ, & oscillates
solely along ŷ, and so & = cos\ ŷ. Therefore, using the relation ŷ = 1√

28
(&+ − &−), this

polarisation vector takes the form:

& lin‖ =
1
√

28
cos\ (&+ − &−) + sin\&0. (8.2)

Next consider Figure 8.4 b), where a linearly polarised vector propagates at an angle \ to
the quantisation axis, with polarisation perpendicular to the plane formed by the quantisa-
tion axis and the direction of propagation of the beam. In this scenario, upon resolving the
propagation direction into ŷ or ẑ, there is no component of the polarisation vector which
is aligned along ẑ, and so there can be no component of &0; regardless of the incident



8.1. Stimulated Raman Transitions for a Real Atom 155

angle the propagation vector makes to the quantisation axis, the polarisation vector still
oscillates only along x̂. Using the relation x̂ = 1√

2
(&+ + &−), the perpendicular vector can

then be expressed as:

& lin⊥ =
1
√

2
(&+ + &−). (8.3)

That is, there is no component of the field that can drive the Δm = 0 transition, with
this field driving the Δm = ±1 transitions with equal intensity. It should be noted that this
expression has no dependence on \ as there is no polarisation component in the y-z plane.

Finally consider the most general case shown in Figure 8.4 c), where an elliptically po-
larised vector propagates at an angle of \ to the quantisation axis. There are three main
components to this vector: First is the component along x̂ which, as was discussed for
& ;8=⊥, has no dependence on \. The other two components are those components resolved
through \ to lie along ŷ and ẑ. Combining these three components yields:

&el = �1x̂ + �2cos\48q ŷ + �2sin\48q ẑ, (8.4)

where �1 and �2 are the magnitudes of the polarisation components which are orthogonal
to k̂, and 48q the relative phase between these two components. By using the relations
x̂ = 1√

2
(&+ + &−), ŷ = 1√

28
(&+ − &−), and ẑ = &0, Equation 8.4 can be expressed as:

&el =
�1√

2
(&+ + &−) +

�2√
28
cos\48q (&+ − &−) + �2sin\48q&0,

=⇒ &el =
1
√

2
(�1 − 8�2cos\48q)&+ +

1
√

2
(�1 + 8�2cos\48q)&− + �2sin\48q&0. (8.5)

It can be seen that Equation 8.5 reduces to Equations 8.2 & 8.3 for the cases where �1 = 0
and �2 = 0 respectively.

As mentioned previously, for Raman transitions to occur one beam must have a compo-
nent of the polarisation parallel to the magnetic field to drive the Δmj = 0 transition,
and the second beam must have a polarisation component perpendicular to the magnetic
field, to drive either of the Δmj = ±1 transitions. An example of polarisations and incident
angles that would then maximise the coupling strength (i.e. such that all the light from
both beams is used in driving the transition) would then be: One beam with polarisation
& lin‖ with an incident angle of c/2 (so driving only the Δmj = 0 transition), and the second
beam with right-handed circularly polarised light at an incident angle of \ = 0 – i.e. &el
with �1 = �2 =

1√
2
and q = c/2 (so driving only the Δmj = +1 transition).
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The next Section will introduce another factor that must be taken into consideration be-
fore deciding which polarisations should be used for the driving fields.

8.1.2 AC-Stark Shifts

In reality, driving the Raman transitions with polarisations yielding maximum coupling
between the ground states is not necessarily the best solution. In particular, di�erential
AC-Stark shifts arising from application of the Raman beams – that is, AC-Stark shifts
which shift the |S1/2,mj = −1/2〉 and |S1/2,mj = +1/2〉 states by di�erent amounts – can be
highly problematic [39, 208, 211]. Di�erential AC-Stark shifts can be minimised by using
specific polarisations for the driving beams.

The light shift on the upper and lower states, | ↓〉 and | ↑〉, is given respectively by:

XAC|↑〉 =
Ω2
f+,|↑〉 +Ω

2
f−,|↑〉 +Ω

2
c

4Δ
, XAC|↓〉 =

Ω2
f+,|↓〉 +Ω

2
f−,|↓〉 +Ω

2
c

4Δ
, (8.6)

where Ωf±,: , for : = | ↑〉, | ↓〉, is the resonant Rabi frequency on the transition between the
: and |P3/2〉 Zeeman levels driven by f± polarised light, and Ωc is the resonant Rabi fre-
quency on the transitions driven by c-polarised light. Ωc is the same for both | ↓〉 and | ↑〉,
as these states couple with identical Clebsch-Gordan coe�cients to the |P3/2,mj = −1/2〉
and |P3/2,mj = +1/2〉 states respectively (as can be seen from Figure 8.2).

If these light shifts are not the same for both levels, the qubit can acquire an additional,
overall phase given by:

qAC = (XAC|↑〉 − X
AC
|↓〉 )g =

(Ω2
f+,|↑〉 +Ω

2
f−,|↑〉 −Ω

2
f+,|↓〉 −Ω

2
f−,|↓〉)g

4Δ
, (8.7)

where g is the length of time the beam is applied for. Under such circumstances, the
quantum phase of qubit superpositions or of multi-ion entangled states evolves not only
according to the intended gate operations, but also undergoes an additional rapid phase
evolution which can be seen to be dependent on the intensity of the two beams [208].
As such, the polarisation of the beams should be chosen such that the di�erential shift is
reduced to zero.

A straightforward way to drive the Raman transitions with no di�erential AC-Stark shift is
to use linear polarisation for both beams [211]. From Equations 8.2 and 8.3, it can be seen
that both parallel and perpendicular linearly polarised light drive the Δmj = ±1 transitions
with equal strengths. In this situation, Ω2

f+,|↑〉 = Ω
2
f−,|↓〉 and Ω

2
f−,|↑〉 = Ω

2
f+,|↓〉 due to the

symmetric Clebsch-Gordan coe�cients of these transitions. As such, the AC-Stark shifts
on the two ground states from coupling to the Zeeman levels of the |P3/2〉 level will cancel,
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and q�� will become 0.

Even though this choice of polarisation is not optimal for coupling between the ground
states, and so the Raman Rabi frequency will be reduced, this is the arrangement chosen
for the experiments which will be presented in Section 8.3 in order to reduce any unwanted
e�ects from di�erential AC-Stark shifts.

8.1.3 Raman Rabi Frequency

The Raman Rabi frequency, ΩR, derived in Section 2.4, is given by ΩR = Ω1Ω2/2Δ, where
Ω8 is the (resonant) Rabi frequency of beam 8, and Δ the (assumed equal) detuning of the
beams from resonance. This equation can also be expressed in terms of the parameters
of the two Raman beams, such as the beam waists, propagation angles, and powers.
The Rabi frequency for any general transition driven by an oscillating electric field, K =

|K0 |&cos(lC), with & the polarisation vector, is given by [212]:

Ω =
4 |K0 |
ℏ
〈1|r · & |2〉, (8.8)

with r the position of the electron. For simplicity, the Rabi frequencies for a linearly
polarised vector with polarisation in the y-z plane (now referred to asΩ1), and for a linearly
polarised vector with polarisation perpendicular to the magnetic field axis (referred to
as Ω2), propagating at angles \1 and \2 respectively to ẑ (see Figure 8.4) will now be
considered2. As such, the two Rabi frequencies are:

Ω1 =
4

ℏ

(
1
√

28
cos\1〈1|r · (&+ − &−) |2〉 + sin\1〈1|r · &0 |2〉

) √
�1, (8.9)

Ω2 =
4
√

2ℏ
〈1|r · (&+ + &−) |2〉

√
�2 (8.10)

where �8 is the intensity of beam 8. Considering that, for a Raman transition to occur in
40Ca+, one beam must drive a Δmj = 0 transition and the other a Δmj = ±1 transition, the
Raman Rabi frequency therefore becomes:

ΩR =
1

2Δ

( 4
ℏ

)2 sin\1√
2

D2
√
�1�2, (8.11)

where D is the reduced dipole matrix element of the |1〉 to |2〉 transition. For the |S1/2〉 to
|P3/2〉 transition in 40Ca+, the magnitude of this value can be calculated to be D = 4.09100,
where 00 is the Bohr radius [213]. Finally, the intensity of the beams can be expressed in

2This treatment can be straightforwardly extended to two general, elliptically polarised beams by using
Equation 8.5
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terms of their power and respective beam waists. Assuming the ion sits in the centre of
the beam waists, each of which is elliptical in shape, the Raman Rabi frequency becomes:

ΩR =
1

2Δ

(
4.091004

ℏ

)2 sin\1√
2c

√
%1%2

FG1F
H

1F
G
2F

H

2

, (8.12)

where %8 is the power in beam 8, which has x-waist FG
8
and y-waist FH

8
.

8.2 Experimental Protocol

Having now discussed the main considerations which should be taken into account when
working with Raman transitions in an ion, as opposed to the ideal 3-level system presented
in Section 2.4, the following section will give a brief overview of the experimental protocol
used to enable Raman transitions to be driven between the ground states in 40Ca+ in the
QSim system.

The Raman transitions can be driven by two laser beams detuned from the |S1/2〉 to |P3/2〉
dipole transition by approximately Δ = 2c × 308GHz. For detailed descriptions of the
setup, operation, and locking schemes of the lasers and cavity used to produce these two
beams, refer to Section 3.2. For a detailed description of the optical setup, see Section
3.3. There are several di�erences in the experimental protocol used to control Raman
transitions in the QSim system, compared to that which controls the 729 nm transitions.
The following Section will now explain the typical steps which are used in performing
coherent manipulations on the ground state qubit with Raman transitions.

Qubit Initialisation/State Preparation The qubit is first initialised in the
| ↓〉 = |S1/2,mj = −1/2〉 state (this is in contrast to the optical qubit, where typically
the qubit is initialised in the |S1/2,mj = +1/2〉 state). This state was chosen for qubit
initialisation as, when detection is performed the ‘ground’ state (|↓〉 = |S1/2,mj = −1/2〉)
fluoresces while the ‘excited’ (|↓〉 = |S1/2,mj = +1/2〉) state remains dark (due to the qubit
readout scheme described below). This matches the ground/excited state fluorescence
of the optical qubit, and so allowed easier integration of the ground state qubit into the
experimental control software. Qubit initialisation is performed using optical pumping
on the 729 nm transition. The e�ciency of this state preparation was measured by taking
2400 repeat measurements on 5 ions and averaging over the results. The measured fidelity
was then calculated to be 99.8±0.3%, with the error calculated from the standard deviation
of the measurements.

Qubit Readout The qubit readout process when using Raman transitions to perform
coherent operations is more complicated than with the optical qubit. With the optical
qubit, readout is performed using 397 nm light, with only the ‘ground’ |↓〉 = |S1/2〉 state
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scattering photons, so being recorded as ‘bright’, while the ‘excited’ | ↑〉 = |D5/2〉 state
remains dark. When using Raman transitions with the ground state qubit, both of the
qubit levels can scatter photons near 397 nm. Therefore, in order to discriminate between
| ↓〉 = |S1/2,mj = −1/2〉 and | ↑〉 = |S1/2,mj = +1/2〉, the population in | ↑〉 must first be
optically transferred to the |D5/2〉 state (a process referred to as ‘shelving’), before laser
flourescence detection with the 397 nm beam can be performed. The |↓〉 state therefore
fluoresces, with the | ↑〉 state remaining dark.

Experimental Sequence A typical experimental sequence is very similar to that per-
formed with the optical qubit, and is comprised of four main steps: (a) Doppler cooling is
performed on the ion for 3ms (b) the ion is cooled close to the ground state of the radial
vibrational modes through resolved sideband cooling on the 729 nm transition (only neces-
sary when using the counterpropagating beam geometry) (c) the qubit is initialised in the
|↓〉 = |S1/2,mj = −1/2〉 state (d) coherent manipulations are performed using Raman tran-
sitions between the ground state sublevels (e) the population in the |S1/2,mj = +1/2〉 qubit
level is shelved to the |D5/2,mj = +5/2〉 level (f) state readout is performed through laser
induced fluorescence on the 397 nm |S1/2,mj = −1/2〉 to |P1/2〉 transition, where popula-
tion in the |S1/2,mj = −1/2〉 level will scatter photons and be recorded as ‘bright’, while the
population which has been transferred from the |S1/2,mj = +1/2〉 state will subsequently
be dark.

8.3 Characterisation of the Raman Transitions

Having detailed the optical setup and experimental protocol, this Section will now focus
on presenting results from various characterisation measurements of the Raman transition
setup.

8.3.1 Beam Size

Firstly, an external measurement of the beam spot size at the position of the trap centre was
measured. A beam profiler3 was placed at a distance from the outcoupling lens equivalent
to the position of the trap centre and the profile of the beam recorded. Figure 8.5 shows
the results of this measurement, with the spot size of the beam found from a least squares
fit to the data to be 175 `m × 173 `m. Here the spot size is defined to be the radial distance
from the central point of maximum irradiance to the point where the beam irradiance has
fallen to 1/42 of its original value.

3Thorlabs Camera Beam Profiler BC106-VIS
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Figure 8.5: Beam Pro�le measurements of the copropagating Raman beams. The
beam waist was found to be w=175±0.8 `m along x and w=173±1.2 `m along y. These
values were extracted using a least-squares Gaussian fit to the data. Errors are determined
from the covariance matrix of the fit.

8.3.2 Polarisation

It was previously mentioned in Section 8.1.2 that a linear polarisation for both beams
would be chosen in order to minimise any di�erential AC-Stark shift between the two
qubit levels, with the question then remaining as to which linear polarisations to use. Both
a Δm = 0 and Δm = ±1 transition must be driven in order for a Raman transition to
be achieved, and so it is necessary to use linearly polarised light which possesses both of
these components.

From Equation 8.3 it can be seen that for a linear polarisation which has a polarisation
vector orthogonal to the quantisation axis (for the geometry here this will correspond to
vertically polarised light), no component of this polarisation will drive the Δm = 0 transi-
tion, and so all of this polarisation will be used in driving the Δm = ±1 transitions with
equal strength. Therefore, the |S1/2,mj = −1/2〉 to |P3/2,mj = +1/2〉 transition will be
driven with an intensity of 50% of the total intensity. This polarisation can then be used
along with a linear polarisation which will drive the Δm = 0 transition with highest e�-
ciency.

Equation 8.2 shows that linearly polarised light which has a polarisation vector parallel
to the quantisation axis (for the geometry here corresponding to horizontally polarised
light), and propagating at 60◦ to the trap axis (necessary due to the geometry of the vac-
uum chamber, see Section 3.3), will drive the Δm = 0 transition with an intensity 75% of
the total incident intensity.

Therefore, the polarisations were chosen such that one beam has a polarisation vector
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parallel to the quantisation axis, and one with a polarisation vector orthogonal to it, so
driving the Raman transition with a combined reduced intensity of 37.5%.

8.3.3 Spontaneous Emission

Spontaneous emission from the auxiliary |P3/2〉 state, as mentioned in Section 8.1, can be
a significant source of error during gate operations, with several possible consequences:

• Dephasing – During spontaneous emission, the qubit can return to |S1/2〉 with a
branching ratio of ∼47% [214]. However, during this process the phase of the coherent
time evolution is, in essence, ‘reset’ and so the coherence of the system will be lost.

• Spin flips – Spontaneous emission can also result in the qubit transitioning to another
state, with branching ratio ∼53% [214].

The experimental procedure for measuring the spontaneous emission rate from the auxil-
iary level for a standard set of experimental parameters is the following: the qubit is first
prepared in |S1/2,mj = +1/2〉 and a coherent 729 nm c-pulse on the |S1/2,mj = +1/2〉 to
|D5/2,mj = +5/2〉 transition is applied. This will move all the population into the excited
state, and so qubit readout at this point will produce an excitation equal to 1. A single
Raman beam is then applied to the qubit after state preparation but before application of
the 729 nm c-pulse, and the excitation measured as a function of the length of time this
beam is applied for. As no Raman transitions can occur from the presence of only one
beam, any change in the observed excitation will be as a direct result of population loss
due to spontaneous emission from the |P3/2〉 state.

Figure 8.6 shows a measurement of this decay for five ions due to the presence of a single
beam which had passed through AOM 2 (driven at a fixed frequency of 105MHz). The
rate of spontaneous emission can be extracted from fitting an exponential to the data and
was found to be '1 = W = 30.3±0.3 s−1 per ion due to this beam (assuming the rate of
spontaneous emission for each ion is uncorrelated).

From Equation 2.79, the Raman Rabi frequency is given by ΩR = Ω1Ω2/2Δ, where Ω8 is
the proportional to the square-root of of the intensity of each beam, 8, which goes towards
driving the transition. Specifically, it is not equal to the total power of the beam due to
the polarisations (see Section 8.3.2). In the experiment, ΩR is maximised by adjusting
the relative power in the two paths such that Ω1 ' Ω2. As such, an estimated decay rate
for the second Raman beam can be calculated from '1 to be '2 = '1×

( 0.5
0.75

)
= 20.2±0.2 s−1.

Assuming that the spontaneous emission e�ect from both beams is additive, then the
single-ion rate of decay from the auxiliary state during a two-photon Raman transition is:

' = 50.5 ± 0.4 s−1, (8.13)
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Figure 8.6: Measured decay from the auxiliary state for 5 ions. The resultant excitation
after the application of one of the Raman beams is plotted as a function of the length of
time the beam is applied (black points). A weighted least-squares exponential fit to the
decay (blue line) gives a decay rate of W = 30.3±0.3 s−1 per ion for a Raman Rabi frequency
of Ω' = 2c × 60 kHz and a detuning of Δ = 2c × 308GHz. The data was taken using 200
repeats. Error bars are calculated from quantum projection noise, with the error in the
decay rate extracted from the covariance matrix of the fit.

corresponding to a qubit lifetime on the order of g = 19.8±0.2ms. As the Raman Rabi
frequency for this measurement is ΩR = 2c×60 kHz, this shows that a single ion will make
∼1200 complete oscillations between the two states before spontaneously emitting a pho-
ton.

This value can also be compared to the theoretical decay rate expected from Equation
2.83, under the assumption that |Δ| � Γ, l0. This is given by:

' ' Γ
4

(
Ω2

1

Δ2
+
Ω2

2

Δ2

)
=
ΓΩ'

2Δ

(
1

0.75
+ 1

0.5

)
= 47.1 s−1, (8.14)

which is very close to the estimate of the measured spontaneous decay rate given above.
Inconsistencies between these two values is most likely due to inaccuracies in the amount
of power sent into the two paths. The errors induced by spontaneous emission grow
accordingly with increasing system size, with reduction of these errors only possible by
increasing the detuning from the auxiliary |P3/2〉 state.

8.3.4 Di�erential AC-Stark shift

As discussed in Section 8.1.2, the AC-Stark shift experienced by the |S1/2,mj = −1/2〉 and
|S1/2,mj = +1/2〉 levels may be di�erent, which will lead to a di�erential shift between the
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(c) AC-Stark flops on the |↑〉 state from
the lower path into the vacuum vessel.
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(d) AC-Stark flops on the |↓〉 state from
the lower path into the vacuum vessel.

Figure 8.7: AC-Stark �ops. Shown in the Figures are the Ramsey fringe signals arising
from application of a single Raman beam during the wait-time of a Ramsey experiment
using the 729 nm transition (see text).

two levels.

The di�erential AC-Stark shift between the two levels from one beam can be probed by
using a Ramsey experiment on the 729 nm transition. The qubit is first optically pumped
to either the |S1/2,mj = −1/2〉 or |S1/2,mj = +1/2〉 state using the 729 nm transition. It is
then prepared in a superposition of either 1/

√
2( |S1/2,mj = −1/2〉 + |D5/2,mj = +3/2〉), or

1/
√

2( |S1/2,mj = +1/2〉 + |D5/2,mj = +5/2〉) by application of a c/2 pulse with the 729 nm
laser. After a wait-time of g, a final c/2 pulse is applied. During the wait-time g, one of the
Raman beams is applied to the ion. This leads to a Ramsey fringe signal as the duration
of the wait-time is varied, called ‘AC-Stark flops’, shown in Figure 8.7. Figure 8.7 a) and
b) shows the AC-Stark flops due to the first Raman beam (entering into the vacuum vessel
from the top) on the | ↑〉 and | ↓〉 states respectively, and in c) and d) the AC-Stark flops
caused by the second Raman beam (entering into the vacuum vessel from the bottom)
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on the | ↑〉 and | ↓〉 states respectively. The time-period of this fringe signal, gAC, gives
access to the frequency shift induced by the presence of the single Raman beam through
l�� = 2c/gAC. The di�erential AC-Stark shift can then be calculated by determining lAC
for | ↑〉 and | ↓〉, and subtracting the two values.

The measurement was performed seperately for the path entering the vacuum chamber
from the top viewport, and for the path entering the chamber through the bottom view-
port. For the top path, a di�erential AC-Stark shift of 2c × 26.6 ± 3.5 kHz was found, and
for the bottom path a shift of 2c × 23.4 ± 31 kHz. Given that the Raman Rabi frequency
for which most measurements are performed is ΩR ' 2c × 60 kHz, then for the top path
there is a di�erential shift present on the order of 30% of ΩR. For the bottom path, given
the error, it is di�cult to conclude whether there is a statistically significant AC-Stark shift.
Any shifts that do exist can be minimised by proper adjustment of the polarisation.

If there is any residual di�erential AC-Stark shift, then changes in the beam intensities,
such as fluctuations in the output intensity of the laser or from beam pointing, can lead
to phase fluctuations in the qubit, which can be a strong source of decoherence [208]. To
minimise these e�ects, both the beam passing through AOM 1 and the one through AOM
2 have been intensity stabilised before entering the vacuum chamber using a home-built
Sample and Hold intensity stabilisation circuit, as discussed in Appendix D.2. In the
future, it will also be advantageous to implement an intensity stabilisation system for the
beam passing through AOM 3.

8.3.5 Coherence Measurements between the two Ground States

An important quality of the ground state qubit which should be measured is that of the
coherence time. The coherence time can be probed by performing Ramsey experiments
on a superposition of the two states |S1/2,mj = −1/2〉 and |S1/2,mj = +1/2〉 (see Section
2.3.1). Such experiments not only allow access to the coherence time of the qubit, but
can in addition provide insights into potential noise processes which can reduce the qubit
coherence. As the qubit coherence can be a�ected by instabilities between the beam
paths, the coherence of both the copropagating fields and the counterpropagating fields
was probed.

Coherence Measurements for the Copropagating Fields

In order to perform these measurements, the qubit was first optically pumped into the
|S1/2,mj = −1/2〉 state, before being prepared in a superposition of |S1/2,mj = −1/2〉 and
|S1/2,mj = +1/2〉 using a global Raman c/2 pulse driven by the copropagating fields. After
a wait-time of g, a final c/2 pulse was applied, the phase of which was scanned. By fitting
a least-squares sine to the phase scan, the contrast at that particular wait-time g – given
by the amplitude of the fit – can be extracted.
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Figure 8.8: Coherence time measurements on the ground state qubit using Raman
transitions. The measured contrast (black points) is fitted with a least-squares exponen-
tial decay (blue line) and least-squares Gaussian decay (green line) in order to extract
estimates for the coherence time. a) Measurement using copropagating fields, with an
extracted coherence time from the exponential fit of 358±78ms and from the Gaussian fit
of 94±17ms. Inset: Magnified plot of the contrast at short wait-times. b) Measurement
using counterpropagating fields, with a resulting coherence time from the exponential fit
of 241±26ms and from the Gaussian fit of 70±6ms. Inset: Magnified plot of the contrast
at short wait-times. For both data sets, 3 ions were used with 80 repeats. Errors bars are
extracted from the covariance matrix of the sine fit used to extract the contrast (see text).

Figure 8.8 a) shows the extracted contrast as a function of the wait-time g in-between c/2
pulses. Both an exponential fit and a Gaussian fit to the decay of the measured contrast
have been performed in order to provide estimates for the coherence time of the system.
An exponential decay is expected for high-frequency noise processes, with a Gaussian
decay expected for lower-frequency noise [122]. An exponential fit to the decay of the
measured contrast provided an estimated coherence time of 358±78ms, with the Gaus-
sian decay providing an estimated coherence time of 94±17ms.

It is di�cult to discern whether one of the decay profiles is a better fit to the data, especially
as measurements at longer wait-times are susceptible to DC e�ects such as movements of
the lift. Although not decreasing the contrast, this causes problems with performing an
accurate least-squares sine fit to the phase scan. However, it can be seen that both of these
estimates for the coherence time are significantly larger than the coherence of the optical
qubit probed with the 729 nm transition (see Section 3.4.2). The main reason behind this
increase in coherence is that the qubit used with the Raman transitions is encoded in
two Zeeman levels of the same ground state through using a two-photon process. This
means that the qubit is relatively insensitive to noise from the laser, and so the only major
contribution to its decoherence is from magnetic field fluctuations.
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Figure 8.9: Red-sideband spectrum. Motional spectrum of the radial modes for two
ions using the counterpropagating fields. Left: The measured excitation of each ion is
plotted as a function of the frequency detuning of the second Raman beam, l2, from the
resonant carrier frequency. Right: Schematic of a red-sideband transition as driven with
the Raman beams. l1 is fixed, while l2 is free to be scanned. The measurement was
performed at a detuning from the auxiliary |P3/2〉 level on the order of Δ = 2c× 20GHz,
with 80 repeats taken.

Coherence Measurements for the Counterpropagating Fields

The same procedure was then repeated where instead the Ramsey experiments were driven
using the counterpropagating fields. For this arrrangement, an additional 6ms of sideband
cooling was performed following Doppler cooling and preceeding the Ramsey experiment.
As the counterpropagating fields couple to the motion of the ion, there is the possibility
for additional decoherence from motional decoherence of the qubit. In addition, the coun-
terpropagating paths enter the chamber having traversed two di�erent beam paths. There
is therefore the potential for decoherence to occur from fluctuations in the laser phase
between the two paths.

Figure 8.8 b) shows the measured contrast of the qubit, with associated exponential and
Gaussian fits to the decay of this contrast. The coherence time extracted from the expo-
nential fit was found to be 241±26ms and from the Gaussian fit was found to be 70±6ms.
These values are, within error, reasonably consistent with the coherence times found using
the copropagating fields. As such, it can be assumed that there is no significant limitation
to the lifetime of the qubit from either motional decoherence, or from phase instabilities
between the two beam paths.
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8.3.6 Sideband spectrum of two qubits

As the counterpropagating fields couple to the radial modes of motion, it is then possible
to probe the radial sidebands using this setup. To do this, the system was initialised in
|S1/2,mj = −1/2, =〉 by Doppler cooling and optical pumping. As the ions are not ex-
pected to be in the Lamb-Dicke regime after only Doppler cooling, so the phonon number
is not expected to be 0. As such, it is then possible to drive the radial sideband transition
|S1/2,mj = −1/2, =〉 → |S1/2,mj = +1/2, = − 1〉 using the counterpropagating fields.

Figure 8.9 shows a scan of the red-sideband spectrum for 2 ions as a function of the
detuning of l2 from the carrier frequency. The motional structure of the sidebands can
be clearly seen, with four radial modes visible: the first two, separated by approximately
30 kHz detuning, are the two centre-of-mass (COM) motional modes. Two COM modes
are expected as these arise from the non-degeneracy of the radial modes of the trap. The
second two modes are the stretch modes of motion, with again two of these arising due to
the non-degenerate radial modes. Figure 8.9 demonstrates the motional control possessed
over the ions by this system, a crucial feature for the following Section where such motional
control will be used to engineer entangling gates between single and multiple ions.

8.4 Entangling Gates

As has been mentioned many times already, for quantum computers and simulators to
demonstrate advantages over their classic counterparts, they must generate large amounts
of entanglement between their respective components [29]. It is therefore of importance
that the Raman setup as has been described so far in this Chapter is able to demonstrate
not only the single-qubit operations described in the previous section, but also entangling
operations as shall now be presented.

As discussed in Section 2.5, entangling operations require the vibrational state of the
ions to be manipulated. Therefore, such operations can only be driven using the coun-
terpropagating fields, where coupling to the motional modes is possible. One of the most
well-known entangling operations is that of the MS gate (refer to Section 2.5 for a detailed
theoretical description), whereby the electronic and motional states of an ion can be cou-
pled through a bichromatic driving field [62].

In order to implement a MS gate with Raman transitions, the two Raman beams compris-
ing the bichromatic driving field must have a di�erence in frequency which is close to the
frequency of a radial mode (such as the COM mode), so that o�-resonant transitions on
the red and blue sidebands can be driven. As discussed in Section 3.3.2, such transitions
are practically implemented using both a single beam passing through AOM 2 (driven at a
fixed frequency of 105MHz) in conjunction with a bichromatic light field, generated using
AOM 1 driven at frequencies of lr −ΔSB and lb +ΔSB. lr,b are the frequencies of the red-
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Figure 8.10: Preparation of single-ion Cat states. a) Measured dynamics of a single-ion
Cat state (black points), created using a detuning from the sidebands of ΔSB = 2c × 15 kHz.
The theoretical dynamic behaviour predicted from Equation 8.15 using the experimental
parameters (with Ω = 2c × 56 kHz) is plotted as the blue line. b) As with a), but at a
smaller detuning from the sidebands of ΔSB = 2c × 8 kHz, where the slower dynamics
allows the two ground state wavefunctions to fully separate, seen as a slight plateau at an
excitation of 0.5.

and blue-sidebands respectively, and ΔSB is the detuning from these sideband frequencies.
The bichromatic beams are coupled into the same fibre, and enter the vacuum chamber
together from the bottom viewport.

8.4.1 Single-ion Motional Cat States

The first step taken in implementing entangling interactions using such a bichromatic light
field was to create a single-ion Schr¥odinger Cat state. A single-ion Cat state, as described
in Section 2.5.1, is an entangled state of the electronic and motional degrees of freedom
of a single ion. They can be created through driving a single ion with a bichromatic laser
pulse, and have been demonstrated in many previous experiments [65–67], including in
the QSim experiment itself on the optical qubit [49]. The bichromatic laser field couples
the electronic and motional states of the ion, generating spin-motion entanglement within
a single ion. This interaction is the same as can be used to engineer multiqubit quantum
gates such as the MS gate, as will be experimentally demonstrated in Section 8.4.2.

As a reminder, it was previously shown in Section 2.5.1 that the probability for a single,
ground-state cooled ion to be found in the |↑〉 state after application of the bichromatic
field is given by:

%|↑〉 = |〈↑ |k〉|2 =
1

2
− 1

2
exp

(
−2

���� [Ω2ΔSB
(1 − 4−8ΔSBC)

����2) , (8.15)
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where Ω is the Raman Rabi frequency of one of the bichromat beams when tuned to be
on resonance with the carrier transition (assumed to be equal for both the red- and blue-
sidebands), and ΔSB is the (equal) detuning of each beam from its respective sideband.

To probe such dynamics, a bichromatic light field was applied to a single ion, optically
pumped and sideband cooled to the initial state |↓, 0〉, in order to generate spin-motion en-
tanglement. Figures 8.10 a) and b) show the experimentally measured, dynamic temporal
behaviour of two single-ion Cat states, with a) created using a detuning from the sidebands
of ΔSB = 2c × 15 kHz, and b) using a detuning from the sidebands of ΔSB = 2c × 8 kHz.
The blue lines are the theoretical predictions from Equation 8.15 using the experimental
parameters. At the beginning of the dynamics, the two (initially fully overlapped) ground-
state wavepackets begin to move apart in phase space. At approximately 35 `s in Figure
8.10 a), the two ground-state wavepackets are almost, but not quite, maximally separated
in phase space – as can be seen by the excitation reaching a maximum value of 0.4 – and
the electronic and motional states are entangled at this point. The wavepackets then begin
to move towards each other again, before fully recombining at approximately 70 `s. In
Figure 8.10 b), the ground-state wavepackets become fully separated in phase space, as
can be seen by an excitation of 0.5 being achieved.

8.4.2 Two-Ion Mølmer Sørensen Gate

Having created a single-ion Cat state, the natural progression was to implement an MS
gate on a two-ion system. The theoretical background of the MS gate has been discussed
in detail in Section 2.5.2, with the following section now presenting experimental results
from an MS gate generated using Raman transitions on two ions.

When applied to two ions, the MS gate will generate collective spin-flips, taking an initial
state | ↓↓〉 to | ↑↑〉 with (in the ideal case) zero population in the | ↑↓〉 and | ↓↑〉 states at this
point. When the coupling strength and detuning are properly chosen, the MS gate will
map an initial product state into a maximally entangled Bell state. High-fidelity two-qubit
gates with trapped ions have been previously demonstrated in the QSim experiment with
the optical qubit [59], however these gates were performed on the axial modes of motion,
due to the relatively large spacing between axial modes reducing the motional excitation
of non-COM modes of motion. In this work, the configuration of the counterpropagating
Raman beams instead couples to the radial modes of motion, where the mode spectrum
is more closely spaced than with the axial modes.

To demonstrate an MS gate, two ions were optically pumped into the ground state | ↓↓〉
and the bichromatic light field applied. Figure 8.11 a) shows the subsequent temporal
evolution of the two-qubit system. The Figure shows the evolution of the populations in
the |↓↓〉 state (blue line), | ↑↑〉 state (red line), and the combined populations in the | ↑↓〉
and | ↓↑〉 states (purple line) as a function of the length of the bichromatic pulse applied.
After 75 `s, the population in the | ↑↓〉 and | ↓↑〉 states returns to zero as the populations
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Figure 8.11: Evolution of a two-ion crystal under application of a Raman MS gate.
a) Probability of state occupation as a function of the applied MS gate time. Blue is
the population in the | ↓↓〉 state, red the population in the | ↑↑〉 state, and purple the
summed population in the | ↑↓〉 and | ↓↑〉 states. At 75 `s, an entangled state is created.
b) Evaluation of the entangled state fidelity created in a). Top: Plot of the parity of the
entangled state as the phase of the probing c

2fG pulse is scanned (black points). The blue
line is a weighted least-squares sine fit to the data, with amplitude 0.975±0.008. Error bars
are calculated from quantum projection noise using 50 repeat measurements. Bottom:
Plot of the populations of the entangled state. The populations are evaluated using 1000
repeat measurements, with error bars subsequently calculated from quantum projection
noise. For all measurements, the detuning of the beams was Δ(� = 2c × 13.3 kHz with
Raman Rabi frequency Ω' = 2c × 63 kHz and detuning from the auxiliary state of
Δ = 2c × 308GHz.

in the |↓↓〉 and | ↑↑〉 states are equal at an excitation of 0.5. At this point, and under an
ideal MS interaction, the maximally entangled Bell state |Φ+〉 = 1/

√
2( |00〉 + |11〉) has been

produced. After 150 `s, the population in the | ↑↓〉 and | ↓↑〉 states again returns to zero,
with the entire population in the |↑↑〉 state, and so the system has returned to a product
state.

It can be seen that there is an overall increase in the | ↑↓〉 + | ↓↑〉 population as a function of
time. This can be seen most clearly at later times as, when this population should return
to zero, it does not fully do so. One possible explanation for this increase may be due to
o�-resonant coupling of the bichromatic beam to the other radial modes, however further
work must look into the exact cause of these dynamics.
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Fidelity estimation

In order to verify that the Bell state |Φ+〉 has indeed been produced after 75 `s, the fidelity
of the state at this point can be probed. The fidelity is defined as: F = |〈Φ+prep |Φ+ideal〉|

2

and can be evaluated through a combination of two measurements: A measurement of the
populations at the point where |Φ+〉 is expected, and a parity scan also at this point.

A measurement of the populations, which is essentially a measurement of the diagonal
components of the density matrix, is achieved by evolving the two-qubit crystal to the
point at which the state |Φ〉+ should be produced – in this case at 75 `s – measuring the
population, and then repeating this process. Figure 8.11 b) (bottom) shows the results
from such a measurement: 51±1% of the population is in the |↑↑〉 state, 46±1% in the |↓↓〉
state, and 3±0.3% in the | ↑↓〉 and | ↓↑〉 states. Although a useful measure, a measurement of
the populations alone is not enough to characterise the fidelity of the Bell state – or even to
prove that entanglement is present. For example, the fully mixed state 1

2 ( |↓↓〉〈↓↓|+ |↑↑〉〈↑↑|)
will produce the same values for a population measurement as the maximally entangled
state |Φ+〉. As such, it is necessary to combine such measurements of the diagonal com-
ponents with measurements of the o�-diagonal terms of the density matrix. A parity scan
can be used to measure these o�-diagonal terms, and so provide an estimate of the fidelity
when combined with population measurements, proving the existence of entanglement.

The concept behind a parity scan is as follows: The initial state, |↓↓〉, is once again
evolved into |Φ+〉. After this evolution, a c/2 pulse, resonant with the carrier transition, is
applied, the phase of which is scanned. For a phase of q = 0, the state |Φ+〉 will be rotated
to |Ψ+〉 = 1/

√
2( |↓↑〉 + |↑↓〉). For a phase of q = c/2, the state |Φ+〉 will be unaltered. As

such, for a perfectly prepared |Φ+〉 state, the parity scan samples the entire space of the
two-qubit maximally entangled states, and so gives an indication of the fidelity with which
a maximally entangled state has been prepared.

The parity itself is defined as p = P↓↓ +P↑↑ −P↓↑/↑↓, where P↓↓ is the population in the | ↓↓〉
state, P↑↑ is the population in the | ↑↑〉 state, and P↓↑/↑↓ is the combined population from
the |↓↑〉 and |↑↓〉 states. For an ideal, maximally entangled state, the parity will oscillate
between -1 and 1 as the phase of the c/2 pulse is scanned. For a non-ideal Bell state prepa-
ration, these oscillations will have a smaller amplitude. As such, by fitting a sine wave to
these oscillations, the amplitude, Ap, can be extracted and used as a measurement of the
state parity. Figure 8.11 b) (top) shows the parity oscillations for the Bell state prepared
by the Raman transitions, with the associated weighted least-squares sine fit to the data.
The amplitude of the fit is found to be 97.5±0.8%.

The fidelity for producing |Φ+〉 can then be calculated from the sum of these two quantities,
such that:

F=
1

2
(P00 + P11 +Ap) =

1

2
(0.51 + 0.46 + 0.97) = 0.97 ± 0.02. (8.16)
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(a) Magnetisation dynamics under application
of �XY.
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Figure 8.12: Application of the NXY interaction to a three-ion state. a) The magneti-
sation dynamics of the initial state |↓↑↓〉 is shown for each ion under application of �XY. It
can be seen that the initial excitation hops symmetrically to the two neighbouring, outer
ions, before hopping back to the middle ion. b) Increase of excitation in the system as
a function of the length of time �XY is applied (black points). A weighted least-squares
exponential fit to the data (blue line) gives a rate of excitation increase of 82.5±13.5 s−1.
Error bars are calculated from quantum projection noise, with the error in the excitation
increase extracted from the covariance matrix of the fit. The measurements were taken
for Ω' = 2c × 50 kHz, Δ = 2c × 308GHz, Δ(� = 2c × 40 kHz, X = 2c × 9 kHz, and 50
repeats.

Therefore, a maximally entangled Bell state was produced with 97±2% fidelity.

As a comparison, the maximum Bell state fidelity achieved in the QSim system by imple-
menting an MS gate on radial modes of the 729 nm transition was on the order of 96%.
This fidelity is thought to be limited due to the close proximity of the radial modes to one-
another, meaning it is not possible to couple purely to the COM mode (i.e. all modes will
contribute in some capacity to the dynamics). Therefore, limitations to the gate fidelity
do not seem to arise from properties intrinsic to the Raman setup.

8.4.3 Evolution of a 3-ion chain under NXY

As a first step towards implementing multiqubit entangling operations on longer ion strings
using Raman transitions, a �XY model of the same type described in Section 6.1 was
applied to a short ion chain of three ions. The explicit form of this Hamiltonian is given
by:
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�XY = ℏ
∑
8< 9

�8 9

(
f+8 f

−
9 + f−8 f+9

)
, (8.17)

where fI
8
is the spin-1/2 Pauli z-operator, f+

8
f−
8
the spin-raising (lowering) operators, and

�8 9 the coupling matrix.

The ion chain was prepared in the initial state |↓↑↓〉, by o�-resonantly addressing the mid-
dle ion using the 729 nm addressing beam [77]. The middle ion was first prepared in the
|D3/2,mj = +3/2〉 state using this beam, before a final 729 nm global c-pulse coupling the
states |S1/2,mj = +1/2〉 to |D3/2,mj = +3/2〉 prepared the ion in the |S1/2,mj = +1/2〉 state.

Figure 8.12 a) shows the evolution of the magnetisation for each ion under application of
the �XY interaction. It can be seen that the initial excitation spreads to the ions either
side, before re-interfering on the middle ion once more at approximately 1.75ms. Figure
8.12 b) shows the increase in excitation in the system as the interaction time is increased.
Assuming that the increase in excitation is due solely to spontaneous emission from the
|P3/2〉 level during the dynamics, then this increase would be expected to follow an expo-
nential model as discussed in Section 8.3.3. Fitting an exponential model to the data gives
a rate of excitation increase of 82.5 ± 13.5 s−1. The measured rate of spontaneous emission
using similar parameters was found to be 50.5 ± 0.4 s−1 for a single-qubit Raman gate (see
Section 8.3.3). However, as the �XY interaction uses essentially four beams (a single Ra-
man beam in one arm, and a trichromatic beam in the other) it should be expected that
the rate of spontaneous decay will be higher during this interaction than for a single-qubit
gate which uses only two beams. If a simple assumption is made that the additional two
beams which comprise the trichromatic beam each add a decay rate of ' = 20.2 s−1, then
the total rate of spontaneous emission should be on the order of 90 s−1. This is very close
to the measured rate of excitation increase, and so it is likey that the increase in excitation
can be completely explained by spontaneous emission from the |P3/2〉 level. However the
rate of spontaneous emission due to the trichromatic beam should be explicitly measured
in the future using the same technique as in Section 8.3.3 to confirm this.

By comparing the measured evolution of the magnetisation to a simulated evolution, a
value for the maximum coupling strength �max = max|�8 9 | can be extracted (see Section
6.1), and was found to be 1400 s−1. A comparison can now be made between the �max
achieved with the Raman transition on the ground state qubit, and the �max achieved with
the 729 nm transition on the optical qubit. From the results presented in Chapters 6 and
7, the maximum �8 9 achieved with the 729 nm transition is on the order of 400 s−1. The
value calculated above for the Raman transition is 3.5 times this value, and so the coupling
strength is significantly stronger than that currently achievable with the optical qubit.
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8.5 Conclusion

This Chapter has introduced the new experimental apparatus which enables encoding of
quantum information in the ground state of 40Ca+, in contrast to the optical qubit which
has previously been used in this experiment. The new setup replicates the flexibility which
is achievable with the optical qubit, however with several improvements.

Perhaps the most marked improvement can be seen in the coherence time of the new
qubit. When probed with the copropagating fields, the coherence time extracted from an
exponential decay is 358±78ms, and with the counterpropagating fields (again extracted
from an exponential decay) is 241±26ms. This is a more than four-fold improvement in
comparison to the coherence time of the optical qubit, which is on the order of 60ms. The
ground state qubit has the same sensitivity to magnetic fields fluctuations as the optical
qubit, and so this marked increase in coherence shows that this qubit is extremely insen-
sitive to laser noise.

The setup also demonstrates improvements with regards to the entangling operations
which can be implemented. The fidelity of the MS gates which are implemented using
Raman gates is comparable to that obtained when using the 729 nm transition, and so
it is likely that this fidelity is limited through o�-resonant coupling to non-COM modes
during the gate dynamics. However, when implementing a �XY model, the improvement
in gate speed when compared to the 729 nm-driven gates is remarkable – with a factor of
3.5 improvement in the gate speed. The increase in excitation during the gate dynamics
must be further investigated through a measurement of the rate of spontaneous decay from
the |P3/2〉 level due to application of the trichromatic beam.



Chapter 9

Outlook

The work presented in this thesis has covered both technical improvements to the existing
system, as well as covering quantum simulation experiments published in three papers.
The work can be divided into three major sections:

1. Noise Characterisations of the QSim System

2. Randomised Measurements on Chains of Trapped Ions

3. Implementation and Characterisation of a new Raman setup

The noise characterisations presented in Chapter 4 looked both at the quality of the single-
qubit gates implemented using the 729 nm laser and the stability between two of the major
729 nm beam paths (the radial path and the single-ion addressing path). The single-qubit
gates were characterised using gate set tomography (GST), with the results showing that - -
and . -rotations are implemented with very low errors, with the / -rotations implemented
with much higher errors. With regards to the beam-path stability between the radial and
single-ion addressing paths, two major conclusions can be drawn: Firstly, the loss in co-
herence due to instabilities between these two paths is over much longer timescales than
the current coherence time of the system, and so such instabilities are not (currently)
a dominant source of noise in the system. This is consistent with noise produced from
slow drifts. Secondly, there does not seem to be any significant contribution from high-
frequency noise, such as high-frequency acoustic noise.

Following this, three theoretical protocols, which are concerned with quantum simulation,
and their subsequent experimental implementation, were covered in Chapters 5, 6, and 7.
All three experiments use randomised measurements to characterise systems of 10 to 20
ions.

The first of these experiments looked at the formation of entanglement in chains of 10
ions, as well as 10-ion partitions of a 20-ion chain. In moving to regimes where the system
dynamics can no longer be simulated classically, protocols to characterise the dynamics of
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many-body quantum systems will become of increasing importance. The protocol imple-
mented here used randomised measurements to access the Rényi entropy after evolution
of the system under the XY-model of interacting bosons, �XY. For the 10-ion chain, bipar-
tite entanglement was shown to exist between all partitions of the chain. Further to this,
application of the protocol to 10-ion partitions of a 20-ion chain indicated the formation
of highly entangled states after several milliseconds evolution under �XY. As a final inves-
tigation of the applicability of the protocol to investigating the dynamics associated with
many-body localisation, the protocol was demonstrated on a 10-ion chain after evolution
of the system under a disordered Hamiltonian.

The second experiment looked at scrambling in many-body quantum systems. Opera-
tor spreading under the dynamics of a transverse field Ising Hamiltonian in chains of
10-ions was probed by measuring modified out-of-time-ordered correlators (OTOCs). Of
significant interest with this experiment is the application of the protocol to two di�erent
interaction ranges in the QSim system. This allowed a comparison of operator spread-
ing for two di�erent regimes: that of long-range interactions (showing ballistic operator
spreading) and very long-range interactions (showing non-ballistic operator spreading).

The final experiment was a proof-of-principle demonstration of a cross-platform verifica-
tion protocol. Currently, it is common to verify a quantum state prepared on a quantum
device with a classical simulation of the state, in order to ensure the quantum device
is performing as expected. However, in moving to regimes where the comparison of a
prepared quantum state with a classical simulation becomes computationally infeasible,
di�erent verification procedures are required. This protocol aims to verify a quantum state
by comparing it with a quantum state prepared on a separate quantum device, potentially
at a very di�erent point in time and space. The protocol uses randomised measurements
in order to provide a fidelity estimate for the two prepared states. The proof-of-principle
experiments presented here used the protocol to compare a state prepared using the QSim
system with a state prepared using a classical simulation, as well as comparing two quan-
tum states prepared sequentially in the QSim system.

Finally, the new Raman setup was discussed in Chapter 8, where the qubit was encoded
in the ground state Zeeman levels of 40Ca+, as opposed to the optical qubit discussed in
the previous Chapters. First characterisation measurements of this setup indicate a vastly
improved coherence time in comparison to the optical qubit. Entangling operations were
demonstrated using this setup, with an MS gate implemented with a fidelity comparable
to that of the MS gate achieved using the optical qubit. A final demonstration of the �XY
Hamiltonian on 3 ions indicates the dynamics progress significantly faster with the Raman
setup than with the current dynamics achieved when using the optical qubit driven with
the 729 nm laser.

Looking further into the future, the ultimate aim of the QSim experiment is to perform
quantum simulations on long chains of ions, ideally of at least 50 ions. This will allow
complex dynamics which are computationally infeasible to simulate classically to be inves-
tigated. Such strings of ions have already been trapped and, thanks to the work of [77],
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single-ion addressing can now be performed on over 50 ions. However, there is clearly a
large amount of work to still be done until such a regime can be reached with the QSim
system. The next major steps which can be taken in order to move towards this ultimate
goal will now be discussed.

The proof-of-principle demonstrations of cross-platform verification presented in this thesis
already show great promise for use in verifying experimentally prepared states in systems
comprised of tens of qubits. The natural next step in this matter is to apply the protocol
to two independent quantum devices, separated in time and space, in order to verify the
states prepared on those devices. If proved successful, this protocol will be of immense
use for the future verification of experimentally prepared quantum states in regimes where
comparison to classically simulated states becomes computationally infeasible.

From a technical standpoint, the Raman setup will likely be crucial in bringing the QSim
experiment up to a level where it can realistically move beyond dynamics which can be
classically simulated. The Raman setup has already been successfully used in further work
conducted by [215]. However, there is still a large amount of work that needs to be done
on the Raman setup in order to fully develop it. One of the most important quantities
to be looked at next with this setup is the spontaneous decay arising from application of
the trichromatic beam. This will provide an insight into whether the observed excitation
increase during evolution under �XY can be fully explained by this process, or whether
there are additional processes such as incoherent spin-flips induced by the trichromatic
beam causing an increase in excitation. In addition, a large amount of optical power is
being wasted due to the polarisations used to drive the Raman transitions (see Section
8.3). Although not being used to drive the transition, this power is still contributing to
spontaneous decay from the P3/2 level. A logical next step would be to optimise these
polarisations further such that the amount of optical power used to drive the transitions
is maximised, however whilst still ensuring that the di�erential AC-Stark shift between the
two levels is minimised. Further, the single-qubit gates implemented by the Raman setup
should be characterised using GST, as was performed in Chapter 4 with the 729 nm beam.
This will allow a direct comparison between the quality of the single-qubit gates which can
be performed on the optical qubit with the 729 nm beam and the ground state qubit using
Raman transitions.

A major next step in upgrading the Raman setup would be to replace the current beam
optics directly before the vacuum chamber with beam-shaping optics which create an
elliptically shaped beam. It has already been shown in [47] that elliptical beam shaping
of the radial 729 nm beam greatly increased the Rabi frequency (due to the increased
amount of light which is focussed onto the ion string). It is therefore natural to assume
that beam shaping optics on the two Raman paths would also provide an increase in the
Raman Rabi frequency and, as such, the speed of the entangling dynamics.

With regards to entangling dynamics, a natural next step is to extend the application
of �XY from 3 ions to strings to 10 ions. This will allow a straightforward comparison
between these dynamics to the dynamics observed with the 729 nm laser when using the
optical qubit.
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Appendix B

Explicit Background Derivations

B.1 Moving to the Rotating Frame

It is often useful to consider the evolution of a system under a Hamiltonian using an ap-
proach based on transforming the problem into a rotating frame. This is where the system
is considered in a frame such that the perturbed time-dependent evolution of the system
is separated from the evolution of the unperturbed system. This can be achieved in the
following way.

Consider a state |k〉, which can be written (completely generally) as

|k〉 = * |k̃〉, (B.1)

where * descibes the unitary transformation between two di�erent bases, both of which
can be used to describe the state. If the state is transformed into a new basis, then the
Hamiltonian must also be transformed, something which can be achieved using the time-
dependent Schr¥odinger equation

8ℏ
m

mC
|k〉 = � |k〉. (B.2)

In the newly transformed basis, Equation B.2 transforms to:

8ℏ
m

mC
|k̃〉 = 8ℏ m

mC

(
*† |k〉

)
(B.3)

= 8ℏ

[
*†

m

mC
|k〉 +

(
m*†

mC

)
|k〉

]
(B.4)

=

[
*†� + 8ℏ

(
m*†

mC

)]
|k〉. (B.5)
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Substituting Equation B.1 into this, yields

8ℏ
m

mC
|k̃〉 =

[
*†�* + 8ℏ

(
m*†

mC

)
*

]
|k̃〉 = �̃ |k̃〉. (B.6)

Therefore, the transformed Hamiltonian is given by

�̃ =

[
*†�* + 8ℏ

(
m*†

mC

)
*

]
. (B.7)

This new Hamiltonian has two components to it: the first term is the straightforward
transformation of � into the new basis. The second term corresponds to a fictitious
energy, analogous to the fictitious forces which arise in classical mechanics when working
in rotating frames [55].

B.2 Atom-Laser in the Interaction Frame

For an atom under perturbation from a laser, the Hamiltonian is given by:

� =
ℏl0

2
fI + ℏΩcos(lLC + qL)fG . (B.8)

In moving to the rotating frame via a transformation of * = 4−8�0C , where �0 =
ℏl0C

2 , it is
easiest to consider the transformation in two parts: firstly, the transformation of �0 =

ℏl0fI
2

and secondly the transformation of �1 = cos(lLC + qL)fG .

First calculating the transformation of �0 using * = 4−8l0CfI/2:

�̃0 = *
†�* + 8ℏm*

†

mC
* = 48l0CfI/2ℏl0

2
fI4
−8l0CfI/2 − ℏl0

2
fI,

=⇒ �̃0 = [cos(l0C/2)I + 8sin(l0C/2)fI]
ℏl0

2
fI [cos(l0C/2)I − 8sin(l0C/2)fI] −

ℏl0

2
fI,

=⇒ �̃0 =
ℏl0

2
[cos(l0C/2)I + 8sin(l0C/2)fI] [cos(l0C/2)fI − 8sin(l0C/2)I] −

ℏl0

2
fI,

=⇒ �̃0 =
ℏl0

2

[
cos2(l0C/2)fI + sin2(l0C/2)fI

]
− ℏl0

2
fI,

=⇒ �̃0 = $. (B.9)

Secondly, calculate the quantity *†�1*:
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*†�1* = ℏΩ [cos(l0C/2)I + 8sin(l0C/2)fI] cos(lLC + qL)fG [cos(l0C/2)I − 8sin(l0C/2)fI]
*†�1* = ℏΩcos(lLC + qL) [cos(l0C/2)I + 8sin(l0C/2)fI]

[
cos(l0C/2)fG − sin(l0C/2)fH

]
*†�1* = ℏΩcos(lLC + qL)

[
cos2(l0C/2)fG − sin2(l0C/2)fG −

1

2
sin(l0C)fH −

1

2
sin(l0C)fH

]
*†�1* = ℏΩcos(lLC + qL)cos(l0C)fG − cos(lLC + qL)sin(l0C)fH . (B.10)

Equation B.10 can be written in a very useful manner by considering the following expan-
sions. For for cosine:

cos( [lL − l0]C + qL)fG + cos( [lL + l0]C + qL)fG
= cos(lLC + qL)cos(l0C)fG + sin(lLC + qL)sin(l0C)fG
+ cos(lLC + qL)cos(l0C)fG − sin(lLC + qL)sin(l0C)fG
= 2cos(lLC + qL)cos(l0C)fG . (B.11)

Secondly for sine:

sin( [lL − l0]C + qL)fH − sin( [lL + l0]C + qL)fH
= sin(lLC + qL)cos(l0C)fH − cos(lLC + qL)sin(l0C)fH
− sin(lLC + qL)cos(l0C)fH − cos(lLC + qL)sin(l0C)fH
= − 2sin(l0C)cos(lLC + qL)fH . (B.12)

As such, in summary:

cos( [lL − l0]C + qL)fG + cos( [lL + l0]C + qL)fG = 2cos(lLC + qL)cos(l0C)fG (B.13)

sin( [lL − l0]C + qL)fH + sin( [lL + l0]C + qL)fH = −2sin(l0C)cos(lLC + qL)fH . (B.14)

A rotating wave approximation can now be made where sum frequency terms of (lL+l0)C,
which rotate at much faster speeds than the time-scale of the induced dynamics, can be
dropped. As such, Equations B.13 and B.14 reduce to:

cos( [lL − l0]C + qL)fG = 2cos(lLC + qL)cos(l0C)fG (B.15)

sin( [lL − l0]C + qL)fH = −2sin(l0C)cos(lLC + qL)fH . (B.16)

As such, Equation B.10 reduces to:
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*†�1* =
ℏΩ

2

(
cos( [lL − l0]C + qL)fG + sin( [lL − l0]C + qL)fH

)
. (B.17)

Finally, Equation B.8 in the rotating frame can therefore be written as:

�̃ =
ℏΩ

2

(
cos(XC + qL)fG + sin(XC + qL)fH

)
. (B.18)

where X = lL − l0.

B.3 Explicit Calculation of Resonant Evolution

A general state evolves under the resonant Hamiltonian, �int = ℏΩ/2[cos(qL)fG+sin(qL)fH],
such that:

* = 4−8�intC/ℏ = 4−8( ℏΩ2 [cos(qL)fG+sin(qL)fH])C/ℏ. (B.19)

As fG and fH don’t commute, so 48(fG+fH) ≠ 48fG48fH . Therefore, the best approach is to
expand the exponential as a Taylor series such that:

* = I − 8ΩC
2
[cos(qL)fG + sin(qL)fH] +

1

2!

(
8ΩC

2

)2

[cos(qL)fG + sin(qL)fH]2

− 1

3!

(
8ΩC

2

)3

[cos(qL)fG + sin(qL)fH]3 + . . .

=⇒ * = I − 8ΩC
2
[cos(qL)fG + sin(qL)fH] −

1

2!

(
ΩC

2

)2

I

+ 1

3!

(
ΩC

2

)3

8[cos(qL)fG + sin(qL)fH] + . . . .

Collecting like terms together gives:

* =

(
1 − 1

2!

(
ΩC

2

)2

+ . . .
)
I − 8

(
ΩC

2
− 1

3!

(
ΩC

2

)3

+ . . .
)
[cos(qL)fG + sin(qL)fH] . (B.20)

Comparing the first and second parts of Equation B.28 to the Taylor series expansions
for both sine and cosine, it can be seen that the first part can be expressed in terms of a
cosine, with the second part being expressed in terms of a sine:

* = cos
(
ΩC

2

)
I − 8sin

(
ΩC

2

)
[cos(qL)fG + sin(qL)fH] . (B.21)
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As such, this simplifies to:

* =

(
cos (ΩC/2) −84−8qLsin (ΩC/2)

−848qLsin (ΩC/2) cos (ΩC/2)

)
. (B.22)

B.4 Explicit Calculation of O�-Resonant Transitions:
Frame Rotating at 8L

By moving into a frame rotating at the same frequency as a component of the light field, the
induced shift in the energy levels can be highlighted. First, move into the frame rotating
at lL using the transformation:

* = 4−8�0C/ℏ = 4−8lLCfI/2 = cos(lLC/2)I − 8sin(lLC/2)fI . (B.23)

Assuming the general case where the incident light field is not necessarily resonant with
the energy splitting between the two states, the interaction Hamiltonian associated with
this is found from:

�int = *
†�* + 8ℏ

(
m*†

mC

)
* =

(
−ℏ2 (lL − l0) ℏΩcos(lLC)48lLC/2

ℏΩcos(lLC)4−8lLC/2 ℏ
2 (lL − l0)

)
, (B.24)

where the phase qL has been set to zero for simplicity. A convenient way to write this is
to define the detuning X = lL −l0, and expand the cosine term in terms of exponentials:

�int =

(
−1

2ℏX
1
2ℏΩ

(
1 + 428lLC

)
1
2ℏΩ

(
1 + 4−28lLC

) 1
2ℏX

)
. (B.25)

As the exponential terms are rotating much faster than the other terms, they can be
neglected through making the rotating wave approximation. This can be understood by
considering a spin in a magnetic field: the exponential term rotates so rapidly that the spin
observes it as a rapidly fluctuating field. Over time, this rapidly fluctuating field e�ectively
almost entirely cancels out. Therefore, the transformed Hamiltonian reduces to:

�int =

(
−1

2ℏX
1
2ℏΩ

1
2ℏΩ

1
2ℏX

)
= −ℏX

2
fI +

ℏΩ

2
fG . (B.26)

The propagator for this Hamiltonian is subsequently given by:

* = 4−8�C/ℏ = 4−8C (−
1
2 XfI+

1
2ΩfG) . (B.27)
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As with the resonant case for the frame rotating at l0 discussed above, the best approach
is to expand the exponential as a Taylor series and, using the Pauli relations f8f8 = I and
fIfG = 8fH, fGfI = −8fH, this yields:

4−8C (
1
2 XfI+

1
2ΩfG) = I − 8

2
(−XfI +ΩfG)C −

1

2!

1

4
(X2I +Ω2I + XΩfH − XΩfH)C2+

1

3!

8

8
(−X3fI +Ω3fG − XΩ2fI +ΩX2fG)C3 +

1

4!

1

16
(X2I +Ω2I) (X2I +Ω2I)C4 + . . .

Collecting like terms together gives:

=⇒
{
I − 1

2!

Ω2
e�

4
C2I + 1

4!

Ω4
e�

16
C4I + . . .

}
−8

{
1

2
(−XfI +ΩfG)C −

1

3!

1

8
[−XΩ2

e�fI +ΩΩ
2
e�fG]C

3 + . . .
}

(B.28)

Where Ω2
eff
= X2 + Ω2. Comparing the first and second parts of Equation B.28 to the

Taylor series expansions for both sine and cosine, it can be seen that the first part can be
expressed in terms of a cosine, with the second part being expressed in terms of the sum
of two sine terms:

=⇒ cos(Ωe�C/2)I + 8
[
1

2
XC − 1

3!

1

8
XΩ2

e�C
3 + . . .

]
fI − 8

[
1

2
ΩC − 1

3!

1

8
ΩΩ2

e�C
3 + . . .

]
fG

=cos(Ωe�C/2)I + 8
X

Ωe�
sin(Ωe�C/2)fI − 8

Ω

Ωe�
sin(Ωe�C/2)fG .

Finally, expressing this once more in terms of a matrix:

* = 4−8C (
1
2 XfI+

1
2ΩfG) =

(
cos(Ωe�C/2) + 8 X

Ωe�
sin(Ωe�C/2) −8 Ω

Ωe�
sin(Ωe�C/2)

−8 Ω
Ωe�

sin(Ωe�C/2) cos(Ωe�C/2) − 8 X
Ωe�

sin(Ωe�C/2)

)
.

B.5 Explicit Calculation of the Interaction Hamiltonian
for a Trapped Atom Interacting with a Laser

B.5.1 Simpli�cation of the motional part

Separating out the motional and electronic parts of the Hamiltonian yields:

�int =
ℏΩ

2
48�

†
04C/ℏ

(
48(lLC+qL)48�

†
0<C/ℏ48[(0+0

†)4−8�0<C/ℏ (B.29)

+ 4−8(lLC+qL)48�
†
0<C/ℏ4−8[(0+0

†)4−8�0<C/ℏ
)
fG4

−8�04C/ℏ. (B.30)

In order to evaluate this Hamiltonian, it is best to first consider the term:
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48�
†
0<C/ℏ48[(0+0

†)4−8�0<C/ℏ = 48\ (00
†+1/2)48[(0+0

†)4−8\ (0
†0+1/2)

= 48\00
†
48[(0+0

†)4−8\0
†0 = 48[(04

−8 \+0†48 \ ) , (B.31)

where \ = lC, and the relations in Appendix B.6 have been used. Therefore, Equation
B.29 simplifies to:

�int =
ℏΩ

2
48�

†
04C/ℏ

(
48(l! C+qL)48[(04

−8lC+0†48lC ) + 4−8(l! C+qL)4−8[(04−8lC+0†48lC )
)
fG4

−8�04C/ℏ.

(B.32)

B.5.2 Simpli�cation of the electronic part

So far, the interaction Hamiltonian has been evaluated such that it takes the form:

�int =
ℏΩ

2
48�

†
04C/ℏ

(
48(l! C+qL)48[(04

−8lC+0†48lC ) + 4−8(l! C+qL)4−8[(04−8lC+0†48lC )
)
fG4

−8�04C/ℏ.

(B.33)

It is simplest to evaluate this Hamiltonian in two parts; evaluating the first term with
�04 = ℏl0fI/2 yields:

48�
†
04C/ℏ

(
48(l! C+qL)48[(04

−8lC+0†48lC )
)
fG4

−8�04C/ℏ

=⇒ 4−8l0CfI/2
(
48(l! C+qL)48[(04

−8lC+0†48lC )
)
fG4

8l0CfI/2

=⇒ 48(lLC+qL)
[
4−8l0CfI/2fG4

8l0CfI/2
]
48[(04

−8lC+0†48lC )

=⇒ 48(lLC+qL) [cos(l0C/2)I − 8sin(l0C/2)fI]fG [cos(l0C/2)I + 8sin(l0C/2)fI]48[(04
−8lC+0†48lC )

=⇒ 48(lLC+qL) [cos(l0C/2)I − 8sin(l0C/2)fI] [cos(l0C/2)fG + sin(l0C/2)fH]48[(04
−8lC+0†48lC )

=⇒ 48(lLC+qL) [cos2(l0C/2)fG + sin(l0C)fH − sin2(l0C/2)fG
]
48[(04

−8lC+0†48lC )

=⇒ 48(lLC+qL) [cos(l0C)fG + sin(l0C)fH]48[(04
−8lC+0†48lC )

=⇒ 48(lLC+qL)
(

0 4−8l0C

48l0C 0

)
48[(04

−8lC+0†48lC ) . (B.34)

As before, terms which are at sum frequencies rotate much faster than those at the dif-
ference frequencies, and so once again making the rotating wave approximation, the first
term of Equation B.33 is:(

0 4−(8XC−qL)

0 0

)
48[(04

−8lC+0†48lC ) = 4−(8XC−qL)f+4
8[(04−8lC+0†48lC ) , (B.35)
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where X = lL − l0. Similarly, the second term in Equation B.33 simplifies to:(
0 0

4(8XC−qL) 0

)
4−8[(04

−8lC+0†48lC ) = 4(8XC−qL)f−4
−8[(04−8lC+0†48lC ) . (B.36)

Combining these two terms, the Hamiltonian in the interaction frame is therefore given
by:

�int =
ℏΩ

2

(
4−(8XC−qL)f+4

8[(04−8lC+0†48lC ) + ℎ.2.

)
(B.37)

B.6 Relations for Annihilation and Creation Operators

48\0
†004−8\0

†0 = 4−8\0 (B.38)

48\0
†00†4−8\0

†0 = 4−8\0† (B.39)

48[(0+0
†) = 4−[

2/248[0
†
48[0 (B.40)

48\0
†048[(0+0

†)4−8\0
†0 = 48[(04

−8 \+0†48 \ ) (B.41)



Appendix C

Generating Random Unitaries

C.1 Generation of Random Unitaries

This measurement protocol consisted of applying to each qubit a local random unitary
matrix drawn from the circular unitary ensemble (CUE) [125, 126]. Random unitary ma-
trices of dimension 2 were drawn following [131]. These unitaries act such that any state
on the surface of the Bloch sphere has an equal probability of being rotated into any other
state on the surface of the Bloch sphere.

Any arbitrary, local unitary operator can be written as a combination of rotations, together
with global phase shifts, and so can be decomposed into rotation angles around the X, Y
and Z axes of the Bloch sphere. This can be expressed in the following manner: If U is a
local unitary operation, then there exist real numbers U, \1, \2 and \3 such that

* = 48U'I (\1)'H (\2)'I (\3), (C.1)

where 48U is a global phase, and '8 (\) = 48f8\/2 where f8 are the Pauli matrices, are
rotations by \ around the 8 = G, H, I axes. As 48U is an arbitrary global phase it can be set
equal to 1. Using the property of all unitary matrices that the rows and columns must be
orthonormal, it follows there exist real numbers \1, \2, and \3 such that:

* =

[
4−8(\1/2+\3/2)cos( \22 ) −4

−8(\1/2−\3/2)sin( \22 )
48(\1/2−\3/2)sin( \22 ) 48(\1/2+\3/2)cos( \22 )

]
. (C.2)

This matrix can be represented using just two matrix elements and their complex conju-
gates:

[
*1 *2

−*∗2 *∗1

]
, (C.3)
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where the matrix elements *1 and *2 are known. Through direct comparison with (C.2),
expressions for the rotation angles \1, \2 and \3 can be subsequently determined in terms
of *1, *2 and their conjugates:

*1 +*∗1 = [4
−8(\1/2+\3/2) + 48(\1/2+\3/2)]cos(\2/2),

*1 −*1∗ = [4−8(\1/2+\3/2) − 48(\1/2+\3/2)]cos(\2/2),
*2 −*2∗ = [−4−8(\1/2−\3/2) + 48(\1/2−\3/2)]sin(\2/2),
*2 +*∗2 = [−4

−8(\1/2−\3/2) − 48(\1/2−\3/2)]sin(\2/2).

Through use of the well-known identities cos(\) = 1
2 (4

8\/2 + 4−8\/2) and sin(\) = 1
28 (4

8\/2 −
4−8\/2), these four equations reduce to:

*1 +*∗1 = 2cos(\1/2 + \3/2)cos(\2/2), *1 −*∗1 = −28sin(\1/2 + \3/2)cos(\2/2),
*2 −*∗2 = 28sin(\1/2 − \3/2)sin(\2/2), *2 +*∗2 = −2cos(\1/2 − \3/2)sin(\2/2).

\2 can be eliminated from these expressions, yielding:

8tan(\1/2 + \3/2) =
*∗1 −*1

*∗1 +*1
⇒ \1/2 + \3/2 = tan−1

[
8(*1 −*∗1)
*1 +*∗1

]
,

8tan(\1/2 − \3/2) =
*∗2 −*2

*∗2 +*2
⇒ \1/2 − \3/2 = tan−1

[
8(*2 −*∗2)
*2 +*∗2

]
.

Through addition and subtraction of these two equations, expressions for \1 and \3 are
found to be:

\1 = tan−1

[−8(*1 −*∗1)
*1 +*∗1

]
+ tan−1

[−8(*2 −*∗2)
*2 +*∗2

]
,

and \3 = tan−1

[−8(*1 −*∗1)
*1 +*∗1

]
− tan−1

[−8(*2 −*∗2)
*2 +*∗2

]
.

An expression for \2 can be similarly found:

|*2 |2 = sin2(\2/2), |*1 |2 = cos2(\2/2), (∗)

tan2(\2/2) =
|*2 |2
|*1 |2

, ⇒ \2 = 2tan−1

[(
|*2 |2
|*1 |2

) 1
2
]
.
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C.2 Concatenated Unitaries

To make the drawing of random unitaries from the CUE more robust against miscalibra-
tions or drifts of experimental control parameters, two random unitaries (assumed to be
drawn from a possibly imperfect distribution) were concatanated to obtain a random uni-
tary with a distribution that is closer to the ideal one – i.e. the applied random unitary is
given by D′

8
= D
(1)
8
D
(2)
8

where D(1)
8

and D(2)
8

are both random unitaries drawn from the CUE.
The explicit sequence of pulses this corresponds to in the QSim system is then:

D = 'I (\6)'H (−c/2)'I (\5)'H (c/2) 'I (\4) 'I (\3) 'H (−c/2)'I (\2)'H (c/2) 'I (\1), (C.4)

where the local rotations around the . -axis have been replaced by a combination of a local
fI rotation sandwiched between two global c/2 rotations around the . -axis with opposite
phase.



Appendix D

Explicit Calculation of Lamb-Dicke Pa-
rameters

D.1 Calculation of Lamb-Dicke Parameters for coprop-
agating and counterpropagating Raman transitions

The Lamb-Dicke parameter depends on both the wavelength of the light, and the ground
state wavefunction:

[ = | ®: |x0 → [ = | ®:1 − ®:2 |x0.

Copropagating geometry For the copropagating beam geometry, both beams arrive
through the same fibre, subtending an angle of 60◦ to the axial direction, and with 0◦

angle between them. As such, for a di�erence in wavelength between the two beams of ∼
10MHz, the Lamb-Dicke parameter is:

[ = 2c ∗ sin(60◦) ∗
(

1

29.98

) √
ℏ

2Nml
.

For a single ion (i.e. N = 1), with mass < = 6.66 × 1026 kg and a radial trapping frequency
of 2c × 2.7MHz, the Lamb-Dicke parameter is then found to be: [ = 0.12 × 10−8.

Counterpropagating geometry For the counterpropagating beam geometry presented,
both beams subtend an angle of 60◦ to the axial direction (i.e. 30◦ to the radial direction),
with a 120◦ angle between the two beams. Therefore, the expression for the Lamb-Dicke
parameter becomes:
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(a) Signal from unstabilised beam (b) Signal from stabilised beam

Figure D.1: Photodiode signal showing fluctuations in the beam intensity just before en-
tering the vacuum chamber. Plotted is the percentage change in fluctuations as a function
of time, for the lower beam path using only MAC1 to drive AOM1. a) Photodiode signal
from unstabilised beam. b) Photodiode signal from stabilised beam.

[ = 2c ∗
(

sin(60◦)
393.499365 ∗ 10−9

− sin(−60◦)
393.499365 ∗ 10−9

) √
ℏ

2Nml
.

For a single ion (i.e. N = 1), with mass < = 6.66 × 1026 kg and a radial trapping frequency
of 2c × 2.85MHz, the Lamb-Dicke parameter is: [ = 0.184.

D.2 Intensity Stabilisation

There appeared to be slow drifts in the intensity of the Raman beams arriving at the
trap, causing the Raman resonance to drift by several hundreds of hertzs on the order
of 10 minutes. Figure D.1 shows a photodiode signal1 recording the beam intensity for
the lower beam path just before entering the vacuum chamber, where AOM1 was driven
using MAC1 (see Figure 3.7). The intensity can be seen to fluctuate in magnitude by more
than a few percent over a timescale of minutes, which can cause significant fluctuations in
AC-Stark shifts.

These fluctuations were stabilised on both the upper and lower beam paths. For the upper
beam path, residual light passes through the trap and out of the viewport opposite the
incident viewport. This light is incident on a photodiode2, whose signal is sent to a home-
built sample & hold stabilisation circuit. The signal from the sample & hold circuit is
sent to the amplifier supplying the signal to AOM2, which then adjusts its amplification

1Thorlabs Si Amplified Detector PDA10A-EC
2Home-built
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depending on the signal received. A similar scheme is used for the bottom beam path,
however a small portion of the beam is picked o� before it enters the vacuum chamber,
and is incident on a photodiode3. This signal is sent to the amplifier supplying the signal
to AOM1, which then adjusts its amplification depending on the signal received.

3Home-built
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