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Abstract

Ions confined in Paul traps present unique features that allows us to study well-
controlled single (or few) quantum objects isolated from the environment, enabling
one of the most prominent platforms for quantum information processing. These
features, combined with high collection efficiencies of the emission in a single optical
mode permit the study of the properties of the emission at the single quantum level
-a photon- and its correlations with the internal and external states of the emitter.

In this thesis, we perform several experiments where the detected optical field is
a single photon emitted by a single or two trapped ions. These photons are highly
correlated with the internal state of the ions, allowing the creation and characteriza-
tion of entanglement between different ions. In a first experiment, we show that the
presence of entanglement in a pair of ions can lead to enhancement and inhibition of
the emission of single photons in a common emission mode. The rate of emission on
this mode can be tuned by changing the relative distance of the ions in the common
emission mode and the contrast of the observed signal maps directly the amount of
entanglement in the ion pair.

In a second experiment, we study how angular momentum of the atoms and the
spin and orbital angular momentum of the emitted photons are correlated. We show
how the change on the internal angular momentum of an atom during the emission
of a single photons determines the distribution of spin and orbital angular momenta
of the emitted field. This relation is mapped into the spatial properties of field, and
the presence of angular momentum can be detected as displacement in the position
of the atom’s images with respect to its actual position.

Finally, we consider the design and construction of a new experimental apparatus
in which a single ion is trapped in the center of a hemispherical mirror. Such a setup
would enable the study of quantum electrodynamics effects such as perfect inhibition
and enhancement of the spontaneous emission, but also increase the collection of
single emitted photons up to 38%.
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Zusammenfassung

Gespeicherte Ionen in Paulfallen erlauben es aufgrund ihrer besonderen Eigenschaften,
mit sehr guter Kontrolle einzelne (oder mehrere) Quantenobjekte in insolierter Umge-
bung zu untersuchen und ermöglichen so eine der bedeutendsten Plattformen für
Quanteninformationsverarbeitung. Diese Eigenschaften machen es möglich, in Kom-
bination mit hoher Sammeleffizienz der von den Ionen in den freien Raum abges-
trahlten optischen Felder, die Eigenschaften der Abstrahlung und deren Korrelation
mit den inneren und äußeren Zuständen des Emitters auf dem Niveau einzelner
Quanten (Photonen) zu studieren.

In der vorliegenden Arbeit führen wir mehrere Experimente durch, in denen das
detektierte optische Feld ein einzelnes Photon ist, das von einem oder zwei Ionen
emittiert wird. Diese Photonen sind stark korreliert mit dem inneren Zustand des
Ions/der Ionen, was die Erzeugung und Charakterisierung von Verschränkung zwis-
chen verschiedenen Ionen erlaubt. In einem ersten Experiment zeigen wir, dass das
Vorhandensein von Verschränkung eines Ionenpaars zu verstärkter oder unterdrück-
ter Emission von einzelnen Photonen in eine gemeinsame Emissionsmode führt. Die
Emissionsrate in diese Mode kann variiert werden, indem der relative Abstand der
Ionen in der Emissionsmode geändert wird. Zudem bildet der Kontrast des gemesse-
nen Signals direkt die Menge an Verschränkung des Ionenpaars ab.

In einem zweiten Experiment untersuchen wir, wie der Drehimpuls des Atoms
und der Bahndrehimpuls der emittierten Photonen korreliert sind. Wir zeigen, wie
die Änderung des inneren Drehimpulses des Atoms während der Emission eines Pho-
tons die Verteilung von Spin und Bahndrehimpuls des emittierten Feldes bestimmt.
Dieser Zusammenhang übersetzt sich in die räumlichen Eigenschaften des Feldes
und das Vorhandensein von Bahndrehimpuls kann als Verschiebung der Position der
Abbildung des Atoms relativ zu seiner tatsächlichen Position gemessen werden.

Schließlich betrachten wir Design und Konstruktion eines neuen experimentellen
Aufbaus, in dem ein einzelnes Ion im Zentrum eines halbkugelförmigen Spiegels
gefangen ist. In solch einem Aufbau können quantenelektrodynamische Effekte wie
die vollständige Unterdrückung und die Verstärkung der Spontanemission untersucht
werden. Außerdem kann die Sammeleffizienz der emittierten einzelnen Photonen auf
bis zu 38% erhöht werden.
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1
Introduction: Single atoms and single photons

The study of the interaction between light and matter is of interest in a wide variety
of fields, covering topics such as photosynthesis in biology [1], efficient generation
of electrical energy in engineering [2], spectroscopy of antimatter in fundamental
physics [3] and quantum networking in applied physics [4]. For a full comprehen-
sion of many macroscopic and microscopic phenomena, it is necessary to study the
interaction between light and matter at the most basic level: when it is reduced
to the interaction of their fundamental constituents, i.e., atoms and photons. At
this scale, the laws of classical physics do not properly describe their behaviour, and
it becomes necessary to use the tools provided by quantum mechanics to properly
explain the diverse phenomena associated with their interaction.

Quantum mechanics is one of the most successful physical theories. It has been
able to predict and explain a large variety of phenomena related with the interac-
tion of matter and light, such as spontaneous emission or the functioning of a laser.
One of the most intriguing predictions of quantum mechanics is the existence of en-
tanglement, whose consequences were deemed by A. Einstein as “Spooky action at
distance” and considered unreasonable when first suggested [5, 6]. Entanglement is
a phenomenon in which the state of multiple quantum objects cannot be described
independently of each other, even though they could be spatially separated. This
implies that the change in the quantum state of one object can instantaneously influ-
ence the state of a spatially separated object. Entanglement has been found crucial
for the speed-up of computation using quantum mechanical phenomena to process
information; a problem that is studied in the field of Quantum Computation [7].
Furthermore, entanglement has proved to be useful in the field of communication,
where cryptographic schemes can be improved by the use of entangled states, allow-
ing secure communication [8].

Recent technological developments have allowed the observation of many phe-
nomena that initially were considered only idealized physical situations, such as
performing experiments with a single atom or a single photon. The development of
techniques for isolation of single quantum objects and control of their properties has
dramatically evolved in the last decades. Today it is possible to isolate single atoms
and precisely control their internal and external features, and thus engineer their
interactions with other isolated quantum systems, or extract single energy quanta
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from them. In the same way, a single photon can be isolated and transmitted,
and properties such its polarization or the shape of its temporal wavepacket can be
manipulated.

One of the fundamental quantum processes involving atoms and photons is spon-
taneous emission. Spontaneous emission happens when an atom, initially in an ex-
cited electronic state decays to an energetically lower state, releasing a quantum of
energy, i.e., a photon. The energy, the linear momentum and the angular momenta
of the emitted photon correspond to the difference of those of the initial and final
state of the atom. In this way, detection and analysis of the emitted single photons
can give us information about the initial and final states of the atoms.

In this thesis, we study phenomena related to spontaneous emission from single
atoms in the regime of single photons. To do so, we use the experimental tool-
box available with trapped ions, where ionized single atoms can be confined and
isolated. We use laser beams and radio frequency waves to control external and
internal degrees of freedom of the atom, such as its center-of-mass motion and elec-
tronic state. To collect the emitted photons, we use high-numerical-aperture low-
aberrations lenses located close to the atom, which in contrast with other approaches
such as using optical cavities, preserve the spatial properties of the emission. In this
thesis we study two fundamental optical phenomena related with the emission of
single photons from one or two ions. The first is the fundamental difference in the
emission of single photons from atoms either in separable states or entangled states.
And the second is the coupling of spin and orbital angular momentum in the single
photons emitted by a single atom.

This thesis is divided into four main parts:

� In the first part, the main experimental tools and techniques used in this thesis
are reviewed, as well as their theoretical basis. These tools and techniques in-
clude ion trapping using Paul traps, cooling and coherent control of its internal
and external degrees of freedom using lasers and radio frequencies (Chapter 2).
In Chapter 3, the experimental setup for trapping and manipulation of singly
ionized Barium atoms used in the thesis is presented, along with the control
and detection systems and spectroscopy of the different ion transitions.

� In the second part (Chapter 4), the experiment titled “Interference of single
photons emitted by a pair of entangled atoms” is presented. In this exper-
iment, we study the emission properties of a pair of entangled atoms. We
optically entangle two atoms by detecting a single photon emitted by of the
atom pair [9]. Then, we observe the emission of photons by the entangled
atom pair in a free-space optical mode. The rate of this emission is modulated
by the length of the optical path connecting the atoms, and the difference
between the maximum and minimum rates is determined by the degree of
entanglement shared between the atoms, i.e., their concurrence. The proba-
bility of detection of single photons can be used directly to characterize the
amount of entanglement of the atoms. Furthermore, large sensitivity of the
interference phase evolution points to applications of the presented scheme in
high precision gradient sensing, which we demonstrate by measuring spatial
magnetic field differences at the positions of the atoms.
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� In the third part (Chapter 5), we study the angular momentum properties of
the light emitted by a single atom. The conservation of angular momentum
during spontaneous emission implies that the emitted photon carries the an-
gular momentum lost (or acquired) by the atom during the transition. We
specifically study dipole transitions in the case in which the angular momen-
tum carried by the photon is purely orbital angular momentum (OAM). In this
case, the angular momentum of the photon is mapped to an apparent displace-
ment of the position of the emitting atom. We measured this displacement for
two dipole transitions with opposite angular momentum change. Additionally,
we analyse the imaging process of the emitted photons for different dipole
orientations and apertures of the optical system used for detection, and give
analytical results in certain regimes and its relation with weak measurements.
We present extended experimental results obtained using a nanoscopic dipole
emitter (a nanosphere) as part of a collaborative project.

� Finally, in the fourth part (Chapter 6), we present the design and construction
of a new setup for quantum optics experiments. The main feature of this setup
is the use of a hemispherical mirror, and the ability to trap an atom in its cen-
ter of curvature using a high optical access Paul trap. Such a setup benefits
from an improvement in the collection of the emitted light, with a gain of more
than three times the best collection in our old linear trap setup. This improve-
ment will be beneficial for applications where the detection of single photons
is needed, specially for those experiments involving the creation of entangle-
ment between distant emitters. Furthermore, it will allow the realization of
paradigmatic quantum electrodynamics (QED) experiments. The light modes
emitted in the half space covered by the hemispherical mirror can be totally
reflected towards the emitting atom, and depending on the curvature radius
of the mirror, total inhibition and enhancement of the spontaneous emission
can be achieved in the full space.

The realization of the considered apparatus presents several technical chal-
lenges, such as the construction of a hemispherical mirror with sub-wavelength
surface smoothness and tunable radius, the design and construction of a Paul
trap which permits the confinement of the atom with optical clearance compat-
ible with optical setup, and the inclusion of a high numerical aperture aspheric
lens with low wavefronts distortion. All of these challenges are presented, stud-
ied and overcome in this thesis.





2
Trapping and manipulation of single atomic ions

2.1 Introduction: Single quantum objects

The study of single quantum objects is in general a difficult task, since many of these
properties become unclear when these objects interact with the rest of the universe.
This process is called decoherence, and it can be defined as the “loss of information
of a system to the environment” [10]. Decoherence can ultimately cause the loss of
quantum behaviour of the observed system. In the latest 20 years, many technolog-
ical developments have enabled several experimental platforms to drastically reduce
the decoherence of the observed system. This is achieved by isolating the objects
from the influence of external perturbations by, e.g., placing them in ultra-high vac-
uum (UHV) environments or at very low temperatures. For experimental purposes,
it is also desirable to have the quantum objects spatially well localized, facilitating
the control of their quantum properties using lasers or other field sources and their
interaction with other objects (quantum or not). Experimental platforms enabling
the study of spatially confined single quantum objects include:

� Atomic ions in Paul traps [11] or in Penning Traps [12],

� Neutral atoms in magneto-optical traps [13], dipole traps [14] or optical lattices
[15],

� Crystallographic defects in diamond, e.g., Nitrogen-vacancy centres [16],

� Polar molecules in electrical traps [17],

� Semiconductor nanostructures, i.e, quantum dots [18],

� Josephson junctions in superconducting circuits [19],

� Donor spins qubits in Silicon [20],

� Rare-earth ions in crystals [21],

� Photons confined in resonators, i.e., cavity electrodynamics [22],

5
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Each of these platforms has its advantages and disadvantages concerning features
such as the degree of control of internal (e.g., electronic state) and external degree of
freedom (e.g. center-of-mass motion), coherence times of these degrees of freedom,
controlled interactions with other similar quantum objects, state read-out fidelity,
photon extraction efficiency, scalability of the number of well-controlled objects and
the possibility to interface them with quantum objects of different nature.

The control and measurement of the quantum properties of most quantum ob-
jects listed above are achieved through their interaction with electromagnetic radi-
ation, typically in the optical and radio-frequency (RF) regimes. The detection of
quantum features is then done by observing their emission or absorption, or through
their interaction with other quantum objects. The properties of the emitted pho-
tons can be highly correlated with the state of the emitting quantum object so that
we can obtain information about the emitter through them. A high probability of
capturing single emitted photons makes the acquisition of information about the
emitter more efficient and improves the success probability of quantum information
protocols, such as information transfer to other remote quantum objects.

From the systems listed above, atomic ions stand out for having most of the
mentioned desired features. Single atomic ions can be confined into small spatial
volumes by taking advantage of their charge and using electromagnetic traps, so-
called Paul traps [23], which provides extremely long trapping times, with record
times of up to years. Paul traps can generate deep harmonic potentials in which the
different motional modes of the trapped particle are quantized. Laser cooling tech-
niques such Doppler cooling or sideband cooling are then used to lower the motion
of the trapped particles down to its ground state, reducing drastically the motion-
related decoherence. Laser and RF pulses can be used to control both the motional
and the internal states of the trapped particles, allowing the creation of quantum
superpositions with coherence times that exceed by far any other characteristic time
in the system, with record times of up to 10 minutes [24]. The relative large dis-
tances between between the trapped ions, on the order of several micrometers, it is
possible to address them individually using lasers.

The readout of the internal state of ions is generally done by measuring their
fluorescence emission. This emission, depending on the used species, is in the visible
or near-visible regime, and naturally occurs in all spatial directions. In order to
maximize the detected emission, collimating lenses are placed close to the trap,
redirecting the photons to the detection device. Alternatively, it is possible to build
a resonator around the ion which modifies the mode density around it, increasing the
emission probability along the resonator axis. This and other methods are discussed
in Chapter 3.

Paul traps can be constructed in such a way that trapping several ions separated
by few micrometers is possible. These ions, by equilibrium of the mutual Coulomb
repulsion and the trapping forces, distribute themselves in crystal-like structures.
Alternatively, it is possible to build miniaturized Paul traps which provide individual
trapping potentials for each ion [25]. Different tools permit the creation of arbitrary
quantum states along the whole crystal, including complex entangled states [26].
Whereas it is possible to trap up to tens of ions keeping individual control of each
particle [27], scaling up to larger numbers of ions remains a technological challenge.
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In this chapter, we review the background necessary to understand how trapping
and manipulations of single atomic ions is realized.

2.2 Principles of ion trapping

2.2.1 The Paul trap

To confine a particle with charge e in a point in space using a static electric potential,
we would need to have a potential with a local minimum in each spatial direction.
Such a potential could be, for example, the 3D quadratic potential

Φ(x, y, z) = αxx
2 + αyy

2 + αzz
2, (2.1)

with αx, αy and αz real numbers. As every electrical potential in free space with no
charges, Φ must satisfy the Laplace equation ∇2Φ = 0, which implies

αx + αy + αz = 0. (2.2)

Therefore, if αx, αy > 0, then αz < 0. Thus, the Laplace equation prevents the
existence of an electric potential with a minimum in each three spatial directions
simultaneously. This is true not only for harmonic potentials but for any potential:
every 2D minimum is a 3D saddle point, meaning that it is not possible to spa-
tially confine a charged particle using a static electric potential. This fundamental
limitation can be circumvented by using a time-varying electric potential, which is
commonly known as Paul trap in honor of Wolfgang Paul, one of its inventors [28]1.

The basic idea of a Paul trap is using a time-varying potential in such a way that
when, at a given time, the particle is pushed towards the 2D minimum and expelled
in the third direction, the potential is rapidly inverted. In this way, the direction
that previously had a maximum close-by, now has a minimum, and the particle is
pulled towards it (see Fig. 2.1). Every time that the particle starts to fall out of the
trap, it is pushed back to the center instants later.

Following the proposition of Paul, such a potential can be decomposed into the
sum of a static part with voltage U , plus a time-dependent part, with amplitude
URF, oscillating harmonically at the angular frequency ΩRF,

Φ(x, y, z, t) =
U

2
(αxx

2 + αyy
2 + αzz

2)

+
URF

2
cos(ΩRFt)(α

′
xx

2 + α′yy
2 + α′zz

2). (2.3)

By correctly choosing the parameters in this equation is possible to observe a net
confinement in three dimension, which corresponds to the average force excerted by
the potential Φ(x, y, z, t) on the particle over one oscilation period 2π/ΩRF. The
resulting trapping potential is referred to as a pseudopotential and can be calculated

1Another way is superimposing a static magnetic field, creating a so-called Penning Trap [12]
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Figure 2.1: Working principle of a Paul trap. By using a time-varying

electric potential it is possible to confine a particle in three dimension. The

figure shows a 2D analogy, where an electric potential is harmonically varied.

At t = t0 the particle is confined in the x direction, but not in the y direction.

Half a period later the situation is the opposite. Since the potential varies

faster than the timed by the particle to scate, the particle “sees” a trapping

pseudopotential.

as [29]

Ψ =
e2

4MΩ2
RF

|∇Φ(x, y, z, t)|2 , (2.4)

where M is the mass of the particle.

2.2.2 Equations of motion and stability

The conditions for stable trapping can be found by solving the equations of motion
of the particle

d2ri
dt2

= − e

M
(∇Φ)i, (2.5)

where ri (i = x, y, z) are the three spatial directions. Using the potential of Eq. (2.3)
and defining the variables

ξ =
ΩRFt

2
, ai =

4|e|Uαi
mΩ2

RF

, qi =
2|e|URFα

′
i

mΩ2
RF

(2.6)

the equations of motion can be written as

d2ri
dξ2

+ [ai − 2qi cos(2ξ)] ri = 0. (2.7)

Eq. (2.7) is the homogeneous Mathieu equation, which has two kinds of solutions:
stable solutions oscillating with frequency ΩRF around a mean position, and unstable
solutions with exponentially growing amplitude. ai and qi are the parameters which
define the regions in the parameter’s space (ai, qi) in which the solutions ri(t) of
Eq. (2.7) are stable trajectories in the three spatial directions [30].

For small values |ai|, q2
i � 1 the stable trajectories, in lowest-order approxima-
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RF electrodes 1

RF electrodes 2

DC endcaps

x

y

z

Figure 2.2: Linear Paul trap with hyperbolic electrodes. A time-varying

voltage is applied to the RF electrode 1 (blue), and a dephased similar voltage

to the RF electrodes 2 (blue), which provides confinement in the x− y plane,

whereas a DC voltage is applied to the endcaps to produce confinement along

the z axis.

tion, can be described by

ri(t) ≈ r(0)
i cos(ωit)︸ ︷︷ ︸

secular motion

(
1− qi

2
cos(ΩRFt)

)
︸ ︷︷ ︸

micromotion

, (2.8)

where

ωi = βi
ΩRF

2
, βi =

√
ai +

q2
i

2
. (2.9)

The stable trajectories described in Eq. (2.8) are composed of two oscillatory parts.
The first part oscillates with angular frequency ωi � ΩRF, for βi � 1, and is
referred to as secular motion or macromotion. The second part oscillates with the
same frequency as the driving field, ΩRF, with a reduced amplitude in comparison
with the first part (by a factor qi/2). This fast-oscillating part is referred to as
micromotion.

The amplitude of the macromotion can be experimentally reduced by means
of, e.g., laser cooling. If the amplitude of the micromotion is much smaller than
the amplitude of the secular motion, the fast oscillating part of the trajectories
can be neglected. This corresponds to a particle oscillating in the 3D harmonic
pseudopotential

eΨseq =
1

2
M
∑
i

ω2
i r

2
i . (2.10)
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2.2.3 Basic implementation

One way of creating a harmonic pseudopotential is using a set of electrodes with a
hyperbolic cross section, as shown in Fig. 2.2. In this case, an RF voltage V1(t) =
[URF cos(ΩRFt)−U ]/2 is applied to the hyperbolic electrodes 1 (blue in the figure),
and a π-dephased RF voltage V2(t) = [U −URF cos(ΩRFt)]/2 is applied to the other
hyperbolic electrodes (electrodes 2, grey). The use of hyperbolic electrodes creates
a quadratic electrical potential over the whole internal volume, given by

φ(x, y, t) = (U − URF cos(ΩRFt))

(
x2 − y2

2r2
0

)
, (2.11)

where r0 is the semi distance between hyperbolic electrodes. The parameters a and
q in the Mathieu equation take the value

ax = −ay =
4eU

mr2
0Ω2

RF

, qx = −qy =
2eURF

mr2
0Ω2

RF

. (2.12)

By additionally applying DC voltages to both endcaps, it is possible to create a
harmonic 3D potential, as the one in Eq. (2.10). The voltage amplitudes and driving
frequency ΩRF which lead to stable trapping depend on the mass M and charge e
of the particle. The trap’s depth in the radial direction of such a trap is

Di =
1

2
Mω2

i r
2
0. (2.13)

Hyperbolic electrodes provide a pseudopotential that is harmonic over the whole
internal volume of the construction, but are in general difficult to fabricate and do
not provide enough optical access to the trapped particle, a feature that we will show
to be crucial in the following chapters. Another problem with this implementation
is the difficulty of keeping the desired phase relation between different electrodes.
Even small phase jitters and offsets can significantly displace the electrical center of
the trap, increasing the amplitude of the micromotion of the particle. Since having a
harmonic pseudopotential that covers all the volume is in most cases not necessary,
but only necesarry in the region covered by the particle trajectory, these problems
can be solved by using other electrode geometries. In Chapter 3 we will present
the electrode configuration currently used in our experiments: a linear Innsbruck-
style trap. In Chapter 6 we will present a new approach for the realization of a
monolithic high numerical aperture ion trap, which is needed for planned quantum-
electrodynamics experiments. There are many other approaches, some of which are
described in Refs. [31, 32].

2.2.4 Ion crystals

It is possible to trap more than one particle in a Paul trap. The particles can achieve
an equilibrium state between the confinement force due the trapping potential and
their mutually repulsive Coulomb forces. This equilibrium leads to the formation
of crystal-like structures. The simplest case is a linear chain of particles along the
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N z
(0)
1 z

(0)
2 z

(0)
3 z

(0)
4

1 0 – – –

2 −
(

1

2

)2/3

l +

(
1

2

)2/3

l – –

3 −
(

5

4

)1/3

l 0 +

(
5

4

)1/3

l –

4 −1.44l −0.45l +0.45l +1.44l

Table 2.1: Equilibrium positions for a chain of up to 4 equally charged

particles. The equilibrium positions shown are calculated assuming N identi-

cal particles and as a function of the characteristic length l, defined in Eq. 2.16.

axis where the weakest confinement is applied, e.g., along the z−axis. This occurs
for trapping potentials satisfying the inequality [33,34]

ωx,y
ωz

> 0.77
N√
lnN

, (2.14)

where N is the number of particles, and it is assumed that ωx = ωy. Such a trap
can be realized, for example, using the electrode configuration of Fig. 2.2.

The charged particles “see” a potential composed by the trapping pseudopoten-
tial plus the Coulomb potential generated by each particle. Using the harmonic
pseudopotential approximation of Eq. (2.10), and assuming that all the particles
have the same mass (M) and charge (e), the total potential is

Ψ′ =
M

2

N∑
m=1

ωzz
2
m +

N∑
n,m=1
n 6=m

e2

8πε0

1

|zm − zn|
, (2.15)

where zn is the position of the nth particle and ε0 is the vacuum permittivity. The
equilibrium positions of each particle are the positions where the potential has its
minimum. Table 2.1 shows the equilibrium positions along the z−axis for a trap
with secular frequency ωz and minimum at z = 0. The equilibrium positions are
calculated as a function of the characteristic length, defined as [35]

l =

(
e2

4πε0Mω2
z

) 1
3

. (2.16)

It is noteworthy that for four or more trapped particles in harmonic pseudopo-
tentials the spacing is not uniform, whereas by using anharmonic pseudopotentials
it is possible to achieve uniformly spaced chains. In general, if the condition of
Eq. 2.14 is not satisfied, more complicated 2D and 3D structures can be formed [36].
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N ωz,1 ωz,1 ωz,1 ωz,1

1 ωz

2 ωz
√

3ωz

3 ωz
√

3ωz

√
29

5
ωz

4 ωz
√

3ωz

√
29

5
ωz

√
9.308ωz

Table 2.2: Motional modes frequencies. Frequencies of the different mo-

tional modes of a chain of N identical particles in a Harmonic potential.

2.2.5 Normal modes of oscillation

The motion of each particle in a chain of N particles can be described by 3N normal
oscillatory modes, with N modes for each spatial direction. In this section we cal-
culate the frequency of these modes along the chain axis z for N identical particles,
but the same treatment can be applied in the other directions. Following the calcu-
lation presented in Ref. [35], the position of the nth particle can be approximated

as a small oscillatory motion qn(t) around its equilibrium position z
(0)
n ,

zn(t) = z(0)
n + qn(t). (2.17)

The motion of the system is described by the Lagrangian

L =
M

2

N∑
n=1

(q̇m)2 − 1

2

N∑
n,m=1

qnqm

[
∂2ψ

∂zn∂zm

]
z=z(0)

, (2.18)

where terms of order O[q3
n] have been neglected. The frequencies of the normal

modes can be calculated by finding the eigenvalues of the real, symmetric, positive
semi-definite matrix

Anm =

[
∂2ψ

∂zn∂zm

]
z=z(0)

. (2.19)

The eigenvalues µn are non-negative, and together with the pth eigenvector ~b
(p)
m

(p = 1, 2, ..., N), satisfy the eigenvalue equation

N∑
n=1

Anm~b
(p)
n = µp~b

(p)
m (p = 1, 2, ..., N). (2.20)
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COM

stretch

COM

stretch

egyptian

N=2 N=3

Figure 2.3: Motional eigenmodes along the chain axis. The different

motional eigenmodes of a chain of N = 2 and 3 identical particles along the

chain axis, with frequency ωz,p and eigenvector ~b(p). In the case of N = 2

there are two normal modes: the center of mass mode (COM) and stretch

mode, whereas for N = 3 there are three normal modes: COM, stretch and the

so-called egyptian or zig-zag mode.

Therefore, it is possible to rewrite a decoupled Lagrangian in terms of the normal
modes Qp of the system,

L =
M

2

N∑
p=1

[
Q̇2
p − ω2

z,pQ
2
p

]
, (2.21)

where the angular frequency of the pth mode is given by

ωz,p =
√
µpωz. (2.22)

For N = 1, 2, 3, the values of µp can be calculated analytically. Table 2.2 shows
the frequencies of the normal modes up to N = 4 particles. Fig. 2.3 depicts the
different motional modes along the z−axis for two and three particles.

2.2.6 Quantization of the motion

From the decoupled Lagrangian of Eq. (2.21) and using the canonical conjugate
momentum of each mode Pp = MQ̇ the Hamiltonian of the total motion in one
direction can be written as

H =
1

2M

N∑
p=1

P 2
p +

M

2

N∑
p=1

ω2
pQ

2
p. (2.23)

We have dropped the subindex z, since the expression is valid in each normal di-
rection. From now on, the subindex represents the secular motion mode, therefore
p = 1, ..., 3N . The quantum motion of the particles can then be described by intro-
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ducing the quantum operators of motion and momentum

Qp → Q̂p =

√
~

2Mωp
(âp + â†p), (2.24)

Pp → P̂p = −i
√
Mωp~

2
(âp − â†p), (2.25)

where the annihilation and creation operators of motional excitations are defined as

âp =
1√

2Mωp~

(
MωpQ̂p + iP̂p

)
, (2.26)

â†p =
1√

2Mωp~

(
MωpQ̂p − iP̂p

)
, (2.27)

respectively, and satisfy the commutation relations[
Q̂p, P̂q

]
= i~δpq,

[
âp, â

†
q

]
= δpq. (2.28)

Thus, it is possible to write the Hamiltonian operator as

Ĥp = ~ωp(â†â+
1

2
), (2.29)

and the Schrödinger equation

Ĥp|ψ〉 = Ep|ψ〉, (2.30)

where Ep is the motional energy in the pth mode, and |ψ〉 its motional state. This
Schrödinger equation can be written as an eigenvalue equation for the operator
N̂p := â†pâp,

N̂p|ψ〉 =

(
Ep
~ωp
− 1

2

)
|ψ〉. (2.31)

It is easy to see that the eigenvalue of N̂p is the number of motional quanta np,
each quantum with energy ~ωp, in the mode p, such that Ep/(~ωp)− 1/2 = np. The
operator N̂ is called number operator, since its eigenvalues correspond to the number
of motional excitations (phonons) in a given motional mode. The eigenstates of the
operator N̂p are called number or Fock states, which correspond to motional states
with a fixed number of excitations.

The energy of the pth motional mode of a particle with np excitation quanta in
that mode is then given by

Ep(np) = ~ωp(np +
1

2
). (2.32)

From this equation it is possible to identify the so-called vacuum energy ~ωp/2. Even
for a particle in its ground state (np = 0) the energy is not zero, with implications
such as the existence of Casimir-Polder forces [37].
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2.2.7 Extent of the motional wavepacket

Now we will derive an expression for the spatial extent of the oscillations of particles
trapped in an harmonic potential. From the normalization condition of state vectors
and the eigenvalues equation for the number operator,

N̂p|np〉 = np|np〉, (2.33)

where |np〉 are the eigenstates of the number operator, the action of the creation
and annihilation operator over the states |np〉 is calculated to be:

â†p|np〉 =
√
np + 1|np + 1〉, (2.34)

âp|np〉 =
√
np|np − 1〉. (2.35)

From theses equations it is clear that the action of the annihilation operator on the
ground state is âp|0〉 = 0. Replacing the definition of the annihilation operator of
Eq. (2.27),

âp|0〉 =
1√

2Mωp~

(
MωpQ̂p − iP̂p

)
|0〉 = 0; (2.36)

which, by using the canonical definition of the momentum operator in the position
representation

P̂p = −i~ ∂

∂Qp
(2.37)

leads to the differential equation(
Mωp
~

Qp +
∂

∂Qp

)
ψ0(Qp) = 0, (2.38)

where ψ0(Qp) is the spatial wavepacket of the ground state of the pth motional mode.
The solution of this equation is a Gaussian function,

ψ0(Qp) = N exp

(
−Mωp

2~
Qp

)
, (2.39)

with N the normalization of the Gaussian distribution,

N =

(
Mωp
π~

) 1
4

. (2.40)

It is important to notice here that this spatial distribution is written as a function of
the mode displacement Qp, so the actual spatial coordinate for each particle has to
be weighted with the corresponding element of the eigenvector associated with the
mode. So, for example, for three particles in the ground state of the egyptian mode,
the extent of the spatial distribution of the position of the particle in the center is
twice the extent of the outer two (see Fig. 2.3).
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From the Gaussian distribution of Eq. 2.39, we can extract its standard deviation.
This standard deviation defines a characteristic length for the extent of the motional
wavepacket. It also corresponds to the position uncertainty at zero energy, and is
given by

(∆Qp)0 =

√
~

2Mωp
. (2.41)

For excited motional states, the extent of the wave packet can be calculated from
the variance of the position operator,

(∆Qp)
2
np = 〈np|Q̂2

p|np〉 − 〈np|Q̂p|np〉2, (2.42)

which yields the expression

(∆Qp)np = (∆Qp)0

√
np +

1

2
(2.43)

=

√
~

Mωp

√
np +

1

2
(2.44)

for the characteristic length or size of the motional wavapacket. For one particle,
this length corresponds to the amplitude of the oscillation of its center of mass,
as soon as the particle is in a state with a well defined number of phonons, i.e.,
a Fock state of motion. This is in general not true, since the particles can be in
superposition states or statistical mixed states of motion, such as a thermal state.
The case of a thermal state is studied later in this thesis.

In this thesis the trapped particles considered are single atomic ions, specifi-
cally 138Ba+. With typical driving parameters is it possible to achieve trapping
frequencies around ∼ 1 MHz in each direction. By using laser cooling techniques it
is possible to reduce the number of motional excitations to few phonons, or even to
the ground state. In the following we describe the basics of light-matter interaction
necessary to control the motional and internal state of the atoms.

2.3 Light-matter interaction

As described in the previous section, it is possible to spatially confine charged parti-
cles, and in particular, single atomic ions using Paul traps. In this section we study
how light interacts with a single atom and how this interaction is used to control its
internal and external quantum state.

First, we will examine the simplest case: a two-level atom interacting with a
quantized field, as well as in the semi-classical limit, where we will consider the
driving field to be a classical one. This model is useful to understand the basic
features of the interaction, but it is just an idealization and does not give a good
description for the trapped ions used in this thesis. The simplest realistic model for
electronic dipole transitions of the atomic species used in this experiment (138Ba+,
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Figure 2.4: Two-level atoms. A two-level atom, with ground state |g〉 and

excited state |e〉, with an energy difference between the two levels equal to ~ω0

and which is driven by an oscillatory field with energy per photon equal to ~ω.

The energy difference between the driving field and the atom is ~∆ = ~(ω−ω0).

The excited state decays spontaneously at a rate Γ0.

as we detail in Chapter 3) is a three-level system in Λ configuration, as we present
in Section 2.3.2

Furthermore, the presence of a Zeeman splitting due to external magnetic fields
makes it necessary to describe the atom as an eight-level system, as we will review in
Chapter 3. The three and eight-level descriptions make use of the tools presented for
the two-level case, such as the optical Bloch equations, but consider every possible
transition. On the other hand, in some regimes it will be possible to neglect the
coupling with the rest of the atomic levels and treat the interaction between the field
and atom as an effective two-level system. This happens when we drive a dipole
forbidden transition with a narrow laser, where we broadly satisfy the condition
Ω� Γ, so that, up to a certain time scale, we can neglect the spontaneous emission.
Such a narrow band laser allows us to spectroscopically resolve motional sidebands
and to control the motional excitation. To study this, at the end of this chapter, we
discuss the Hamiltonian which describes how motional and electronic states of the
atom are coupled [38].

2.3.1 The two-level atom

The simplest model to describe the interaction between light and matter considers a
single atom with two internal energy levels: ground |g〉 and excited |e〉 states, with
energies Eg and Ee, respectively. The energy difference of these two levels can be
written in terms of the resonant frequency of the transition ω0, Ee−Eg = ~ω0. Since
in this idealization there is no other state to decay to, the excited state decays only
to the ground state with natural decay rate Γ0 (see Fig. 2.4). The free Hamiltonian
of the atom can be written as

ĤA = ~ω0 (|e〉〈e| − |g〉〈g|) . (2.45)

It is convenient to define the atomic lowering and raising operators,

σ̂+ = |e〉〈g|, σ̂− = |g〉〈e| (2.46)
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and the Pauli operators

σ̂x =
1

2
(|e〉〈g|+ |g〉〈e|) , σ̂y = i

1

2
(|e〉〈g| − |g〉〈e|) , σ̂z =

1

2
(|e〉〈e| − |g〉〈g|)(2.47)

so that the free Hamiltonian of the two-level atoms can be rewritten as

ĤA = ~ω0σ̂z. (2.48)

Initially, we will consider that the electromagnetic field interacting with the atom
is quantized. In this case the electric field operator can be written as [39]

~̂E(~r) = i
∑
~k,~εk

√
~ωk
2ε0

[
â~k,~εk

~u~k,~εk
− â†~k,~εk~u

∗
~k,~εk

]
, (2.49)

where â~k, ~εk
and its Hermitian conjugate are annihilation and creation operators of

photons in the mode with wave vector ~k and polarization ~εk, and ~u~k,~εk
(~r) is a plane

wave mode function for the corresponding mode,

~u~k,~εk
(~r) =

1

V
~εke

i~k·~r, (2.50)

with V the quantization volume.

If we consider the radiation interacting with the atom to be a single-mode quan-
tized field, with frequency ω, then it can be described by the Hamiltonian

ĤL = ~ω
(
â†â+

1

2

)
, (2.51)

where â† and â are the creation of annihilation operators of photons in the considered
mode.

The simplest case to study the interaction between a two-level atom and the
field is described by the so-called dipole approximation. In this approximation, as
the size of the atom is much smaller that the wavelength of the field, the electric
field is considered constant over the spatial extent of the atom. The action of the
oscillatory field on the atom corresponds to the induction of an electric dipole due
to the superposition of the different levels. The atomic dipole moment operator is
then defined as

~̂d = e~̂r, (2.52)

where e is the charge of the electron and ~̂r is the position operator. The Coulomb
potential generated by the atom’s nucleus is spherically symmetrical, so that eigen-
states |e〉 and |g〉 do not have a net dipole moment. The dipole moment operator
can be therefore written as

~̂d = ~deg|e〉〈g|+ ~dge|g〉〈e| = ~degσ̂+ + ~dgeσ̂−, (2.53)
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where ~deg = 〈e| ~̂d|g〉 = e〈e|~̂r|g〉 (and ~dge = ~d∗ge) is the off-diagonal dipole matrix
element. The expectation value of the dipole operator is

〈 ~̂d〉 = Tr(ρ~̂d) = ~degρeg + ~dgeρge, (2.54)

where ρ is the density matrix characterizing the electronic state of the atom. This
expectation value depends solely on the coherence ρeg of the atom and not on the
populations ρee and ρgg.

The Hamiltonian describing the interaction between the atomic dipole and the
electric field in the dipole approximation is given by

Ĥint = − ~̂d · ~̂E(~r0), (2.55)

where ~r0 is the atom position. Replacing the ~̂E with the expression for a single
mode electric field with frequency ω, wave vector ~k and plane mode function ~u, the
interaction Hamiltonian is

Ĥint = −i~ (σ̂− + σ̂+)
(
κâei

~k·~r0 − κ̃â†e−i~k·~r0
)
, (2.56)

where the coupling constants κ and κ̃ are defined as

κ :=

√
ω

2~ε0
~deg · ~u(r0), κ̃ :=

√
ω

2~ε0
~deg · ~u∗(r0). (2.57)

It is convenient to write the evolution of the system in the interaction picture2

instead of the Schrödinger picture. In the interaction picture the operators carry
the time dependence instead of the state vectors. In both pictures the operators are
related by a unitary transformation defined by the free Hamiltonian of the system,

Û(t) = exp

[
− i
~

(
ĤA + ĤL

)
t

]
. (2.58)

Using this transformation, the atom-field interaction Hamiltonian Ĥint in the
interaction picture is then

ĤI,int = i~σ̂−
(
â†κ∗ei(ω−ω0)t−i~k·~r0 − âκ̃∗e−i(ω+ω0)+i~k·~r0

)
−i~σ̂+

(
âκe−i(ω−ω0)t+i~k·~r0 − â†κ̃ei(ω+ω0)−i~k·~r0

)
. (2.59)

We are here interested mostly in phenomena in the near-resonant driving regime,
i.e, when the difference between the frequency of the field and the transition fre-
quency of the atom ∆ = ω−ω0 is small (∆� ω0). This regime sets a time scale for

2In the interaction picture the operators evolve following the Heisenberg equation. The equation
for the evolution of quantum operators was introduced by Paul A. M. Dirac (who was known for
his modesty) in 1925 [40].
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the evolution of the system, given by 2π/∆. The interaction Hamiltonian contains
two kind of terms, the first, oscillating with frequency ω−ω0, are energy conserving,
i.e, terms corresponding to the creation of an atomic excitation and annihilation of
a field photon (σ̂+â) and the opposite atomic process, i.e., atomic relaxation and
the creation of field photon (σ̂−â

†). The second kind of terms contains processes
involving simultaneous excitation of the atom and the field (σ̂+â

†) or simultaneous
annihilation (σ̂−â). This second kind of terms oscillates much faster, with frequencies
ω + ω0, at time scales much shorter than those observed in typical atomic experi-
ments. For example, for an optical transition with wavelength ∼ 500 nm driven by
a laser with detunings on the order of tens of MHz, the typical time scale for the
slowly oscillating terms is on the nanoseconds scale, while for the fast oscillating
terms it is on the orders of femtoseconds. So in practical terms, we can neglect the
fast oscillating terms, in what is called the rotating wave approximation. In this
approximation, the interaction Hamiltonian can be written as

ĤI,int ≈ i~
(
σ̂−â

†κ∗ei(ω−ω0)t−i~k·~r0 − σ̂+âκe
−i(ω−ω0)t+i~k·~r0

)
. (2.60)

By assuming that the atom is at the origin of the coordinate system, it is possible
to further simplify this expression, so that the total Hamiltonian of the system back
in the Schrödinger picture can by written as

ĤJ-C =
1

2
~ω0σ̂z + ~ω(â†â+

1

2
) + ~κ

(
σ̂−â

† − σ̂+â
)
, (2.61)

which is called Jaynes-Cummings Hamiltonian in honor of Edwin Jaynes and Fred
Cummings, who proposed it in 1963. This Hamiltonian contains three terms: the
free evolution of the atom, the free evolution of a single mode the field and the
exchange of energy between the atom and the single mode field through the creation
and annihilation of atomic excitations and photons.

Eigenstates of the interacting system

Let us consider first the free Hamiltonian Ĥfree of the non-interacting field and atom,
i.e.,

Ĥfree = ĤL + ĤA, (2.62)

where HL and HA correspond to the free Hamiltonian of the light and the atom,
respectively. The other part of the Jaynes-Cummings Hamiltonian is what from now
on we refer to as Ĥint. The states |g〉|n〉 and |e〉|n〉 are eigenstates of Ĥfree, |n〉 being
a Fock state for the field, i.e, a field with a well-defined number of photons. Let
us first discuss the case in which the atom and field are in resonance. In this case
the eigenstates |e〉|n〉 and |g〉|n+ 1〉 are degenerate, i.e., they have the same energy
~ω0((n+ 1) + 1/2). Therefore, any superposition of this two eigenstates, i.e.,

α|e〉|n〉+ β|g〉|n+ 1〉, with |α|2 + |β|2 = 1, (2.63)

is also an energy eigenstate with energy ~ω0((n+ 1) + 1/2). The eigenstates of the
full Hamiltonian can be calculated from the fact that it commutes with Ĥfree, and
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are given by the so-called dressed states,

|Ψ±n 〉 =
1√
2

(|e〉〈n| ± |g〉|n+ 1〉) , (2.64)

satisfying the eigenstate equation

ĤJ-C|Ψ±n 〉 =
(
~ω0((n+ 1) + 1/2)± ~κ

√
n+ 1

)
|Ψ±n 〉, (2.65)

whose eigenenergies are non-degenerate.

Rabi Oscillations

The time evolution due to the atom-field interaction can be calculated as

|Ψ±n (t)〉 = e−
i
~ Ĥintt|Ψ±n 〉 (2.66)

= e∓iκ
√
n+1t|Ψ±n 〉. (2.67)

If we consider the initial state of the atom to be |e〉, and the initial state of the field
to be |n〉, and write using the basis formed by the dressed states,

|ψ(t = 0)〉 =
1√
2

(
|Ψ+

n 〉+ |Ψ−n 〉
)
, (2.68)

then at a time t, the state of the atom-field system is

|ψ(t)〉 = cos(κ
√
n+ 1)|e〉|n〉 − isin(κ

√
n+ 1)|g〉|n+ 1〉. (2.69)

The probabilities Pe(t) and Ph(t) of finding the atom in the excited state or in the
ground state are given by

Pe(t) = cos2(κ
√
n+ 1t) =

1

2
[1− cos(Ωnt)] , (2.70)

Pg(t) = sin2(κ
√
n+ 1t) =

1

2
[1 + cos(Ωnt)] . (2.71)

This behaviour is called Rabi oscillation or Rabi cycle, after Isidor Isaac Rabi, and
corresponds to a periodic exchange of energy between the atom and the field. The
frequency of the oscillation

Ωn = 2
√
n+ 1κ (2.72)

depends on the number of photons n in the field, and it is called quantized Rabi
Frequency.

For a small detuning ∆ � ω0, Rabi oscillations with the same amplitude as in
the resonant case are obtained, but with a modified Rabi frequency, given by

Ω̃n =
√

4(n+ 1)κ2 + ∆2. (2.73)
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Off-resonant interaction

In the case of large detuning between the driving field and the atom satisfing ω0 �
∆� κ, the calculations yield the atom-field Hamiltonian [41]

Ĥdetuned =
1

2
(ω0 + ∆) + ωâ†â+

κ2

∆

(
σ̂zâ
†â+ |e〉〈e|

)
. (2.74)

Under this Hamiltonian and applying the same treatment as in the resonant case,
we get that if the initial state of the system is the atomic superposition |ψ(t = 0)〉 =
ae|e〉|n〉+ ag|g〉|n〉, at time t the state is given by

|ψ(t)〉 = e−i
κ2

∆
(n+1)tae|e〉|n〉+ e+iκ

2

∆
(n+1)tae|e〉|n〉. (2.75)

In this case, there is no oscillation of the atomic and the field populations, but
instead a linear dephasing between the excited and ground states. Other regimes of
non-resonant interaction and related effects such AC-Stark shift and Autler–Townes
effect are discussed in Chapter 5 of Ref. [42].

Semiclassical limit

The results described above are calculated for the case in which both the field and
the atom are quantized, in particular we have assumed that the field is initially in
a Fock state. This is a useful treatment when the number of photons in the field is
small or in a well characterized quantum state, as in the case of an atom interacting
with a single or few mode field of a cavity. In this thesis, the atom is excited with a
narrow-linewidth laser beam, with continuous power on the order of 10−6 - 10−3 W,
which corresponds to a field with an average of 1015 - 1016 photons per second. In the
case in which the linewidth of the laser used for exciting the transition is narrower
than the atomic transition linewidth, the electric field laser field is well described by
the classical wave

~E =
1

2
~εE0

(
e−iωt + eiωt

)
, (2.76)

= ~E0e
−iωt + ~E0e

+iωt (2.77)

= ~E+(t) + ~E−(t) (2.78)

with polarization ~ε and propagating along ~k (the spatial phase has been omitted).
Note that the spatial dependence of the field has been ignored by only considering
the field at the position of the atom. This is a reasonable assumption in the frame
of the dipole approximation, where the wavelength of the field is considered to be
much longer than the size of the atom.

From the quantum equations presented above it is possible to get the semiclas-
sical expressions, i.e., considering a quantized atom and a classical field, by means
of the substitution

κâ→ Ω, (2.79)
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where

Ω := −2~deg · ~E+
0

~
(2.80)

is the Rabi frequency in the semiclassical limit, quantifying the coupling strength
between the classical field and the atom. The atom-field Hamiltonian is then written
as

ĤSC =
1

2
~ω0σ̂z + ~ (Ω∗σ̂− − Ωσ̂+) . (2.81)

By solving the Schrödinger equation using this Hamiltonian Rabi oscillations are
again found. The same results of Eq. (2.71) can be obtained using the substitution
of Eq. (2.79), in which case the frequency of the Rabi cycle turns to be

2
√
n+ 1κ = Ωn −→︸︷︷︸

κâ→Ω

Ω. (2.82)

In the near-resonant limit, the Rabi frequency is given by

Ω̃ =
√

Ω2 + ∆2, (2.83)

also in correspondence with the modified quantized Rabi frequency of Eq. (2.73).

From a broader point of view, a Rabi frequency quantifies the coupling between
a field and a transition, independent of the nature of the transition. Up to now
we have considered only transitions mediated by the induced dipole moment of the
electron, but later in this thesis we will also study electric quadrupole transitions.
In general any multipole-allowed transition, electric or magnetic, can be described
using a Rabi frequency, the detuning between the transition and the field, and the
propagation and polarization of the field.

Spontaneous emission and damping

Since spontaneous decay of the atom and emission of a photon is a stochastic,
incoherent effect, it cannot be described by a Hermitian Hamiltonian as we have
done here so far. However, the inclusion of this effect in the dynamics of the system
can be calculated using the Lindblad master equation3 [42]. In this approach, an
additional heuristic super operator term is added to the Heisenberg equation for
the evolution of the atomic density matrix, which accounts for the non-Hermitian
evolution of the system, i.e, the spontaneous decay and damping due to the finite
linewidth of the driving field. This equation reads

dρ̂

dt
=
−i
~

[
Ĥ, ρ̂

]
+ L(ρ̂), (2.84)

3The Lindblad master equations is also known as Gorini–Kossakowski–Sudarshan–Lindblad
equation
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where the super operator L action over ρ̂ is defined as

L(ρ̂) = −1

2

∑
m

[
Ĉ†mĈmρ̂+ ρ̂Ĉ†mĈm − 2Ĉmρ̂Ĉ

†
m

]
, (2.85)

and the index m denotes each damping mechanism. In the case of a two-level atom,
these are: the spontaneous decay to the state |g〉 from the excited state |e〉 with a
decay rate Γ, which is represented by

Ĉg =
√

Γσ̂− =
√

Γ|g〉〈e|; (2.86)

and the operator describing the free evolution due to the finite linewidth δl of the
driving field,

Ĉl =
√
δlσ̂gg =

√
δl|g〉〈g|. (2.87)

Γ can be calculated as a function of the dipole moment operator elements using
Fermi’s Golden rule,

Γ =
ω3

0

3πε0~c3
|~deg|2. (2.88)

As many of the quantities involved in the calculation oscillate in phase with the
frequency of the driving field, it is helpful to write the atomic density matrix and
the Hamiltonian in a co-rotating frame, i.e.,

˜̂
H = Û †ĤÛ − i~Û † d

dt
Û , (2.89)

˜̂ρ = Û †ρ̂Û , (2.90)

with Û = eiωtσ̂z. It is worth noticing that under this transformation the atomic
populations remain unchanged, i.e., ˜̂ρee = ρ̂ee and ˜̂ρgg = ρ̂gg.

The Lindblad master equation can be rewritten as a set of linear coupled equa-
tions for each component of the density matrix. This set of equations, in the case
of a perfect single-frequency laser, i.e., δl = 0, are given by

∂

∂t
ρ̂ee = −iΩ

2

(
˜̂ρeg − ˜̂ρge

)
− Γρee, (2.91)

∂

∂t
ρ̂gg = i

Ω

2

(
˜̂ρeg − ˜̂ρge

)
+ Γρee, (2.92)

∂

∂t
˜̂ρge = −

(
Γ

2
+ i∆

)
˜̂ρge − i

Ω

2
(ρ̂ee − ρ̂gg) , (2.93)

∂

∂t
˜̂ρeg = −

(
Γ

2
− i∆

)
˜̂ρge + i

Ω

2
(ρ̂ee − ρ̂gg) . (2.94)

This set of linear coupled equations is called the Optical Bloch equations in honor
to Felix Bloch, because they are identical to the equations used to explain spin
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precession in nuclear magnetic resonance systems developed by him 4.

This equation can be used for calculating, for example, the steady-state solu-
tions, i.e., after an interaction time much longer than the decay rate such that the
populations reach “equilibrium” and the changes in the density matrix elements be-
come negligible (∂ρ̂/∂t ∼ 0). The steady-state solution for the population of the
excited state is

ρ̂ee(t→∞) =
Ω2/Γ2

1 +
(

2∆
Γ

)2
+ 2Ω2

Γ2

=
s/2

1 + s
, (2.95)

where we have defined the saturation parameter

s =
2Ω2/Γ2

1 + (2∆/Γ)2
. (2.96)

Eq. (2.95) corresponds directly to the absorption line shape of the atom, which
tells us the steady-state probability of atomic excitation as a function of the Rabi
frequency, the natural decay rate and the detuning of the driving field. Note that
the expression for ρee does not depend on the initial atomic density matrix. The
saturation parameter in this equation is positive, and the population of the excited
state ρ̂ee tends asymptotically to 1/2, known as saturation, as s → +∞. The
population of the excited state can be expressed also as a function of the saturation
intensity, defined as

I

Isat
=

2Ω2

Γ2
, (2.97)

and therefore,

ρ̂ee(t→∞) =
1

2

I/Isat

1 +
(

2∆
Γ

)2
+ I/Isat

. (2.98)

The saturation intensity is related to the non-linear response of the atom to the field.
For low intensities I � Isat the response of the atom is well described as a classical
oscillating dipole, but for the opposite case, a quantum treatment is necessary. The
saturation intensity also sets the intensity on which the atom absorption drops to
half the on-resonance maximum. The explicit expression for the saturation intensity
is

Isat =
cε0Γ2~2

4|〈g|ε̂ · ~̂d|g〉|2
. (2.99)

We can differentiate two very distinct regimes, the strong-driving regime, when
I � Isat, in which the line shape is reduced to

ρee(t→∞) =
Ω2/4

∆2 + Ω2/2
, (2.100)

4The equations in the way shown in this thesis were first derived by Tito Arecchi and Rodolfo
Bonifacio in 1965 [43].
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which is a Lorentzian with FWHM
√

2Ω. For the opposite weakly driven case,
I � Isat, we find

ρee(t→∞) =
Ω2/4

∆2 + Γ2/4
. (2.101)

Orders of magnitude

Typically, we will drive the atom with a laser beam, with a Gaussian transverse
mode, adn with a beam waist w0 at the position of the atom. For a laser beam with
power P , the intensity at the position of the atom is then

I =
P

πw2
0

. (2.102)

The Rabi frequency is then, for a z-oriented dipole and a parallel laser beam

Ω =

√
2η0|〈g|dz|e〉|2P

π~2w2
0

, (2.103)

where η0 ≈ 376.730313 Ohm is the impedance of vacuum.

Using the Bohr approximation for Barium, and considering the “cooling” transi-
tion at 493 nm between two electronic states with principal quantum number n = 6,
the distance between the electron and the nucleus is ∼ 10−11 m. The dipole mo-
ment is then ∼ 10−30 C·m. Without very specialized focusing optics, it is possible
to achieve a laser beam waist of the order of tens of µm in the visible spectrum, so
lets consider w0 ≈ 50 µm. Typical laser powers are around 100 µW, though much
higher power can be achieved. In this regime, Rabi frequencies of around Ω/2π ∼ 1
MHz can be easily achieved. In this regime and considering a transition with Γ in
the range of few tens of MHz, saturation parameters s of 10-30% can be reached.

2.3.2 The three-level atom

Up to here, we have considered a two-level atom, but to have a more accurate de-
scription of the atom-field interaction we need to introduce a more complex model
that can account for decay of the excited state through other channels. The sim-
plest realistic model for the 138Ba+ electronic transitions used for cooling in our
experiment (Chapter 3) is a three-level atom in Λ configuration (see Fig. 2.5).

In this case, we consider three distinct electronic states |1〉, |2〉 and |3〉. The
transitions between the states |1〉 ↔ |2〉 and |2〉 ↔ |3〉 are dipole-allowed, with
energies ~ω12(0) and ~ω23(0) respectively, while the transition |1〉 ↔ |3〉 is dipole-
forbidden. The excited state |2〉 decays spontaneously to the state |1〉 with rate Γ12

and to the state |3〉 with rate Γ23. We consider two laser beams driving the dipole-
allowed transitions, with frequencies ω12 and ω23, and with Rabi frequencies Ω12 and
Ω23. Finally, each laser has a detuning from the atomic transitions ∆12 = ω12−ω12(0)
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and ∆23 = ω23 − ω23(0).

Figure 2.5: Three-level atoms in Λ configuration. A two-level atom,

with two ground states |1〉 and |3〉, and one excited state |2〉, with energy

difference between the ground levels and the excited state equal to ~ω12 and

~ω23 respectively. These two transitions are driven by two lasers with Rabi

frequencies Ω12 and Ω23 and detunings ∆12 and ∆23, respectively. The exited

state decays with rates Γ12 and Γ23 to the ground states |1〉 and |3〉, respectively.

Following a treatment similar to the one used in the two-level atom case, and
fixing the energy of the state |1〉 as the zero energy, the free Hamiltonian for the
atom is given by

ĤA = ~ (|2〉〈2|+ |3〉〈3|) . (2.104)

The interaction Hamiltonian in the semiclassical dipole rotating-wave approxima-
tion, is given by

Ĥint = ~ (Ω∗12|1〉〈2| − Ω12|2〉〈1|) + ~ (Ω∗23|3〉〈2| − Ω23|2〉〈3|) . (2.105)

To include damping and spontaneous decay using the Lindblad master equation, we
consider the following operators,

Ĉ21 =
√

Γ12|1〉〈2|, (2.106)

Ĉ23 =
√

Γ23|3〉〈2|, (2.107)

Ĉ11 =
√
δ11|1〉〈1|, (2.108)

Ĉ33 =
√
δ33|3〉〈3|, (2.109)

where δ12 and δ23 are the linewidth of the respective driving lasers.

Coherent population trapping

As we vary the intensity, the detuning and the direction of the laser beams, several
features appear when observing the spectroscopic signal, which are related with the
steady state solution for the population of the excited state ρ22. One of the most
notorious features in three-level systems are the so-called dark resonances. In the
three-level atom case, this corresponds to the situation with the detuning of both
lasers is the same with respect to the state |2〉, i.e., ∆ = ∆12 − ∆13 = 0, called
Raman resonance. ∆ is called two-photon detuning. To study this phenomenon it is
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convenient to define the state vectors

|g+〉 =
1√

Ω2
12 + Ω2

23

(
Ω2

12|1〉+ Ω2
23|3〉

)
= cos θ|1〉+ sinθ|3〉 (2.110)

|g−〉 =
1√

Ω2
12 + Ω2

23

(
−Ω2

23|1〉+ Ω2
12|3〉

)
= −sinθ|1〉+ cos θ|3〉, (2.111)

with tan θ = Ω23/Ω12. The free atomic Hamiltonian can be rewritten as

ĤA = ~∆+|g+〉〈g+|+ ~∆−|g−〉〈g−|+ ~Ωg (|g+〉〈g−|+ |g−〉〈g+|) , (2.112)

with the definitions

∆+ = cos2(θ)∆12 + sin2(θ)∆23, (2.113)

∆− = −sin2(θ)∆12 + cos2(θ)∆23, (2.114)

Ωg = (∆23 −∆12)sinθ cos θ = (∆23 −∆12)
Ω12Ω23

Ω3
12 + Ω2

23

. (2.115)

Ωg represents the coupling between |g−〉 and |g+〉. The interaction Hamiltonian can
also be rewritten as

Ĥint =
~
2

√
Ω2

12 + Ω2
23

(
σ̃+ + σ̃†+

)
, (2.116)

where σ̃± = |g±〉〈2|. Note that in this interaction Hamiltonian there is no cou-
pling term between |g−〉 and |2〉, and the coupling between |g+〉 and |2〉 is Ω+ =√

Ω2
12 + Ω2

23. If we additionally set ∆ = 0, the coupling term in the free atomic
Hamiltonian vanishes, and the state |g−〉 is totally decoupled from the rest of the
states. This phenomenon is called coherent population trapping : if the atom is ini-
tially in the state |g−〉, it will remain there, without populating the excited state
|2〉, so that there is no emission (or absorption) by the atom. For this reason |g−〉
is often called dark state.

The written Hamiltonian represents a new effective Hamiltonian for the basis of
atomic states |g−〉, |g+〉 and |2〉. If we now introduce spontaneous emission in this
model through the Lindblad master equation, in this new basis, we get the same
equation of motion as presented before, with effective decay rates from |2〉 to |g+〉
and |g−〉

Γ+ = cos2 θΓ12 + sin2θΓ23, (2.117)

Γ− = sin2θΓ12 + cos2 θΓ23, (2.118)

respectively. Also, an additional term accounting for asymmetric decay appears in
the master equation, namely

(Γ23 − Γ12) sinθ cos θ
(
σ̃− ˜̂ρσ̃†+ + σ̃+

˜̂ρσ̃†−

)
. (2.119)

Therefore, there is still spontaneous decay to both |g±〉 states, but only pumping
from |g+〉 to |2〉. This means that after some time the population is trapped in
|g−〉, independent of the initial population distribution. This is a manifestation of
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Figure 2.6: Three-level atom dark resonances. Different spectra (popu-

lation of the excited state) for a three-level atom with driving Rabi frequencies

Ω12 = 2Γ12, Ω23 = Γ12, detuning ∆12 = −Γ. The depth of dark resonance (co-

herent population trapping) depends on the linewidth δ11 of the driving laser

in the |1〉 → |2〉. δ33 is set equal to zero. The overall shape of the spectra

depends also in the ratio between the spontaneous decay rates Γ12 and Γ23.

coherence, or quantum interference, between the two ground states.

Fig. 2.6 show the numerically calculated spectrum of the fluorescence of a three-
level atoms for different laser linewidths and Rabi frequencies. When the two-photon
detuning ∆ is zero, the population of the excited state is zero for the the case of an
ideally narrow laser (δ11 = 0) and small for the case of a laser with finite linewidth
(δ11 6= 0). These dips are the dark resonances and correspond to the phenomenon
of total or partial coherent population trapping in the state |g−〉.

The three-level model here presented is in many cases a good approximation to
describe the overall dynamics of the field-atom interaction. As we will see in the
next chapter, the basic level scheme of 138Ba+ corresponds to a three-level atom Λ
configuration, but in the presence of a magnetic fields these levels split into sublevels
due to Zeeman splitting, which makes it necessary to describe the atom as an eight-
level system.

2.3.3 Coupling of motional and electronic states

The simple models for light-atom coupling presented so far neglect the fact that the
atoms are moving. In the case of cold ionized atoms confined in Paul traps this
motion is harmonic and quantized. To include the effect of the motion, we start by
adding a term corresponding to a quantized harmonic oscillator, as in Eq. (2.29) to
the free Hamiltonian of the atom. For simplicity, we consider only two atomic levels
|g〉 and |e〉 and the motion to be along the x−axis, with a mode frequency ωx, so
that the free Hamiltonian of the atom is

ĤA = ~ω0σ̂z + ~ωx
(
â†â+

1

2

)
, (2.120)

where ~ω0 is the energy difference between |e〉 and |g〉, â† and â represent in this case
the creation and annihilation of a phonon. The interaction between the electronic
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state and the quantized motion is similar to the one with a quantized electromagnetic
field described above, so that the interaction Hamiltonian can be written as

Ĥint,motion =
1

2
~Ω (σ̂+σ̂−)

(
ei(kx̂−ωt+φ) + e−i(kx̂−ωt+φ)

)
(2.121)

where k and ω are the wavenumber and the angular frequency of the driving laser
field, respectively, x̂ is the position operator of the atom within the harmonic trap,
φ is the phase of the field at the position of the atom and Ω is the Rabi frequency
quantifying the strength of the coupling, calculated below. Now we introduce the
so-called Lamb-Dicke parameter along the x-direction, defined as

ηx = k cosα

√
~

2Mωx
, (2.122)

where α is the angle between the oscillation axis and the propagation of the laser
beam, M is the mass of the atom. We will consider that the laser beam is parallel
to the oscillation axis (α = 0). By using this definition and the definition of the
position operator of Eq. (2.24), and by applying the rotating wave approximation
(RWA) described in Section 2.3.1, the interaction Hamiltonian can be rewritten in
the interaction picture as

Ĥint,motion =
~
2

Ω
(
eiη(â+â†)σ̂+e

−i∆t + e−iη(â+â†)σ̂−e
i∆t
)
, (2.123)

with ∆ = ω−ω0. This Hamiltonian shows coupling between the electronic states of
the atomic motion. The energy for the electronic excitation of the atom can come
jointly from the laser beam and a phonon, as long as this satisfies the conservation
of energy. The opposite process is also possible: a transition from the excited state
to the ground state releasing a quantum of energy ~ω0, which can be a photon
with this energy, or a less energetic photon plus a phonon. This is made clear by
applying the Lamb-Dicke approximation, i.e., assuming η2(2n + 1) � 1, where n
is the average motional occupation number. In this regime the recoil energy of an
emitted photon is much smaller than the energy separation between the motional
levels, the extent of the motion is much smaller than the wavelength of the transition
and the probability of transitions involving two photons are neglected. The accuracy
of the approximation is discussed in [35].

By applying an additional rotating wave approximation, depending on the laser
detuning ∆ the interaction Hamiltonian is reduced to three distinct cases [38]:

� ∆ = 0,

ĤC = ~Ω(σ̂+e
iφ + σ̂−e

−iφ). (2.124)

In this case the laser field drives the transition |g〉|n〉 ↔ |e〉|n〉, where the
motional state of the atom |n〉 is not changed. It is called the carrier transition.
This transition has a Rabi frequency Ω (see Fig. 2.7).
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Figure 2.7: Coupling between motional states. Depending on the detun-

ing of the driving beam, different transitions coupling electronic and motional

states of the atoms are achievable: carrier transitions with Rabi frequency Ω,

blue sideband transitions with Rabi frequency Ωn,n+1 and red sideband tran-

sitions with Rabi frequency Ωn,n−1

� ∆ = ωx,

ĤBS = ~Ω(σ̂+â
†eiφ − σ̂−âe−iφ). (2.125)

In this case the laser field drives the transition |g〉|n〉 ↔ |e〉|n + 1〉, exciting
the atom, and increasing the number of phonons by one unit. This transition
is called the first blue sidebeand transition, and its Rabi frequency is

Ωn,n+1 = Ω
√
n+ 1η (2.126)

� ∆ = −ωx,

ĤRS = ~Ω(σ̂+âe
iφ − σ̂−â†e−iφ). (2.127)

In this case the laser field drives the transition |g〉|n〉 ↔ |e〉|n − 1〉, exciting
the atom, and decreasing the number of phonons by one unit. This transition
is called the first red sideband transition, and its Rabi frequency is

Ωn,n−1 = Ω
√
nη (2.128)

In general, this model also predicts the existence of higher order sideband tran-
sitions, including multi-phonon creation and annihilation processes. However, the
strengths of these transitions decrease in powers of η as the number of phonons
exchanged increases. The value of the Rabi frequency for a transition with laser
detuning ∆ = mωx (with m integer) is calculated, for example, in Ref. [35].

The red sideband transitions reduce the number of motional excitations while
electronically exciting the atom. This gives hints about this process being useful
to systematically reduce the motion of the atoms. This process is called sideband
cooling and is used in systems of trapped ions to reduce the motion to its ground
state [44,45].
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2.3.4 Laser cooling

Many decoherence effects can be drastically reduced by decreasing the motion of the
atom, i.e., by cooling it. As the model predicts, this is possible using lasers, provided
that, on average the emitted photons carry more momentum than the absorbed ones.
The presented model for electronic-motional coupling still ignores the existence of
other electronic states besides |g〉 and |e〉 and assumes that the linewidth of the laser
is narrow enough such that it is possible to address a single transition (carrier or
sideband). But it also assumes that the sidebands are spectrally separated from the
carrier and from each other, i.e., that the frequency of the motion is higher than the
transition linewidth, or ω � Γ. Based on this assumption, to address the problem
of laser cooling of atomic ions in Paul traps subject of harmonic motion we need to
distinguish the treatment in two cases:

� ωx � Γ, unresolved sidebands / weak trapping limit. In this case the spacing
between the sidebands ωx is much smaller than the linewidth of the considered
transition, so that it is not possible to resolve them in the spectrum. The
absorption and emission of a photon occurs much faster than the velocity
change of the trapped atom due to the harmonic confinement. Effectively,
this can be described as a standing atom interacting with a laser that changes
its frequency harmonically due to the Doppler shift. The cooling mechanism
is termed in this case Doppler cooling. For atomic ions in Paul Traps, the
oscillatory motion has frequencies ranging from hundreds of kHz to several
MHz, Doppler cooling is achievable in dipole-allowed transitions, with Γ on
the order of tens of MHz.

� ωx � Γ, resolved sidebands / strong trapping limit. In this case the spacing
between sidebands is much larger than the absorption line of the transition,
such that a narrow-linewidth laser can be tuned to specific sidebands. There-
fore, sideband transitions can be systematically driven to reduce the motional
amplitude of the atom. This regime is achievable using dipole-forbidden tran-
sitions, such as electric quadrupole transitions, with Γ on the order of Hz or
mHz.

In the experiments presented in this thesis, Doppler cooling is performed routinely,
whereas sideband cooling was not used, though it has been implemented in our setup
[46]. Other schemes for cooling such as Raman cooling [47], EIT cooling [48] and
polarization gradient cooling [49] have been implemented in trapped ions systems,
but for the purpose of this thesis, we will just describe the principle of Doppler
cooling.

Doppler Cooling

Now, we present a basic description of Doppler cooling in an ion trap in which the
effect of micromotion is neglected. We consider, for simplicity, a motional mode
along the x−axis. As the motion of an atomic ion in a Paul trap is harmonic in each
mode, its velocity (in the classical approximation) is proportional to v = v0 cos(ωxt),
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where ωx is the frequency of a given motional mode along the x−axis. As the
radiative decays occurs much faster than the oscillation period, the change in velocity
due to a single absorption-emission cycle in negligible, so that the cooling process
can be modelled as a velocity-dependent continuous force. If we consider the laser
field to be red-detuned and parallel to the motional mode, each absorption event
gives a momentum kick ∆p = ~k to the atom, in the direction of propagation of
the laser (with k the wavenumber of the laser). Consequently, the field exerts a
radiation pressure to the atom, given by

dp

dt
= Fa = ~kΓρee, (2.129)

where Γ is the decay rate of the excited state and ρee is the population of the excited
state, which from Eq. (2.95) is

ρ̂ee =
Ω2/Γ2

1 +
(

2∆eff
Γ

)2
+ 2Ω2

Γ2

. (2.130)

The effective detuning ∆eff = ∆−~k ·~v corresponds to the detuning of the laser plus
the Doppler shift. The cooling rate, averaged over many oscillations is Ėc = 〈Fav〉.

As the emission is spontaneous and it has a center-symmetric distribution, it
leads to a zero average momentum transfer, but causes a random walk in momentum
space, proportional to p2. Therefore, spontaneous emission contributes as a heating
mechanism, with rate

Ėh =
1

M

d

dt
〈p2〉 ≈ 1

2M
Γρ̂ee(v = 0), (2.131)

where it has been assumed that the velocity of the atoms is small and that the
emission is uncorrelated. Equilibrium of both rates leads to an expression for the
lowest achievable temperature [44]

kBT =
1

16
~
[(

1 +
Ω2

Γ2

)
Γ2 + 4∆2

]
(1 + ξ) (2.132)

where kB is the Boltzmann constant, and ξ is a parameter quantifying the anisotropy
of the spontaneous emission. For an isotropic emitters ξ = 1, whereas for a linear
dipole oriented along the motion axis ξ = 2/5 [44]. A rough estimation of the
average phononic occupation can be computed as kBT = n~ωx. In the low intensity
limit (Ω � Γ), for an isotropic emitter the minimum temperature is achieved for
the detuning

∆D = −1

2
Γ, (2.133)

corresponding to the energy

kBTD =
1

2
~Γ, (2.134)
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and in general

kBTD =
1

4
~Γ(1 + ξ). (2.135)

The actual steady-state temperature depends on the detuning of the laser, its in-
tensity, its orientation with respect to the axis of motion, and the orientation of the
transition dipole with respect to the laser propagation direction. An advantage of
using Doppler cooling is the ability to cool several motional modes simultaneously,
by having a laser beam with a propagation direction that overlaps with each mo-
tional mode, though the final temperature in each mode is in general different. For
most quantum optics experiments the temperatures achieved with Doppler cooling
are low enough, so no additional cooling stages are necessary. This is not the case
for quantum computation, where sideband cooling or other schemes are applied to
reach the motional ground state in order to avoid motional decoherence.

As we will see in the next chapter, the dipole transitions used for Doppler cooling
are not cyclic transitions, so that a second repumper laser is needed to repopulate the
excited state. To estimate the actual final temperature it is necessary to introduce
an effective decay rate Γeff = Γ1+Γ2, accounting for the two possible decay channels.

2.4 Summary

In this chapter we reviewed the principles of ion trapping using Paul traps. A general
framework to study the motion of the ions trapped in harmonic potential was pre-
sented, including the effects of trapping several ions simultaneously. Additionally,
we studied the theory describing the interaction of single atoms with coherent elec-
tromagnetic fields. This theoretical framework will be used to control the behaviour
of the atoms and their emission fields in the performed experiments. Although some
of the concepts presented in this chapter were developed by assuming electric-dipole
transitions, the treatment in terms of Rabi frequencies and saturation parameters
is similar for any kind of electronic transitions, including electric-quadrupole tran-
sitions and magnetic-dipole transitions, as we will apply in the next chapter.
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The Barium Experiment

In this chapter, the experimental setup used to trap and control single 138Ba+ ions
is described, including the trap, the laser system and the detections schemes. The
main component of the setup is a linear “Innsbruck style” Paul trap, in which several
ions can be trapped simultaneously. The light emitted by the ions is collected by
two high-numerical-aperture, low-aberration lenses, closely located at the sides of
the trap. These lenses allow a high collection efficiency of the emitted photons,
high optical resolution and small wavefront aberrations. The combination of these
features is crucial for the experiments presented in Chapters 4 and 5.

Additionally, we spectroscopically characterize the different electronic transitions
used in the experiments. In particular, we study the main features of the two
qubit transitions used in different parts of this thesis: the electric-quadrupole optical
transition and the magnetic-dipole RF transition.

3.1 Introduction: Why Barium?

Several ion species are used in quantum optics and quantum information processing
experiments. The criteria for selecting the species include fundamental limitations,
such as the existence of short-lived transitions, which are adequate to perform laser
cooling, or technical limitations such the availability of adequate lasers sources at
the required wavelengths and high-efficiency detectors at the emission wavelengths.
Another important criterion is the existence of long-lived states that can be used as
one of the states of a qubit. The presence of nuclear spin is in some cases desirable,
since it provides hyperfine structure which is advantageous for the realization of
magnetically insensitive qubits.

The mass of the selected species has a direct influence on how efficiently the
atom can be laser cooled and how fast the atom heats up due to environmental
conditions. The mass also has a direct impact on the time needed to perform high-
fidelity quantum logic operations between different ions, since they are typically
performed using their motional coupling.

35
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Species Cooling wavelength (nm) Optical qubit Nuclear spin
9Be+ 313 – 3/2

24Mg+ 279 – 0
25Mg+ 279 – 5/2
40Ca+ 397 at 729 nm 0
43Ca+ 397 at 729 nm 7/2
87Sr+ 422 at 674 nm 9/2
88Sr+ 422 at 674 nm 0

137Ba+ 493 at 1761 nm 3/2
138Ba+ 493 at 1761 nm 0
171Yb+ 370 – 1/2
174Yb+ 370 – 0
202Hg+ 194.2 at 282 nm 0

Table 3.1: Singly-ionized atomic species typically used in quantum optics ex-

periments

Natural candidates for quantum optics experiments are stable elements in the
second group of the periodic table (alkaline earth metals), although this is not a req-
uisite (transition metals such as Hg and lanthanoids such as Yb are also used). Since
the elements of the second group have two electrons in the outer shell when neutral,
there is only one electron remaining after singly ionizing them. These hydrogen-like
ions have simple electronic states structures, which reduces the complexity of their
control.

Table 3.1 lists some of the species often used in quantum optics and quantum in-
formation processing. Ca+, Ba+ and Sr+ have dipole-forbidden transitions between
S and D states, with excited state lifetimes of ≈ 1 s, 26 s and 0.3 s, respectively
[35, 50], which can be driven with commercially available lasers. These transitions
are used as qubits, since decoherence due to spontaneous decay is low for typical
experimental time scales. Additionally, high-fidelity read-out of the qubit state is
achievable in this transitions by using the electron-shelving technic, as we explain
later in this chapter. In other species without a direct optical qubit transition,
such as Be+ or Yb+, a qubit is realized by coupling different fine- or hyperfine-split
ground states, and driving the transitions using microwaves or coherent Raman
pulses [51,52].

Since we deal with the detection of single photons in the experiments described
in this thesis, it is important to detect them efficiently. For Ba+, we typically detect
the photons emitted by the fast-decaying cooling transition at 493 nm, at which the
detection efficiency with commercial room-temperature detectors (∼70%)is slightly
higher than those for Ca+ (∼40% at 397 nm) or Sr+ (∼60% at 422 nm)1.

The high detection efficiencies make Ba+ adequate for quantum optical experi-
ments performed in this thesis, where the isotope 138Ba+, with natural abundance
of 71.7% is used due to its simple internal structure, although other isotopes such
as 137Ba+ (abundance 11.3 %) have been proved useful for quantum computation
or fundamental quantum theory tests [53–55]. The main limitation posed by Ba+

1as reference, see Laser Components Blue Series avalanche photodiodes
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is its high mass. The coupling between motion and internal state scales with the
Lamb-Dicke parameter η (see Eq. (2.122)), which is proportional to 1/

√
M , with

M the mass of the ions. Therefore, the high mass of Ba+ makes the time needed to
achieve ground state cooling and to perform motional-based logic gates much longer
than for other species, such 40Ca+. Additionally, the high mass limits the achievable
trapping frequencies.

3.2 The Barium ion

3.2.1 138Ba+ electronic structure
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Figure 3.1: 138Ba+ relevant electronic transitions. a. States of the outer

electron relevant for this thesis. The vacuum wavelength for each transition

in nm (upper number) and the decay rate Γ/2π in MHz (bottom number) are

shown [56–58]. b. Zeeman splitting of the 6S1/2, 6P1/2, 5D3/2 and 5D5/2 man-

ifolds. The Landé factors are not taken into account in the scheme. The optical

and RF qubit transitions described in Section 3.4.2 and 3.4.3 are highlighted.

The electronic configuration of 138Ba+ is the same as for Xenon, with an additional
electron. The configuration of the relevant electronic states is shown in Fig. 3.1a.
All of the shown transitions can be driven with commercially available lasers. The
wavelengths in the visible spectrum can be achieved with diode lasers or through
second harmonic generation from infra-red diode lasers. The wavelengths 1761 nm
and 2051 nm are typically achieved within doped fiber lasers, or within optical-
parametric-oscillator (OPO) lasers. Recently diode lasers have become available for
these wavelengths.

In our experiment, Doppler cooling and detection is performed using the 493 nm
transition between the ground state 6S1/2 and the fast-decaying excited state 6P1/2

(from now on, the “cooling transition”). The excited state 6P1/2 spontaneously
decays to the ground state with decay rate Γc/2π = 15.1 MHz, emitting a 493 nm
photon, or to the metastable state 5D3/2 with decay rate Γr = 5.3 MHz, emitting
a ∼650 nm photon. Thus, the probability of direct decay to the ground state is
≈ 0.74. The metastable state 5D3/2 has a lifetime of ≈ 18 s, and therefore, to
achieve efficient cooling, it is necessary to pump out the population of this state
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using a laser at 650 nm. Both lasers need to drive the ion simultaneously in order
to achieve a closed cycle and continuously emit photons.

Electronic levels connected by both the 2051 nm and the 1762 nm transitions can
be used as optical qubits. Both of them have lifetimes of tens of seconds, namely
≈ 17.5 s and ≈ 47 s, respectively [57–59]. In order to have a high fidelity qubit
state read out, it is necessary to have one of the two states involved decoupled from
the transitions used for detection, a technique know as electron shelving. As the
state detection is done using the states connected by the 493 nm and 650 nm transi-
tions, the 1762 nm transition is used as an optical qubit, whose excited metastable
state 5D5/2 is decoupled from the detection transitions. This excited state is long
lived, and therefore, a laser driving the 614 nm transition is also needed in order to
repopulate the ground state in reasonable times, when necessary.

3.2.2 Zeeman spliting

In our experiments, we apply a weak magnetic field at the position of the ions to
define a quantization axis. This magnetic field splits the energy levels of states with
angular momenta ~J = ~L+ ~S, where ~L is the orbital angular momentum and ~S the
electron spin, resulting in 2J + 1 non-degenerate sublevels. This effect is known as
Zeeman-splitting2. The Zeeman substates are described with the magnetic quantum
number mj , which takes the values mj = −J,−J + 1, ..., J − 1, J . In the weak
magnetic field approximation, the energy shift due to Zeeman splitting is given by

∆Ej = µBmjgj | ~B|, (3.1)

where µB is the Bohr magneton and gj is the Landé factor, that can be calculated
as [42]

gj = gL
j(j + 1) + l(l + 1)− j(j + 1)

2j(j + 1)
+ gS

j(j + 1)− l(l + 1)− s(s+ 1)

2j(j + 1)
, (3.2)

with gL = 1 and gS ≈ 2 the electron orbital and the spin gyromagnetic ratio,
respectively. Fig. 3.1b shows the split states in the 6S1/2, 6S3/2 and 5S5/2 manifolds.

In our case, s corresponds to the electron spin, s = 1/2. The total orbital
angular momentum for the S, P and D states are l = 0, 1 and 2 respectively, in ~
units. Therefore, the Landé factors are 2, 2/3, 4/3, 4/5 and 6/5 for the 6S1/2, 6P1/2,
6P3/2, 5D3/2 and 5D5/2 respectively.

Transitions from a state with magnetic quantum number mi to a state with
magnetic quantum number mf implies a change of ~∆m = ~(mf −mi) in the total
angular momentum of the atom. Since the total angular momentum of the field-
atom system is conserved, the difference in angular momentum must be present in
the field. Therefore, to drive a transition with, e.g., ∆m = +1 (a σ+–transition),
we use a laser beam circular-right polarized about the quantization axis (the mag-
netic field), which contains the necessary angular momentum in polarization. The

2After Pieter Zeeman, who discovered it in 1987 when studing the effects of magnetic fields in
the spectra of different substances [60].
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Figure 3.2: Barium’s linear Paul trap. Scheme with the dimensions of

the linear Paul trap used for the experiments presented in this thesis, all the

distances are in mm. The location of the compensation electrodes “top” and

“side” is displayed.

same occurs during spontaneous emission, the emitted photon carries the angular
momentum corresponding to the change of atomic angular momentum ~∆m during
the transition. Transitions with ∆m = 0 (a π-transition) do not change the angular
momentum of the atom.

3.3 The Ba+ trapping and control apparatus

The experiments presented in this thesis are perfomormed using an “Innsbruck style”
linear Paul trap specially designed for Ba+. This trap is composed of four blade
electrodes, two opposite electrodes carry an in-phase RF voltage, while the other
two are grounded, thus providing the radial pseudo-potential confinement. Axial
confinement is provided by two end-caps, which are supplied with equal DC voltages.
The trap geometry is shown in Fig. 3.2, including the relevant dimensions. For a
more detailed description and design considerations see Chapter 4 in Ref. [61].

Ideally, in the described electrode configuration, the minimum of the pseudo-
potential and the sadle point of the DC potential coincide, but in reality they can
be displaced due to errors in the fabrication and assembly of the electrodes, or
due the presence of stray electric fields. As a consequence, the trapped ions will
not necessarily be located in the minimum of the RF pseudo-potential and the
micromotion will not be at its minimum. For this reason, additional compensation
electrodes are located around the main electrodes (Copper colored wires in Fig. 3.2),
to which DC voltages are applied. Residual axial micromotion, if present, can be
reduced by offsetting one of the end-caps with respect to the other. As the stray fields
can vary over time, the DC voltages necessary for compensation of the micromotion
must be adjusted from time to time. There are several methods to perform this
compensation [62]. In Sec. 3.5 we show the method used in our experiment.
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Figure 3.3: Barium’s linear Paul trap potential a Cuts at z = 0 and

x = 0 of the finite-elements simulated trapping potential. The simulations

were done using COMSOL Multiphysics® 4.4. and with the parameters shown

in Table 3.2 for one ion. The normal motional modes of the trapped ions follow

the plotted axes. b x, y and z trapping potentials about the center of the

trap. The three of them are very well fitted by quadratic potentials. Note that

the coordinate reference system used here corresponds to the directions of the

normal motional modes of the ions.

The trapping frequencies of a linear Paul trap can be roughly calculated using
the approximations [35]

ωx,y ≈
1√
2

|e|2URF

Mr0ΩRF
, (3.3)

ωz ≈
√

2κ|e|Ucap

Mz2
0

(3.4)

where r0 = 0.7 mm is the half distance between opposite blades, z0 = 2.2 mm is
the half distance between the end-caps, M ≈ 2.28 · 10−25 kg is the mass of 138Ba+,
Ucap is the voltage applied to the end-caps, URF is the amplitude of the RF voltage
applied to the blades, ΩRF is the angular frequency of the applied RF voltage, and
κ is a geometrical parameter. This geometrical parameter can be extracted from
measurements or from electric field simulations. Four our trap it is estimated from
measurements to be κ ≈ 0.112 [61].

The simulated trapping potential achieved with typical driving configurations is
shown in Fig. 3.3b, where the overlap with an harmonic potential around the center
of the trap is depicted. Table 3.2 shows the voltages and frequencies used in this
thesis, for experiments with one or two Ba+ ions. The RF voltage is produced by an
RF signal generator3, then amplified4 and stepped-up using a helical resonator [63].
The DC voltages are generated directly using a low-noise DC voltage supply5.

3Rhode & Schwartz SML01
443 dB gain, Mini-Circuits LZY-1
5ISEG EHQ 8040p
6The two radial frequencies are actually slightly different, namely 1.81 and 1.78 MHz, and 1.48

and 1.52 MHz, respectively
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1 ion config. 2 ions config.

RF freq. ΩRF/2π (MHz) 15.1 15.1

RF amplitude URF(V) 1400 1100

End-caps voltage (V) 1000 400

“Top” electrodes voltage (V) 260 1290

“Side” electrodes voltage (V) 200 600

Radial frequency ωy,x/2π
6(MHz) 1.8 1.5

Axial frequency ωz/2π (MHz) 0.9 0.6

Trap depth (eV) 27 22

q 0.44 0.35

Table 3.2: Electrode voltages and trap frequencies. The listed trapping fre-

quencies are measured with sideband spectroscopy (see Section 3.4.2). The trap

depths are estimated via COMSOL simulations. “Top” and “side” electrodes

are compensation electrodes.

3.3.1 Vacuum vessel

The trap is located at the center of an octagonal vacuum chamber (Fig. 3.4), with
twelve viewports providing optical access: eight CF-63-sized on the side, one CF-160
on the base and three CF-16 on the top flange (see Fig. 3.4). All theses viewports
have an anti-reflective coating for all the used light wavelengths.

The vacuum is maintained at the 10−11 mbar level by continuously pumping
with an ion-getter pump7. This pump, a Titanium sublimation pump, a Bayard-
Alpert vacuum gauge, and a valve, are connected to a six-way cross attached to the
octagon. All the electrical connections are made through feedthroughs in the top
vacuum flange (not displayed in Fig. 3.4).

Three pairs of magnetic field coils are attached on six octagon flanges in order
to produce a stable and uniform magnetic field at the position of the ions. The
three pairs configuration, one pair per axis (partially shown in Fig. 3.4), allows the
control of the direction and intensity of the magnetic field.

3.3.2 Light collection

In the experiments presented in this thesis, it is crucial to achieve collection and
detection efficiencies of the photons emitted by the trapped ions as high as possible.
Furthermore, in experiments involving interference of photons emitted by one or
different ions, such as the experiment presented in Chapter 4, the efficient collection
of photons in a single spatial mode, e.g., defined by a single mode fiber, is required.

There are several approaches for the collection of the emitted photons. Some of
them include:

� Use lenses to collimate the emission and direct it to a detector, as done in this

7Varian Vaclon plus 20 StarCell
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ion pump

valve

Ti-sub

magnetic �eld coils

trap

Figure 3.4: Vacuum vessel. The main chamber and the 6-ways cross are

shown. The ion getter pump, the Titanium-sublimation pump (Ti-sub), a

vacuum valve and a pressure gauge are located in the cross, while the main

chamber contains the trap, the collection optics and the ovens. The gryy lines

show all the possible axes providing optical access to the center of the trap.

Magnetic field coils, pointed with red arrows and red circle, are attached to

the exterior to provide a uniform magnetic field. There is an additional, not-

displayed coil at the bottom side of the vacuum chamber. Rendered by D.

Rotter.

thesis [64].

� Couple the emission to a resonant mode of a Fabry-Perot resonator and then
couple its output mode to a detector [65].

� Collimate the emission using a parabolic mirror with focus at the position of
the ion [66] and direct it to a detector.

� Collimate the emission using diffractive optical elements and couple it to a
detector [67].

� Couple the emission to the guided field of an optical fiber or other waveguides
and then couple it to a detector [68,69].

� Directly locate photon-detectors close to the atom [70].

� Couple the emission to the evanescent mode of, e.g., an optical fiber [71] 8.

Approaches such as direct coupling to an optical cavity can provide high light
collection, but the spatial properties of the emission are mapped into the mode of

8The successful coupling between the field of a charged atom and the evanescent field of an
optical fiber has not been reported, although, some important advances have been made, see https:

//quantumoptics.at/en/research/nanofiber.html

https://quantumoptics.at/en/research/nanofiber.html
https://quantumoptics.at/en/research/nanofiber.html
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Figure 3.5: Linear Paul trap and collection setup. Two high numerical

aperture objectives (HALOs) for collection of the emitted light are mounted

in x, y, z-possitioning stages at the sides of the linear Paul trap. The trap

axis z is tilted 22.5◦ with respect to the horizontal plane, and the x and y

axes are rotated 45◦ in order to provide optical access through the front and

back viewports of the vacuum chamber. A neutral-Ba oven dispenser is located

close to the trap. All the necessary electrical connections are made through

the electrical feedthrough in the displayed flange. The displayed flange is the

top flange of the vacuum chamber, so that all the components here shown are

indeed upside down. Photograph by D. Rotter.

the cavity, and are therefore lost. In our setup, the collection of the light is done
by placing two high numerical aperture laser objectives (HALO) close to the ions,
which has been demonstrated to be very versatile for quantum optics experiments
due the multiple achievable detection configurations (see Fig. 3.6 and Ref. [64]). The
crucial advantage of this approach in the context of this thesis is that the spatial
properties of the spontaneous emission are preserved, and can be imaged using
additional optics in, e.g., a CCD-camera, as we prove in Chapter 5. Additionally,
the collection systems allows us to efficiently couple the collected light into single
mode fiber (mode overlap > 80%).

The HALOs9 are located at each horizontal side of the ion trap, as shown in Fig.
3.5. Each HALO has an NA = 0.4, focal length 25 mm and wavefront distortion
< λ/10 at λ = 493 nm 10. Each one covers 4% of the solid angle and is mounted on
xyz slip-stick piezo translation stages allowing precise positioning and alignment11.
The viewports on the detection axis also have a low wavefront distortion < λ/10.
This last feature is necessary for the interference and imaging experiments presented
in Chapters 4 and 5.

9Linos, cutomized four non-cemented elements lens objective
10For a more detailed description of the custom-designed HALO objectives see Ref. [72]
11Attocube xyz-positioners, ANPxyz 100, which are currently inoperative.
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a b

c d

Figure 3.6: Detection configurations. The detection through a pair of high

resolution lenses close to the ions allows several configurations. a. Each lens,

plus additional out-of-vacuum focusing lenses, is used independently to collect

the light emitted in opposite directions. b. The light emitted in the right

direction is back-reflected to the atom. The fields that initially were emitted in

opposite directions are superimposed, allowing for interference experiments. c.

The field emitted by two different ions can be partially collected and directed

to separate detectors, with negligible crosstalk. d. The emission of one ion can

be superimposed with the emission of a second ion. This configuration allows

interference experiments between the emission of different ions.

Collection efficiency

The light collection efficiency achievable using lenses is given by the overlap of the
spatial distribution of the emission and the solid angle covered by the lens. The
numerical aperture NA of axial-symmetric lens is defined as

NA = n sinθ, (3.5)

where θ is the half-aperture angle, and n is the refraction index of the surrounding
medium, n = 1 in our case (vacuum). The corresponding solid angle collected by
such a lens is given by Ω = 2π(1− cos θ).

In this thesis we will deal with the detection of the spontaneously emitted photons
by transitions where the angular momentum of the atom about the quantization
axis is not changed, i.e., a π–transition (∆m = 0), or where the angular momentum
of the atom is changed by one quantum, i.e., a σ±–transition (∆m = ±1). The
spatial intensity distribution of the emitted photons for each of these transitions
corresponds, respectively, to that of a linear or a circular dipole, i.e., [73]

Iπ(Θ) =
3

8π
sin2Θ, (3.6)

Iσ±(Θ) =
3

16π
(1 + cos2 Θ), (3.7)

where Θ is the polar angle with respect to the quantization axis defining the direction
of observation. The portion of the emission collected by a lens with half-aperture θ
and optical axis along the direction given by a particular angle Θ is then calculated
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as [74]

Cπ(Θ, θ) =
1

8

(
4− 3 cos θ − cos3 θ + 3

[
cos3 θ − cos θ

]
cos2 Θ

)
, (3.8)

Cσ±(Θ, θ) =
1

128
(3 [cos 2Θ− 21] cos θ − [3 cos 2θ + 1] cos 3θ + 64) . (3.9)

In our experiments the quantization axis is defined by the magnetic field produced
by the coils outside of the vacuum chamber. The current in the coils is tuned to
achieve a uniform magnetic field around the trap center, oriented horizontally as
shown in Fig. 3.8. The angle between the quantization axis and the detection axis
(ĵ in Fig. 3.8) is then 90◦, which together with the NA = 0.4, yields a collection of

Cπ(π/2, arcsin 0.4) ≈ 6.0%, (3.10)

Cσ±(π/2, arcsin 0.4) ≈ 3.5% (3.11)

for each lens. Therefore, combining the two HALOs, it is possible to detect up to
12% of the light emitted by a π transition and 7% of the light emitted by a σ±

transition.

The efficiency of this approach is limited mostly by technical constraints, such
as the maximum achievable NA or the optical clearance provided by the electrodes
of the trap. Another difficulty is that, even though higher NA lenses and electrodes
configurations with full clearance can be realized, locating dielectric materials close
to the charged atoms (e.g., the surface of a lens) can dramatically distort the trapping
potential. In Chapter 6 we discuss how a new light-collection approach based on a
spherical mirror, a high-NA spherical lens (NA = 0.7) and a pseudo-planar electrode
configuration can be used to drastically increase the collection efficiency.

Light detection

Depending on the experiment, we detect the light collected by the HALOs with
single-photon detector modules (APDs) and/or CCD-cameras. The detectors used
in this thesis and their main features are listed here:

� APD Count-20B-FC, Laser Components

– Quantum efficiency at 493 nm ≈ 70 %

– Dark count rate ≈ 10 counts/s

– Dead time ≈ 60 ns

– Connector for fiber coupling

There are two of these single-photon detector modules available in our labo-
ratory. Typically, the light collected by the HALOs is coupled to single-mode
fibers, which are then connected to these detectors. The single-mode fibers cou-
pling, plus additional polarization and wavelength filters, allows the detection
in a single optical mode, enabling the realization of experiments that require
high-visibility interference of the emitted fields. This is crucial in inteference
experiments such as the one presented in Chapter 4. These detectors can be
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operated in gated-mode with detection windows shorter than 100 ns and set in
Hanbury Brown–Twiss configuration in order to measure short time-scale cor-
relation functions. In this configuration, and given the low dark-counts rate,
we have been able to measure the lowest coincidence rate in an atomic photon
source, namely g2(0) = (1.9 ± 2) · 10−3, without background subtraction, nor
post-selection [75].

The output electrical pulses of the detectors are counted using several devices.
The main photon-counting device12 features two identical, synchronized but
independent, input channels, with time-tagging resolution of 4 ps, plus four
additional channels for marking and triggering.

We also use the two detectors in a configuration similar to the one shown
in Fig. 3.6c, but using only one of the HALOs. This configuration allows
fast discrimination of the state of each ion, counting the number of photons
detected in a given time by each ion in separate detectors.

The maximum end-to-end detection efficiency achieved using both APDs,
single-mode fiber-coupled and both HALOs, is 3 %, mostly limited by the
NA of the HALOs and mode-matching into the fibers.

� Electron-multiplying CCD-camera Andor iXon DU-897: Low noise

– Quantum efficiency at 493 nm ≈ 95 %

– Active pixels: 512 × 512

– Pixel size: 16 µm × 16 µm

– Dark current: 0.001 electrons/pixel/s at -85 ◦C

– Maximum read-out speed: 10 MHz/pixel

– Linear absolute electron multiplier gain: 1-1000×
– Minimum effective read-out noise at maximum gain: < 0.1 electron

By focussing the light collected with the HALOs it is possible to image the
trapped ions. Given the resolution of the optical system and the camera it is
possible to distinguish multiple ions, typically separated by 3 to 8 µm, with
negligible overlap. Fig. 3.7 shows a chain of six ions imaged while emitting
fluorescence. The low-noise features of this camera allows to detect light at
the single-photon level. These noise features are a consequence of the low
sensor temperature. The typical CCD-sensor operating temperature, under
air-cooling only, is −60 ◦C, but −85 ◦C can be achieved when low gains are
set. Lower temperatures (down to 100 ◦C), and therefore lower noise level,
can be achieved with water cooling.

� Electron-multiplying CCD-camera Andor Luca DL-604M-OEM: Small
pixels

– Quantum efficiency at 493 nm ≈ 52 %

– Active pixels: 1004 × 1002

– Pixel size: 8 µm × 8 µm

– Dark current: 0.17 electrons/pixel/s at -20 ◦C

12PicoQuant PicoHarp 300
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5 μm

Figure 3.7: Trapped 138Ba+ imaged with a CCD camera. A chain of six
138Ba+ ions along the trap axis. The trap axis is tilted 22.5◦ with respect to

the horizontal plane of the laboratory.

– Maximum read-out speed: 13.5 MHz/pixel

– Linear absolute electron multiplier gain: 1-1000×

The smaller pixel size of this camera, in comparison with the iXon camera,
allows the acquisition of higher-resolution images. We use it mostly for the
precise calibration of the magnification of the optical detection system (see
Chapter 5).

� Intensified CCD-camera Andor iStar DH334T-18U-63: Fast gating

– Quantum efficiency at 493 nm ≈ 50%13

– Active pixels: 1024 × 1024

– Pixel size: 13 µm × 13 µm

– Dark current: 0.25 electrons/pixel/s at -30◦C

– Maximum relative gain: 349×
– Maximum read-out speed: 5 MHz/pixel

– Minimum optical gate width: 4.2 ns (rising time 0.15 ns)

– Maximum gating repetition rate: 500 kHz

– Resolution limit: 30 µm

The main feature of this intensified CCD-camera14 is that the intensifier can
be gated extremely fast. This becomes useful, as we will see in Chapter 5,
when we need tp synchronize the opening of the intensifier with a laser pulse
triggering the emission of a single photon by the ion, and keep it open only
the time necessary for the arrival of the photon in the detector. This allows
capturing images only with specially prepared photons. The short gating times
also allow the direct tracking of the micro- and secular motion of the ion in the
trap. This camera, in comparison with the others, features the worst nominal
resolution (30 µm), more than twice the pixel size15. However, this is not a

13Photo-cathode Gen 3, HVS
14A description of the functioning principle of the camera can be found in http://www.andor.

com/learning-academy/intensified-ccd-cameras-the-technology-behind-iccds
15The resolution is limited by the gap and the bore size of the microchannel plate

http://www.andor.com/learning-academy/intensified-ccd-cameras-the-technology-behind-iccds
http://www.andor.com/learning-academy/intensified-ccd-cameras-the-technology-behind-iccds
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limitation for the experiments in this thesis, where we mostly use this camera
to estimate the centroid of the ion images. We also note that the phosphor
(type P43) used in the fluorescent screen of this camera has a decay time of
2 ms to 10% fluorescence intensity, which can limit the maximum repetition
rate in some scenarios.

3.3.3 Laser system

As mentioned above, our laboratory is equipped with the lasers needed to drive the
138Ba+ ion transitions at 493 nm, 650 nm, 1762 nm and 614 nm. Additionally, a
laser at 413 nm is used to photo-ionize neutral Barium. The axes used to access the
ions are shown in Section 3.3.3. The wavelenghts of all these lasers are monitored
using wavemeters16, and in the following, we describe the laser sources and locking
schemes used in each case.

� 493 nm. This laser light is generated by a Toptica TA-SHG Pro system.
A master diode laser at 986 nm is amplified using a tapered-amplifier, and
subsequently converted to 493 nm using a non-linear crystal in a bow-tie optical
resonator. The output power at 493.4 nm is 300 mW. The master laser at 986
nm is locked to an optical cavity, with a finesse of about 1200, using the Pound-
Drever-Hall (PDH) scheme [76]. A small portion (1 mW) of the 493 nm light
is frequency shifted and used for Modulation-transfer-spectroscopy of Te2 in a
hot cell (∼ 700 ◦C) [77]. Since Te2 has a bright transition only∼ 500 MHz away
from the 493 nm Ba+ transition, the spectroscopic signal is used as feedback to
lock the length of the cavity to which the master laser is locked. The bandwidth
of the laser after locking is estimated by dark-resonances spectroscopy of the
Barium ion to be δg/2π ≈ 100 kHz.

The output of the stabilized laser at 493 nm is divided into six different beams.
Each light beam can be frequency-shifted and blocked independently by using
free-space AOMs. The beams are coupled via single-mode optical fibers to the
trap setup where the polarization is carefully adjusted. The laser radiations
are used for:

– A close-to-resonance beam, vertically polarized, is used as the main cool-
ing beam.

– A close-to-resonance beam, left-circularly-polarized is used to drive the
∆m = −1 transition, for optical pumping and fast excitation.

– A close-to-resonance beam, right-circularly-polarized beam is used to
drive the ∆m = +1 transition, for optical pumping and fast excitation.

– A ∼ 100 MHz blue-detuned beam, right-circularly-polarized is used to
drive the ∆m = −1 transition and is planned to be used as pump beam
for EIT-cooling, in a scheme similar to the one shown in Ref. [78].

– A ∼ 100 MHz blue-detuned beam, horizontally-polarized is used to drive
the ∆m = 0 transition and is planned to be used as probe beam for
EIT-cooling.

16A HighFinesse WS/7 for 986 nm, 650 nm and 413 nm, and a Bristol 671 for 1228 nm and 1762
nm.
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– A close-to-resonance beam is used coupled in the same fiber as the 650
nm repumper and the photo-ionization beams, in order to easily load ions
in the trap.

The power of these beams can be adjusted from microwatts to a maximum
power of several milliwatts, and switched at a speed of tens of nanoseconds.

� 650 nm. This laser light is generated by a Toptica DL pro system, with an
output power of ≈ 30 mW. The frequency is locked to an optical cavity with a
finesse of about 5000 using the PDH scheme. The linewidth of the laser after
locking is δr/2π ≈ 100 kHz, estimated by dark-resonances spectroscopy of a
trapped ion. The output of the laser is coupled to a double-pass AOM and
divided in three main beams, which are then coupled into single-mode fibers.
These three beams are:

– The main repumper beam. This beam enters the chamber with vertical
polarization, superimposed with the 493 nm cooling beam.

– Loading beam. This beam is coupled into a single mode fiber together
with 493 nm and 413 nm beams to provide easy loading of ions in the
trap.

– Fast-pulsed beam. This beam is coupled to a fiber-integrated amplitude
modulator17 after the AOM. This modulator can generate laser pulses
with rise time of ≈ 2 ns and up to 30 mW power. These capabilities are
not used in this thesis.

� 1762 nm. This laser light is produced by a Koheras Adjustik Thulium doped
fiber laser system. The output power is 50 mW, but since the laser defectively
emits in two different modes with a frequency difference of about 70 MHz
and orthogonal polarizations, we filter out half of the emitted power. The
wavelength of the used mode is locked to an optical cavity with finesse F ≈
193000 using the PDH scheme. Details about the feedback scheme used can be
found in Ref. [46]. The linewidth of the laser after locking has been estimated
by spectroscopic measurements on the ion to be ≈ 630 Hz [79]. After passing
it through an AOM for fine frequency tuning and switching, it is polarization
filtered and coupled into a single-mode fiber. Finally, there are 2 mW of power
available at the position of the ions, with tunable polarization and focusing,
allowing efficient addressing of single ions and different Zeeman transitions.

Due to the limited available power and intensity stability issues, this laser
is going to be replaced by a customized Toptica diode system and a fiber
amplifier.

� 614 nm. This laser light is produced by a Toptica DL-SHG system. A master
diode laser at 1228 nm is frequency-doubled using a non-linear crystal in a bow-
tie optical resonator. The master laser can be locked to an optical cavity using
the PDH scheme, although during all the experiments discussed in this thesis
it was free-running, and the wavelength was monitored using a wavemeter.
The output power is 1 mW. After coupling it to an AOM and a single-mode
fiber, there are 300 µW available at the trap setup.

17Jenoptic AM660 fiber EOM
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22.5°

Side view Front view

Top view

Figure 3.8: Linear Paul trap laser directions. The three directions used

for the laser beams driving the ions are denoted ~A, ~B and ~C. The ĵ and k̂

vectors lie in the horizontal plane, parallel to the bottom flange of the vacuum

chamber (and the optical table) and the vector î is vertical. The trap is tilted

22.5◦ with respect to the k̂ vector. Axis ~A (green) is used for the 493 nm

Doppler cooling and 650 nm repumper beams. Axis ~B (red) is used for optical

pumping and excitation of the ions, with σ−– and σ+–polarized 493 nm beams.

Additionally, the axis ~B is used for the photo-ionization 413 nm beam. The

axis ~C (blue) is used for the beam driving the 1762 nm transition. The axis

used for detection is parallel to the axis k̂.

� 413 nm. The laser light used for photo-ionization is produced directly by
a Nichia NDVA416T laser-diode mounted in a Toptica DL100 system. The
system can output up to 45 mW, but is operated at 10 mW. The laser is
operated free-running and the wavelength is monitored with a wavemeter.
The laser beam is coupled together with a 493 nm and a 650 nm laser beam
into the same optical-fiber, ensuring the mutual alignment of the three beams
when loading ions into the trap.

Laser access

In order to provide optical clearance to the center of the trap through all the view-
ports, the Paul trap is tilted with respect to the horizontal plane, as shown if Fig. 3.5.
The presence of the objectives entails additional restrictions for the laser access to
the center of the trap, but the objective holders are designed to provide enough
clearance for all the lasers.

The axes used for the different lasers are shown in Fig. 3.8. The HALOs are not
displayed for the sake of clarity. The horizontal axis ~A = (−ĵ+ k̂)/

√
2 is used for the
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Doppler-cooling beam at 493 nm and the 650 nm repumper beam. This provides a
good overlap between the propagation direction of the beam and the three motional
directions of the atoms in the trap, which is a condition for efficient cooling.

The horizontal axis ~B = −ĵ is used for driving electronic σ-transitions in the
atom, and therefore for optical pumping. Additionally, the ~B axis is used for the
photo-ionization beam (see Sec. 3.3.5), and planned for a pump beam for EIT
cooling. The axis ~B is tilted 22.5◦ with respect to the axis of the trap. Axes ~A and
~B are parallel to the bottom flange. The axis ~C = î, normal to the bottom flange,
is used for the 1762 nm laser beam to address the qubit transition. The axes of the
trap, which also correspond to the direction of the ion motional-modes, x̂, ŷ and ẑ,
can be written as a function of the vector î, ĵ and k̂ (Fig. 3.8) as

x̂ =
1√
2

cos
π

8
î+

1√
2

sin
π

8
ĵ +

1√
2
k̂ (3.12)

ŷ =
1√
2

cos
π

8
î+

1√
2

sin
π

8
ĵ − 1√

2
k̂ (3.13)

ẑ = −sin
π

8
î+ cos

π

8
ĵ (3.14)

All of the lasers, except the 1762 nm laser, are focused down to a waist size of
about 20 µm in the center of the trap, which is larger than the spacing between
different ions (∼ 5 µm) and therefore illuminate several ions simultaneously. The
1762 nm beam is focused using a custom combined beam-expander and focusing
objective18 to a waist diameter of about 5 µm.

3.3.4 Control system

The control of experiment sequences and parameters is done through the home-made
“TrICS”19 software. This software centralizes the control of most of the devices used
in the experiment, allowing the setting of parameters such as the detuning and power
of lasers, the voltages driving the Paul trap, the length of the optical cavities used
for laser locking, switching of lasers, etc. It also handles the read-out of the photon
counter, cavities temperatures, photodiode intensities, etc.

All of the synchronous processes needed in the experiments presented in this the-
sis are handled through a home-made device, the so-called “PulseBox” [80,81]. The
PulseBox, also controlled through TriCS, has 32 digital outputs that can generate
pulses with rise time shorter than 1 ns, with durations ranging from nanoseconds to
seconds and programmable delays. These pulses are used as switching signals for the
AOMs controlling the laser beams and other devices. Additionally, the PulseBox can
host up to 16 direct-digital-synthesizers (DDS) for the generation of phase-coherent
RF pulses, and up to 8 digital inputs. The PulseBox, therefore, is used to generate
experimental sequences which are composed by laser pulses, scanning of parameters
such as laser detuning, counting of the photons emitted by the atoms. The PulseBox
also allows the triggering of in-sequence actions through the detection of pulses in

18Lens-optics
19Trapped ion control software
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the input channels. The electronic pulses generated by the Pulsebox have a time
precision and jitter well bellow one nanosecond [80].

3.3.5 Loading

The loading of 138Ba+ into the trap is done through photo-ionization of neutral
Barium in the vicinity of the trap’s center. The neutral Barium is deposited as
compressed-powder in two cylindrical ovens, with internal radius about 2 mm and
about 3 cm long. The ovens, partially visible in Fig. 3.5, are located close to the
trap, and oriented towards its center. In order to expel neutral Barium, the oven is
resistively heated-up up to about 550 K by applying a current of 6 A.

The photo-ionization of the neutral atoms is then achieved through a two-photon
process with a single 413.243 nm focused laser beam, which crosses the atomic
beam in the center of the trap [61]. The first step of the photo-ionization drives an
intercombination line from the 1S0 to the 3D1 state. From there, the energy of a
second 413 nm photon is enough to unbind the electron. Additionally, a 493 nm and
a 650 nm laser beams are co-propagated in a single-mode fiber, in order to cool and
detect the ions when trapped, ensuring their relative alignment. At this stage, the
detection is done using a camera, to be able to count the number of trapped ions.
The loading of ions is probabilistic, happening at random times. With a photon-
ionization beam of 0.5 mW, we achieve an average loading rate of ≈ 2 ions/min.
After loading and cooling, the ion can be stored in the trap for periods of up to two
weeks, even without continuous laser cooling.

One of the disadvantages of this method is that using 3D1 as intermediate state,
does not allow an efficient emission of fluorescence, because it is a metastable state,
with a half-life in the order of 107 s [82]. With other approches where the first step
is a dipole-allowed transition (typically used when trapping Ca), the measurement
of the fluorescence allows the tuning of the wavelength of the photo-ionization laser
and measurement of the atomic flux. A more efficient photo-ionization process for
Barium with a dipole-allowed transition is described in Ref. [83].

3.4 Spectroscopy of Ba+

In the following, the different spectroscopy techniques used to characterize the tran-
sitions used in our experiments are presented. The spectra obtained are used to
estimate different parameters related with the trapping and driving of the ions.

3.4.1 Resonance fluorescence spectrum

The resonance fluorescence spectrum is measured by continuously driving a trapped
ion with close-to-resonance cooling (493 nm) and repumper (650 nm) beams, while
varying the detuning ∆r of the repumper beam. Both beams are linearly polarized
and drive all possible transitions between the involved states. The magnetic field
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Figure 3.9: Resonance fluorescence spectrum. Emission spectrum of a

single 138Ba+ ion in the presence of magnetic field, as a function of repumper

detuning ∆r. The data (black curve) is fitted using the steady-state solution of

the eight-level Bloch equations (red curve). From the fit, unknown parameters

of the driving fields can be estimated (see main text).

applied using the coils prevents population trapping in the stretched states of the
5D3/2 (mj = ±3/2) manifold. As discussed in Section 3.2.2, the presence of a mag-
netic field splits the energies of the electronic states, yielding eight non-degenerate
levels: two in the 6S1/2 manifold, two in the 6P1/2 manifold and four in the 6P3/2

manifold. The evolution of the system can be described using an eight-level Bloch
equations set, which can be deduced following the same procedure as the one pre-
sented in Section 2.3.2, but considering all the possible excitation and decay channels
between the eight states [61]. Due to its complexity, this set of equations does not
have a general analytical solution, but can be solved numerically using different
methods. These methods are included in the available quantum optics computation
toolboxes, such as the Quantum Optics Toolbox for Matlab [84], the Quantum Tool-
box in Python (QuTiP) [85] or the Julia Framework for Open Quantum Dynamics
(QuantumOptics.jl) [86].

An example of a measured spectrum as a function of the repumper detuning ∆r

is shown in Fig. 3.9 (black curve), where several peaks and valleys are observed.
They are due to the dynamics of the eight-level system, and correspond to partial
population trapping in dark states, as discussed in Section 2.3.2. The numerically
calculated steady state solution for the total population of the 6P1/2 manifold can be
fitted to the measured spectrum (Fig. 3.9, red curve) in order to estimate unknown
parameters such as Rabi frequencies, laser detunings, magnetic field magnitude,
laser linewidths and laser polarizations. From the data shown in Fig. 3.9, the
Rabi frequency and detuning of the cooling beam are estimated to be Ωg/2π =
(23 ± 1) MHz and ∆g/2π = (24 ± 1) MHz. The Rabi frequency of the repumper
beam is estimated to be Ωr/2π = (14.7± 0.3) MHz. The magnitude of the magnetic
field is not extracted from this spectrum, but instead from the spectrum of the 1.7
µm transition, as explained in the following section.
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493 nm cooling 

493 nm optical pumping

614 nm repumper

1.7 μm scanning

650 nm repumper

detector

2 ms 20 μs 1 ms 2 ms20 μs

Figure 3.10: Optical qubit transition spectroscopy sequence. Sequence

used for the spectroscopy of the 1.7 µm transition. The only scanned parameter

is the detuning of the 1.7 µm pulse.

3.4.2 The optical qubit transition

Spectroscopy of the 1.7 µm quadrupolar transition is performed using the pulsed
sequence shown in Fig. 3.10. First, the ion is illuminated with a 614 nm repumper
for 20 µs in order to depopulate de 5D5/2 manifold. After this stage nearly 100%
of the population is in the cooling levels (6S1/2-6P1/2-5D3/2). Then, the ion is
Doppler-cooled for 2 ms by the 493 nm cooling beam and the 650 nm repumper.
Afterwards, the ion is illuminated with the 493 nm optical-pumping beam, which is
left-circular polarized about the quantization axis, set by the magnetic field. This
optical pumping beam can excite only the |6S1/2,mj = +1/2〉 → |6P1/2,mj = −1/2〉
transition. After 20 µs of optical pumping the population of the |6S1/2,mj = −1/2〉
state p− is higher than 99.98%. The ion is then illuminated with the 1.7 µm beam,
with a detuning ∆o.q. which is scanned for different repetitions of the sequence.
Depending on this detuning, the population may or may not be transferred to one
of the states of the 5D5/2 metastable manifold depending on ∆o.q.. To discriminate if
the population was transferred the same lasers used for cooling are turned on; if the
ion emits light is said to be in a ‘bright’ state, and it means that it was not transferred
to the metastable state. If it does not emit light we call it ‘dark’, and it means
that the population is trapped in one of the metastable states, which are outside
the cooling-cycle transitions. This technique is known as electron-shelving [87].
During this period of 2 ms (which is much shorter than the natural decay rate of
the metastable state) a detector is turned on and the emitted photons are counted.
The number of photons collected without any 1.7 µm pulse is used to define the
excitation probability equal to zero (maximum fluorescence rate), and the number
of photons detected when the ion is dark, is used to define the excitation probability
equal to one.

The sequence is repeated 100 times with the same detuning ∆o.q. in order
to gather statistics about the mean excitation probability of the 1.7 µm pulse.
Fig. 3.11a shows the spectrum of the 1.7 µm transition, where the detuning ∆o.q.

is scanned in a range of 35 MHz with 4000 different data points. The zero detun-
ing reference is set arbitrarily. The spectrum clearly shows all of the quadrupole
allowed transitions from the initially prepared state (|6S1/2,mj = −1/2〉), including
carriers and motional sidebands. To observe the excitation spectrum starting from
the |6S1/2,mj = +1/2〉 state, it is necessary to invert the polarization of the optical
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Figure 3.11: Optical qubit transition spectra. a. Excitation spectrum of

the 1.7 µm transition from the initial ground state 6S1/2, mj = −1/2 of a single

ion. The plot shows the five different quadrupole-allowed carrier transitions

and their respective sidebands. The carrier transitions are separated by ≈ 7.48

MHz, corresponding to a Zeeman spliting of the 5D5/2 states produced by a

magnetic field with magnitude B ≈ 4.45 G. b. Carrier and first sideband of

the |6S1/2, mj = −1/2〉 ↔ |5D5/2,mj = −5/2〉 transition for a single ion. Blue

and red sidebands are labelled with the respective colors b. Carrier and first

sideband transitions of the |6S1/2,mj = −1/2↔ |5D5/2,mj = −5/2〉 transition

for two ions. Note that the trap parameters used during the acquisition of the

spectra a and b are different (see main text).

pumping beam only.

From the spectrum of Fig. 3.11a it is possible to deduce the magnitude of the
applied magnetic field, since the energy difference between different carrier transi-
tions corresponds directly to the Zeeman splitting of the 5D5/2 state. The observed
splitting is (7.48± 0.04) MHz, which, using Eq. 3.1, corresponds to a magnetic field
magnitude | ~B| = (4.45± 0.03) G.

Fig. 3.11b shows a narrower frequency range scan of the |6S1/2,mj = −1/2〉 ↔
|5S5/2,mj = −5/2〉 transition for a single ion, where the first red and blue secular
motional sidebands are clearly displayed. The axial trapping frequency is the fre-
quency difference between the COM modes to the carriers, ωz/2π = (0.69 ± 0.01)
MHz. In the same way, the radial trapping frequencies are measured to be ωx,y/2π =
(1.22±0.04) MHz. The presented spectrum does not have enough resolution to show
separate peaks for the two radial motional mode due to saturation effects. To pre-
cisely measure the position of these peaks, it is necessary to reduce the intensity of
the excitation laser. Doing this shows a splitting of the axial frequencies of about
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Figure 3.12: Rabi oscillations in the optical qubit transition. a. Rabi

oscillations in the |6S1/2,mj = −1/2〉 ↔ |5D5/2,mj = −5/2〉 carrier transition.

Four full Rabi oscillations are displayed, with a Rabi frequency of Ωo.q./2π =

(0.208± 0.001) MHz. b, c and d show detection histograms for pulse lengths

0, 1.2 an 7.2 µs respectively. The purple dashed line shows the discrimination

threshold between the dark and bright states.

30 kHz.

Fig. 3.11c shows the excitation spectrum of one ion when two ions are trapped
in a chain along the z-axis. In this case there is a second motional mode in each
oscillation direction. The trapping parameters are different from those used in
Fig. 3.11b, so that the axial modes have frequencies ωz,COM/2π ≈ 0.6 MHz and
ωz,stretch/2π ≈ 0.6 MHz, whereas in the radial direction ωx,y,COM/2π ≈ 1.5 MHz and
ωx,y,stretch/2π ≈ 2.6 MHz.

Rabi oscillations

Rabi oscillations between two electronic states can be observed by fixing the detuning
of the 1.7 µm beam such that is on resonance with one of the transitions, and
scanning its pulse length. Fig. 3.12a shows Rabi oscillations in a single ion using
a sequence similar to the one shown in Fig. 3.10a, but with the detuning of the
1.7 µs pulse resonant with the |6S1/2,mj = −1/2〉 ↔ |5D5/2,mj = −5/2〉 carrier
transition. The pulse length is varied from 0 to 20 µs.

As the linewidth of the driving laser is narrow enough to excite only the carrier
transition, the effect of a laser pulse with length t and phase ϕ is given by the
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operator

R̂(θ, ϕ) = exp [θ/2(cosϕσ̂x + sinϕσ̂y)] (3.15)

where θ = Ωo.q.t is known as pulse area, Ωo.p. is the Rabi frequency of the driven
transition, and the Pauli operators σ̂x and σ̂y are defined as in Eq. 2.47, by labelling
the two electronic states involved as

|g−〉 ≡ |6S1/2,mj = −1/2〉 (3.16)

|e〉 ≡ |5D5/2,mj = −5/2〉, (3.17)

which form our optical qubit. If the initial state is the ground state |g−〉, the
probability of exciting the state |e〉 is given by

Pe(t) =
∣∣∣〈e|R̂(θ, φ)|g−〉

∣∣∣2 (3.18)

=
1

2
(1− cos θ), (3.19)

as predicted also by Eq. 2.70. It is worth noticing that, for a quadrupole S↔D
transition, the induced electric-quadrupolar moment Q̂ couples to the gradient of
the magnetic field, i.e.,

HI = Q̂∇E(t). (3.20)

In this case, the resonant Rabi frequency for the transition connecting the states
|S,ms, j〉 ↔ |D,mD, j

′〉 when driven with plane wave, is theoretically defined as
[35]

Ω =

∣∣∣∣eE0

2~
〈S,mS , j|(~ε · ~r)(~k · ~r)|D,mD, j

′〉
∣∣∣∣ , (3.21)

where ~ε is the polarization of the driving beam, ~k its wavevector, E0 its amplitude
and ~r is the position operator of the electron (relative to the nucleus). Different from
the dipole transitions case, in quadrupole transitions the Rabi frequency depends on
the field gradient instead of the field amplitude, but the Rabi oscillation exhibits the
same behaviour. As already mentioned Eq. (3.21) is valid when the driving field is a
plane wave. In our experiments this is not true since we use strongly focused beams,
and therefore, corrections to this equation must be applied. A general expression in
terms of the quadrupole momentum operator can be found in Ref. [35].

The oscillations in Fig. 3.12 display a Rabi frequency of Ωo.q./2π = (0.208 ±
0.001) MHz and a π-pulse time of (2.40 ± 0.01)µs. A pulse of length 2.4 µs almost
completely transfers the population to the metastable state, with more than 99.5%
efficiency. Fig. 3.12b, c and d show the detection histograms for 100 experimental
repetitions of three different pulse lengths. The detected distributions for a bright
and dark ion do not overlap, and the background and dark counts are negligible.

Longer measurements show that the contrast of the Rabi oscillations decreases
to 50% at about 200 µs. The contrast at longer times is mostly limited by the
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Figure 3.13: Optical qubit transition Ramsey experiment sequence.

Sequence used for measurement of Ramsey fringes in the optical qubit tran-

sition. Two 1.7 µm π/2-pulses separated by a delay time τ drive the optical

qubit transition. The scanned parameter is the phase ϕ of the second pulse,

respective of the phase of the first pulse. Different time delays allows us to

deduce the coherence time of the qubit.

intensity fluctuations of the driving beam, the ion motion and the 50 Hz oscillation
of the magnetic field due to the electical supply line frequency. The latter can be
compensated by synchronising the experiments with the supply line, although this
strongly limits the repetition rate. More details can be found in Ref. [79].

Ramsey fringes

To benchmark the coherence of the light-atom interaction and the coherence of the
atomic transition in our setup we measure Ramsey fringes. This method permits not
only to obtain information about the populations, but also of the phase evolution
of the atom with respect to the driving field. To do so, after Doppler cooling and
preparing the ion in the initial state |g−〉, we apply two laser pulses with pulse area
θ = π/2, and with a relative phase difference ϕ in the rotating frame, separated by
a delay time τ . The phase of the first pulse is set as the reference phase. The action
of the two different pulses is represented by the operators R̂(π/2, 0) and R̂(π/2, ϕ),
defined in Eq. 3.15. The first pulse prepares the coherent superposition

1√
2

(|g−〉+ e−i
π
2 |e〉). (3.22)

During the time τ , the atom evolves freely (i.e., not through the interaction with the
laser field), meaning that the relative phase between the states involved can change,
i.e, the state evolves to

1√
2

(|g−〉+ ei(−
π
2

+ϕfree)|e〉). (3.23)

The action of the second pulse depends on the accumulated phase during the free
evolution. If the accumulated phase during the free evolution is ϕfree = 0 in the
rotating frame, i.e., there is no phase evolution, the second pulse will produce the
state

1√
2

[(
e−iϕ − 1

)
|g〉+ i

(
eiϕ + 1

)
|e〉
]
, (3.24)
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Figure 3.14: Ramsey fringes of the optical qubit. a. Ramsey fringes

with zero delay (τ = 0). The observed contrast is close to 1. b. Measured

contrast for delay times of up to 3.5 ms. The red points correspond to the

estimated contrast when synchronizing the experiments with the phase of the

50 Hz supply line, which oscillates at 50 Hz. The blue squares show how

the coherence can be further improved by adding a spin-echo pulse (see main

text). The segmented lines are only a guide to the eye. Measurements by L.

Slodička [79].

so that the probability of finding the ion in the excited state after the two pulses is

Pe =
1

2
(1 + cosϕ). (3.25)

On the other hand, if during the free evolution the phase changes, the probability
of finding the ion in the excited state is

Pe =
1

2
[1 + cos(ϕ− ϕfree)]. (3.26)

Due to fluctuations in the magnetic field, the phase evolution does not occur at
a constant rate. This effect together with fluctuations in the Rabi frequency due to
changes in pulse intensity, causes the contrast of the Ramsey fringes to decrease for
increasing delay times.

Fig. 3.13 shows the sequence used for Ramsey experiments in our system. A first
experiment to test the coherent interaction between laser pulses and atom consists
in sending the two Ramsey pulses with no time delay, and scanning the phase of the
second pulse. Fig. 3.14a shows the result of such an experiment. At zero delay no
dephasing is expected, and the data is well described by Eq. (3.25). The measured
contrast is 98.7 ± 0.8 %, and the small deviation from the theoretical curve proves
the high degree coherence between the two pulses and the degree of control of the
qubit superposition.

Fig. 3.14b show the results of a second experiment, with measured contrast of
the Ramsey fringes for delay times τ ranging from 0 to 3.5 ms, synchronizing the
experiments with the supply line oscillating at 50 Hz (red circles). The contrast
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decreases to half its initial value (coherence time) in ≈ 1.6 ms. Contrast reduction
due to phase fluctuations with frequencies higher than 1/τ can be compensated by
adding a spin-echo pulse in between the two Ramsey pulses [42]. A spin-echo pulse
is a R(π, 0)–pulse, which inverts the relative direction of the phase evolution, and
compensates for it when the free-evolution time of the ion is the same before and
after it. The blue squares is Fig. 3.14b show how the coherence time is improved
up to more than 3 ms by adding a single spin-echo pulse. The effectiveness of the
spin-echo pulses in reverting the free phase evolution suggests that the main source
of decoherence is low frequency noise, most likely slow variations of the magnetic
field changing the Zeeman splitting between states, whereas the remaining coherence
losses are due to high frequency field noise and other decoherence mechanisms such
as motion-induced decoherence [88].

3.4.3 The ground state RF qubit

493 nm cooling 

493 nm optical pumping

614 nm repumper

1.7 μm shelving

650 nm repumper

detector

2 ms 20 μs 0.5 ms 2 ms20 μs

RF-pulse

1.2 μs

Figure 3.15: Sequence for spectroscopy of the RF ground state tran-

sition. Sequence used for the spectroscopy of the RF transition between the

|6S1/2,mj = −1/2〉 and |6S1/2,mj = +1/2〉 states. The scanned parame-

ter is the frequency ωRF of the RF pulse. In order to discriminate between

the occupation of both states through fluorescence detection, a π-pulse in the

|6S1/2,mj = −1/2〉 ↔ |5S5/2,mj = −5/2〉 is used to shelve the population of

the |6S1/2,mj = −1/2〉 state.

The applied magnetic field lifts the energy degeneracy of the ground states |g−〉 =
|6S1/2,mj = −1/2〉 and |g+〉 = |6S1/2,mj = +1/2〉. For the applied magnetic field
with amplitude 4.45 G, an energy splitting of 12.45 MHz between both ground states
is expected. We drive this magnetic-dipole transition using a single-loop antenna
(diameter ≈ 10 cm) located close to the bottom view port. The antenna is driven
with an RF signal produced by a DDS from the PulseBox, which is amplified to
reach a power of ≈ 100 mW. Fig. 3.15 shows the sequence used for spectroscopy
of the transition. After optically pumping into the state |g−〉, a 0.5 ms RF pulse
with variable frequency ωRF is applied in order to drive the transition. To measure
the population of the states |g−〉 or |g+〉 after the RF pulse, the population of |g−〉
is shelved with more than 99% efficiency to the |5D5/2,mj = −5/2〉 state, using a
π-pulse on the optical qubit transition. Therefore, in the detection stage, when the
fluorescence lasers are turned on (493 nm and 650 nm), an ion emitting fluorescence
corresponds to an ion projected in the |g+〉 state, and a dark ion corresponds to a
projection in |g−〉.
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Figure 3.16: RF qubit spectroscopy and Rabi oscillations. a. Spec-

trum of the carrier RF-qubit transition. The resonance frequency is ωRF/2π =

(12.45 ± 0.01) MHz. b. Rabi oscillations between the two ground states. The

measured Rabi frequency is ΩRF/2π = (73.75 ± 0.02) kHz.

Fig. 3.16a shows the spectrum of the carrier RF ground state transition, using
500 µs square RF pulses. A scan over a broader range of frequencies does not
show motional sidebands, due to the small Lamb-Dicke parameter of the transition
(η ∼ 10−9). The resonance frequency is ωRF/2π = (12.45 ± 0.01) MHz, from which
the magnetic field is estimated to be (4.450 ± 0.005) G, in agreement with the value
estimated from the 1.7 µm transition spectroscopy (4.43 ± 0.3 G).

Rabi oscillations

To observe Rabi oscillations on this transition we use a sequence similar to the one
shown in Fig. 3.15, except that the frequency of the RF pulse is fixed to ωRF/2π =
12.45 MHz and scanning the length of the pulse. Fig. 3.16b shows the measured Rabi
flops, where each point represents the estimated probability of ending in the |g+〉
state, from 100 repetitions of the sequence for a given pulse length. The measured
Rabi frequency is ΩRF/2π = (73.75 ± 0.02) kHz, and the length for a π-pulse is
estimated to be 6.77 ± 0.02 µs. The fitted curve shows a decaying contrast, which
is faster than for the optical qubit. This is due to the faster loss in coherence caused
by the higher sensitivity to magnetic field fluctuations, since the Landé factor in the
ground state qubit are almost twice those of the optical transition.
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Figure 3.17: Ramsey fringes of the RF-qubit. a. Ramsey fringes at τ = 0

delay. b. Contrast of the Ramsey fringes for different delay times, with line-

trigger (red points) and with line-trigger and a spin-echo pulse (blue squares).

The segmented lines are merely guides to the eye.

Ramsey fringes

To further characterize the coherence of the RF-qubit, we measure Ramsey fringes,
as discussed for the case of the optical qubit in Section 3.4.2. Fig. 3.17a shows
Ramsey fringes for zero delay between the two π/2-pulses and scanning of the phase
of the second pulse. The measured contrast of (99.8 ± 0.1)% proves a high degree
of coherent control of the qubit. 3.17b shows the contrast of the measured Ramsey
fringes for time delays ranging from 0 to 400 µs, using line-trigger (red dots) and
line trigger together with a spin-echo pulse (blue squares). From the evolution of
the contrast the coherence time is estimated to be ≈ 304 µs without spin-echo. The
addition of a spin-echo pulse further increases the coherence time and shows that
the coherence time is mostly limited by magnetic field fluctuations.

The obtained coherence times fulfil the requirements for the experiments pre-
sented in the following chapters, imposing no significant detriment in the quality of
the measured data. However, in order to perform more demanding experiments, such
as quantum computation with trapped ions, further improvements in the stability
of the driving fields and the magnetic fields would be required.

3.5 Micromotion compensation

The excess of micromotion is detrimental to most of the experiments presented in this
thesis. It causes Doppler broadening of the transitions, induces motional decoherence
and, as we will see in Chapter 4, affects the interference of fields emitted by different
ions.

The amplitude of the different secular motional modes can be reduced using
laser cooling, even down to the ground state. On the contrary, the micromotion it
is always present, although, it amplitude can be minimized and thereby detrimental
effects reduced. The ion is said to have ‘excess micromotion’, when the amplitude
of the micromotion is not the minimum possible. The cause for such a situation
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Figure 3.18: Micromotion compensation. Number of photons detected in

a bin of 512 ps with a time delay τ from the ‘triggering’ pulse (synchronized

with the RF drive). The red curve show two full oscillations of the amount

of emitted photons due to micromotion, with exactly the same period as the

RF-driving. The blue curve show the same experiment after compensation of

the micromotion using the top compensation electrode pair.

is that the minimum of the RF pseudopotential does not coincide with the DC
confinement saddle point. Although the used traps are designed for these two points
to coincide, the presence of stray electric fields can separate them. To compensate
for the presence of these stray fields, DC voltages are applied to the compensation
electrodes shown in Fig. 3.2.

There are several iterative methods that can be used to find the voltages needed
to compensate for excess of micromotion [62]. Most of this methods are based on
the observation and minimization of the effects of the effective Doppler modulation
of the laser driving the ions due to micromotion.

In our experiment, we compensate micromotion by measuring and reducing the
correlations between the RF signal driving the trap and the number of photons
emitted when continuously Doppler-cooling the ion [62]. These correlations are
expected since the micromotion is a periodic motion phase-locked to the driving
field, causing an effective Doppler detuning of the lasers used for cooling. This
modulates the Rabi frequency of the laser fields driving the internal transition of
the ion, and therefore, the photon scattering rate.

Since micromotion may be present in the three possible orthogonal directions, we
use a laser beam propagating in a direction with overlap with the three directions of
the motional modes of the ion. To measure the correlation of the number of photons
emitted and the trap drive, we derive generates 10 ns square ‘triggering’ pulses with
repetition rate synchronized with the period T of the RF signal driving of the trap
(T = 2π/ωRF ≈ 66.007 ns). Then, using the PicoHarp 300, we measure the number
of photon counts in bins of 512 ps, separated by a time delay τ from the triggering
pulses, and integrate over 30 s, detecting more the 1.5 million photons. Fig. 3.18
shows the results before (0 V on the compensation electrodes) and after micromotion
compensation, using one of the pair of compensation electrodes (260 V). The voltage
of the compensation electrodes is scanned until the minimum possible amplitude is
obtained. In the shown case, the amplitude was reduced by a factor of more than
15. The same procedure is repeated with the other pair of compensation electrodes
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until no oscillations are observed (contrast bellow 1%).

3.6 Summary

In this chapter we have presented the main components of our experimental setup,
including the trap, the collection optics, the different detectors and detection con-
figurations. We have also presented the spectroscopy of the transitions used in this
thesis, showing the achievable Rabi frequencies, Ramsey fringe contrasts and coher-
ence times of the two qubit transitions. The results show the high level of coherent
control of single atomic ions. The measured coherence times, although improvable,
are well inside the regime needed for the realization of the experiments reported
in this thesis. Should longer coherence times be required, there are several ways to
improve them, e.g., by diminishing the fluctuations of the magnetic field using active
stabilization or a magnetic shield around the setup, and by improving the frequency
and intensity stability of the lasers.

The capability of performing coherent control of the qubits shown here, together
with high efficiency single-mode detection is crucial for entanglement generation
and characterization using single photons with controllable phase (Chapter 4). The
optical quality of the collection optics and high efficiency of the pumping are a key
feature for the precise imaging experiments presented in Chapter 5.



4
Interference of single photons emitted by

entangled atoms

4.1 Introduction: Light emitted by correlated matter

The emission properties of a set of atoms can be different from the näıve expectation
that if an atom emits light with an emission rate γ , then N atoms will emit with
a rate Nγ. This is true when the atoms are thermally excited and photons are
randomly emitted. However, when the atoms are coherently excited such that there
is a defined phase relation between their internal states, the emission rate can grow
as high as N2γ as was first suggested by R. H. Dicke in his seminal work [89]. This
effect, dubbed superradiance, is due to the “spontaneous phase-locking of the atomic
dipoles” [90], which can occur, for example, through direct dipole-dipole interaction
when the separation between atoms is smaller than the emitted wavelength. The
opposite effect, namely the reduction of the emission rate dubbed subradiance, can
also occur in some situations. Detailed discussion of this phenomenon can be found
in Refs. [90,91] and extensive review of different experiments studying this an related
phenomena can be found in Ref. [92].

The phase-locking of the atomic dipoles can also occur through other mecha-
nisms, such as the spontanous creation of entanglement between the atoms [93,94].
Collective emission and absorption properties of entangled emitters have been exten-
sively studied in ensembles of neutral atoms [95–97] where, in general, the number
and position of the atoms fluctuates, and the precise control of the quantum state
of each emitter is challenging.

The phase-locking of the dipoles can also be achieved by controlled creation
of entanglement between different atoms instead of spontaneous creation. The in-
terference of coherently emitted photons from an array with a definite number of
well-localized atoms (well bellow the emission wavelength), in a well-characterized
entangled state can give rise to a direction-dependent modification of the emission
rate [98, 99]. In this case, contrary to the original scenario proposed by Dicke, the
modification of the emission rate does not rely on the proximity of the atoms and
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it is still present for arbitrarily large separation between them. Strictly speaking,
this effect is not superradiance, since the enhancement and inhibition of the decay
rate occur in a particular observed optical mode and vanish when integrated over
the entire space. Nevertheless, the modification of the emission through this mecha-
nism is of fundamental interest, since it arises directly from the entanglement in the
atomic systems, and allows us to directly ‘optically observe’ the entanglement by
measuring the photon interference signal. Furthermore, the possibility of engineer-
ing the emission rate and pattern of a set of emitters by controlling their internal
state opens a new paradigm for optical physics experiments.

To observe the coherent emission of light from such a entangled chain of atoms
it is necessary to achieve simultaneously sub-wavelength atom localization, high-
fidelity entanglement generation and atom-light coupling strong enough to detect an
optical signal at very low photon flux. The experimental platform of trapped ions
presented in the previous chapter has enabled excellent control over position and
entanglement with well-defined and steadily increasing numbers of particles [26,100,
101], motivated mostly by the pursuit of the realization of a quantum computer.
Meanwhile, the pursuit of on-demand single photons, strong atom-light coupling,
and fast quantum state readout has advanced the collection efficiency of light from
single emitters [66,102–104]. In our laboratory, these developments are put together,
giving us precise control of the internal states and positions of the ions as well as
efficient measurement of the emission of single photons. This, therefore, allows the
investigation of the effects of entanglement in collective atom-light interactions in
the few-atom limit, and allows us to study how the emission properties of atoms in
entangled states differ from those in separable states [105,106].

In this chapter we present the first observation of controlled emission of a single
photon into a given free-space optical mode, emitted jointly by a pair of ions pre-
pared in a well-characterized entangled state. The ions are effectively separated by
a distance of about 60 cm, which can be tuned dynamically during the experiment
with sub-wavelength precision. The modification in the emission that we observe cor-
responds directly to the path interference of single emitted photons, and arises from
the entanglement present in the two-atom state. With the presented arrangement we
directly observe both enhancement and inhibition of single-photon emission from the
atoms by controlling their interferometric distance. As mentioned before, although
reminiscent of superradiance, the observed modification of the emission due to in-
terference occurs in the observed optical mode, and it is not a global modification
of the spontaneous decay rate. The global modification due to direct dipole-dipole
interaction is negligible for the atom-atom distance studied in our experiment.

The approach presented in this chapter could be used as an alternative to meth-
ods based on the tomographic reconstruction of the atom state in order to estimate
the entanglement. We experimentally prove this by showing that the emission rate
modification is qualitatively different for separable and entangled states. The con-
trast of the photon interference signal can, in some cases, be directly related to
the amount of entanglement. Furthermore, as the entangled state is sensitive to
differences in the local magnetic fields at the position of each atom, we use the in-
terference signal to precisely measure the field gradient. In the following, we present
the theoretical background, a detailed description of the experiment, as well as a the
results and possible applications. The main results and some parts of this chapter
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have been published in Ref. [107]

4.2 Entanglement-modified emission rate

In order to have a simple picture of the origin of the interference of photons emitted
by entangled atoms, we follow the description in Ref. [98]. Let us consider a chain
of N equally spaced emitters at positions ~Ri (i = 1, . . . , N), with two internal levels
|e〉 and |g〉. When the transition |e〉 → |g〉 occurs, a photon with wavelength λ is
emitted. We will consider that the emitters are uniformly separated by a distance d,
which is much larger than the wavelength λ such that the dipole-dipole interaction
can be neglected. We will also consider that the initial state of the emitters is a
symmetric entangled W-state, i.e., a symmetric superposition of all the states having
only one emitter being in the state |e〉 and all the rest in |g〉,

|W〉 =
1√
N

(|e, g, g · · · g〉+ |g, e, g · · · g〉+ · · · |g, g, g · · · e〉.) (4.1)

A generalization of these states are the so-called Dicke states, with ne emitters being
in the state |e〉 and N − ne emitters in the state |g〉, is given by

|Wne,N−ne〉 =

(
N

ne

)−1/2∑
k

Pk|Sne,N−ne〉. (4.2)

Pk is an operator producing all the possible different permutations with equal num-
ber of ne emitters in |e〉 and |Sne,N−ne〉 is defined by

|Sne,N−ne〉 =

ne∏
α=1

|eα〉
N∏

β=ne+1

|gβ〉. (4.3)

For example, for N = 4 and ne = 2, the Dicke state is given by

|W2,2〉 =
1√
6

(|e, e, g, g〉+ |e, g, e, g〉+ |g, e, e, g〉

+|e, g, g, e〉+ |g, e, g, e〉+ |g, g, e, e〉) . (4.4)

If the considered transition is an electric dipole transition, the positive part of
the electric field at the position ~r = r~n in the far-field region, is proportional to

Ê+ =
eikr

r

∑
j

~n× (~n× ~pge)e−iϕj ŝ−j (4.5)

where k = 2π/λ, ~pge is the dipole moment of the transition |e〉 → |g〉, with dipole
operator ŝ−j = |g〉j〈e|, and ϕj is the phase of a photon at the position ~r emitted by
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the emitter j at position ~Rj , relative to the origin, i.e.,

ϕj(~r) = ϕj = k~n · ~Rj . (4.6)

The field intensity detected at the position ~r is given by

I = 〈Ê−Ê+〉, (4.7)

Where Ê− = Ê+†. For simplicity, we now consider the case where the direction
of detection and dipole moment are orthogonal, such that ~pge · ~n = 0. Under this
consideration, and omitting a constant factor, the dimensionless positive part of the
electric field is proportional to

Ê+ =
∑
j

e−iϕj ŝ−j , (4.8)

and therefore, the detected intensity is proportional to the dimensionless intensity

I(~r) =
∑
i,j

〈ŝ+
i ŝ
−
j 〉ei(ϕi−ϕj), (4.9)

=
∑
i

〈ŝ+
i ŝ
−
i 〉+

∑
i 6=j
〈ŝ+
i 〉〈ŝ−j 〉ei(ϕi−ϕj)


+

∑
i 6=j

(
〈ŝ+
i ŝ
−
j 〉 − 〈ŝ+

i 〉〈ŝ−j 〉
)
ei(ϕi−ϕj)

 . (4.10)

The first summation in Eq. (4.10) corresponds to the population of the |e〉 state,
the second summation corresponds to the expectation values of the dipole operator,
and the third to the quantum correlations of the considered states. In the case of a
separable state such as the one in Eq. (4.3) it is found that 〈ŝ+

i ŝ
−
j 〉 = 〈ŝ+

i 〉〈ŝ−j 〉 = 0
for i 6= j, i.e., both the dipole moment and the correlation vanish, so that the
detected intensity is in this case proportional to

I|Sne,N−ne 〉 =

ne∑
i=1

= ne, (4.11)

which is constant, meaning that each emitter radiates independently. Note that
since there are separable states with non-vanishing dipole moment this is not true
for all separable states, as we will discuss later in this section.

Contrary to separable states, for entangled W-states the correlations are always
non-vanishing due to the presence of entanglement, and the interference term in
Eq. (4.10) will always be present. The key point to understand the interference is
that the discussed atomic state after the emission does not allow us to distinguish
which emitter actually emitted the photon. On the other hand, for a separable state
|Sne,N−ne〉 it is possible to tell which atom emitted the photon by measuring their
state.
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As there is not a simple expression for the general N emitter W-state, lets
consider the simple case of |W1,2〉. The emission intensity for the three-emitter state
|W1,2〉, with only one emitter being in the state |e〉 is calculated to be proportional
to [98].

I|W1,2〉 = 1 +
2

3

3∑
i<j=1

cos(ϕi − ϕj). (4.12)

The maximum detected intensity occurs when the emissions of the three emitters at
the position of the detector are in phase, i.e., ϕ1 = ϕ2 = ϕ3. For this example the
maximum is Imax

|W1,2〉 = 3, which can be decomposed as

Imax
|W1,2〉 = ne + max(interference term) (4.13)

where ne accounts for the incoherent emission from the emitters. The detected
intensity can be tuned by varying the distance between emitters or changing the
direction of detection. The maximum intensity for the general case of W-states
considered can be calculated as [98]

Imax
|Wne,N−ne 〉

= ne + ne(N − ne). (4.14)

For the particular case of N = 2 and ne = 1 that we will study experimentally
later in this chapter, the expected interference signal is

I|W1,1〉 = 1 + cos(ϕ1 − ϕ2). (4.15)

The maximum and minimum intensities are in this case 2 and 0, respectively.

In summary, the emission from separable states |Sne,N−ne〉 does not exhibit in-
terference, and the detected intensity is proportional to the number ne of emitters
in the excited state. On the other hand, entangled |Wne,N−ne〉 states exhibit inter-
ference in their emission, so that the measured emission intensity will depend of the
direction and distance of the detection. Notice that none of these states are gen-
eral separable or entangled states. In the following, we will discuss the interference
properties of more general states of two emitters relevant for our experiment.

4.2.1 General case of two emitters

The most general pure state of two two-level emitters, denoted emitter A and emitter
B, can be written as

|β〉 = a|g, e〉+ b|e, g〉+ c|e, e〉+ d|g, g〉, (4.16)

where a, b, c, d ∈ C and |a|2 + |b|2 + |c|2 + |d|2 = 1. This state does not have a
fixed number of excitations but instead a superposition: the probability of having
two excitations is |c|2, the probability of having one excitation is |a|2 + |b|2 and the
probability of having no excitation is |d|2.
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In order to quantify the entanglement of the atomic state, let us introduce the
concurrence, also called amount of entanglement [108]. The concurrence C, in the
case of two qubits, is a real number C ∈ [0, 1] quantifying the amount of entanglement
in the system, such that C = 0 for separable states, C 6= 0 for entangled states and
C = 1 for maximally entangled states. The concurrence can be calculated in the
case of pure states as [109]

C = |〈β|β̃〉|, (4.17)

where β̃ is defined as

β̃ = (σ̂y ⊗ σ̂y)|β∗〉, (4.18)

and |β∗〉 is the complex conjugate of the vector |β〉. The concurrence of the state
|β〉 is then given by

C|β〉 = 2|cd− ab|. (4.19)

Following the treatment introduced in the former section, the intensities of the
emission produced by the state |β〉 will be proportional to I(~r), defined in Eq. (4.10),
which in this case can be written explicitly as

I|β〉 = |a|2 + |b|2 + 2|c|2

+2<
[
(c∗b+ a∗d)(a∗c+ d∗b)ei(ϕA−ϕB)

]
+2<

[
{a∗b− (c∗b+ a∗d)(a∗c+ d∗b)} ei(ϕA−ϕB)

]
, (4.20)

where ϕA and ϕB are the phases of the field emitted by emitter A and B at the
position of the detector, < means real part and ∗ denotes the complex conjugate.
The first line of Eq. (4.20) represents the incoherent contribution of each part of the
superposition, which corresponds directly to the sum of probabilities of single and
double excitations (double excitations will produce two photons). The second line,
as before, contains the product of the expectation values of the dipole operators,
and the third line the correlation terms. This expression can by simplified to

I|β〉 = |a|2 + |b|2 + 2|c|2 + 2<
(
a∗bei(ϕA−ϕB)

)
, (4.21)

from which it is clear that the interference term is present only when both a and b are
non zero. The maximum and minimum intensity are calculated to be proportional
to

Imax
|β〉 = |a|2 + |b|2 + 2|c|2 + 2|ab|, (4.22)

Imin
|β〉 = |a|2 + |b|2 + 2|c|2 − 2|ab|, (4.23)

The maximum interference amplitude A = Imax − Imin = 4|ab| = 2 occurs for
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maximally entangled states (C = 1) of the form

1√
2

(|g, e〉+ eiφ|e, g〉), (4.24)

which correspond to states which have maximal quantum correlations and dipole
operator expectation values equal to zero (see Eq. (4.20)). The visibility for these
states is V = (Imax − Imin)/(Imax + Imin) = 1. For separable states (C = 0), the
maximum interference amplitude achievable is A = 1 and visibility V = 1/2, which
occurs for states with maximum dipole operators expectations values and vanishing
correlations. The visibility of the general state |β〉 is given by

V|β〉 =
2|ab|

|a|2 + |b|2 + 2|c|2 . (4.25)

4.2.2 The single excitation subspace

The most interesting feature of the studied interference occurs in the single excitation
subspace, spanned by the basis {|g, e〉, |e, g〉}, which corresponds to all the states with
a fixed number of excitations ne = 1. A general state in this subspace is

|ξ〉 = a|g, e〉+ b|e, g〉, (4.26)

with |a|2 + |b|2 = 1. In this case the concurrence is C|ξ〉 = 2|ab| and has the same
value as the visibility V|ξ〉 = 2|ab|. Therefore, the measurement of a full interference
fringe can be directly used to quantify the entanglement. Separable states in this
subspace, i.e., |e, g〉 and |g, e〉 do not exhibit interference, and hence V = C = 0.
Oppositely, maximally entangled states such that |a| = |b| = 1√

2
have maximum

visibility V = C = 1.

This result is still valid for mixed states in this subspace when detecting in the
far field, as demonstrated in Ref. [110]. In that case the density matrix can be
written as

ρ =

(
ρeg,eg ρeg,ge
ρge,eg ρge,ge

)
(4.27)

such that C(ρ) = V(ρ) = 2|ρeg,ge|.

There is not a general relation between the observed interference of N emitters
and the amount of entanglement, mostly because defining measures of multipartite
entanglement is not straight forward as in the case of two emitters. However, it
is possible to define bounds for the minimum entanglement present in the emitting
system when observing some degree of interference in some particular cases, as shown
in Ref. [110].

Ions are excellent candidates for studying the predictions presented here because
atomic localizations well bellow the emission wavelength can be readily achieved.
Furthermore our setup features a collection efficiency which allows for experiments
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at the single photon level. In the following section, we present an experiment in
which we prepare an entangled state of two trapped ions and observe tuning of the
emission rate by interference of single photons. In particular, we aim to compare
the interference of single photons emitted by a pair of atoms, prepared in the states

|ψ〉 =
1√
2

(|g, e〉+ eiφ|e, g〉), (4.28)

|ζ〉 = |eg〉, (4.29)

|ξ〉 =
1

2
(|g〉+ |e〉)(|g〉+ |e〉). (4.30)

The first state is an entangled state, which we generate optically using the so-
called Cabrillo scheme [9]. The other two are separable states with a fixed and a
superposition of number of excitations, respectively. Each of these three states have
different interference properties as we shall see in the next section.

4.3 Entanglement of separated atoms via single photon de-

tection

There are several ways to create entanglement in a chain of trapped ions. The most
robust approaches are based on the realization of conditional logic gates between
different ions by taking advantage of their motional coupling. Such methods include
the realization of the so-called Cirac-Zoller gate [38,111], the Mølmer-Sørensen gate
[112,113] and the geometric phase gate [114,115]. These kinds of gates can generate
high fidelity entanglement between several ions and have been the cornerstone in the
development of quantum computing with trapped ions. However, since they rely on
the coupling of the ions to the same motional mode, they cannot be used to generate
entanglement between distant ions.

Another approach to generate entanglement between ions is through the detec-
tion of single photons emitted by the trapped ions. One of the methods based on
this approach consists of first entangling the internal state of the ions with, e.g., the
polarization of an emitted photon. Thereafter, by performing a Bell measurement of
the state of photons emitted by different ions, it is posible to swap the entanglement
to create ion-ion entanglement. This method was first demonstrated for two distant
trapped ions by Moehring et al. [116] and relies on the coincident detection of two
photons emitted by the separated ions.

A second method based on the detection of emitted photons was proposed by
Cabrillo et al. [9]. This method requires the detection of only one photon emitted
by the ion pair undergoing a Raman transition. The photon is detected in an
interferometric arrangement, such that it is not possible to distinguish which ion
emitted it. The detection of a photon in such a setup projects the state of the ions
into an entangled state. This method was first demonstrated with trapped ions in our
laboratory by Slodička et al. [117], and is the entanglement generation method that
we use in the experiments presented in this thesis. This approach is more efficient
than methods requiring the detection of two photons for the currently achievable
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single photon detection efficiencies [79]. Furthermore, it allows us to demonstrate
fully optical creation and characterization of entanglement when combined with the
observation of single photon interference presented in this thesis.

In the following section, a detailed description of the Cabrillo entangling scheme
and its implementation is provided.

4.3.1 The Cabrillo scheme

The Cabrillo scheme [9] is based on the detection of a single photon emitted during
a Raman process in one of the atoms. To illustrate how it works, let us consider
two atoms, A and B, at different locations, both prepared in the ground state |g−〉,
see Fig. 4.1. Each atom is excited to a short-lived intermediate state |i〉, which
can decay to a different ground state |g+〉, through the spontaneous Raman process
|g−〉 → |i〉 → |g+〉. If this Raman process is successful, the atom will emit a
single photon with the wavelength and polarization corresponding to the |i〉 ↔ |g+〉
transition. The state after driving the Raman process for each atom, with probability
pe, is given by

|s, n〉j =
√

1− pe|g−, 0〉+
√
pe|g+, 1〉eiφD,j+iφL,j , (4.31)

where s represents the internal state of the atom j = A or B, and n is the photon
occupation number of the emitted field, φL,j is the phase of the laser driving the
transition |g−〉 → |i〉 at the position of the atom j and φD,j is the phase acquired
by the photon emitted by the atom j on its way to the position of a single photon
detector. If both atoms undergo the same Raman process, the total state of the
system is then given by

|sA, sB, nA, nA〉 = (1− pe)|g−, g−, 0, 0〉
+
√
pe(1− pe)

(
ei(φL,A+φD,A)|g+, g−, 1, 0〉

+ei(φL,B+φD,B)|g−, g+, 0, 1〉
)

+pee
i(φL,A+φL,B+φD,A+φD,B)|g+, g+, 1, 1〉. (4.32)

If the detection modes of the emission of atoms A and B are overlapped and the
photons emitted from both atoms are indistinguishable, the detection of a single
photon will project the state of both atoms onto the entangled state

|ψφ〉 =
1√
2

(
|g+, g−〉+ eiφ|g−, g+〉

)
(4.33)

with probability 2pe(1− pe), and where the phase φ is defined as

φ = (φL,B − φL,A) + (φD,B − φD,A). (4.34)

If the single photon detection efficiency η is the same for both atoms, then the overall
probability of creating the state |ψφ〉 is 2ηpe(1− pe).
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Since the single photon detection efficiency η in our setup is typically in the few
percent range, the detection of a single photon could correspond to the projection
onto |g+, g+〉 as well. In this case, each of the two atoms emits one photon, but
only one is detected due the imperfect efficiency. In general, APDs or PMTs cannot
distinguish between the detection of a single photon or two simultaneous photons,
and therefore, even for perfect light collection, a click in the detectors can project
the atoms’ state onto |g+, g+〉. To avoid this, the probability of successful Raman
process pe has to be kept small, such the probability p2

e of projection onto |g+, g+〉
is negligible. However, this also reduces the overall probability of generating the
aimed state |ψφ〉. The choice of pe is therefore a trade-off between the overall
success probability and the fidelity of the obtained state. In our experiment we set
pe ≈ 6%, such that the probability of double excitation p2

e is 0.36 %.

As mentioned before, this scheme does not rely on the proximity of the atoms
and is an efficient way to create entanglement between distant atoms in the low
detection efficiency regime, since it does not require the coincidence detection of
photons. Controlling the phase φ of the generating state and being able to produce
the same state in a repeatable manner requires phase stability of the detection path
and the exciting lasers. This requirement can be challenging, but is achievable with
current technology. Another requirement is that the photons detected from different
atoms have to be indistinguishable in all the degrees of freedom. In this way, a single
detected photon does not contain any information about which atom emitted it. This
can be achieved be detecting photons in a single spatial and polarization mode by
filtering out photons in other modes, although at the cost of reducing the collection
efficiency, as we will see in the next section.

An important feature of the generated state is that it belongs to a decoherence-
free subspace. This means that if one of the states forming the qubit dephases with
respect to the other, e.g. after a time |g+〉 evolves into eiφt |g+〉, the dephasing
occurs equally for both parts of the superposition, and therefore is only a trivial
global phase, i.e.,

|ψφ〉 =
1√
2

(|g+, g−〉+ eiφ|g−, g+〉)→
1√
2

(eiφt |g+, g−〉+ ei(φ+φt)|g−, g+〉) = eiφt |ψφ〉

Hence, if both atoms are subject to the same magnetic field fluctuations, an entan-
gled bipartite qubit such as |ψφ〉 will lose coherence much slower than a qubit stored
in a single atom. Furthermore, using ground states as qubit states as we do in our
experiment also suppresses the decoherence due to spontaneous emission. The co-
herence time of the entangled state in the ground state decoherence-free subspace is
expected to be orders of magnitude longer than a qubit encoded in a single atom, as
demonstrated in Ref. [118], where coherence times of more than 20 s were achieved.

4.3.2 Entanglement generation

To implement the Cabrillo scheme we trap and Doppler cool two 138Ba+ ions along
the symmetry axis of our linear Paul trap, separated by a distance z ' 5.2 µm.
The HALO objectives (see Chapter 3) are used to collect and collimate part of the
light emitted by the ions. A distant mirror at distance d/2 ' 30 cm from the trap
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axis outside the vacuum chamber superimposes the emission of both ions, so that
their spatial mode is overlapped and coupled to a single mode fiber. The whole
setup is depicted in Fig. 4.1a. A magnetic field ~B is applied along the axis used for
the pumping and excitation beams (see Fig. 3.8), defining a quantization axis and
Zeeman splitting the electronic levels.

The electronics states involved in the Cabrillo entangling scheme are |g−〉 =
|6S1/2,mj = −1/2〉, |i〉 = |6P1/2,mj = +1/2〉 and |g+〉 = |6S1/2,mj = +1/2〉. The
ions are prepared in the initial state |g−, g−〉 by optical pumping using a 493 nm
σ−-polarized beam driving the transition |6S1/2,mj = +1/2〉 ↔ |6P1/2,mj = −1/2〉,
and a 650 nm repumper beam, driving all possible transitions between the 5D3/2 and
6P1/2 manifolds (Fig. 4.1b). After optical pumping, the ions are prepared in |g−, g−〉
with more than 99.98% probability. The population of this state is measured using
the electron-shelving technique presented in Section 3.4.3.

Thereafter, a weak σ+-polarized beam driving the transition |g−〉 → |i〉 is sent to
the ions (Fig. 4.1c). The Rayleigh length of the beam is bigger than the separation
of the ions, so they are excited with approximately the same probability (measured
in Section 4.3.2). If one of the ions is excited to the |i〉 state, it can spontaneously
decay to the 5D3/2 manifold emitting a 650 nm photon, to the |g−〉 state emitting
a 493 nm σ+-polarized photon or to the |g+〉 state emitting a 493 nm π-polarized
photon. The intensity and length of the pulse is such that the probability of success
of the Raman process |g−〉 → |i〉 → |g+〉 is pe ≈ 6%, as discussed in the next section.
If the emission from different ions is indistinguishable in the detector, the detection
of a single 493 nm π-polarized photon projects the ions onto a entangled state such as
the one in Eq. (4.33). To avoid the detection of single photons that would lead to the
projection onto a different state, the 650 nm photons are filtered out with more than
99.99% efficiency using a laser line filter1 (Fig. 4.1a). This filter has transmittance
of 97% at 493nm. 493 nm σ+-polarized photons are filtered out using a PBS, given
that in the collimated beam they are mostly vertically polarized, allowing us to filter
out more than 99.5% of these photons. After these filtering steps, more that 99.49%
of the photons coupled to the single mode fiber (SMF in Fig. 4.1a) are π-polarized
493 nm photons, the detection of which leads to generation of entanglement.

The phase φ of the generated entangled state of Eq. (4.34), provided that in our
setup d� z, is given explicitly by

φ = kz + kd, (4.35)

where k = 2π/λ. Therefore, the phase φ of the entangled state can be tuned by
either changing the separation z between the ions or by changing the length of the
optical path connecting them. In our experiment we take the second approach:
we tune the phase φ by changing the position of the mirror with sub-wavelength
precision by varying the voltage applied to a piezoelectric transducer attached to
the mirror holder. In contrast to changing the separation z between the ions, this
method does not introduce additional heating of the motional modes.

There are some crucial points that have to be experimentally addressed to achieve
high fidelity entanglement generation. First, the photon whose detection generates

1Semrock FF01-494-20-25
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Figure 4.1: Cabrillo entangling scheme implementation. a. Two 138Ba+

ions, A and B, are trapped and cooled in a linear Paul trap, separated by a

distance z ' 5.2µm. The radiation fields are collimated using two identical in-

vacuum HALO objectives (L1 and L2). A mirror (M) at a distance d/2 ' 30 cm

superimposes the emissions from the ions so that they are coupled to a common

spatial mode. The mirror is mounted on piezoelectric transducers (PZT) that

allow fast sub-wavelength control of the ion-ion distance in the common optical

mode. A laser line filter (LLF) filters out photons with wavelength other than

493 ± 20 nm. A polarizing beam splitter (PBS) selects π-polarized photons,

which are coupled to a single-mode fiber (SMF) using a fiber collimator (FC)

and detected by an avalanche photodiode (APD). b. A 493 nm σ−-polarized

laser beam, parallel to the magnetic field ~B and a 650 nm repumper are used to

prepare the initial state |g−, g−〉. b. A weak 493 nm σ−-polarized laser beam

is use to drive the Raman process |g−〉 → |i〉 → |g+〉, which when successful

results in the emission of a π-polarized photon from the ions.
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entanglement must not carry information about which ion emitted it. This means
that all the photons detected have to be identical, and that all the photons detected
have the same probability of coming from any of the ions. This could be achieved
by equally coupling the emission of both ion to the detected optical mode, and by
exciting both ions with the exact same probability. Second, the photon whose de-
tection generates entanglement must not carry information about which ion emitted
it. A second important experimental issue, is that in order to create repetitively the
same entangled state we need to be able to control the value of the entanglement
phase φ. In the following, we address these points.

Calibration of the excitation pulse

493 nm cooling 

493 nm optical pumping

614 nm repumper

1.7 μm shelving

650 nm repumper

detector

2 ms 20 μs τp 2 ms20 μs 1.2 μs

493 nm σ+ excitation

Figure 4.2: Sequence for calibration of the excitation pulse length.

After Doppler cooling and pumping both ions into the initial state |g−〉, the

weak σ+-polarized pulse with variable length τp is sent to the ions, driving

the |g−〉 → |i〉 transition. Then the population not transferred to the |g+〉 is

shelved to the 5D5/2,mj = −5/2 state. Finally, the fluorescence of each ion is

measured independently and simultaneously using two APDs (see main text).

To avoid the excitation of both ions up to a negligible level in comparison with
the single excitation events, the strength of the exciting pulse has to be small. At the
same time, decreasing the excitation probability reduces the rate of entanglement
generation. Due to this trade-off between entangled state fidelity and achievable
entanglement generation rate we chose pe ≈ 6%. To create an entangled state such
as in Eq. (4.33) it is also necessary that both ions are excited equally. To calibrate
the intensity and length of the pulse we measure the population of both ground
state |g−〉 and |g+〉 of each ion individually after applying the excitation pulse. The
populations are measured by shelving the state |g−〉 and measuring the fluorescence
thereafter (Section 3.4.3). The sequence used for this purpose is shown in Fig. 4.2.
The sequence is repeated with different excitation pulse lengths, in the 0 - 1 µs
range using an AOM and keeping the input laser power and detuning constant. In
order to check that both ions are excited with the same strength to |i〉 after the
optical pumping, we measured independently and simultaneously the fluorescence
from each ion with a detection setup similar to the one in Fig. 3.6c, but using the
left-side HALO only, and coupling the emission of each ion to an independent APD.
The results of such a scan for each ion are shown in Fig. 4.3. The fluorescence
intensity corresponding to 100% of the populations being in the state |g+〉 is set by
the maximum fluorescence measured during Doppler cooling with the same detection
configuration. The independent exponential fits show that a pulse of τp = 48 ns
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Figure 4.3: Excitation pulse length calibration. Probability of ending in

the state |g+〉, for ion A and ion B. The independent exponential fits show that

a pulse of τp = 48 ns corresponds to a probability of 6 ± 1, equal for both ions.

corresponds to 6 ± 1 % probability of having a successful Raman process, equally
for both ions. Note that the 48 ns corresponds to the length of the square envelope
RF pulse sent to the AOM generating the optical pulse, although, as this RF pulse is
shorter than the rise time of the AOM (70 ns), the resulting pulse has a symmetrical
triangular shape, with an average power of 95 nW and a FWHM of 29 ns (measured
with a fast photodiode). The shape of this pulse does not play role in the experiment.

Note that Fig. 4.3 shows the statistical average of the populations of the |g+〉
for each ion, where each point represents 100 repetitions of the same experiment.
However, it does not mean that, for example, sending a 48 ns pulse will excite
both simultaneously with 6 % probabilities. By looking at the detection correlations
between photons detected by either APD, we estimate that the probability of exciting
both ions with a 48 ns pulse are 1 ± 1 %.

Photon indistinguishability

A crucial ingredient in the Cabrillo scheme is that in order to project the state
of the atoms into a symmetric entangled state such as the one in Eq. (4.33), the
photon detected in the common optical mode should not provide information about
which ion emitted it. Therefore, photons emitted by different atoms ideally have
to be completely indistinguishable from each other. To characterize the degree of
indistinguishability of these photons, we measure the second order temporal corre-
lation function g2(τ) of the detected field. This function quantifies the temporal
correlations between the detection of two consecutive photons, separated by a delay
time τ . The value of g2(τ = 0) directly quantifies the degree of indistinguishability
of two fields [119]. To be able to measure correlations at times much shorter than
the detector dead time we slightly modify the detection setup shown in Fig. 4.1a
to realize a Hanbury-Brown-Twiss detection scheme. This is achieved by replac-
ing the single-mode fiber (SMF) by a single-mode-fiber beamsplitter, and coupling
its outputs to independent APDs, as shown in Fig. 4.4a. Each detected photon is
then time tagged with 4 ps resolution and the obtained detection histories are then
analysed to extract the values of g2(τ) using time bins of 512 ps.
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Figure 4.4: Indistinguishability of the detected photons from differ-

ent ions. a. Hanbury-Brown-Twiss detection configuration for measuring of

the second order temporal correlation function of the detected field g2(τ). The

overlapped photons emitted by different ions are filtered in wavelength using

a laser line filter (LLF) which let only 493 nm photons pass and in polariza-

tion using a PBS, and then coupled to a 50/50-single-mode-fiber beamsplitter

(FBS). The photons at each output of the beamsplitter are detected with two

different APDs (APD1 and APD2). Each detected photon is time-tagged using

the PicoHarp 300. b. Measured g2(τ) function, normalized to g2(τ →∞). The

second order correlation at zero delay is estimated to be g2(τ = 0) = 0.99±0.06,

corresponding to near perfectly indistinguishable photons. The dashed green

line shows the ideal value g2(τ = 0) = 1 for totally indistinguishable fields,

whereas the grey dashed line shows the g2(τ = 0) = 1/2 for fully distinguish-

able fields.

While the PBS and the single-mode fibers ensure that the detected photons have
the same polarization and spatial mode, the indistinguishability could be reduced
by the fact that the detection rate from the ion A amounts to only 60% of the
detection rate from the ion B. This imbalance is due to larger optical losses for the
ion A due to additional propagation through an in-vacuum lens, optical viewports
and imperfect reflectivity on the distant mirror. Additionally, there is a significant
mode mismatch after propagation along the long path with respect to the fiber
coupled mode. This imbalance can be compensated by a precise angular adjustment
of the distant mirror and of the fiber coupler, reducing the detection rate of ion B
to equal to that from the ion A. To achieve this, first, the mirror is blocked and
the fiber coupler is misaligned so that the detected rate from atom B equals the
previously measured detected rate from atom A. Then the mirror is uncovered, and
its tilt is adjusted while scanning its distance to the trap until achieving maximum
interference visibility.

The obtained g2(τ) after optically correcting the detection unbalance is shown in
Fig. 4.4b, where the data points are normalized by the measured g2(τ → ∞). The
ideal value for totally indistinguishable fields is g2(τ = 0) = 1 in this normalization
(green dashed line in Fig. 4.4b), whereas g2(τ = 0) ≤ 1/2 corresponds to fully
distinguishable fields (grey area in Fig. 4.4b). The second order correlation at zero
delay is estimated to be g2(τ = 0) = 0.99 ± 0.06, corresponding to near perfectly
indistinguishable photons.
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Figure 4.5: Interference phase control. The appropriate distance matching

the phases of the interference signal produced by illuminating the ions with the

cooling and the excitation beams is found by scanning the mirror distance

d/2 with the PZTs while recording the ions fluorescence intensity alternately

produced by illuminating with the cooling or excitation beam, for different trap

tip voltages (ion separations) a. Interference patterns at ion distance z = 4.4

µm (tip voltages = 700 V). The interference signals show a phase difference 1.6

± 0.2 rad.b. Interference patters at ion distance z = 5.2 µm (tip voltages =

400 V). The interference signals show a phase difference 0.2 ± 0.2 rad. Both

signals are normalized to the maximum detected fluorescence rate.

Phase control

To monitor, define and lock the length of the interference path between the ions
which sets the entangling phase φ we record the intensity of the resonant fluorescence
during the Doppler cooling stage. Due to interference in the emitted fluorescence
of the two ions, the detected intensity gives us information about the relative phase
of both detected fields. The cooling and excitation beams do not copropagate, and
therefore, the relative phase of the interference signal when using either of these
beams varies depending on the separation z of the ions. To make the monitoring
and selection of the phase easy, we match the interference signals by finding the
appropriate ion separation z by symmetrically changing the trap tip voltages until
reaching a value where the relative phase between both signals is zero. Fig. 4.5
shows the resonance florescence intensity when illuminating alternately the two ions
with the cooling and the excitation beams (with polarization adjusted such that no
optical pumping occurs), while scanning the distance of the mirror d. Fig. 4.5a show
the case of both interference signals with z = 4.4 µm, exhibiting a relative phase
of 1.6 ± 0.2 rad, and Fig. 4.5b shows the case of relative phase 0.2 ± 0.2 rad for
z = 5.2 µm. The latter is the setting used in the entanglement experiment.

Hence, by locking the distance of the mirror to a point where the interference
during the cooling stage is maximum we can create an entangled state with phase
φ = 0. Conversely, locking the distance of the mirror to an interference minimum
corresponds to the creation of a entangled state with φ = π. Other phases can be
set by choosing other locking points.

The visibility of the fringes shown is Fig. 4.5 does not correspond to the one
achieved during the actual entanglement generation and emission from entangled
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Figure 4.6: Sequence for entanglement generation. The sequence used

for entanglement generation consists of two stages. In a first stage (grey shaded

area) the ions are Doopler cooled. The fluorescence detected during this stage

in the common optical mode is used to stabilize the interference phase (Sec-

tion 4.3.2). In the second stage (yellow shaded) both ions are prepared in the

initial state |g−, g−〉 via optical pumping, and then the weak 48 ns excitation

pulse is sent. Starting simultaneously the APD is gated for 1 µs. If a single

photon is detected during this period, the entanglement process is successful,

if not, the entanglement generation stage is repeated up to 30 times.

states experiments. In that case, the visibility is optimized to achieve the value V =
0.37 ± 0.02. The visibility is mostly limited by the motion of the ions [120].

Experimental sequence for entanglement generation

So far, we have shown that the requirements needed to generate entanglement using
the Cabrillo scheme are fulfilled. We now show how these different ingredients are
combined to generate entanglement. To do so, we use the setup presented in Fig. 4.1
and the sequence shown if Fig. 4.6. This sequence is composed of two stages: First,
a cooling stage, and second, an entanglement generation stage. In the first stage
the ions are pumped into the cooling manifold and Doppler-cooled for 300 µs. The
fluorescence detected during this period is used to stabilize the interference phase
between the two ions by slightly adjusting the position of the distant mirror and
keeping the detected fluorescence at a given level.

In the second stage, i.e., the entanglement generation stage, the ions are prepared
in the initial state |g−, g−〉 by optical pumping with the 493 nm σ−-polarized beam
and the 650 nm repumper. Thereafter, the ions are weakly excited in the |g−〉 → |i〉
transition with the 48 ns σ+-polarized pulse. Starting simultaneously with the
excitation pulse, the APD is gated during 1 µs. If a “heralding” photon is detected
in the common optical mode defined by the optical fiber, the PBS and the filter, the
process of entanglement generation is successful. If this is the case, a characterization
stage is initiated (not shown in the figure). If no photon is detected, the entanglement
generation stage is repeated, including the inital state preparation. The generation
stage is repeated up to 30 times, and if no photon is detected in these 30 attempts,
the cooling stage is repeated. This is necessary in order to avoid decoherence due
to motional heating and phase uncertainty due to mechanical drifts of the mirror
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position that can lead to phase uncertainty.

Following this procedure, we achieve a heralding-photon detection rate, corre-
sponding to the number of entanglement events, of 5.02 s−1. This rate is mostly
limited by the overall detection efficiency η ≈ 0.002, constrained primarily by the
NA = 0.40 of the in-vacuum lenses, which allow us to collect ≈ 6% of the sponta-
neous emission from the desired transition in the common mode. Additional optical
losses are caused by the lenses and viewports, reflections from the distant mirror, the
rest of the optical elements and imperfect coupling into the single-mode fiber, with
combined transmission T ≈ 0.07. The quantum efficiency of the APD is ≈ 70%.

The detection of a single photon at the end of the generation stage is not a proof
of generation of entanglement. After the detection of the heralding photon a state
characterization stage is performed. The presence of entanglement in the ion pair is
confirmed in typical experiments by performing full tomography of the state [121],
or by measuring some observable that acts as an entanglement witness [122,123]. In
our experiment we characterize the entanglement by measuring “parity oscillations”
[113], as presented in the next section.

4.3.3 Entanglement characterization

The method used to generate entanglement ideally creates the state 1√
2
(|g+, g−〉 +

eiφ|g−, g+〉) with a phase φ which is independent of any absolute laser phase. Instead,
it depends only on geometrical parameters defining the relative phase of photons
emitted by different ions. The phase φ is not related to the absolute phase of the
1.7 µm laser or the RF radiation that could be used to perform state tomography.
Therefore, state tomography cannot be properly performed when using the presented
entangling scheme. Instead, a method that does not rely on the phase relation of
the analysing pulses and the entanglement phase is required.

The approach that we take is the measurement of parity oscillations [113]. This
method permits us to access the elements of the state’s experimentally generated
density matrix ρφ which contribute to the overlap with the desired theoretical state
|ψφ〉, allowing the calculation of the fidelity of the created state F = 〈ψφ|ρ̂φ|ψφ〉.
This method is based on Ramsey-like interference measurements and gives a direct
estimation of the coherence between the |g−, g+〉 and |g+, g−〉 states. Furthermore,
it requires only global qubit rotations, and therefore, single ion laser addressing is
not necessary.

The most general density matrix for a two-qubit system, with qubit states |g−〉
and |g+〉 is given by

ρ̂ =


ρg−,g− ρg−g−,g+g− ρg−g−,g−g+ ρg−g−,g+g+

ρ∗g−g−,g+g− ρg+,g− ρg+g−,g−g+ ρg+g−,g+g+

ρ∗g−g−,g−g+
ρ∗g+g−,g−g+

ρg−,g+ ρg−g+,g+g+

ρ∗g−g−,g+g+
ρ∗g+g−,g+g+

ρ∗g−g+,g+g+
ρg+,g+

 , (4.36)
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First rotation Second rotation Measurement Result

– – ρg−,g− + ρg+,g+ − (ρg+,g− + ρg+,g−)

R̂(π/2, 0)G – 2<(ρg−g+,g+g− − ρg−g−,g+g+)

R̂(π/2, π/4)G – 2<(ρg−g+,g+g−) + 2=(ρg−g−,g+g+)

R̂(π/2, π/2)G – 2<(ρg−g+,g+g− + ρg−g−,g+g+)

R̂(π/2, π/2)G R̂(π/2, 0)G 2<(ρg−g+,g+g− − ρg−g−,g+g+)

R̂(π/2, π/2)G R̂(π/2, π/2)G ρg−,g− + ρg+,g+ − (ρg+,g− + ρg+,g−)

Table 4.1: Parity operator expectation values after applying global rotations

to the experimental state ρ̂. < and = symbolises real and imaginary part

respectively.

with ρ̂† = ρ̂ and Tr(ρ̂) = 1. The parity operator for two states is defined as

P̂ = |g−g−〉〈g−g−|+ |g+g+〉〈g+g+| − |g−g−〉〈g+g+| − |g+g+〉〈g−g−|, (4.37)

so that its expectation value is given by

〈P̂ 〉 = Tr(P̂ ρ̂) = ρg−,g− + ρg+,g+ − (ρg−,g+ + ρg+,g−). (4.38)

To access the value of the coherence terms of the density matrix we can apply global
qubit rotations over the generated ion states. The rotations can be composed by one
or two pulses in the RF transition connecting the |g−〉 and |g+〉 states (Section 3.4.3).
Such a global rotation is defined by the operator

R̂(θ, φR)G = R̂(θ, φR)A ⊗ R̂(θ, φR)B, (4.39)

where R̂(θ, φR)A(B) are defined as in Eq. 3.15 and A(B) designate each ion. If two

pulses R̂(π/2, π/2)G and R̂(π/2, φR)G are applied consecutively before measuring
the parity operator, the expectation value of the parity operator is given by〈

P̂ (φR)
〉

= Tr
(
P̂ R̂(π/2, φR)GR̂(π/2, π/2)Gρ̂R̂(π/2, π/2)†GR̂(π/2, φR)†G

)
. (4.40)

The outcome of the measurement of the parity operator after different sequences of
global rotations are shown in Table 4.1.

In the case of the pure state |ψφ〉 = 1√
2
(|g−, g+〉+ eiφ|g+, g−〉), the parity signal

after the rotations R̂(π/2, φR)GR̂(π/2, π/2)G is given by〈
P̂ (φR)

〉
|ψφ〉

= cos(2φR + φ). (4.41)

For imperfect experimentally generated states, this signal can be phase-shifted, re-
duced in amplitude or show offsets.

The fidelity of the experimentally generated state ρ̂ with respect to the state
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Figure 4.7: Sequence for measurement of the parity operator. a. The

sequence used for measurement of the parity operator consist of RF-qubit rota-

tions followed by shelving of the |g−〉 state and measurement of the fluorescence

of both ions. b. Histogram of the detected fluorescence after shelving without

any qubit rotation. The dashed vertical lines mark the treshold between three

different fluorescence levels (see main text). By integration of the number of

events in each region, the estimated populations of the experimental state are

ρg−,g+ + ρg+,g− = 91± 3 %, ρg−,g− = 5± 1 % and ρg+,g+ = 4± 2 %.

|ψφ=0〉 can be estimated from the parity measurements, and is explicitly given by

F = 〈ψφ=0|ρ̂|ψφ=0〉 =
1

2

[
ρg−,g+ + ρg+,g− + 2<(ρg−g+,g+g−).

]
(4.42)

All the terms in this expression can be obtained by global rotations and measure-
ments of the parity operator. The presence of entanglement in the ion pair can be
proven by measuring F > 1/2. However, the measurement of parity oscillations
only does not give an exact value for the amount of entanglement of the system,
but can be used to set lower bounds for the concurrence or entanglement of forma-
tion [113,124].

To measure parity oscillations we perform the global rotations using coherent RF
pulses in resonance with the Zeeman transition connecting the two ground states
|g−〉 and |g+〉, as previously presented in Section 3.4.3. For the external applied
magnetic field with magnitude B = 0.453 mT the Zeeman splitting is 12.7 MHz.
After the qubit rotations are performed, a global shelving pulse resonant with
the |g−〉 ↔ |5D5/2,mj = −5/2〉 transition2, transforming superpositions in the
{|g−〉, |g+〉} basis onto the {|5D5/2,mj = −5/2〉, |g+〉} basis. Thereafter, the cooling
beams are turned on and the fluorescence emitted by the ions in the common optical

2The beam configuration is the same as the one discussed in Sec. 3.3.3
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Figure 4.8: Parity oscillations. Orange squares: Measured expectation val-

ues of the parity operator after a single global rotation R̂(π/2, φR) is applied.

Blue points: Measured expectation value of the parity operator when the global

rotations R̂(π/2, π/2) and R̂(π/2, φR) are applied.

mode is detected by the APD. Since the length of the applied pulses is much shorter
than the mechanical drifts of the mirror’s position, the detected fluorescence rate is
the same as during the cooling stage, allowing the estimations of the populations of
the rotated state. This parity oscillation measurement sequence is executed only if
a heralding photon is detected.

Fig. 4.7a shows the sequence used for detection of the populations and parity op-
erator. Fig. 4.7b shows the fluorescence detection histogram after shelving without
applying any qubit rotation and containing 185 entangling events. This histogram
is separated in three regions, the left-side region corresponds to both ions being in a
dark state, the center-region corresponds to one ion being in a dark state and one in
a bright state, and the right-side region corresponds to both ions being in a bright
state. The threshold between these regions is set by independent measurements
of the fluorescence histograms of a single ion. The integrated number of events in
each region corresponds to the populations ρg−,g− , ρg−,g+ +ρg+,g− and ρg+,g+ respec-
tively. Notice that since the fluorescence emitted by both ions is coupled identically
to the same APD it is not possible to measure ρg−,g+ and ρg+,g− separately. From
these measurements we estimate that the experimentally created entangled state has
populations ρg−,g+ +ρg+,g− = 91±3 %, ρg−,g− = 5±1 % and ρg+,g+ = 4± 2%, corre-
sponding to a parity value of 0.80± 0.6. The presence of population in the |g−, g−〉
state is mostly due to dark counts in the detector and the detection of background
and scattered light during the entanglement generation. The measured population
in the |g+, g+〉 ions is mostly due to the non-vanishing probability of creating double
excitations and imperfections in the shelving pulse. Since the measurement pre-
sented in Section 4.3.2 shown that both ions are excited equally, we assume that the
generated state has populations ρg−,g+ = ρg+,g− = 1

2(ρg−,g+ +ρg+,g−) = 45.5±1.5 %.

Fig. 4.8 shows the expectation value of the parity operator after applying one or
two global rotations on the generated state with phase φ = 0 set during the prepa-
ration. The orange squares correspond to only one rotation R̂(π/2, φR) applied,
and showing a constant behaviour independent of the rotation phase φR. Accord-
ing to Table 4.1, this means that both the imaginary and real parts of coherences
ρg−,g−,g+,g+ are zero. This result is expected since in the realized experiment there
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is no mechanism that can generate these kinds of coherences. The blue points in
Fig. 4.8 show the results after applying two pulses generating consecutively the ro-
tations R̂(π/2, π/2) and R̂(π/2, φR), exhibiting the expected oscillatory behaviour.
The amplitude and offset fitted curve oscillates with period π and amplitude equal
to 1.19 ± 0.06.

Using Eq. (4.42), the fidelity of the generated state can be calculated from the
populations measurement and from the measured parity oscillations points, which,
combining the statistics of all the measured points, is estimated to be F = 0.65 ±
0.2 > 1/2, proving the presence of entanglement. The fidelity is primarily limited
by the motion of the ions, as studied in Ref. [79], and could be improved by further
cooling the ions with techniques such as EIT cooling or sideband cooling, although
using these additional cooling techniques would be detrimental for the repetition
rate of the full experiment since they require longer cooling times. Other effects
reducing the fidelity are the atomic recoil during Raman scattering, initial state
preparation imperfections and qubit decoherence. The latter comes from the fact
that even though the created state lies in a decoherence-free subspace, the ions are
taken out from it during the parity measurements.

Since there is no a physical mechanism to generate far-off diagonal coherences in
the realized state and since the measurements show so, we neglect all the coherences
but ρg+g−,g−g+ and estimate the concurrence of the generated state from the mea-
sured elements only. The general definition of the concurrence for bipartite mixed
state is given by

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (4.43)

where λ1 > λ2 > λ3 > λ4 are the eigenvalues of the matrix

ℵ =
√√

ρρ̃
√
ρ, with ρ̃ = (σ̂y ⊗ σ̂y)ρ∗(σ̂y ⊗ σ̂y). (4.44)

The concurrence for our generated state is estimated to be C(ρ) = 0.31 ± 0.10,
Moreover, using the general inequality for density matrices between populations
and coherences ρn,nρm,m ≤ |ρn,m|2, we have numerically inspected that the pres-
ence of coherences neglected in our approximation do not decrease the value of the
concurrence.

4.4 Interference of single photons emitted by a pair of en-

tangled atoms

We have considered theoretically how the emission of entangled atoms can inter-
fere and lead to enhancement and inhibition of the detected field. Furthermore, we
have shown experimental results demonstrating creation of entanglement between
effectively separated ions using interference. In this section we present the observa-
tion of interference in the spontaneous emission of a single photon into free space,
emitted jointly by a pair of ions prepared in an entangled state. To do so, we use
the setup presented in Fig. 4.1, where two ions are trapped adjacently but share a
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common optical mode in which their effective optical separation is d ' 60 cm. With
this arrangement, it is possible to directly observe both enhancement and inhibition
of single-photon emission from the ions by controlling the optical distance between
them in the common mode. This distance can be set dynamically during an experi-
mental sequence with sub-wavelength precision and in times well below the lifetime
of the entangled state.

To understand the interference process, let us consider that the theoretical target
entangled state |ψφ〉, discussed in Sections 4.3.1 and 4.3.2, is subject to a second
Raman process |g−〉 → |e〉 → |g+〉. Only the component of the entangled state
remaining in |g−〉 can absorb a photon from the exciting pulse and emit a second
π-polarized photon. If such a process is completed, the state of the joint ions-photon
system is

|ψ′φ〉 =
1√
2

(
|0, 1〉+ ei(φL,A−φL,B)|1, 0〉

)
|g+, g+〉 (4.45)

The field states |1, 0〉 and |0, 1〉 correspond to the emission of a single photon from
atom A or B. The detection of this “witness” photon in the common mode projects
the atoms onto the unnormalized state

|ψ′φp 〉 =
1√
2

(1 + ei(φL,A−φL,B+φ′D,A−φ
′
D,B)eiφ)|g+, g+〉, (4.46)

where φ′D,A − φ′D,B = kd′ is the optical phase difference in the common mode when
the witness photon is detected. Therefore, the probability of detecting a single
witness photon is

P ∝
∣∣∣〈ψ′φp |ψ′φp 〉∣∣∣2 = 1 + cos(φ− φ′), (4.47)

where φ′ = (φL,B−φL,A) + (φ′D,B−φ′D,A). The witness photon detection probability
is modulated by the phase difference ∆φ = φ−φ′ between the heralding and witness
detection events. This effect is a consequence of entanglement between the two
emitters and corresponds to enhancement or inhibition of the emission probability
in the common mode due to single-photon path interference. Eq. 4.10 can indeed be
obtained using the theory presented in Section 4.2 and is a generalization of Eq. 4.15
for W-like states with arbitrary phase φ.

From Eq. 4.47 it is clear that the probability of detecting a single photon in the
common optical mode depends on the difference between the phase of the entan-
gled state φ and the “detection phase” φ′. This phase difference ∆φ can be set by
rapidly changing the position of the distant mirror from d/2 to d′/2 between the
two detection events, namely the detection of the single photon creating the entan-
glement and the second detection of the witness photon probing the entanglement.
This change is done in under 220µs, allowing precise phase control in short times
without motional excitation of the ions. Since the distance z between the ions is
kept constant during this process, the phase difference is given by ∆φ = k(d′ − d).



88 4.4. Interference of single photons emitted by a pair of entangled atoms

L1 L2

Mirror + PZT

A

B

z
B

d/2

M

Laser beam

Flip mirror

Michelson interferometer

Detector
0.0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

O
pt

ic
al

 s
ig

na
l (

m
V)

44

52

60

68

P
ie

zo
 v

ol
ta

ge
 (V

)

Time (ms)

1

2

3

4

aa b

BS

Mirror

Figure 4.9: Calibration of the fast phase change. a. A Michelson inter-

ferometer attached to the setup is enabled by a flip mirror, allowing the fine

calibration of the PZT-mirror voltage-displacement time response. b. The dis-

tant mirror is displaced by the length corresponding to a full interference fringe

by applying a fixed ' 200µs linear voltage ramp of 14.0 V (orange trace) to the

PZT transducers. The phase difference given by the position of the mirror at

a given time is measured by recording the interferometric signal (blue trace).

Different phase differences are then set by emitting and detecting the second

photon at different time delays τi (grey arrows, see main text).

4.4.1 Fast phase tuning

The fast change in the mirror distance is achieved by ramping the voltage of the
piezoelectric transducers. A voltage ramp, in contrast to an abrupt voltage step is
used to prevent inducing high-frequency vibrations in the mirror that can lead to
phase uncertainty. After detecting a heralding photon, a linear voltage ramp with
amplitude ∆U = 14.0 V and duration ∆T = 200µs is applied to the PZTs, displacing
the mirror by (d′−d)/2 = λ/2, corresponding to ∆φ = 2π (a full interference fringe).
Different phase differences ∆φ are then obtained by sending the excitation pulse and
detecting the witness photon after different variable delay times τi relative to the
start of the ramp.

For the fine calibration of the phase change ∆φ as a function of the delay τ
we implement a simple method using the fact that the photon emission from the
entangled atom pair depends only on the relative phase ∆φ. A Michelson interfer-
ometer is inserted into the experiment using a flip mirror (Fig. 4.9a). The signal
of the interferometer is recorded for the voltage ramp described above (Fig. 4.9b)
with a laser beam with the same frequency as the λ = 493 nm excitation beam. The
times used in the experiment are τ0 = 60µs for ∆φ = 0, τ1 = 93µs for ∆φ = π/2,
τ2 = 129µs for ∆φ = π, τ3 = 164µs for ∆φ = 3π/2 and τ4 = 203µs for ∆φ = 2π.
To obtain the phase difference ∆φ = 5π/2 we apply a larger voltage step of 18.0 V
and a delay time of 220µs. The mirror position drifts occur on time scales (∼ 10 s)
longer than those used in the experiments, making the method robust against them.
The angular alignment of the distant mirror is adjusted every 1 h by maximizing the
visibility of the interference fringes shown in Fig. 4.5.
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Mirror PZT voltage ramp
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493 nm σ+ excitation
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witness photon generation
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heralding  photon 200 μs

Figure 4.10: Sequence for witness photon generation. When a photon

heralding the creation of entanglement is detected, a voltage ramp is applied

to the PZT of the mirror. Depending of which phase difference ∆φ is aimed

(see main text), the pulse creating the witness photon and the signal triggering

the APD are sent with variable delay τ after the start of the ramp.

4.4.2 Experimental sequence and results

The experimental sequence for interference between entangled ions (Fig. 4.10) is
triggered by the detection of a photon creating entanglement, and in replacement of
the entanglement characterization sequence described in Section 4.3.3. The linear
voltage ramp applied to the piezoelectric transducer (Fig. 4.9b) is triggered by the
detection of a heralding photon. After a variable delay τ relative to the start of
the ramp, an APD detection window of 1µs is opened. Simultaneously, a Raman
excitation pulse, stronger than the pulse used to create entanglement, is sent to
the ions. This pulse has a probability pw = 80 ± 2 % of successfully driving the
|g−〉 → |g+〉, with 250 ns length and 15.8µW mean power. It can be set substantially
stronger than the entanglement generation pulse because the ion pair in the state
|ψ〉 cannot absorb multiple photons. The sequence is repeated at a rate 704 s−1,
achieving an entanglement generation rate of 5.02 s−1 and an average witness photon
detection rate of 0.47 min−1.

We measure the witness photon detection probability P by counting the number
of witness photons per herald photon for a given phase change ∆φ. The results of the
measurement, together with the amplitude- and offset-fitted model from Eq. (4.47),
are plotted in Fig. 4.11. The maximum and minimum measured probabilities are
P (∆φ = 0) = (2.10 ± 0.07)× 10−3 and P (∆φ = π) = (1.17 ± 0.12)× 10−3. All the
blue circles shown in Fig. 4.11 (entangled state data) correspond to accumulations
of 9 hours, except the first blue circle which corresponds to 40 hours.

The visibility V obtained by the fitted model implies a concurrence of the en-
tangled atom pair Cwit = V = 0.27± 0.03, in agreement with the concurrence of the
bipartite density matrix inferred from parity measurements C(ρpar) = 0.31± 0.10.

For comparison we measure the photon detection rate for a separable two-ion
state |ζ〉 = |g+, g−〉. This state is prepared by optically pumping both ions into the
|g−〉 state, followed by a 1.76 µm addressed shelving pulse on the |g−〉 ↔ |5D 5

2
,mj =

−5
2〉 transition on ion B and a global RF π-pulse between the |g−〉 and |g+〉 states of

both ions, before unshelving the ion B. We trigger the emission of a witness photon
from this state by using an excitation beam with the same parameters used for
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Figure 4.11: Probability of single photon detection from a entangled

state. Absolute (P ) and relative (R) witness photon probability from the

atom pair as a function of the phase difference ∆φ for the entangled state

|ψ〉 (blue circles) and the separable state |ζ〉 (orange squares). Error bars

correspond to the Poissonian error from photon counting. The blue solid curve

is the amplitude and offset fitted scattering model for the entangled state, while

the black dashed curve shows the expected probability from the independent

estimation of its concurrence. The grey dashed line is the average of the fitted

curve. The witness photon detection probability for |ψ〉 is maximally enhanced

at ∆φ = 0, 2π and maximally suppressed at ∆φ = π. The photon detection

probability for |ζ〉 is constant within the measurement uncertainty.

emitting a photon from the state |ψ〉. The witness photon detection probability for
|ζ〉, which is the mean number of photons detected per prepared state, is shown in
Fig. 4.11 (orange squares) as a function of the optical phase ∆φ. In contrast to
the entangled state |ψ〉, the photon probability P|ζ〉 for the separable state |ζ〉 is
independent of the phase difference, with an average detection probability Psep =
(1.63 ± 0.05)×10−3. The observed visibility for this states is ≈ 0, in agreement with
the expected vanishing concurrence of the state. We define the relative probabilities
R = P (∆φ)/Psep, so that R > 1 (R < 1) represents enhanced (suppressed) detection
probability relative to this separable state. The relative scale is shown in Fig. 4.11,
right vertical axis. Because states |ψ〉 and |ζ〉 both contain a single ion in |g−〉, we
expect the mean detection probabilities from each state to be equal. The mean of
the fitted interference curve for R|ψ〉 in Fig. 4.11 is 0.99 ± 0.08, in close agreement
with the mean of R|ζ〉.

The results presented up to here are therefore in agreement with the prediction
stating that in the single excitation subspace, spanned by {|g−, g+〉, |g+, g−〉}, the
visibility of the observed interference corresponds to the amount of the entangle-
ment in the ion pair (Section 4.2.2). Therefore, that measurement of the visibility,
together with measurements of the populations can be used to prove the presence
of entanglement.

For the most general state of the bipartite system |β〉 = a|g−, g+, 〉+b|g+, g−, 〉+
c|g−, g−, 〉 + d|g+, g+〉, the probability of detecting a single photon is proportional
to the expression in Eq. 4.21. The visibility of the interference fringes for the state
β signal is given by Eq. 4.25, showing that a separable state outside the single
excitation subspace can still lead to interference if it has a non-fixed (a superposition)
number of excitations. Hence, in general the expected visibility does not correspond
to the concurrence. For the separable state |ξ〉 = 1

2(|g−〉 + |g+〉) ⊗ (|g−〉 + |g+〉),
where a = b = c = d = 1/2, the visibility is V|ξ〉 = 1

2 , while the concurrence is
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Figure 4.12: Probability of single photon detection from different

states. The measured probability of single photon detection from the separa-

ble state |ξ〉 is shown with purple diamonds. The fitted amplitude corresponds

to a visibility V|η〉 = 0.15 ± 0.08. The measured data for the entangled state

|ψ〉 (blue circles) and for the separable state |ζ〉 (orange squares) presented in

Fig. 4.11 are shown for reference.
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t

Figure 4.13: Sequence used for the measurement of the magnetic

field gradient. After the detection of a photon heralding the entanglement, a

waiting time t is added before starting the voltage ramp of the mirror’s PZT.

After starting the ramp, the time delays τ0 = 60µs and τ1 = 93µs are used

in order to generate the mirror displacement corresponding to ∆φ = 0 and

∆φ = π/2, respectively.

C|η〉 = 0. The single photon detection probability for the state |ξ〉, prepared using
RF global pulses on the |g−〉 → |g+〉 transition, is shown in Fig. 4.12. We observe a
visibility V|ξ〉 = 0.15 ± 0.08, which is approximately, as expected, half the visibility
V|ψ〉 = Cwit = 0.27± 0.03 measured for the entangled state.

4.5 Optical measurement of magnetic field gradient

The witness photon detection probability P is also sensitive to any phase accumu-
lated by the entangled state between the emission of herald and witness photons.
For example, the presence of a weak static magnetic field gradient between the ions
induces a linear evolution of the entangled state phase φ due to the linear Zeeman
effect, namely [125,126].

φ→ φ+
gµB
~

∆B(A,B)t (4.48)
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data. The dashed purple line shows constant enhancement in the absence of

magnetic field gradient.

Where ∆B(A,B) is the difference of the field magnitudes at the positions of ions A
and B, µB is the Bohr magneton, t is the time of the evolution and g ' 2 is the
Landé factor of the |g±〉 state. The magnetic field difference ∆B(A,B) can therefore
be inferred from the acquired phase during the evolution.

We measure the magnetic field gradient due to an external permanent magnet by
recording the evolution of the witness photon emission probability with a variable
waiting time between the herald and witness photons. This is in practice achieved
by adding a waiting time t between the detection of the heralding photon and the
start of the PZT voltage ramp (Fig. 4.13). The actual phase difference between the
heralding and witness photon is therefore ∆φ+ gµB

~ ∆B(A,B)t.

The results are shown in Fig. 4.14 for mirror displacements corresponding to
∆φ = 0 (blue) and ∆φ = π/2 (orange). Oscillations observed in both signals
correspond to a linear evolution of the entanglement phase with a π/2 phase shift
with respect to each other. The period of the oscillation obtained from the fit (blue
curve in Fig. 4.14) of the data for ∆φ = 0 is 8.0 ± 0.5 ms. The orange curve is the
same fit shifted by π/2, and shows agreement with the measured data for ∆φ = π/2.
The period of the oscillation implies a magnetic field gradient of ∆B(A,B) = 0.85
± 0.05 mT/m along the ion crystal. The same measurement is taken in absence
of magnetic field gradient for ∆φ = 0 (Fig. 4.14, purple diamonds), where the
signal remains constant since dephasing effects are negligible on the measured time
scale. The coherence time of the entangled state in the decoherence-free subspace is
expected to be orders of magnitude longer than the time scale of the shown phase
evolution [118].
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4.6 Summary and outlook

In this chapter we have described how the presence of entanglement in a pair of ions
can change their emission properties. To do so, we have first reviewed the scheme
applied to generate entanglement and the setup used to interferometrically detect
single photons emitted by either ion, with almost perfect indistinguishability of the
emitters. The fidelity, and therefore the visibility of the interference of single pho-
tons emitted by the pair of entangled ions, is largely limited by the atomic motion.
After Doppler cooling, the amplitude of the atomic motion in the trap is ≈ 30 nm
in both radial directions. This motion, which is a superposition of the in-phase and
out-of-phase modes, produces a fundamental uncertainty in the atomic positions at
the moment of the emission, and a corresponding phase uncertainty in the emitted
photon. A mathematical description of this decoherence mechanism can be is found
in the Supplementary Information of [117]. The effect of the motion can be reduced,
e.g., by performing sideband cooling to the ground state of motion. However, exper-
imental sequences including ground state cooling have a duration nearly ten times
longer that of sequences with Doppler cooling only, lowering the entanglement rate
dramatically and making them impractical. The long cooling times are mostly due
to the small Lamb-Dicke parameter (<1%) in the quadrupole transition which could
be used for sideband cooling. In the near future, EIT cooling, which in principle
requires less time than sideband cooling and can address multiple motional modes
simultaneously, will be implemented. Other effects reducing the fidelity are the
atomic recoil during Raman scattering, initial population imperfections and qubit
decoherence (the system is taken out of the decoherence-free subspace for parity
measurements, with a coherence time ∼ 120µs). In spite of the achieved fidelity, we
have shown that there is a clear relation between entanglement and interference.

The agreement between measurements of entanglement using single-photon in-
terference visibility and independent measurements of internal states populations
confirms that the observed interference can be employed for the estimation of en-
tanglement between distant particles, without any requirement on coherent control
over internal atomic states [109,110,127]. Such a scheme is also applicable to quan-
tum objects with different internal structures and emission spectra [128], and should
allow the observation of entanglement between non-identical atoms or general dis-
parate quantum emitters [100, 127, 129, 130]. However, the average witness photon
count rate achieved in our experiment (0.47 min−1) limits the practical use for those
purposes, and significant improvements in the efficiency of the detection must be
developed in order to show the utility of the scheme beyond a proof of principle.

Both the creation and detection of entanglement are performed fully optically,
although the measurement of the populations of the involved states, which is neces-
sary to show that the interference is a proof of entanglement, is done via the electron
shelving technique. However, this also could be done fully optically, without addi-
tional lasers (See Section 3.3.3. in Ref. [131]). The free-space configuration imposes
no fundamental constraints on the direction of emission, the number of entangled
particles, or their mutual distance. The phases of the emitters in the detected optical
mode can be tuned arbitrarily, allowing the observation of the complete interference
signal; this is in contrast to Fabry-Perot cavity systems [105,106] in which the rela-
tive phase of the emitters is restricted to 0 or π by the cavity mode.
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While super- and subradiance, i.e., modifications of the global spontaneous emis-
sion rate, have been previously observed with a pair of trapped atoms [132], here we
have shown the control of the single-photon emission rate into a selected free-space
optical mode using entanglement. This opens the way to experimental studies of op-
tical properties of entangled states of a few well-controlled emitters [98,110,127,133]
such as trapped ions as presented here, or neutral atoms in more versatile trapping
configurations [14].

The spatial differences of various environmental factors are mapped directly into
interference of photons from entangled particles through the evolution of the phase
of the entangled state, as shown here for the case of magnetic field gradients. This
points to potential applications in quantum metrology [134]; together with all-optical
preparation of distant entangled states [116, 117] and recent developments in the
stabilization of large fiber networks [135], the technique presented here may enable
the development of ultra-sensitive optical gradiometers [136].
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Apparent displacement of a single atom due to

spin-orbit coupling of light

5.1 Introduction

Electromagnetic radiation can carry angular momentum as spin angular momentum
and orbital angular momentum. The first corresponds to the rotating electric and
magnetic fields of circularly polarized radiation, while the latter arises from the dis-
position of the wavefronts of the fields [137]. Spin and orbital angular momenta can
transform into each other and be converted to mechanical angular momentum when
interacting with matter [138,139]. The conversion between spin and orbital angular
momenta has been predicted and recently observed, as in the case of the spin-Hall
effect of light, where the trajectory of light beams impinging on dielectric interfaces
depends on the spin-orbit interaction of light [140–142]. Spin-orbit interaction of
light has also been studied in the case of single emitters. Effects such as strong
directionality of the emission and absortion by single quantum emitters are the sub-
ject of study of a new field, so-called “chiral quantum optics” [143]. While several
experiments have shown such effects in the emission and absorption of photons into
waveguides [144, 145], with applications in quantum networking, this effect has not
been observed for a single emitter radiating into free space.

In this chapter we present a theoretical and experimental study of the spin-
orbit coupling of angular momentum of single photons spontaneously emitted from
a single atom. The presence of orbital angular momentum is evidenced by a slight
tilt in the direction of emission, which depends on the change of angular momentum
experienced by the atom during the emission. This effect, already predicted by
Charles G. Darwin more than 80 years ago [146], is measured as a displacement in the
apparent position of the emitter imaged with a lens. In this experiment, the photons
are detected in a direction where they carry solely orbital angular momentum. In
this configuration, the apparent position of the emitter is shifted depending on the
change of angular momentum of the ion. We observe this displacement by comparing
the locations of the images of the ion formed by photons with opposite orbital angular
momenta.
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We discuss the generalization for arbitrary orbital angular momentum superpo-
sitions and shown that, in some imaging configuration, the apparent displacement of
the position of the emitter can be bigger than the detected wavelength. In the limit
of a very small numerical aperture imaging system, the displacement can become
arbitrarily large. We present experimental results using a nano-sized emitter, whose
emission pattern can be tuned to be any dipole superposition, leading to large appar-
ent displacements. Furthermore, we study the connection of these results with the
phenomenon of weak value amplification and optical current vortices and discuss the
applications of the presented phenomena in metrology, as well as its possible impact
in microscopy.

The results presented in this chapter are part of a collaborative work between
our laboratory and Stefan Walser, Jürgen Volz and Arno Rauschenbeutel from the
Atom Institute of the Vienna University of Technology (TU Wien). The experiment
with a single atom was performed in the Barium laboratory in Innsbruck, whereas
the experiment with the nano-emitter was performed in Vienna. The main results
an some parts of this chapter have been pubished in Ref. [147].

5.2 Spin and orbital angular momentum of atoms and light

5.2.1 Angular momenta of an atom

Electrons bound to an atom have a quantized angular momentum with respect to
the center of mass of the atom. The total angular momentum ~J of an electron is
the sum of the different contributions corresponding to orbital angular momentum
~L and its spin angular momentum ~S, i.e.,

~J = ~L+ ~S. (5.1)

The orbital angular momentum corresponds to its external angular momentum and
the spin to the internal one. To describe the angular momentum of an electron a
set of quantum numbers is used. In modern atomic physics these quantum numbers
are the principal quantum number, the azimuthal quantum number, the magnetic
quantum number and the spin projection quantum number:

� The principal quantum number n = 1, 2, 3, . . . describes the shell to which the
electron belongs, or “how far away” from the nucleus the electron is orbiting.

� The azimuthal quantum number l determines the subshell of the electron and
the magnitude of the orbital angular momentum L. This magnitude can be
obtained through the relation

L2 = ~2l(l + 1), (5.2)

with l = 0, 1, . . . , n − 1. Traditionally, the value of this quantum number is
represented by the letter S for the case of l = 0, P for l = 1, D for l = 2, etc.
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� The magnetic quantum number ml describes the specific spatial distribution
of the electron spatial wavefunction in the subshell. The projection Lz of
the total orbital angular momentum with respect to a quantization axis z is
calculated as

Lz = ml~, (5.3)

with ml = −l,−l + 1, . . . , l − 1, l.

� The spin projection number ms describes the intrinsic angular momentum of
the electron. The projection of this angular momentum along the quantization
axis is given by

Sz = ms~ (5.4)

For the case of an electron, ms can take the values -1/2 and +1/2.

The total angular momentum of an atom is the sum of angular momenta of each
electron and the nucleus, and is a conserved quantity for an isolated atom. The
interactions between the angular momenta of the electrons and nucleus give rise to
the hyperfine energy level structure of the atom. In the case of 138Ba+, the angular
momentum of the nucleus vanishes, so that there is no hyperfine structure.

If an electronic shell is full, its total angular momentum adds to zero. Therefore,
for the case of singly ionized alkaline earth metals such as 138Ba+, the total angular
momentum of the atom is the one of the outermost electron. In this thesis, we define
the energetic and angular momentum state of this electron by the notation

n lj ,mj , (5.5)

where j = s + l. So for example, the ground state manifold is composed by the
state 6S1/2,mj = −1/2 and 6S1/2,mj = +1/2, both states with principal quantum
number n = 6, electron spin s = 1/2, azimuthal quantum number l = 0 (S) and
mj = 0 − 1/2 = −1/2 and mj = 0 + 1/2 = +1/2, respectively. The states in the
6P1/2 manifold share the same quantum number, except for the azimuthal quantum
number, which in this case is l = 1 (P).

5.2.2 Angular momentum of light

Light can carry angular momentum in two ways: as spin angular momentum (SAM)
and orbital angular momentum (OAM). The spin orbital angular momentum is
present in light with some degree of circular polarization, whereas the (intrinsic)
orbital angular momentum is present in light whose wavefronts have some helicity
on its wavefronts [148]. Note that there is also an extrinsic angular momentum of
light, which corresponds to light propagating with respect to a displaced reference
frame [137].

For a classical light field oscillating with angular frequency ω, the spin angular
momentum density can be written in an operational way following the so-called
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electric-magnetic democracy formalism [148–151] as

~s =
1

4ω
=
[
ε0 ~E

∗ × ~E + µ0
~H∗ × ~H

]
, (5.6)

where ~E is the electric field and ~H is the magnetic field. The orbital angular mo-
mentum density can be written as

~L = ~r × ~po, (5.7)

where ~po is the orbital canonical linear momentum density, defined as

~po =
1

4ω
=
[
ε0 ~E

∗ · (∇) ~E + µ0
~H∗ · (∇) ~H

]
, (5.8)

where the notation ~A · (∇) ~B = Ax∇Bx + Ay∇By + Bz∇Bz is used. The linear
momentum density ~p is defined as

~p = ~po + ~ps, (5.9)

consisting of both orbital (o) and spin (s) parts, and it is proportional to the Poynting
vector averaged over one field oscillation cycle [149]. The spin part is defined as

~ps =
1

2
(∇× ~s). (5.10)

Orbital angular momentum can be decomposed in longitudinal orbital angular
momentum and transverse orbital angular momentum. The longitudinal orbital
angular momentum corresponds to an orbital angular momentum vector along the
propagation direction of the field. This kind of OAM can be found, for example,
in vortex beams, where the orbital angular per photon is quantized and determined
by the topological charge l = 0,±1,±2, etc. On the other hand, transverse angular
momentum corresponds to an orbital angular momentum vector perpendicular to
the direction of propagation. This last case can be found in, e.g., strongly focused
beams or in the emission field of circular dipoles, as we study in this thesis.

5.3 Conservation of angular momentum in the spontaneous

emission

5.3.1 Orbital and spin angular momentum in the emitted field

Let us consider now the process of spontaneous emission where an atom decays from
an excited state to a ground state emitting a photon with wavelength λ. Depending
on the state of the atom before and after the emission, the atom may change its
angular momentum. Fig. 5.1 shows the three different possibilities for the 6P1/2 →
6P1/2 dipole transition in 138Ba+. The change of angular momentum of the atom
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6P1/2
 mj = -1/2

 mj = +1/2

6S1/2
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Figure 5.1: Dipole transitions and change of angular momentum. The

three cases of change angular momentum ∆m = 0,+1,−1 of an atom before

and after spontaneous emission.

~∆m = ~(mf − mi) is given by the difference in the magnetic quantum number
of the atom before (mi) and after (mf ) the decay. The first case (Fig. 5.1, left)
corresponds to the decay 6P1/2,mj = +1/2 → 6P1/2,mj = +1/2 and 6P1/2,mj =
−1/2 → 6P1/2,mj = −1/2. In this case the angular momentum of the atom is
unchanged, i.e., ~∆m = 0. This kind of transition is usually called a π-transition.
The other two cases shown in Fig. 5.1 correspond to ~∆m = +~ (Fig. 5.1, center),
named σ+–transition, and to ~∆m = −~ (Fig. 5.1, right), named σ−–transition.
The emission pattern of these transitions correspond to the emission of π, σ− and
σ+ dipoles, and the probability of detecting a single photon in a given direction is
given by Eqs. (3.6) and (3.7).

Let us now study the case of a spontaneously emitted photon in a ∆m = +1
or ∆m = −1 electric dipole transition. In this case, the final angular momentum
of the atom differs by a quantum ~ from the initial one. As conservation of the
total angular momentum imposes, this angular momentum must be contained in
the emitted photon as spin or orbital angular momentum. Therefore, the photon
is expected to have angular momentum along the quantization axis. Whether this
angular momentum is present as SAM or OAM depends on the direction of emission
of the photon. In general, for any direction, the expectation values of the spin
and orbital angular momenta of the photon along the quantization axis z are given
by [152]

〈sz〉 = ∆m 2 cos2 θ
1+cos2 θ

~, (5.11)

〈lz〉 = ∆m sin2θ
1+cos2 θ

~ (5.12)

respectively, where θ is the polar angle with respect to the quantization axis. For
∆m = ±1 the expectation values of the spin and orbital angular momenta always add
to ∓~, independent of the direction of observation, as expected from the change of
angular momentum in the atom. A photon detected in the z direction carries angular
momentum solely in the form of spin angular momentum, i.e., it has right circular
polarization − 1√

2
(x̂ + iŷ) for a ∆m = +1 transition and left circular polarization

1√
2
(x̂−iŷ) in the case of a ∆m = −1 transition. For a photon detected in a direction

r̂ on the equatorial xy-plane (θ = π/2) the polarization is linear, parallel to r̂ × ẑ,
irrespective of the ∆m = ±1 transition, and therefore, the photon does not carry
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spin angular momentum. In the following, we show that the wavefronts in these
directions have a spiralling shape, and carry the angular momentum.

Wavefronts of the radiated field

The field emitted by ∆m = +1 and ∆m = −1 dipole transitions corresponds to the
radiation of a dipole rotating clockwise or counterclockwise in the xy-plane. In that
plane, the wavefronts are spirals with opposite orientations (Fig. 5.2a). This is a
classical property of the field, and can be calculated from the Maxwell equations for
radiative dipoles. A detailed deduction is presented here.

The classical field due to an oscillating dipole in the far field is given by (see
section 7.6 in [42])

~E(+)
q (~r, t) =

1

4πε0c2
[(ε̂q · r̂)r̂ − ε̂q]

d̈
(+)
q (tr)

r
, (5.13)

where d is the dipole moment, ε̂ is the dipole orientation: ε̂0 = ẑ for a linear dipole
and ε̂±1 = ∓ 1√

2
(x̂± iŷ) for a rotating dipole in the xy-plane; and tr is the retarded

time tr = t− r/c. The product ε̂q · r̂ in spherical coordinates can be written as

ε̂q · r̂ =

√
4π

3
Y q

1 (θ, φ), (5.14)

where Y q
p (θ, φ) are spherical harmonics. In the cases of dipole π–transition (p =

1, q = 0) and a dipole σ±–transition (p = 1, q = ±1) the spherical harmonics are
given by

Y 0
1 (θ, φ) =

√
3

4π cos θ, (5.15)

Y ±1
1 (θ, φ) = ∓

√
3

8π sinθe±iφ. (5.16)

Since the dipole moment is proportional to the external oscillatory driving field
E(±) ∼ e∓iωt, and considering that the emitted light is in the near resonant regime,
the scattered light has a frequency close to the transition energy ω. In this approx-
imation the second temporal derivative of the dipole moment is given by

d̈(+) ≈ −ω2d(+) ≈ −ω2e−iωt. (5.17)

Therefore, in the case of the σ± dipoles, the electric field in the far field is given
explicitly by

~E(~r, t)±1 =
1

4πεc2

[
±
√

3

8π
sinθe±iφr̂ + ε̂±1

]
ω2e(−iωtr)

r
, (5.18)
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It is convenient to decompose the field in its three spherical components,

~E(~r, t)±1,r̂ = ± 1

4πε0c2

(√
3

8π
− 1√

2

)
sinθe±iφ

ω2e−iωtr

r
, (5.19)

~E(~r, t)±1,φ̂ =
1

4πε0c2

1√
2

sinθei(±φ−
π
2

)ω
2e−iωtr

r
, (5.20)

~E(~r, t)±1,θ̂ = ∓ 1

4πε0c2

1√
2

cos θe±iφ
ω2e−iωtr

r
. (5.21)

The phases of these three components depend on the spatial coordinates r and φ
and the time t (through the retarded time tr), and are given by

ψ±1,r̂ = ±φ− ωtr (5.22)

ψ±1,φ̂ = ±φ− ωtr − π/2 (5.23)

ψ±1,θ̂ = ±φ− ωtr. (5.24)

The wavefronts, i.e., all the points where the field has the same phase at a given
time t = t0, can be described by the parametric equation

r(φ) = nλ+
λ

2π
(∓φ+ ϕ0 + ωt0 + π/2) (5.25)

= λ(n∓ φ

2π
) + cte, (5.26)

for dipole orientations ˆε±1, respectively, and where λ = 2πc/ω, n ∈ N and cte
is a constant. These correspond to Archimedean spirals around the z axis, with
opposite growing sense for σ+ and σ− dipoles. A given phase at a given time
repeats spatially after a distance λ from the origin. This is a characteristic of a field
carrying transverse orbital angular momentum lz = ∓~ .

Following the same calculations for the case of the linearly oscillating dipole
(∆m = 0) leads to

~E(~r, t)0 ≈
1

4πε0c2

[
3

4π
cos θr̂ + ẑ

] −ω2e−iωtr

r
. (5.27)

The wavefronts are, for a given phase ϕ0 at a time t0, described by a constant radius

r(θ, φ) = nλ+
ϕ0

k
+ ωt0 = cte′, (5.28)

therefore, they are spherical wavefronts without any spiralling and they do not carry
orbital angular momentum.

5.3.2 Apparent displacement of the emitter

The spiral shape of the wavefronts of the field emitted in dipole transition with
∆m = ±1 causes an apparent displacement of the emitters due the presence of
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Figure 5.2: Wavefront of the field and apparent displacement of the

emitter a. Spiral wavefronts in the equatorial xy-plane for ∆m = −1 and

∆m = +1 transitions (quantization axis ~B along z). γ is the angle between the

radial direction (blue, dashed line) and the propagation direction ~k. b. For a

small angle δφ, the spiral length increases by δr = λ |δφ|/(2π), which causes the

tilt γ = −∆mδr/δa = −∆m 1
2π

λ
r . When observed from the x̂ direction, the

angular tilt γ translates into a shift δy = −∆m λ
2π , and a displacement ∆y = λ

π

between the transitions. c. The images of the atom for the two transitions,

formed by an optical system (L) with magnification M , are separated by a

distance M∆y = Mλ/π.

transverse angular momentum. This can be understood from geometrical arguments,
as we present now.

For a fixed phase of the radiated field, e.g. ψ = 0, the wavefronts are defined by
the parametric equation (5.26), r(φ) = λ(n−∆m φ

2π ), where φ is the azimuthal angle

and n ∈ N. The direction ~k of propagation of the photons, defined perpendicular to
the wavefronts, is slightly tilted with respect to the radial direction (see Fig. 5.2a).
The tilt angle γ(r) has opposite values depending on the transition ∆m = ±1, and
corresponds to an apparent displacement of the origin of the photons perpendicular
to the direction of observation (Fig. 5.2). When observing along the x̂ direction, the
displacement of the apparent and actual atom locations is [153]

∆y = ∓ λ

2π
(5.29)

for ∆m = ±1 (see Fig. 5.2b). Therefore, if the emitter is imaged with a magnification
M with optical axis in the equatorial plane (θ = π/2), this effect is observed as a
displacement Mλ/π between the centroids of the images for the ∆m = +1 and
∆m = −1 transitions (see Fig. 5.2c).

The apparent displacement of the position of the atom depending in which pho-
tons are detected is a signature of the presence of orbital angular momentum in the
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atom emission. Here we have used a simple geometrical deduction, but it can be
extracted analytically in different ways, as presented in the following sections. The
predicted displacement of the images from by photons emitted by ∆m = +1 and
∆m = −1 transition is λ/2π = 157.1 nm for the considered 493 nm transition in
138Ba+. This is a sub-wavelength distance but still of the same order of magnitude as
the wavelength and much larger than distances measurable with current microscopy
techniques. In Section 5.5 we present an experiment in which this displacement is
measured using the emission of a single 138Ba+ ion.

5.4 Measurement of the orbital angular momentum of the

field

The apparent displacement of the position of an emitter depending on the orbital
angular momentum can be understood from the discussed geometrical arguments.
In this section we study the effect from a quantum measurement point of view, and
we generalize the results to arbitrary elliptical dipoles.

At any point ~r, the local orbital angular momentum of the quantized emitted
field is given by the operator

~̂L = ~r × ~̂p, (5.30)

where ~̂p = −i~~∇ is the linear momentum density operator and the origin of the
coordinate system is the the position of the emitter. The local orbital angular
momentum per photon in a given direction can be measured by detecting them
behind a small aperture at position r0. Let us assume that at the position of this
small aperture there is a lens which forms an image of the emitter at a distance d
from the lens. The presence of angular momentum orthogonal to the direction of
propagation of the photons causes a transverse displacement of the image formed by
the light passing the aperture, with respect to the center of symmetry of the image
plane. The center of symmetry is the point in which the optical axis intersects
the image plane, which we use as a the origin of the coordinate system there. The
displacement 〈~q〉 of the center of mass of the far-field image in this coordinate system
corresponds to expectation values of the transverse linear momentum components
〈~̂pw~q 〉 per photon at the position of the aperture. The relation between angular
momentum and displacement is given by

〈~q〉 =
d

~k
〈~̂pw
~q 〉 =

d

~k
1

r0
〈~̂Lw

~q 〉. (5.31)

This kind of measurement where only a part of the total field is sampled can be
interpreted in the framework of weak measurements, and we indicate the expectation
values with the superscript w [154]. In a weak measurement, only a small portion of
the total wavefuntion is used to estimated the so-called weak value of an operator.
Using the language of weak measurements, the pre-selected state is in this case the
full wavefunction of the field emitted by the dipole. The weak value of the photons’
orbital angular momentum (or the transverse linear momentum) is given at the
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position of the lens by [149]

〈L̂w
q 〉 = r0 · 〈p̂wq 〉 = r0 ·

〈Ψ̃post|p̂q|Ψ〉
〈Ψ̃post|Ψ〉

, (5.32)

where Ψ̃post is the part of the wavefunction (the electric field) that passes the aper-
ture (the post-selected state). The orbital angular momentum components trans-
verse to the optical axis result in a transverse linear momentum at the aperture that
leads in turn to a displacement of the diffracted beam in the far field.

This discussion holds in general true, even when there is no lens located at the
position of the aperture. However, for practical reasons, a lens with focal distance f
and focused a the position of the emitter will be considered to define the aperture and
a second lens with focal length f ′ to form the image. An ideal lens applies a phase
transformation to light that passes the aperture, such that any wave originating
from a single point in the focal plane is transformed into a plane wave. For any
such wave, the average wavevector and thus the average transverse momentum is
conserved.

5.4.1 Calculation of the centroid position in optical imaging

To calculate the displacement of the image centroid of a dipole emitter in a typical
imaging system, let us consider the above relation between angular momentum and
transverse linear momentum when the collecting lens has an aperture with diameter
D. We consider the situation where the angular momentum of the light with respect
to the origin fixed by the position of the emitter is fully transverse to the optical
axis of the imaging system (x axis) and we set our quantization axis (z axis) along
the angular momentum direction. The imaging system consists of a lens with focal
length f located at a distance f from the emitter. In this situation, the electric
fields of the three elementary dipoles π, σ+ and σ− at the objective are, for small
aperture (D � f), given by

Ψ̃π(ρ, φ) =
1

f
êze

iϕ, (5.33)

Ψ̃σ±(ρ, φ) =
1√
2

(
± i
f
êy +

ρ

f2
êρ

)
eiϕ, (5.34)

where ρ and φ are polar coordinates in the aperture plane, y and z are Cartesian
coordinates in the aperture plane, êx, êy, êz and êρ are the unit vectors in the

respective direction, and ϕ = k
√
ρ2 + f2. Fig. 5.3 shows the used coordinate system.

Ψ̃π,σ± are the parts of the electric field that pass through the aperture from the
corresponding dipoles. Since the emitter is in the focal plane of the objective, the
latter applies the transformation e−iϕ on the light and removes the phase factor in
Eqs. (5.33) and (5.34), which is dropped in the following. In the case where the
light has no orbital angular momentum, the transformation of the objective results
in a beam with planar wavefronts perpendicular to the optical axis. Consequently,
the light has no linear momentum transverse to the optical axis. For the case where
the incoming light has orbital angular momentum along the z axis, the wavefronts
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aperture (lens)

circular dipole 
emitter 

Figure 5.3: Coordinate system for the calculation of imaging displace-

ment. An emitter is located at the origin O of the coordinate system. The

quantization axis is chosen along the z and the optical axis along x. An aper-

ture (lens) with diameter D is located at a distance f from the emitter. On

the plane x = f we define the polar coordinates (ρ, φ).

after the objective are tilted with respect to the optical axis and the light has linear
momentum in a direction transverse to the optical axis. Measuring the displacement
of the waveform’s center of mass from the optical axis 〈q〉 at distance d from the
objective (d� D) then corresponds to a measurement of the expectation value of the
transverse angular momentum component per photon 〈L̂w

q 〉 or the linear transverse
momentum component 〈p̂wq 〉 of the photons at the position of the aperture where
q ∈ (ρ, φ). The actions of the momentum operators p̂q on the wave are

p̂qΨ̃σ± = − i~
f2
√

2
êq, (5.35)

as well as p̂qΨ̃π = 0.

We now consider the general case of a photon that originates from a superposition
of σ+ and σ− dipole emissions, i.e.,

Ψ = αΨσ+ + βΨσ− , (5.36)

with |α|2 + |β|2 = 1, and we have defined the complex valued amplitude ratio or
dipole polarization ratio as

ε = (α+ β)/(α− β). (5.37)

The field of the arbitrary dipole is therefore written as

Ψ =
1√
2

(
i

f
(α− β)êy +

ρ

f2
(α+ β)êρ

)
. (5.38)

The weak value of the momentum operator of the field emitted by the dipole of
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Eq. (5.36), along the i direction can therefore be calculated as

〈p̂wi 〉 =
〈Ψ|(p̂iΨ̃)〉
〈Ψ|Ψ̃〉

, (5.39)

where Ψ̃ represents the part of the field that is collected by the aperture. Each
of this brackets can by integrated directly assuming that Ψ and Ψ̃ are the same
function, but restricting the limit of the integral to those of the aperture, leading to

〈p̂wy 〉 =
~
f

<(ε)

1 + |ε|2NA2/2
, (5.40)

〈p̂wz 〉 = 0. (5.41)

Here, we defined the numerical aperture NA = D/(2f). Therefore, from Eqs. (5.40)
and (5.41), together with the relation between transverse linear momentum and
displacement of the centroid of the images (Eq. (5.31)), it can be seen that the
image only exhibits a transverse displacement along the axis which is perpendicular
to both the optical axis and the quantization axis.

5.4.2 Microscopy set-up

In a microscopy set-up, the image is not formed at infinity, but with second lens
with focal length f ′. In this case, the expected displacement is obtained by replacing
d by f ′. Hence, the expected displacement on the screen is

〈ŷ〉 =
1

~k
M〈L̂wy 〉 =

λ

2π
M

<(ε)

1 + |ε|2NA2/2
, (5.42)

where M = f ′/f is the magnification of imaging the system. Eq. (5.40) has two
noteworthy consequences. First, for small numerical aperture (NA� |ε|) and ε real,
the displacement of the centroid increases linearly in ε, i.e.,

〈ŷ〉 ' −εM λ

2π
. (5.43)

Second, in the case of circular polarization ε = ±1 we recover the displacement

∆y =
〈ŷ〉
M

= ± λ

2π
(5.44)

derived above.

Outside of the linear regime, the apparent displacement reaches a maximum

∆ymax = ∓λ/(
√

8πNA) (5.45)

for ε = ±
√

2/NA. Remarkably, this implies that the displacement of the apparent
position of the emitter can take arbitrarily large positive and negative values for
small numerical apertures. For example, with NA = 0.23, the distance between the
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two extremal apparent displacements is as large as the optical wavelength λ. These
large displacements are reached for ε = ±6.3, i.e., when the polarization of the
dipole is almost linear along the optical axis of the imaging system. In this case, the
absolute value of the corresponding expectation values of the local orbital angular
momentum per photon at the aperture significantly exceed ~, the total angular
momentum per emitted photon. Such “supermomentum” [155] is an example of
weak value amplification common to structured optical fields, in which the local
expectation value of an operator can take values outside its eigenspectrum [149,156].

5.4.3 Fourier optics

The position of the centroid can be also calculated using Fourier optics. Using this
approach, the electric fields produced by three linear dipoles oriented along the axes
x, y and z in the image plane are given by [157]

~Ex = −iE0 ·
NA2

ρ
J2(ρ̃)(cosϕêy + sinϕêz), (5.46)

~Ey = E0 ·
NA

ρ
J1(ρ̃)êy, (5.47)

~Ez = E0 ·
NA

ρ
J1(ρ̃)êz, (5.48)

respectively, in the small NA approximation. Jn is the nth Bessel function of the
first kind and ρ̃ = ρ · k ·NA · f/f ′. Additionally we have defined

E0 =
µω2

4πε20c
2
. (5.49)

The approximate electric fields of Eq. (5.46)-(5.48) are valid in the small NA limit,
i.e., NA ≈ D/(2f). The final image of an arbitrary superposition of these dipole
fields is given by the intensity of the linear superposition of the respective elec-
tric fields. Doing this for the dipoles considered above, the apparent displacement
derived in Eq. (5.42) is recovered.

5.4.4 Full numerical calculation of the images

Until now the calculations of the displacement of the image centroids have been
restricted to the case of small NA. In general, it is not possible to obtain analytical
expressions for arbitrary large NA and arbitrary dipole orientations. Nevertheless,
it is possible to numerically calculate the intensity distribution in the image plane
by a full propagation of the electromagnetic fields through the optical system. To
do so, we follow the approach presented in Chapter 3 and 4 of Ref. [158] and use
Wolfram Mathematica to solve the numerical integrals. Fig. 5.4 shows the images of
elliptical dipoles with different polarization ratios ε. Fig. 5.5 shows the numerically
calculated relative displacement of the center of mass of the images. In Fig. 5.5 it
is clearly visible that by decreasing the numerical aperture of the imaging system
the maximum apparent displacement increases. Also, it is possible to see that for
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polarization ratios ε = ±1 the displacement is well described by the approximation
Mλ/2π and that for small apertures and |ε < 1| the displacement depends linearly
on ε.

Figure 5.4: Numerically calculated images of different dipoles. Full

field calculation of the image of dipoles with different dipole polarization ratios

ε and imaged using different numerical apertures NA. n is the diffraction index

of the medium surrounding the emitter, in our case n ≈ 1 (vacuum). The

horizontal and vertical axes are in units of Mλ/10

5.5 Observation of the apparent displacement of a single
138Ba+ ion

To experimentally study the displacement of the image of a dipole emitter due to
the presence of transverse orbital angular momentum in the emitted field we image a
single atom. We prepare the emission of single photons by a specific dipole transition
with a given ∆m from a single 138Ba+ atomic ion. The chosen dipole transition is the
cooling transition, with λ = 493.41 nm, whose emission can be detected efficiently
in our experimental setup.

5.5.1 Experimental setup

To measure the described effect, we trap a single 138Ba+ ion in the linear Paul
trap described in Chapter 3. The magnetic field ~B defining the quantization axis is
chosen to be parallel to the pumping beams ( ~B axis in Fig. 3.8), with magnitude
B = 0.45 mT. In this way, the optical axis defined by the position of the HALOs is
orthogonal to the quantization axis (see Fig. 5.7 and Chapter 3). Photons propa-
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Figure 5.5: Predicted center of mass apparent displacement without

small NA approximations. Predicted apparent displacement of the center

of mass of the images of dipoles for different NA as a function of the dipole

polarization ratio ε, for real ε, i.e., elliptical rotating dipole calculated using full

field propagation. The dashed lines show that for clockwise and anticlockwise

circular rotating dipoles (ε = 1 and ε = −1 respectively), the displacement

of the center of mass of the image corresponds to Mλ/(2π) and −Mλ/(2π)

respectively.

gating in this axis carry solely orbital angular momentum.

We prepare the emission in a given transition by first Doppler-cooling the ion
with the 493 nm cooling and 650 nm repumper laser beams, reducing the extension
of the motional atomic wavepacket, which is after cooling given by ∼ 36 nm. This
is followed by optically pumping to one of the ground states. For example, when
preparing the emission of a ∆m = +1 photon, we pump to the 6S1/2,mj = −1/2
with a σ−–polarized 493 nm laser beam. After that, we apply a short σ+–polarized
493 nm laser pulse which excites the atom to the state 6P1/2,mj = +1/2, as shown
in Fig. 5.6b. From that excited state the atom can spontaneously decay back to
the 6S1/2,mj = −1/2, through a ∆m = +1 transition, to the 6S1/2,mj = +1/2
through a ∆m = 0 transition, or to the 6D3/2 manifold. During this transition the
atom emits a photon that can be collected by the high numerical aperture objective
and directed to the camera through the imaging system. Additional filter elements
(Fig. 5.7) allow the detection of photons emitted only in the ∆m = +1 transition at
493 nm. To detect photons from the opposite transition (∆m = −1), the polarization
of the optical pumping and excitation beams are exchanged, as shown Fig. 5.6c.

The imaging system is shown in Fig. 5.7. The in-vacuum high numerical aperture
objective (L1) with focal length f1 = 25 mm and with numerical aperture NA= 0.40
partially collects the emission of the single atom, defining the axis of the imaging
system along the x-axis of the coordinate reference system shown in the figure,
orthogonal to the quantization axis.

In this configuration, photons from ∆m = 0 (∆m = ±1) transitions are hori-
zontally (vertically) polarized when propagating along the optical axis. However,
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Figure 5.6: Electronic dipole transitions used to measure apparent

displacement a. Levels and transitions of 138Ba+ used in this experiment.

b. In order to emit a ∆m = +1 photon an ion initially prepared in the

state 6S1/2,mj = −1/2 is excited by a circular-right polarized laser beam at

493 nm. c. In order to emit a ∆m = +1 photon the atom prepared initially

in the 6S1/2,mj = +1/2 is excited by a circular-left polarized laser beam.

Photon originating from other possible decay channels are filtered out using

polarization and wavelength filtering.
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ICCDVacuum
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Figure 5.7: Imaging system for the detection of apparent displace-

ment. A single 138Ba+ ion is confined the linear Paul trap. A magnetic field
~B along ẑ defines the quantization axis. Fluorescence light is collected in the

x̂ direction by a high numerical aperture, in-vacuum lens (L1), and a second

lens (L2) forms a focus on an intensified CCD camera. A polarization beam

splitter (PBS, Thorlabs PBS511) filters out photons with polarization parallel

to the quantization axis (π–polarized photons), while a bandpass filter (BP)

filters out photons with wavelength other than 493± 1 nm.

photons emitted in directions around the optical axis are also collected by the HALO
lens. For not-so-small numerical aperture imaging systems, photons collected far
from the optical axis have slightly different polarizations. An ideal PBS paired with
the NA = 0.40 objective used here removes 99.998% of photons from the π transi-
tions and transmits 97.3% of the photons from the σ transitions. The actual used
PBS has a polarization extinction ratio of 1000:1, so that, after polarization filtering
more than 99.8% of the detected photons come from a σ transition. The image is
not significantly changed by the imperfect filtering at this numerical aperture, as
shown in the simulations presented in Fig. 5.9.

The light emitted during the cooling and optical pumping stages is filtered out by
blocking the acquisition of the CCD sensor. The results shown here were obtained
using an intensified CCD camera (ICCD, Andor iStar A-DH334T-18H-63, with a
pixel size of 13 × 13µm2). The fast gating provided by the intensifier enables the
collection of single photons only from the desired transition, by opening short detec-
tion windows after cooling and pumping are finished. Fig. 5.8 shows the sequence
and timing used in the experiment. Complementary results where obtained using
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Figure 5.8: Experimental sequence. a. Timing of the sequence used to

generate photons in a given transition. The sequence is repeated during 5 s, b.

A reference image of 0.5 s is taken before and after the 5 s accumulation of the

desired photons. The acquisition is directly alternated between images with

photons coming from the ∆m = −1 and ∆m = +1 transitions.

Figure 5.9: Effect of polarization filtering in the position of the cen-

troid of the image. Calculated intensity distribution for NA = 0.4 in the

image plane for a dipole oriented along the optical axis a, oriented orthogonal

to the optical axis b, and a circular dipole which is the superposition of them,

c. d, e and f show the image of these dipoles when placing a PBS between the

two lenses forming the imaging system. The contribution of the longitudinal

dipole (a and d), as can be seen from the colour scale, is orders of magnitudes

smaller than the contribution of the transversal one (b and e). Vertical and

horizontal axes are in units of Mλ/2π.

an EMCCD camera and an optical chopper, as presented in Section 5.5.3.
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Figure 5.10: Normalized image and fit. a. Acquired image of a single ion

during Doppler-cooling. b. Seven parameter 2D Gaussian fit with pixelation

applied for comparison. The white lines show the major and minor axes of the

fitted Gaussian and the circles show the 1σ width of the fit.

5.5.2 Image characteristics and stability

The image of the atomic ion formed using the presented imaging system corresponds
to the point-spread function of the imaging system, which is well approximated in
our case by a two-dimensional Gaussian. The detected images are analyzed by fitting
to a Gaussian profile with seven free parameters (z0, y0, σz, σy, A,O, θ), (z0, y0) being
the coordinates of the centroid, σz and σy the standard deviation along the major
and minor axes, A the amplitude, O an offset and θ rotation angle with respect to the
CCD sensor axis. Although the Gaussian fitting method is in general informationally
sub-optimal [159], it does not introduce significant parameter estimation errors in
the measured NA< nmed regime (where nmed is the refraction index surrounding the
emitter), and non-diffraction-limited regime [160]. The image of the atom detected
on the CCD camera is a non diffraction-limited Gaussian profile, characterized by
widths 2σz = 30.1(4)µm and 2σy = 28.4(4)µm (Fig. 5.10). In a diffraction-limited
system these widths are expected to be ∼ 8µm1. We suspect that these large
differences arise from the misposition of the in-vacuum objectives along the optical
axis, since, unfortunately, the nanopositioning stages on which they are mounted
are not operative and a precise adjustment was not possible.

To precisely estimate the magnification of the optical system we image two ions
trapped in the Paul trap. Spectroscopy of the quadrupole electronic transition of the
ions allow us to measure the trap frequencies. These frequencies are used to calculate
the equilibrium position of the pair of atoms and their mutual distance. Then, using
the same quadrupole transition we shelve either ion in a dark state. In this way
we can image each ion separately using their fluorescence, without changing their
distance. From the independent images, the centroid position of each ion is extracted
and their relative distance in the image plane is calculated. The magnification is
computed as the quotient of their distance in image and object plane, which is
M = 5.40(7).

The expected displacement of M × 157.1 nm is 35 times smaller than the width
of the images. Even if the angular resolution of visible radiation in a diffraction-
limited system with aperture D is considered to be λ/D, and where any object

1Calculated using the formula of the Airy Radius r = 0.61λ/NA and considering the magnifi-
cation stated bellow
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Figure 5.11: Stability of the ion imaging system. Allan variance of the

vertical position of the atom as a function of the accumulation time τ of the

images, using an ICCD camera (a) and EMCCD camera (b) for comparison.

smaller than this size is observed as a diffraction limited spot, the centroid of the
spot can be measured, in principle, with arbitrarily high precision. This precision
scales up with the number N of photons detected, provided that the signal-to-noise
ratio is larger than 1 [161,162]. The noise restricting the precision can be classified
in two types: shot noise, where the precision of the localization of the centroid
scales as N−1/2, and background noise created by CCD readout noise, dark current,
background light, etc, where the precision scales as N−1 [162]. In our experiment,
using the sequence shown in Fig. 5.8, the overall photon detection rate is ∼ 1600
photons/s and is mostly limited by the ion preparation sequence repetition rate, the
numerical aperture of the imaging system and the quantum efficiency of the camera.
Given that our optical system is not diffraction-limited, the scaling of the precision is
under-optimal. Nevertheless, it is still possible to achieve few nanometers precision
by accumulating photons for several hours.

The long accumulation time introduces a new source of error in the position
estimation that originates from mechanical drifts in the imaging system. This in-
accuracy can be overcome by a measurement and compensation of the mechanical
drifts, as soon as the time scale on which they occur is much longer than each camera
exposure.

The stability of the imaging system can be characterized by the Allan variance
of the fitted centroids of the detected images [163]. This gives a measure of the
position uncertainty depending of the accumulation time τ . This is done by taking
NP pictures with exposure time t, adding them in bins of duration τ = nt, where
n is an integer number smaller than NP/2. Each binned image is fitted to a seven
parameter Gaussian function, from where the centroid is extracted. For comparison,
we also use, besides the ICCD camera, an EMCCD camera (Andor iXon DU-897).
The EMCCD camera, in spite of having a bigger pixel size (16 × 16µm2), has a
better resolution (see Section 3.3.2). In the case of the EMCCD camera we take
2000 images with 2 s exposure time with the atom emitting resonant florescence at
maximum rate, and in the case of the ICCD camera we take 3000 images with 0.5 s
exposure time. In both cases, the dead time between images is negligible. Fig. 5.11
shows the vertical position uncertainty (relevant for the experiment) extracted with
this method. For the EMCCD we get a minimum uncertainty in the vertical position
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Figure 5.12: Long term mechanic drift of the imaging system. Vertical

and horizontal positions of the centroid of the fitted reference images, over a

period of 180 min.

of 2.13(41) nm for 148 s accumulations, while for the ICCD setup the minimum is
3.29(71) nm for 74 s accumulations. In the logarithmic plot shown in Fig. 5.11 the
shot noise dominates the linear behavior of the decreasing part, where the long
y-intercept of the line is mostly limited by the limited numerical aperture of our
collection lens L1 (NA = 0.4) and the size of the spot in the camera, which is not
diffraction limited. The increasing part of the curve is dominated by mechanical
drifts in the system.

To compensate for the mechanical drifts in the actual experiment, we use the
acquisition of long-exposure images during the cooling stage (Fig. 5.8b) to obtain a
real-time “reference” of the particle position. Figs. 5.8a shows the full experimental
sequence. This sequence is repeated for 3 h, and the analysed pictures correspond
to accumulation of photons in a 11 × 11 pixel sub-area of the CCD sensor. The
mechanical drift of the centroid fitted images used as reference are shown in Fig. 5.12,
where we see that in a period of 3 h, the image drift a maximum of ≈ 200 nm in both
vertical and horizontal axes. The rapid oscillations correspond to statistical noise.

5.5.3 Results

After the data collection using the sequence shown in Fig. 5.8 is finished, each refer-
ence image is fitted. The mean centroid position of two consecutive reference images
is used to correct for the drifts in the signal image acquired in between them. All
the corrected signal images are added up and fitted using the seven free parameter
function. Finally, we compare the centroid positions of the added-up reference and
signal images to determine their relative displacement. The uncertainty of the dis-
placement is extracted from the 1σ confidence intervals using χ2 analysis, given its
relation with the real noise sources [161].

The obtained results are shown in Fig. 5.13, corresponding to a displacement of
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Figure 5.13: Apparent displacement of the emitters. a, c, Measured

images (normalized to maximum pixel count rate) of a single atom for the

σ− and σ+ transitions. The blue lines and blue points indicate the centroid

of the image obtained by a 2D Gaussian fit to the data. The orange circle

represents the 1σ-width. b, Zoom of the center of images a and c. The two

blue points show the centroid position of the fitted σ− (upper point) and σ+

(lower point) images. d, Vertical cross section of the Gaussian fits for σ+ (green

dashed curve, left scale) and σ− (red dashed curve, left scale) polarizations.

The orange curve shows the difference of both fits (right scale).

∆y = 158(4) nm in the object plane between the image formed by ∆m = +1 and
∆m = −1 photons, and a small displacement of unknown origin in the horizontal
axis of 6(2) nm. The obtained value for the displacement in the object plane and
its uncertainty as function of the number of accumulated single images is shown in
Fig. 5.14. The uncertainty of the measured displacement converges logarithmically
to the expected value as the number of photons increase (see inset in Fig. 5.14).
The results are in good agreement with the expected λ/π value, proving that for the
measured emission direction, the photons carry transverse orbital angular momen-
tum. Furthermore, this also shows that while the detected photons from ∆m = +1
or ∆m = −1 transitions are indistinguishable in polarization, they carry detectable
opposite orbital angular momentum.

Direct comparison of signal images

A simplified analysis is done by considering the displacement between consecutive
signal images, which corresponds to the accumulations of ∆m = +1 or the ∆m = −1
photons during periods of 5 s alternately. This analysis is valid since the time
separation between consecutive images is much shorter than the characteristic time
of the mechanical drifts.



116 5.5. Observation of the apparent displacement of a single 138Ba+ ion

102 103
100

110

120

130

140

150

160

170

180

Number of accumulations

101

102

100 101 102 103

un
ce

rt
ai

nt
y 

(n
m

)

Number of accumulations

Re
la

tiv
e 

di
sp

la
ce

m
en

t (
nm

)

Figure 5.14: Convergence of the measured relative displacement of

the atom. Convergence of the estimated relative displacement between the

counter rotating circular atomic dipoles σ+ and σ− (blue line) and uncertainty

(grey area) versus the number of signal images accumulated after drifts correc-

tion. The dashed line shows the expected value λ1/π = 157.1 nm. The inset

shows the evolution of the uncertainty in logarithmic scale as the number of

accumulated images increases.
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Figure 5.15: Direct comparison of consecutive ion images Histograms of

the horizontal and vertical relative displacements of pairs of consecutive signal

images formed by photons coming from the ∆m = −1 and ∆m = +1 atomic

transitions, for 2000 image pairs. The histograms show a clear average vertical

displacement, and an average zero horizontal displacement. Each histogram

is fitted to a normal distribution from which we extract an average horizontal

relative displacement of 7(6) nm and standard deviation of 106(4) nm, while for

the vertical displacement we get an average of 158(6) nm and standard deviation

of 112(4) nm. The stated errors correspond to the 1σ-confidence intervals of

the fits.

Fig. 5.15 shows the histograms of the relative horizontal and vertical displace-
ment between consecutive ∆m = +1 and ∆m = −1 images, when comparing 2000
different pairs. Each histogram is fitted to a normal distribution from where we ex-
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tract an average relative displacement in the horizontal axis of 7(6) nm and standard
deviation 106(4) nm, while for the vertical axis we get an average relative displace-
ment of 158(6) nm and standard deviation 112(4) nm. The error of these quantities
correspond to the 1σ-confidence intervals of the fits. These results are shown in
Fig. 5.15 and agree with the more precise analysis presented above.

Results obtained using a EMCCD camera

Ion Trap L1 PBS L2 BP

Optical 
Chopper

EMCCDUHV

B

x

y

z

Figure 5.16: Imaging setup with an EMCCD Camera. An optical chop-

per is added in front of the camera to block the path of photons being emitted

during the preparation stage.

During the realization of this experiment we used an EMCCD camera (EMCCD,
Andor iXon DU-897) in addition to the ICCD camera which results are shown above.
While the main advantage of using an ICCD camera, i.e., fast gating of the photon
detection, is not present in the EMCCD, we where able to find positive results by
mechanically gating the detection of photons in the CCD camera. In this case an
optical chopper is used for blocking the optical path during the cooling and optical
pumping stages. The use of an optical chopper reduces more than 1000 times
the photon generation rate due its limited spinning frequency. At the maximum
spinning frequency, the shortest gating windows achieved corresponds to 700 µs.
Despite the slow gating allowed by this setup, using the EMCCD camera provides
a higher quantum efficiency and resolution, and a slightly improved image stability
(see Fig. 5.11b). The used setup is described in Fig. 5.16. In order to avoid additional
mechanical drifts and vibrations due to the mechanical chopper, we detach it from
the rest of the experiment by hanging it from the ceiling.

Figs. 5.17a and b depict the experiment sequence used with the EMCCD camera
and the optical chopper. An exposure of 2 s is used for the reference pictures of the
atom during the extended cooling stage. The sequence for the emission of photons
in a given transition is repeated during 60 s and accumulated in a “signal” image.
The detection rate (∼20 photons/s) of the desired photons is mainly limited by the
maximum rotation speed of the optical chopper. In this case we repeat the full
sequence for approximately 7 h, then we exchange the polarization of the optical
pumping beam and excitation pulse and accumulate photons with opposite angular
momentum for another 7 h, adding up to a total of 14 h for the full experiment.

The obtained results when using the EMCCD camera are ∆y = 160(10) nm for
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Figure 5.17: a Sequence timing used for generations of photons from a given

transition when using the EMCCD camera, repeated during 60 s. The repe-

tition rate is given by the maximum chopper rotation speed. b. Reference

images with maximum fluorescence rate from the photos are taken before and

after the accumulation of the desired photons to keep track of the mechanical

drift of the imaging system.

the vertical displacement and small horizontal displacement of 5(10) nm compatible
with the expected value. The higher uncertainty is due to the higher levels of noise,
since the CCD sensor is exposed to the background noise for longer periods of time
than in the ICCD setup and the chopper is less effective in blocking it (see vertical
offset in Fig. 5.11).

5.6 Displacement of the apparent position of a nano-emitter

In Section 5.4 we have seen that the apparent displacement of the emitter is a uni-
versal effect, present in any dipole with a degree of circular polarization, i.e., it is
not restricted to atoms. Furthermore, we have predicted that the observed apparent
displacement of the emitter depends on the numerical aperture of the imaging sys-
tem as well as on the polarization ratio ε of the considered dipole. Studying these
dependences using a single ion is demanding, since it would require the preparation
of quantum superpositions of the emission of a single atom and increasing the nu-
merical aperture of the in-vacuum lens, which maximum is restricted by the trap
geometry. Given these difficulties, a test of our predictions is realized using a dif-
ferent dipole emitter: a sub-wavelength sized gold nanoparticle. Such nanoparticles
are used as markers in super-resolution microscopy of biological research [164, 165].
Being a spherically symmetric emitter, the polarization of a nanoparticle’s dipole
coincides with the polarization of the illuminating field, which can be controlled
precisely.

In the experiment realized in Vienna by Stefan Walser, Jürgen Volz and Arno
Rauschenbeutel, a 100 nm-diameter gold nanoparticle is placed in the center of a
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Figure 5.18: Nanosphere experimental setup. A gold nanosphere is lo-

cated in the gap between two solid immersion lenses, filled with index matching

oil to prevent reflections. The particle scatters light alternatively from a ref-

erence beam with fixed linear polarization and a measurement beam whose

polarization is adjusted using half- (HWP) and quarter-wave (QWP) plates.

The scattered light is collected by a microscope objective and imaged onto a

CCD camera.

glass sphere with refractive index n = 1.46 by depositing it on an optical nanofi-
bre [166] and surrounding it by two fused silica 2.5 mm-radius hemispherical solid
immersion lenses. The ∼ 200µm gap between the lenses is filled with index matching
oil to prevent any reflection near the particle from either the nanofibre or the lenses.
The nanoparticle is illuminated by a laser beam (vacuum wavelength λ2 = 685 nm)
with adjustable polarization and the scattered light is imaged onto a CCD camera
through the sphere and a microscope (Fig. 5.18).

To test the dependence of the position apparent displacement on the NA, two
different microscope objectives are used with the same nominal magnification but
different numerical apertures, resulting in NA = 0.41 and NA = 0.61 when including
the silica sphere refraction index, and measured magnifications 21.9(2) and 20.1(1),
respectively. The apparent displacement of the nanoparticle is measured by fitting
a two-dimensional Gaussian function to its image, using alternately the beam with
adjustable polarization and a linearly polarized reference beam. The measurements,
averaged over 125 individual realisations for each polarization setting, are shown in
Fig. 5.19. For |ε| < 2, within experimental errors, a very good agreement of the mea-
surements with the expected linear increase of the displacement with ε is observed,
independent of the numerical aperture. For larger |ε|, the linear approximation is
not valid and the experimental data follows approximately the theoretical approx-
imation of Eq. (5.42) (dashed lines). The apparent positions of the nanoparticle
imaged with right and left circular polarizations (ε = ±1) are displaced relative to
each other by 145(6) nm for NA = 0.41 and 146(4) nm for NA = 0.61, in agree-
ment with the expected value 2∆y = λ̃2/π ≈ 150 nm, where λ̃2 = λ2/n is the laser
wavelength in the index matching oil. The displacement increases for larger values
of |ε|, and the total displacement between counter-rotating elliptical polarizations
reaches 430(7) nm (' λ̃2) for ε = ±5.67, a shift four times larger than the diameter
of the gold nanoparticle. Additional details about this experiments can be found in
Ref. [147] and in the Ph.D Thesis of Stefan Walser [167].
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Figure 5.19: Apparent displacement of a gold nanosphere. a, Measured

images of the nanoparticle for ε = ±2.1 and ε = 0 for NA = 0.41. The white

cross indicates the position of the nanoparticle obtained from the reference im-

age. The dashed circle with a diameter of 500 nm indicates the 1σ width of the

image obtained from a Gaussian fit and is centred around the apparent position

of the nanoparticle. b, Relative displacement of the image of the particle as

a function of ε, measured for two different NAs. The error bars indicate the

1σ statistical error. The dashed curves are the theoretical approximation of

Eq. (5.42) and the solid curves are the displacements obtained by numerical

simulations of the field propagation. The dashed grey lines show the case of

circularly polarized emitters. Figure made by S. Walser.

5.7 Relation with optical current vortices

There is a close connection between the measurement of emitter apparent displace-
ment higher than λ/2π (weak value amplification) and the appearance of momentum
vortices in the emitted light field [168–170]. This connection is depicted in Fig. 5.20
which plots the field distribution of the emitted light in the lens plane, projected
into different polarization bases and for different states of the emitter.

Optical spin-orbit coupling manifests itself in the azimuthal depending phase of
axially symmetric dipole fields. For example, the right circularly polarized dipole
about the optical axis (row 1 in Fig. 5.20) is a superposition of a right circular
polarized field with orbital angular momentum L̂x = 0 and a left circular polarized
field with L̂x = 2~. Therefore, the phase of the field projected in the circular left
basis (EL) is point-symmetrical and shows a strong azimuthal dependence(Fig. 5.20
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row 1, column 3), and a singular point (vortex) in the intersection of the lens plane
and the symmetry axis of the dipole. The vertical polarization projection EV is
constant along the vertical axis of the plot, and the intensity distribution for different
NA (Fig. 5.20 row 1, columns 6 to 8) do not show a displaced image.

Similarly, the linear dipole along the optical axis, ~d(ε =∞) ( Fig. 5.20, row 6 ),
consists of equal superposed circular fields with orbital angular momentum L̂x = ±~
opposed to their spin Ŝx = ∓~. The phase of the field projected in both circular
the circular basis left EL and right ER shows a point-symmetry with a singular
point in the intersection of the lens plane and the symmetry axis of the dipole. The
vertical polarization projection EV is constant along the vertical axis of the plot.
The intensity distribution for different NA do not show a displaced image.

For 0 < ε <∞ the vertical projection EV of |ψ〉 has a pronounced vertical phase
gradient due to orbital angular momentum L̂z. This gradient Fourier transforms to
a displacement along y in the image plane. The image fields are both displaced and
distorted depending on ellipticity and aperture, as already shown in Fig. 5.4. For
small numerical apertures the image of the elliptical dipole is close to a displaced
aperture point-spread function.

Furthermore, for 0 < ε <∞ the circular components of the elliptical dipole fields
have off-axis momentum-current vortices (phase singularities in the ER and EL plots
in Fig. 5.20) [168–170]. As shown in columns 2 and 3, the phase singularities in the
EL and EL projections move from the edge (ρ/f = 1) to the optical axis (ρ/f = 0)
as ε increases from 1 to ∞. The image plane distributions provide a graphical
illustration of the apparent position displacement. The displacement of the image
is maximum when the vortex is located close to the edge of the lens aperture, and
therefore, it depends on the NA of the lens, as shown in Fig. 5.5.

The elliptical dipoles may be displaced by an amount ∆y that corresponds to
momentum larger than the field largest momentum eigenmode due to the weak
amplification effect, and that scales inversely with the NA, according to the weak
value amplification rule (see Fig. 5.5 and Eq. 5.5). This weak value amplification
is an example of supermomentum in single-photon field. The centroid is maximally
displaced when the vortices are in the edge of the collection aperture, which in the
case of NA ∼ 0.6 occurs when ε ∼ 2.



122 5.7. Relation with optical current vortices

0 π−π0.5 1.00.0 0.5 1.00.0

0 2010

90◦

180◦

270◦
ν/M

θ

0.0 1.0

90◦

180◦

270◦

θ

NA=
1.0

NA
=
0.6

NA
=
0.3

Intensity IntensityPhase

ρ/f

x

Figure 5.20: Momentum vortices and weak value amplification. The

plots show the field distribution of the emitted light at the lens plane for dif-

ferent polarization projection and different states of the emitter alongside cor-

responding intensity distributions in the image plane. (Left five columns)

Field intensity I and phase in the local linear (EH ,EV ) and local circular (ER,

EL) polarization bases of the dipoles shown at left by an apodized orthographic

projection. This projection is identical to the field distribution after collima-

tion by an ideal spherical lens. The fields are plotted in radial coordinates

ρ/f = sin(φ) to an aperture half-angle φa = π/2 at which the orthographic

projection diverges. Dashed circles indicate NA= 0.3, 0.6. (Right three

columns) Corresponding images I ′ calculated by full propagation of the opti-

cal dipole fields for NA= 0.3, 0.6 and 1. For NA< 1 the images are calculated

by a truncated Hankel transform. I ′ is plotted in radial coordinates ν/M with

units λ/2π. The colour scale is normalized to the maximum of each image.

(Row 1) the dipole circularly polarized about the optical axis. (Rows 2–

6) dipoles with increasing polarization ratio ε. The corresponding images for

negative ε can be obtained by reflecting the images along the horizontal axis.

Figure by D. H. Higginbottom.
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5.8 Implications and applications

5.8.1 Implications in positioning and imaging techniques

The presented phenomenon can affect different techniques used for the localization
of remote objects even beyond the optical regime. As soon as an object can emit or
reflect waves with transverse angular momentum the effect is present. Thus, it may
affect the localization of remote objects imaged with radar or sonar techniques [171,
172], or even alter the apparent position of astronomical objects detected through
their emission of gravitational waves [173,174].

We speculate that the most notorious case where the studied effect can have im-
portant consequences is in super-resolution microscopy techniques. In modern super-
resolution microscopy it is possible to achieve image resolutions two orders of mag-
nitude smaller than the systematic apparent displacement demonstrated here [175,
176]. Small deviations from an ideal linear dipole emission typically considered in
this kind of techniques can lead to the presence of transverse orbital angular mo-
mentum in the emitted field, and therefore, to uncertainties and deviations of the
actual position of a marker. Taking into account the presented effect, the determi-
nation of the position of an emitter with using an optical system with NA = 1, at
a wavelength of λ ≈ 628 nm with an accuracy of 1 nm, requires the scattered light
to be more than 99.99 % linearly polarized, i.e., |<(ε)| < 0.01 (see Supplementary
information in Ref. [147].

Residual components with transversal angular momentum in the detected light
in super-resolution microscopy are in general present, and therefore the discussed ef-
fect takes place. These components in the detected field can be a consequence of the
presence of non-linearly polarized components in the illuminating field, and/or due
to the non-elastic scattering of the used marker, even under ideal linearly polarized
illumination. The first case occurs, e.g., when a strongly-focused linearly-polarized
illumination is used to excite the emitter, as typically done in super-resolution mi-
croscopy. In this case, the paraxial approximation is not valid, and near the focus,
the field exhibits both transverse and longitudinal angular momenta, which then can
be transferred to the detected field [177].

The second case in which non-linear polarization components can appear in the
detected fields comes from the fact that commonly-used microscopy markers can emit
as elliptically polarized emitters. Markers such asnanorods, or even nanospheres with
small deformations exhibit complex-valued anisotropic polarizability, due to spuri-
ous reflections or plasmonic effects, and can, therefore, transform perfectly linearly
polarized excitation light to light with some degree of elliptical polarization that
features a transverse component of the angular momentum [178]. Even a spurious
internal reflection on surfaces slightly not-normal to the illumination axis can lead
to phase shifts in the reflected field, and therefore to elliptically polarized compo-
nents in the detected field. A reflection of 4% and a tilting angle between different
surfaces of the marker of 20◦ can lead to local ellipticities of up to ε = 0.2 which
would lead to an apparent displacement of about 20 nm for an emitter with scalar
polarizability.
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We speculate that another way in which non-linear dipole field components can
appear in the detected light is due to the use of bio-labels, dyes, organic dipolar
molecules, etc., as markers, which in general, do not absorb and emit as perfectly
linear dipoles. Even for a molecule that, in view of its structural geometry, could
fulfil this requirement, this assumption seems to be unphysical. If a molecule is
immersed in a gaseous, liquid, or solid medium, molecular collisions, temperature-
induced vibrations, and/or strain-induced static distortions will occur. This will lead
to a broadening and results in spectral overlap of transitions of different linear polar-
izations. In this case, angular momentum can be transferred between the molecule
and the light upon both, absorption and emission. If the illumination light features
some degree of elliptical polarization, the fluorescence photons can also exhibit el-
liptical polarization. Moreover, in the presence of spectral broadening, the emitter
will generally feature a complex-valued anisotropic polarizability, i.e., its dipole will
be elliptical even for perfectly linearly polarized illumination light and, depending
on its orientation, polarization-dependent position apparent displacement will re-
sult. Given the fact that molecular transitions are broadened by about 6 orders of
magnitude in a room-temperature environment, the question is thus not whether
the mixing of transitions occur but only how strong it is. We are not aware of stud-
ies that investigate this issue to the precision required to rule out the importance
of ellipticity-dependent apparent displacement. We expect that, stimulated by our
work, such studies will be carried out in the near future.

Given the fact that the apparent displacements do not occur for linearly polar-
ized dipoles, one might be led to think that they are also small for small elliptical
polarization components. However, as we experimentally demonstrated, in certain
situations (small NA), this is precisely when the apparent displacement can become
large. Thus, any spurious elliptical polarization component of the detected light
may lead to a wavelength-scale systematic apparent displacement of the centroid.

Note that, for larger ε, an accuracy of, e.g., 1 nm could still be reached by
employing an algorithm that not only uses position but also polarization of the dipole
as fit parameters for the recorded point-spread function, although requiring the
number of detected photons to be increased by several orders of magnitude [147,159].

5.8.2 Applications in optical sensing

The apparent displacement of the emitters depends on the local properties of the
illumination and the orientation of their dipoles, and therefore, the displacement
can be used to measure these properties. As an example, the presented effect could
be used in conjunction with an array of trapped particles to measure the local
polarization of an illumination laser. If the illuminating laser has different degrees
of circular polarization at the position of the particles, this is translated into different
apparent displacement in the image of each particle, see Fig 5.21a. If the distance
between particles is known, information about the local polarization of the beam
can be extracted from the images.

Another example is the sensing of magnetic field directions using arrays of
trapped atoms. As the studied effect depends on the direction of the optical axis
and the quantization axis, small variation of the magnetic field direction at the po-
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Figure 5.21: Examples of applications in metrology. a. The local po-

larization (red arrows) of an illumination beam (green) can be measured by

observing the apparent displacement of the image of a nano-particle array. b.

The local direction of the magnetic field (black arrows) can be measured by

observing the apparent displacement of a chain of trapped ions excited by a

field with constant circular polarization.

sition of the different atoms can be studied by imaging the atoms. If there is such
a variations on the magnetic field direction, this would be translated into different
apparent displacements for each atom, as shown in Fig 5.21b.

5.8.3 Applications in selective detection and coupling

In some cases, depending of the NA of the imaging system and on the dipole po-
larization ratio ε, it is possible to spatially separate photons emitted by dipole with
opposite ε. Fig. 5.22 show two examples where this is possible. In the top row, the
images of a dipole with ε = −5 and ε = +5 are displayed. 73% of the photons emit-
ted by the ε = −5 dipole are detected in the top half of the image screen, whereas
73% of the photons emitted by the ε = −5 are detected in the bottom half of the
image. Therefore, if an emitter emits a photon which is in a superposition of dipole
fields with ε = ±5, which gets detected in the top half of the image, we can say with
73% confidence that it was emitted by the ε = −5 component of the superposition,
and vice versa. It is possible to define areas of interest in the image plane where
this confidence increases up to more than 99% (red circles in Fig. 5.22).

The bottom row of Fig. 5.22 shows a second example, with NA = 1.0. In that
case, photons emitted by a dipole with ε = −1 and ε = +1 can be distinguished
also with 73% confidence by looking at which half of the screen they where de-
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Figure 5.22: Dipole selective detection. Images of dipoles with opposite

ε and using an imaging system with NA = 0.4 and 1.0. Depending where a

photon is detected, we can distinguish from which dipole was emitted. The

region marked with a red circle show the area where it would be possible to

distinguish with more than 99%.

tected on. Restricting the area of interest in the screen to the ones shown in the
figure, this confidence also increases up to 99%. The case of ε = ±1 is of particular
interest in atomic physics, since this corresponds to the emission of photons from
σ±–transitions, corresponding to projections to different atomic states. This could
be used, for example, to create directional coupling between different atoms. If a
second atom is located in the image plane of the first one, where the image intensity
peak of the σ+–dipole is located, then only photons coming from the σ+ transition
would be absorbed by the second atom. Conversely, if another atom is located in the
image plane of the first one, where the image intensity peak of the σ−–dipole of this
is located, then only photons coming from the σ−–transition would be absorbed by
the second atom. This can be useful to implement free-space chiral atomic networks,
with applications in quantum networking and communications [143].

5.9 Summary and outlook

In this chapter we have studied the coupling of spin and angular momentum on the
emitted field of single fundamental emitters. We have theoretically and experimen-
tally shown that the presence of transverse orbital angular momentum can lead to
the apparent displacement of the position of the emitter. We have demonstrated
that, in the case of imaging a single ion, this apparent displacement, in spite of being
a sub-wavelength effect, is still well above the achievable resolution with state of the
art imaging systems.

The most surprising results appear in the case of small numerical aperture imag-
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ing systems, where the apparent displacement can reach values higher than the
wavelength. We have discussed how these results are in agreement with the weak-
measurement and weak-value amplification formalism.

The apparent displacement of the emitter position is present even for ideal,
focussed, aberration-free imaging systems. It is a fundamental and universal phe-
nomenon, and should not be confused with positioning error due to an imperfect
optical system or biased analysis tools [159]. As we have discussed, this phenomenon
has implications in super-resolution microscopy, but also offers opportunities for
metrology or quantum networking.

The results presented here, although developed for fundamental dipole optical
emitters, are still valid for any multipole optical emitter, such as an atom emitting
photons in a quadrupole transition. In that case, the angular momentum eigen-
spectrum of the emitted field includes photons carrying higher angular momentum,
namely 2~, and therefore higher displacements are expected. Furthermore, the dis-
cussed effect does not belong to the optical spectrum only, but to any emitter (or
scatterer) emitting waves carrying transverse angular momentum, as is the case of
sound waves, radio waves or gravitational waves [179].





6
A new setup for quantum electrodynamics

studies and for improved light collection

6.1 Introduction and motivation

The spontaneous emission rate of atoms can be enhanced or inhibited in several
ways. As already discussed in Chapter 4, one way to achieve modification in the
spontaneous emission rate is through dipole-dipole interactions, namely sub- and
superradiance type effects [89–92]. Observing large modifications of the sponta-
neous emission in trapped ions using this approach is in general difficult, since the
Coulomb interaction restricts the minimum achievable interatomic distance. Nev-
ertheless, some degree of modification has been shown for the case of two ions. In
Ref. [132] an enhancement of ∼ 1.5% and an inhibition of ∼ 1.2% by locating two
ions 1470 nm away from each other. As we have experimentaly studied in Chap-
ter 4, the limitations imposed by the Coulomb forces can be partially overcome
using entanglement, achieving a modification of the spontaneous emission rate of
up to 30% that does not depend on the interatomic distance. However, this is not
a global modification of the spontaneous emission rate of, and only a directional
effect. In the case of neutral atoms, the Coulomb interaction is not a limitation, and
modification of the spontaneous emission has been demonstrated with large atomic
ensembles [180].

Another way to enhance or reduce the rate of spontaneous emission of an atom is
modifying the electromagnetic vacuum mode structure interacting with the atom [181,
182]. The electromagnetic mode structure interacting with the atoms can be altered
by placing them close to dielectric interfaces [183], between two mirrors [184] or
inside photonic structures which pruduce a bandgap [185] . In particular, large en-
hancement of the emission from a single atom has been achieved using high-finesse
cavities [186–189]. Recently, a 5-fold enhancement in the spontaneus emission rate
has been demonstrated placing a single atom in a fiber cavity [190]. Furthermore,
in the realm of solid state emitters, enhancement by a factor of more than 100 has
been observed using microcavities [191]. The opposite effect, i.e., inhibition of the
spontaneous emission, remains more elusive, and only few experiments have demon-
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strated large modifications, see for example Ref. [192] where the rate of spontaneous
emission of a single Rydberg atom was reduced by a factor of 20, or Ref. [193] where
the emission rate of a solid state emitter was reduced by a factor of ∼ 10. The main
limitation in all the mentioned experiments is that by using standard approaches it
is not possible to restrict all the spatial vacuum modes surrounding the emitter.

It is a common assumption in the field of cavity electrodynamics that to achieve
total inhibition of the spontaneous emission it is necessary to place the atom in
between mirrors that cover the full solid angle around it, restricting all the vacuum
modes resonant with the atom, see for example Ref. [194]. On the contrary, given
the point symmetry of the emission of atoms, it is still possible to restrict all the
vacuum modes covering only the half solid angle. This can be achieved by placing
the atoms in the center of a concave hemispherical mirror, as theoretically predicted
in Ref. [195]. By taking this approach it is possible to achieve both inhibition
and enhancement of the spontaneous emission, depending on the radius R of the
hemispherical mirror, provided that the mirror is close enough to the atom to allow
temporal interference of the field emitted in opposite directions. This condition can
be written as 2R/c � 1/Γ, where c is the speed of light and Γ is the free-space
decay rate of the observed transition. If R = nλ/2, where n is an integer and λ is
the wavelength of the observed atomic transition, an atom located in the center of
curvature of the mirror lies in a node of the vacuum mode density and inhibition
is observed. Conversely, if the radius is R = nλ/2 + λ/4, an atom located in the
center of curvature lies in an anti-node, an enhancement is observed. If the mirror
is not a hemisphere, but a spherical mirror with NA < 1 only partial modification
is expected. Fig. 6.1 shows the expected modification of the decay rate of a dipole
transition depending on the numerical aperture of a perfectly reflective spherical
mirror. Furthermore, other effects such as ground and excited level shifts depending
on the size of the mirror have been predicted [195].

In this Chapter we present the new “Panopticon” apparatus for the integration
of a high quality hemispherical mirror (NA ≈ 1) and a trapped ion for the realiza-
tion of the paradigmatic situation described above. In addition to the fundamental
components of such a setup, i.e., the hemispherical mirror and a Paul trap, a high
numerical aperture lens (NA = 0.7) is used to collimate the emission and direct it
to a detector. The design and construction of such an apparatus presents multiple
technical challenges which are discussed in this Chapter, including

� The construction and characterization of a hemispherical mirror with constant
radius of curvature. The effects discussed above vanish rapidly if the radius of
curvature is not constant. We aim to fabricate a hemispherical mirror with a
radius of curvature RMS error not larger than λ = λ/10 over all the surface.
The radius of curvature must be tunable through thermal expansion of the
substrate.

� The trap design. The used Paul trap must provide full optical clearance be-
tween the trapped ion an the hemispherical mirror. Additionally, it must
provide optical clearance for the collection of the emitted light through the
high NA lens and for laser access. Ideally, the trap should also provide the
possibility of trapping several ions simultaneously in a stable fashion to provide
enough flexibility for other experiments.
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Figure 6.1: Modification of the emission of an atom in the center of

a hemispherical mirror. Depending on the radius and numerical aperture

of a spherical mirror it is possible to observe inhibition or enhancement of the

spontaneous emission rate of an atom located in its center of curvature. If

the radius of the mirror is R = nλ/2, the center of curvature is a node of the

vacuum mode density and inhibition is expected (blue curve). If the radius

of the mirror is R = nλ/2 + λ/4, the center of curvature is an anti-node of

the vacuum mode density and enhancement is expected (blue curve). Perfect

inhibition and enhancement are achieved only in the case that half of the space

is covered by the mirror (NA = 1). In this plot a mirror with perfect reflection

is assumed. Figure taken from Ref. [195].

� The design and characterization of the high NA lens used for collection aim at
diffraction limited performance, enabling interference and imaging experiments
such as the ones presented in Chapters 4 and 5.

� The design of the vacuum vessel. All these elements have to be placed in an ul-
tra high vacuum environment, and their relative position should be adjustable
in-situ.

Besides the fundamental quantum electrodynamics experiments accessible with
the implementation of this new setup, it will also provide record photon collection
efficiencies for ion trap setups without cavities. For the optical dipole orientation,
the expected photon collection efficiency is 38 % without considering enhancement
of the spontaneous emission effects. This substantially improves the precision of any
optical measurement of atomic properties and properties of the fields interacting
with the atom. The improved collection and absorption rates enabled by this kind
of setup could be used to implement a quantum network without cavities.

Note that some of the features exhibited by a setup consisting of a hemispherical
mirror, such a high collection efficiency and improved single photon absortion, can
be achieved using an atom in the focus of a parabolic mirror [66, 196]. However, in
this approach the enhancement and inhibition of the spontaneous emission due to
QED effects vanish at realistic machinable parabolic mirrors [196]. Other approaches
consist in using a combination of a high NA lens collecting the light emitted by an
atom and a mirror retroreflecting the collected light. Although changes in the decay
rates have been observed using this approach [197], the maximum modifications are
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Figure 6.2: Main components of the Panopticon setup. The green arrows

show the propagation of the emitted field.

limited by the achievable numerical apertures of the collecting lens in trapped ions
systems.

6.2 The Panopticon setup

The main feature of the Panopticon setup1 is the ability to confine a single atomic
ion in the center of a hemispherical mirror. The ion trap needs to provide full
optical clearance between the trapped ion and the mirror. Additionally, in order to
provide a large capture of the emitted field, a large NA aspheric lens (NA = 0.7) is
positioned opposite to the mirror, such that its focal point lies at the position of the
ion. Therefore. the trap needs also to provide optical clearance for the solid angle
captured by the asphere. Fig. 6.2 shows a scheme with the main components of the
Panopticon setup. In this section we describe the design and construction of each
of these main components, and how to assemble them together.

6.2.1 The hemispherical mirror

The main component of the Panopticon setup is the concave hemispherical mirror.
To be able to observe large modification of the spontaneous emission of an atom
located in its center, optical surface precision is required over the full numerical
aperture. The best macroscopic round objects ever fabricated are spheres with a
surface deviation of only 17 nm peak-to-valley [199]. This surface quality is achieved
by randomly rotating the sphere between two polishing tools, for periods of several
days. Unfortunately, this technique cannot be applied to concave spherical surfaces,
and in general, until now, there was no technique able to produce a surface precision

1The Panopticon setup owes its name to a type of institutional building proposed by the English
philosopher and social theorist Jeremy Bentham [198]. In this kind of building, a single watchman
located in a central tower can observe all the inmates of the institution, which are located in cells
with optical clearance around the tower.
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Figure 6.3: Fabricated hemispherical mirror. Photograph of a fabricated

hemispherical mirror and a euro coin for comparison. The sketch on the right

side shows a cross section with the relevant dimensions of the fabricated mirror.

Note the 3 mm diameter drilled holes which provide radial laser access to the

center of curvature (CoC) of the mirror, where the ion will be located.

similar to that of convex sphere. As a reference, the probably roundest convex
objects ever fabricated (prior to our work) has a peak-to-valley deviation of 163
nm [199].

In a collaborative work with The Australian National University (ANU) we have
been able to produce hemispherical mirrors with RMS form error consistently be-
low 25 nm, a maximum peak-to-valley error of 88 nm, and a radius of curvature
of ≈ 12.5 mm. The mirrors were fabricated by D. B. Higginbottom by diamond
turning a cylindrical aluminium 6061 substrate with a CNC (computer numerical
controlled) nano-lathe2. To achieve low surface deformation, an in-situ white-light
interferometer was implemented on the lathe, permitting the calibration of the tool
with sub-nanometer precision prior to the machining. A detailed description of the
fabrication and characterization of the mirrors can be found in Refs. [200,201].

Fig. 6.3 shows a fabricated mirror intended to be used in the experiment, with
a surface RMS error of 18.1 nm and a peak-to-valley error of 116.5 nm. There
are two drilled holes (3 mm diameter) which provide laser access to the center
of curvature, where the ion will be located (see Section 6.2.4). One of them is
located along the optical axis of the mirror and the other at 62◦ from the center
with respect to the optical axis. The NA of this mirror is 0.996 (half aperture
85◦), which is not a limitation of the fabrication process but is planned to provide
optical clearance (1.1 mm) to the trapped ion for a laser beam orthogonal to the
mirror’s optical axis. The reflectivity of the mirror is the one of the substrate (0.92
for aluminium 6061 at 493 nm), and it could be improved by applying a highly
reflective thin film coating to the mirror. The concave shape of the mirror makes
it difficult to realize this in a uniform fashion, and it would be detrimental for the
overall surface quality using standard techniques3. Detrimental effect are expected
also from standard polishing techniques. Fig. 6.4 shows the expected modification of
the spontaneous emission considering the measured surface form, reflectivity and the
effect of the drilled holes. Considering form and reflectivity, the maximum expected

2Nanotech 250UPL, Moore Precision Tools
3New developments in Atomic Layer Deposition (ALD) have shown promising results in

uniform coating of complex 3D structures, see for example https://www.laseroptik.de/en/

coating-guide/production-methods/ald

https://www.laseroptik.de/en/coating-guide/production-methods/ald
https://www.laseroptik.de/en/coating-guide/production-methods/ald
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Figure 6.4: Expected performance of the fabricated mirror. Modifi-

cation of the spontaneous emission rate considering the achieved form, and

the achieved form and reflectivity of the substrate. The numerical aperture

NA=0.996 is not distinguishable from NA=1.0 in the shown plot. Considering

form and reflectivity, the maximum expected enhancement and inhibition of

the spontaneous emission rate correspond to 88% of its ideal value.

enhancement and inhibition of the spontaneous emission rate correspond to 88% of
their ideal value. The main deviation from the ideal case comes from the limited
reflectivity of the material.

To tune the radius of curvature of the mirror, we rely on the uniform thermal
expansion of the substrate. The coefficient of thermal expansion of aluminium 6061
at room temperature is 23.5 × 10−6 K−1. To achieve a difference in the radius of
curvature of λ/4 ≈ 123.3 nm (with λ = 493 nm) it is necessary to change the tem-
perature by 0.42 K. Resistively heating the mirror under a single-shot white-light
ZYGO interferometer has shown tunability over the desired range in a uniform fash-
ion, and no indication of surface distortion due to thermal expansion. Nevertheless,
small variations in environmental temperature could lead to drifts in the radius of
curvature, so that active stabilization of the temperature of the mirror is necessary.
To do so, the mirror will be mounted in an aluminium holder, whose temperature
is measured using two UHV compatible temperature sensors4, and stabilized using
vacuum compatible heating wires5.

6.2.2 The aspheric lens

To capture and collimate the light emitted by the ion, an aspheric lens is located
opposite to the hemispherical mirror, as shown in Fig. 6.2. The main advantages
of using an aspheric lens instead of a multi-lens objective is the simple compact
design and reduced spherical and other optical aberrations. The low aberrations
play a crucial role in future experiments related with spatial properties of emitted
and absorbed photons, as well as interference experiments with photons emitted by
atoms in different traps and detection of quantum features of the atomic motion.

4Thermistors BC101B1K, Littelfuse®

5Insulated Nichrome wires NC-32, LakeShore Cryotronics®
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Parameter Value
RF 14.56 mm
k −0.776
A4 −3.2022806× 10−6 mm−3

A6 −2.9002661× 10−8 mm−5

A8 −9.6249910× 10−11 mm−7

A10 −1.0236456× 10−13 mm−9

A12 4.5511459× 10−16 mm−11

A14 3.3201252× 10−18 mm−13

A16 −8.7645298× 10−21 mm−15

Figure 6.5: Aspheric lens dimension. The surface facing the ion is spherical

with a radius of curvature RB, whereas the aspheric face is defined by the

Eq. (6.1). The ion is positioned 9.6 mm away from the front surface. The table

shows the aspheric surface lens design parameters.

The asphere, designed and fabricated by Asphericon GmbH, has NA = 0.7, a
working distance of 9.60 mm and an effective focal length of 16.05 mm. The design
was optimized using Zemax OpticStudio to achieve a diffraction-limited single lens
with ultra-low wavefront aberrations at 493 nm. These features are needed for future
interference experiments between different traps and for high resolution imaging
of the emission pattern. The dimensions of the designed asphere are shown in
Fig. 6.5. The surface facing the ion has a designed constant radius of curvature
RB = 202.303 mm, whereas the opposite face is a rotationally symmetric asphere
defined by the equation

z(r) =
r2

RF

(
1 +

√
1− (1 + k) r

2

R2
F

) +

n=8∑
i=2

A2ir
2i. (6.1)

The values of the parameters RF, k and A are listed in the table in Fig. 6.5.

Three pieces of the designed asphere were fabricated using S-TIH53 glass sub-
strate6, with refractive index ng ≈ 1.85, Abbe number vg = 23.59 (at 546 nm). The
manufacturing process includes CNC grinding and polishing as first step. In order
to reduce surface irregularities, a process called “ion beam figuring” is used. In this
process ion beams are hit at specific regions of the surface. Finally, an anti-reflecting
coating for 493 nm is applied using “plasma-assisted physical vapour deposition”.
All this step were performed using Asphericon GmbH technology. Fig. 6.6a shows a
photograph of one of the aspheres and Fig. 6.6b shows the achieved wavefront qual-
ity7. RMS wavefronts distortion below 37 nm and peak-to-valley distortion below

6Ohara Corporation, quoted absorption coefficient of 0.951% at 488 m. Data sheet at https:

//www.oharacorp.com/pdf/estih53.pdf
7The wavefront distortions were measured using a high-resolution wavefront sensor, Phasics

https://www.oharacorp.com/pdf/estih53.pdf
https://www.oharacorp.com/pdf/estih53.pdf
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Figure 6.6: Fabricated aspheric lens. a. Photograph of one of the three

fabricated aspheric lenses together with a hundred chilean pesos coin, giving

the scale (the coin has the same dimensions as a one euro coin). b. Measured

wavefront distortion of one of the aspheres. The color scale is in units of λ = 493

nm. Provided by Asphericon GmbH.

700 nm over all of the numerical aperture were systematically achieved. The reflec-
tions in the coated surfaces where measured to be smaller than 0.4% for incidence
angle of up to 40◦, and the transmissivity measured with a laser beam perpendicu-
lar to the surface at the center of the lens was 95%, in agreement with the quoted
values. Both measurements where done with a laser beam with 493 nm wavelength.

The lens is mounted in an aluminium holder, which allows for laser access to the
focal point of the lens from several directions (see Section 6.2.4), and with negligible
reduction of the numerical aperture.

6.2.3 The ion trap

The main challenge in the design of an ion trap compatible with the Panopticon
setup, is that the trap should provide full optical clearance between the trapped
ion and the hemispherical mirror, and between the ion and the aperture defined by
the aspheric lens. This could be achieved using, for example, a needle trap [202],
although this approach allows the trapping of only one ion in a stable fashion without
excess of micromotion. It is desirable to be able to trap several ions stably, since
the built setup could then be used for a broader range of experiments. There are
some designs which partially comply with the optical access and stable trapping
of several ions criteria, including, for example, the miniaturized segmented “High
Optical Access Trap 2.0” developed by the Sandia National Laboratories8. However,
this kind of miniaturized traps needs to be operated under cryogenic conditions to
achieve optimal performance, which increases the complexity of the setup. The
approach that we take here is the fabrication of a monolithic slotted pseudo-planar
macroscopic trap. A simplified scheme of the designed trap geometry is shown in
Fig. 6.7, where an ion is trapped above the front surface, providing full clearance on
the side of the hemispherical mirror and clearance corresponding to the NA = 0.7
of the aspheric lens through the slot.

SID4-307, at Asphericon GmbH
8Information about this trap can be found in https://www.osti.gov/servlets/purl/1239095

https://www.osti.gov/servlets/purl/1239095
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The geometry shown in Fig. 6.7 generates an RF trapping pseudo-potential in
the x and y directions, whereas trapping along the z direction is provided by the
DC potential generated primarily by the DC electrodes DC1 and DC2. Note that
the DC votages applied to the electrodes DC,3 DC4, DC5 and DC6 also contribute,
although weakly, to the trapping potential in the z direction.

The fabrication of such a trap is challenging, but is doable with current subtrac-
tive 3D laser micro-machining technology. The basic idea is to 3D laser machine a
monolithic dielectric substrate with the required shape, from now on ”3D printing”,
including “trenches” to separate different regions. Then, the surfaces are coated
with a conductor, i.e., gold, creating isolated electrodes in each region surrounded
by trenches. Fig. 6.8 depicts this basic idea combining 3D-printing and coating to
create electrodes.

The required precision of the dielectric substrate fabrication can be achieved
by “laser carving” techniques, provided by companies such as FEMTOprint SA.
The 3D-printing technology used by this company consists in using strongly-focused
high-power laser pulses to locally change the refractive index of the substrate. Then
a photo-chemical process is used to remove the material with altered refraction
index. Using this technique on, e.g., fused silica, the carved features can reach
an average roughness below 100 nm, whereas the untouched surfaces can reach an
average roughness below 5 nm. Additional polishing can reduce the roughness below
50 nm, though with detrimental effects in surrounding areas.

Conductive coating of the surfaces by means of evaporation of a thin layer of
titanium (∼ 2 nm) and a thick layer of gold (∼ 200 nm) can be performed in-house
in our clean room, typically followed by gold electroplating to increase the thickness
of the electrodes to ∼ 5 µm.

Trapping potential simulations

The trap geometry presented in Fig. 6.7 is the result of systematic optimization
considering multiple aspects. The different dimensions and positions of the elec-
trodes were varied to optimize the achievable trapping frequencies for 138Ba+ ion,
trap depth, trap capacitance, residual axial RF field and ion-electrode distance,
constrained by the required optical clearance and laser access to the ion. For these
purposes, the produced electric potentials are simulated via finite element analysis
using the software COMSOL Multiphysics® 4.4. In these simulations, besides the
fields produced by the trap electrodes, the presence of the hemispherical mirror is
considered and its surface is considered to be grounded.

Fig. 6.9 shows the simulated trapping potential, including the DC and RF con-
tributions. The RF pseudo-potential minimum of the presented trap geometry is
located 157 µm away from the front plane, making the distance of a trapped ion
and the closest electrode equal to 453 µm. For comparison, in our “Innsbruck”
style blade trap this distance is 707 µm. Small distances between ion and electrodes
increases the heating rate of ions due to surface noise and other effects [203]. Keep-
ing this distance relatively large (above ∼ 300µm) is important to minimize these
effects.
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Figure 6.7: Ion trap design a. Simplified design of a 3D-printed ion trap.

The RF, DC and ground electrodes lay on the facets of a 3D-printed substrate.

All the shown dimension are in mm. b. Transverse cuts of the trap showing

the optical clearance provided by the design. On mirror side (y > 0) there is

full clearance, and on the side of the lens the optical clearance (light blue area)

is slightly bigger than the required θ = arcsin NA ≈ 44.4◦. The RF pseudo-

potential minimum, and therefore the position of the ion, is located 0.157 mm

away from the front plane of the trap. The text in white shows the name of

each electrode.
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gold evaporation

electrode A electrode B
3D-printed 

dielectric substrate

trench

Figure 6.8: Electrode separation through 3D-printing and coating.

First, a dielectric substrate is “3D-printed”. This substrate includes all the

features, including the trenches needed to separate electrodes. Then, the sur-

faces are coated with a conductor (gold). The geometry of the printed trenches

provides electric insulation between different regions, defining different elec-

trodes.

Fig. 6.9c shows the trapping potentials along each coordinate axis. The potentials
along x and z are symmetric about the trap center, while along the y axis it is
asymmetric, as typically observed in surface traps [202]. Depending on the voltage
applied to the different electrodes, the trapping frequencies of the trapping directions
can be varied. Table 6.1 shows the trapping frequencies and trap depths obtained
from the simulations for a 138Ba+ ion.

The simulations also show that independent control of the voltage applied to
the electrodes DC3, DC4, DC5 and DC6 is enough for compensation of micromo-
tion in all directions. Simulations with different trench geometries and dimensions
were carried out. The most relevant trench parameter, i.e., the electrode-electrode
separation provided by the trench, was varied between 50 µm and 150 µm. The
variations in this range have a negligible effect on the trapping potential shape and
the obtained trapping frequencies, but have a significant effect on the achievable
breakdown voltages between electrodes. The dimensions used for the actual trap
will be set by the results of in-laboratory voltage breakdown tests being performed
at the time of writing with samples fabricated by FEMTOprint SA. The goal of
these tests is to determine the maximum DC and RF voltages that can be applied
to the electrodes considered in our design in realistic experimental conditions, which
is expected to be in the order of several kV.

The actual trap

Although the trap design to be fabricated has the same core geometry as the one
presented in Fig. 6.7, it includes additional features. Fig. 6.10 shows a render of
the actual design. All the electrodes in the front, i.e., DC1, DC2, RF, G1 and G2,
are extended to reach the back plane. There, together with the electrodes DC3 ,
DC4, DC5, DC6, G3 and G4, are prolonged into conductive traces to reach an area
not covered by the mirror nor the lens (Fig. 6.10b). In this way, the trap can be
wire-bonded and connected to the voltage supplies in a printed circuit board (PCB),
without cables in the area of optical clearance. The extended area is also used to
clamp the trap to the PCB using the drilled holes.

Additionally, grooves in the front face will be carved in the substrate (during
the 3D-printing process). These grooves improve the clearance of the laser beams
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Figure 6.9: Simulated trapping potential of the 3D-printed trap. a.

Simulated trapping potential in the x − y plane. The white cross shows the

position of the minimum. b. Trapping potential in the y−z plane. c. Trapping

potential along the x, y and z axis. The potentials along x and z are symmetric

around the trap center, whereas the potential along y is asymmetric. Close to

the center, in a range of ∼ 100µm, the potentials are well approximated by

harmonic potentials. The parameters used for the plots shown here correspond

to “config. 1” in Table 6.1.
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config.1 config. 2 config. 3

RF freq. ΩRF/2π (MHz) 16.0 16.0 16.0

RF amplitude URF(V) 1000 1500 2000

DC1,2 (V) 200 300 400

DC3,4,5,6 (V) 82 123 164

ωx/2π (MHz) 1.33 2.16 2.96

ωy/2π (MHz) 1.57 2.34 3.07

ωz/2π (MHz) 0.51 0.62 0.72

Trap depth (eV) 2.4 4.9 8.2

Table 6.1: Trap driving parameters and resulting trap frequencies and depths,

obtained by finite elements simulations. Three different configurations are

shown. DC1 and DC2 correspond to the “endcap” electrodes shown in Fig. 6.7,

while DC3, DC4, DC5 and DC6 are the electrodes in the back plane. In the

three configurations the electrodes G1, G2, G3 and G4 are grounded.

that propagate close to the surface, reducing the light scattered by the trap. This
is of particular importance when addressing single ions using a strongly focused 1.7
µm laser. The conical vertical grooves shown Fig. 6.10a mimic the divergence of
such a laser with additional 100µm of optical clearance. The horizontal cylindrical
grooves give enough optical clearance for an axial cooling beam. Fig. 6.10c shows all
the planned axes for laser access to the position of the ions. The vertical axis (blue
in Fig. 6.10c) will be used for the 1.7 µm laser beam and compensation of micro-
motion, the horizontal axis (red)) will be used for optical pumping, compensation
of micromotion photo-ionization beams, the diagonal beam (green) will be used for
Doppler-cooling, and the axis parallel to the optical axis (yellow) for compensation
of micromotion.

We have performed simulations of the generated trapping potential for this de-
sign. The differences with the results of the simulations of the simplified version
presented above are negligible.

6.2.4 The full optical setup

The optical setup, consisting of the hemispherical mirror, the aspheric lens and the
ion trap has to be set in place in a robust and stable manner, while still providing
enough degrees of freedom for correct alignment. The holders and positioners have
to be compatible with the ultra-high vacuum environment needed to trap single
atomic ions in a stable way. To do so, we designed the mounting system shown in
Fig. 6.11. In this setup, all the elements are carefully designed in order to provide
the required laser access and optical clearance. The position of the mirror and the
lens can be independently set by using the xyz-nanopositioners9 shown in the figure.
The positioners have a step of 1 nm in each direction, a position read resolution of
1 nm and a maximum displacement of 12 mm.

9SmarAct SLC-1720-S-UHVT
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Figure 6.10: Full design of the ion trap. a. Front side of the designed Paul

trap. Cylindrical and conical grooves are carved in the substrate in order to

minimize the scatter of laser beams propagating close to the surface. All the

electrodes in the front are extended to the back plane through the edges. Holes

are drilled to hold the trap using screws. The position and number of holes is

referential only. b. In the back plane all the electrodes are extended into rails,

which are used for wire-bonding and connecting the voltage supplies. c. The

trap and the four planned laser axes.
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Figure 6.11: Panopticon optical setup. The mirror and lens are mounted

on independent xyz–nanopositioners, whereas the position of the ion trap is

fixed. The ion trap is attached to a PCB structure with insulating screws and

washers. The PCB will hold filtering electronics for the DC electrodes. The

coloured lines show the planned laser axes.
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6.3 The vacuum vessel

The Panopticon optical setup will be placed in a ultra-high vacuum environment.
To achieve this we have designed the vacuum vessel shown in Fig. 6.12. The main
component of the vacuum vessel is an 8”–CF spherical octagon vacuum chamber10.
The chamber provides the required access for laser beams (see Fig. 6.11).

A customized 6-way CF cross is attached to the main chamber, providing enough
flanges to connect a vacuum valve11, a vacuum gauge12, the electric feedthroughs
for the wiring the nanopositioners, a non-evaporable getter (NEG) pump13 and a
viewport.

The main pumping is done with a combined ion and NEG pump14 attached
to the main chamber. During the activation of the NEG part, the pump can reach
temperatures close to 450◦C. This temperature is not compatible with the maximum
temperature to which the nanopositioners can be exposed (150◦C). In order to avoid
damage of the nanopositioners, the pump is retracted from the main chamber using
a spacer, and a two-layer aluminium heat shield is placed between the pump and
the positioners (see Fig. 6.12). According to simulations performed by the pump
manufacturer, this is enough to prevent damage to the positioners.

The vacuum vessel has all the necessary viewports to provide access to the center
of the trap using the planned axes (see Fig. 6.11), including a CF-160 viewport in
the top of the chamber. All the viewports are anti-reflection coated for all the
wavelengths needed to load, cool and control 138Ba+ ions. The viewport used for
transmitting the light emitted by the ion and collimated by the aspheric lens has
optical quality surface, with wavefronts aberrations below λ/10 over all the surface
(with λ = 493 nm).

The electrical connections needed to drive the ion trap, to heat an atom dis-
penser and to measure and control the temperature of the mirror are done through
feedthroughs in the customized CF-160 bottom flange. This customized flange also
has a CF-16 viewport intended for 1.7 µm laser addressing of individual trapped
ions.

Three pairs of magnetic field coils are attached to some of the main chamber
flanges in order to provide a homogeneous magnetic field in the center of the trap.

6.3.1 Loading stage

To provide a source of atoms inside the vacuum chamber we have designed a loading
stage that simultaneously contains a resistively heated Ba dispenser and a laser
ablation target. The resistively heated dispenser is a reliable way to produce a flux

10Kimball Physics, MCF800-SphSq-G2E4C4A16.
11VAT 54132-GE02
12Bayard-Alpert ion gauge, Agilent UHV-24
13SAES CapaciTorr Z-400.
14SAES NEXTorr D 100-5
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Figure 6.12: Vacuum vessel main components. See details in the main

text.
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of neutral atoms in the center of the trap, which are then ionized using the photo-
ionization laser (see Section 3.3.5). This process is, however, slow, and produces an
excess of heat inside the vacuum chamber that can have some detrimental effects on
the operation of ion traps.

Laser ablation from a target is an alternative way, which has been proved to
be more efficient and less detrimental for ion traps operation (see for example
Ref. [204]). In this case, short and strong laser pulses are applied on a Ba tar-
get to produce neutral and ionized atoms, which eventually reach the center of the
trap. It has been experimentally shown that instead of using a pure Ba target,
targets containing BaTiO3 or BaO produce higher Ba+ yields [205], making loading
more efficient.

Fig. 6.13 shows the designed loading stage, where both a resistive oven (dis-
penser) and a BaTiO3 ablation target are located. The holder is made of macor®

ceramic, which exhibits a low thermal and electric conductance. Both the target
and the oven are enclosed in a copper shield, which simultaneously provides ther-
mal insulation and prevents the ablated Barium from spreading into the rest of the
chamber. This is important to avoid coating the viewports in the long term. Two
holes in the front are used to collimate the atomic flux and direct it to the center
of the ion trap. As the ablation process spreads atoms in every direction, a mirror
and a hole in the shield are used for the ablation laser pulses. This configuration
prevents a high atomic flux from exiting the shield and directly coat the viewport
used for the ablation laser. Furthermore, the shield has two small circular apertures
to collimate the atomic flux into the center of the trap, and a small square aperture
in the side, which will allow for direct monitoring of the oven temperature with a
thermal camera through a infra-red transmissive germanium viewport.

A broad range of pulsed laser sources can produce the pulses needed for ablation.
An example of such a source is a pulsed nitrogen laser, with wavelength 337 nm and
energy per pulse of 150 µJ 15. This wavelength is compatible with our coated
viewports.

6.4 Current status

At the time of writing of this thesis, the fabrication of the components of the new
apparatus is almost complete. The main vacuum components such as the vacuum
chamber, the combined pump, the vacuum valve, the coated viewports, the sealing
blanks and feedthroughs have been pre-baked and put together, achieving a pressure
below 10−10mbar, without activating the NEG pump. During this test we were not
able to identify any leak in the vacuum vessel.

The components of the main in-vacuum optical setup (see Fig. 6.11) are ready
to be assembled. The design of the ion trap has been approved for fabrication by
the manufacturing company. Only details about the final dimensions of the trenches
need to be set. The final dimension of these trenches will depend on the results of

15for example, a Stanford Research Systems nitrogen laser NL100 reaches the requirements.
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Figure 6.13: Loading stage. Design of a loading stage combining a resistive

Barium oven and a target for laser ablation. See details in the main text.
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the breakdown voltages, obtained from tests samples already fabricated. The final
design of the PCB holding and connecting the trap is not yet defined. The holders
of the mirror and lens and the positioners are ready to be used. The loading stage
is currently being fabricated, and the ablation target and oven have been already
ordered. As all the rest of the equipment needed for trapping and observing ion is
operative, the first tries with the new setup should be then performed during the
course of this year.

6.5 Summary and outlook

In this chapter we have presented the design of a new setup which will allow studies
of quantum electrodynamics effects, improved collection efficiency of single photons
emitted by a single atom. We have presented the design and construction of the
main optical components of such a setup, namely the hemispherical mirror and the
aspheric lens, and shown how the strict requirements on their fabrication are fulfilled.

In particular, an unprecedented precision on the fabrication of macroscopic con-
cave hemispherical mirrors have been achieved, which will give us access to enhance-
ment and inhibition of the spontaneous emission of a single atom of more than 96%.
The technique used for their fabrication could be extended to the precise fabrication
of other concave surfaces, allowing for more exotic quantum electrodynamics situa-
tions. One example of that, proposed by Yves Colombe, would be the fabrication of
a mirror with a λ/4 radius step, such as the one shown in Fig. 6.14. Such a mirror
will allow to enhance the spontaneous emission in the modes collected by a lens,
while inhibiting the rest. In such a way, collection efficiencies close to 100% could
be achieved.

inhibited 
modes

enhanced 
modes

step 
mirror lensemitter

R1

R2

Figure 6.14: Step mirror concept. A mirror with radius of curvature R1 =

nλ/2 around the center and R2 = nλ/2 + λ/4 would permit to enhanced the

emission of photons in the collected solid angle while inhibiting the emission

outside. Idea proposed by Yves Colombe.

We have also presented the design of a monolithic high optical access ion trap,
with macroscopic dimensions. Such a trap is compatible with the optical access
aspects required for the observation of the quantum electrodynamics effects. The
achievable trapping parameters are similar to those achievable with designs such as
our “Innsbruck-style” trap for 138Ba+, and can be even better for lighter species
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such as 40Ca+.

The design of this new trap exploits new 3D-printing technologies and the basic
concept of use trenches to separate electrodes can be extended to more complex trap
geometries, including segmented traps or traps designed for trapping 2D or 3D ion
crystals, with high optical access to the trapped particles. The high optical access
achieved by the trap could also be used in fiber cavity setups [206,207].

We have also presented the design of the complete setup, which includes a state
of the art vacuum vessel and fast loading of ions in the trap via laser ablation. The
construction of several of these setups would permit to perform experiments related
with remote entanglement distribution and quantum networking without cavities.

The physical phenomena that we aim to study with this setup, such as strong in-
hibition and enhancement of the spontaneous emission, are not restricted to atomic
ions, but in general, could be observed from any quantum emitter. Therefore, the op-
tical setup presented here could be used with other systems with promising prospects
in quantum networking and communications, such as quantum dots or diamond spin
qubits [208,209].





7
Conclusion and outlook

The experimental platform provided by trapped ions features aspects that other
platforms find difficult to achieve simultaneously. Among these features are the
high degree of control, the localization of the particles, the long trapping and co-
herence times and the high collection efficiency of photons emitted into free space.
In this thesis, by taking advantage of these unique combination of features, two key
experiments regarding fundamental quantum optical properties of the emission of
single atoms have been presented.

In the first experiment we have shown how quantum information properties of a
pair of atoms, namely the presence of entanglement, can affect their single photon
emission rate. This effect proved to be useful in experimentally detecting entan-
glement in a purely optical fashion, with prospects of detecting of entanglement of
extended quantum systems. We have also shown how this effect can be used to
implement optical gradiometers, where entanglement could be used to test field dif-
ferences in separated locations, provided that we can create entanglement between
atoms at different locations.

In the second experiment we have studied a fundamental property of the field
emitted by single atoms: its spin-orbital angular momentum coupling. We have
for first time shown that photons emitted in certain directions carry solely orbital
angular momentum. Due to this orbital angular momentum, the image of a single
atom can be displaced with respect to its actual position. The high stability of
our photon collection and imaging system enabled us to measure this effect with
nanometer precision. We have discussed in detail the possible implications of this
phenomenon, which does not affect not only atoms but any fundamental emitter, for
the achievable precision and accuracy of current position determination and imaging
techniques. However, besides the limitations that this phenomenon implies, it also
provides new ways to measure local properties of fields, such as local polarization of
light, or direction of magnetic fields.

Furthermore, we have presented the design of a new ion trapping apparatus,
which will allow us to study fundamental electrodynamics effects. We have pre-
sented the results of the fabrication of the key components, namely a hemispherical
mirror with optical-quality terminated surface, and an aspheric lens with numerical
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aperture NA = 0.7 and wavefronts aberrations bellow the original goal. We have also
presented the design of a macroscopic, monolithic ion trap with high optical access,
which is compatible with the optical access requirements of the optical system.

The realization of the new apparatus will not only enable experiements on quan-
tum electrodynamics as mentioned above, but also substantially increase the collec-
tion of the emission of the light emitted by the ions. Therefore, this would improve
the precision and accuracy of any quantum optics experiment performed in the ap-
paratus, and allow for faster qubit read-out. It will also make any experiment based
on the detection of single photons faster, making it promising for fast generation
of remote entanglement using photons as a bus. The Cabrillo scheme presented in
Chapter 4 has been recently used for the first demonstration of on-demand genera-
tion of entanglement between distant qubits using photons in the optical regime as
a bus [209]. By using the Cabrillo entangling scheme distributed over several nodes
composed of our newly developed traps, we envisage a competitive alternative to
cavity-based realizations of quantum networks.
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[111] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. Lancaster,
T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization
of the Cirac–Zoller controlled-not quantum gate,” Nature, vol. 422, no. 6930,
p. 408, 2003. 4.3

[112] A. Sørensen and K. Mølmer, “Quantum computation with ions in thermal
motion,” Physical Review Letters, vol. 82, no. 9, p. 1971, 1999. 4.3

[113] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt,
M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe,
“Experimental entanglement of four particles,” Nature, vol. 404, pp. 256–259,
2000. 4.3, 4.3.2, 4.3.3, 4.3.3

[114] G. Milburn, S. Schneider, and D. James, “Ion trap quantum computing with
warm ions,” Fortschritte der Physik, vol. 48, no. 9-11, pp. 801–810, 2000. 4.3

[115] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M.
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[196] G. Alber, J. Bernád, M. Stobińska, L. Sánchez-Soto, and G. Leuchs, “QED
with a parabolic mirror,” Physical Review A, vol. 88, no. 2, p. 023825, 2013.
6.1

[197] J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from
single atoms and their mirror images,” Nature, vol. 413, no. 6855, p. 495, 2001.
6.1

[198] J. Bentham, Panopticon or the inspection house (1791). Kessinger Publishing,
WhiteFish MT, 2009. 1

[199] J. Turneaure, C. Everitt, B. Parkinson, D. Bardas, J. Breakwell, S. Buchman,
W. Cheung, D. Davidson, D. DeBra, W. Fairbank, et al., “The gravity-probe-b
relativity gyroscope experiment: Development of the prototype flight instru-
ment,” Advances in Space Research, vol. 9, no. 9, pp. 29–38, 1989. 6.2.1

[200] D. B. Higginbottom, G. T. Campbell, G. Araneda, F. Fang, Y. Colombe,
B. C. Buchler, and P. K. Lam, “Fabrication of ultrahigh-precision hemispher-
ical mirrors for quantum-optics applications,” Scientific Reports, vol. 8, no. 1,
p. 221, 2018. 6.2.1

[201] D. B. Higginbottom, Atom-light couplers with one, two and ten billion atoms.
PhD thesis, Australian National University, 2018. 6.2.1

[202] J. D. Siverns and Q. Quraishi, “Ion trap architectures and new directions,”
Quantum Information Processing, vol. 16, no. 12, p. 314, 2017. 6.2.3, 6.2.3

[203] M. Brownnutt, M. Kumph, P. Rabl, and R. Blatt, “Ion-trap measurements of
electric-field noise near surfaces,” Reviews of Modern Physics, vol. 87, no. 4,
p. 1419, 2015. 6.2.3

[204] D. R. Leibrandt, R. J. Clark, J. Labaziewicz, P. Antohi, W. Bakr, K. R.
Brown, and I. L. Chuang, “Laser ablation loading of a surface-electrode ion
trap,” Physical Review A, vol. 76, no. 5, p. 055403, 2007. 6.3.1

[205] S. Olmschenk and P. Becker, “Laser ablation production of Ba, Ca, Dy, Er,
La, Lu, and Yb ions,” Applied Physics B, vol. 123, no. 4, p. 99, 2017. 6.3.1

[206] M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion
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