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Abstract

Ions confined in radio-frequency (rf) traps are one of the most promising platforms for
achieving universal quantum computing beyond classical capabilities. Similarly, some of
the most advanced quantum simulation experiments have been conducted with linear
strings of about 50 ions. However, scaling up these systems to study more complex mod-
els of interacting quantum matter presents both fundamental and technical challenges,
including the inability to naturally implement models with more than one dimension.
This work presents a novel apparatus designed for quantum simulation experiments with
two-dimensional crystals of 40Ca+ ions in a rf trap, effectively bypassing these scaling
limitations. Nevertheless, two-dimensional crystals in rf traps pose their own challenges,
such as inevitable micromotion of ions displaced from the trap’s symmetry axis, as well
as crystal configuration changes and melting caused by background gas collisions and rf
heating. This work demonstrates how these issues are overcome and lays the groundwork
for studying two-dimensional spin models with single-particle control in the near future.
Alongside details on the experimental setup, excellent control of two-dimensional crystals
consisting of up to approximately 100 ions, is shown both at the classical and quan-
tum level. We achieve excellent stability of planar ion crystals and employ a clustering
algorithm to detect distinct crystal configurations, enabling the mitigation of configura-
tion changes by adjusting trap parameters. Furthermore, this approach allows for the
automatic detection of such changes during individual experiments, thereby practically
eliminating their detrimental effects on measurement outcomes.
Using electromagnetically induced transparency cooling and polarization gradient cooling,
fast multimode cooling of crystals in two-dimensional configurations containing up to 105
ions and 22 ions, respectively, is achieved, bringing them close to their motional ground
state. This meets another essential requirement for the implementation of long-range en-
tangling interactions.
Since estimating the temperature of large, ground-state-cooled ion crystals is challenging
due to complex many-body interactions, a new thermometry method, forming a general-
ization of the well-known sideband ratio technique for single ions, is tested on individual
modes of a planar 19-ion crystal. The results are consistent with numerical simulations
and measurements obtained with a single ion and an 8-ion crystal. Finally, as a first step
towards quantum simulation of spin lattice models in two dimensions, the last chapter
explores the build-up of spin-spin correlations during the application of Ising-type inter-
actions using stimulated Raman transitions.
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Kurzdarstellung

Ionen, die in Radiofrequenz(rf)-Fallen gehalten werden, gehören zu den vielversprechends-
ten Plattformen für die Verwirklichung universeller Quantencomputer jenseits der Fähig-
keiten klassischer Rechner. Ebenso wurden einige der fortschrittlichsten Quantensimula-
tionsexperimente mit linearen Ketten von etwa 50 Ionen durchgeführt. Das Hochskalieren
dieser Systeme zur Untersuchung komplexerer Modelle wechselwirkender Quantenmaterie
stellt jedoch sowohl fundamentale als auch technische Herausforderungen dar, einschließ-
lich dem Unvermögen, Modelle mit mehr als einer Dimension natürlicherweise zu imple-
mentieren.
Diese Arbeit stellt einen neuen experimentellen Aufbau vor, der für Quantensimulati-
onsexperimente mit zweidimensionalen 40Ca+-Ionenkristallen in einer rf-Falle entwickelt
wurde und diese Skalierungsprobleme effektiv umgeht. Zweidimensionale Kristalle in rf-
Fallen bringen jedoch eigene Herausforderungen mit sich, wie etwa die unvermeidliche
Mikrobewegung der Ionen, die abseits der Symmetrieachse der Falle angeordnet sind,
sowie Kristallkonfigurationsänderungen und das Schmelzen von Kristallen, die durch Kol-
lisionen mit dem Hintergrundgas und rf-Heizen verursacht werden können. Diese Arbeit
zeigt, wie diese Probleme überwunden werden und legt damit den Grundstein für die
Untersuchung von zweidimensionalen Spin-Modellen mit Einzelteilchenkontrolle in naher
Zukunft. Neben Details zum experimentellen Aufbau wird die Kontrolle von zweidimen-
sionalen Kristallen, die aus bis zu etwa 100 Ionen bestehen, sowohl auf klassischer als
auch auf quantenmechanischer Ebene demonstriert. Wir erreichen zudem eine ausgezeich-
nete Stabilität der planaren Ionenkristalle und setzen einen Cluster-Algorithmus ein, um
unterschiedliche Kristallkonfigurationen zu erkennen, was wiederum die Minderung von
Konfigurationswechsel durch Anpassung der Fallenparameter ermöglicht. Darüber hinaus
erlaubt uns dieser Ansatz, solche Konfigurationswechsel während einzelner Experimente
automatisch zu erkennen, wodurch ihr nachteiliger Einfluss auf die Messergebnisse prak-
tisch eliminiert wird.
Durch Kühlen mittles elektromagnetisch induzierter Transparenz (EIT) sowie mittels
Polarisationsgradienten-Kühlen (PG) erreichen wir das schnelle multimodale Kühlen von
bis zu 105 Ionen (EIT) bzw. 22 Ionen (PG) in zweidimensionalen Konfigurationen na-
he an ihren Grundzustand. Damit wird eine weitere wesentliche Voraussetzung für die
Implementierung von langreichweitigen Verschränkungswechselwirkungen erfüllt. Da die
Bestimmung der Temperatur großer, in den Grundzustand gekühlter Ionenkristalle auf-
grund komplexer Vielteilchen-Wechselwirkungen äußerst schwierig ist, testen wir eine neue
Thermometriemethode, die eine Verallgemeinerung der bekannten Seitenband-Methode
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für einzelne Ionen darstellt, mit einem planaren 19-Ionen-Kristall. Die Ergebnisse stim-
men mit Messungen eines einzelnen Ions sowie eines 8-Ionen-Kristalls überein.
Schließlich wird als erster Schritt hin zur Quantensimulation von zweidimensionalen Spin-
Gitter-Modellen der Aufbau von Spin-Spin-Korrelationen während der Anwendung Ising-
artiger Verschränkungswechselwirkungen mithilfe stimulierter Raman-Übergänge unter-
sucht.
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Chapter 1

Introduction

Quantum many-body physics is at the core of many fascinating phenomena resulting
from the interaction between particles. As such, it offers numerous problems that are of
fundamental interest in fields like condensed matter physics, high-energy physics as well
as quantum chemistry or quantum biology to mention a few. The interactions between
matter at a microscopic level can give rise to quantum correlations, in particular quantum
discord and entanglement, which accompany phenomena like quantum magnetism, high-
temperature superconductivity and quantum phase transitions. At the same time, these
interactions constitute valuable resources in quantum information science and quantum
measurements in general. Due to the computational complexity and the unmanageable,
exponentially growing state space for larger numbers of particles, most problems involving
interacting many-body systems can neither be solved analytically nor by exact numerical
simulations. Therefore, various strategies for approximating certain quantities have been
pursued to find solutions to such problems. Amongst these approaches are perturbation
theories, mean-field theories, lattice gauge theories, density functional theory [1], and
more recently tensor networks [2] and neural network quantum states [3] to name a few
important ones. For larger particle numbers, however, in most cases these strategies are
still computationally unmanageable or they lack the ability to produce accurate results.
One way to overcome these issues is to study physical properties directly in a controllable
quantum system representing the physical model of interest. This approach is referred to as
quantum simulation. The idea of using well-controlled quantum systems to solve quantum
problems goes back to the early 1980s. It was most famously proposed in 1982 by Richard
Feynman [4] after being discussed by Yuri Manin already in 1980 [5]. In the same year,
Paul Benioff had established the foundation to represent the computation processes of
classical Turing machines by quantum-mechanical Hamiltonian models [6]. Decades of
research following these ideas have led to the extensive theory and toolkit that we have
in quantum information science today. The concept of the quantum simulator has to be
contrasted with the idea of a full-fledged quantum computer as a general-purpose device
being able to solve any generic problem in a digital way. An analog quantum simulator
is a special-purpose device targeted at solving specific quantum mechanical problems by
creating a 1:1-correspondence between the model of interest and the precisely controllable
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2 1 Introduction

quantum system in the laboratory. This way, the quantities of interest can be observed
directly by probing a system of interacting particles.

As per today, it remains unclear when large-scale, fault-tolerant quantum computers will
be available, giving rise to the full potential of quantum simulators as an intermediate
step. In the present era of noisy intermediate-scale quantum (NISQ) devices [7], quantum
simulation represents a powerful tool for exploring quantum physics on a scale of hundreds
of particles being already far beyond the capabilities of classical computers. At the sac-
rifice of a certain extent of the fidelity of the applied quantum operations (in contrast to
fault-tolerant quantum computers), quantum simulators can provide insights into specific
quantum many-body problems at these scales. Probably the most widely studied models
using quantum simulators today are Ising-type models describing the quantum magnetism
of spin-1/2 systems. The interactions underlying this (toy) model are also the native type
of spin-spin interactions of the device presented in this thesis. Moreover, recent hybrid
approaches, using variational optimization on a classical computer in combination with a
quantum simulator, enable the study of more general classes of physical systems such as
models relevant to high-energy physics [8].

Various physical platforms have been suggested to realize quantum simulators as well as
quantum computers such as neutral atoms in optical lattices or tweezer arrays, super-
conducting qubits, photonic waveguide arrays, Rydberg atom arrays, trapped molecules
and trapped ions. Without a discussion about the pros and cons of all these platforms,
this work focuses on quantum simulation with trapped ions, in particular ions held in
radio-frequency (rf) traps. Trapped atomic ions represent precisely controllable, identi-
cal particles, which have been employed successfully in quantum computation, quantum
sensing and metrology, quantum communication and also quantum simulation. For many
decades trapped ions have been used in spectroscopic experiments for the study of atomic
physics. Persistent development of new techniques and technologies have enabled excellent
control of both the ions’ electronic as well as motional degrees of freedom, which led to
the realization of the most advanced devices in quantum information science to date. As
a result, trapped ions have also escaped the scope of pure academic interest being the
basis for countless developments in private industry around the globe. The trapped-ion
group in Innsbruck has been part of these developments since the 1990s and contributed
to quantum information processing with trapped ions from the earliest days onwards [9].

The first proof-of-principle analog quantum simulation experiments realizing a frustrated
spin model with three spins using a string of trapped ions have been reported in 2010 [10]
by the group of C. Monroe. They were followed by experiments in Penning traps (group of
J. Bollinger) using large two-dimensional lattices of hundreds of trapped ions to simulate
Ising interactions [11, 12]. Until recently, however, experiments in Penning traps were
lacking single-particle control due to technical challenges caused by the inherent rotation
of the ion crystals. The first proof-of-principle experiments demonstrating the individual
addressing of ions in crystals held in Penning traps, which are rotating at frequencies of
several tens of kHz, using a single focused laser beam have been presented in Ref. [13].

In Innsbruck, besides experiments using digital quantum simulation [14–16], analog quan-
tum simulation experiments with linear ion crystals have been carried out for more than
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a decade now [8, 17, 18]. The more recent works demonstrate the possibilities to study
physics beyond quantum magnetism using the same experimental platform [19–21]. In
these quantum simulation experiments, the entangling interactions are mediated by global
laser fields coupling to the ion crystal’s vibrational modes of motion, which are governed
by the Coulomb forces between the ions. In addition, coherent single-ion control is imple-
mented via tightly focused laser beams steered by acousto-optical deflectors.

So far, complete quantum control has been demonstrated with linear ion crystals of up
to several tens of particles [22]. In order to study physics in a regime, which is truly
intractable by classical machines, these numbers need to be scaled up. However, increasing
the number of ions in a linear configuration entails mainly two technical problems: First,
trapping more ions requires extremely anisotropic potentials [23,24], where lower axial trap
frequencies lead to increasing axial heating rates. Second, the manipulation of individual
ions with tightly focused laser beams, as it is state-of-the-art, becomes problematic as the
crystal’s spatial expansion, that needs to be covered, grows with the number of ions. There
are other ways to scale up to larger ion numbers, though. One approach followed in this
thesis is to trap ions in a two-dimensional crystal configuration, loosening the restrictions
on the trap anisotropy and reducing the spatial extent in a single direction.

There are several options to trap ions in a 2d geometry: In Penning traps large planar
crystals of hundreds of ions have been trapped successfully [12] while single-ion addressing
remains challenging as the crystals rotate at tens to hundreds of kHz around the out-
of-plane axis [25]. In rf surface trap arrays, nearly arbitrary planar geometries could be
realized by trapping individual ions in separate microtraps, which has been realized only
with several ions so far [26–28]. However, for entangling interactions mediated by the ions’
motion to occur on timescales much shorter than the coherence time, the ions would need
to be sufficiently close, with a separation of at least on the order of tens of micrometers.
This, in turn, requires the ions to be close to the surface of the chip, where electric field
noise leads to motional heating limiting the motional coherence necessary to mediate the
interaction. Additionally, ion loss resulting from shallow trap depths and the required free
optical access, which often necessitates the integration of optics, presents further challenges
in these systems that must be overcome. Another recently taken approach combines the
concepts of Penning traps and surface rf trap arrays and attempts to scale up trapped-ion
systems by trapping single ions in surface Penning trap arrays [29,30].

This thesis describes a new experimental apparatus for scaling up a trapped-ion system by
confining ions in a 2d configuration in the potential of a single rf trap. This strategy has
been pursued by several research groups worldwide [31–36] and allows one to exploit the
well-established methodology for ions in rf traps and to benefit from entangling interactions
with a tunable range (from all-to-all to nearest-neighbor coupling) as well as the ability
to control ions individually, which previous experiments with linear ion crystals have been
harnessing for more than a decade. Moreover, holding ion crystals in a two-dimensional
configuration naturally enables the study of physical models in two dimensions, a matter
of fundamental interest and with applications in various fields. While 2d spin models can
be implemented straightforwardly by using the same methods as in quantum simulation
experiments with ions strings, entering the second dimension in rf traps entails several
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challenges:

Challenge 1: Micromotion In a 2d crystal, all ions displaced from the rf null inevitably
experience rf-driven micromotion, which leads to a phase-modulation of the laser-ion in-
teraction at the trap drive frequency. It can be overcome by addressing the ions only from
directions perpendicular to the micromotion.

Challenge 2: Optical access Optical access from directions perpendicular to the di-
rection of micromotion is required and unobstructed optical access perpendicular to the
crystal plane is needed for single-ion addressing and site-resolved imaging.

Challenge 3: Alignment of trap electrodes Misalignment of the trap electrodes with
respect to each other could lead to enhanced nonlinear resonances in the potential causing
the ejection of ions from the trap [37, 38]. This effect increases in severity the further
an ion is displaced from the rf null [39]. Furthermore, electrode misalignment can cause
unwanted micromotion, which cannot be compensated.

Challenge 4: rf heating The implications of rf heating on the experiments are not
completely clear a priori. Energy transfer from the rf trapping field to the ions can have an
impairing effect on entangling interactions mediated by the ions’ collective modes of motion
and could lead to crystal configuration changes (see Challenge 5 ) and melting [40,41].

Challenge 5: Crystal configuration changes A 2d ion crystal can occur in various
lattice configurations. Transitions between them can be caused by hot vibrational modes,
rf heating or background gas collisions. Strategies to mitigate such configuration changes
during experiments or for post-processing of experimental data are required.

Throughout this thesis all of these challenges are addressed and strategies to overcome
them are presented. Furthermore, the preparation of the out-of-plane vibrational spectrum
of 2d ion crystals with up to 105 ions close to the motional ground state is achieved
by electromagnetically-induced transparency cooling. This not only checks off another
prerequisite for quantum simulation experiments but also, for the first time, demonstrates
the cooling of such a large number of ions held in a rf trap near the ground state - a
two-fold improvement compared to linear strings [22] and an order of magnitude more
than 2d crystals in previously reported experiments [42]. In order to assess the phononic
excitations of a 2d crystals, an extension of the single-ion sideband thermometry technique
is used to measure the mean phonon numbers of individual modes of a 19-ion 2d crystal.
The last part of this work presents first experiments using a bichromatic laser field to
realize Ising-type interactions in a 91-ion 2d crystal.

In more detail, this work is structured as follows: The second chapter provides an overview
of the foundations of ion trapping in rf traps, as well as quantum optics and quantum
information science, focusing on the interaction of electromagnetic fields with trapped
ions. The third chapter describes the experimental setup, which was built from scratch
and focuses on the vacuum apparatus, the electronics used for trapping and controlling
the experiments, and the optical setups. The fourth chapter presents various experiments
aimed at the characterization of the experimental apparatus and demonstrates excellent
control of 2d ion crystals with up to 105 ions in terms of trapping and coherent properties.
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Chapter five presents successful ground-state cooling of 2d crystals with up to 105 ions
and thermometry measurements of individual modes of 2d crystals with 19 ions, which
is based on a novel approach extending the single-ion sideband thermometry to the case
of ion crystals. Finally, in chapter six, stimulated Raman transitions are used to mediate
the entangling interactions and experimentally relevant aspects are discussed before the
presentation of first experiments demonstrating the build-up of correlations across a 2d
ion crystal interacting with a bichromatic laser field. The thesis concludes with a brief
discussion and an outlook on future experiments.



Chapter 2

Foundations: Quantum optics and
quantum information with
trapped ions

The first report of a three-dimensional confinement of a cloud of charged aluminium and
iron particles in an rf trap was published in Ref. [43] in 1959. The particles were trapped
by a combination of alternating and static electric field in the first closed form of W. Paul’s
and M. Raether’s electric mass filter [44]. Such an rf trap enabling stationary confinement
in three dimensions is called a Paul trap and it was the starting point of trapping charged
particles in linear Paul traps. A linear Paul trap is a specific type of rf trap, consisting of
linearly extended rf electrodes generating a two-dimensional quadrupole potential along
the trap axis. It is the most widely used geometry of a rf trap and the foundation of most
ion trapping experiments today. Almost 30 years after the first operation of a Paul trap, in
experiments under ultra-high vacuum, the first ions in crystalline form - a Coulomb crystal
of Mg+ and Hg+ ions - were trapped and studied both experimentally and theoretically
using numerical simulations [45, 46]. Further numerical studies of phase transitions be-
tween the amorphous and the crystalline phase of ions in a rf trap were pursued, first for
1d systems (linear strings of ions) [47] and later extended two 2d crystals [24]. In the
decades following the first studies that demonstrated the control of trapped particles at
both classical and spectroscopic levels, rf traps have been employed in atomic physics to
investigate the properties of individual ions and ion crystals. Beyond that, over the years
more emphasis was placed on the exploitation of this rich experimental platform for ap-
plications in quantum information science, where all the gained knowledge and techniques
for the control of ions can be applied. A first proposal of a logic quantum gate by Cirac
and Zoller in 1993 [48] tailored to trapped-ion experiments was only the beginning of what
turned out to be one of the most promising and advanced frameworks for quantum com-
putation today. In this chapter, beginning with Sec. 2.1, first the principles of operation
of a linear Paul trap are explained, followed by a theoretical description of the ion motion
in a rf trap and a discourse of methods for numerically calculating the classical motion of
multiple trapped ions. Subsequently, in Sec. 2.4, the ions’ motion is treated at a quantum

6
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mechanical level as particles in a quantum harmonic oscillator. As we will see thereafter,
the motion of the ions plays an essential role in most applications of trapped-ion systems
associated with quantum information processing, quantum simulation, quantum metrol-
ogy and other related fields. In Sec. 2.2, the basic concepts of quantum information science
are presented followed by a review and a discussion of laser-atom interactions in Sec. 2.5.
These interactions are fundamental to many of the measurements presented in this work
and to many future measurements intended to be carried out in the presented apparatus.
Since this work is dedicated to experiments with 2d ion crystals, the fundamentals pre-
sented here are either directly applicable to 2d crystals or are discussed separately in this
context.

2.1 Trapping ions in a linear Paul trap

2.1.1 Ion motion in the time-dependent potential

Single ion

For a single ion in a rf trap with position (x, y, z) with respect to the trap center, the
trapping potential Vtrap can be divided into a dynamic rf part Vdyn and a static part Vstat

Vdyn = Urf cos(Ωrft)
2

(
αxx

2 + αyy
2 + αzz

2
)
,

Vstat = Udc
2
(
βxx

2 + βyy
2 + βzz

2
)
,

(2.1)

with the geometric factors1 αi and βi and the rf and dc voltages Urf and Udc applied to the
rf and dc electrodes, respectively. The Laplace equation ∆V = 0 leads to the condition∑

i

αi =
∑

i

βi = 0 , (2.2)

which can be obeyed by various trap geometries. However, there are two prominent
examples that are most commonly discussed in the literature (e.g. see Ref. [49]) and used
in experiments: the hyperbolic trap and the linear Paul trap. The hyperbolic trap creates
a dynamic rf confinement in all three directions whereas the linear Paul trap creates rf
confinement in form of a two-dimensional quadrupole potential in x and y and a static
confinement in the z-direction.

In this work, the setup of an apparatus based on a novel linear Paul trap is presented.
For a better understanding of the underlying principles, we focus on the ideal linear Paul
trap. A schematic of the geometry of a “classic” linear Paul trap is shown in Fig. 2.1.
The trap consists of a pair of elongated (in the ideal case hyperbolic) rf electrodes, a
pair of dc/ground electrodes orthogonal to the rf electrodes and two dc endcap electrodes
arranged along the axial direction. Assuming perfectly aligned, infinitely long rf and
ground electrodes, the resulting time-dependent quadrupole potential induces confining

1Note that here the geometric factors contain terms 1/r2
(rf,dc) with the minimum distances ri from the

trap center to the electrodes.
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Figure 2.1: Schematic of a linear Paul trap. (a) Axial view without endcap electrodes.
A single trapped ion is shown as a purple spot in the center. The electric field lines are
indicated by the black lines. (b) Side view. A linear crystal of trapped ions is aligned with
the trap axis (z).

forces in the x−y plane and exhibits no curvature in axial (z) direction, which constitutes
the trap’s symmetry axis. The endcap electrodes generate a confining harmonic potential
in z-direction and an anticonfining potential in the two radial directions (x and y). The
relations for the geometric factors αi and βi for such a geometry are concluded from
Eqs. (2.1) and (2.2) as

αx = −αy, αz = 0,
− (βx + βy) = βz > 0 .

(2.3)

We can now define the dimensionless parameters

ax,y = 4QUdcβ̃x,y
mΩ2

rfr
2
dc

= −1
2az,

qx = −qy = 2QVrfα̃x

mΩ2
rfr

2
rf
,

(2.4)

which are typically referred to as stability parameters or Mathieu q and a parameters.
Here, the geometric factors βi = β̃i/r̃

2
dc and αi = α̃i/r̃

2
rf are rescaled with the characteristic

distances r̃rf and r̃dc, which, for an ideal linear Paul trap, correspond to the distance from
the trap axis to the rf electrodes and the distance from the trap center to the end cap
electrodes, respectively. For a single ion, the e.o.m. can be transformed to the canonical
form of the Mathieu equation

d2rk

dζ2 + (ak − 2qk cos (2ζ)) rk = 0 (2.5)

where ζ = 1
2Ωrft.

Stable solutions to these equations, which confine a trapped ion in all three spatial dimen-
sions, can be expressed analytically [49,50] (cf. Sec. 2.1.3 ff.). In the limit of ai ≪ qi ≪ 1



9 2 Foundations: Quantum optics and quantum information with trapped ions

the equations of motion can be approximated by

rk(t) = r0,k cos(ωkt+ ϕk)
(

1 + qk

2 cos(Ωrft)
)

for i ∈ {x, y, z}, (2.6)

where ωk is given by

ωk = βk
Ωrf
2 with βk =

√
ak + q2

k

2 . (2.7)

This motion can be regarded as a composition of a harmonic oscillation at frequency ωk

and amplitude r0,k, the secular motion, and a faster oscillatory modulation of the motion
at frequency Ωrf, called micromotion. The micromotion amplitude is proportional to the
stability parameter qi and the ion’s distance from the trap symmetry axis (z-axis). Mi-
cromotion occurring at the equilibrium position of an ion, which might not be coincident
with the potential minimum (rf-zero line), is termed excess micromotion. A linear chain
of ions can be aligned with the rf null in order to mitigate the micromotion and thus
adverse effects on the laser-ion interaction. In contrast to linear strings, a number of ions
in a two-dimensional configuration is inevitably displaced from the (one-dimensional) rf
null and therefore experiences micromotion that cannot be compensated. The discussion
in this work is restricted to effects stemming from such excess micromotion, which will
simply be denoted as micromotion. Residual intrinsic micromotion, the description of
which goes beyond this simple approximation, however, is unavoidable due to the peri-
odic displacement caused by the secular motion [51, 52]. After laser-cooling the ions to
low temperatures, this modulation of the ion trajectory becomes very small and is thus
negligible for most experiments. Furthermore, non-compensatable micromotion can stem
from imperfections in the trap potential or a phase difference in the rf voltages applied to
different electrodes [53]. However, these cases are not treated herein.

Ion crystal

For a multi-ion crystal, we now have to consider the Coulomb interaction between the
ions to describe their motion accurately. We will switch to a more general notation for
the expression of the potential taking the interaction of N ions into account:

V = Vtrap + Vcoul =
3∑

µ=1

N∑
i=1

Ωrf
4 (aµ + qµ cos(Ωrft))r2

i,µ − Z2e2

8πϵ0

N∑
i,j=1
i ̸=j

 3∑
µ=1

(ri,µ − rj,µ)2

− 1
2

(2.8)
with µ ∈ x, y, z. The Lagrangian for a multi-ion system including the rf part of the
potential is thus given by

L = T − V =
3∑

µ=1

N∑
i=1

m

2 ṙ
2
i,µ −

3∑
µ=1

N∑
i=1

Ωrf
4 (aµ + qµ cos(Ωrft))r2

i,µ

− Z2e2

8πϵ0

N∑
i,j=1
i ̸=j

 3∑
µ=1

(ri,µ − rj,µ)2

− 1
2

.

(2.9)
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Evaluating the Euler-Lagrange equation

d
dτ

∂L
∂ṙi,µ

= ∂L
∂ri,µ

(2.10)

for Eq. (2.9) leads to the equations of motion for an ion crystal in the rf potential

d2ri,µ

dζ2 + (aµ − 2qµ cos (2ζ)) ri,µ +
N∑

j=1
j ̸=i

rj,µ − ri,µ(∑
µ(rj,µ − ri,µ)2

) 3
2

= 0 (2.11)

with ζ = Ωrft/2. These equations are a set of 3N coupled and non-linear second order
differential equations, which are in general very hard or impossible to solve analytically
and expensive to solve numerically, in particular for larger ion numbers. In the following
sections we will discuss methods for approximating and solving the equations of motion
of an ion crystal to obtain the motional mode frequencies and mode vectors.

2.1.2 Pseudopotential theory

At low temperatures, i.e. for small excursions around the equilibrium position, the rf
term of the potential energy can be neglected to solve the equations of motion of an ion
crystal. This procedure is often referred to as secular or pseudopotential approximation.
The time-dependency of the coefficients 2qµ cos(2ζ) stemming from the rf nature of the
potential is neglected and the ions are treated as oscillating in a purely harmonic and
time-independent potential taking only the secular motion into account.

Equilibrium positions

To obtain the normal mode frequencies and mode vectors of the ions in a crystal, in
a first step the potential’s secular part is used to calculate their equilibrium positions.
They are determined by the balance between the confining forces of the trap potential
and the repulsive Coulomb forces between the ions. Within the secular approximation the
potential energy of a trapped ion crystal, given here in a single dimension, is expressed as

V =
N∑

i=1

1
2Mω2x2

i (t) +
N∑

i=1

N∑
j=1
i ̸=j

Z2e2

8πϵ0
1

|xi(t) − xj(t)| ], (2.12)

where M is the isotope mass, ω is the secular trap frequency, e is the electron charge, Z
is the number of charges per ion and ϵ0 is the vacuum permittivity. For a cold ion crystal,
the position of the ith ion can be approximated by an oscillation around their equilibrium
position x

(0)
i as

xi(t) = x
(0)
i + qi(t), (2.13)

where qi(t) is only a small displacement. The equilibrium positions can then be found by
solving [

∂V

∂xi

]
xi=x

(0)
i

= 0. (2.14)
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This set of N coupled algebraic equations can be solved analytically for N ≤ 3, while for
larger values of N , a numerical solution is required.

Normal modes of motion

For a single ion the secular trapping frequencies can be approximated by

ωµ = βµΩrf/2 with βµ ≈

√
aµ +

q2
µ

2 . (2.15)

The approximation of the ions’ motion in a crystal, on the other hand, is more complex
as the ions are coupled by their mutual Coulomb interactions. Using the pseudopotential
approximation, the equations of motion can be linearized and consequently decouple into
radial and axial modes in case of a linear string [54] or into in-plane and out-of-plane
(OOP) modes of motion in a planar ion crystal, where the ions’ displacement is restricted
to the corresponding axes or planes.

Following Refs. [54] and [55], the coupled equations of motion can be described by the
Lagrangian

L = T − V =m

2

3∑
µ=1

N∑
i=1

(
q̇2

µ,i − ω2
µ

(
x

(0)
i,µ + qi,µ

)2
)

− Z2e2

8πϵ0

N∑
i,j=1
i ̸=j

 3∑
µ=1

((
x

(0)
i,µ + qi,µ

)
−
(
x

(0)
j,µ + qj,µ

))2
− 1

2

,

(2.16)

where µ ∈ (1, 2, 3) corresponds to the coordinates (x, y, z). A Taylor series expansion
around the equilibrium positions yields

L =m

2

3∑
µ=1

N∑
i=1

(
q̇2

µ,i

)
− V0 −

3∑
µ=1

N∑
i=1

[
∂V

∂xi,µ

]
qi=0

qi,µ

−
3∑

µ,ν=1

N∑
i,j=1
i ̸=j

[
∂2V

∂xi,µ∂xj,ν

]
qi=qj=0

qi,µqj,ν + O(q3
µ,i) ,

(2.17)

while taking only up to second order terms in qi,µ into account. Calculating the partial
derivatives explicitly yields

∂V

∂xi,µ

∣∣∣∣∣
x

(0)
i,µ

= β2
µx

(0)
i,µ +

N∑
i=1
i ̸=j

x
(0)
j,µ − x

(0)
i,µ

|xi,µ − xj,µ|3
(2.18)

∂2V

∂xi,µ∂xj,ν

∣∣∣∣∣
x

(0)
i,µ

= δijδµνβ
2
µ +

∑
k=1
k ̸=i

δkj − δij

|xi,µ − xk,µ|3

δµν − 3
(x(0)

i,µ − x
(0)
k,µ)(x(0)

i,ν − x
(0)
k,ν)

|xi,µ − xk,µ|3

 .

(2.19)
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The constant term V0 is not contributing to the dynamics of the system and can be
neglected. Furthermore, for ions in the crystalline phase, the first derivative Eq. (2.18)
is zero (cf. condition for equilibrium positions Eq. (2.14)) resulting in a set of linear,
coupled equations of motion

ẍi,µ = −
N∑

j=1

3∑
ν=1

∂2V

∂xi,µ∂xj,ν

∣∣∣∣∣
x

(0)
i,µ

xj,ν . (2.20)

To obtain the normal modes of motion the Hessian matrix H(1) ≡ ∂2V
∂xi,µ∂xj,ν

∣∣∣
x

(0)
i,µ

of size

(3N × 3N) is diagonalized as H(1) = PDP T , with D being a diagonal matrix containing
the 3N normal mode (angular) frequencies and P being an orthogonal matrix containing
the 3N mode vectors b(p)

i of the pth mode:

D = diag(ω2
1, . . . , ω

2
3N ) and P =

[
b(1) . . . b(3N)

]
. (2.21)

The matrix H(1) is a real, symmetric, and positive definite matrix and therefore its eigen-
values µp = ω2

p must be real and non-negative. The eigenvectors b(p)
i (mode vectors) form

an orthonormal basis set expressed by∑
i,µ

b
(p)
i,µb

(q)
i,µ = δpq,

∑
i,j

∑
µ,ν

b
(p)
i,µb

(p)
j,ν = δijδµν , (2.22)

and reveal the mode structure, i.e. the weights of the individual ions contributing to a
particular mode with respect to a specified direction. Using the mode vectors, the normal
modes can be represented by collective coordinates

Qp(t) =
∑
i,µ

b
(p)
i,µqi,µ(t) ,where 1 ≤ p ≤ N . (2.23)

With these new coordinates, the Lagrangian takes on the form

L = m

2

3N∑
p=1

(
Q̇2

p − ω2
pQ

2
p

)
(2.24)

and the equations of motion represent a set of uncoupled ODEs

Q̈p + ω2
pQp = 0 . (2.25)

Within this approximation, the normal modes are completely independent of each other
and the collective motion of the ions in a crystal can be regarded as a linear combination
of the 3N normal modes.
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It is worth noting that there are three modes, where all ions oscillate synchronously with
equal amplitude along one of the three principal axes (êλ). These modes are the so-
called center-of-mass (COM) modes as they are the only modes, where the crystal’s center
of mass is moving. The COM modes are the equivalent of the secular frequencies of a
single trapped ion in a harmonic potential. For the three COM modes, there is a simple
expression for the mode vectors:

bCOMλ
i,µ = 1√

N
êλ . (2.26)

Within the secular approximation, deviations from the true motional frequencies can oc-
cur and methods considering the time dependency of the full rf potential might be more
suitable. One of these methods, the Floquet-Lyapunov approach [56, 57], is discussed in
Appendix A, which solves a set of coupled Mathieu equations taking the full rf dynamics
into account (see Sec. 2.1.4).

Mode cross coupling

Third-order and higher terms in qµ containing non-linearities, which have been neglected
in Eq. (2.17), represent a cross-coupling between modes of motion, in case of a 2d crystal
between modes in the in-plane (axial) and out-of-plane (radial) directions, due to Coulomb
interaction between the ions. A third order term can lead to motional decoherence by three-
mode mixing, an energy transfer between three modes of motion if a resonance condition
ωk = |ωm ± ωl| is met, e.g. by annihilation of a phonon of a mode of higher frequency and
creation of two phonons of lower frequency modes or vice versa. In our experiment, we
have not observed any harmful effects, which we would attribute to mode-mode coupling;
however, this may be subject to further investigations in the future. For the interested
reader, a discussion on three-mode mixing in linear trapped-ion crystals due to this third-
order term can be found in Ref. [55], where a value for the minimum trap anisotropy is
derived in order to meet Fermi’s golden rule. Electric field imperfections as another source
of heating and decoherence due to three-mode mixing are treated in Sec. 4.1.8 of Ref. [58].

2.1.3 Periodic crystal solution - Micromotion amplitude

In Sec. 2.1.2 we have derived the equations of motion for an ion crystal in a rf trap
(Eq. (2.11)). A stable solution to these equations is a π-periodic solution, with its period-
icity given by the trap drive frequency Ωrf. This allows for an analytical derivation of the
micromotion amplitude, the steps of which we will briefly discuss based on Ref. [56].

The Fourier series of a periodic solution in dimensionless units is given by

rπ
i,µ(τ) =

+∞∑
n=−∞

B2n,i,µe
i2nτ (2.27)

Inserting this solution into Eq. (2.11) yields a recursive relation for the coefficients B2n,i,µ.
The Coulomb term in this relation is expanded (Taylor and Fourier) around B0,i −B0,j ,
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keeping only the leading order. By using B2n,i,µ = B−2n,i,µ and neglecting higher order
terms in qµ (i.e. B2n,i,µ = B−2n,i,µ ≈ 0 for n > 1) corresponding to higher harmonics
of the rf drive frequency Ωrf, it can be shown that B2,i,µ = − qµ

4 B0,i,µ, and the periodic
crystal solution can be simplified to

rπ
i,µ(τ) ≈ B0,i,µ − qµ

2 B0,i,µ cos(2τ). (2.28)

Equation (2.28) describes the ions’ micromotion with an amplitude of qµ

2 B0,i,µ around
their equilibrium positions B0,i,µ representing the average ion locations. The micromotion
amplitude scales with the distance B0,i,µ from the trap center. In an ideal linear Paul
trap, to first order the micromotion in axial direction is 0 due to qz = 0. In the case of
the trap geometry described in this thesis, the first order micromotion occurs exclusively
in vertical (y) direction and the micromotion amplitude increases with the distance from
the rf null, ideally coincident with the ion crystal’s center. For a more detailed discussion
about micromotion in our setup, please refer to Sec. 4.3.

2.1.4 Linearization about the periodic crystal - Mathieu equation

In this section, following Refs. [56, 59], we outline the path from an ion crystal’s total
potential given in Eq. (2.8) to the well-known Mathieu equations, which form a set of
coupled differential equations representing the equations of motion in the time-dependent
rf potential. As a first step, we perform a linearization of the problem by expanding
the trapping potential V (Eq. (2.8)) around the stable crystal solution (Eq. (2.28)). The
Coulomb term of the total potential is expanded around rπ

iµ
(ζ)

Vcoul =
N∑

i=1,µ

K
(0)
i,µ (τ)ui,µ + 1

2

N∑
i=1,µ

N∑
j=1,µ

K
(1)
i,µ,j,ν(τ) + O(u3

i,µ), (2.29)

where
K

(0)
i,µ (τ) ≡ ∂Vcoul

∂ri,µ

∣∣∣∣∣
rπ

iµ
(ζ)

and K
(1)
i,µ,j,ν(τ) ≡ ∂2Vcoul

∂ri,µ∂rj,µ

∣∣∣∣∣
rπ

iµ
(ζ)
. (2.30)

Discarding higher order terms yield a set of linearized coupled equations of motion:

r̈i,µ + (aµ − 2qµ cos(2τ)ri,µ + ϵ
∑
j,ν

Kµ,ν
i,j (τ)rj,ν = 0 . (2.31)

These equations are linearly coupled in the ion coordinates with π-periodic coefficients
Kµ,ν

i,j (τ) in the interaction term, which is of the same order as the diagonal part. We thus
expand the coefficient matrix Kµ,ν

i,j (τ) into its Fourier series

Kµ,ν
i,j (τ) = (K0)µ,ν

i,j − 2(K2)µ,ν
i,j cos(2τ) − . . . , (2.32)

of which we will hereafter only use the two leading terms. With the definitions

Aµ,ν
i,j = δi,jδµ, νaµ + ϵ(K0)µ,ν

i,j and Qµ,ν
i,j = δi,jδµ, νqµ + ϵ(K2)µ,ν

i,j , (2.33)
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and using dynamical variables with replaced indices um ≡ ri,µ, we can rewrite the equations
of motion in vector notation in a simple form as

¨⃗u+ [A− 2Q cos (2τ)] u⃗ = 0. (2.34)

Equation (2.34) represents linearized coupled perturbations about the π-periodic solution
found in Sec. 2.1.3. It is a set of coupled Mathieu equations, the solution of which are
discussed in Appendix A using Floquet-Lyapunov theory [56,59] to obtain coordinates of
decoupled linear oscillators (as in the case of normal modes using pseudopotential theory).
In contrast to the secular approximation, the interaction between the ions during their
motion along the periodic trajectory in the full time-dependent potential is taken into
account in the expansion. Higher harmonics in the Fourier expansion (Eq. (2.32)) can be
included to increase the accuracy of results.

2.1.5 Trapping 2d ion crystals

In the following section, a few general considerations regarding the trapping of 2d ion
crystals are discussed. A more comprehensive analysis can be found in Refs. [60, 61]).

Trapping condition

In a highly anisotropic potential with strong confinement in the two radial directions, where
ωrad,1 ≈ ωrad,2, and weak confinement in axial direction, where ωax ≪ ωrad,{1,2}, ions can
be trapped and cooled into a linear configuration aligned with the rf-zero line, ideally
experiencing no micromotion. Trapping a two-dimensional crystal, on the other hand,
requires a potential with one strongly confining direction orthogonal to the desired crystal
plane and associated with the trap oscillation frequency ωs, and two weakly confining
directions with ωw1 and ωw2 (ωw1 ≈ ωw2) spanning the crystal plane. In Ref. [24], a
condition for the formation of planar crystals is analytically derived, which, for ωw =
ωw1 = ωw2, is given by

ωs
ωw

> 1.23N
1
4 , (2.35)

where N is the number of ions. To trap an increasing number of ions in a 2d configuration,
a higher ratio between the confinement in the strong and the weak directions is required
to counteract the repulsive forces between the ions. The literature presents also other
scalings [23, 62–64] predicting structural phase transitions as a power-law for the number
of ions βcrit(N) ∝ N−α describing critical values of the trap anisotropy β = (ωax/ωrad)2.
These scalings, however, are similar for numbers of several tens of ions [65]. In this work,
the scaling behavior is not investigated (apart from qualitative observations) and has a
minor practical relevance as the two-dimensional crystals are trapped in a stable regime
away from the critical point and the planarity of the crystals is verified in measurements
of the micromotion across the crystal (Sec. 4.3.2).
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Trap anisotropy

An anisotropic harmonic potential for trapping planar crystals in the yz-plane can be
written in its quadratic form as

V = 1
2
(
z − z0, y − y0

)
A

(
z − z0
y − y0

)
, (2.36)

where A =
(
α γ
γ β

)
is a symmetric matrix, which can be regarded as the potential’s cur-

vature tensor. The eigenvalues of A are proportional to the squared secular oscillation
frequencies in the crystal plane ω2

y and ω2
z . In turn, Eq. (2.36) can be used to determine

the potential anisotropy ξ = ωy/ωz by analyzing a crystal image with respect to the ion
positions and calculating V from the Coulomb force components in the two directions
spanning the crystal plane. Compared to spectroscopic measurements, this approach en-
ables a much faster detection of changes in the potential curvature, e.g. caused by a
modification of trap voltages.

Crystal shape - Aspect ratio and anisotropy

In an anisotropic harmonic potential with potential anisotropy ξ = ωy/ωz a two-dimensional
crystal takes on an elliptical shape. The ellipticity can be quantified by the crystal’s aspect
ratio ζ = a2/a1, given by the ratio of the semi-major axis length a1 and the semi-minor
axis length a2. Knowledge of ζ enables a good initial guess of the equilibrium ion positions
and can be helpful for numerically simulating the ion positions in a 2d crystal. A simple
relation yielding ζ from the trap oscillation frequencies does not exist. For sufficiently
large ion numbers, however, we can determine the aspect ratio using a charge fluid model
and calculating its shape from potential theory [66]. This relates ζ to ξ by

ζ2 K − E

E − ζ2K
= ξ−2, (2.37)

where K = K(
√

1 − ζ2) and E = E(
√

1 − ζ2) are complete elliptic functions of the first
and second kinds [67].

In practice, the aspect ratio can be measured by calculating the covariance matrix C of
the ion positions (yi, zi) obtained from recorded fluorescence images of the ion crystal.
The aspect ratio is determined via diagonalization of C yielding ζ =

√
λ2/λ1, where λ1

and λ2 are the two eigenvalues of C and λ1 ≥ λ2.
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2.2 Basic concepts in quantum information

In this section, foundations of quantum information theory and the essential quantum
“lingo” are introduced. After a review of some of the basics in quantum theory and its
representation, the universal quantum computer and its working principle are discussed
before diving into quantum simulation with trapped 40Ca+ ions in the subsequent sections.

2.2.1 Quantum bit

In classical computer technology, information is stored in the form of bits. A classic bit
can be either in state “0” or state “1”. It can, for example, be encoded as dc voltage
levels for information processing or in the magnetic state of the surface in a hard drive
or a magnetic tape for storage. In quantum information science, the smallest unit of
information, analogous to a classical bit, is a quantum bit or short qubit. It represents a
quantum-mechanical two-level system and can, as in the case of classical bits, be encoded
in various physical platforms such as the polarization of photons, individual charges in
superconducting devices or the electronic states of trapped atoms and ions to name a few.
In the following, the two quantum states will be denoted as |↑⟩ and |↓⟩ or equivalently as
|0⟩ and |1⟩. In contrast to a classical bit, which is always in either one of the two possible
states, a qubit can be in a coherent superposition of the two states

|ψ⟩ = c↑ |↑⟩ + c↓ |↓⟩ , (2.38)

representing a linear combination of the two basis states with arbitrary complex coefficients
c↑ and c↓ normalized by |c↑|2 + |c↓|2 = 1. A superposition state is a fundamental concept
in quantum mechanics, where a quantum object cannot only be in a single state but in
multiple states simultaneously. In case of a single qubit, it can be in |↑⟩ and |↓⟩ at the
same time. However, in a single-shot experiment of a qubit state one will obtain only
one of the two states as a measurement outcome, which is referred to as a projective
measurement. In order to reconstruct the superposition state, the experiment has to be
repeated to sample the contributions of the two basis states, where the relative probability
of their occurrences is governed by the square of the coefficients p↑ = |c↑|2 and p↓ = |c↓|2.
The fact that the state has to be reconstructed from repeated measurements indicates
that an infinite number of measurements would be necessary to determine the expectation
value exactly. The finite number of samples of such a Bernoulli distribution leads to a
measurement uncertainty that essentially follows that of a binomial distribution [68]. It
is referred to as quantum projection noise, as shot noise or as the standard quantum limit.
In its simplest form it is given by

∆p =

√
p(1 − p)
N

, (2.39)

which essentially represents the standard error of the mean of a binomial distribution.
It describes the uncertainty of a measurement using a population of uncorrelated qubits.
Using entangled states of multiple qubits, the standard quantum limit can be undermined
pushing the measurement uncertainty down to the Heisenberg quantum limit [69–71, and
others].
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Computational state space

The number of possible quantum states for an N -qubit system is given by the total N -qubit
Hilbert space HN as a tensor product of the individual Hilbert spaces Hi:

HN = H⊗N
i =

N⊗
i=1

Hi = HN ⊗ HN−1 · · · ⊗ H1 . (2.40)

The computational state space thus increases exponentially as 2N with the number of
qubits N .

2.2.2 Entanglement

Entanglement is another core concept of quantum mechanics and an inherent tool to the
“quantum version” of computation. It is essential for the implementation of quantum gates
and algorithms in quantum information processing, quantum simulation and also quantum
communication and cryptography. Particles are entangled, if the quantum states of the
individual particles cannot be described independently. In contrast to a pure state, an
entangled quantum state cannot be decomposed into a product state

|ψN ⟩ = |ψn⟩ ⊗ |ψn−1⟩ ⊗ . . .⊗ |ψ2⟩ ⊗ |ψ1⟩ (2.41)

of the basis states |ψn⟩ of its constituents. A maximally entangled state is a state, for which
all reduced density matrices are mixed, i.e. tr (ρi) < 1 (see Sec. 2.2.4). The most famous
and simplest maximally entangled states are the four Bell states of a 2-qubit system

|Φ±⟩ = 1√
2

(|00⟩ ± |11⟩) , |Ψ±⟩ = 1√
2

(|01⟩ ± |10⟩) , (2.42)

where the first and second entry in the ket vector correspond to the first and second
particle. The Bell states form an orthonormal basis of its 4-dimensional Hilbert space. The
outcome of a projective measurement on one of the two qubits of a Bell state determines the
measurement outcome of the other qubit. This quantum correlation is the manifestation
of the particles’ entanglement. Another famous example of a maximally entangled state
with applications in quantum metrology is the Greenberger-Horne-Zeillinger state [72],
which in its N -dimensional form for qubits is given by

|ψGHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
= 1√

2
(|0...0⟩ + |1...1⟩) . (2.43)

Further prominent classes of entangled states include the Dicke and the W states, which
are mentioned only briefly here. Another form of quantum correlations, which occur in
context of mixed states, is known as quantum discord [73–75]. The treatment of quantum
discord goes beyond the scope of this thesis. However, a discussion can be found in
Ref. [61] along with correlation spectroscopy experiments with many qubits, carried out
in the here presented apparatus, in the presence of correlated magnetic-field noise resulting
in quantum discord [76].
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Figure 2.2: The Bloch sphere. A two-dimensional complex vector of a pure qubit state
is represented on the surface of a unit sphere using spherical coordinates with the angles
θ and ϕ according to Eq. (2.44). The states of the commonly used basis sets {|↑⟩,|↓⟩}
and {|−⟩x,|+⟩x} (introduced in Sec. 2.2.5) are indicated as points on opposite sides of the
sphere along with the Bloch vector of an exemplary qubit state |ψ⟩. The equatorial plane
is shown in green.

2.2.3 The Bloch sphere

The most common way to represent the state of a quantum mechanical two-level system
is the Bloch sphere. It is a unit-2-sphere, whose north pole and south pole are defined as
the states |↑⟩ = |0⟩ and |↓⟩ = |1⟩, respectively2. Every qubit state can be represented by
a vector on or within this sphere, the so-called Bloch vector. The points on the surface
are associated with the pure states of a qubit system. The points inside the Bloch sphere
represent all mixed states, whose Bloch vector length is less than 1. A pure state can be
written as

|ψ⟩ = cos
(
θ

2

)
|0⟩ + eiφ sin

(
θ

2

)
|1⟩ , (2.44)

where the two angles θ and φ can be interpreted as spherical coordinates of the Bloch
sphere, which is shown in Fig. 2.2. A mixed state cannot be written in the same form
as in Eq. (2.44) but it can be represented by a density matrix, the formalism of which is
introduced in the next section.

2.2.4 Mixed states and the density matrix formalism

A mixed state is a state that can neither be described by a single state vector nor a
simple product of pure states. It can represent either a form of a statistical ensemble of
states3 when the statistical mixture is not known, e.g. a thermalized state, or an entangled
system.

2This aligns with the most common convention but could as well be defined conversely.
3Note that this is fundamentally different from a superposition of states.
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In general, a quantum state can be described by a positive semi-definite, hermitian and
normalized operator named density operator, whose representation is given by the density
matrix ρ. The terms operator and matrix, however, are commonly used interchangeably
in this context. Its properties are summarized by the following expressions:

ρ† = ρ

tr(ρ) = 1
ρ ≥ 0 . (2.45)

As ρ is a positive semi-definite operator, its eigenvalues λi are non-negative real values
with ∑i λi = 1. The density matrix is defined as

ρ =
∑

i

pi |ψi⟩ ⟨ψi| , (2.46)

where the states |ψi⟩ form an orthonormal basis of the Hilbert space of the N -qubit system
and the pi are non-negative real values, which add up to 1. For an ensemble of pure states
the coefficients pi could be interpreted as the probability of finding a certain pure state
upon a projective measurement.

The density matrix representation, as a general formalism, can describe not only mixed
states but also pure states. For a pure state, ρ exhibits the following properties:

ρ = |ψ⟩ ⟨ψ|
ρ2 = ρ

tr(ρ2) = P (ρ2) = 1 . (2.47)

The density matrix can be written as an outer product of a pure state vector |ψ⟩ with
itself. The trace of the squared density matrix tr (ρ2) is called purity of the system and
is 1 only for a pure state. In general, it can take values on P ∈ [ 1

2N , 1], where P = 1
2N

corresponds to a fully mixed state.

To clarify the difference between a statistical mixture of states and a superposition, let

us look at the example of a system, which is prepared to be in state |ψ1⟩ =
(

1
0

)
and

|ψ2⟩ =
(

0
1

)
with equal probability. The resulting mixed state is a statistical mixture of

the two states represented by

ρ = 1
2

(
1 0
0 0

)
+ 1

2

(
0 0
0 1

)
=
(

1 0
0 1

)
. (2.48)

On the other hand, the density matrix for a superposition of the two states |ψ⟩ = 1√
2(|ψ1⟩+

|ψ2⟩) is given by

ρ = |ψ⟩ ⟨ψ| = 1
2

(
1 1
1 1

)
, (2.49)
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representing a pure state.

The expectation value of an observable A of a quantum state |ψ⟩ is given by

⟨A⟩ = ⟨ψ|A |ψ⟩ , (2.50)

which, in the density matrix formalism, is replaced by

⟨A⟩ = tr(ρA) . (2.51)

From Eqs. (2.46) and (2.47), we can see that a mixed state can be written as a convex sum
of pure state density matrices weighted by the probabilities pi. The expectation value of
a mixed state can then be regarded as the sum of expectation values of the constituent
pure states weighted by the probabilities pi:

⟨A⟩ =
∑

i

pi tr(ρA) . (2.52)

Partial trace of a multi-particle system

Working with multi-particle systems in quantum information science, it is sometimes useful
to look at the properties of only a subsystem of the composite state. This can be done
by taking the partial trace of a subsystem. A multi-particle system is given by the tensor
product of the constituent parts, e.g. for a two-particle system with particles A and B by

ρAB = ρA ⊗ ρB, (2.53)

analogous to the construction of its Hilbert space via Eq. (2.40). The partial trace of the
subsystem A is then given by

trA(ρAB) =
∑

i

(⟨i|A ⊗ 1B) ρAB (|i⟩A ⊗ 1B) = ρB, (2.54)

where |i⟩A is an orthonormal basis of the Hilbert space of subsystem A and 1B is the
identity matrix acting only on subsystem B. This way, the subsystem A can be traced out
enabling the study of properties of the subsystem B.

2.2.5 Pauli representation

A common way of representing a quantum state involves the Pauli operators and its
eigenstates. The Pauli matrices are given by

σ0 =
(

1 0
0 1

)
, σx = σ1 =

(
0 1
1 0

)
, σy = σ2 =

(
0 i

−i 0

)
, σz = σ3 =

(
1 0
0 −1

)
, (2.55)

where the identity matrix 1 is denoted as σ0. The 2 × 2-dimensional Pauli matrices are
Hermitian and, together with the identity matrix, form a basis of the qubit’s complex two-
dimensional Hilbert space on C2. Every other Hermitian matrix can thus be decomposed
into a linear combination of the Pauli matrices. The two-level system of a qubit, e.g. given
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by two well-defined electronic energy levels in a trapped ion, is well described by the Pauli
operators, analogous to a spin-1/2 system with the two qubit states being defined as spin-
up and spin-down states. A qubit is therefore also referred to as a pseudospin - in particular
in the context of quantum simulation. The Pauli matrices in the anti-Hermitian form of
{ iσm

2 } form a basis of the Lie algebra su(2) and the exponentials of the linear combinations
ei
∑

m
αmσm are generators of the special unitary group SU(2) describing spin-1/2 systems.

In the Pauli basis the two qubit states are defined as

|0⟩ = |↑⟩ = |+⟩z =
(

1
0

)
and |1⟩ = |↓⟩ = |−⟩z =

(
0
1

)
, (2.56)

which are eigenvalues of the Pauli-z operator. In this case the z-axis is thereby determined
as the quantization axis. The eigenvectors of σx and σy correspond to vectors along the
two orthogonal directions w.r.t. the z-axis and are denoted as

|+⟩x = 1√
2

(|+⟩z + |−⟩z), |−⟩x = 1√
2

(|+⟩z − |−⟩z),

|+⟩y = 1√
2

(|+⟩z + i |−⟩z), |+⟩y = 1√
2

(|+⟩z − i |−⟩z) . (2.57)

In the Pauli representation the Bloch vector rB is simply given by the vector of expectation
values for each Pauli operator a = (⟨σx⟩, ⟨σz⟩, ⟨σz⟩).

2.2.6 Quantum state tomography

In order to apply the density matrix formalism in practice, we also need to define a set of
operators forming an orthonormal basis of the Hilbert space to construct a density matrix
as in Eq. (2.46). Most commonly, the states are defined in the Pauli basis with the Pauli
operators σi, such that the density matrix of a single qubit can be written as

ρ = 1
2 (1 + n⃗.σ⃗) , where n⃗ =

⟨σx⟩
⟨σy⟩
⟨σz⟩

 and σ⃗ =

σx

σy

σz

 , (2.58)

From this equation, we can see that the reconstruction of a single qubit state requires
the measurement of the expectation values ⟨σi⟩ of all three Pauli operators. This ap-
proach can be extended to multi-qubit systems, for which we find a new orthonormal
set of measurement projectors as ⟨σ⊗N

i ⟩. As an example: For a two-qubit system, the
operators for a measurement of ⟨σ(1)

z ⟩⟨σ(2)
z ⟩ are |00⟩ ⟨00| , |01⟩ ⟨01| , |10⟩ ⟨10| , |11⟩ ⟨11| with

the corresponding observables ⟨11⟩, ⟨1σz⟩, ⟨σz1⟩, ⟨σzσz⟩. Together with measurements of
⟨σ(1)

x ⟩⟨σ(2)
x ⟩ and ⟨σ(1)

y ⟩⟨σ(2)
y ⟩, a complete set of 3N measurements is performed. This is the

principle of quantum state tomography. A more detailed discussion about the quantifi-
cation of quantum states and processes can for instance be found in Ref. [77]. Although
a full tomography is still considered the gold standard of quantum state measurements,
there is a large interest in alternative methods, in particular for the reconstruction of large
entangled states since the number of required measurements is scaling unfavorably with
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the number of qubits (∝ 3N ). For future experiments, which will be carried out with
the apparatus presented in this theses, this will be of particular importance as it aims at
quantum simulation with large qubit numbers on the order of hundreds of ions.

2.2.7 The universal quantum computer

The exploitation of quantum-mechanical phenomena like superposition and entanglement
within the framework of an exponentially growing computational state space makes a
quantum computer potentially extremely powerful and efficient compared with classical
computers. In particular, it can be a superior architecture to solve specific tasks like
searching unsorted databases (Grover’s quantum search algorithm [78]), factoring prime
numbers (Shor’s algorithm [79]) or solving quantum many-body problems. These are
some of the most prominent examples of applications. However, there are many other
tasks, which a quantum computer could be beneficial for, the discussion of which would
go beyond the scope of this work.

The requirements to realize a universal quantum computer are famously stated in Ref. [80],
where DiVincenzo defines the following five criteria:

1. A scalable physical system with well-characterized qubit

2. The ability to initialize the qubit state to a simple fiducial state

3. Long relevant coherence times (in relation to the quantum gate times)

4. A universal set of quantum gates

5. A qubit-specific measurement capability

All criteria can be met by a 40Ca+-based trapped-ion apparatus, which is described in
more detail for this particular platform in Ref. [81]. Apart from the requirement of a
universal set of gates, which is discussed subsequently, the DiVincenzo criteria also apply
to a quantum simulation apparatus.

2.2.8 Quantum gates

As stated by DiVincenzo, a quantum computer requires a universal set of quantum gates.
In a classical computer, information is processed in electronic circuits which implement
logic gates using transistors. The classical states of a bit, 0 and 1, are encoded in low and
high DC voltage levels. The logic gates are changing the input values of a bit according
to a truth table and return an output value. Examples for such gates are the AND, OR,
XOR gates and its negated versions NAND, NOR and XNOR as well as the NOT gate.
These logic gates typically act on one or two bits. Multiple gates can be combined to
create more complex logical circuits such as flip-flops and latches.

Analagous to the classical gates and circuits, a quantum circuit is composed of quantum
(logic) gates, which apply a certain algebra to the input qubit states. Quantum gates
operators are represented by 2N × 2N unitary matrices acting on N qubits. As in the
case of classical gates, however, most quantum gates act only on one or two qubits, which
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are the building blocks for more complex circuits effectively acting on a larger number of
qubits.

There is a large number of different quantum gates. However, there is a manageable num-
ber of gates that are commonly used in the field. A few examples of them are given in the
following.

Single-qubit gates

Examples for single-qubit gates are:

Pauli-X (X), Pauli-Y (Y), Pauli-Z (Z): {X,Y, Z} = σ{x,y,z}, Hadamard: H = 1√
2

[
1 1
1 −1

]
,

Phase gate: P =
[
1 0
0 i

]
, Phase shift gate : P(ϕ) =

[
1 0
0 eiϕ

]
.

In addition to these gates we can define arbitrary single-qubit rotations on the Bloch
sphere using rotations about the three basis directions {x, y, z}:

U{x,y,z}(θ) = e−iR{x,y,z} = e−i θ
2 σ{x,y,z} (2.59)

Using the rotations about the basis directions, we can represent an effective rotation about
an arbitrary axis n⃗ = (nx, ny, nz) by

Rn⃗(θ) = e−i θ
2 n⃗σ⃗ = cos

(
θ

2

)
1 − i sin

(
θ

2

)
(nxσx + nyσy + nzσz) . (2.60)

Furthermore, using Euler’s rotation theorem, this rotation can be expressed as concate-
nated rotations about only two axes of the form

Rn⃗(θ) = eiϕRz(α)Rx(β)Rz(γ) , (2.61)

which is a sequence of three rotations about the z− and x-axes by the angles (α, β, γ).
The term eiϕ is only changing the global phase of the wave function and can therefore
be ignored. The global phase of a state is not an observable and does not change the
measurable properties of the system. In order to perform arbitrary rotations in a trapped-
ion experiment, one commonly makes use of combining clockwise rotations about the
z-axis and rotations about an arbitrary perpendicular axis in the xy-plane defined by the
angle ϕ. These rotations can be written as

U(θ, ϕ) = e−i θ
2 σϕ =

(
cos θ

2 −ie−iϕ sin θ
2

−ieiϕ sin θ
2 cos θ

2

)
,

Uz(θ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei θ

2

)
, (2.62)

where σϕ = cos(ϕ)σx + sin(ϕ)σy. For a light field interacting with an ion, the angles θ and
ϕ are determined by the interaction length (pulse length) and the phase of the laser beam.
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Note that in the algebra of SU(2) rotations, a rotation of θ = 4π is required to return to
the initial state including the phase. For the global phase of a system, however, this has
no practical effect since the global phase drops out in a measurement of the expectation
value of an operator A given by ⟨ψ|A |ψ⟩. However, at this point it should be emphasized
that the relative phases, i.e. phase differences between the individual qubit states, are
at the core of quantum information experiments and are of utmost importance for any
quantum measurements involving multiple qubits.

Multi-qubit gates

As stated in the previous section a universal set of quantum gates is required to realize a
quantum computer. A universal gate set is composed of a finite number of gates, which
can reproduce any other unitary operation by a sequence of those gates4. In principle,
there are infinitely many universal sets and all sets containing a universal gate set as a
subset are also universal. For the sake of completeness, although not relevant to the pre-
sented work, the most famous two- and three-qubit gates shall be mentioned briefly, which
are the controlled-NOT, the Mølmer Sørensen (MS), the SWAP and the iSWAP gate as
two-qubit gates and the Toffoli as a 3-qubit gate. Examples for universal gate sets are
{CNOT,Rz(θ), Rϕ(θ, ϕ)}, {MS,Rz(θ),Rϕ(θ, ϕ)}, {CNOT,H,S,T} and {Toffoli,H}. Proba-
bly the most prominent two-qubit gate and the first one ever realized experimentally in
trapped ion systems [9] is the controlled-NOT gate, also known as Cirac-Zoller gate [48],
which is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

In this work, however, we will focus on a setup targeting quantum simulation of many-body
physics. In these experiments, we give up on a universal set of quantum gates and instead
focus on global entangling interactions acting on all qubits simultaneously in combination
with single-qubit rotations. In Innsbruck’s quantum computers, the most used native gate
set consists of arbitrary single-qubit rotations combined with two-qubit MS gates realized
by a bichromatic laser-ion interaction. In the apparatus presented here, the most relevant
operation is an MS-like interaction based on a bichromatic drive used to implement global
spin-spin interactions of the form H ∝ σxσx in a multi-qubit system. These interactions
are discussed in more detail in Secs. 2.5.4 ff.

2.3 Quantum simulation

As the computational state space for a quantum-mechanical system under study corre-
sponds to the Hilbert space of the N -particle system, the storage of an arbitrary quantum

4It is actually not possible to realize all possible (infinite) unitaries with a finite sequence of the universal
gates but it is shown that any quantum operation on a finite number of qubits can be approximated
efficiently by such a sequence [82]
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state of N particles requires a memory for 2N complex coefficients. This is already ex-
tremely demanding for a few tens of particles and for N = 100 exceeds the whole world’s
storage capacity by far [83]. Now, many systems of interest like larger chemical compounds
or bio-molecules, or the bulk of a complex material, consist of many hundreds or thousands
of atoms. Thinking about quantum-mechanical calculations of such systems and their time
evolution requiring operations with 2N × 2N matrices, the complexity of such computa-
tions on a classical computer becomes obvious. In practice, exact quantum-mechanical
calculations (without the use of approximation techniques) of systems with many tens of
particles are already out-of-reach for the world’s most powerful computers. Therefore,
the idea of “simulating” quantum mechanical problems on a controllable quantum device
was born several decades ago. A quantum simulator is a special-purpose device, whose
purpose is to emulate a quantum-mechanical system of interest by evolving the quantum
simulator’s state under the unitary U = e−i/ℏHsim . The general idea is to find a one-to-one
correspondence Hth ↔ Hsim between the Hamiltonian of interest Hth and the Hamilto-
nian implemented in the quantum simulator Hsim. The approach of mapping a quantum
system of interest onto a controllable quantum device to study its dynamics goes back to
Richard Feynman in the early 1980s [4], who was one of the first persons to propose the
idea of a quantum computer. He famously suggested to use a computer built of elements
obeying the laws of quantum mechanics to simulate a quantum mechanical problem. This
is still the core concept of quantum simulation today, in particular of analog quantum
simulation. In contrast to analog quantum simulation, digital quantum simulation is re-
lated more closely to the concept of quantum computation whereas variational quantum
simulation is a recently established approach referring to hybrid quantum-classical algo-
rithms incorporating classical optimization based on variational principles. Along with a
schematic illustration in Fig. 2.3, these three variants of quantum simulation are described
briefly in the following paragraphs. Comprehensive reviews discussing quantum simula-
tion using trapped ions as well as other platforms can be found in [84–86].

Analog quantum simulation

In contrast to to a universal quantum computer, an analog quantum simulator does not
use a circuit of “logic” quantum gates to solve a problem. In analog quantum simulation,
the implemented gate itself - typically an interaction acting globally on the multi-particle
quantum system - corresponds to the Hamiltonian one would like to study. The many-body
Hamiltonian under investigation is imprinted onto the interacting particles in the quantum
simulator. Precise control over the experimental parameters, e.g. the laser parameters
(detuning, power, phase, etc.) in case of a trapped-ion machine, allows for engineering the
interaction to approximate the Hamiltonian of interest. A standard experimental sequence
typically consists of the initial state preparation, the time evolution of the (entangling)
interactions emulating the model of interest, and a final measurement of the quantum state.
The class of problems, that a quantum simulator can solve, is typically very limited. In
trapped-ion devices, the native interactions are Ising-type interactions, which are realized
by global Mølmer-Sørensen-like gates, enabling the study of quantum spin models. For
the simulation of other classes of Hamiltonians, digital or variational quantum simulation
can be employed (see following paragraphs).
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Figure 2.3: Basic schemes of analog, digital and variational quantum simulation. After
encoding an N -qubit quantum state to a physical set of qubits (state preparation), the
actual quantum circuit (time evolution) is applied. At the end of the circuit, the quantum
state is read out via a qubit-resolved measurement. (a) In analog quantum simulation,
the initial state is typically evolving freely under an interaction Hamiltonian for a defined
time t creating a 1:1-correspondence between the model of interest and the interaction
Hamiltionian Hint applied to the physical system. (b) In a digital quantum simulation, the
Hamiltonian of interest is decomposed into a sum of local Hamiltonians (H = ∑

iHi). Via
Trotterization the time evolution is expanded into n time steps, where the local operations
Hi are applied for the time t/n. These local operations are realized by a universal set of
single- and multi-qubit gates. (c) In the variational approach, a classical CPU serves
to solve an optimization problem by exploring the parameter space with the help of a
quantum processor. In the quantum simulator the initial state is prepared according to a
set of parameters θi, which are fed back from the optimization algorithm. The new state
evolves under a Hamiltonian of interest, e.g. to find the ground-state of the system, and
is then evaluated anew by the classical machine.
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In the last 15 years, great efforts have been made to promote the field of analog quantum
simulation. The most advanced experiments have been realized in Rydberg atom arrays
with several tens to up to 200 atoms [87,88], in arrays of hundreds of neutral atoms trapped
in optical lattices [89,90] as well as in trapped-ion systems with hundreds of ions in Penning
traps (so far lacking control of individual ions) [11,91] and with a few tens to up to about 50
ions in rf traps [19,22,92,93]. As a full-fledged general-purpose quantum computer would
be able to solve and simulate all flavors of quantum-mechanical models, analog quantum
simulation might seem to be a redundant tool to study very specific problems only. This
holds true in a scenario where matured quantum computers are readily available, which is
not the case yet. Nowadays, we are entering the so-called NISQ era, where NISQ stands
for noisy intermediate-scale quantum, a term introduced by John Preskill in 2018 [7]. It
describes the intermediate phase before the age of fault-tolerant large-scale quantum com-
puting5, but during which high-fidelity control of fifty to hundreds of qubits is feasible - a
number, which is already useful for solving certain problems beyond the reach of classical
supercomputers. As of today, quantum simulators with such a large number of qubits do
not feature the highest fidelities in their quantum operations and, thus, cannot compete
with devices developed specifically for high-fidelity quantum information processing with
a small number of qubits. However, by sacrificing the gate fidelity to a certain degree,
the employment of 50-100 qubits enables the exploration of many interesting systems that
are classically intractable, including spin crystals or quantum chemistry simulations. The
systems of interest, however, should be robust to small sources of error. Therefore, analog
quantum simulators are primarily well-suited for the investigation of so-called universal
properties, that are less susceptible to small imperfections.

Digital quantum simulation

A digital quantum simulator is an actual gate-based universal quantum computer, which
can be used not only for general-purpose quantum information processing but also to simu-
late any kind of physical system. In digital quantum simulation experiments a Hamiltonian
of interest Hsys is simulated by a sequence of suitable quantum gates. To translate the
system of interest into a sequence of gates, we write the Hamiltonian as a sum of local
Hamiltonians Hsys = ∑

iHi acting only locally on a subset of qubits. For commuting
local operations [Hi, Hj ] = 0, the unitary time evolution operator of the total system
Hamiltonian can be given as a product of local unitaries Hi

U(t) = e−i/ℏHsyst = e−i/ℏ
∑

i
Hit =

∏
i

e−i/ℏHit . (2.63)

In this case the system Hamiltonian can be implemented exactly by a sequence of local
gates acting on single or multiple qubits. In the general case, the Hamiltonian of interest
cannot be composed of commutating local Hamiltonians only. However, the system Hamil-

5As of the present date, the timeline for achieving fault-tolerant large-scale quantum computing remains
completely uncertain.
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tonian of interest Hsys can be approximated using the Trotter expansion (Trotterization)

U(t) = e−i/ℏHsyst = e−i/ℏ
∑

i
Hit = lim

n→∞

[∏
i

e−i/ℏHit/n

]n

, (2.64)

where n ∈ N is the number of steps in the time evolution. Each time step consists of a
sequence of local gates. Since the commutation relation does not hold for local gates, the
total time evolution is divided into subsets of sequences applied for a time t/n. These sub-
sets are called Trotter steps and for infinitely small time steps (n → ∞), expression (2.64)
is exact. Conversely: The coarser the time steps, the bigger the error. In order to sim-
ulate a complex system with a large number of qubits, a large number of Trotter steps
and, thus, a large number of gates, is required to approximate it well, which in turn ne-
cessitates a high fidelity of the applied gate operations to avoid error accumulation during
long sequences. This leads to the conclusion that digital quantum simulation of large sys-
tems requires fault-tolerant quantum computation in the first place pointing to analog and
variational quantum simulation as the potentially more promising candidates for scientific
gain in quantum simulation for the upcoming years of the NISQ era.

Variational quantum simulation

Variational quantum simulation (VQS) is a recent development in the field of quantum
simulation. It is based on the idea of having a hybrid quantum-classical loop between a
quantum (co-)processor and a classical computer to solve an optimization problem given
a certain cost function. Such a hybrid quantum-classical machine is often termed varia-
tional quantum eigensolver (VQE). This approach was first introduced using an integrated
photonics circuit in Ref. [94] and further developed in Ref. [95]. In these and subsequent
experiments it was primarily used to solve problems in quantum chemistry, such as find-
ing ground-state energies [94] and determining the transition frequencies of molecules [96].
Using a trapped-ion quantum simulator, VQS was established as an alternative approach
to digital and analog simulation in Ref. [8], where it was employed to determine the ground
state of a lattice Schwinger model, a model used in high-energy physics. In such a vari-
ational quantum simulation, the Hamiltonian of the spin lattice model does not have to
be physically realized in the laboratory system but it exists only as a measurement pre-
scription in the form chains of Pauli operators, which are applied in the “quantum part”
of these hybrid experiments. This is crucial as it opens up the possibility to study models
that would otherwise be out of reach in analog or digital quantum simulation. The gen-
eral idea of such a hybrid scheme is outlined as follows: Using an ansatz set of quantum
states, a state ⟨ψ(θ)| is prepared in the quantum simulator. The expectation value of
the Hamiltonian under study ⟨ψ(θ)|Hsys |ψ(θ)⟩, representing the cost function, is then
measured and parsed to the classical computer. In a classical optimization algorithm (e.g.
a dividing rectangles (DIRECT) algorithm in Ref. [8]) new parameters are chosen with
the goal of minimizing the cost function. The parameters are fed back to the quantum
simulator, which prepares the new state and measures the cost function again. This loop
is repeated until the value of the cost function converges. In this way the costly operation
of finding the expectation value of a potentially highly entangled state is performed by the
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quantum machine whereas the fast and efficient (gradient-free) optimization algorithm is
carried out by the classical computer.

2.4 Quantized motion

2.4.1 Quantum harmonic oscillator

In Sec. 2.1.2 the trapping potential is approximated by a harmonic (pseudo)potential
allowing to describe the ions as coupled harmonic oscillators. In a quantum mechanical
treatment of the harmonic oscillator, the classical position and momentum coordinates xi

and pi are replaced by their quantum mechanical operators x̂i and p̂i = −iℏ ∂
∂xi

. These
operators obey the canonical commutation relations

[x̂i, p̂j ] = iℏδi,j ,

[x̂i, x̂j ] = 0,
[p̂i, p̂j ] = 0.

(2.65)

The Hamiltonian describing a single particle of charge q in a quantum harmonic oscillator
is given by

H =
3∑

i=1

p̂2
i

2m + 1
2mω

2x̂2
i , (2.66)

where m is the mass of the particle and ω is the angular oscillation frequency. We further
introduce ladder operators, also referred to as raising (creation) operator a† and lowering
(destruction) operator a, as

a† =
√
mω

2ℏ

(
x̂− i

mω
p̂

)
,

a =
√
mω

2ℏ

(
x̂+ i

mω
p̂

)
.

(2.67)

Using the ladder operators, the position and momentum operators can be expressed as

x̂i =
√

ℏ
2mω

(
a† + a

)
and

p̂i = i

√
ℏmω

2
(
a† − a

)
,

(2.68)

leading to the fermionic commutation relations[
a, a†

]
= 1 and

[
a†, a†

]
=
[
a, a

]
= 0. (2.69)

With the number operator
N̂ = a†a, (2.70)
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we are able to rewrite the Hamiltonian in the following form:

H = ℏω
(
N̂ + 1

2

)
. (2.71)

In this picture, we can now define the number states |n⟩ being energy eigenstates of H
corresponding to a number of n excitations in the systems. The origin of the terminology
“ladder” (or “creation”, “annihilation” etc.) operator as well as “number” operator will
be revealed as we examine their action on the eigenstates. The ladder operators add one
excitation to or remove one excitation from the system,

a† |n⟩ =
√
n+ 1 |n+ 1⟩

a |n⟩ =
√
n |n− 1⟩

a |0⟩ = 0,
(2.72)

whereas the number operator restores the number of excitations

N̂ |n⟩ = n |n⟩ . (2.73)

This representation is called Fock6 or occupation number representation and offers intuitive
insights, in particular in the context of field theories. It is considered the most particle-
like quantum mechanical representation whereas coherent states7 are considered the most
“classical” states as they resemble the oscillatory behavior of a classical harmonic oscillator.

2.4.2 Coherent states and the driven quantum harmonic oscillator

In the treatment of a quantum harmonic oscillator, it can be beneficial to switch to a
description in phase space, which is represented by coherent states. The canonical form
of a coherent state in the Fock basis is given by

|α⟩ =
∑

n

e−|α|2/2 α
n

√
n!

|n⟩ , (2.74)

which is defined as an eigenstate of the annihilation operator

a |α⟩ = α |α⟩ , (2.75)

and, therefore, α is in general a complex number due to the non-hermiticity of the annihi-
lation operator a. Note that the creation operator a† has no eigenstate in ket-form while
the annihilation operator a does not have a eigentstate in bra-form. However, we can
write down the action of a† on the bra of a coherent state as ⟨α| a† = α∗ ⟨α|. For a given
coherent state, one can also infer the distribution of Fock states, where the probability to
find a certain Fock state |n⟩ in a coherent state |α⟩ is given by a Poisson distribution

pα(n) = α2n

n! e
−|α|2 , (2.76)

6Fock states are named after Russian physicist Wladimir Alexandrowitsch Fock.
7Coherent states are also denoted as Glauber states as they were introduced by Roy J. Glauber in

1963 [97].
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Figure 2.4: Phase space representation of the trajectory of a resonantly driven harmonic
oscillator. (a) Initially at rest, the state is rotating while the amplitude of the motion
is continuously increasing over time. (b) Phase space-representation in the co-rotating
frame, where the spiraling motion corresponds to a linear displacement. The operator
D(α) displaces the initial motional ground state |0⟩ to a coherent state |α⟩ along a straight
line. The angle is given by the phase difference θ = ϕd between the harmonic oscillator
and the driving force.

with a mean phonon number n̄ = |α|2 and a variance σ2 = |α|2.

When a quantum harmonic oscillator is driven by an external periodic force of the form

Fd(t) = Ad sin(ωdt+ ϕd) = Ad

2i
[
ei(ωdt+ϕd) − e−i(ωdt+ϕd)

]
(2.77)

with amplitude Ad, frequency ωd and phase ϕd, the Hamiltonian extends to H = HQHO +
Hd(t). In the interaction picture, a rotating frame approximation can be applied 8, which
simplifies the Hamiltonian to

HI = Ad
x0
2i
(
aeiΦd + a†eiΦd

)
. (2.78)

The unitary time evolution of the given Hamiltonian is better expressed by the displace-
ment operator

D(α) = eαa†−α∗a , (2.79)

where α = Adx0t
2ℏ is a dimensionless amplitude representing the distance from the origin in

a co-rotating frame. The displacement operator creates a coherent state when applied to
the vacuum state |0⟩

D(α) |0⟩ = |α⟩ , (2.80)

“displacing” the state by the amount of α. In phase space a coherent state can be rep-
resented by α = |α|eiθ with the amplitude |α| and the phase θ of the state |α⟩, which is
illustrated in Fig. 2.4.

8A more detailed derivation can be found Ref. [65].
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2.5 Laser-atom interactions

In the first sections of this chapter, the principles of trapping ions in a (linear) Paul trap
were discussed. In Secs. 2.2 ff. the basics of quantum information theory were introduced
whereas in Sec. 2.4 the ion motion was described on a quantum mechanical level. In this
section all these concepts will be combined reviewing the quantum mechanical description
of the interaction between a trapped particle, treated as a two-level system, and a coherent
electromagnetic field. The “laser-atom”9 interaction is the basis of the coherent operations
used in quantum information science with trapped atoms. It enables quantum control over
both the internal (electronic) and motional degrees of freedom, not only for a single particle
but also for ion crystals, by coupling the internal states across the crystal through the
ions’ collective motion. The quantum harmonic oscillator modes are used to mediate the
coupling via Coulomb interactions. This way, entanglement between ions can be created
and used as a fundamental resource in quantum simulation to create spin-dependent forces
(spin-spin interactions). The subsequent sections are following the progression of some of
my predecessors in quantum simulation experiments in Innsbruck given in Refs. [65,81,98]
as well as Ref. [49].

2.5.1 Interaction with a two-level system

In the following, we will review the interaction of a monochromatic, coherent electromag-
netic field with a localized atom. The interaction Hamiltonian is split into two parts
HI = Ha + HL consisting of the Hamiltonian of the bare atom Ha and of the light field
HL. The Hamiltonian describing a bare two-level system is given by

Ha = ℏω0
2 σz, (2.81)

where ω0 is the atomic transition frequency and σz is the Pauli operator with the eigen-

states
(

0
1

)
= |↓⟩ = |−⟩z = |g⟩ and

(
1
0

)
= |↑⟩ = |+⟩z = |e⟩, referred to as the ground

state and the excited state, respectively. The two states are separated by ℏω0 in energy.
Now we let the atom interact with a light field of the form E = E0 cos(ωLt+ ϕL), which
can be described by the Hamiltonian

HL = ℏΩσx cos(ωLt+ ϕL), (2.82)

where we express the coupling strength by the Rabi frequency Ω ∝ E0, which for a dipole
transition is given by [54]

Ω =
∣∣∣∣eE0
ℏ

⟨1| r̂ · k̂ |2⟩
∣∣∣∣, (2.83)

where r̂ is the electron’s position operator and |1⟩ and |2⟩ the two involved states. Ge-
ometrical considerations regarding the coupling strength can be found in Sec. 3.4.3. of

9The term laser-atom interaction also applies to interactions between atoms and electromagnetic fields
in the radio-frequency range.
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Ref. [99] for the quadrupole transition in 40Ca+. Using the rotating wave approximation
(RWA), the full Hamiltonian of the bare atom and the light field is given by

HI = ℏ
Ω
2 [σx cos(∆t+ ϕL) + σy sin(∆t+ ϕL)] , (2.84)

where we transformed HI = Ha + HL into the interaction picture with U = e−iHat/ℏ and
introduced ∆ = ωL − ω0 as the detuning of the laser frequency from the bare atomic
transition frequency. In the RWA, we neglect all terms rotating at the sum frequency
ω+ = ωL + ω0 as these oscillations average out on time scales that are large compared to
the time scale defined by the atomic transition frequency, i.e. ∆ = |ωL − ω0| ≪ |ω0 + ωL|.
With the electronic raising and lowering operators

σ± = 1
2(σx ± iσy) , (2.85)

the interaction Hamiltonian (2.84) can be rewritten as

HI = ℏ
Ω
2
[
e−i(∆t+ϕL)σ+ + e+i(∆t+ϕL)σ−

]
. (2.86)

In the following, we are distinguishing two cases: the interaction with (a) a resonant and
(b) a non-resonant light field. For doing so, we will switch to yet another representa-
tion using H0 = ℏωL

2 σz instead of (2.81) as the first part of the interaction Hamiltonian
HI. With this definition, Eq. (2.86) can be restated as a time-independent interaction
Hamiltonian

HI = ℏ(−∆
2 σz + Ω

2 σx) . (2.87)

This seemingly counterintuitive picture, where the phase reference is given by the fre-
quency ωL, which can differ from the bare atomic transition frequency ω0, in turn pro-
vides more intuitive insights in the following discussion of the two cases of resonant and
non-resonant interactions.

(a) Resonant light field, ∆ = 0

A resonant laser coherently drives population between the |↓⟩ and the |↑⟩ state. The
corresponding unitary operator is explicitly given as

HI = e−i
HIt

ℏ =

 cos
(

Ωt
2

)
−ieiϕL sin

(
Ωt
2

)
−ieiϕL sin

(
Ωt
2

)
cos
(

Ωt
2

)  . (2.88)

On the Bloch sphere, this unitary operation represents a rotation about an arbitrary axis
in the equatorial plane (xy-plane), which is defined by the phase ϕ, with a polar angle of
θ = Ωt. Such a single-qubit rotation can also be written as

R(θ, ϕ) = e−iθ(Sx cos ϕ+Sy sin ϕ) , (2.89)

where Sx,y = σx,y

2 denote the Pauli spin operators. The coupling strength, i.e. the intensity
of the electromagnetic field, as well as the interaction time define the population transfer
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probability from the state |↓⟩ to the state |↑⟩ or vice versa. A phase of ϕ = 0 corresponds to
a rotation Rx(θ) about the x-axis whereas ϕ = π/2 corresponds to a rotation Ry(θ) about
the y-axis. Continuous coherent excitation results in oscillations between the ground and
the excited state at the Rabi frequency Ω that are called Rabi oscillations or Rabi flops.

(b) Non-resonant light field, ∆ ̸= 0, ∆ ≫ Ω

The non-resonant excitation of a two-level system leads to the ac-Stark shift of its energy
levels, also known as Autler-Townes effect. The Hamiltonian (2.87) is thus also referred
to as ac-Stark Hamiltonian HAC. Its eigenvalues are λ± = ±ℏ

2
√

∆2 + Ω2 and the shift of
the energy levels is given by δ = λ± − λ±|(Ω=0). Since the shifts of the two states occur
in opposite direction, the resulting overall shift of the atomic transition frequency is twice
as big:

δac = − Ω2

2∆ . (2.90)

Note that this expression holds under the assumption that ∆ is considerably bigger than Ω.
The sign of the detuning ∆, i.e. red or blue detuning with respect to the bare transition,
determines the sign of the frequency shift δ of the individual states. For ∆ ≫ Ω, the
effective Hamiltonian is proportional to σz and effectively represents a rotation about the
z-axis given by the unitary operation

Rz = Z(θ) = e−iθSz = e−iδacσ̂z/2t , (2.91)

where Sz is the Pauli spin operator and the rotation angle is θ = δact = Ω2

2∆ t. Starting
from the ground state |0⟩, the probability P1 to find an ion in the excited state |1⟩ can be
calculated as

P1(t) = |⟨ψ(t)⟩ψ(0)|2 = Ω2

Ωeff
cos2(Ωefft/2) , (2.92)

where Ωeff =
√

Ω2 + ∆2 is the effective Rabi frequency. Ωeff increases with larger detuning
while the amplitude (contrast) of the coherent oscillation decreases.

Definition of the Rabi frequency

Consistent with Eqs. (2.84)–(2.87), in this work the Rabi frequency frequency is defined
as the frequency at which the population oscillates between the ground state and the
excited state - in contrast to another definition used in literature, where Ω is defined as
the frequency at which the wave function returns to its original state. The latter definition
infers that a rotation of 4π is required to yield the original state as a rotation of only 2π
leads to a factor of −1, which is consistent with the SU(2) algebra.

2.5.2 Spin-motion coupling of a trapped ion

To describe a trapped ion interacting with a laser beam, we now additionally consider
the quantized oscillatory motion in the harmonic trapping potential with the oscillation
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frequency ωs. Still assuming a pure electronic two-level system, the total Hamiltonian can
be written as a sum of three parts:

H = Ha +Hm +Hint

with

Ha = ω0
2 σz,

Hm = ℏωsa
†a,

Hint = ℏΩ(σ+ + σ−) cos(kx̂− ωLt− ϕ), (2.93)

where Ha describes the bare two-level system, i.e. the internal state of the atom, Hm
the motion in the harmonic potential and Hint the atom-light interaction. Using U =
ei/ℏH0t, where H0 = Ha +Hm, after applying the rotating-wave approximation neglecting
oscillating terms at optical frequencies, we can express the interaction Hamiltonian in the
interaction picture as10

HI = U †HU = ℏ
Ω
2 (σ+e

−i(∆t+ϕ)eiη(ae−iωst+a†eiωst) + σ−e
i(∆t+ϕ)e−iη(ae−iωst+a†eiωst)) ,

(2.94)

introducing the Lamb-Dicke parameter η = kx0 cos(θk) = k
√

ℏ
2mωs

cos(θk), where x0 de-
notes the spatial expansion of the ground state and θk denotes the angle between the laser
k-vector and the direction of the ion’s motion. Next, we apply the Lamb-Dicke approxi-
mation to simplify expression (2.94) by assuming that the spatial extent of the motional
wave packet is small compared to the wavelength of the laser interacting with the ion, i.e.
x0 ≪ ωL:

eiη(ae−iωst+a†eiωst) = 1 + iη(ae−iωst + a†eiωst) + O(η2). (2.95)

The assumption above holds for η2(2n̄ + 1) ≪ 1, defining the Lamb-Dicke regime, which
requires a sufficiently small motional quantum number n̄, that is typically achieved already
after Doppler cooling. This condition essentially ensures a small coupling between the ion’s
internal and motional state. A Lamb-Dicke parameter of η < 1 means that the energy
spacing of the harmonic oscillator states is larger than the recoil energy of the ion leading
to a suppression of changes in the ion’s motional state11.The interaction Hamiltonian in
the Lamb-Dicke approximation takes on the form

HI = ℏ
Ω
2
(
σ+e

−i(∆t+ϕ)
[
1 + iη(ae−iωst + a†eiωst)

]
+ h.c.

)
+ O(η2) . (2.96)

For coherent control of an ion’s motional state, we now assume the operation in the
resolved sideband limit, in which the carrier Rabi frequency is small compared to the ion’s

10We further use kx̂ = η(a + a†) and ei θ
2 σz σ±e−i θ

2 σz = e±iθσ±. In addition, a Taylor expansion of
eiη(a+a†) as well as less evident relations for the ladder operators are used to arrive at Eq. (2.94).

11Note that η < 1 is a necessary but not sufficient condition for the Lamb-Dicke regime.



37 2 Foundations: Quantum optics and quantum information with trapped ions

oscillation frequency Ω ≪ ωs ensuring well resolved motional sidebands. This condition
allows the application of another rotating wave approximation to neglect terms oscillating
at frequencies on the order of the ion’s oscillation frequency ωs and higher. By setting the
detuning of the laser beam to either ∆ = 0 or ∆ = ±ωs we can define three different cases
forming the basis of many quantum operations in experiments with trapped ions:

Carrier transition, ∆ = 0. The laser is resonant with the bare electronic transition and
acts only on the internal state while leaving the motional state unchanged. This results
in transitions of the kind |↓, n⟩ ↔ |↑, n⟩ with n = 0, 1, 2, .... The interaction is described
by the Hamiltonian

Hcar = ℏ
Ω
2
(
σ+e

−iϕ + σ−e
iϕ
)
. (2.97)

Red sideband (RSB) transition, ∆ = −ωs. The light field couples the electronic
ground state to the excited state while decreasing the motional quantum number by 1
when exciting the ion to the upper state by a π-pulse. The Hamiltonian is given by

HRSB = iℏ
ηΩ
2
(
σ+ae

−iϕ − σ−a
†eiϕ

)
. (2.98)

Red sideband transitions are expressed by transitions of the form |↓, n⟩ ↔ |↑, n− 1⟩12. The
laser couples the quantum states pairwise on these transitions with an effective coupling
strength of Ωn−1,n = ηΩ

√
n that depends on the vibrational occupation number n (cf.

Eq. (5.14)(a) in Sec. 5.3). In combination with a third level used for repumping the ion’s
internal state to |↓⟩, this transition can be used for resolved-sideband cooling: The ion’s
vibrational quantum number is reduced during the excitation on the red sideband and is
unlikely to be changed in the dissipative repumping process allowing for the reduction of
the phonon number by one in each cycle.

Blue sideband (BSB) transition, ∆ = +ωs. Analogous to the RSB transition, the
light field resonant with the BSB transition couples the electronic ground state to the
excited state while increasing the motional quantum number by 1 in transitions of the
form |↓, n⟩ ↔ |↑, n+ 1⟩13. The Hamiltonian for the blue sideband transition is given by

HBSB = iℏ
ηΩ
2
(
σ+ae

−iϕ − σ−a
†eiϕ

)
. (2.99)

Akin in the case of the RSB excitation, the laser couples the quantum states pairwise with
a coupling strength Ωn+1,n = ηΩ

√
n+ 1 (cf. Eq. (5.14)(a) in Sec. 5.3).

The dependence of the coupling strength on the motional quantum number allows one to
infer the Fock state populations by measuring the evolution of the excited state population
on the sideband transitions. The sideband transitions can thus be used for temperature
measurements applicable to single ions as well as multi-ion crystals, which is treated in
more detail in Sec. 5.3. Furthermore, the coupling of the motional and the electronic

12The state |↓, 0⟩ remains uncoupled when the laser is resonant with the red sideband transition.
13Equivalent to the RSB transition, here the state |↑, 0⟩ remains uncoupled for an excitation resonant

with the RSB transition.
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state enables the exploitation of the Coulomb interactions between the ions in a crystal to
mediate interactions between them via excitation and de-excitation of the ions’ collective
motion. This is the foundation of most multi-qubit quantum gates applied in trapped-ion
experiments and the idea behind the first realization of a two-ion quantum gate, namely
the CNOT gate (Cirac-Zoller gate) [48]. More relevant for quantum simulation, spin-
dependent forces acting on many qubits can be realized based on the same principles,
which will be discussed in the following sections.

2.5.3 Resonant bichromatic interaction

We now consider the interaction of an atom with a bichromatic light field exciting an
ion simultaneously on the red and the blue sideband with equal coupling strength. This
interaction forms the basis for the creation of entanglement between multiple ions, e.g.
used in quantum gates such as the Mølmer-Sørensen gate, and serves as the foundation
of spin-spin interactions in quantum simulation. The Hamiltonian describing this vital
interaction is given by

Hbic = Ω
2 iℏη

(
σ+ae

−iϕr − σ−a
†eiϕr

)
+ Ω

2 iℏη
(
σ+a

†e−iϕb − σ−ae
iϕb

)
. (2.100)

It can be restated as

Hbic = Ω
2 iℏη (cos(ϕ+)σx − sin(ϕ+)σy)

(
cos(ϕ−)(a† + a) + i sin(ϕ−)(a† − a)

)
, (2.101)

using the definitions

ϕ+ = ϕr + ϕb − π

2 and ϕ− = ϕr − ϕb

2 . (2.102)

The Hamiltonian (2.101) describes not only a pairwise coupling of the states |↓, n⟩ ↔
|↑, n+ 1⟩ as well as |↑, n⟩ ↔ |↓, n+ 1⟩ but also a coupling of all states

|↓, 0⟩ ↔ |↑, 1⟩ ↔ |↓, 2⟩ ↔ |↑, 3⟩ ↔ ... and
|↑, 0⟩ ↔ |↓, 1⟩ ↔ |↑, 2⟩ ↔ |↓, 3⟩ ↔ ...

It represents a spin-dependent force acting on an ion as it couples the spin projection
operator σ± to the ladder operators of the harmonic oscillator. If the qubit is in an
eigenstate of σ±, i.e. |±⟩, the Hamiltonian displaces the state in phase space by α = −iΩ

2 ηt
(cf. Sec. 2.4.2) without altering the qubit state. The bichromatic interaction displaces the
two electronic eigenstates |+⟩ and |−⟩ into opposite directions (Fig. 2.5(a)). Applying
the resonant bichromatic interaction to an equal superposition of both eigenstates |↓⟩ =

1√
2(|+⟩−|−⟩) in the motional ground state |0⟩, leads to the creation of a so-called motional

Schrödinger cat state, a superposition of the coherent states |±α⟩ maximally entangled
with the internal qubit states |±⟩. Setting ϕ+ = ϕ− = 0, the Hamiltonian takes on the
form

Hbic = Ω
2 ησx(a† + a)
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and, acting on |ψ⟩ = 1√
2(|+⟩ − |−⟩) |0⟩, yields

|ψ(t)⟩ = 1√
2

(|+⟩x |α⟩ − |−⟩x |−α⟩) . (2.103)

This superposition of coherent states |±α⟩ has been realized experimentally, i.a. with
trapped ions [98,100], and can for instance be used to enhance the measurement sensitivity
in spectroscopy [98].

2.5.4 Non-resonant bichromatic interaction - MS interaction

In the following, we will look at the impact of a non-resonant bichromatic interaction
applied to two ions simultaneously, assuming a coupling exclusively to the COM mode.
The interaction is known as Mølmer-Sørensen (MS) interaction as it was first studied by A.
Sørensen and K. Mølmer in [101–103], although it was independently and simultaneously
worked out by E. Solano et al., as published in [104]. It is one of the most widely used
interactions in trapped-ion quantum computation but also constitutes an essential resource
in analog quantum simulation. It allows one to entangle the internal states of two or more
ions making use of the joint motion of the ions in the trap without transferring populations
to states with altered vibrational quantum numbers. In other words, after the gate cycle
the initial motional state is unchanged.

At first, an additional detuning δsb from the sidebands is introduced such that the total
detuning from the bare transition becomes ∆r,b = ±(ωs + δsb). With the detuning δsb,
the phases ϕr,b effectively become time-dependent as ϕr = ϕr,0 − δsbt and ϕb = ϕb,0 + δsbt.
Consequently, the phases of the bichromatic Hamiltonian (2.101) become

ϕ+ = ϕr + ϕb − π

2 = ϕr,0 + ϕb,0 − π

2
and

ϕ− = ϕr − ϕb

2 = ϕr,0 − ϕb,0
2 − δsbt . (2.104)

For simplicity, we can set ϕr,0 = ϕb,0 = π
2

14 and thus the MS Hamiltonian is given by

HMS = iℏ
ηΩ
2
(
σ(1)

x + σ(2)
x

) (
cos(δsbt)(a† + a) − i sin(δsbt)(a† − a)

)
= iℏ

ηΩ
2
(
σ(1)

x + σ(2)
x

) (
a†e−iδsbt + aeiδsbt

)
= iℏ

ηΩ
2 Sx

(
a†e−iδsbt + aeiδsbt

)
, (2.105)

where Sx ≡ σ
(1)
x + σ

(2)
x . This interaction Hamiltonian describes an off-resonantly driven

harmonic oscillator. The driving force is spin-dependent due to the Pauli spin operator σx

14One could also choose ϕr,0 = π and ϕb,0 = 0, which yields the other motional quadrature component
HMS = iℏ ηΩ

2

(
σ

(1)
x + σ

(2)
x

)(
a†e−iδsbt − aeiδsbt

)
.
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Figure 2.5: Resonant and off-resonant bichromatic interaction. (a) Phase space repre-
sentation of motional states in the co-rotating frame. (a) A bichromatic field resonant
with the particle’s motion results in a state-dependent force displacing the two states
|+⟩x and |−⟩x in opposite directions. (b) An off-resonant bichromatic field interacting
with a two-particle state displaces the two states |++⟩x and |−−⟩x along circles in the
same rotational direction but in opposite initial directions. This picture corresponds to
a Mølmer-Sørensen gate. After one rotation, they states pick up the geometric phase Φ.
(c) Illustration of the laser detunings and interaction paths for an MS interaction. Con-
structive interference of the four different paths couple the two states |↓↓⟩ and |↑↑⟩. (d)
Bichromatic laser detunings as used to implement a global Ising-type interaction in quan-
tum simulation experiments with multiple qubits. The red and blue motional sidebands
are indicated by the red and blue lines as well as the two tones of the bichromatic light
field. In addition to the symmetric detuning ∆ from the COM mode, a centerline detuning
δ leads to an off-resonant B-field term in Eq. (2.117) and for larger values to the XY-type
interaction given in Eq. (2.118).
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acting on a and a†. Instead of displacing the state linearly in phase space, as in the case
of the resonant interaction, the off-resonant drive displaces the atomic wave function in
a circular motion (see Fig. 2.5(b)). The wave function periodically returns to its original
state after the interaction time t = 2π

|δsb| . However, after closing the loop in phase space it
picks up a phase Φ, which is proportional to the trajectory-enclosed area and referred to
as the geometrical phase or Berry phase [105]. The detunings and interaction paths are
schematically shown in Fig. 2.5(c).

The time propagator for the MS interaction is given by

U(t) = D̂(α(t)Sx)eiΦ(t)S2
x

with α(t) = i

(
ηΩ
2δsb

)(
e−iδsbt − 1

)
and Φ(t) =

(
ηΩ
2δsb

)2
(sin δsbt− δsbt) . (2.106)

After time τ = 2πN
|δsb| the displacement operator becomes 1 and the motional state returns

to its initial state. The Hamiltonian can then be seen as an effective spin-spin interaction
of the kind Heff ∝ σ

(1)
x ⊗ σ

(2)
x . For the MS entangling gate, we choose a Rabi frequency

of Ω = |δsb|
2η to create a maximally entangled state as well as τgate = 2π

|δsb| , which results in
the Hamiltonian

HMSgate = ℏ
π

4 sign(δsb)σ(1)
x σ(2)

x , (2.107)

and the corresponding time propagator

UMSgate = e−iℏπ
4 sign(δsb)σ(1)

x σ
(2)
x . (2.108)

As for a gate applied to N > 2 ions, this approach can be extended by using the N-qubit
spin operator SN

x = ∑N
i=1 σ

(i)
x leading to mutual spin-spin interactions between all spin

pairs. As long as the COM mode is used to mediate the interaction, the coupling strength
between all pairs of spins is equal. Since the MS Hamiltonian solely contains operators
acting on the internal state of the ions, within this treatment of the ideal two-level systems,
the MS gate is independent of the motional state of the ions. This contrasts other gates
such as the CNOT, which requires the ions to be in the motional ground state at the
beginning of the operation. However, during an MS interaction, imperfect ground-state
cooling or motional heating leads to increasing dephasing rates and therefore the ions are
usually ground-state cooled in experiments and the heating during the interaction should
be minimized [21].

As a side note: An N -qubit MS gate applied to an N -ion crystal in a product state |↓⟩⊗N

can create a GHZ state |ΨGHZ⟩ = 1√
2(|↓ ... ↓⟩ + |↑ ... ↑⟩ = 1√

2(|↓⟩⊗N + |↑⟩⊗N [106].

2.5.5 Effective spin-spin interactions with tunable interaction range

Up to here, we considered exclusively the coupling to the COM mode of an ion crystal.
We will now further detune the bichromatic light fields from the vibrational sidebands and



42 2 Foundations: Quantum optics and quantum information with trapped ions

investigate the coupling to multiple vibrational modes. By increasing the detuning such
that the coupling to the sidebands is much weaker than the detuning from the motional
modes of interest (ηΩ ≪ δsb), the motional state is hardly changed by the interaction. In
this weak coupling regime, the interactions between spin pairs are mediated by multiple
vibrational modes and the coupling strengths can be written as a sum of the couplings to
the individual modes. In order to write down the Hamiltonian describing this scenario,
the Lamb-Dicke factors ηm,i of each ion i and each mode m have to be taken into account.
The Hamiltonian describing the spin-spin interactions takes the form

Hspin-spin = 1
2
∑
i,j

∑
m

ηi,mηj,mΩ2 ωm

∆2 − ω2
m

σ(i)
x σ(j)

x . (2.109)

We can rewrite the Lamb-Dicke factors with the help of the normalized eigenvectors bm

of the vibrational modes of the ion crystal as ηi,mηj,m = ℏk2

2mωm
bi,mbj,m [54] and express

Eq. (2.109) as

Hspin-spin =
∑
i,j

Jijσ
(i)
x σ(j)

x , (2.110)

where the spin-spin coupling coefficients are given by

Jij = Ω2

2
ℏk2

2m
∑
m

bi,mbj,m

∆2 − ω2
m

. (2.111)

The coupling matrix Jij can be approximated by a power law decay [107]

Jij ∝ 1
|i− j|α

, (2.112)

with the ion-ion distance15 rij = |r⃗i − r⃗j | = |i− j| and the exponent 0 < α < 3 tunable
from infinite-range interactions (α = 0) to short-range interactions (α = 3) by choice of the
sideband detuning δsb. For δsb = 0 the electromagnetic field is on resonance with the COM
mode and leads to an infinite-range all-to-all coupling whereas for an increasing detuning
δsb > 0, the coupling to other motional modes increases relative to the COM mode. In
the limit of a large detuning all modes couple approximately equally, which results in a
dipolar-like short-range interaction. The power-law approximation in Eq. (2.112) is usually
a reasonable fit, although the underlying behaviour for larger crystals may be more subtle.
A deeper investigation into this topic can be found in [108].

The Hamiltonian (2.110) effectively represents an Ising model without the magnetic field
term. In the next section we will explore the construction of an Ising model including a
transverse B-field term, finally leading to an XY Heisenberg model.

2.5.6 Transverse field Ising model and XY model

The missing ingredient to realize an interaction with a transverse magnetic-field term,
is an additional asymmetric detuning δ of the two frequency components constituting

15The notation |i − j| used for the ion-ion distance might be unconventional and ambiguous but is widely
used in the field, so I defer to this notation.
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the bichromatic light field with respect to the carrier. It is referred to as centerline
detuning. The total detunings of the two bichromatic tones will be ∆± = ±(ωs + ∆) + δ,
where the centerline detuning shifts both components in the same direction such that
they are asymmetric about the carrier (Fig. 2.5(d)). In addition, we will see that the
Ising Hamiltonian transforms into an XY model by increasing the centerline detuning but
first we briefly outline the necessary steps to arrive at the desired spin-spin interaction
Hamiltonian.

We again start from the two bichromatic components and choose ϕ+ = ϕ− = 0, such that

Hbic,cl = ℏη
Ω
2
(
aei∆t + a†e−i∆t

) (
σ+e−iδt + σ−eiδt

)
. (2.113)

Next, a Magnus expansion is applied to the time propagator of the Hamiltonian to ap-
proximate its time evolution [109,110]. In the following, the first two orders will be taken
into account:

UI(t) = exp
{

− i

ℏ

(∫ t

0
dt′HI(t′) − i

2ℏ

∫ t

0
dt′
∫ t′

0
dt′′[HI(t′), HI(t′′)] + ...

)}
. (2.114)

Thorough calculations of the first two orders to derive effective Hamiltonians can be found,
e.g. in [65,109]. Following Ref. [65], in the regime of ∆ ≫ ηΩ, where the detuning is large
compared to the coupling strength, the first order term introduces only a global phase and
can therefore be neglected. The second order term is simplified by adiabatic elimination
of all fast-oscillating terms containing ∆ or ∆ ± δ, and after applying a Taylor expansion
in δ

∆ we arrive at

H
(eff)
I =

(
ηΩ
2

)2
{∑

i

(2n̄+ 1) δ

∆2σ
z
i +

+
∑
i,j

(
1
∆ + δ2

∆3

)(
σ+

i σ
+
j e

−2iδt + σ+
i σ

−
j + σ−

i σ
+
j + σ−

i σ
−
j e

2iδt
) . (2.115)

We distinguish between three relevant regimes:

Regime 1: δ = 0

This case is already treated above in Sec. 2.5.5 and yields the pure Ising Hamiltonian (2.110)
without a magnetic-field term:

Hspin-spin =
∑
i,j

Jijσ
(i)
x σ(j)

x . (2.116)

Regime 2: δ ≈ J

Using H(eff)
I = (H(eff)

I −H0) +H0, the Hamiltonian H(eff)
I can be transformed into a time-

independent form by moving to an interaction picture with respect to H0 = − δ
2
∑

i σ
z
i [65],
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Figure 2.6: Illustration of the collective spin Bloch sphere showing the action of the
one-axis twisting Hamiltonian applied to a coherent spin state. The symmetric (Gaus-
sian) distribution of the collective spin’s measurement uncertainty is squeezed along one
direction represented by a twisting action on the Bloch sphere. The direction of minimum
variance ∆min ≡ ⟨∆(Ŝn⊥)2⟩ is indicated for the squeezed spin state. In experiments with
trapped ions, the OAT model can be approximated by the XY-Hamiltonian (see main
text).

which finally yields the transverse-field Ising Hamiltonian

HIsing = HI +HB = −
N∑
i,j

Ji,jσ
(i)
x σ(j)

x −
N∑
i

Bσ(i)
z , (2.117)

with a tunable transverse magnetic field B = δ
2 .

Regime 3: δ ≫ J

For a large centerline detuning δ, a RWA can be applied with respect to terms oscillating
rapidly at e±2iδt, leading to the XY-model Hamiltonian16

HXY = ℏJ
∑
i,j

σ+
i σ

−
j + σ−

i σ
+
j . (2.118)

2.5.7 Spin squeezed states and the one-axis twisting model

For quantum metrological applications, so-called spin squeezed states [69] are widely dis-
cussed and investigated as states with reduced noise distribution in one direction compared
to an uncorrelated coherent spin state. Such non-Gaussian17 states can provide a metro-
logical gain and are therefore of great interest regarding a range of applications. A global

16HXY ∝ σiσj − σz
i σz

j = 2(σ+
i σ−

j ) + h.c.
17Non-Gaussian in terms of the measurement variance.
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interaction in the form of the one-axis twisting (OAT) model [111]

HOAT = χ

2

N∑
i<j

σz
i σ

z
i (2.119)

creates such a spin squeezed state starting from an initially uncorrelated coherent spin
state with all spins polarized along +x : |+X⟩ = ⊗N

i=1 |+⟩i = ⊗N
i=11/

√
2(|↑⟩ + |↓⟩. The

interaction (2.119) shears the classical noise distribution of the collective spin, reducing
the measurement uncertainty in one direction while increasing it in another direction. The
shearing is schematically depicted in Fig. 2.6.

While it is not easy to implement the OAT model in a trapped-ion experiment directly,
its similarity to the models discussed in the previous sections, which are in fact accessible
in the lab, is evident. For a sufficiently long interaction range the OAT model can be
approximated by the power-law Ising model, where χ ≈ J̄ =

∑
i<j

Jij

N(N−1)/2 with J̄ being
the average coupling between spin pairs. Introducing a strong transverse field term to
the Ising Hamiltonian, the effective interaction can be approximated by the XY model
(Eq. (2.118)), which stabilizes the collective behavior during the interaction as it favors
the alignment of the spins [71].

An important figure of merit for spin squeezed states is the Wineland squeezing parameter

ξ2 = N⟨∆(Ŝn⊥)2⟩∣∣∣⟨Ŝ⟩
∣∣∣2 , (2.120)

with the minimum variance ⟨∆(Ŝn⊥)2⟩ ≡ ⟨(Ŝn⊥ − ⟨Ŝn⊥⟩)2⟩ in a direction n⊥ orthogonal
to the mean collective spin vector ⟨Ŝ⟩ and the vector length

∣∣∣⟨Ŝ⟩
∣∣∣. It is a measure for

the metrological gain in phase sensitivity compared to an uncorrelated coherent spin state
and it is an indicator of entanglement (or correlated states) for ξ2 < 1. For the ideal OAT
model, the Wineland squeezing parameter scales with the number of ions as N−2/3, which
is fulfilled for the power-law Ising model when α < 2D/3, where D is the dimensionality
of the system [71]. For long evaluation times, the interaction can generate other non-
Gaussian states like so-called q-headed cat states, requiring other methods, such as the
quantum Fisher information, to characterize their metrological advantage [71,112].

2.6 The 40Ca+ ion as a qubit

Apart from experiments devoted to highly charged ions, in most quantum information
experiments, singly charged ions with a single residual valence electron are used to benefit
from the hydrogen-like energy scheme. Hence, many of the employed species belong to the
alkaline earth metals. The most commonly used ones are Ytterbium (171Yb+18), Beryl-
lium (9Be+), (Barium (137Ba+ and 133Ba+), Magnesium (25Mg+), Strontium (87Sr+) and
Calcium (40Ca+). In general, the trapped ion should have various transitions that are

18Due to the nuclear spin (I = 1/2) and the hyperfine qubit’s lower susceptibility to magnetic-field
fluctuations compared to 40Ca+ 171Yb+ is a popular choice in many quantum information experiments.
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Figure 2.7: Relevant energy levels and transitions used in 40Ca+ ions.

accessible in the optical or rf regime and which can be used for different tasks. Qubits can
be encoded in either long-lived states accessed via optical transitions or in the sublevels
of a Zeeman qubit or hyperfine qubit in the presence of a nuclear spin. However, there is
(not yet) a Goldilocks qubit that satisfies all experimental requirements. All ion species
come with advantages and disadvantages. A recent proposal of the so-called omg (optical,
metastable, ground-state) architecture [113] discusses the optimization of the requirements
of state preparation and cooling, gates, and storage in a single species by using intercon-
vertible qubits encoded in an optical transition, in two metastable states (rf) and two
sub-states of the ground-state (rf), all of which can be used for specific tasks, e.g. making
use of sympathetic cooling during the execution of a quantum algorithm. This approach
is combining the functionality of a single-species register and dual-species architectures,
the ladder of which suffers from both fundamental and technical challenges.

The experiments presented in this thesis are performed using 40Ca+ ions and build on
the extensive experience in quantum information science with trapped 40Ca+ ions in Inns-
bruck. With no nuclear spin, the 40Ca+ ion exhibits a relatively simple, hydrogen-like
energy level scheme, as depicted schematically in Fig. 2.7, exhibiting transition frequen-
cies ranging from the near-UV to near-IR. The transitions are well-suited for manipula-
tion using commercially available and mature laser technology. The degeneracy of the
sublevels of states is lifted by applying an external magnetic field. A B-field of about 4
Gauss is commonly used in experiments with 40Ca+ ions, creating a splitting of about
11 MHz between the two Zeeman levels in the 42S1/2 ground-state manifold. The re-
sulting ground-state splitting lies within the natural line width of the 42S1/2 ↔ 42P1/2
transition of γ ≈ 2π × 21.57 MHz [114], which is used for Doppler cooling. At the same
time it is significantly larger than the typical trap oscillation frequencies of a few MHz
allowing sideband-resolved manipulation of the ions. The clock transition in the 40Ca+

ion is given by a quadrupole transition between the 42S1/2 and the 32D5/2 manifold with
a lifetime of about 1.17 seconds (∼1 Hz linewidth) [115]. A qubit in the 40Ca+ ion can
be encoded either as an optical qubit in one of the two |42S1/2⟩ Zeeman levels in com-
bination with one of the five 32D5/2 Zeeman levels, e.g. |42S1/2,ms = −1/2⟩ = |1⟩ = |↓⟩
and |32D5/2,ms = −5/2⟩ = |0⟩ = |↑⟩, or in the two Zeeman states of the 42S1/2 manifold,
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explicitly the |42S1/2,ms = −1/2⟩ = |1⟩ = |↓⟩ state and the |42S1/2,ms = +1/2⟩ = |0⟩ = |↑⟩
state. The ladder is usually referred to as Zeeman qubit or ground-state qubit. The optical
qubit transition can be manipulated with light at 729 nm whereas the ground-state qubit
can be driven either directly using a (global) rf field at about 11.5 MHz, or off-resonantly
using a stimulated Raman transition coupling the two Zeeman levels via a virtual level (in
this work at about 396 nm).

The ions are Doppler cooled as well as ground-state cooled via electromagnetically induced
transparency (EIT) cooling using light at 397 nm19. Light at 866 nm is employed to
repump the population from the metastable 32P3/2 state back to the 32P1/2 state during
laser cooling. For the ground-state preparation via optical pumping, a 854-nm laser is used
in conjunction with a 729-nm-laser to drive the 32D5/2 ↔ 42P3/2 transition. A 422-nm
laser serves for the isotope-selective loading of 40Ca+ ions, exciting the neutral Ca atoms
on the 4s2 1S0 ↔ 4s4p 1P1 transition before ionizing them in a second step using a laser
at 375 nm. For a more detailed description of the used transitions and employed laser
setups, refer to Sec. 3.6.

19Note that sideband cooling with 729-nm light can be used as a ground-state cooling technique but this
becomes impractical for larger ion crystals as individual modes are cooled sequentially.



Chapter 3

Experimental setup

This work is building upon the well-proven methodology and cutting-edge technology in
trapped-ion experiments and extending it to experiments with two-dimensional crystals.
The experimental setup described in this chapter was built completely from scratch. While
implementing state-of-the-art technology in all areas, several components were newly de-
signed and developed. A novel monolithic three-layer rf trap was designed, enabling the
storage of 2d ion crystals with unobstructed optical access perpendicular to the crystal
plane and micromotion-free access from multiple directions. The vacuum setup, based on
a compact hydrogen-annealed stainless-steel chamber, was designed to allow for optical
access from all relevant directions and materials were chosen carefully to achieve low out-
gassing. Furthermore, state-of-the-art laser technology, electronics as well as experiment
control hardware and software are employed to compose a compact, stable and remotely
controllable setup. For fast and reliable loading of crystals with a deterministic number
of 40Ca+ ions, we refrain from using a resistively heated Calcium oven and instead opt for
pulsed laser ablation. A redesigned home-built PI circuit for stabilization of the trap rf
power is used to suppress fluctuations in trap oscillation frequencies. EIT cooling is em-
ployed to simultaneously cool multiple motional modes, which is essential when working
with larger numbers of ions. Coupling the Zeeman ground-state qubit via a stimulated
Raman transition at about 396 nm enables stronger entangling interactions compared to
interactions implemented on the optical qubit as done in previous quantum simulation
experiments in Innsbruck. Since conventional methods for quantum-state discrimination
applied in experiments with linear strings of ions are not straightforwardly applicable to
experiments with 2d crystals, a new algorithm for quantum-state readout, suitable for
linear and planar crystal configurations of arbitrary shape, was implemented. The ex-
periment control system is based on the Sinara hardware platform in combination with a
control software tailored to the requirements in the presented experiments.

All these constituent parts are described in more detail throughout this chapter. In Sec. 3.1
the trap design and geometry is discussed. The vacuum apparatus including all mechanical
and in-vacuum parts is presented in great detail in Sec. 3.2, where the initial subsection
is dedicated to a discussion about cryogenic setups. The setup for the generation of the
quantization field and for the compensation of magnetic-field gradients is discussed in

48
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Sec. 3.3. Details on the trap rf and dc electronics are presented in Sec. 3.4. Sec. 3.5
describes the experiment control hardware and software components concluding with a
subsection about the employed algorithm for quantum-state readout. Descriptions of all
optical setups are given in Sec. 3.6 followed by a final discussion of the setup to drive the
ground-state qubit via an rf coil in Sec. 3.7.

3.1 Ion trap

In this section, a discussion of different trapping geometries for 2d crystals in a rf trap
(Sec. 3.1.1) is followed by a description of the new trap design and its operating parameters
(Sec. 3.1.2). For a more detailed discussion of the design, simulations, and testing of the
trap, please refer to the PhD thesis of Helene Hainzer [61].

3.1.1 Trapping geometries for 2d crystals

In a standard linear Paul trap consisting of a pair of rf electrodes, a pair of dc electrodes
orthogonal to them, and two endcap electrodes, there are essentially two ways of trapping
planar ion crystals:

Geometry 1: A 2d crystal can be trapped in the plane spanned by the two radial
directions by applying dc voltages to the endcap electrodes, ensuring that the confinement
in the axial direction is much stronger than the confinement in the two radial directions
provided by the rf field (Fig. 3.1(a)).

Geometry 2: A crystals can be squeezed into a plane spanned by one radial direction
and the axial direction by applying dc voltages on the dc electrodes strongly confining the
ions in the direction orthogonal to the dc electrodes. (Fig. 3.1(b)).

Trapping 2d crystals using the first geometry has been realized by several groups worldwide
[31, 33, 34], where the crystals are sometimes referred to as radial crystals. The second
geometry is the geometry chosen for the experimental setup described in this work but it
has been pursued also by other groups, e.g. the groups of Kihwan Kim [34] and Luming
Duan [36]. Regarding the requirements for rf-power stability, radial crystals are preferable
as shown in Appendix A of Ref. [60]. However, with regard to the adverse influence of
micromotion on the laser-ion interaction, the second orientation is clearly advantageous
because, to first order, micromotion occurs only in a single radial direction (between the
two rf electrodes, see Fig. 3.1(b) and (c)). This geometry offers an entire plane orthogonal
to the crystal plane, allowing for micromotion-free addressing of the ions with laser beams.
In contrast, using geometry 1 leads to micromotion occurring in all radial directions within
the crystal plane, leaving only a single direction orthogonal to the plane unaffected by
micromotion.

3.1.2 A novel monolithic rf trap for 2d crystals

Trap design

For the experimental setup described in this thesis, the second trapping geometry (Fig. 3.1(b))



50 3 Experimental setup

Figure 3.1: Geometries for storage of 2d crystals. (a) The crystal plane coincides with the
radial plane of the linear Paul trap. Such a “radial” trapping geometry entails micromotion
of the ions along their radial directions. (b) The crystal plane is spanned by the axial and a
radial direction (here: between the two rf electrodes). Micromotion occurs only along the
direction between the rf electrodes (y-direction). (c) A three-layer trap design allows for
free optical access perpendicular to the crystal plane when trapping ions using geometry
2 shown in (b).

is chosen. The crystal plane is spanned by the axial direction (z) and the vertical ra-
dial direction (y). Hence, to first order, micromotion occurs only in y-direction providing
micromotion-free access within the entire xz-plane, also referred to as the horizontal plane.
In order to achieve free optical access perpendicular to the crystal plane, the trap design
is based on a three-layer trap design [116] as shown in Fig. 3.1(c). The two rf electrodes
are placed on the top and bottom of the middle layer. The dc electrodes, representing
the orthogonal blades and endcap electrodes in a standard linear Paul trap, are located
at the top and bottom with respect to the trap center and constitute the outer layers of
the three-layer trap. These electrodes are segmented such that a total of 8 dc segments on
the two outer layers, herein referred to as endcap electrodes, create the axial confinement.
The 4 dc middle segments on the outer layers enable additional confinement in x-direction
to create the anisotropy necessary for trapping 2d crystals in the yz-plane. The actual
realization of the three-layer design is shown in Fig. 3.2.

Small alignment imperfections of the electrodes could prevent stable trapping of planar
crystals (cf. challenge 3 in chapter 1). Therefore, the trap is realized as a monolithic design,
accommodating all three layers on a single chip. The monolithic design ensures a precise
arrangement of the electrodes with respect to each other and thereby bypasses the hand-
assembly of the trap. The electrodes are separated by trenches with undercuts extending
underneath the surface of the chip [117, 118], which is shown in the left zoom in Fig. 3.2.
The trenches are 50 µm wide and ensure electrical isolation after metallization of the trap
surface. Additional layers, hosting ground electrodes, are added between the rf and dc
electrodes. They are introduced to shield axial rf-field components due to the trenches
between the individual segments that could otherwise result in unwanted micromotion.
The dc and ground electrodes are recessed in y-direction with respect to the rf electrode
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Figure 3.2: 3d rendering of the trap chip. The left part illustrates the trench geometry
used to electrically isolate two electrodes. The right zoom onto the trap chip’s center
reveals the three-dimensional arrangement of the electrodes.

to allow optical access from an angle of 45◦ from the top and bottom.

The trap chip has a size of 31.5 × 20 mm and a substrate thickness of 1 mm. In addition
to optical access from the front and back, lateral holes with a diameter of about 300 µm
allow for access along axial direction from both sides. The rather macroscopic electrode-
ion distance of 400 µm ensures a low level of heating due to Johnson noise and blackbody
radiation, and avoids “anomalous” heating [119]. The rf electrodes are 9.3 mm long 1,
the middle segments are 1.5 mm long and the endcap segments are 3.45 mm long. The
length of the middle segment is chosen such that a tilting of the crystal by application of
asymmetric voltages on the outer dc segments can be performed efficiently with reasonably
low voltages. Wirebonding pads are placed on both sides of the chip to electrically connect
the trap to the dedicated dc and rf interposer boards. Three through holes in the top area
of the chip allow for mounting the trap with M2 screws. Additional smaller holes on the
top and bottom are introduced to facilitate the fixation for transport.

The trap was microfabricated and gold-coated by Translume2. The trap chip is based on
a fused-silica substrate and was processed via subtractive laser-induced etching, which has
been used recently for the fabrication of several other ion traps [117,120–122]. In the first
step of the fabrication process, the designed structures are written into the substrate by a
fs-pulsed laser modifying the chemical properties of the glass locally. In the second step the
substrate is immersed in a bath of hydrofluoric acid predominantly etching the previously
illuminated areas. This way, the desired electrode structures can be manufactured with
sub-µm precision, which enables the creation of the trenches isolating the electrodes and
further guarantees the precise alignment of the electrodes. In the last step the trap was
coated via thick-film sputtering with ∼30 nm of titanium as adhesion layer and ∼3 µm of

1The central slot has a width of 9.4 mm.
2Translume Inc., Ann Arbor, MI 48108, USA
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gold3. To prevent electrical shorts, the trap was coated in several consecutive sputtering
steps. During the intervals between these steps, the trap was allowed to cool down,
mitigating the indiscriminate deposition of gold atoms due to thermal processes on the
surface. Photos of the gold-coated trap inside the vacuum chamber are shown in Fig. 3.5.

Trap parameters

Electrical tests of the trap revealed that the maximum voltage applicable to the rf elec-
trodes is about 1 kV peak-to-peak to avoid the risk of electrical shorts. This represents the
voltage, at which the trap is typically operated. The targeted secular oscillation frequency
in the strongly confining direction is about 2 MHz4. To keep micromotion and rf heating
at a low level, a low q parameter is beneficial. The electrode-ion distance, the q parameter,
the maximum voltage and the targeted secular frequency together provide a constraint for
the choice of the rf drive frequency, which forms the basis for the design of the helical
resonator. In the presented experiments, the trap is operated at Ωrf = 2π × 43.22 MHz,
which ensures q ≲ 0.1. In typical experiments the ion crystals are trapped in a potential
with secular oscillation frequencies ωs of about 2π× 2.2 MHz in the out-of-plane direction
and a few hundred kHz in the two weakly confining directions. Finite element simulations
of the potential in the radial plane suggest a trap depth of about 4 eV. The principal
axes of the trap potential are well aligned with the trap’s geometrical axes x, y, and z.
Therefore, in this work the secular frequencies in strong and weak directions ωs, ωw1 and
ωw2 are synonymously denoted as ωx, ωy, and ωz, respectively. The x-axis is the direction
perpendicular to the ion crystal plane and is referred to as out-of-plane direction.

3.2 Vacuum apparatus

When working with a large number of ions, a good vacuum quality is a crucial element
of an experiment to mitigate detrimental background gas collisions and the formation
of molecular (dark) ions. Careful choice of the used materials, cautious handling of all
components and suitable cleaning protocols are essential for the successful realization of
lowest pressures in a UHV/XHV system. The following subsections provide details on the
considerations guiding the selection of materials and methods, along with a description of
the employed components.

3.2.1 Considerations for a cryogenic setup

One possible way of reaching ultra-low pressures in the experiment is the embedding of
the ion trap in a cryogenic environment. In the first phase of my PhD work, I conducted
an extensive research to obtain an overview of cryogenic systems on the market as well as
systems already in use by other research groups. In the end, we regarded the unknowns of
the commercially available cryogenic setups as too risky for this project and instead focused
on the design of a room temperature setup. Recent advancements in the cryogenic sector,

3The specified thickness of the gold layer is based on the manufacturer’s estimation and has not been
measured.

4Originally, this value was intended to be higher (ωs ≈ 4 MHz) but electrical tests indicated a lower limit
of the maximally applicable voltage, which is now 1 kV instead of the originally targeted 2 kV peak-to-peak.
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may have changed the situation in the meantime. However, the most relevant aspects
regarding the use of cryogenic setups for trapped-ion quantum information experiments
will be discussed in the following.

For experiments aiming at quantum simulation experiments, there are two main concerns:
First, vibrations can be transmitted from the compressor and the cold head to the cold
stage, where the ion trap is located. Fluctuations in the optical path length due to
vibrations lead to a phase-modulation of the laser in the ions’ rest frame. However, for
coherent manipulation of a qubit, the phase of the light field with respect to the ions has
to be well-defined and coherent. Therefore, it is desirable to mitigate vibrations to a level
of about less than 1 % of the operating wavelength, i.e. ≲ 4 nm for coherent stimulated
Raman transitions at 395 nm. At the beginning of this project in 2018, comparable values
have not been achieved reliably in other setups and at no manufacturer could provide data
to guarantee such a low level of vibrations. Second, magnetic-field fluctuations caused by
moving ferromagnetic parts in the cryocooler potentially lead to adverse effects on the
quantum coherence of magnetic-field sensitive qubits. Akin to the level of vibrations,
the magnetic fields caused by the cryogenic systems are of unknown magnitude and the
manufacturers could not provide any data. The uncertainties in terms of vibrations and
magnetic-field fluctuations led us to refrain from the realization of a cryogenic setup.

A third requirement for a cryogenic setup would be the suitability for a vacuum bake-out
to maintain a true UHV system. While this is not a strict requirement to reach UHV/XHV
pressures, we consider it a valuable feature to reduce contaminants and, therefore, the risk
of failure as much as possible. Further aspects to take into consideration are the required
cooling capacity, the general handling of the apparatus to ensure a fast duty cycle (e.g.
for trap testing), and the acquisition costs as well as the running costs (e.g., for helium
supply in case of a flow cryostat).

Dilution refrigerators using mixtures of 3He/4He to cool to mK-temperatures are very
expensive devices but do not add value to ion-trapping experiments since a 4K system
is sufficient to freeze out residual background gas5 via physisorption on the cryogenic
surfaces of the vacuum vessel. Therefore, a key decision is to make between a closed-cycle
cryocooler and an open (wet) system such as a flow or bath cryostat. In contrast to a
flow cryostat, a bath cryostat requires a big tank of liquid Helium providing constant
cooling without the possibility to control the coolant consumption. The purchase costs
for a bath cryostat are substantially higher than for a flow cryostat. Both wet systems
require a replenishment of liquid coolant that is associated with increased running costs
and the need for a reliable source of liquid helium. Experiences in the ion-trapping group
in Innsbruck show that this can be challenging. Hence, for this project, a closed-cycle
system would have been the preferred option.

There are mainly two types of closed-cycle systems available: pulse-tube (PT) and Gifford-
McMahon (GM) cryocoolers. One main advantage of the PT cooler is the absence of
moving pistons in the cold head, potentially reducing vibrations and magnetic-field fluctu-
ations caused by moving ferromagnetic parts. The various commercial cryogenic systems

5The boiling point of hydrogen at normal pressures is about 20 K, the melting point about 14 K.
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also differ in the implemented method to mechanically decouple the cold tip from the vi-
brating cold head. Most commercial ultra-low vibration closed-cycle systems use a buffer
gas heat exchange for this purpose. However, some companies provide cold tips, that are
decoupled from the cold head via flexible bellows of about 1 m length further reducing
the level of vibrations. These systems appeared to be among the most promising options,
although the cooling power is often limited to ≤ 1 W. Such systems are offered by Janis,
Inc.6 and Cold Edge Technologies7.

It should be noted here that several research groups around the world have built cryogenic
setups for ion-trapping experiments with a custom-designed vibration isolation, e.g. [123,
124]. However, the development and assembly of such an apparatus is typically associated
with a time requirement of several years, which was not considered for the presented
experiments.

3.2.2 Vacuum chamber design

A custom vacuum chamber was designed to be as compact as possible while providing
optical access from all required directions. Irrespective of the design of the chamber,
the choice of material is a key question arising in search of a low-outgassing solution.
The most common materials used for vacuum vessels are austenitic stainless steels (SS),
such as SS 304 L and SS 316 L(N). In addition to their good mechanical properties and
weldability, they are essentially non-magnetic. When only low-outgassing materials are
used, the residual gas load inside the vacuum chamber is usually limited by outgassing
of hydrogen molecules (H2) from the stainless steel vessel. Low hydrogen-annealing, a
thermal cycling procedure, in which a stainless steel vessel gets baked at temperatures up
to 1200 ◦C, can substantially reduce the outassing rate of hydrogen of a stainless steel
vessel. Additionally, residual magnetization, e.g. from welding or material deformation,
can be eliminated by heating above the Curie temperature, and material impurities and
stress can be reduced.

In contrast to stainless steel, aluminium or titanium offer lower outgassing rates but have
several drawbacks to consider: Aluminium is a relatively soft material and, therefore,
comes at the risk of damage of threads or knife edges of CF flanges. Although some
companies claim the stability of knife-edges after 100 closing cycles and baking up to
180◦, the outgassing rate compared with that of a hydrogen-annealed stainless steel vessel,
is not convincing considering the increased risk of damage. At the time of designing the
presented experimental setup, it was not feasible to get an aluminium chamber as compact
as a stainless steel chamber while meeting our requirements. The increase in volume and
in-vacuum surface for such a chamber would have counteracted the benefit of using a lower-
outgassing material. In Ref. [125] the presented hydrogen outgassing rate of aluminium
and titanium compared with low-hydrogen annealed stainless steel is lower by a factor of
two and four, respectively. However, given the geometric constraints in the chamber design
for aluminium leading to a larger surface area in vacuum, the absolute outgassing rate in
such a chamber is suspected to improve only by a significantly lower factor. Titanium, on

6Janis Recirculating Gas Cooler RGC4-ST500
7Cold Edge Stinger
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Figure 3.3: 3d rendering of the vacuum apparatus.
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the other hand, offers low outgassing and low magnetic permeability while providing high
material strength. However, the purchase cost of a titanium chamber would have been an
order of magnitude higher than that of a conventional stainless steel chamber. Therefore,
SS 316 LN is the material of choice for the presented vacuum chamber.

The custom chamber design was manufactured by Pfeiffer Vacuum 8. It is made of stainless
steel 316 LN and was vacuum fired (low-hydrogen annealed) at 1050 ◦C for 120 minutes.
The inner surface is electro-polished with a surface roughness of Ra ≲ 1.2 µm, where Ra
is the mean profile height deviation from the mean line. All other flanges attached to the
main corpus of the chamber, i.e. feedthroughs and windows, are also made of SS 316 LN.
A rendering of the vacuum chamber is displayed in Fig. 3.3. The design allows for optical
access from all relevant directions, i.e. various directions within the horizontal plane as
well as 45◦ access from the top and bottom. The chamber’s main corpus is a cylinder
with an outer diameter of 172 mm hosting a CF100 viewport in the front and eight CF16
viewports along the side. Four nipples at an angle of 45◦ are welded into the backside
of the main corpus and equipped with CF16 viewports. The design features high optical
access including directions at 45◦ from the front, back, top and bottom. A CF63 cross
is welded into the backside of the corpus allowing for efficient pumping and additional
optical access from the backside of the trap. A full-metal UHV/XHV valve9 is used as
docking site for a turbomolecular pump and for isolation of the vacuum chamber after the
bake-out. A combined NEG-ion pump10 is mounted to the bottom right CF63 flange of the
cross to continuously pump the vacuum chamber after isolation from the turbomolecular
pump. A µ-metal shield around the NEG-ion pump shields the magnets necessary for the
operation of the ion pump. An additional CF16 NEG11 attached to the top left flange of
the main corpus provides additional pumping relatively close to the trap12. A spare CF63
flange on the cross is closed with a low-hydrogen annealed blank flange.

3.2.3 In-vacuum parts

Materials of in-vacuum parts

All screws, nuts and washers used in vacuum are composed of either grade 2 or grade 5
titanium and all screws, nuts and washers attached to the air side of the vacuum apparatus,
including the helical resonator, are made of grade A4 (316) stainless steel or titanium to
ensure low outgassing and low magnetic permeability. Tapped (vented) screws were used
in case of blind holes, e.g. in the back wall of the chamber. The trap holder as well
as the holder and aperture for the ablation target, referred to as the funnel, are made
of grade 4 titanium and were fabricated by wire-cut electrical discharge machining (wire
erosion). In order to decrease the surface roughness after the wire erosion procedure
(typically Ra ≈ 12 − 20 µm) and therefore reduce the adsorption of water and subsequent

8Pfeiffer Vacuum GmbH, Berliner Strasse 43, 35614 Asslar
9VAT 57132-GE02, CF40 all-metal angle valve

10SAES NexTorr D500-5; power supply and controller: NIOPS-04
11SAES CapaciTorr CF16-MK2-172-2X16-10
12Simulations and measurements of the thermal profile of such a CF16 NEG provided by the manufac-

turer made us confident that the heat load on the CF100 front window and its seal is acceptable.
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Figure 3.4: 3d drawings of the titanium trap holder hosting the trap chip, the ablation
funnel, the dc interposer board (mounted on the front side) and the rf interposer boards
(mounted on the back side). The trap’s dc electrodes are wirebonded to the double-sided
dc interposer board from both sides. The rf electrodes are wirebonded to the small rf
interposer board only from the back side of the holder.

outgassing, the trap holder and the funnel were plasma-polished13.

Trap mount

The trap chip is mounted to the frame by three M2 screws. By using spring-lock washers
and by including sufficient tolerances in the mounting holes of the trap, we reduced the
risk of damage during a bake-out resulting from a mismatch of the coefficients of thermal
expansion between fused silica and titanium. A contact area of A ≈ 6 × 20 mm2 provides
considerable thermal anchoring to the titanium frame. The trap holder is mounted onto
the rear wall of the main corpus using four vented M4 screws.

Ablation target and funnel

The ablation funnel has a an aperture of 300 µm diameter in the front. The inner gradu-
ally conical structure is achieved through multiple bores with decreasing diameters. The
ablation target14 is placed into a recess on top of the funnel and fixated with a Ti M2
screw. It can be targeted by a laser beam entering through a hole with a diameter of 2.2
mm on the bottom side of the funnel. The distance from the target to the trap center is
about 15 mm. For alignment, we used a laser pointer illuminating the trap center through
the funnel and ensured that the trap center is hit symmetrically by the light cone. Before
placing the target inside, the rapidly oxidizing surface of the Ca target was scraped off.

13plasotec GmbH, Arthur-Wilke-Straße 2, D-14727 Premnitz, Germany. The company claims a reduction
of the surface roughness of maximally about 85 %.

14Vacuum Engineering & Materials Co. (VEM), Cylindrical target, 5x3 mm
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Figure 3.5: Photographs of the ion trap assembly in vacuum. (a) Picture of the assembly
seen through the front viewport featuring in-vacuum components. (b) Detailed view of the
ion trap showing wirebonds connecting the trap electrodes with the dc interposer board.
In the upper left corner the ablation funnel is partly visible. (c) Detailed view from the
side as “seen” by a laser beam entering the front viewport at an angle of about 45◦.
Image credits: David Jordan, IQOQI Innsbruck
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Electrical feedthroughs

Two CF16 electrical feedthroughs15 on the main corpus, each with 8 bare copper pins
(AWG 20/0.81 mm diameter) on the air and vacuum side, provide sufficient connections
to supply all twelve dc electrodes individually. Another CF16 feedthrough16 with two bare
copper pins (AWG 16/1.29 mm diameter) is mounted on the top flange and is suitable for
high voltages up to 6 kV. One of the pins is used to connect the rf electrode. The other
one is grounded to the chamber on the air side. The helical resonator is located on top of
the rf flange and mounted using dedicated screw holes in the vacuum chamber.

Electrical connections, interposer boards

We completely avoided any solder connection in vacuum to prevent virtual leaks and
unwanted residuals of potentially outgassing substances from flux or solder. Instead, we
used only crimp, in-line or spring-loaded connectors. Two alumina PCBs, referred to as
rf and dc interposer boards, are used to interconnect the wires coming from the electrical
feedthroughs with the ion trap chip. The gold wirebonding pads and traces are screen-
printed on a 96% alumina substrate17. The dc interposer board is a double-sided PCB
with 6 wirebonding pads on each side. Gold traces connect the wirebonding pads close
to the trap chip with the plated through holes on the side away from the trap. These
holes accommodate pins18, which are finally plugged into the corresponding sockets19 that
are crimped onto silver-plated and Kapton-insulated solid copper wires (AWG 20/0.81
mm). On the other side of these wires, spring-loaded sockets20 are crimped onto the
wire and plugged onto the bar copper pins of the vacuum feedthrough. As we reached
for a solder-free vacuum apparatus, it turned out to be challenging to mount the gold
pins on the interposer. First trials with sinter nano-silver paste were unsuccessful as the
connections were found to be highly fragile. Finally, we used a swage assembly tool21

and a manual arbor press to fasten the hollow cylindrical backside of the pin to the gold-
coated dc interposer board. Note that swage assembly is generally not used for ceramic
PCB substrates. Due to alumina’s brittleness it is a very delicate task and therefore not
suited to be applied on a larger scale. To connect the rf feedthrough with the rf interposer
board a solid copper wire (AWG 16/1.29 mm) is attached to one of the two pins of the
rf feedthrough using an in-line connector 22. The other end of the solid copper wire was
manually flattened and drilled to create a cable lug, which is attached to a gold plated via
on top of the rf interposer board using an M1.6 screw and a nut.

Wirebonding

The ion trap is connected to the interposer boards via gold wirebonds23 with a wire
15VACOM CF16LNS-HV1-8-CE-CU081
16VACOM CF16LNS-HV6-2-CE-CU13
17Elceram, Okružńı 1144, 500 03 Hradec Králové, Czech Republic
18AccuGlass Products 110008, Gold Pins Male, Type: T2, 20-24 AWG
19AccuGlass Products 110009, Gold Sockets Female, Type: T2, 20-24 AWG
20Vacom EK-C-CB081, crimp connectors with spring-loaded sockets
21Mill-Max 900-00-025-00-415000, Swage Punch & Anvil Kit
22Accu-Glass Products, In-Line Connector - 0.059
23Wirebonder:F&S Bondtec Bonder 5330; bonding tool: SPT UT45A-C-3540-1.00-CGM
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diameter of 50 µm. For low resistance and redundancy of connections, all electrodes are
connected with multiple wirebonds, the number of which is limited by space constraints.
The dc electrode pads host 4 bonds each, the rf electrode pad hosts 8 bonds. For additional
grounding of the trap, multiple wirebonds were placed from both the dc and rf interposer
boards’ ground to the trap’s ground plane.

Viewports

All viewports24 used for optical access to the trap center are either anti-reflection(AR)-
coated for 395, 397, 729, 854, and 866 nm or broadband-coated for the range from 395 to
866 nm on both sides. The CF100 viewport (front) has a substrate thickness of 6.4 mm
and is compatible with a spare Silloptics objective25, which was available in the ion trap-
ping group in Innsbruck. A CF63 viewport grants optical access from the backside of
the chamber. In the case of the CF16 viewports, we found that the AR coating on the
broadband-coated viewports performs better than the custom AR coating at specific wave-
lengths, which is why we preferred to use them where possible. Two CF16 viewports are
mounted to the left and right side of the main corpus to gain axial access to the trap. Four
CF16 viewports are mounted onto the 45◦-nipples on the backside of the chamber. The
viewport used for the ablation laser beam entering on the bottom of the main corpus is a
broadband-coated window ensuring high transmission at 515 nm. The 45◦-nipple on the
bottom of the chamber is equipped with a Zinc Selenide viewport allowing for transmission
of infrared light between 0.6 and 20 µm. It was used to monitor the trap temperature
with an infrared camera during electrical tests of the trap. The flanges of all viewports
are made of non-magnetic stainless steel 316 LN.

Cleaning and assembly

The vacuum parts as well as tools for the assembly were cleaned according to standard
UHV cleaning protocols. If permitted according to the manufacturers’ instructions, parts
were cleaned with degreaser, acetone, isopropanol and methanol in multiple and repeated
steps using an ultrasonic bath. Apart from visible contamination, the vacuum windows
were not cleaned since they were delivered UHV ready. In case of stains on the glass
surface, we cleaned them with isopropanol and subsequently with methanol according to
the manufacturer’s cleaning notes.26 All parts containing copper were not cleaned using
acetone but only isopropanol and methanol instead. The oxide layer on the surface of the
copper pins of the electrical feedthroughs was manually removed with diluted formic acid27

before continuing with the cleaning procedure using the ultrasonic bath. The trap chip
itself was cleaned by the manufacturer after fabrication and, therefore, not cleaned any
further to avoid the introduction of debris into the trenches, which could lead to electrical
shorts between electrodes. All vacuum parts were assembled under a laminar flow hood.

24MPF Products Inc., 3046 Bramlett Church Rd. Gray Court, SC 29645, DUV grade fused-silica,
Corning HFPS,

25The Silloptics objective is designed for a substrate thickness of 6 mm.
26For more persistent stains acetone can be used first, which should be tested on a clean surface to avoid

residual stains and contaminants on in-vacuum parts. This was not necessary in our case.
27The feedthroughs were dived into a bath of diluted formic acid (∼ 1 cm deep) for a few minutes. This

step was followed by manual etching of the surface using lint-free swabs.
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During the assembly of parts inside the vacuum vessel, requiring the exposure of the open
vessel to air, it was vented with Argon using the turbomolecular pump.

3.2.4 Bake-out procedure

All metallic in-vacuum parts were air-baked at a temperature of 300 ◦C for about 24 hours
to reduce hydrogen outgassing. All parts attached to the chamber are bakeable up to
200 ◦C limited by the bake-out temperature of the viewports. After assembly, the vacuum
setup was put entirely into a dedicated oven and baked for about eight days at 200 ◦C
while pumping the chamber with a turbomolecular pump28. The temperature was ramped
up and down automatically with a ramp speed between 0.1 and 0.3 K/min. The whole
chamber was wrapped in aluminium foil to provide a more balanced heat distribution and
to mitigate stress on the metal-glass interface of the vacuum windows. The vacuum vessel
was connected to the turbo pump station by a flexible hose guided through a hole in the
oven wall. The parts outside of the oven, such as the bellows connecting the chamber, the
tee, the tubes attached to the residual gas analyzer (RGA) and tubes housing a pressure
sensor of the turbo pump, were heated via fiberglass-shielded electric heating tapes. The
temperature of these parts was monitored using thermoelements at multiple points and
ramped up slowly to values well below the maximum temperatures of the individual parts.

During the bake-out, the overall pressure as well as the partial pressures of the most
relevant fractions were monitored using an RGA29. After baking for several days, the
NEGs were put into conditioning mode30, i.e. heated to a moderate temperature of about
200 ◦C. This facilitates desorption of physisorbed species and reduces outgassing during
activation of the NEGs at a later stage. After about 8 days of baking at 200 ◦C, the
pressure had settled and the total pressure was dominated by the partial pressure of
hydrogen31. The oven temperature was ramped down and at a temperature of about
75 ◦C displayed by the oven32, the NexTorr NEG was activated for 1 hour. The CF16
NEG was activated for about 45 minutes with a current of 3.5 A33. After the oven had
reached room temperature, the ion pump’s magnets were installed and the pump was
activated subsequently. We kept the valve open for another 10 minutes to eventually
pump out outgassing contaminants from the activation of the ion pump. The current of
the ion pump displayed on the controller is proportional to the pressure. After cool-down
it switched between 0 and 1 nA, the lowest achievable values, limited by leakage currents
in the ion pump controller. After a Helium leak test, the valve was closed to isolate the

28Pfeiffer Hi Cube 80 Eco
29Stanford Research Systems RGA 100
30For the NexTorr pump it was activated using the NIOPS controller. For conditioning of the CF16

CapaciTorr NEG, we applied 1.5 A to it.
31The pressure was measured close to the turbo pump station. In order to test if it is dominated by the

residual pressure of the pump station, the heating tapes were ramped down and the temperature of the
oven was ramped down from 200 to 190 ◦C. The partial pressures, measured by the RGA, did not decrease
indicating that they were dominated by the residual pressure in the turbo pump station

32The temperature of the chamber was assumed to be substantially higher. The recommended temper-
ature for the activation of the NEGs is 90◦C.

33The recommended current of 5 A for reaching 450 ◦C in nude configuration can be reduced in case
that the NEG is shielded by the chamber walls.
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chamber from the turbo pump. Subsequently, we performed another Helium leak test and
found that spraying helium directly on one of the 45◦ CF16 windows caused a temporary
increase of the ion pump current from 0 to 5 nA. It is unclear whether this increase can
be traced back to a tiny leak or to leakage currents caused by temperature fluctuations
in the ion pump due to the helium spray. In spite of these observations, the setup is used
in this state and the vacuum quality compares very well to other setups. Experiments
indicate low collision rates, e.g. inferred from the analysis of lattice configuration changes.
In addition, we observe low rates of chemical reactions forming molecular (dark) ions.
Experiments with larger crystals are usually limited by the appearance of additional dark
ions after several hours. At this point, the apparatus has been operated for about 4 years.

It is worth noting that we encountered several setbacks during the bake-out procedure:
After the first bake-out, the UHV valve, isolating the chamber, was leaking (reason un-
known) and had to be exchanged. During the second bake-out, due to a malfunction of an
electro-mechanical relais34, the oven overheated from 200 ◦C up to about 260 ◦C within 30
minutes and caused leaks in several windows and damaged the RGA’s electron multiplier
as a consequence of the sudden increase in pressure. Although care was taken to slowly
ramp the temperature up and down, further bake-out runs caused leaks in several CF16
windows until we finally accomplished a low pressure.

3.3 Quantization field and magnetic-field shielding

Low magnetic-field fluctuations are essential for preserving the coherence of the Zeeman
ground-state qubit as well as the optical qubit encoded in one of the S1/2 states and one
state in the D5/2 manifold. The quantization axis in the presented apparatus is oriented
in the horizontal plane at an angle of 45◦ with respect to the crystal plane (see Fig. 3.15).
It is defined by permanent magnets providing a constant field of about 4.1 Gauss without
the need of stable current sources. The resulting Zeeman splitting of the two S1/2 states
is about 11.5 MHz. We use cylindrical, axially magnetized Samarium Cobalt (Sm2Co17)
magnets with a low temperature coefficient35. The magnet holders are placed on top of
the breadboard at two opposite sides of the vacuum chamber at a distance of about 250
mm between the two holders. Each holder accommodates 74 slots for individual magnets,
arranged in three concentric rings with the radii r1 = 20.5 mm, r2 = 27.75 mm and
r3 = 35 mm. This design enables a flexible arrangement of the magnets to provide a
homogeneous field in the trap center. A 3d image of one of the two holders is shown
in Fig. 3.7(a). We use an equal direction of polarization for all inserted magnets. An
asymmetric spatial arrangement of the magnets, shown in Fig. 3.7(b) and (c), is empirically
found to minimize the magnetic-field gradient. To this end, the gradient across a large
ion crystal is measured via correlation spectroscopy36, a method presented in detail in

34For the bake out, an oven at the IQOQI Innsbruck (ConThermo Wärmeschrank 600 ALV) was used.
The oven manufacturer recommends to exchange the relais every year.

35BVI Magnet GmbH, Sm2Co17, material: XGS24LTC, size: 6 x 10 mm (diameter x height), Br =
1T±0.04T, temperature coefficient of remanence: 0.03 %/K

36Using N -ion correlation spectroscopy phase differences across the ion crystal can be detected efficiently
and precisely in the presence of correlated phase noise.
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Figure 3.6: Photo of the experimental setup inside the µ-metal shield. The top bread-
board around the trap is used for optical setups used to manipulate and guide the laser
beams addressing the ions within the horizontal plane. It further hosts the magnet holders
and is connected to aluminium profiles (Item) holding the vacuum chamber. The bottom
breadboard (70x70 cm) hosts photodiodes used for laser power monitoring and will host
the setup for single-ion addressing in the near future. The small breadboard in between
the lower and upper layer accommodates the objective as well as a mirror holder (black
cube) with a dichroic mirror to guide the collected light to the camera and PMT while
transmitting light at 729 nm for single-ion addressing. Image credit: David Jordan IQOQI
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Refs. [76] and [61].

A residual field gradient can be compensated with the help of two opposing coils in anti-
Helmholtz configuration mounted behind the permanent magnets. To this end, we apply
a current of 39 mA to the coils. Additional coils in Helmholtz configuration (behind the
gradient compensation coils, see Fig. 3.6) would, in principle, allow for the compensation
of ac magnetic-field noise including 50-Hz-noise and its harmonics. This can, for instance,
be achieved by using a feed-forward approach as implemented successfully in two other
ion-trapping experiments in Innsbruck [126]. However, this has not been required in the
presented apparatus.

In order to attenuate external ac and dc magnetic fields, the ion trap setup is enclosed in a
multi-layer metal shield from Imedco37 consisting of two adjoined µ-metal layers of 1 mm
thickness each and a thick layer of highly conductive aluminium on the outside. Holes in
the shield allow the passage of cables and optical fibers as well as the ions’ fluorescence
towards the camera. A hinged door enables full access from the front side of the vacuum
chamber. Closable apertures in the side walls allow restricted access from all other sides.
The shield itself is mounted to the optical table via two plates on the side of the shield.
Aluminium blocks are used as a spacer between the optical table and the shield. The
breadboard hosting the trap setup is held by five stainless steel posts, which are mounted
directly on top the optical table to decouple the trap setup mechanically and electrically
from the magnetic shield. Five holes in the bottom of the magnetic shield allow for the
passage of these posts. Sorbothane pads on top of the posts decouple the breadboard from
vibrations from the table and in addition, electrically isolate the trap setup from it.

The occurrence of a geomagnetic storm38 was exploited to estimate the attenuation of
the installed µ-metal shield in the experiment. To this end, correlation spectroscopy
measurements [76] were carried out to track the dc magnetic-field changes seen by the
ions over about 500 minutes, which were caused by the enhanced geomagnetic activity in
Innsbruck’s proximity. The fluctuations seen in the experiment match well with the earth
magnetic field changes measured by the Geomagnetic Observatory Fürstenfeldbruck (near
Munich). A fit of the combination of the north-south and the east-west field components
suggests a dc field attenuation factor of 66 with an angle of 38◦ between the quantization
field and the east-west field component.

3.4 Trap electronics

The following sections describe the electronics to supply the trap electrodes with rf and
dc voltages. A resonant circuit, described in Sec. 3.4.1 creates high rf voltage at a fre-
quency of about 43 MHz. Using an ion crystal’s motional modes to mediate entangling
interactions requires stability of the motional mode frequencies. Therefore, an active rf
power stabilization circuit is employed, which is described in Sec. 3.4.2. The dc electron-
ics including voltage dividers and the filter design to suppress high frequency noise are
discussed in Sec. 3.4.3. In Sec. 3.4.4 the calculation of voltage sets to control the position,

37Imedco AG, Industriestrasse West 14, 4614 Hägendorf, Switzerland
38In the night from the 01.12.2023 to the 02.12.2023 polar lights were visible by eye in South Germany.
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Figure 3.7: (a) 3d image of one of the two permanent magnet holders. The magnets are
placed in cylindrical recesses in the holder behind the lid, which is slightly lifted in this
image. Holes in the center of the holders provide optical access along the direction of the
magnetic field. (b-c) Front view of the two permanent magnet holders (shown without
mount) and asymmetric arrangement of magnets as used in the setup. The holder in the
front (b) accommodates a total of 19 magnets, with 16 magnets placed in the outer and
3 in the inner ring. The holder facing the backside of the vacuum vessel’s main corpus
(c) contains 15 magnets in total. 14 magnets are placed in the outer ring. An additional
magnet was cut into two pieces with about 2/3 and 1/3 of the original size. The 2/3-piece
is placed in the middle ring of the holder.

orientation and shape of planar crystals, e.g. for minimizing micromotion (Sec. 4.3), is
described.

3.4.1 rf supply

The rf drive circuit is shown schematically in Fig. 3.9(a). Its core represents an RLC series
circuit consisting of Ohmic losses, a helical resonator and the ion trap itself. The rf drive
signal is generated by a signal generator39. It is pre-amplified by a high-power amplifier40

with a gain of approximately 43 dB before subsequent amplification by the resonant circuit.
The design of the helical resonator follows a guideline given in Ref. [127]. The choice of
the resonance frequency is governed by the targeted secular frequency and the aim for a
low q parameter of q ≲ 0.1. Our ion trap is operated typically at rf voltages of about 1 kV
peak-to-peak with a rf drive frequency of Ωrf ≈ 2π× 43.2 MHz. A resonance frequency of
about 43 MHz is obtained by proper choice of the number of windings defining the height
of the coil. A rendering of the helical resonator on top of the vacuum chamber is displayed
in Fig. 3.8(a) and a top view of the inside of the shield is shown in Fig. 3.8(b). The
dimensions of the resonator wire, the winding pitch, the shield were chosen as in previous
experiments in Innsbruck. Inside the helical resonator a copper wire with a diameter of 5
mm is wound with a winding pitch of 10 mm forming a coil with a diameter of 40.4 mm and
a height of 70 mm. The outer shield is a copper cylinder with an inner diameter of 80 mm

39Rohde&Schwarz SMB-100B
40Mini-Circuits LZY-22+
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Figure 3.8: Helical resonator setup. (a) 3d rendering of the front view of the resonator
with opaque shield on top of the vacuum chamber. The Teflon slider provides a spring-
loaded electrical contact to the helical resonator coil. (b) Top view with open lid and
without Teflon slider. (c) The resonator coil is clamped by the Teflon holder on the
bottom of the resonator. On of the two wires from the electrical feedthrough (shown
straight in (a)) is bent and inserted into a hole through the radial direction of the coil
wire. It is fixed with a screw in a threaded hole from the bottom of the coil. The other
wire is grounded via the vacuum chamber.

and a thickness of 2 mm. All copper parts are coated41 with 30 µm of silver and 0.5 µm of
gold on top to increase the long-term stability of the circuit. Oxidation of the copper could
otherwise change the quality (Q) factor over time. To connect the resonator coil to the rf
vacuum feedthrough, the feedthrough pin is inserted into a hole through the 5-mm-wire in
the lower part of the coil and clamped with a screw (see Fig. 3.8(c)). Teflon parts42 on the
bottom of the resonator are used to clamp the coil and mount it in an upright position.
The input signal is coupled to the resonator via a spring-loaded sliding contact mounted
in a threaded cylindrical Teflon part. This Teflon slider is screwed into the inner part of
the coil. The sliding contact allows for impedance matching by adjustment of the point
of electrical contact along the coil.

To characterize the performance of the resonant circuit, the Q factor was determined.
To this end, using a network analyzer, the scattering parameter of the reflected signal
S11 is measured as a function of the frequency. With ∆ωS being the 1/

√
2-full-width

S11 bandwidth, the Q factor is calculated as Q = 2 ω0
∆ωS

[128]. The Q factor, in turn, is
related to the voltage gain of the circuit via GV =

√
Q/(ZwaveΩrf(Ctrap + Cself)), where

we assume the source impedance Zwave to be 50 Ohm and the trap circuit to be perfectly
41Ögussa GmbH, Liesinger-Flur-Gasse 4, 1230 Vienna, Austria
42Polyoxymethylene (POM), which is easier to machine than Teflon, was tested as a material for the coil

mount and the slider but resulted in a fewfold reduction of the resonator’s Q factor.
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Figure 3.9: (a) Schematic of the trap rf circuit. The capacitance C is composed of the
trap’s capacitance Ctrap and the helical resonator’s self capacitance Cself. The pickup for
rf power stabilization is done inductively via pickup coil. The grayed out part shows the
initial setup with a capacitive divider used for the voltage pickup. (b) Working principle
of the circuit for rf power stabilization. A description is provided in the main text.

matched. The resonator’s self capacitance is determined from repeated measurements of
the resonance frequency (Ωres = 1/

√
L(Cself + Cdef) using various defined capacitive loads

Cdef yielding Cself ≈ 6.5 pF. The resonance frequency of the loaded circuit, i.e. including
the trap and its wiring, is about 2π× 43 MHz and the Q factor is determined to Q ≈ 140.
A measured voltage gain of GV ≈ 24 yields a total capacitance of the resonant circuit of
C = Ctrap +Cself ≈ 18 pF suggesting an upper limit for the trap capacitance of Ctrap ≈ 12
pF43.

3.4.2 rf power stabilization

rf stabilization circuit

In the quantum simulation experiments, the entangling interactions are mediated by the
out-of-plane motional modes. Along with the dc voltages, the rf power applied to the trap
rf electrodes determines these secular oscillation frequencies. Therefore, the rf power is
stabilized to ensure motional coherence (on the order of hundreds of milliseconds) during
entangling interactions and to guarantee the long-term stability of the mode frequencies.
To this end, a small fraction of the trap drive voltage is picked up, either capacitively or
inductively, serving as input signal for a home-built stabilization circuit. This circuit was
developed by Matthias Bock based on a design by Gerhard Hendl. A schematic of the
circuit’s working principle is shown in Fig. 3.9(b).

In the current setup, the rf signal is picked up inductively (see next subsection for a short
discussion about the pick-up) before being rectified and amplified. The stabilization of
the rf power is based on two serial PI circuits, a slow and a fast one, acting on voltage-
variable attenuators (VVA). The slow PI circuit compensates slow changes, e.g. due to
thermal drifts, and maintains the set point of the fast PI circuit. This avoids the necessity
to change the PI parameters of the fast circuit over the dynamic range resulting from a
strong nonlinear behavior of the VVA. The fast PI circuit is purely analog while the slow

43The given value of the trap capacitance Ctrap also includes the capacitances from the trap connections
and wiring, presumably on the order of a few pF.
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one is implemented digitally using the SPI interface of an Ethernet-controlled Arduino as
well as ADCs and DACs. The interface allows for almost all parameters to be remotely
controlled, among them the setpoint of the rf power, the PI parameters and the state of
the sample-and-hold circuit. This opens up the ability to perform a controlled and precise
attenuation of the trap potential, e.g. to kick out ions of the trap, which is crucial for fast
deterministic loading of large ion crystals. Only the PI parameters of the fast PI circuit
have to be modified via dip switches changing the feedback capacitance and resistance.

To achieve a good resolution of the rf power’s setpoint (corresponding to a secular fre-
quency step size on the order of a few Hz) a 20-bit DAC is used to generate the setpoint
voltage of the fast PI. The stabilization of the rf power can be switched on and off by an
external trigger signal (sample-and-hold), which digitally deactivates the slow PI circuit
and bypasses the update of the error signal in the fast PI circuit using an analog switch44.
At typical trapping conditions, the rf output power of the signal generator is chosen such
that the output voltage of the slow PI circuit is about 9 V corresponding to a regime of
low attenuation close to the limit of the VVA. This prevents the unintentional application
of high voltages to the trap. To minimize the effect of thermal drifts, the temperature of
the circuit board is stabilized.

rf pick-up

An active stabilization of the rf voltage used to drive the trap requires a pick-up of a
small fraction of the applied voltage. A reliable pick-up can also be useful to estimate the
voltage applied to the trap rf electrode in contrast to relying on the pre-determined value
of the voltage gain of the resonant circuit. However, this necessitates a proper calibration
of the pick-up, which is not straightforward and often requires an active probe.

The rf pick-up can be realized either capacitively or inductively. A capacitive voltage
divider consisting of at least two serial capacitors (see Fig. 3.9(a)) has the disadvantage
that the capacitors add up to the total capacitive load of the circuit, decreasing theQ factor
and thus the voltage gain of the system. In addition, the capacitors can be susceptible
to changes in the surrounding temperature. However, a capacitive pick-up is easy to
implement and the pick-up ratio can be easily adjusted since it is given by the ratio of
capacitances Vp

Vtrap
= Cpick,1

Cpick,1+Cpick,2
. An inductive pick-up does not substantially contribute

to the circuit’s load and is not as sensitive to thermal drifts. Another major advantage is
that it is easy to galvanically isolate the pickup from the trap circuit, which is beneficial
to avoid grounding problems. On the other hand, the inductive pick-up might be more
difficult to set up and a change in the geometry of the pick-up coil or its placement entails
a change in the coupling ratio, adding to the complexity of calibration.

In our experiment, an initially installed capacitive pickup45 turned out to be insufficiently
stable46 and was replaced by an inductive pickup. Given good knowledge of the gain of

44The fast PI circuit’s output voltage corresponds to the last value before triggering and is governed by a
capacitor. In the absence of leakage current the output would be kept constant. In practice, the capacitor
discharges slowly and the rf output voltage drops to zero.

45The employed capacitive divider had a voltage ratio of 1000 given by Cp,1 = 0.2 pF (4 capacitors with
0.8 pF in series) and Cp,2 = 200 pF.

46Simply using a bidirectional coupler47 to pick off the signal instead of the capacitive divider improved
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Figure 3.10: (a) Impedance matching circuit for the rf pickup. (b) Photograph of the
first prototype of the inductive pickup coil, showing the position of the coil mounted on
the lid of the helical resonator (red arrow). The position of the helical resonator coil is
indicated in yellow. The small PCB on top of the lid serves for impedance matching. (c)
Photograph of the PCB hosting the capacitive divider for rf pickup. The PCB is fixed via
Kapton tape to the bottom mount of the helical resonator. Connections are soldered to
the two pins of the vacuum feedthrough (rf + ground). Two Kapton-insulated, stranded
copper wires are used as a twisted pair to guide the rf pickup signal from the capacitive
divider PCB inside the helical resonator to the outside.

the circuit obtained from previous measurements, a precise calibration was not required
and the pick-up coil could just be optimized to provide a good signal-to-noise ratio for
active stabilization. A small coil48 was mounted on the lid of the helical resonator to pick
up the signal in the upper part of the resonator. A small PCB with an RC-impedance-
matching circuit (Q ≈ 1, R = 50 Ohm, C = 56 pF) is placed in a brass housing on top of
the resonator lid. This ensures that the circuit’s resonance frequency is fixed at the trap
drive frequency as the 50-Ohm resistor ensures a purely Ohmic impedance matched to the
BNC cable. This renders the pick-up, to first order, insensitive to changes of the cable’s
capacitance.

3.4.3 dc supply

The dc voltages on the eight endcap segments and the four middle segments are supplied
by a precise high-voltage multi-channel power supply49, often referred to as iseg box. The
voltage source is mounted in a crate and controlled by an Ethernet-compatible controller50.
Since voltages of only up to a few tens of volts are required, we use voltage dividers
to exploit the iseg module’s stability at higher voltages. In typical trapping operation,
about 300 V are generated by the voltage source. The choice of the components for the
voltage dividers is restricted by the current limit of the iseg box of Ilim = 4 mA. For the

the motional coherence significantly.
48A copper wire with a diameter of 1.5 mm was wound by hand to form a coil with a few windings and

a diameter of about 1.5 cm.
49iseg Spezialelektronik GmbH, EHS F2 20p SHV
50iseg Spezialelektronik GmbH, CC 24 MASTER controller
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endcap segments the dividers consist of Rdiv,1 = 100 kΩ51 and Rdiv,2 = 10 kΩ52, and
Rdiv,1 = 100 kΩ and Rdiv,2 = 5 kΩ53 for the middle segments, yielding a splitting ratio
of about 1:10 and 1:20 for the endcaps and middle segments, respectively. The voltage
applied to the middle segments is roughly a factor of 2 lower than the voltage on the
endcap electrodes. A parallel capacitor with Cdiv = 2.2 nF serves as a moderate filter
with a cut-off frequency of about 7 kHz. Since the resistance of the high-voltage resistors
vary in a specified range of ±1 %, the dc channels were calibrated individually using a
high-precision voltage meter.

In order to reduce high-frequency noise on the dc electrodes, potentially heating the ion
crystals at their secular frequencies, we use first-order RC low-pass filters with a cut-off
frequency of about 300 Hz. The two filter PCBs are mounted directly on top of the two dc
vacuum feedthroughs. Each RC filter line consists of a resistor with Rfilter,1 = 100 kOhm
and a capacitor with Cfilter = 4.7 nF. To enable faster switching between applied voltages,
a parallel resistor with Rdrain = 10 MOhm connected to ground was introduced to the filter
design allowing a fast discharge of the filter capacitor on the order of τ = RdrainC ≈ 4.7 ms,
the discharge time of the RC circuit. Subsequently, the voltage dividers were added to the
setup resulting in an even faster drain via the second resistor of about 50 ns and 25 ns for
the endcap and middle segments, respectively.

Initially, an additional resistor with Rfilter,2 = 100 kOhm was placed before the trap to
serve as a second RC filter stage in conjunction with the trap capacitance. However, the
additional resistors introduced Johnson noise on the trap dc electrodes and, moreover, may
have impaired the grounding of parasitic rf voltage on the dc electrodes. These resistors
were found to be the dominant cause of a high heating rate of about 16 phonons/s in the
experiment. After removing them from the circuit the heating rates could be improved
substantially to about 0.6 phonons/s. Note that a full re-design and exchange of the
PCBs is a delicate task since the filter PCBs are connected to the feedthrough pins via
metal sleeves, which are soldered into vias in the PCBs. The sleeves are pushed onto the
feedthrough pins to create the electrical connection. This causes mechanical stress on the
pins and repeated manipulation is considered risky in view of a vacuum leak.

3.4.4 dc electrode control

Given a perfectly symmetric trap, to trap a crystal in a 2d configuration, one voltage is
applied to all endcap electrodes and a different voltage to all middle segments. Due to
imperfections in the trap geometry, additional dc voltages need to be applied to some
of the electrodes to align an ion crystal with the trap center and adjust rotations of the
crystal to minimize the micromotion in out-of-plane direction. The voltage sets required
for specific actions, such as rotations and shifts of the crystals, as well as adjustments
in confinement, are calculated based on finite-element simulations54 of the electric field

51100 kΩ: Vishay RH050100K0FE02
5210 kΩ: Vishay RH05010K00FE02
535 kΩ: Vishay RH0505K000FE02
54The simulations were carried out using COMSOL Multiphysics design suite. More detailed information

on finite-element simulations of our trap can be found in [61]
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Figure 3.11: Schematic circuit of a single dc supply line from the high-voltage module
to the trap electrode. The circuit of all other dc lines are equivalent.

created by the trap electrodes. This procedure coarsely follows Refs. [129] and [130] and
is described in the following.

As a first step, finite-element simulations for all twelve dc electrodes are carried out indi-
vidually by simulating a voltage of 1 V on one electrode while keeping the others at ground.
The electrostatic potential ϕk(x, y, z) created by each electrode k is determined on a mesh
of discrete coordinate triplets (xi, yi, zi). The electrode potentials can be expanded into
nm = 9 terms including 3 linear terms, 3 harmonic terms and 3 terms describing rotations,
given by

ϕk = α1,kx+ α2,ky + α3,kz + α4,kx
2 + α5,ky

2 + α6,kz
2+

+ α7,kxy + α8,kyz + α9,kxz,
(3.1)

where αk,1, . . . , αk,9 are the expansion coefficients for each electrode k. The Laplace equa-
tion ∆ϕ = 0 forces at least one of the harmonic coefficients of the total electrostatic trap
potential to be negative55. Therefore, the potential of each of the k electrodes can also be
written in form of only nm = 8 spherical harmonic terms as

ϕk(x, y, z) = β1,kx+ β2,ky + β3,kz + β4,k(x2 − y2) + β5,k(2z2 − x2 − y2)+
+ β6,kxy + β7,kyz + β8,kxz .

(3.2)

The harmonic terms in Eq. (3.2) are intuitive to interpret when considering the classical
design of a linear Paul trap: The endcap electrodes create a potential in the form of
∝ 2z2 − x2 − y2 confining in z-direction while repelling in x− and y−direction. The dc
voltages on the blade electrodes create potentials of the form ∝ x2 −y2 responsible for the
radial anisotropy (radial mode splitting). The equations (3.2) can be rewritten as

YM = ϕ , (3.3)

where the ni × nk matrix ϕ contains the electrostatic potentials ϕk(xi, yi, zi) as columns,
M is an nm × nk matrix containing the m = 8 coefficients βm,k for each electrode k and

55An electrostatic potential cannot trap a charged particle in all three directions, which is known as
Earnshaw’s theorem.
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Y is an ni × nm matrix containing the nm bare terms (without the coefficients βm,k)
in Eq. (3.2) evaluated at the coordinate triplets (xi, yi, zi) of the simulated grid. Equa-
tion (3.3) represents an overdetermined problem, which can be solved forM by determining
the pseudoinverse56 Y −1 based on a singular-value decomposition. This step corresponds
to a fitting of the simulated potentials ϕk by Eq. (3.2). Finally, the voltage sets required
for control of the total potential can be obtained by calculating another pseudoinverse
M−1. The matrix M−1 contains the eight voltage sets that must be applied to the 12
electrodes to control the eight individual terms in Eq. 3.2, while minimizing the impact
on all other components of the potential. These eight “unit” voltage sets Uk for control of
the individual actions on the potential are given by

Uk = M−1m̂k , (3.4)

where m̂k ∈ {(1, ..., 0), (0, 1, ..., 0), ..., (0, ..., 1)}.

Instead of calculating the pseudoinverse, one could use a minimum norm least-squares
solution57 to solve the linear equation (3.3) or apply a Tikhonov regularization, which es-
sentially smooths the truncation of singular values compared to the Moore-Penrose pseu-
doinverse. For the presented trap, however, the various methods yielded the same results
and were almost independent of the used regularization parameter.

In the presented experiments, we apply pre-calculated voltage sets solely to the endcap
segments. This was necessary because, during the initial phase of the project, the voltage
control of the middle segments suffered from a time lag in the communication between
the experiment control PC and the power supply58. Consequently, the voltages on the
middle segments are currently adjusted manually to position the ion crystal along the
y direction. Only after that, we control the potential by applying multiples of the pre-
calculated voltages to the endcap electrodes, e.g. to shift or tilt the crystal. By doing so,
we accept that these voltage sets are not optimal in reducing the impact on other spherical
harmonic terms. In the future, voltage sets including the middle segments will be applied
with the goal of controlling the potential in a more deterministic way. However, certain
electrode geometries as well as imperfections in the alignment lead to undesired effects on
other terms of the trapping potential. This cannot be completely avoided unless the impact
of voltage changes on the individual electrodes are fully mapped out in experiments.

3.5 Experiment control

The states of the ions are manipulated by laser pulses of typically a few tens to hun-
dreds of microseconds using acousto-optic modulators. The required phase coherent and
precisely timed radio-frequency pulses are generated by a commercial FPGA-based Sinara
system from M-LABS59 in combination with Advanced Real-Time Infrastructure for Quan-

56The MATLAB function pinv is used for this task. It calculates the Moore-Penrose pseudoinverse.
57MATLAB’s lsqminnorm was used.
58W-IE-NE-R MPV 8120I
59The Sinara hardware platform is manufactured by Creotech Instruments S.A., ul. Jana Paw la II 66,

05-500 Piaseczno, Poland
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tum physics (ARTIQ) featuring a python-based high-level programming language (ARTIQ
python). Both hardware and software components are described in the following sections.

3.5.1 Experiment control hardware

The modular Sinara system features an FPGA-based carrier module60 as the main device
communicating with up to 12 modules plugged into the same backplane of the rack-
mountable crate. To extend the number of modules, a second Sinara crate containing an
additional carrier module is used as a synchronized satellite device, accommodating up
to 12 additional modules usable for the experiments. The system allows for generating
signals with a timing accuracy on the ns-scale. Four modules61 hosting four direct digital
synthesis (DDS) chips each are used to generate the rf signals required to drive and switch
the AOMs creating the laser pulses used for photoionization, Doppler and EIT cooling, and
repumping from metastable states. For coherent qubit manipulation 3 modules62 hosting
2 arbitrary waveform generators each (AWG) are used for global manipulation and future
single-ion addressing at 729 nm as well as for driving stimulated Raman transitions at
395 nm. The AWGs allow for amplitude shaping of the laser pulses in order to avoid
off-resonant carrier excitation. All rf output signals are amplified by network-controlled
amplifiers63. The ARTIQ SU Servo feature is used to stabilize the intensity of the lasers
used for cooling and repumping. The light is sampled by photodiodes64 in combination
with an 8-channel ADC module65. The sampled signals are used by the servo to control the
amplitude of the Urukul’s DDS rf output driving the AOMs. A thorough characterization
of the circuit and its performance has not been conducted.

Digital I/O channels66 are used to trigger external devices such as mechanical shutters,
electronic rf switches (e.g., to switch between various laser beams connected to the same
DDS output channel), and the EMCCD camera. For the experiments presented in this
work, a NIDAQ card 67 built into the experiment control PC generated the signals trigger-
ing individual laser pulses from the ablation laser used for ion loading and controlling the
servo-motor of a rotation mount adjusting the power of ablation laser pulses. A photodi-
ode detects the ablation laser pulses and triggers the generation of a 375-nm laser pulse
(second photoionization step) via the NIDAQ card in order to reduce the time of illumi-
nation with UV light potentially creating free electrons from the trap electrodes. In the
meantime, however, the electronic setup for ablation laser loading has been updated and
is now also controlled by the Sinara hardware. The NIDAQ card has thus been removed
from the setup.

60Sinara 1124 Carrier ”Kasli 2.0”
61Sinara 4410 DDS “Urukul”
62Sinara 4624 AWG “Phaser”
63Creotech Instruments Booster, 8-channel rf power amplifier
64Thorlabs PDA10A2 and Thorlabs PDA36A2
65Sinara 5108 “Sampler”
66Sinara 2128 8-channel isolated TTL cards
67National Instruments (NI) PCIe- PCIe-6363, X Series DAQ
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3.5.2 Experiment control software

The experiment control software used in the experiment, named Serles, is owned and con-
tinuously developed by AQT68. The main framework of Serles is adapted and extended to
the needs of the experiments with 2d crystals described in this work. The control software
is written in Python interfacing naturally with the ARTIQ-Python language. A local,
in-memory key-value database enables rapid querying and storage of the experimental pa-
rameters as well as the latest data set. The software comprises standard Python code and
runtime-critical code implemented as ARTIQ kernels. The code written in the ARTIQ
kernel environment is compiled into machine code by the ARTIQ compiler and executed
on the FPGA chip, which forms the core of the ARTIQ sinara hardware.

The experimental setup is controlled by two PCs: one main control PC hosting and
executing the Serles software and a second PC dedicated to Piezo mirror control, laser
control, and wavemeter readout, with the help of which the lasers are locked. We use
a separate PC to avoid runtime-critical interference with the main control PC. Beyond
that, all components in the experiment can be controlled via Serles. In the graphical user
interface (GUI), all relevant experimental parameters can be set, ions can be loaded and
kicked out with just a few mouse clicks, and the trap dc and rf voltages can be controlled
and monitored. Experimental sequences with adjustable parameters can be integrated
directly into the GUI window. More complex measurements, e.g. scans over multiple
parameters, are run using dedicated Python scripts. In general, the software allows to
scan each adjustable parameter in a measurement sequence. Each scan is saved as a single
file in JSON format.

A camera widget features the calibration for quantum state detection, and monitoring
of live crystal images. Furthermore, various crystal configurations can be detected and
classified automatically to post-process data and to monitor the stability of a crystal over
time. An overview on the state detection and read-out is given in Sec. 3.5.4; for more
details on the analysis and classification of lattice crystal configuration please refer to
Sec. 4.5.

3.5.3 Electrical connections and grounding

When looking at typical trapped-ion experimental setups, it might come as a surprise
that organized wiring and well-defined connections of lab devices are crucial for the per-
formance of a trapped-ion apparatus. Electric-field noise on the trap electrodes, e.g. due
to technical noise or Nyquist-Johnson noise, can lead to an increase in the heating rate
whereas magnetic-field noise at various frequencies can lead to decoherence and shot-to-
shot variations during measurements. In many cases a poor performance can be traced
back to noisy power supplies or ground loops. An insightful review of electric field noise
in ion-trap experiments can be found in [119].

In the experimental setup presented here, great care is taken to ensure well-defined and
isolated ground connections to prevent ground loops. The connections between the devices
involved in the experiment control are schematically shown in Fig. 3.12. All devices in

68Alpine Quantum Technologies GmbH, spin-off company of the Innsbruck ion-trapping group
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Figure 3.12: Schematic diagram of the experiment control system. The image shows
all devices connected to and controlled by the main control PC. Ethernet connections,
indicated by Ethernet connectors, are galvanically isolated through Ethernet-to-optical
converters and vice versa. Additionally, optocouplers and 1:1 rf transformers are employed
to isolate TTL and rf signals, respectively. USB connections, represented by USB Type-A
connectors, are the only non-isolated connections. A second control PC, used for laser
frequency stabilization (via wavelength meter) and control of piezo-driven mirror mounts,
is not depicted in this image. For more detailed information about the experiment control
system, refer to the main text.
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the setup are connected to a total of only two power outlets, i.e. two separate electrical
grounds. The devices connected to the vacuum chamber, including the vacuum pump and
voltage supplies, are powered by a single socket, which is secured by an uninterruptible
power supply (UPS). All other devices are connected to another separate socket. Within
each of these two circuits, several measures have been taken to prevent ground-loops:
Ethernet connections are isolated via Ethernet-to-optical converters69, e.g. to isolate the
control PCs from the Sinara box. A break-out board populated with optocouplers is
employed to galvanically isolate TTL signals from the controlled devices. To separate the
Sinara box from the rf coil mounted at the vacuum chamber, a 1:1 transformer is introduced
(see Sec. 3.7). The aluminium profiles holding the vacuum chamber as well as the posts
holding the breadboard around the trap are put onto feet made of PEEK70, ensuring
isolation from the lower breadboard and the rest of the optical table. All AOMs are either
mounted on insulating posts71 made of polyoxyehylene (POM) or ceramic pedestals posts.

Proper grounding of the helical resonator and the coaxial cable guiding the rf input turned
out to be essential for the reduction of electronic noise, and thus the heating rate. To this
end, multiple connections are introduced on the outside of the helical resonator, from
the rf input coaxial cable to the resonator shield and from the helical resonator to the
vacuum chamber (see Fig. 3.6). All efforts result in a single-ion heating rate of about
0.6 phonons/s.

Further aiming at the reduction of magnetic-field noise to improve the electronic coherence,
the number dc power supplies has been reduced. Multiple laboratory devices are powered
by a single linear power supply72 at 24 V in combination with dc-dc converters, e.g.
12 V73 for Thorlabs photodiodes. This way, many of the switched-mode power supplies,
which are known sources of decoherence, are replaced. The rf stabilization circuit is
powered separately by a 4-channel linear power supply (5V , ±15 V, 24 V)74. The coils
for magnetic-field gradient compensation are supplied by a low-noise digital bipolar power
supply75.

3.5.4 Quantum-state readout

A key requirement for quantum experiments is a high-fidelity discrimination between two
qubit states. To read out the quantum state of the ions in the presented experiments, a
fluorescence measurement at 397 nm, driving the 42S1/2 ↔ 42P1/2 transition, is carried
out in each single-shot experiment. The ions’ fluorescence is detected on the chip of
an EMCCD camera, enabling the site-resolved imaging of ion crystals76. The quantum
state is determined by evaluating whether an ion is in a fluorescing (bright) or non-
fluorescing (dark) state. Using an optical qubit, encoded in the S1/2 and D5/2 states,

69TP Link MC200CM, Gigabit-Ethernet media converter
70Polyether ether ketone
71Radiant Dyes Laser & Accessoires GmbH, Friedrichstrasse 58, 42929 Wermelskirchen, Germany
72Elektro-Automatik PS 3000 B series
73CUI Inc., PYBE20-Q24-D12-T
74Rohde&Schwarz NGP824, 4-channel power supply
75CAENels easy-driver 1020
76Additionally a PMT can be used, e.g. for the detection of a single ion.
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Figure 3.13: Calibration scheme for quantum state readout. For a detailed description,
refer to the main text. (1) A set of typically a few thousand reference images is recorded.
(2) A PCA of the reference images yields N eigenpictures corresponding to the N largest
eigenvalues. (3) An ICA of the eigenpictures reveals the contributions of individual ions.
The reciprocal lattice vectors of the single-ion image vectors yield an orthogonal basis set,
which are used as projectors. (4) The reference images are projected onto the reciprocal
lattice vectors. The distribution of pseudocounts is used to define a threshold between the
dark and bright states of the individual ions. These threshold can then be used for the
discrimination of states in new data images.

the detection is done immediately at the end of an experimental sequence. Using the
qubit encoded in the two Zeeman states of the S1/2 manifold, the population of one of the
two Zeeman states (here: |m = −1/2⟩) is coherently transferred to the D5/2 state prior
to the fluorescence measurement. This shelving is done via multiple pulses addressing
different D5/2 sublevels to ensure a high-fidelity population transfer, which is robust to
slight miscalibrations of the 729-nm beam parameters. For the state-readout of a single
ion, the bimodal distribution of photon counts can be used to set a threshold between the
bright and the dark state, which is easy to implement. In experiments with multiple ions in
a crystal, in particular planar crystals, this becomes more challenging as light scattering
crosstalk can corrupt the state discrimination. Optical aberrations or a low numerical
aperture can cause overlapping point-spread functions on the camera chip. Compared
with linear strings of trapped ions, this results in an increase in readout errors for 2d
crystals due to a higher number of neighboring ions. Furthermore, the state readout needs
to be easily applicable to arbitrary 2d crystal lattice configurations. For these reasons,
we use a novel approach based on statistical image analysis of a set of reference images,
effectively implementing an unsupervised learning algorithm. This section provides a brief
overview of the algorithm. A more detailed description of the procedure can be found in
Ref. [61] and will also be subject to an upcoming publication.

Unsupervised learning of state discrimination

First, a set of typically a few thousand reference images, displaying roughly one half of
the ions in a bright and the other half in a dark state, are recorded (step 1 in Fig. 3.13).
To this end, a π/2-pulse is applied using either light at 729 nm or the rf coil in con-
junction with shelving of one Zeeman state population before imaging. The pixel counts
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of each image is represented by a linear vector xi and the vectors of all images are as-
sembled into a matrix X. A principal component analysis of X is done for the purpose
of dimensionality reduction: A singular value decomposition of the covariance matrix
CXX = 1

nXX
T − µxµ

T
x , normalized using the average pixel brightness µx, yields eigen-

pictures of the image sets (step 2 in Fig. 3.13). For an N -ion crystal, a small number of
N eigenpictures, corresponding to the N largest eigenvalues, is sufficient to capture the
quantum-state-dependent correlations necessary for the quantum state readout as all other
eigenvalues are much smaller than the few most significant ones. Each recorded image can
be approximately represented by a linear combination of these eigenpictures. However, the
eigenpictures do not provide a very intuitive representation and, moreover, do not form
an orthogonal basis set, which is required for a crosstalk-free discrimination. A mapping
to an orthogonal single-ion basis, where each image represents the spatial distribution of
fluorescence of an individual ion in the crystal, is therefore favorable. This is achieved in
the next step, where an independent component analysis of the N eigenpictures is used to
find a single-ion picture basis S, which captures the contributions of individual bright ions.
In the presence of fluorescence crosstalk, the single-ion pictures contained in S still do not
form an orthogonal basis set and thus the reciprocal lattice vectors of S are calculated as
1N = KTS (step 3 in Fig. 3.13) to obtain one. The (reciprocal lattice) images forming
the columns of K now represent an orthogonal basis and account for crosstalk between
the ions via negative values at the location of the ions that cause the unwanted crosstalk
(blue pixels in the projector images shown in the steps 3 and 4 of Fig. 3.13). Finally, all
reference images are projected onto the N projectors, defining the reduced state space,
to obtain a distribution of pseudocounts for each ion. These single-ion distributions then
allow to determine pseudocount thresholds for each ion by fitting a bimodal Gaussian
function (step 4 in Fig. 3.13). The N projectors in combination with their thresholds can
finally be used for the state discrimination of a newly recorded image.

In addition to fluorescence crosstalk, we identified another source of error in our experi-
ments occurring during the quantum-state readout: The ion crystals sometimes heat up
during imaging and consequently compromise the readout of individual images. This prob-
lem is addressed in the following way: The distributions obtained from the pseudocounts
of projected reference images yield a mean value µb,d and a standard deviation σb,d for
the bright and the dark state of each ion. The distribution of normalized pseudocounts for
5000 reference images of a 19-ion crystal is shown in Fig. 3.14(a). The pseudocounts can
be expressed as the deviation from the mean value µ in units of the standard deviation
σb,d of the respective bright and dark state distribution separately. By doing so, we obtain
normalized pseudocounts with similar values irrespective of the ions being in a bright or
dark state. For each reference image, we sum up the normalized pseudocounts of all N
ions to obtain a new pseudocount, which we call anomaly parameter (see Fig. 3.14(b)).
The distribution of the anomaly parameters for all reference images now allows to define
a threshold to distinguish between “cold” and “hot” ion crystals in individual images (see
Fig. 3.14(c)). Before carrying out experiments, this procedure is performed automatically
along with the calibration routine described above. After successful calibration, if the
anomaly parameter of a recorded image is larger than the set threshold, the experiment is
automatically rejected and repeated by the experiment control. Alternatively, this method
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Figure 3.14: (a) Distribution of projector counts for 5000 reference images. All values
are normalized to the mean values of the dark (µd = 0) and bright (µb = 1) distributions.
(b) Anomaly parameters for a set of 10000 images of a 19-ion crystal. (c) Logarithmic
histogram of anomaly parameters shown in (b). The bars, representing a single occurrence
of an image within a bin (log(1) = 0), are shown as negative values on the y-axis to
distinguish them from the zero line. The distribution allows to set a threshold between
regular (cold crystal) and compromised (hot crystal) images using a Gaussian function
(solid red line).

can be applied to sort out compromised data in post-processing.

The last component in our detection scheme is the in-sequence classification of the crystal
lattice configuration, as the arrangement of the ions in a 2d crystal can change during
measurements. In experiments conducted so far, we use symmetric and stable crystals,
which are found in the same configuration in > 99 % of experiments. To detect and reject
the residual experiments impaired by configuration changes, in addition to the image for
quantum state-readout taken at the end of each sequence, we record an image with all
ions in the bright state at the beginning of each experiment. This image is used to classify
the crystal configuration and initiate the repetition of an experiment if needed. A detailed
description of the analysis of crystal configurations is given in Sec. 4.5.
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3.6 Optical setups

3.6.1 Overview of the laser systems and beam geometry

Laser systems

The following subsections describe the laser setups used for various purposes in our ex-
periment. A brief overview of the laser systems and beam geometry is provided upfront:
For photoionization (422 nm), Doppler and EIT cooling (397 nm), and repumping from
metastable states (854 and 866 nm), a 19”-rack-based Toptica multi-diode laser (MDL)
system77, containing four external cavity diode lasers (ECDL), is used. The lasers are
fiber-coupled78. Two Toptica DLC pro controllers are each controlling two of the lasers
of the MDL system. The stimulated Raman transition used for entangling interactions is
driven by a frequency-doubled diode-based laser system79 with an output power of about
1.4 W at 396 nm. Narrow laser light at 729 nm (∼1 Hz level), referenced to an ultra-
high-finesse cavity, is shared by another laboratory in the same building via a SM/PM
fiber and amplified by a tapered amplifier80 (see Sec. 3.6.6 for more details). It is used for
coherent manipulation of the optical qubit and population shelving prior to the quantum-
state readout of the ground-state qubit. For ablation loading, a ns-pulsed laser at 515 nm
is used and a compact single-mode diode laser at 375 nm81 is employed for the second
photoionization step.

The MDL lasers as well as the Raman laser are monitored and locked using an 8-channel
wavelength meter82, which is calibrated with light from the 729-nm laser. The software
provided along with the wavelength meter generates an error signal and enables feedback
to the piezo voltage of the locked laser via an Ethernet connection to the laser controller.
The locking bandwidth of this “digital” locking scheme is limited by the update rate
of the wavelength measurement which is typically on the order of several milliseconds.
Consequently, this scheme is not capable of narrowing down the free-running linewidth of
the ECDL lasers (on the order of a few hundred kHz), but it effectively corrects for slow
frequency drifts. The wavelength meter has a specified absolute accuracy of < 10 MHz83.
Considering the natural linewidth of the S1/2 ↔ P1/2 transition of Γ = 21.4 MHz, the
stabilization of the lasers is sufficient for our experiments.

Each of the ECDL lasers provides about 40 mW of output power ex-fiber with a specified
short-term linewidth of 150 kHz over 5 µs for the 423-nm and 397-nm and 100 kHz over
5 µs for the 854-nm and 866 nm lasers. A beat measurement of the locked 854-nm laser
with a second 854-nm laser84 suggests an upper bound for the linewidth of about 237 kHz

77Toptica MDL pro, all ECDL, 4 x DL pro at 397 nm, 423 nm, 854 nm and 866 nm, output power: ≈38
mW ex-fiber

78Toptica FiberDock
79Toptica DLC TA-SHG PRO, design wavelength: 396 nm ± 2 nm, output power: > 1.4 W, linewidth:

<200 kHz over 5 µs
80Toptica MTA BoosTA pro
81Toptica iBeam smart 375 nm
82HighFinesse WS8-10, 19”-rack compatible
83The typical accuracy is on the order of a few MHz over many hours.
84Light from the 854-nm laser at lab 1 at IQOQI was used, which has an expected linewidth of about
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Figure 3.15: Schematic image, illustrating the top view of the optical setup surrounding
the vacuum chamber. Only laser beams within the horizontal plane (xz-plane) are shown.
The ions are trapped in the center of the vacuum chamber’s main corpus. The two
permanent magnet holders, including coils for field compensation, are placed to the front
and to the back of the main corpus along a diagonal in this image. They create the
quantization field at an angle of 45◦ with respect to the crystal plane (yz-plane). The
objective lens assembly, held by a purple mirror mount, is placed in front of the vacuum
chamber’s front window for imaging and addressing perpendicular to the crystal plane.
The square hole in the front of the breadboard allows the collected fluorescence image to
be reflected downwards (perpendicular to the image plane of this figure) and enables the
passage of the addressing beam, propagating from the bottom breadboard towards the
ion crystal. The optics for the Raman 3 beam (grayed out) have been removed from the
setup, as it has no intended use in any foreseen experiments.
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measured over 17 minutes. During this time the beat signal’s center frequency exhibited
a drift of < 1 MHz. Due to air pressure fluctuations85 the frequency measured by the
wavelength meter can experience jumps on the order of a few MHz, stabilizing within less
than one second. This time can be minimized by adjusting the measurement time of each
channel to the minimum of 1 ms, thereby maximizing the update rate of the frequency
stabilization.

Laser beam geometry

Figure 3.15 shows the geometry of the laser beams surrounding the trap and the mag-
netic field. Piezo-driven mirror mounts86 in all beam paths around the trap allow for
beam alignment without the need for opening the µ-metal shield. All laser beams shown
in Fig. 3.15 enter the vacuum vessel within the horizontal plane and are unaffected by
micromotion, which occurs only in vertical direction (y). Three beams enter from other
directions and are not displayed in the figure: The ablation laser beam enters the vacuum
chamber from the bottom viewport. An additional spectroscopy beam at 729 nm, entering
the chamber from the top at an angle of 45◦ with respect to the horizontal plane, couples
also to the in-plane modes of motion87. Akin to this spectroscopy beam, a second Doppler
cooling beam, at an angle of about 20◦ with respect to the horizontal plane and about 45◦

with respect to the crystal plane, also couples to the motional modes with mode vectors
along the vertical direction. In the experiments, we find that planar crystals consisting
of more than a few ions can be cooled efficiently with the primary Doppler cooling beam
along a direction within the horizontal plane at 45◦ with respect to the crystal plane. The
ability to efficiently cool larger crystals without an overlap of the cooling laser’s k-vector
with the y-direction is unexpected and currently not understood. For single ions and small
ion crystals, however, we observe a hot vertical COM mode, which is solved by using the
second Doppler cooling beam instead.

3.6.2 Laser ablation loading and photoionization

Laser ablation loading

Routinely performing experiments with larger ion crystals requires the ability to load ions
in a deterministic and fast manner. In general, there are three options for loading ions into
traps: using a resistively heated oven, laser ablation with a pulsed laser, or a 2d magneto-
optical trap (MOT). Heating up an oven is a slow process, which can take up to several
minutes for a single loading cycle. It is therefore not suited for frequent reloading of larger
ion crystals while setting up a 2d MOT requires much more resources and potentially
affects the vacuum quality of the system [131]. We therefore choose pulsed laser ablation
as it is actually the simplest and least cumbersome method to set up and operate. It has
been implemented and proved reliable in various trapped-ion setups [132–134]. Control
of the applied laser pulses combined with precise control of the rf trap potential enables

100 kHz.
85This was experienced at the IQOQI when the door to the laboratory section was opened.
86Lioptec SR100-HS-100-2PZ, PiezoSTAR with 2 piezos (Physik Instrumente piezos)
87with the exception of the COM mode in axial direction
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us to deterministically load and remove ions. More details on the characterization of the
loading process are given in Sec. 4.1.

For ablation loading of Ca+ ions, a pure calcium target is placed in vacuum in the proximity
of the ion trap. Individual ns-laser pulses are guided onto the target to create an atomic
beam directed to the trap center. At the same time, the calcium atoms in the trap
center are ionized in a two-photon process: The first photon from a laser beam at 423 nm
isotope-selectively drives a cycling transition to a highly excited state. From this state,
the electron is further excited to the continuum by a photon from a second laser beam at
375 nm.

The laser pulses are generated by a passively Q-switched diode-pumped solid-state (DPSS)
laser88 at 515 nm. A visible wavelength is beneficial for alignment. The laser is able to
generate pulses of about 1 ns at a maximum repetition rate of 2 kHz. The maximum pulse
energy of a single pulse is about 300 µJ. The optical setup for the ablation laser is shown
in Fig. 3.16(a). A motorized λ/2-waveplate in combination with a high-power polarizing
beam splitter (PBS) cube is used to control the intensity of the laser pulses sent to the
target through the window on the bottom of the vacuum chamber. A parabolic mirror89

with a focal length of about 150 mm90 is mounted below the window and is used to focus
the beam onto the target with an estimated spot diameter of about 300 µm.

Ablation laser alignment

For a rough alignment we use the lowest power and lowest repetition rate (16.7 Hz). The
ablated atomic beam is constrained by a 300-µm hole at the tip of the funnel aperture,
which requires fine tuning of the laser beam’s position on the target to allow the atom
beam to reach the trap center. The fine adjustment of the beam position on the target
is done with the help of a time tagger91 recording the fluorescence of neutral atoms (at
423 nm) in the trap center. The time-resolved fluorescence signal detected by the PMT is
repeatedly measured while adjusting the beam alignment onto the target. In the absence
of a fluorescence signal in case of misalignment, the power of the laser is increased progres-
sively while adjusting the mirror until a signal is detected by the PMT. This signal can
then be maximized. After successful alignment, the power can be reduced to values, at
which only single or few ions are trapped with a single laser pulse. A problem that arises
during the alignment procedure is the significant beam pointing instability of the laser
during continuous operation. During alignment, the laser is therefore turned on repeat-
edly for only several seconds at a time while adjusting the mirror, which helps mitigate
large drifts of the beam position due to thermal effects. After maximizing the fluores-
cence signal, the laser is turned off for about a minute before checking the fluorescence
once again. This ensures proper alignment in the “cold” state of the laser, which is more
relevant later when triggering individual pulses.

Note that atoms can be directly ionized by an ablation pulse when using a high laser pulse
88Coherent Flare NX, 515 nm, pulse duration: 1.3 ± 0.2 ns
89Thorlabs MPD169-P01
90Due to the divergence of the laser beam we estimated a focal point at a distance of about 160 mm

from the parabolic mirror.
91ID Quantique ID900 time controller
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intensity. The trap could thus be loaded without photoionization lasers. However, there
are two concomitant problems: First, direct ionization is not an isotope-selective process
and, therefore, other isotopes may be loaded as “dark” ions. Second, atoms ionized by this
process arrive at the trap with a much higher kinetic energy. Consequently, they require
more time to be cooled and trapped stationarily. In our experiment, photoionized atoms
are loaded within one second whereas directly ionized ions appear on the camera image only
several seconds after the ablation laser pulse was triggered. For these reasons, we adjust
the pulse energy to typical values between 50 and 100 µJ, ensuring that photoionization
occurs as the primary ionization mechanism. To load ions into the trap, we typically
trigger a small number (typically 1-10) of ablation laser pulses at low power.

Photoionization

The applied laser powers for the two photoionization steps are typically about 300 µW
for 423 nm and about 8 mW for 375 nm. A high-power fiber92 is used to guide the light
from the optical table to the trap inside the magnetic shield. Both beams have a beam
diameter of about 300 µm at the trap center. The two photoionization beams (423 nm
and 375 nm) are combined using a PBS cube and sent to the ions through the left axial
hole. The 423-nm light is controlled by a mechanical shutter 93. The 375-nm laser can be
switched on and off rapidly by a TTL signal modulating the laser output94. By using fast
switching, the exposure of the trap surface to scattered UV light is minimized to prevent
the creation of free electrons that could ionize the background gas and create dark ions.
The optical setups for the two photoionization laser beams at 423 nm and 375 nm are
shown in Fig. 3.16(b).

3.6.3 Doppler cooling and state detection at 397 nm

The light for Doppler cooling is generated by one of the Toptica MDL pro ECDL lasers
at 397 nm, delivering an output power of approximately 38 mW after the fiber. During
Doppler cooling, light at 866 nm (see Sec. 3.6.5) is applied along with the 397-nm laser to
repump population from the metastable 32D3/2 state. The light at 397 nm is used for both
Doppler and EIT cooling, as well as quantum state detection, driving the 42S1/2 ↔ 42P1/2
dipole transition. A schematic drawing of the optical setup is shown in Fig. 3.17(a). 397-
nm-light is guided from the rack to the optical table in a single-mode (SM) polarization
maintaining (PM) fiber. A small fraction of the light (a few percent) is split off, coupled
into another fiber and sent to the wavelength meter for monitoring and locking. After that,
the light is split up using a λ/2-waveplate and a PBS cube between the Doppler cooling
and the EIT cooling setup. For Doppler cooling, the beam is further split into three beams:
the primary Doppler cooling beam in the horizontal plane, a second beam at an angle of
about 20◦ w.r.t. the horizontal plane for cooling single ions, and a third far-red-detuned
(∆ = 2π×300 MHz) beam for recrystallization of melted ion crystals, referred to as refreeze

92Oz Optics QPMJ-A3AHPCA3AHPC-400-3/125-3AS-5-1, 3/125 µm, high power PM patchcord for 400
nm, end-capped, high-power air gap FC connectors on both ends

93Radiant Dyes, Titanium Mini Servo Motor
94Our model of the iBeam smart laser (2018) was modified by Toptica to activate the optional digital

modulation feature. The specified maximum modulation frequency for completely switching the laser on
and off is 100 MHz.
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Figure 3.16: Optical setups for (a) pulsed laser ablation at 515 nm and (b) photoioniza-
tion at 423 nm and 375 nm.

beam. With the exception of a λ/2-waveplate, all PBSs and waveplates in the high-power
arm (before the first Doppler cooling double-pass and before the EIT cooling setup) are
dedicated high-power components from B. Halle95 and Lens-Optics96. All three beams
are individually controlled using AOMs97 in a double-pass configuration for frequency
scanning and suppression of light leakage. In addition, mechanical shutters block residual
leaking light from the unused beam paths. The refreeze beam is combined with the primary
beam and coupled into the same PM fiber. A 10-nm-bandpass filter around 400 nm98 is
introduced in front of the fiber coupler to suppress unwanted frequency components at 393
nm (from amplified spontaneous emission) pumping into the metastable 32D5/2 state. At
the trap, the beams are overlapped with the already combined 854-nm and 866-nm beam
using a dichroic mirror. The beams are entering the front viewport in the horizontal plane
at 45◦. The second cooling beam is coupled out at an angle of approximately 20◦ relative
to the horizontal plane and sent to the ions through a 125-mm planoconvex lens99. For
detection, the Doppler cooling beams are used at higher power to saturate the fluorescence
of the illuminated ions.

3.6.4 Electromagnetically induced transparency cooling at 397 nm

EIT cooling is used to cool the out-of-plane modes of motion close to the ground state. To
this end, the 397-nm light from the ECDL is split between the Doppler cooling and the
EIT cooling setup (Fig. 3.17(a)). A schematic drawing of the EIT cooling setup is shown

95Bernhard Halle Nachfl. GmbH, Hubertusstrasse 10, 12163 Berlin, Germany
96LENS-Optics GmbH, Bürgermeister-Neumeyr-Strasse 7, 85391 Allershausen, Germany
97Gooch & Housego, AOM model: 3080-125
98Edmund Optics 65132, bandpass filter, 400/10 nm, OD4, 25 mm
99Thorlabs LA1986-A
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Figure 3.17: Optical setups for (a) Doppler cooling and (b) EIT cooling.
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in Fig. 3.17(b). First, the beam is sent through an AOM100 in double-pass configuration,
which is used to set the detuning from the 42S1/2 ↔ 42P1/2 transition (“EIT ∆” in
Fig. 3.17(b)). This AOM requires vertical linear polarization, prohibiting the separation
of the output beam at a PBS by introducing a λ/4-waveplate in the double pass. It is
thus spatially separated by a prism and a small D-shaped mirror. Subsequently, the beam
is split into a σ-polarized beam (“EIT σ”) and a π-polarized beam (“EIT π”), with each
beam being controlled by an additional double-pass AOM101 before being sent to the trap
via fiber. The first double-pass AOM is operated at +2 × 220 MHz, which together with
the double-pass setup operated at −2 × 80 MHz generates a total frequency detuning
of ∆ = 110 MHz from the 42S1/2 ↔ 42P1/2 carrier transition. The double-pass of the
π-beam is set to 2 × 74.2 MHz to match the Zeeman splitting of the two S1/2 ground
states. The σ-polarized light could be used to optically pump into the |S1/2,m = −1/2⟩
state by extending the σ-light pulse as done in Ref. [135]. However, spurious polarization
components can corrupt this method, which is why we use the narrow 729-nm laser driving
the |S1/2,m = +1/2⟩ ↔ |D5/2,m = −3/2⟩ transition along with 854-nm light to pump into
the |S1/2,m = +1/2⟩ ground state subsequent to EIT cooling.

The two EIT cooling beams address the ions perpendicular to each other entering at
an angle of 45◦ with respect to the crystal plane. The resulting differential k-vector is
perpendicular to the crystal plane enabling ground-state cooling of the out-of-plane modes
of motion. The π-beam is overlapped with the primary Doppler cooling beam on a PBS
cube and enters through the front window. The σ-beam enters through a 45◦ window at
the rear side of the chamber. The σ-beam’s polarization is adjusted using a combination
of a λ/2- and a λ/4-waveplate in precision rotation mounts102. For a description of the
calibration routines for polarization and power of the EIT cooling beams, please refer to
Sec. 5.2.2.

3.6.5 Optical pumping at 854 nm and 866 nm

During cooling and imaging, a laser beam at 866 nm is applied along with the 397-nm
light to repump from the metastable 32D3/2 state back into the 42S1/2 manifold. A 854-nm
laser, along with a 729-nm laser that couples the D5/2 state, is used to initialize a quantum
state through optical pumping. This process transfers the ion from the |S1/2,m = −1/2⟩
into the |S1/2,m = +1/2⟩ state via the |P3/2,m = +1/2⟩ level. The optical setup for both
the 854-nm and the 866-nm lasers are shown in Fig. 3.18. Two ECDL lasers provide about
40 mW of light at 854 nm and 866 nm, respectively. A small fraction (∼1 %) of the
light is split off by a fused-fiber splitter103 and sent to the wavelength meter for frequency
stabilization. The high-ratio output ports are spliced with a 5-meter PM fiber to guide the
light onto the optical table adjacent to the lasers in the 19”-rack. Each beam is switched
on and off by an AOM104 in a double-pass configuration. The setups for both lasers are
completely analogous before the two beams are combined on a PBS cube and directed to

100IntraAction Corp., AOM model: ASM-2002B8
101Gooch & Housego, AOM model: 3080-125
102Thorlabs PRM1 precision rotation mount
103Thorlabs PN850R1A1, 99:1 Fiber coupler 850 ±15 nm
104Gooch & Housego, AOM model: 3200-124
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Figure 3.18: Optical setup for lasers at 854 nm and 866 nm.

the experiment through an optical fiber. At the trap, the beams are overlapped with the
Doppler cooling beam before being sent to the ions.

3.6.6 Spectroscopy and coherent control of the optical qubit at 729 nm

To manipulate the optical qubit on the S1/2 ↔ D5/2 transition, we use shared frequency-
stabilized laser light at 729 nm. In the course of this work, several 729-nm sources were
used. For most measurements, which were done before moving from the IQOQI to the
UIBK building in 2022, we used light from the QSIM experiment in lab 1 at the IQOQI.
After the move, a laser system [136] hosted in the neighboring lab (group of Ben Lanyon)
was shared. Due to frequent issues with this system, at the time of writing, we were using
shared light from the “big lab” (linear experiment) on the ground floor of the Techniker-
strasse 25. These systems were all based on Ti:Sapphire lasers referenced to an external
ultra-high finesse cavity via Pound-Drever-Hall scheme. A completely new laser system
based on a laser diode105 will be set up in the 2d crystals lab in the near future.

Due to thermal fluctuations and acoustics, phase noise is introduced to the light passing
through an optical fiber. For several tens of meters of fiber, it results in a typical frequency
broadening of a few kHz. Therefore, the phase of the shared light guided to our laboratory,
is actively stabilized using a dedicated fiber noise cancellation (FNC) setup. The phase
is stabilized interferometrically using a home-built phase-locked loop circuit following the
approach presented originally in Ref. [137].106 A small fraction of the light is split off by
a 90:10 non-polarizing beam splitter and retroflected by a mirror onto a photodiode. The
beam is then sent through an AOM at a drive frequency of 80 MHz (+1st order) before
entering the fiber. The second arm of the interferometer is given by the light, which is
back-reflected at the FC/PC fiber facet after passing through the fiber twice. This weak
beam passes through the AOM again and is overlapped with the retroflected 10%-arm
on the photodiode yielding a beat signal at 160 MHz. Using home-built electronics, an

105Toptica MTA pro
106More details on the implementation in trapped-ion experiments in Innsbruck can be found in Ref. [138].
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Figure 3.19: Optical setup for the 729-nm laser.

error signal is generated by comparing the beat signal to a reference signal from a stable
frequency source (>160 MHz, locked to a GPS reference) and mixed down to dc. In a
phase-locked loop, the phase difference is fed back to a voltage-controlled oscillator (VCO)
that drives the AOM at about 80 MHz. An additional AOM (-1st order) is used in the
FNC setup to cancel the frequency shift introduced by the other AOM.

A schematic of the optical setup used to prepare the beams that are sent to the ions is
shown in Fig. 3.19. On the experiment table, the incoming beam is amplified by a rack-
mountable system containing two tapered amplifiers (TAs)107. About 20 mW of frequency-
stabilized light is currently used to seed one of the two TAs. The TA output is sent through
a double-pass AOM and afterwards split up into three beams, which are used globally on
the ion crystal: a beam perpendicular to the ion crystal plane, a beam sent through the
axial hole of the trap, and a beam addressing the ions at 45◦ from the top (relative to
the horizontal plane) coupling to both the out-of-plane and the in-plane modes (with the
exception of the axial COM mode). These three beams can be controlled individually by
single-pass AOMs. The in-plane beam and the top beam pass a free-space AOM108. The
out-of-plane 729 beam is coupled into a fiber-AOM109. The fiber AOM is fast (rise time ≤
50 ns) and guarantees stable coupling of the modulated light into the output fiber. While
the 729-nm light in our setup is typically not used to bichromatically drive the ions,
the fiber-coupled AOM helps to reduce the power imbalance between the two light field
components, which can arise from unequal coupling to a fiber after a longer free-space beam
path following the free-space AOM. In experimental sequences, the beams are switched
using the global double-pass configuration. Focusing the beam with a 150-mm planoconvex

107Toptica MTA BoosTA pro
108Gooch & Housego, AOM model: 3080-125
109Gooch & Housego, fiber AOM model: MM080-1C2V14-5-F2SH-B
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Figure 3.20: Optical setup for stimulated Raman transitions at 396 nm. The Raman 3
beam was used only in the initial setup.

lens 110 into the AOM thereby enables a fast modulation. During measurements, the fiber
AOM is never switched off completely and remains in an idle state. The leakage through
the double-pass is negligible. 10-meter-long fibers guide the three beams from the optical
table to the experiment. At the trap, the polarization is cleaned using a PBS cube after
the fiber and can be adjusted with a combination of a λ/2- and a λ/4-plate before the
beams are focused onto the ion crystal using 300-mm planoconvex lenses.

In the near future, the output of the second TA will be used for single-ion addressing with
a tightly focused laser beam. Addressing in two dimensions will be realized using two
crossed AODs. An additional AOM will compensate for the frequency shift introduced by
the two AODs.

3.6.7 Stimulated Raman transition for entangling interactions at 396
nm

A stimulated Raman transition is used to couple the two Zeeman sublevels of the 42S1/2
manifold (ground-state qubit). Details on this interaction are presented in Chap. 6. The

110Thorlabs LA1433-B
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light for driving this transition is provided by a frequency-doubled diode laser111 at 396 nm
that off-resonantly couples the qubit states to the 42P1/2 and 42P3/2 states. The three-
level scheme used for the stimulated Raman transition requires simultaneous excitation
with two beams of different polarization with respect to the quantization axis: one beam
(σ) coupling the transition with ∆m= ±1 and a second beam (π) coupling the transition
with ∆m= 0. The beam geometry is shown in Fig. 3.15, with more details provided in
Fig. 6.2. In the presented experiment, we use two counterpropagating beams. The σ-beam
(Raman 1) is parallel to the magnetic-field axis and enters the front viewport at 45◦ with
respect to the crystal plane. It is linearly polarized and thus contains a balanced ratio of
σ+- and σ−-components. The π-beam (Raman 2) enters the vacuum chamber on the rear
side through a 45◦-window. It is linearly polarized in the horizontal plane, and aligned
perpendicular to the σ-beam, and thus to the magnetic field. This geometry results in a
differential k-vector that is perpendicular to the ion crystal plane. Therefore, we can make
use of sideband transitions, coupling to the OOP motional modes to create entanglement
across an ion crystal. An additional beam (Raman 3) was initially set up as a secondary
σ-beam but has since been removed from the setup, as it was not required for any planned
measurements. The Raman 3 beam was co-propagating with the π-beam (Raman 2) but
vertically polarized. In combination with the Raman 2 beam it could be used to drive
solely the electronic transition between the two S1/2 sublevels without coupling to the
motional modes, as the differential k-vector vanishes.

The linear polarization of the beams is cleaned using Glan-Laser polarizers112. The fre-
quency difference between two Raman beams is chosen such that the Raman process is
induced by the σ+ component of the Raman 1 (or Raman 3) beam in conjunction with
the π-polarized Raman 2 beam resulting in a transition with ∆m = +1 between the two
S1/2 Zeeman states. In order to cancel the differential ac-Stark shift on the two S1/2 Zee-
man sublevels, the Raman 1 beam is linearly polarized (orthogonal to the quantization
B-field). The balanced ratio of σ−-polarized and σ+-polarized light results in equal light
shifts on the two qubit states, due to symmetric coupling to the Zeeman sublevels of the
P1/2 and P3/2 states. Furthermore, the detunings of the beams are set corresponding to a
so-called magic wavelength at 395.799 nm, canceling light shifts on the S1/2 ↔D5/2 clock
transition [139,140].

A drawing of the optical setup for the preparation of the Raman beams is shown in
Fig. 3.20. In general, the beam paths are kept as compact as possible, as differential
optical path lengths between two Raman beams can lead to relative phase instabilities
that impair the coherence of the light field interacting with the ions. The absolute phase
of the beams does not affect the interactions. The fibers from the preparation setup to the
trap breadboard are guided closely to each other to restrict phase noise (due to thermal
drifts and vibrations) to noise that is predominantly common-mode to both fibers. The
Raman beams are individually controlled using AOMs113 in single-pass configurations.
Each beam is focused in the center of the AOMs using a 300-mm lens to decrease the rise

111Toptica DLC TA-SHG PRO, design wavelength: 396 nm ± 2 nm, output power: > 1.4 W, linewidth:
< 200 kHz over 5 µs

112Thorlabs GLB10-405, Glan-Laser polarizer, α-BBO, 405-nm coated
113Gooch & Housego I-M110-2C10T-3-GH72, Crystal Quartz, 355 nm, 110 MHz
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time during modulation. After the AOM, another 300-mm lens re-collimates the beam114,
which is then coupled into a PM-fiber using home-built fiber couplers115. An aspheric
lens with a focal length of 6.24 mm is employed to couple the light into the fiber with an
efficiency of about 70 %. Additional custom aluminium parts are introduced to the coupler
assembly to shield the fiber end facets from dust particles, which could be adsorbed and
burned. In order to further reduce the risk of damage of the fiber end, we use fibers
with high-power connectors116. In these connectors, an uncladded, bare piece of fiber core
is exposed to the light. This helps prevent the evaporation of adhesive used to fix the
glass core to the cladding, which could adhere to the fiber end and ultimately result in
damaged (burnt) end facets. Home-built couplers are also used for outcoupling the light at
the experiment. Rather than collimating the beam, the lens in the coupler directly refocus
the light from the fiber onto the ions, reducing the number of optical elements between the
fiber and the ions. In the experiments presented in this work, we used aspheric lenses117.
Recently, these lenses have been identified to introduce aberrations in the beam profile and
cause inhomogeneous coupling across the crystal. Simulations with Zemax Optical Studio
have confirmed such aberrations. In the meantime, triplet collimators have replaced the
aspheric lenses at the trap, which improved the beam quality and thus the homogeneity
of the coupling across an ion crystal.

3.6.8 Imaging and state detection

For imaging and quantum-state detection, fluorescence from the ions at 397 nm is col-
lected using a custom aberration-corrected objective lens assembly. At the same time, the
objective is designed for 729-nm light to enable addressing of individual ions in a crystal
with a tightly focused laser beam, whose focus is diffraction-limited by the given numer-
ical aperture (NA). In the course of this work two different objective lenses have been
employed. For the majority of the presented measurements, we initially used a Sill Op-
tics118 objective with NA = 0.29, before installing a new custom objective lens assembly
from PhotonGear119. Since the Sill Optics objective has already been removed from the
setup, this section will focus on details of the new imaging setup.

The objective is placed in front of the big front window (CF100) orthogonal to the crystal
plane (see Fig. 3.15). The PhotonGear objective was specifically designed and optimized
for the setup described in this work. It features a diffraction-limited design optimized for
wavelengths of 397, 532 and 729 nm. The design for 532 nm will be beneficial in the future
for applying strong light fields at 532 nm in the out-of-plane direction. The objective has a
working distance of 45.42 mm and a numerical aperture of NA = 0.44. Its outer diameter
and thus the NA is geometrically limited by the surrounding laser beams with an incidence

114Due to space constraints the distance of the second lens to the focal point is less than 300 mm.
115The couplers are composed of cage-compatible components from Thorlabs including an xy-translation

mount for the fiber adapter and a z-translation mount for the coupler lens.
116Oz Optics QPMJ-A3AHPCA3AHPC-400-3/125-3AS-X-1, X = 3 or 5 (meters), 3/125 µm, high power

PM patchcord for 400 nm, end-capped, high-power air gap FC connectors on both ends
117Asphericon GmbH, AFM12-15-U-K-285, EFL 15 mm, fused silica, AR coating: 355 nm
118Sill Optics GmbH, Germany. The objective was designed by Jan Benhelm [141] in 2004 for the trapped-

ion group in Innsbruck and is used in several experiments to date.
119PhotonGear Inc., USA
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angle of 45◦ with respect to the ion plane. The increased NA, compared with the Sill Optics
objective, is beneficial for photon collection and for diffraction-limited focusing of a laser
beam at 729 nm for single-ion addressing. The field of view is 300 µm in diameter and
the specified wavefront errors for 397, 532 and 729 nm are < 0.075λ rms, < 0.06λ rms
and < 0.05λ rms, respectively. The objective is equipped with a 3-inch-thread120 close to
the center of gravity and is screwed into a custom threaded 3-inch-mirror mount121. The
mirror mount is placed on top of an xyz-translation stage122. In addition to translations
in three directions, the mirror mount allows for tilting of the objective to minimize optical
aberrations.

For spatially resolved imaging, the collected fluorescence light is focused onto the chip of
an EMCCD camera123. The PhotonGear objective is infinity-corrected for 397 nm124. A
lens with a focal lens of 1000 mm125, mounted inside the magnetic shield, is used as a
tube lens to focus the image onto the camera chip. A 3-inch dichroic mirror126reflects the
fluorescence light at 397 nm towards the camera while transmitting light at 729 nm for
single-ion addressing from the other direction. Complementary to the camera, a photon-
multiplier tube127 (PMT) is employed to count fluorescence photons from the ions. A
90/10 beam splitter sends 90 % of the collected light to the EMCCD camera and 10 % to
the PMT. The PMT proves particularly helpful during the first attempts to trap ions in a
new setup. It has a larger chip (22 mm) than the camera (8.2 × 8.2 mm chip size), which
facilitates the alignment of the collected light. A slit aperture128 is installed in front of
the PMT to cut off potential stray light at the edges of the incoming beam. Furthermore,
the PMT can be used for fast measurements with a single ion when spatial resolution is
not required.

With the new objective we were able to reduce the aberrations of the individual signals
substantially and therefore decrease the fluorescence cross-talk between the ions in a crys-
tal. This is of particular importance for experiments with larger 2d crystals with more
than several tens of ions. The higher NA as well as the reduction of aberrations allows
to reduce the exposure time for imaging to about 300 − 500µs while maintaining a high-
fidelity quantum state readout compared to typically between 3 and 7 ms used with the
previously installed Sill Optics objective.
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Figure 3.21: (a) Schematic circuit of the rf coil used for global coherent manipulation
of the |S1/2,m = −1/2⟩ ↔ |S1/2,m = +1/2⟩ transition. (b) Photo of a prototype of the
rf coil setup mounted to the vacuum chamber’s front viewport.

3.7 rf coil for coherent manipulation of the ground-state
qubit

In addition to using stimulated Raman transitions, we can use an electromagnetic field at
radio frequency to couple the ground-state qubit, whose states are separated by approx-
imately 11.5 MHz. As a result of the longer wavelength compared to optical transitions,
we can benefit from a more homogeneous coupling across an ion crystal as well as an
enhanced coherence. In our setup, a handmade coil is used as an rf antenna to drive the
transitions between the two Zeeman sublevels |S1/2,m = −1/2⟩ and |S1/2,m = +1/2⟩. It
consists of 5 windings of a standard enameled copper wire (0.4 mm wire diameter) with
an approximate coil diameter of 35 mm. The coil is mounted below the front viewport
to an aluminium profile holding the vacuum chamber. Teflon parts keep the coil in place
while ensuring electrical isolation from the aluminium profile and the vacuum chamber. A
home-built circuit board with multiple SMD pads allows for tuning the circuit by adding
combinations of parallel and serial capacitors and inductors. A schematic of the circuit
and a photo of the setup is shown in Fig. 3.21. The sinusoidal rf signal at ωres ≈ 11.5 MHz,
used to drive the qubit transition, is generated by a DDS of the Sinara Urukul module.
Although the DDS allows for fast switching, an additional electronic switch129, controlled
by a TTL signal, suppresses signal leakage from the DDS when the coil is not used. The

120Thorlabs SM3 thread
121Liop-tec SR100-HS-100-2S-RE, STAR series 3” with SM3 thread
122Newport M-562F-XYZ
123Andor iXon Ultra 897, 512x512 pixels, pixel size: 16 µm, NUV-optimized AR coated window
124The object conjugate plane for 729 nm is at -2.23m and for 532 nm at -3.61m.
125Thorlabs LA4337-UV-ML, 2” UVFS plano-convex lens, f = 1000mm
126LaserOptik L-20094, HR at 390-400 nm, HT at 729 nm and 532 nm
127Sens-Tech P25PC
128Owis SP40, max. 7x7 mm slit aperture
129MiniCircuits ZASWA-2-50DRA+
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signal is preamplified130 by > 29 dB. A rf transformer131 is installed in the supply line
to galvanically isolate the rf coil from the source. The other end of the coil is grounded
to the vacuum chamber. Without the isolating transformer, we observed excessively large
heating rates of the out-of-plane COM mode on the order of thousands of phonons/s. The
origin of this behavior is currently unknown.

Impedance matching of the load to the line impedance of 50 Ω is performed with a single
LC network (Cimp and Limp). A resistor of 1 Ω is introduced into the circuit (here contained
in Rloss) to maintain a sufficiently low Q factor and thus a relatively broad resonance. The
capacitance of the resonant circuit is Cres = 98 pF. Based on the given values, the coil’s
inductance is estimated to be Lcoil ≈ 1.95 µH (from ωres = 1√

LC
). The circuit’s quality

factor Q is measured to be around 18. The effective resistance can thus be determined
to be Rloss ≈ 7.8 Ω (from Q = 1

R

√
L
C = ωresL

R ), of which 6.8 Ω are attributed to parasitic
losses. With this circuit, we achieve a Rabi frequency of Ω ≈ 2π×100 kHz with a maximum
relative variation of about 3.5 % across a 91-ion crystal.

Overall, the circuit’s components are given by:

Component Value Composition
Cimp 231–271 pF 1 nF || 220 pF || 10—50 pF (variable)
Limp 244 nH 220 nH + 12 nH + 12 nH
Cres 98 pF (150 pF || 22 pF) + 220 pF
Lcoil ∼ 1.95 µH -
Rloss ∼ 7.8 Ω 1 Ω (built-in) + 6.8 Ω (losses)

130MiniCircuits ZHL-1-2W-S+, Gain Block, 5-500 MHz, 50 Ω
131MiniCircuits TC1-1-T+, 1:1 core & wire transformer, 0.4-500 MHz, 50 Ω



Chapter 4

System characterization

This chapter discusses various measurements that characterize the presented system and
its performance. The loading and ionization process via laser ablation is described in
Sec. 4.1. A brief phenomenological overview of the operation of the ion trap is given in
Sec. 4.2 prior to a discussion of measurements of the ions’ micromotion (Sec. 4.3), which
allow for the minimization of excess micromotion and ensure the planarity of the trapped
crystals. Furthermore, the stability of ion crystals is investigated. Section 4.4 presents
quantitative measurements for characterization of the melting and recrystallization behav-
ior of planar crystals with various ion numbers. After that, Sec. 4.5 outlines a method for
the analysis of distinct crystal lattice configurations, enabling the minimization and filter-
ing of unwanted occurrences of metastable lattice configurations during a measurement.
Numerical simulations, described in Sec. 4.5.3, substantiate these findings. The last three
sections present details on the single-ion heating rate (Sec. 4.6), the electronic coherence
(Sec. 4.7) and the motional coherence (Sec. 4.8) observed in the system.

4.1 Ablation Loading

In order to characterize and optimize the ablation loading, the fluorescence of neutral
calcium atoms at 423 nm is detected as a function of the arrival time at the PMT while
scanning the frequency of the laser. The detected photon counts are analyzed using a
time controller for time-correlated photon counting (time tagger)1. The presented mea-
surements are essentially time-of-flight (TOF) measurements and they are used to find
suitable laser parameters to deterministically load 40Ca+ as well as 44Ca+ ions. The
initial motivation for loading 44Ca+ ions, was to measure the swapping rate of a mixed-
isotope crystal, comprised of one 40Ca+ (bright) and one 44Ca+ (dark) ion, in order to
characterize the pressure in the vacuum system.

Loading 40Ca+ ions

In the current setup, the two PI laser beams (423 nm and 375 nm) are overlapped on
1ID Quantique ID900 time controller
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Figure 4.1: Time-correlated photon counts of neutral atom fluorescence at 423 nm de-
tected on the PMT. a) The photon counts are shown for varying detuning of the PI laser
beam. The angle between the atom beam and the PI laser beam is 45◦. The resonance of
44Ca atoms is barely visible to the right of the more prominent 40Ca signature. The geom-
etry (blue Doppler shift superimposing the blue isotope shift) does not allow to suppress
the loading of 40Ca atoms. The white solid lines represent the expected Doppler-shifted
resonances based on the arrival time. b) Photon counts for a single PI laser frequency
(dashed line in a)). The small spike to the right of the main peak (40Ca) is attributed
to 44Ca atoms. c) Same as a) but for an angle of 83◦ between the atoms and the laser
coming from the opposite direction (red Doppler shift). Two distinct curves for 40Ca and
44Ca are visible. A third, very subtle line corresponds to 42Ca atoms. This geometry
enables selective loading of isotopes other than 40Ca. d) Photon counts for a single PI
laser frequency (dashed line in c)). There are two main peaks for 44Ca and 40Ca. A third
small peak in-between corresponds to 42Ca atoms. e) PMT counts for high pulse power
with dominant direct ionization. f) PMT counts at reduced power. A further reduction of
laser power leads to a trace as shown in a). Note that fluctuations of the laser’s position
on the target cause large fluctuations in fluorescence and background counts.
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a PBS cube and sent to the trap through the left axial viewport (see Fig. 3.15). The
angle between the PI beams and the neutral atom beam coming from the target is 45◦.
For this configuration, a time-resolved measurement of the neutral atomic fluorescence
as a function of the arrival time and frequency detuning is shown in Fig. 4.1(a). To
load 40Ca+ ions, the frequency of the first PI laser is currently set to 709.079362 THz
(422.791120 nm), resonant with an atom population that has a peak velocity of about
600 m/s, corresponding to a peak arrival time of about 25 µs at the PMT2. For trapping,
it is beneficial to choose a PI laser frequency, which is resonant with a slow population
of neutral atoms as they are easier to trap and require less kinetic energy to be removed
through laser cooling. Increasing the laser frequency tunes the laser into resonance with
faster atoms as they are moving away from the light source. In this configuration, 40Ca+

ions can be loaded isotope-selectively. In Fig. 4.1(a), the 44Ca atoms appear only as
a subtle line next to the dominant 40Ca line. In Fig. 4.1(b), an exemplary single trace
corresponding to the dashed line in subpanel (a) is displayed, which represents a histogram
of the time-correlated signal at a single PI laser frequency of 709.080704 THz. The 44Ca
signature appears as a small peak next to the main peak from 40Ca atoms. For loading,
the PI laser beam at 423 nm is controlled by a mechanical shutter whereas the second PI
laser beam at 375 nm is switched on rapidly with a time delay of 10 µs with respect to
the ablation laser pulse. This prevents excessive exposure of the trap electrodes to UV
light, which could create charges on the trap surface and, potentially lead to dark ions
by ionizing the background gas through free electrons. Furthermore, the delayed 375-nm
pulse is suppressing the loading of fast ions, thereby eliminating the necessity to remove
their higher kinetic energy.

Loading 44Ca+ ions

The geometry described above (PI beams through left axial trap hole) does not allow
for the exclusive selection of 44Ca atoms as the red Doppler shift of the resonance fre-
quency (several GHz for fast atoms) has an opposite sign than the blue isotope shift of
773.8(3) MHz [142]. This results in coincident resonances for 40Ca and 44Ca atoms that
are slower compared to 40Ca. In order to change the Doppler shift’s sign and decrease
its magnitude, we set up another beam entering from the right rear viewport at 45◦ with
respect to the crystal plane, resulting in an angle of about 83◦ between atom beam and
423-nm laser beam. In contrast to the configuration used to produce Fig. 4.1(a), the
modified geometry enables deterministic loading of 44Ca isotopes, which can be seen in
Fig. 4.1(c). By tuning the laser frequency to values > 709.0783 THz, the 44Ca line can
be accessed without being resonant with 40Ca atoms. Figure 4.1(d) shows a single trace,
measured at a frequency that is on resonance with both fast 44Ca and slower 40Ca atoms.
A third small peak in-between, visible as fine line in Fig. 4.1(c), can be attributed to 42Ca
atoms (isotope shift: 393.5(2) MHz, natural abundance: 0.647 % [142]). Note that, given
the availability of a rapidly switchable 375-nm laser beam, one could select the slower 40Ca
distribution by activating the laser after the arrival of the main fraction of other isotopes,
e.g. after 15-20 µs in the example of Fig. 4.1(d).

2The distance between the calcium target and the trap center is about 1.5 cm.



99 4 System characterization

Avoiding direct ionization by the ablation laser

At the time of carrying out these measurements, we did not succeed in deterministically
loading mixed-isotope crystals due to a non-optimal alignment and power setting of the
photoionization laser beams. The loading process was therefore dominated by direct ion-
ization through the ablation laser pulse. As a result of the natural abundance of 97 %
of 40Ca compared to 2 % of 44Ca target, we predominantly loaded 40Ca+ ions. After
adjustment of the PI laser beams, the ablation pulse power was set to a level below the
power threshold for direct ionization, at which efficient loading using the PI beams is
achieved, rendering photoionization the predominant loading mechanism. This enables
isotope-selective loading of 40Ca (Fig. 4.1(a)) or 44Ca ions (Fig. 4.1(c)). In typical oper-
ation, the power of the ablation laser pulse for loading is about 25 %3 of the maximum
power of 300 µJ per pulse. The PI beams at 423 nm and 375 nm are set to a power of
about 300 µW and 8 mW, respectively. With these settings, ions are loaded and Doppler
cooled within a second whereas without the use of the PI lasers, but at higher ablation
laser power, the laser cooling to a localized spot appearing on the camera image takes up
to a few seconds, as a higher kinetic energy of the ions has to be removed. Figure 4.1(e)
shows a time-resolved measurement at a high ablation laser power. A peak at an arrival
time of < 1 µs is observed corresponding to fast ions, which are ionized directly by the
ablation laser. This peak is removed by lowering the power per ablation laser pulse. Fig-
ure 4.1(f) shows a measurement at intermediate power. Further reduction of the power
leads to a trace as shown in Fig 4.1(a).

4.2 Ion trap potential, ion number, trapping lifetime

In addition to a short description of the trap and characteristic simulated values that was
given in Sec. 3.1.2, this section briefly presents the most important experimental parame-
ters as well as phenomenological observations. A detailed description and characterization
of the ion trap and its potential is presented in Ref. [61].

Trap potential

The trap is typically operated at rf voltages of around 1 kV peak-to-peak with a trap
drive frequency of Ωrf ≈ 2π× 43.2 MHz. The dc voltages applied to the dc trap electrodes
are on the order of 15 V on the middle segments and 30 V on the endcap electrodes.
The typical trapping potential we work with is characterized by the oscillation frequencies
ωs = 2π × 2.2 MHz in the strongly confining direction and ωw1,w2 of a few hundred kHz
in the two weakly confining directions. The trap is designed to confine planar crystals in
the yz-plane. The rf electrodes create a confining potential in the xy-plane. Additional
confinement in axial direction is achieved by applying positive voltages to the eight endcap
dc segments. The potential created by the endcaps is confining in x- and z-direction
while being repulsive in y-direction. For the purpose of micromotion compensation, these
voltages on the endcaps are not equal (see Sec. 3.4.4. Positive voltages on the middle
segments create the anisotropic potential, with strong confinement along x and weak
confinement along y and z, required for trapping planar crystals.

3estimated from the angle of the half-wave plate used to attenuate the laser power
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Simulations of the trap potential suggest a potential depth of about 4 eV for an rf voltage of
1 kV peak-to-peak. From image analysis it can be inferred that anharmonic contributions
to the trapping potential are only minor in the presented setup. More details on the
principles of this analysis can be found in Sec. 2.1.5 and Refs. [60, 61]. As the principal
axes of the trap potential are well aligned with the trap’s geometrical axes, x, y, and z,
the notation (ωw1, ωw2, ωs) and (ωx,ωy,ωz) is used interchangeably in this thesis.

Ion number (N)

In the presented trap, planar ion crystals of up toN ≈ 100 ions have been trapped routinely
throughout this work. As quantum measurements require stable crystal lattice configura-
tions, we trap elongated highly symmetric crystal configurations with two symmetry axes
(y and z), which are realized only by specific ion numbers for a given trap potential. More
details on the analysis of crystal lattice configurations are given in Sec. 4.5. The trapping
of stable 2d crystals with ion numbers beyond N = 105 has not yet been attempted in
presented apparatus. Although there is no fundamental constraint to do so, it currently
requires manual and iterative adjustment of the trap voltages to find stable configurations,
which becomes increasingly difficult with higher N . In principle, the system should be
capable of trapping substantially more than 100 ions. In particular, relaxing the potential
in axial direction (z) provides a way to maintain planar crystals before the heating of
low-frequency in-plane modes may become a problem. Recently, experiments reported in
Ref. [36] demonstrated the stable trapping of 2d crystals consisting of up to 512 ions, using
a similar trap design and a comparable trap oscillation frequency in out-of-plane direction
of about 2π× 2.2 MHz. Hence, disregarding changes in the lattice configuration, it should
be feasible to trap such larger planar ion crystals with the accessible trap parameters in
the setup presented here.

An upper limit for the secular oscillation frequency in out-of-plane direction, and effectively
for the number of ions, is given by the applicable rf voltage4. Increasing the confinement
in OOP direction using higher voltages on the endcap or middle segments is restricted to
the point, at which the confinement in y-direction becomes too weak. Both the endcap
and middle segments increase the confinement in x- while decreasing it in y-direction.
Applying negative voltages on the middle segments, on the other hand, would result in
a stronger confinement in y-direction while weakening the confinement in x-direction. At
some point, this would lead to the condition for trapping 2d crystals (ωs/ωw > 1.23N 1

4 )
no longer being satisfied.

Lifetime of trapped ion crystals

The lifetime of trapped ion crystals in our setup is limited only by the occurrence of “dark”
ions5. During continuous operation of the trap and laser cooling of the ions, provided that
there is no malfunction, ions do not get lost. The life time of a trapped crystal with
N ≈ 100 usually exceeds many hours and has even exceeded several days in the past

4Keeping the rf voltage around 1 kV peak-to-peak is a precaution since the trap has already been
shorted during testing at voltages of approximately 1.7 kV and 1.2 kV peak-to-peak.

5Dark ions are either a different isotope or atomic species, or a molecular ion, e.g. CaH+ or CaOH+,
formed in a reaction with a residual background gas atom or molecule.
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before a dark ion occurred. We observe that dark ions almost always appear in addition
to the already trapped ions, preserving the number of bright ions in a crystal. These
dark ions are preferentially residing at the edge of the crystal pointing to atomic species
or molecules that are heavier than 40Ca as they experience a lower confinement. After
resuming the operation of the trap, following a full ramp-down of the rf voltage, we usually
observe an increased number of dark ions within the first day of operation. This may be
related to the release of contaminants from the trap electrode surface during the heat-up
process. In contrast to the dark ions appearing during continuous trap operation, these
dark ions preferentially occupy positions between the bright 40Ca+-ions, pointing to lighter
ionic species.

4.3 2d crystal alignment and orientation

In a 2d crystal trapped in a rf trap, micromotion of ions displaced from the rf null is
inevitable. To first-order, in our trap geometry (see Sec. 3.1.2), micromotion occurs solely
along the y-direction (perpendicular to the horizontal plane) enabling micromotion-free
optical access within the entire horizontal plane. However, this applies only to ion crystals
that are perfectly aligned with the yz-plane of the trap. Imperfections in the trap geometry
as well as stray electric fields, e.g. due to charges on the trap surface, can lead to a
misplacement of the ions with respect to the rf trap center. Displacement along the
strongly confining direction as well as tilts about arbitrary axes result in phase modulated
laser-ion interactions. By measuring the excitation on the micromotion sidebands, the ions’
micromotion can be minimized via application of suitable voltages, which is described in
Sec. 4.3.1. In Sec. 4.3.2, measurements of the micromotion sidebands are further used as
a tool to ensure the planarity of ion crystals.

Note that in case of a strongly focused laser beam, the micromotion along y can also leads
to an amplitude modulation of the interaction [143]. For example, in a 105-ion crystal as
shown in Fig. 4.2, the ions furthest away from the rf-zero line experience a micromotion
amplitude of about 3 µm peak-to-peak. However, the laser-ion interaction is governed
by the accumulated intensity that the ion experiences during the interaction time. Given
that the applied laser pulse is long (e.g. 10 µs) compared to the period of the rf drive
(about 23 ns in our experiments), the shot-to-shot variations in intensity caused by the
modulation, are negligible.

4.3.1 Micromotion compensation

For most experiments, minimizing micromotion is crucial to maintain resonance between
atomic transitions and light fields. There are several ways to do so, which are, for instance,
discussed in Ref. [53] and in section 5.3 of Ref. [99]. Here, resolved sideband measure-
ments of the micromotion sidebands are carried out to quantify and minimize the ions’
micromotion. Provided that a narrow-linewidth laser is available and optical access from
relevant directions is feasible, a resolved-sideband measurement is the most accurate and
thus favorable method. We make use of the narrow S1/2 ↔ D5/2 quadrupole transition
at 729 nm to determine the micromotion modulation index β, which is related to the
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Rabi frequency of the carrier transition Ωcarr and the Rabi frequency of the micromotion
sideband transition Ωsb in the following way [53, and references therein]:

The first-order solution of the ion motion with secular frequency ωs is given by (cf. Eqs. 2.6
and 2.28)

x(t) = x0 cos(ωst) (1 + q/2 sin(Ωrft))) , (4.1)

where x0 is the ion’s distance from the yz-plane containing the rf-null. The micromotion-
modulated electric field of a laser beam propagating in the rest frame of an ion can be
expanded into Bessel functions Jn as

E(t) = E0 exp{−iωlasert} exp
{
ikxx

q

2 sin(Ωrft)
}

= E0 exp{−iωlasert}
∞∑

n=−∞
Jn(β) exp{inΩrft} , (4.2)

with the laser frequency ωlaser, the rf drive frequency Ωrf and the trap’s q parameter. For
simplicity, the laser beam is assumed to propagate along the x-direction. Expression 4.2
relates the micromotion amplitude to the modulation index, given by β = kx0q/2. In the
low intensity limit and for β ≪ 1, we find

Ωsb
Ωcarr

= J1(β)
J0(β) = β

2 +O(β2) , (4.3)

which represents a useful figure of merit in experiments as Ωcarr and Ωsb can be measured
easily via resolved-sideband spectroscopy. To this end, a pulse length scan on the carrier
as well as on the micromotion sideband is fitted with a sinusoidal function to obtain the
Rabi frequencies Ωcarr and Ωsb, respectively.

Micromotion compensation procedure

When the crystal is optimally positioned at the center of the trap and aligned with the
yz-plane, the modulation indices are expected to be minimized. Several imperfections,
however, can lead to a non-optimal placement and orientation of the ions. They may
not be confined well in a single plane but instead extended into the third dimension. The
crystal plane could also be misaligned with respect to the trap center or tilted with respect
to the principal axes. These issues may arise from asymmetries in the trap geometry as well
as electric stray fields, e.g. caused by charges or dust on the trap surface. We compensate
for these imperfections by applying pre-calculated voltage sets to the trap dc electrodes
(see Sec. 3.4.4 for the calculation of these voltage sets).

The compensation procedure is routinely carried out, e.g. after changing the trap voltages,
and is described in the following. So far, we adjust the crystal’s position in y-direction by
changing voltages only on the middle segments whereas the alignment in x and z is adjusted
by using only on the endcap electrodes.6 When the voltages required for compensation
are completely unknown, the initial coarse compensation is performed iteratively in all
three spatial directions using a single ion. In the first step, only linear translations of the

6Note that these additional voltages modify the confinement in all three directions.
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Figure 4.2: Micromotion modulation index in the out-of-plane direction. (a)–(c) Ex-
amples of planar 105-ion crystal displaying undesirable shifts along and rotations about
various axes, resulting in increased modulation indices. The labels indicate the main con-
tribution to the crystals’ misalignment. (d) The micromotion can be compensated by the
application of precalculated voltage sets, counteracting the unwanted shifts and rotations.
The displayed ion crystal is aligned with the trap center and the yz-plane, minimizing the
micromotion modulation indices for all ions. (e) Modulation indices of a slightly three-
dimensional 91-ion crystal. The ions in the center are pushed out of the crystal plane due
to low confinement in x-direction.

ion are induced. The modulation index in z-direction is measured with the axial in-plane
beam and minimized by shifting the ion along the trap axis. Analogously, the x-direction
is minimized using the out-of-plane beam. We minimize the modulation in y-direction
using the “xy-beam” (at an angle of 45◦ with respect to the horizontal xz-plane). As
the xy-beam couples to both the x- and y-directions, minimizing the excitation on the
micromotion sideband using this beam does not necessarily minimize the micromotion in
both directions equally. This can be achieved through an iterative procedure, alternating
between the out-of-plane beam and the xy-beam. However, the displacement and tilt
involving the y-direction can also be diagnosed with the out-of-plane beam probing a
larger crystal. After locating the rf trap center with a single ion, in the second part of the
compensation procedure, a larger crystal (typically N > 50) is used to detect rotations
and shifts of the crystal plane using the out-of-plane beam as the primary tool. The
modulation indices βi of the individual ions are repeatedly measured while shifting and
rotating the ion crystal to align it with the yz-plane.

Fig. 4.2 shows various scenarios of a 91-ion crystal and a 105-ion crystal. Subpanels (a) to
(c) of Fig. 4.2 show the modulation indices β(i)

OOP for 105-ion crystals displaying undesirable
shifts along and rotations about arbitrary axes. In our setup, the main operations, which
are applied to obtain the optimum configuration, are translations along the x-axis in com-
bination with rotations about the z-axis. Since the pre-calculated voltage sets are based
on the assumption of an ideal electrode alignment, the operations do not resemble pure
translations or rotations. Therefore, a translation in x-direction usually adds unwanted
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rotations about the z- and y-axis. By iteratively adjusting the compensatory voltages,
the micromotion indices can be minimized to β(i)

OOP < 0.02 for all ions (Fig. 4.2(d)). The
slightly increased modulation indices of the outer ions hint to a small misalignment of
either the laser beam or the ion crystal.7 However, these effects are small, reflected in the
overall low modulation indices, and do not restrict any envisaged experiment.

4.3.2 Planarity of an ion crystal

Another possible reason for increased micromotion in out-of-plane direction is an insuffi-
cient trap anisotropy to keep the ions confined within a plane. So far, a perfectly planar
crystal has been assumed. In practice, the crystal’s planarity cannot easily be claimed
from analyzing its image recorded perpendicular to the crystal plane. To investigate the
planarity of the crystals, one can also exploit a measurement of the micromotion modu-
lation indices using the OOP 729-nm beam. Figure 4.2(e) shows a 91-ion crystal that is
not perfectly planar. Due to a low confinement in x-direction, the ions in the center of
the crystal are pushed out of the plane. The third dimension manifests itself in a higher
modulation index of these ions. Figure 4.3 shows the transition between a 3d and 2d
configuration for a 91-ion crystal in more detail: Single-ion resolved pulse length scans of
the carrier and the micromotion sideband reveal the coupling strength to the individual
ions. At lower confinement along x, the ions in the middle row of the crystal (indicated in
red) display a weaker coupling on the carrier, as the laser-ion interaction is modulated at
Ωrf, and a stronger coupling on the micromotion sideband. After increasing the voltages
on the dc middle segments, the ions are pushed back into the plane and, consequently,
show a more homogeneous coupling overall and a weaker coupling on the micromotion
sideband. For the 2d crystals in optimal placement, shown in Fig. 4.2, consisting of 91
and 105 ions, the trap oscillation frequencies are ωx,y,z = 2π × (2196, 680, 343) kHz and
ωx,y,z = 2π × (2188, 528, 248) kHz, respectively.

4.4 2d crystal stability I - Melting and recrystallization

Most findings described in this section have been published in Ref. [60].

Background gas collisions

Two kinds of collisions with residual background gas can impact the ion crystal in the
following way [58]: Inelastic processes may alter the internal state of the ion, lead to the
formation of molecular ions in chemical reactions, e.g. CaH in case of Ca+-ions, or cause
a charge exchange with the neutral background gas. Elastic collisions, on the other hand,
only add kinetic energy to the system. Its impact can result in a systematic uncertainty
in frequency measurements [144], motional heating, changes in the crystal configuration of
planar crystals and their melting into a non-crystalline cloud. Elastic Langevin collisions
of the ions with residual background gas can transfer large amounts of energy onto the ions
and are able to induce a transition to a non-crystalline phase, in which an additional energy

7In case of a misalignment of the beam with respect to the horizontal axis, the light would be modulated
by the micromotion in y that has a larger amplitude for the outer ions.
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Figure 4.3: Carrier (top row) and micromotion sideband (bottom row) excitation dy-
namics of the individual ions of a slightly three-dimensional (left) and a well-compensated
two-dimensional (right) 91-ion crystal. In the slightly 3d crystal, we observe a decreased
coupling on the carrier as well as faster oscillations on the micromotion sideband for the
ions in the central row of the crystal (marked in red). By increasing increasing the dc
voltages on the middle segments and thus the confinement in out-of-plane direction, the
ions in the center of the crystal are pushed back into a planar configuration. This scenario
corresponds to the crystals shown in Fig. 4.2(d) and (e).
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Figure 4.4: Melting behavior of planar crystals. (a) Exemplary data set for a 91-ion
crystal and a wait time of 5 seconds corresponding to a single data point in (b). The PMT
counts after the specified wait time (labeled Doppler) are used to detect melting events
via a predefined threshold (red solid line). In addition, the PMT counts after application
of a recrystallization pulse (labeled Detection) are used to ensure that the ions are again
in crystalline phase before the next experiment. In all individual experiments, no dips
(indicating a melted crystal, as seen in Fig. 4.5(a)) of the Detection counts were observed
and the rejection of data by setting another threshold was not required. In 87 out of the
300 carried out experiments, we detect a melted crystal. The drift of the PMT counts is
due to the unstabilized laser power of the 397-nm beam used for detection. (b) Probability
of not melting into an ion cloud within a certain wait time with all laser cooling beams
being switched off for 2d ion crystals consisting of 8, 54 and 91 ions. The inset shows the
survival probabilities for short times in more detail.

transfer can occur from the trapping rf field to the ions in the cloud (rf heating) [47,145].
Once the crystal is melted, a quantum measurement is fully corrupted. For this reason,
it is essential for any measurement that an ion crystal maintains its crystalline structure
during the experimental sequence. A stable and well-known lattice structure is crucial for
individual-ion readout and laser addressing, as the calibration of these processes relies on
the stable positions of the ions.

4.4.1 Melting of planar ion crystals

When exciting a melted ion cloud with light at 397 nm, the non-localized, hot ions scatter
fewer photons than ions in the crystalline phase. This phenomenon can be used to auto-
matically detect a melting event during data taking by identifying a drop in fluorescence
counts on the PMT during Doppler cooling8. In our experiments, the detection of such an
event interrupts the sequence and triggers a far-red-detuned (∆ = 2π×330 MHz) Doppler

8The photon counts on the PMT were used when there was still a 70/30 beam splitter between camera
and PMT. After installing a new objective and a 90/10 beam splitter, the signal on the PMT is too low for
a robust automated detection of the drop in photon counts. Therefore, the “auto refreeze” feature is now
implemented using a second in-sequence image with fully bright ions enabling the analysis of the lattice
configuration as well as detecting melted crystals easily.
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cooling beam (refreeze beam) to be switched on for 100 ms along with the primary Doppler
cooling beam. The compromised experiment will then be repeated.

To characterize the melting behavior of planar ion crystals, we investigate the survival
time of a crystal in the absence of any cooling. For this purpose, after cooling, all ions
are initialized in the electronic ground-state (bright state). After that we introduce a
variable wait time τ , during which all cooling beams are turned off. Subsequently, the
fluorescence counts are recorded on the PMT by exciting the ions with a 397-nm pulse.
Theses counts are used to distinguish between the melted and crystalline phase, making
use of sudden drops in fluorescence as described above. Afterwards, the primary Doppler
cooling and refreeze beams are turned on for 100 ms to recrystallize a potentially melted
crystal. Finally, the PMT counts are recorded again and a threshold could be used to
ensure that the ions are recrystallized before the next measurement. In the measurements
presented in Fig. 4.4, the ions were recrystallized in each individual experiment, rendering
the definition of a threshold unnecessary.

In Fig. 4.4(a) the PMT counts after a waiting time of 5 s (labeled Doppler) as well as
after application of the refreeze pulse (labeled Detection) are shown for 300 individual
experiments with a 91-ion crystal. Figure 4.4(b) shows the results for planar crystals
consisting of 8, 54 and 91 ions. The survival probability, i.e. the fraction of single-shot
experiments, in which the ions maintained their crystalline structure, is presented as a
function of the waiting time τ between 0.1 and 60 seconds. For each given waiting time,
between 100 and 300 experiments were carried out to determine the survival probability.
For the smaller 8-ion crystal, we observe a relatively stable crystal lattice up to 10 s and
100 % melting after a waiting time of 40 s. For larger crystals, the time required to obtain
melted crystals in 100 % of the experiments is significantly reduced; however, the ions
maintain their crystalline structure with high probability for several seconds, as shown in
the inset of Fig. 4.4(b). It is evident that the data does not follow a purely exponential
decay, which would be expected from melting events caused solely by Langevin collisions.
We associate this nonexponential decay with rf heating as an additional mechanism in the
melting process. Rather than being caused only by background gas collisions, rf heating
following these collisions could lead to the observed decay and a nonlinear dependence on
the number of ions.

In our experiments, we mitigate rf-heating effects to a certain degree by operating the
trap with a low q parameter of q ≈ 0.1. For the long timescales investigated in these
experiments, however, these effects seem to become considerable. Molecular dynamics
simulations performed in Ref. [146] suggest a scaling of the rf-heating rate with qn, where
n > 4.9 The nonlinear dependence on the number of ions found in this reference is sup-
porting our observations. Irrespective of these mechanisms, the observed crystal survival
times of several seconds for larger crystals is long compared with the time of the envisaged
experiments, presumably on the order of ≤ 1 s.
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Figure 4.5: Refreeze measurements with a planar 91-ion crystal. (a) Exemplary data
set of a measurement with a refreeze pulse length of 40 ms corresponding to the second
data point in (b), showing a low recrystallization success rate of about 24 %. After
a free evolution time of 1 s, the fluorescence PMT counts (After 1 s w/o cooling) are
detected and evaluated by comparison with a threshold. Fewer scattered photons indicate
a melted crystal. Subsequently, the refreeze Doppler pulse is applied. The success of
the recrystallization attempt is evaluated by comparing the fluorescence counts (After
refreeze) to a predefined threshold. The thresholds are dynamically defined as a specified
fraction of the PMT counts detected in each experiment, which accounts for the drift
of the unstabilized laser power. The data shows 92 melting events occurring in 10000
single-shot experiments. Using a refreeze pulse of 40 ms, out of these 92 experiments, a
successful recrystallizaton was achieved in only 22 cases. (b) Recrystallization success rate
for pulse lengths between 30 and 70 ms. After 70 ms, about 99 % of the melted crystals
are recrystallized.

4.4.2 Recrystallization of an ion cloud

We performed further experiments, similar to the ones described in the previous section, to
estimate the required duration of a recrystallization (refreeze) pulse, i.e. a far red-detuned
(∆ = 2π × 330 MHz) Doppler cooling pulse at 397 nm, that is applied to recrystallize
an ion cloud consisting of 91 ions. To this end, after initial cooling and ground-state
preparation, the cooling lasers are switched of for a duration of 1 s, representing a realistic
upper limit for the sequence length of future experiments. After 1 s, the fluorescence is
detected on the PMT to distinguish whether the ions are in a crystalline or melted phase.
After detecting a melting event, a recrystallization pulse is applied before detecting the
photon counts on the PMT to check the success in recrystallization10. The success rate is
repeatedly measured as a function of the refreeze pulse length.

Figure 4.5(a) displays exemplary data of a measurement run with a planar 91-crystal
9The theory based on Coulomb pair collisions predicts a scaling of the rf-heating rate of qn, where

n = 4 [147], which is expected to be applicable to higher temperatures (n = 4.5 for T = 5K in Ref. [146]).
10In addition, the ions were imaged on the EMCCD camera, which was used to cross-check the success

in recrystallization.
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Figure 4.6: Images of a 91-ion crystal in various configurations, illustrating the need for
an automated image analysis to detect distinct configurations in experiments with large
planar crystals.

using a refreeze pulse duration of 40 ms. The data presented in (a) corresponds to the
second data point in Fig. 4.5(b) showing the recrystallization success rate for various pulse
lengths between 30 and 70 ms. A melting of the 91-ion planar crystal within 1 s of waiting
time occurs in about 1 % of the cases, which is consistent with the experiments described
in Sec. 4.4.1 and shown in Fig. 4.4. Hence, around 10000 experiments were conducted
for each refreeze pulse duration to obtain approximately 100 usable data points. If a
melting event occurs within 1 s without cooling, the experiment reproduces a realistic
free evolution time for the ion cloud before applying a recrystallization Doppler cooling
pulse. For the 91-ion crystal, we observe recrystallization after 70 ms in 101 out of 102
recorded melting events. Based on these findings, our standard measurements sequences
use a refreeze pulse length of 100 ms whenever a melting event is automatically detected
by the experiment control system. This value is sufficient for crystals of size N ≲ 100. For
substantially larger crystals, which have not yet been used in any measurement, a longer
refreeze pulse may be required.

4.5 2d crystal stability II - Crystal lattice configurations

Most findings described in this section have been published in Ref. [60].

In contrast to high-energy collisions with background-gas molecules or atoms leading to
the melting of an ion crystal, transitions between distinct Coulomb lattice configurations
could be induced by low-energy collisions or by motional heating, in particular rf heat-
ing [40, 41]. The transferred energy leads to a rearrangement of the ions’ equilibrium
positions associated with local minima in the potential energy landscape governed by the
number of ions in a given potential. In some cases, two or more crystal configurations
can be degenerate in energy: For example in a so-called “zigzag” crystal, the two mirror-
symmetric configurations “zig” and “zag” both correspond to a minimum in potential
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Figure 4.7: Overview of the clustering algorithm used for analysis of crystal lattice
configurations. A description of the individual steps is provided in the main text.

energy [40, 64]. Figure 4.6 shows various images of an elliptical 91-ion crystal, exhibit-
ing distinct configurations. In many cases the differences between two configurations are
subtle and can be challenging to spot by eye.

In general, we find an increasing number of distinct crystal configurations for larger, less
elongated 2d ion crystals culminating in completely unstable lattices in round crystals
due to librational modes of the shell-like structures. However, there are highly stable
elliptically shaped 2d crystal structures with two symmetry axes, exhibiting only a single
configuration most of the time. In our experiments the quantum-state readout and its
calibration (see Sec. 3.5.4) relies on fixed positions of the ions. At a later stage, addressing
of individual ions with a tightly focused laser beam will also be sensitive to positional
changes after calibrating the beam deflection to a specific configuration. Moreover, crystal
lattice changes modify the motional mode spectrum, which in turn modifies the entangling
interaction mediated by the ions’ motion. All these unwanted effects, if not detected, can
corrupt measurement outcomes. It is therefore essential that changes between lattice
configurations are either mitigated beforehand or detected with high fidelity to exclude
the corresponding data from further analysis.

In Sec. 4.5.1, the analysis of distinct crystal lattice configurations via clustering is pre-
sented. The detection and quantification of the crystal configuration changes further allows
for mitigation and filtering of unwanted occurrences of metastable lattice configurations
during a measurement, which is described in Sec. 4.5.2. Section 4.5.3 supports these
findings with numerical simulations based on simulated annealing of ion crystal lattices.

4.5.1 Analysis of 2d ion crystal configurations via clustering

Clustering algorithm

The analysis of the configuration changes is based on the recording of a time series of
ion crystal images and the assignment of these images to distinct configurations using
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statistical and machine-learning tools. More precisely, a dimensionality reduction is carried
out using a principal component analysis (PCA) followed by the application of a clustering
algorithm11 [148]. Figure 4.7 shows a schematic diagram of the individual steps, which
are described in the following:

STEP 1 A series of NP images of an N -ion crystal, taken about 0.5 s apart, is recorded.
For a comprehensive analysis, typically a number of images on the order of NP ≈ 104 is
recorded. If the goal is not to capture as many configurations as possible but rather to
use the analysis to quickly check the crystal stability over shorter time scales, one can
use a reduced set of images recorded over a shorter amount of time. The pixel brightness
values of each recorded image j is represented as a column vector xj and put into a matrix
M = [x1 . . .xNP

] representing all images and pixels as columns and rows, respectively.
STEP 2 A PCA is applied to the data for the purpose of dimensionality reduction, as
the information contained in each image is on the order of 104 pixel values. To this end, a
singular value decomposition (SVD) of the covariance matrix of CM = MMT of the kind
CM = Y Σ2Y T is performed, where Σ is a rectangular diagonal matrix containing the NP

squared positive singular values of M , and Y contains the corresponding eigenvectors yi

that are in the following denoted as eigenpictures. By truncating these matrices according
to only a small number of the largest n singular values, the individual images can be
represented as superpositions xj ≈

∑n
i=1 cijyi, with cij = yT

i xj . Empirically we find that
the observed crystal configurations in our experiment can be sufficiently described and
distinguished using n ≥ 8 eigenpictures. STEP 3 The coefficients cij are calculated
by projecting each image onto the n most significant eigenpictures. Hence, each image is
now represented by only n coefficients. STEP 4 In a final step, the clustering algorithm
DBSCAN is applied to all images in the reduced state space of n eigenvectors, i.e. applied
to the matrix cij . This way, each image is assigned to a cluster in the reduced state space,
where each cluster corresponds to a distinct crystal configuration.

The DBSCAN algorithm uses two input parameters: The parameter minpts defines the
minimum number of points to form a dense region (ϵ-neighborhood), in which all points are
mutually separated by less than a distance of ϵ, with ϵ being the second input parameter.
All core points of a cluster have to have minpts − 1 other points within the distance of
ϵ. In addition, points with a distance to these core points that is less than ϵ also belong
to the same cluster and are regarded as density-reachable even if they have < minpts
points within ϵ. While DBSCAN was used in the presented analysis, a Bayesian Gaussian
mixture model can be used in the current experiment control software12 as an alternative
clustering method.

Analysis of a planar 91-ion crystal

Figure 4.8 illustrates the configuration analysis of a planar 91-ion crystal, which is trapped
in a non-optimal potential, resulting in an increased probability of finding metastable con-
figurations. The analyzed data set consists ofNP = 4100 images recorded with an exposure
time of 100 ms over several hours. Eight eigenpictures (displayed in Fig.4.8(a)) associated

11Density-based spatial clustering of applications with noise (DBSCAN)
12Implemented using the scikit-learn package in Python: sklearn.mixture.BayesianGaussianMixture
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Figure 4.8: Configuration analysis 91-ion crystal based on 4100 camera images. (a)
Eight eigenpictures are used as projectors for the purpose of dimensionality reduction. (b)
Each image is plotted as a point in a three-dimensional state space corresponding to the
projection coefficients cij of three highest eigenvalues. The clustering algorithm identified
seven different clusters (a, b1, . . . b4, c, d) indicated by colors. Gray points are unlabeled
and associated with images, in which the ions are either hot or undergoing a configuration
change during the image acquisition time. (c) Camera images, representing the cluster
centers of four distinct configurations that are found in the analysis. The clusters bi are
mirror-symmetric representations of the same lattice configuration. The blurred ions in
cluster d appear in all images of this cluster and are attributed to either hot in-plane
motional modes, or to transitions between two (near-)degenerate non-equilibrium config-
urations occurring during imaging. (d) Planar graphs representing the ions as vortices,
with edges linking nearest neighbors. Defects in the triangular lattice with five or seven
instead of six nearest neighbors are indicated by dark blue and light blue vertices, respec-
tively. The number of occurrences of the four distinct configurations are displayed in the
lower left corner. (e) “Time series” of classified images. The plot shows the cluster label
assigned to the images recorded over time.
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with the eight largest eigenvalues are used as projectors for dimensionality reduction prior
to clustering. Values of minpts = 7 and ϵ = 15 are used as input parameters13 for the
DBSCAN clustering algorithm. In Fig. 4.8(b), each point represents one of the recorded
images that is assigned to a cluster indicated by different colors. To illustrate the clusters
in a way perceptible to humans, they are represented in a three-dimensional space, which
is spanned by the coefficients corresponding to the most significant eigenpictures found
by the PCA. The algorithm finds seven different clusters. A representative image corre-
sponding to the innermost data point of each cluster is given in Fig. 4.8(c). It should be
noted that the clustering algorithm does not account for mirror symmetries. Therefore,
the clusters labeled bi in Fig. 4.8(b) represent the same crystal lattice configuration, as
they contain mirror images of the same configuration with respect to the y- and z-axes.
The association of multiple clusters to a single configuration (as for bi) is done by com-
paring the ion positions in different pictures14. For each configuration, the probability
of occurrence pi is determined by counting the number of images Ni in the associated
cluster and normalizing it as pi = Ni/NP . In the presented data set, the main config-
uration (cluster a) is found with max(pi) < 0.5, which would be problematic in view of
quantum simulation experiments requiring only a single configuration. Even with reliable
post-processing and filtering, the data acquisition rate remains unfavorable. However, the
stability can be improved substantially by fine-tuning the trap anisotropy (ζ = ωy/ωz)
and, by doing so, increasing the energy gap between the ground-state and the metastable
configurations. This optimization is further described in Sec. 4.5.2.

In cluster d, some ions in the crystal’s center appear blurred (see Fig. 4.8(c)). The cor-
responding ions in all individual images of cluster d show such an elongated fluorescence
profile. This effect could be attributed to the following mechanisms: First, hot in-plane
vibrational modes at low frequencies may heat the center ions. Second, these images
could show a non-equilibrium state, where fast transitions between two (near-)degenerate
configurations occur on a timescale faster than the camera exposure time in these mea-
surements (100 ms). In Ref. [149], such non-equilibrium configurations have been found
in both simulations and experiments. In addition, hot in-plane modes may enhance these
transitions.

Nearest-neighbor and defect analysis

Prior to the nearest-neighbor analysis of each ion in a crystal lattice, the ion positions
need to be determined. To this end, in the initial step, the autocorrelation function of an
image is calculated and the first minimum of the radially averaged autocorrelation func-
tion rex is used as an estimate for the half-distance between two ions in the crystal. Next,
provisional ion positions are determined by repeatedly searching for the brightest pixel
while excluding an area of r2

exπ around the identified pixels. This procedure is terminated
13The values of minpts and ϵ have to be adjusted according to the crystal stability in the experiment.
14First, for each ion in an image, the minimum distance to any other ion in another picture is calculated.

The maximum of these distances is taken as a measure for the maximum deviation of an ion position in two
distinct pictures. If this maximum distance is less than a predefined threshold, the pictures are considered
to belong to the same configuration. This threshold might depend on the stability of the experimental
apparatus. For the present data set a threshold of tp = 2 pixels was used. The maximum distance is
calculated for the horizontally and vertically mirrored images.
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as soon as the value of the remaining brightest pixel drops below a specified fraction of
the global brightness maximum. Subsequently, the ion positions are determined more ac-
curately via two-dimensional Gaussian fits of the individual spots around the provisional
positions. Based on the fitted ion positions, a Voronoi tesselation is performed to deter-
mine the nearest neighbors of each ion. This ultimately enables the analysis of defects
in the crystal lattice. A planar graph representation of the identified configurations is
displayed in Fig. 4.8(d). The vertices correspond to ions and the edges link the nearest
neighbors. The figure highlights nearest-neighbor defects, facilitating to spot differences
in the lattice structures. The value in the lower left corner gives the total number of occur-
rences Ni of a certain configuration in the recorded image series. In general, the ions form
a triangular lattice structure with six nearest neighbors per ion. All configurations contain
a number of defects, exhibiting five or seven nearest neighbors. In the highly symmetric
main configuration, the triangular structure is discontinued only at the two outer ions of
the central row, which have five nearest neighbors. Other less likely configurations show
more defects in various locations, leading to a broken symmetry along the horizontal and
vertical axis of the crystal plane.

4.5.2 Mitigation of configuration changes in experiments

Optimization of the trap anisotropy

Highly stable planar crystals in our experiments are characterized by symmetry along the
horizontal and vertical axes of the crystal plane, which - for given trapping parameters - can
be realized only by specific numbers of ions. This is why the most commonly used planar
crystals in the presented experiments are comprised of 8, 19, 91 and 105 ions. Searching
for stable configurations in simulations with various trap anisotropies and ion numbers is
time-consuming. However, we empirically find stable crystals by tuning the trap’s rf and
dc voltages to adjust the trap potential anisotropy, as well as by adding and removing
ions from the crystal. Once relatively stable parameters are found, the analysis method
described above proves very effective in further reducing the occurrences of metastable
configurations. As shown in Fig. 4.9(a), the potential anisotropy can be fine-tuned by
changing the trap rf voltage to maximize the time spent in the main configuration. By
repeating the clustering analysis for several values of the trap anisotropy, the optimum
value can be estimated. Here, we simply use a quadratic fit. For the 91-ion crystal, the
occurrences of metastable configurations are mitigated to a probability of ≤ 1 % during
the measurements. Moreover, the metastable crystal configurations occurring close to or
at the optimum potential anisotropy tend to have a short lifetime, often not exceeding
10 ms.

Automated detection of crystal configuration changes

After optimization of the trap anisotropy, remaining configuration changes during mea-
surements are identified in between cycles of N repetitions of single-shot experiments by
the control program and the affected cycle is automatically repeated. For the calibration
of this configuration filter, an image series is recorded prior to a measurement. The cluster
analysis, as described in Sec. 4.5.1, yields a number of eigenpictures and the analyzed clus-
ters associated with different configurations. After this calibration procedure, the actual
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Figure 4.9: Crystal configurations versus trap potential anisotropy for a 91-ion crystal.
(a) The experimental data for the probability of finding the main configuration max(pi) is
shown as a function of the trap anisotropy ξ and indicated by red points. A stable regime
with max(pi) > 0.9 is identified, where the probability of being in the main configuration
(labeled “a”) exceeds 90 %. A quadratic fit of the points within this regime (blue line)
is used to estimate the optimum anisotropy. At this optimum point (upward-pointing
arrow), more than 99 % of all 4050 recorded images are found in the main configuration
whereas configurations e–g, shown along with the number of occurrences, are found in
only a few cases. The leftmost data point in the unstable regime (downward-pointing
arrow) corresponds to the data shown in Fig. 4.8. (b) Numerical simulations based on
simulated annealing yield the energy gaps ∆E between the main configuration and other
metastable configurations. The gap becomes maximal close to the optimum value of ξ
seen in the experiments. All experimentally observed configurations are reproduced by
the simulations.
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measurements are carried out. By taking an additional image with all bright ions at the
beginning of each single-shot experiment, the images can be assigned to a configuration
and dismissed in case of a mismatch with the desired main configuration. To this end, the
recorded image is projected onto the eigenpictures to obtain the corresponding coefficients
and, finally, the Euclidean distance to the center of the identified clusters. If the configu-
ration associated with an identified cluster is not the desired one, based on the distance
to the main cluster, the data is excluded from further analysis and the whole cycle of
N single-shot experiments is repeated. Moreover, this approach enables tracking of the
configuration state during long measurements, which facilitates the detection of symptoms
of undesired changes in the experiment.

An additional potential tool for maximizing the time in the main configuration may be the
deliberate destabilization of undesired metastable configurations by transiently changing
the laser cooling parameters. The crystal could thereby be vibrationally excited before
inducing a transfer to the main configuration during subsequent recooling. However, such
an “annealing routine” has not yet been required in the conducted experiments.

In conclusion, the presented strategies allow us to almost completely eliminate the effect
of undesired configuration changes on the measurement outcome. Still, low energetic
background gas collisions may cause ions to swap positions without undergoing a melting
of the crystal or a change of the lattice structure. These events cannot be detected by the
presented methods but are rare in our setup. This phenomenon also occurs in linear ion
strings and has been investigated in an experiment in the quantum simulation experiment
with linear strings15 in Innsbruck. Such changes were tracked in experiments with a linear
string of 22 ions, where these swapping events occurred in 5 out of 1000 experiments, each
lasting 20 ms. Although never quantified thoroughly, the background gas collision rate in
our experiment is lower than in the one with linear strings and, therefore, we estimate the
measurement errors caused by such swapping events to be well below 10−3. In setups with
higher collision rates, however, it may be an option to dedicate some ions to the detection
of these collisions occurring during measurements. For example, one could use these ions
to probe the temperature of the ions in the out-of-plane direction.

4.5.3 Numerical simulations - Simulated annealing

For a better understanding of the trap anisotropy’s influence on the occurrence of vari-
ous crystal lattice configurations, numerical simulations, based on a simulated annealing
routine [150], are performed to search for the most stable ground-state configuration as
well as other metastable configurations of a 91-ion crystal. In these simulations, a conser-
vative anisotropic harmonic potential with oscillation frequencies ωx ≫ ωy,z is assumed.
The energy function to be minimized Etot(yi, zi) = Epot(yi, zi) +Ecoul(yi, zi) is comprised
of the trapping potential energy Epot and the Coulomb energy between the ions Ecoul
(cf. Sec. 2.1.2). After execution of the annealing routine, the result is further refined by

15QSIM experiment, Lab 1 at IQOQI
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searching for a local minimum16 of the energy function.

The simulation parameters are chosen such that the ground-state configuration (the main
configuration in the experiment) is found in about 15 % of the simulation runs. To repro-
duce a large number of metastable configurations, 500 annealing runs each are carried for
6 six values of the trap anisotropy ξ in the range of 1.9 ≤ ξ ≤ 2.06. In order to determin-
istically find similar configurations for similar trapping potentials, a configuration found
for a particular anisotropy in a previous simulation run, is used as a starting configuration
in additional runs with a slightly modified trap anisotropy and a slower cooling schedule.
This way, the energy gaps for various configurations can be tracked across a range of the
trap anisotropy (connected lines in Fig. 4.9(b)).

The simulation results are illustrated in Fig. 4.9(b), where the energy difference with re-
spect to the ground-state configuration is plotted as a function of the trap anisotropy ξ.
Points corresponding to the same configuration are connected by solid lines. The simu-
lations generate a larger number of distinct configurations than seen in the experimental
data. However, in the simulated data, we are able to identify all experimentally observed
configurations close to the optimum anisotropy at ξ = 1.987, as well as the most fre-
quent configurations at ξ = 1.915. The energy gap between the ground state and the first
metastable configuration is indeed close to its maximum at ξ = 1.987, where we detect
the main configuration with the highest probability in the experiments (Fig. 4.9(a)). The
maximum energy gap is equivalent to a temperature of about 200 mK, in contrast to only
about 50 mK at ξ = 1.915, suggesting that for non-optimal anisotropy, metastable con-
figurations can be reached more easily, e.g. due to insufficient laser cooling or low-energy
Langevin collisions.

4.6 Single-ion heating rate

An important quantity characterizing an ion trapping apparatus is its motional heating
rate ˙̄n that describes the increase of the mean phonon number per time unit. There are
various mechanisms leading to electric field noise and consequently to motional heating
in an ion-trapping apparatus. Many of these mechanisms are still poorly understood.
An extensive review of potential noise sources and measurements can be found in [119].
The heating rate may yield information about the level of electronic noise at the trap
and ultimately sets an upper limit to the motional coherence time. For a single ion in
a thermal state of motion, the heating rate can be determined by the sideband ratio
technique, described in Sec. 5.8, which is based on an analytically correct relation between
the mean phonon number and the excitation probability on the red and the blue sidebands.
The mean phonon number is determined by Pr(n̄,t)

Pb(n̄,t)−Pr(n̄,t) = n̄ (cf. Eq. 5.22). In a
measurement, the red and blue sidebands are probed sequentially for a varying probe
pulse delay tdelay after cooling and state initialization. The frequency of the delayed
probe pulse is scanned over the sideband frequency and fitted by a Gaussian function
to obtain the excitation probabilities Pr and Pb. For each value of tdelay we calculate

16For the local minimum search, the MATLAB built-in function fminunc, a nonlinear programming
solver, is used.



118 4 System characterization

Figure 4.10: Heating rate measurement via sideband ratio thermometry with a single
ion trapped in a potential with ωx = 2π × 2.189 MHz (corresponding to the out-of-plane
direction of 2d crystals). The mean phonon number n̄ is estimated for various waiting
times introduced before the spectroscopic measurement on the motional sidebands. Linear
fits of the data yield the heating rate (a) before and (b) after a modification of the dc
filter boards. The heating rate ˙̄n could be reduced from about 16 phonons/s to about 0.6
phonons/s.

the mean phonon number n̄. The single-ion heating rate is then determined by fitting
the mean phonon number as a function of tdelay by a linear function. In the course of
this work, multiple heating-rate measurements have been carried out in various electronic
environments, i.e. different configurations for devices and grounding. Great efforts have
been made to reduce electronic noise on the trap electrodes by galvanic isolation and proper
grounding. Repeated measurements with a single ion yielded a heating rate of about
16 phonons/s consistent with measurements based on other methods for estimating n̄ (see
Sec. 5.3). One heating rate measurement using the single-ion sideband ratio technique
is shown in Fig. 4.10(a), where the motional sidebands were probed on the S1/2 ↔ D5/2
transition. For an EIT-cooled ion trapped in a potential with ωx/(2π) = 2.189 MHz,
corresponding to the out-of-plane direction of a planar crystal, the heating rate is estimated
to be ˙̄n = 16(2) phonons/s. This value was subsequently improved by a modification of the
dc filter boards. A resistor generating Johnson noise on the trap dc electrodes was removed
(see Sec. 3.4.3) and the current heating rate in the out-of-plane direction was reduced to
0.60(5) phonons/s per ion, which is shown in Fig. 4.10(b). In the latter experiments, the
motional sidebands were excited on the stimulated Raman transition coupling the two
S1/2 Zeeman states (see Ch. 6). Moreover, the ion was ground-state-cooled using resolved-
sideband cooling, which manifests itself in a lower temperature after cooling, in contrast
to EIT cooling that was used in panel (a). Further thermometry measurements with 8-ion
and 19-ion crystals have been carried out before and after the modification of the filter
boards and are discussed in Sec. 5.3.
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4.7 Electronic coherence

The coherence time is one of the most important characteristic quantities of a quantum
device. In essence, it defines the time window allowing for coherent manipulation of
quantum states without the loss of information encoded in these states. The electronic
decoherence in the apparatus therefore limits the number of high-fidelity operations in
a single experiment. There are two sources of decoherence occurring in experiments:
dephasing and spontaneous decay, the latter of which is equivalent to one qubit state
changing the another.

Dephasing occurs as the quantum system interacts with its environment and manifests
itself in a loss of well-defined phase relations. The loss of these phase relations can occur
between an ion’s electronic state and a laser field, or more generally, between the energy
eigenstates of the ions. The dephasing time is often referred to as the T2 time, associated
with the spin-spin relaxation time in nuclear magnetic resonance (NMR) measurements,
and specifies the time, when these coherent phase relations drop to 1/e of the original
value. In trapped-ion systems, the coherence time usually refers to the measured contrast
decay in a Ramsey experiment, in which the initially prepared state |+⟩ evolves into a
thermal mixture of the states |+⟩ and |−⟩. In contrast to the T2 time related to dephasing,
the thermal relaxation time T1 defines the decoherence due the spontaneous decay of a
qubit’s excited state to the ground state changing one qubit state into the other one. The
T1 time is therefore directly linked to the spontaneous scattering rate or the lifetime of a
qubit state. The fundamental limit for the T2 time of a qubit is given by T2 < 2T1.

For future quantum simulation experiments, the ground-state qubit encoded in the two
Zeeman states |S1/2,m = −1/2⟩ and |S1/2,m = +1/2⟩ will be used. In the absence of an
electromagnetic field, the qubit exhibits an infinite T1 time, i.e. no spontaneous decay.
However, pontaneous scattering during stimulated Raman interactions (see Sec. 6.4) as
well as the ground-state qubit’s susceptibility to magnetic-field fluctuations constitute the
dominant mechanisms for decoherence.

Coherence of the ground-state qubit

We determine the coherence time T2 of the ground-state qubit in a Ramsey experiment
using either the rf coil or the stimulated Raman transition at 396 nm to transfer popu-
lations between the two states. After optically pumping into the |S1/2,m = −1/2⟩ state,
a π/2-pulse prepares an equal superposition of |S1/2,m = −1/2⟩ and |S1/2,m = +1/2⟩.
A second π/2-pulse is applied after a Ramsey wait time τR. Finally, the quantum state
readout at 397 nm is done after shelving the |m = −1/2⟩ population to the D5/2 state.
The phase of the second π/2-pulse is scanned to obtain a sinusoidal Ramsey fringe pat-
tern, which is fitted with a sine function to extract the contrast. The measurement is
repeated for varying wait times such that the contrast decay over time can be found using
an exponential or Gaussian fit17 to extract the 1/e time constant. Figure 4.11(a) presents
Ramsey experiments on the ground-state qubit, showing the measured contrast as a func-
tion of the waiting time τR. Measurements were performed using both the rf coil and the

17White Lorentzian noise would lead to a purely exponential decay whereas other noise components can
alter the shape of the decoherence curve, such that a Gaussian function fits better.
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stimulated Raman transition, yielding comparable results. Using a Gaussian fit, we obtain
a coherence time T ∗

2 of about 130 ms for the ground-state qubit, which can be extended
to about 370 ms (T2 time) using a standard spin-echo pulse sequence18.

Coherence of the optical qubit

The same measurement scheme can be used to determine the coherence time of the optical
qubit by using the 729-nm laser to drive the S1/2 ↔ D5/2 transition. In the course of this
thesis, various shared 729-nm laser setups provided light for the experiments, the latest of
which did not show excellent frequency stability (estimately on the order of 10 kHz) due to
an absent fiber-noise cancellation. As this is limiting the coherence time, no measurements
on the coherence of the optical qubit are presented here. A new 729-nm setup (shared with
the Lanyon lab) will be set up in the near future in the 2d crystals lab. In the experiments
presented in this thesis, however, the coherence of the optical qubit does not play a crucial
role as the quadrupole transition is used only in short sequences, where a relatively short
coherence time is not limiting. Moreover, for the ground-state preparation by optical
pumping as well as for the shelving of one of the ground-state populations for quantum
state readout, a long coherence time is not required. In future experiments, the optical
quadrupole transition is planned to be used mainly for off-resonant qubit manipulation
via ac-Stark shift gates. However, in more complex measurement schemes involving novel
approaches for full quantum state tomography and entanglement characterization in large
ion crystals, e.g. as described in [151], good coherence for additional manipulation of
states in the D5/2 state manifold is required.

4.8 Motional coherence and long-term stability of the trap
oscillation frequency

Akin to the electronic coherence time, the motional coherence time T ∗
m sets a limit for

coherent interactions mediated by the ions’ motion, such as quantum logic operations
or entangling interactions in quantum simulation experiments. Tm denotes the motional
coherence time determined in a Ramsey measurement with a spin-echo pulse. Several
mechanisms may affect the motional state of an ion and lead to a reduction of its co-
herence. Here, we limit the discussion to two mechanisms that are most relevant to the
presented ion-trap experiments: secular frequency instabilities caused by rf power fluc-
tuations of the trap drive signal, and motional heating due to electric-field noise. The
latter becomes particularly important in experiments with many ions. Fluctuations in the
secular oscillation frequencies are reduced by active stabilization of the rf voltage. Using
a home-built PI circuit (Sec. 3.4.2), fast modulation (on the order of kHz) and slow drifts
of the trap oscillation frequencies can be mitigated effectively.

Measurement of the motional coherence time

The measurement to characterize the motional coherence using a single ion is based on the
18In the standard Hahn spin-echo sequence, a single π-pulse is added in the middle of the wait time,

which refocuses the spin and thereby reduces the effect of slow noise processes occurring in the first half
of the wait time.
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Figure 4.11: Electronic coherence, motional coherence and long-term stability of the
trap frequency. (a) Ramsey measurements of the electronic coherence time T ∗

2 (without
spin echo) and T2 (with spin-echo pulse) of the ground-state qubit using both the rf coil
and the stimulated Raman transition. Gaussian fits reveal coherence times of T2 ≈ 130 ms
and T ∗

2 ≈ 370 ms. (b) Motional Ramsey measurements yield motional coherence times
of T ∗

m ≈ 105 ms and Tm ≈ 279 ms. (c–d) The long-term stability of the trap oscillation
frequency ωx is measured in motional Ramsey experiment with a fixed waiting time tR of
5 ms (c) during the day and (d) during the night, showing drifts on the order of 150 Hz
and 50 Hz, respectively.
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creation of a superposition of two motional Fock states sharing the same electronic state.
This is done in a Ramsey-type experiment. After initialization in the |S1/2,m = −1/2⟩
state, the first carrier π/2-pulse creates an equal superposition of |↑⟩ = |m = +1/2⟩ and
|↓⟩ = |m = −1/2⟩ using the rf coil19. Subsequently, using the Raman laser, a π-pulse on
the blue sideband of the desired mode transfers the population in the electronic ground
state (the part of the superposition in |↓⟩) to the motionally excited |↑⟩-state, creating
the desired superposition |↑, n = 0⟩ + |↑, n = 1⟩. Here, we probe the mode in x-direction,
which corresponds to the out-of-plane direction of planar crystals. After a Ramsey wait
time tR, another π-pulse is applied on the blue sideband to transfer the motionally excited
population back to the ground state. This is followed by another π/2-pulse on the carrier.
The phase of the last pulse is scanned to create a fringe pattern, which is fitted by a
sinusoidal function to obtain the signal contrast. This measurement is repeated for various
wait times tR and the decay of contrast over time is found using a Gaussian fit, where
the motional coherence time T (∗)

m is given by the 1/e time. The contrast decay of the
“out-of-plane mode” of a single ion with ωx = 2π × 2.2225 MHz is shown in Fig. 4.11(b)
measured both with and without an additional spin-echo pulse (π-pulse in the middle of the
waiting time). We find a motional coherence time of T ∗

m ≈ 105 ms without spin echo and
Tm ≈ 279 ms with spin echo. The current single-ion heating rate of about 0.6 phonons/s
is not limiting the motional coherence at this point. Note that before the modification
of the dc filter boards, the motional coherence time Tm was approximately 40 ms and, in
fact, limited by motional heating at a rate of about 16 phonons/s. The current motional
coherence may be limited by electronic components that cause mainly low-frequency noise
on the order of µV, affecting the set point voltage of the rf stabilization circuit, or by the
voltage stability of the dc electrodes. The current coherence, however, does not pose any
limitation to the planned experiments and compares very well to other setups. A further
investigation of the rf stabilizations circuit’s performance is therefore not envisaged in the
foreseeable future.

Long-term stability of the motional modes

In order to determine the long-term stability of the secular oscillation frequency, motional
Ramsey experiments are repeatedly performed with a fixed waiting time of tR = 5 ms over
the course of several hours. The measured phase shift δ = ∆ωτR reflects the changes in
the secular frequency as the electronic state is entirely in the |↑⟩ state, which is largely
unaffected by laser frequency changes or magnetic-field fluctuations. The drift of the
motional oscillation frequency over time is shown in Fig. 4.11(c–d) for a single ion with
a secular frequency of ωx = 2π × 2.225 MHz. We find a frequency drift of < 50 Hz
peak-to-peak over the course of 3 hours during the day (Sunday early afternoon) and
< 150 Hz peak-to-peak over the course of more than 8 hours during the night. The origin
of these drifts is unknown but they are suspected to be caused by thermal fluctuations of
the rf stabilization circuit, the helical resonator20 or the trap electrodes. Without active
stabilization, we observe secular frequency drifts on the order of one kHz over the course
of a few minutes, due to the temperature fluctuations around the experiment.

19Alternatively, the stimulated Raman transition could also be used for this purpose.
20Temperature changes could slightly change the geometry and thus the resonance properties of the

resonator.



Chapter 5

Ground-state cooling and
thermometry of 2d ion crystals

A fundamental feature of trapped-ion experiments is the fact that ions are confined and
oscillating in an approximately harmonic potential. This is well understood both theoreti-
cally and experimentally. The excellent controllability of the electronic as well as motional
degrees of freedom make trapped ions such a powerful platform. For experiments involving
quantum gates mediated by the ions’ motion, good knowledge and control of the ions’ mo-
tion is generally required. Moreover, a thermal occupation of motional states can adversely
affect the induced interactions and should be mitigated. An excellent level of control has
been demonstrated for linear strings of up to several tens of particles in numerous ex-
periments. However, as the number of ions increases, the number of vibrational modes
grows accordingly, resulting in a number of challenges: First, sequential sideband cooling
of individual modes - the most commonly applied cooling technique in trapped-ion exper-
iments - becomes time-consuming and eventually infeasible. However, over the years, the
methodology of cooling techniques has evolved, and faster multi-mode cooling techniques,
such as polarization-gradient cooling [48] and EIT cooling [152], have been successfully
applied to larger ion crystals ranging from several tens to hundreds of ions [135,153,154].
Second, techniques for measuring the temperature of an ion crystal cooled close to the
ground state are less developed for larger crystals. The established techniques generally
rely either on the calculation of the full time propagation of the sideband dynamics or on
the interrogation of individual ions in a crystal. Both approaches are not easy to scale
up and complex many-body interactions make exact calculations practically infeasible for
ion crystals exceeding several tens of ions. Therefore, new thermometry methods are re-
quired to estimate the temperature of arbitrarily large ion crystals that are cooled near
the ground state, e.g. for evaluating cooling techniques or determining the heating rates
for ion crystals. In experiments with planar crystals, an additional challenge for cooling
and thermometry may be given by the inevitable micromotion of ions. In the presented
setup, however, the ions can be addressed from directions perpendicular to the direction
of micromotion.
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In the first part (Sec. 5.1) of this chapter various numerical methods to determine the
motional mode frequencies and vectors of ion crystals are discussed. The second part
(Sec. 5.2) focuses on ground-state cooling of 2d ion crystals via polarization-gradient cool-
ing and electromagnetically induced transparency (EIT) cooling. In the third part (Sec. 5.3
and following), various approaches for thermometry measurements are discussed, starting
with the resolved-sideband technique, which represents the primary tool to carry out ther-
mometry measurements with a single ion. In section 5.9 the generalization of the single-ion
sideband thermometry technique as well as its experimental realization with a 19-ion crys-
tal is presented, demonstrating its applicability to globally addressed, near-ground-state
cooled ion crystals of arbitrary size.

5.1 Numerical simulations of motional modes

Throughout this chapter, simulations of motional mode spectra are presented in conjunc-
tion with experimental results. An overview of various approaches to simulate the motional
mode frequencies and vectors is given in the following.

In a crystal confined in an ion trap, the ions’ motion is determined by the trapping
potential and the mutual Coulomb interactions between them. A good knowledge of the
ions’ equilibrium positions in the potential is essential to accurately simulate the normal
modes. Therefore, the simulation of normal modes usually consists of two steps: First, the
determination of the equilibrium positions, around which the ions oscillate, and, second,
the actual simulation to identify the motional mode frequencies and vectors (Lamb-Dicke
parameters).

Equilibrium positions

In this work, two different methods for the simulation of the equilibrium positions of
2d ion crystals were used: i) Solving the ions’ equations of motion including a damping
term, and ii) simulated annealing. The first method is essentially a molecular dynamics
simulation. Initially, the ion positions are randomly distributed across a predefined area.
Starting from these positions, the coupled equations of motion in the time-dependent
potential (see Sec. 2.1.1) are solved for a number of time steps. By the introduction of a
damping term dvi

dt = −Ccoolvi, akin to homogeneously and isotropically laser cooling all
three directions1, the ions’ coordinates converge towards their equilibrium positions. In the
simulated annealing routine, the energy function, consisting of the potential energy in the
trapping potential and the mutual Coulomb interactions, is minimized. Such a routine can
also be used for the simulation of various crystal configurations (see Sec. 4.5.3 for further
details). Simulated annealing is generally faster than solving the equations of motion but,
depending on the simulation parameters, one can end up in undesired metastable crystal
lattice configurations. The simulated annealing runs may therefore have to be repeated
multiple times to find the stable main configuration used for experiments, which renders
this method slower in some cases.

1Note that in reality, very high ion velocities can reduce the cooling force if the Doppler shift exceeds
the detuning of the laser. This behavior is not reproduced by the described simulations.
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Pseudopotential simulations

Most simulations of normal mode frequencies and vectors shown in this thesis are simu-
lated using pseudopotential theory. These simulations are based on the approximation of
the trapping potential by a time-independent harmonic potential, which is described in
more detail in Sec. 2.1.2. While there are other approaches that are potentially more ac-
curate by taking the time-dependent rf potential into account (see following paragraphs),
pseudopotential simulations have proven to be sufficiently accurate for the presented ex-
periments. Examples of mode spectra from pseudopotential simulations can be found in
Fig. 5.1 or Fig. 5.4.

Fourier transformation of simulated ion trajectories

Another approach to extract the normal mode frequencies and the mode vectors entails
the (fast) Fourier transformation (FFT) of the numerical solution of the equations of
motion (Eq. (2.11)). For this purpose, either simple integration schemes2 like x⃗n+1 =
x⃗n + v⃗0∆t + 1

2 a⃗n∆t2 or numerical solvers for differential equations3 are used to stepwise
compute the trajectories of N ions for a time interval tsim on the order of a few hundreds
of µs to several ms. The obtained trajectories are then subjected to a FFT to determine
the frequency spectrum of the secular oscillations.

To extract the N out-of-plane mode frequencies and mode vectors, an independent com-
ponent analysis4 (ICA) is applied to the N ion trajectories stored in Fin (N × d matrix
with d being the number of time steps of the individual trajectories). The fastICA yields
F = WTFin, where F is a N × d matrix containing the N independent (spectral) compo-
nents corresponding to the N out-of-plane mode frequencies. The frequencies are finally
found by fitting the absolute values of the individual columns of F with Gaussian func-
tions. The N mode vectors can be extracted from the N × N matrix W (un-mixing
matrix)5.

A simulated frequency spectrum obtained from the FFT of the individual ion trajectories
of a 19-ion crystal is shown in Fig. 5.1(a), where the mode frequencies obtained from
the ICA are indicated by vertical lines at the bottom of the plot. Figure 5.1(b) illus-
trates the simulated mode vectors, once obtained from pseudopotential simulations and
once from the ICA of the simulated ion trajectories in the full rf potential. The values
from the two approaches agree very well (< 3.5%). Slight discrepancies between the two
methods can be seen in Fig. 5.1(c), where they are compared with the measured OOP
mode frequency spectrum of a 19-ion crystal, trapped in a potential with trap oscillation
frequencies of ω{x,y,z} = 2π × {2188.4, 643.2, 340.0} kHz. The spectrum shows a more
noticeable discrepancy between the pseudopotential- and the FFT/ICA-based values for
lower mode frequencies. In the simulations, the axial potential was slightly modified to
ωz = 2π × 342 kHz to improve the match between simulations and experiment.

2Other algorithms such as the Verlet or Forest-Ruth algorithm might be used to increase the accuracy
of the simulations.

3e.g. MATLAB built-in solver ode113
4fastICA [155]
5The fastICA algorithm computes F as F = T (W T)−1Fin + M , where the unmixing matrix W is

normalized by T and M contains the N sample means of Fin.
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Figure 5.1: Simulation of the out-of-plane modes of motion via molecular dynamics
simulation in the rf potential and comparison to pseudopotential theory and experimental
data. (a) Simulated single-ion resolved motional “spectrum” obtained via ICA of the
Fourier-transformed simulated ion trajectories. |Y (f)| corresponds to the amplitude of
motion in the out-of-plane direction. The fitted mode frequencies are indicated by vertical
bars at the bottom. (b) Comparison of the single-ion Lamb-Dicke factors obtained from
pseudopotential theory (top) and molecular dynamics simulations (bottom). (c) Measured
blue sideband frequency spectrum of the out-of-plane motional modes of a planar 19-
ion crystal. The vertical black dotted lines and bars at the bottom indicate the mode
frequencies obtained from pseudopotential simulations. The vertical red dotted lines and
short bars at the bottom show the frequencies derived from the simulated ion trajectories
in the rf potential.
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Figure 5.2: Comparison of the simulated normal mode frequencies of a 22-ion zig-zag
crystal using the pseudopotential approximation as well as Floquet-Lyapunov theory. The
code of the Floquet-Lyapunov simulations used to produce this plot was gracefully pro-
vided by Haggai Landa.

Floquet-Lyapunov approach

The mathematical foundation of the Floquet-Lyapunov method for solving the coupled
Mathieu equations is summarized in the Appendix A following Refs. [56,59]. The Floquet-
Lyapunov theory is a way to solve dynamical systems described by periodic, linear dif-
ferential equations, such as the Mathieu equations. It thereby takes the full rf field into
account. However, compared to pseudopotential as well as molecular dynamics simula-
tions, the Floquet-Lyapunov approach did not improve the agreement with experimental
data of planar 8-, 16- and 22-ion crystals. As an example, the discrepancy between the
simulated mode frequencies using pseudopotential theory and Floquet theory for a 22-ion
zig-zag crystal6 is shown in Fig. 5.2. In particular at low oscillation frequencies, the two
methods do not yield consistent results. The origin of this discrepancy is currently not
understood.

5.2 Ground-state cooling of 2d crystals

Cooling single or multiple ions close to the ground state is a key requirement for high-
fidelity quantum operations with trapped ions. In a first step, the ions are usually Doppler
cooled to a mean phononic occupation number on the order of n̄ ∼ 10 quanta. Subse-
quently, the ions are further cooled near the ground state. The most popular technique
to do so is resolved-sideband cooling, which has first been implemented experimentally
about 30 years ago; see Ref. [156] for a single ion in one dimension, Ref. [157] for a single
ion in all three spatial directions via Raman sideband cooling, and Ref. [158] for the first
sideband cooling of a two-ion crystal. Although this technique is well established and
widespread, it becomes impractical for larger systems with many ions. To cool multiple
modes in a large ion crystal close to the ground state, e.g. all axial/radial modes in a
linear ion chain or all out-of-plane/in-plane modes in a 2d crystal, one has to sequentially

6A measured spectrum and results from pseudopotential simulations of the in-plane modes are presented
in Fig. 5.4 in the context of polarization gradient cooling.
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Figure 5.3: Polarization gradient cooling principle. Two counterpropagating beams in a
lin-perp-lin configuration create a periodic polarization pattern. The polarization gradient
causes a state-dependent displacement of the trapping potential and, in addition, gives rise
to a spatial dependence of the pumping rates favoring energy-decreasing transitions. The
illustration shows an ion in the |S1/2,m = +1/2⟩ state (1) moving within the polarization
gradient through a region with linear polarization towards the field with predominantly
σ−-polarized light (2), where it gets excited to the |P1/2,m = −1/2⟩ state (3). Due to the
state-dependent displacement of the potentials for the two ground states, the ion decays
favorably to the |S1/2,m = −1/2⟩ state (4) before the cycle can start from anew (with
opposite signs). The right part illustrates the process for an ion residing in one of the
potential wells.

cool these modes using individual pulses resonant with the red sidebands of single modes.
This procedure is time-consuming and can get inefficient for a large number of particles,
in particular in traps subjected to a large heating rate. However, there are other ground-
state cooling techniques allowing the simultaneous cooling of multiple modes, which are
scalable and thus applicable to larger ion crystals. Two established techniques, namely
polarization-gradient (PG) cooling and electromagnetically induced transparency (EIT)
cooling, are discussed in the following. Note that there are ongoing efforts to increase
the efficiency of sideband cooling through novel cooling protocols [159,160], although the
scalability of these methods is unfavorable in view of the relatively simple implementation
of PG or EIT cooling7.

5.2.1 Polarization-gradient cooling

The theoretical framework and the data summarized in this section have been published in
Reference [153].

PG cooling is a Sisyphus cooling technique and was reported first in 1988 in the context of
cooling free atoms in neutral atomic molasses to sub-Doppler temperatures in Ref. [161],
although at that time the mechanism was not understood. Only after that, it was described

7assuming the absence of geometrical or space constraints
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theoretically in 1989 [162]. Besides an early demonstration with weakly bound trapped
ions in one dimension [163], there has not been much interest in the application of PG
cooling to bound atomic systems. However, the endeavors to scale up such systems led
to realizing the potential of multimode cooling techniques. Here, we briefly discuss the
principles of PG cooling and its application to a planar, zigzag-shaped 22-ion crystal, which
was published in Ref. [153] along with experiments on cooling linear crystals consisting of
up to 51 trapped 40Ca+ ions. The experiments were performed in the quantum simulation
experiment (QSIM) at the IQOQI Innsbruck. Details on the experimental setup can be
found, for example, in Refs. [81].

Theoretical descriptions of PG cooling of trapped ions were established in Refs. [48, 164]
with a focus on atomic transitions with Jg = 1

2 ↔ Je = 3
2 , where J{g,e} are the total

angular momenta for the ground and the excited states. A description of PG cooling
using a Jg = 1

2 ↔ Je = 1
2 transition (S1/2 ↔ P1/2 in 40Ca+) was derived in Ref. [153],

which the following paragraphs are briefly reviewing.

As its name suggests, PGC is based on the exploitation of a polarization gradient. In the
presented experiments, a gradient is created by two off-resonant counterpropagating beams
with mutually orthogonal linear polarization (lin-perp-lin configuration). They propagate
along the trap symmetry axis z, coincidental with the quantization axis. The beams
create an alternating polarization pattern of σ+- and σ−-polarization along the beam
propagation axis. This leads to a state-dependent trapping potential for the illuminated
ions that are either in state |S1/2,m = +1/2⟩ = |+⟩ or |S1/2,m = −1/2⟩ = |−⟩. The
periodically varying ac-Stark shifts, which are π out of phase with respect to each other,
modify the total potential energy of the two states to

U± = 1
2mω

2
zz

2 + 1
3∆s∓ 1

3∆s sin(2kz + 2ϕ), (5.1)

where k is the wave number, ∆ the detuning from the dipole-allowed transition, ϕ the
position of the polarization gradient with respect to the trap center (linear polarized light
at the trap center for ϕ = 0), and s the so-called saturation parameter s = Ω2/2

Γ2/4+∆2 . The
saturation parameter represents a measure for the intensity of the light field relative to the
natural linewidth of the transition Γ. In addition to creating a Stark shift that displaces
the potential into opposite directions due to the additional optical potential, the laser
beam gives rise to spatially varying transition probabilities

Γ±↔∓ = 1
9Γs(1 ∓ sin(2ϕ)). (5.2)

The displacement of the minima of the total potential U± lead to a favoring of transitions
that cause an energy reduction over the reverse processes. In a more descriptive language:
An oscillating ion moving along the z-direction experiences the periodic light shift as a
potential hill. While climbing up the hill, the ion loses kinetic energy and at the same
time experiences the maximum transition probability to the other Zeeman state at the
maximum potential energy. Being optically pumped into the other state and, consequently,
the other potential well, the ion finds itself in a lower lying potential energy level and the
Sisyphus process will start all over again. This cooling mechanism is illustrated in Fig. 5.3.



130 5 Ground-state cooling and thermometry of 2d ion crystals

Within the Lamb-Dicke regime, where the ions are localized to less than the wavelength of
the interacting laser, the resulting heating processes limiting the cooling performance can
be described using carrier and sideband transitions. There are two processes leading to
heating: First, absorption on the carrier transition and subsequent spontaneous emission
on the upper or lower motional sideband and, second, absorption on the upper or lower
sideband and subsequent spontaneous emission on the carrier transition. Note that heating
can also be caused by dipole force fluctuations or random scattering events, leading to
transitions from one Zeeman ground state to the other. However, these processes are not
taken into account. Based on these heating processes, rate equations can be derived to
yield the cooling rate and cooling limit (see [48, 153] for details). For a single ion, the
maximum cooling efficiency occurs at ϕ = 0, i.e. the ion is located at the steepest slope
of the optical potential. For this configuration, the mean phonon number in steady state
is found to be

⟨n0(ζ)⟩ = ζ + 1
4ζ − 1

2 , (5.3)

where ζ = ∆s
3ωz

. For ζ = 1
2 , the optical well depth 2∆s

3 becomes equal to the trap frequency
ωz and leads to the minimum achievable phonon number of ⟨n0⟩(min) = 1

2 . Considering a
larger ion crystal, the ions are sampling the phases of the polarization gradient such that
the position of the gradient with respect to the ions becomes irrelevant. In this case, the
heating and cooling rates can be averaged (integral over all phases), yielding a cooling
limit of min⟨n⟩ ≈ 0.87 [153].

Experimental realization - Moving polarization gradient

In the experiments presented here, 40Ca+ ions are trapped in a macroscopic blade-style
linear Paul trap. Before PG cooling, the ions are precooled with a Doppler cooling beam
at 45◦ overlapping with all collective modes of motion. The same 397-nm laser provides
light for the two PGC beams cooling on the S1/2 ↔P1/2 transition. A laser beam at
866 nm is used along with the cooling beams to repump spontaneously decayed ions from
the metastable D3/2 state into the P1/2 manifold. A polarization gradient along the trap’s
axial direction (z) is created with two beams that are linearly but mutually orthogonally
polarized. They enter the trap through holes in the endcap electrodes with a diameter
of 0.5 mm from both sides, coupling to the in-plane modes of a planar crystal trapped in
the yz-plane, with the exception of the COM mode in the vertical direction (y). The two
counter-propagating beams are blue-detuned by ∆ = 2π× 210 MHz from the S1/2 ↔ P1/2
cooling transition. Positioning an ion at an exact phase of a polarization gradient with a
stability of a small fraction of the wavelength is an experimentally very challenging task.
However, there are other ways to realize PGC in the lab. Instead of a static polarization
gradient, a moving polarization gradient can be used. Such a traveling standing wave
is implemented by introducing a detuning of one of the two counterpropagating beams
with respect to the other of δ < ω

(min)
z . The detuning is smaller than the lowest motional

frequency but larger than the cooling rate to avoid an adiabatic change of ⟨n⟩ according
to the steady-state value for the changing phase. This way, the ions will be cooled as
they are sampling different values of the polarization gradient’s phase. Here, the detuning
between the two beams is set to 2π × 60 kHz. After cooling, a narrow 729-nm laser
(along with a 854-nm laser) is used for ground-state preparation via optical pumping to
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the |S1/2,m = +1/2⟩ state. The same laser is used to drive coherent oscillations and map
the motional state onto the electronic states via pulses on either a carrier or a motional
sideband of the S1/2 ↔D5/2 transition prior to quantum-state readout.

Cooling the in-plane modes of a 22-ion zig-zag crystal

In order to test PGC of a planar ion crystal, the in-plane modes of a 22-ion zigzag-shaped
crystal aligned with the yz-plane were cooled using a moving polarization gradient in ax-
ial direction (z), as described above. The center-of-mass frequencies were measured to be
ω(x,y,z) = 2π × (2.76, 2.51, 0.438) MHz. Figure 5.4 displays the blue sideband spectrum
measured on the S1/2 ↔D5/2 transition after 1 ms of PG cooling. The global mean exci-
tation p (Fig. 5.4(a)) as well as the mean excitation pj of the individual ions (Fig. 5.4(b))
are shown and compared with numerical simulations (Fig. 5.4(c)). Pseudopotential simu-
lations of the normal modes agree well with the measured mode frequencies and single-ion
excitations. In addition, Floquet-Lyapunov simulations were carried out, leading to very
similar results but showing a discrepancy for modes with frequencies in the range between
2π × 500 and 2π × 1000 kHz (Fig. 5.2). 40 out of 44 (= 2N) in-plane modes can be
identified in the spectrum. The center-of-mass mode in the vertical y-direction does not
have any overlap with the axial spectroscopy beam. Furthermore, the pseudopotential
simulations suggest that three modes are degenerate in frequency. Qualitatively, the axial
parts of the simulated mode vectors (Figure 5.4(c)) agree well with the measured excita-
tion probabilities. This can be easily inferred from the illustration of the mode vectors
for two modes in Fig. 5.4(a). The ions with longer white arrows in axial (horizontal) di-
rection, corresponding to larger Lamb-Dicke factors, show a higher excitation probability
in the measured spectrum compared to the ions whose motion is predominantly in other
directions.

To evaluate the cooling performance, we measured collectively driven Rabi oscillations on
the S1/2 ↔D5/2 carrier transition. Figure 5.5 shows the site-resolved dynamics of the ions
in the 22-ion 2d crystal, once after Doppler cooling for 3 ms (a) and again after additional
PG cooling for 1 ms (b). A micromotion-induced broadening of the cooling transition
leads to a poor Doppler cooling performance and instant damping of the oscillation. After
PGC, however, we observe persistent Rabi oscillations. The mean phonon number can
be determined by fitting the global carrier Rabi oscillations, thereby assuming thermal
states of motion for the N modes n̄ = (⟨n1⟩, . . . , ⟨nN ⟩). The effective Rabi frequency
Ωj

n,n depends on the motional state and therefore contains information about the phonon
distribution pn̄(n) of all motional modes involved. Expressions for the Rabi frequency
Ωj

n,n and the excitation probability of the individual ions pj are given in Sec. 5.5.3. A fit
of these carrier oscillations (Eq. (5.20)) is computationally expensive and the application
of standard fitting routines impractical. Thus, a dividing rectangles algorithm (see [8] and
references therein) was used; details on the parametrization are given in [153]. Figure 5.5(c)
displays the evaluated mean phonon numbers of the individual modes, where we estimate
⟨n⟩ to be about 15 phonons for the COM mode and 8 or fewer phonons for all other modes.
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Figure 5.4: In-plane motional mode spectrum of a 22-ion zig-zag crystal. (a) The exci-
tation probability is measured on the blue sidebands of the narrow S1/2 ↔D5/2 transition
using a global beam in axial direction. The spectrum was taken after 3 ms of Doppler
cooling followed by 1 ms of polarization gradient cooling. The black dots show the mean
excitation of all 22 ions. The black solid line is just a guide to the eye. The gray arrows
on top of the spectrum indicate simulated mode frequencies an their axial coupling weight
obtained from pseudopotential simulations. The mode vectors of two exemplary modes are
visualized by white arrows. The mode structure qualitatively agrees with the measured
single-ion excitations shown in the 2d plot in (b). (b) The single-ion resolved excitation
probabilities reveal information about the mode structure via their coupling strengths in
axial direction. The numbering of the ions is from left to right in axial direction. (c)
The simulated spectrum showing the Lamb-Dicke factors of the individual ions agrees well
with the measured excitation in (b).
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Figure 5.5: Carrier Rabi oscillations of a 22-ion zig-zag crystal (a) after only Doppler
cooling and (b) with additional PG cooling. The ions are excited with a global beam in
axial direction on the S1/2 ↔ D5/2 transition. After Doppler cooling, barely any oscillation
is visible. Additional PG cooling for 1 ms results in persistent Rabi flops. (c) The mean
phonon number for the individual modes is estimated from fits of the carrier oscillations.

5.2.2 Electromagnetically induced transparency cooling

The results presented in this section have been partially published in Ref. [60].

Electromagnetically induced transparency (EIT) cooling is a ground-state cooling tech-
nique, which is applicable to precooled trapped particles. From an experimental point
of view, it is significantly less demanding than resolved-sideband cooling on a narrow
quadrupole transition. At the same time, it is known for the highest achievable cooling
rates compared to other techniques and it is suitable for simultaneously cooling multiple
modes. In principle, there is no restriction on the transition linewidth. However, depend-
ing on the laser parameters, the frequency range that that can be efficiently cooled may
be limited, which can be significant for systems with large ion numbers.

The idea of using EIT as a mechanism for cooling trapped particles was originally proposed
and described in 2000 in Ref. [152], along with the experimental demonstration of cooling
up to two degrees of freedom in a single trapped 40Ca+ ion [165]. After being relatively
unnoticed for more than 10 years, EIT cooling was applied to sympathetically cool mixed-
species ion crystals with two and four ions [166], as well as to cool neutral atoms in a
cavity-QED setup [167] and in a quantum-gas microscope [168]. More recently, it has
attracted more interest in view of experiments involving a higher number of particles for
quantum simulation [135]. It has since been employed in various experiments, including
the cooling of multiple degrees of freedom in single or multiple ions simultaneously [169],
multi-mode cooling of larger systems, such as about 190 ions in a Penning trap [154],
cooling up to 40 ions in a long linear chain [170], and cooling planar ion crystals of up to
12 ions in rf traps [42]. Some of these experiments [42,169] apply advanced protocols based
on a double-EIT scheme [171], making use of an additional state in a tripod configuration,
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Figure 5.6: (a) General Λ-type level scheme for EIT cooling. A high-intensity beam (σ)
creates dressed states. The weaker probe beam (π) preferentially drives the red sidebands
of the asymmetric absorption profile. (b) Level scheme used for EIT cooling in the pre-
sented experiments with 40Ca+ ions.

as opposed to three states in a λ or ladder scheme in “single-EIT” experiments. This
way, the cooling limit can be lowered while extending the cooling range. Most recently,
experiments with large 2d crystals containing up to 512 ions in a rf trap, cooled close to
the ground state (< 1 phonon), have been reported in Ref. [36]. In these experiments,
EIT cooling was applied, along with additional sideband cooling targeting the 10 highest-
frequency modes in out-of-plane direction.

In this section, a summary of the basic mechanism of EIT cooling, following the theoretical
description in Ref. [152], precedes the experimental implementation and results on EIT
cooling of small and large 2d crystals with up to 105 ions. Details on the optical setup for
preparation of the EIT beams are given in Sec. 3.6.4 whereas Sec. 3.6.1 presents details
on the beam geometry and the optical setup around the trap.

EIT cooling mechanism

EIT cooling is based on a modification of the absorption profile on the cooling transition,
exploiting the effect of electromagnetically induced transparency. This mechanism, also
known as coherent population trapping or dark resonance, occurs in a three-level system,
where coherently driving one of the two transitions leads to the cancellation of absorption
on the other one. It is a quantum interference effect and can be seen as the destructive
interference of the two pathways to the excited state. It can be used to enhance the
absorption on red sideband transitions while suppressing absorption on the carrier and
blue sideband transitions.

We consider a Λ-type level scheme, where the two ground states |g⟩ and |f⟩ are coupled
via the excited state |e⟩, as shown in Fig. 5.6(a). The |g⟩ ↔ |e⟩ transition is driven by an
intense laser field with Rabi frequency Ωσ and detuning ∆, creating the dressed states |g̃⟩
and |ẽ⟩. The induced ac-Stark shift is given by

δ = ±1
2

(√
Ω2

σ + ∆2 − |∆|
)
. (5.4)
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For blue-detuned light, the state |g̃⟩ is shifted upwards and state |ẽ⟩ downwards in fre-
quency. Along with the dressing beam (σ), a second, weak probe beam with detuning
∆π and Rabi frequency Ωπ ≪ Ωσ drives the |f̃⟩ ↔ |g̃⟩ transition8. Figure 5.7 shows
the resulting absorption profile as a function of the detuning ∆π, where the narrow fea-
ture represents a Fano interference profile [172]. The absorption profile is asymmetric for
∆σ ̸= 0. For ∆π = ∆σ, the system is transparent for the probe beam. A broad reso-
nance emerges around ∆π ≈ 0 (resonant with the Stark-shifted carrier), while a narrow
resonance near ∆π ≈ ∆σ can be exploited for cooling. Taking the secular motion of the
trapped ions into account, one can choose the detuning ∆σ > 0 and the Rabi frequency Ωσ

such that the transparency corresponds to the |f̃ , n⟩ ↔ |g̃, n⟩ transition, and the narrow
resonance, exhibiting a high excitation probability, corresponds to the red sideband tran-
sitions |f̃ , n⟩ ↔ |g̃, n− 1⟩ of the modes to be cooled. In turn, the blue sideband transitions
|f̃ , n⟩ ↔ |g̃, n+ 1⟩ reside within the onset of the broad resonance and therefore have a low
excitation probability. Consequently, the particles are preferentially cooled via the red
sideband transitions while the carrier as well as blue sideband transitions are suppressed.
The laser parameters are chosen according to the conditions

∆π = ∆σ and δ ≈ ωosc, (5.5)

such that the light shift (governed by Ωσ) equals ωosc, the oscillation frequency of the
vibrational mode to be cooled. To cool multiple modes of motion over a range of frequencies
in a multi-ion crystal, the light shift can be set to the center of the desired frequency
spectrum, assuming that the width of the absorption profile covers the whole range of
mode frequencies. The cooled frequency range is determined by the detuning ∆σ,π, which,
at the same time, defines the decay rate of the dressed state |g̃⟩ and thus the minimum
achievable temperature. This results in an inevitable trade-off between the frequency
range that can be cooled efficiently and the achievable minimum temperature.

In the weak excitation regime, the cooling dynamics can be expressed in the form of a
rate equation, yielding expressions for both the achievable phonon number and the cooling
rate. The process, involving absorption and emission, is described by

d
dt⟨n⟩ = −η2 (A− −A+) ⟨n⟩ + η2A+ , (5.6)

with rate coefficients

A± = Ω2
π

Γ
Γ2ω2

Γ2ω2 + 4
(

Ω2
σ

4 − ω(ω ∓ ∆)
)2 , (5.7)

where Γ is the linewidth of the transition and η the Lamb-Dicke factor of the mode of
interest. From this expression, the steady-state solution for the mean phonon number ⟨n⟩
is given by

⟨n⟩ = A+
A− −A+

, (5.8)

8Note that in this scheme (strong σ-polarized dressing beam and weak π-polarized probe beam), the
state |f̃⟩ is approximately |f⟩.
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Figure 5.7: Simulated absorption profile for EIT cooling as a function of the detuning of
the EIT π-beam from the bare S1/2 ↔P1/2 transition. The gray-shaded area indicates the
region around the electromagnetically induced transparency with an absorption probability
of zero. Panel (b) shows this region in more detail. The absorption probability on the red
sideband is enhanced compared to the probability on the carrier and the blue sideband.
The absorption profile was simulated according to Eq. (3.27) in Ref. [173]. The detuning
∆σ of the σ-beam is 110 MHz. Ωσ is set to optimize absorption for a mode frequency of
ωm = 2π × 2.2 MHz, while Ωπ = 0.1Ωσ.

and the cooling rate by
R = η2 (A− −A+) . (5.9)

Ground-state cooling of 2d crystals

In the experiments with planar 40Ca+ crystals, we use EIT cooling to prepare the N
out-of-plane modes of motion near the ground state. The transitions involved in these
measurements are shown in Fig. 5.6(b). A suitable three-level system in Λ configuration
is given by the two Zeeman levels of the 4S1/2 manifold, coupled off-resonantly via the
3P1/2 state. The quantization axis is oriented at an angle of 45◦ with respect to the crystal
plane and allows for an optimal geometry for EIT cooling. Given sufficient optical access,
undesired polarization components of the laser beams can be suppressed while the effective
cooling k-vector aligns with the ion crystal’s transverse direction. With this in mind, we
use two perpendicular beams, each having a k vector with an angle of 45◦ with respect
to the crystal plane. The beam geometry at the trap is shown in Fig. 3.15. A strong
σ−-polarized beam at 397 nm propagates along the magnetic-field axis and couples the
|S1/2,m = +1/2⟩ state to the |P1/2,m = −1/2⟩ state, acting as a dressing light field. At
the same time, a weak π-polarized probe beam (Ωπ ∼ Ωσ

10 ) couples the |S1/2,m = −1/2⟩
to the |P1/2,m = −1/2⟩ state and predominantly drives red sideband transitions of the
out-of-plane modes.

Figure 5.8 shows the simulated cooling rate and the achievable minimum temperature in
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Figure 5.8: Simulations of (a) cooling rate and (b) cooling limit in the steady state. The
Rabi frequency Ωσ of the dressing beam is set such that the induced light shift matches
a frequency of 2 MHz. The Rabi frequency of the probe beam Ωπ is set to Ωσ/20. The
detuning of the two beams from the bare transition is varied from 50 to 300 MHz. A
frequency range of 500 kHz centered around 2 MHz is indicated with dashed vertical lines.
Then inset in (b) shows a close-up of the same plot around 2 MHz.

the steady state, according to Eq. (5.6) and Eq. (5.8) for a light shift matching a side-
band frequency of 2 MHz and various detunings ∆ from the bare S1/2 ↔ P1/2 transition.
It reveals that a change in detuning primarily affects the cooling rate, which decreases
with larger values of ∆, while having only a minor impact on the achievable steady-state
temperature over a wide frequency range. In the experiments with larger 2d crystals pre-
sented herein, motional mode spectra with a typical frequency range of approximately
2π × 300 kHz need to be covered. We use a blue detuning of 2π × 110 MHz to ensure an
absorption spectrum broad enough to accommodate a motional frequency spectrum of a
few hundred kHz. The power of the σ-beam is adjusted such that the induced light shift
matches the center frequency of the out-of-plane spectrum. This ensures that all OOP
modes are well within the absorption spectrum, enabling efficient simultaneous cooling of
all modes.

Techniques for calibrating laser parameters to optimize the cooling performance were
developed and presented in Refs. [135, 173]. The following sections review and discuss
these methods in the context of experiments with 2d crystals.

Calibration I: Polarization of the σ−-beam

Spurious σ+-polarized light leads to undesired pumping into the |S1/2,m = +1/2⟩ state, in
which the ions do not participate in the cooling cycle. The polarization of the EIT σ−-beam
is linear out of a PM fiber arriving at the trap breadboard. It is cleaned by a polarizing
beam splitter before being converted into circular polarization using a combination of a
λ/2- and a λ/4-waveplate mounted in high-precision rotation mounts. To optimize the
polarization of the circularly polarized beam, a Ramsey-type experiment is carried out,
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Figure 5.9: EIT dressing calibration and cooling dynamics for a 19-ion crystal. (a)
Spectroscopy on the S1/2 ↔ D5/2 transition (at 729 nm) while simultaneously illuminating
with the EIT σ-beam (driving the S1/2 ↔ P1/2 transition). The 729-nm laser beam probes
the ac-Stark shift induced by the EIT σ-beam. The mean excitation of all ions is given
as a function of the detuning from the bare S ↔ D transition. The power of the σ-beam
is adjusted such that the induced light shift matches the center of the motional out-of-
plane frequency spectrum of the 19-ion crystal, here ωcenter ≈ 2π× 2.030 MHz determined
via Gaussian fit (solid line). (b) The mean excitation on the red sideband is shown as
a function of the EIT cooling duration. After about 100 µs, the RSB excitation reaches
values close to zero. A cooling pulse length of > 300 µs is chosen for further experiments
to ensure a steady state temperature at the end of cooling.

where the EIT σ−-pulse is sandwiched between two π/2-pulses at 729 nm. The first π/2-
pulse prepares an equal superposition of the |S1/2,m = −1/2⟩ and the |D5/2,m = −5/2⟩
state. Then, the σ−-beam is switched on for a variable time tσ. Subsequently, a second
π/2-pulse is applied, with a phase shifted by π/2 with respect to the first pulse. For
perfect σ−-polarization, we expect an excited state population of 0.5. However, unwanted
σ+-components induce a light shift δσ+ on the |S1/2,m = −1/2⟩ state and cause pumping
out of this state. Measuring the excitation as a function of the σ−-pulse length tσ (see
Fig. 3(d) in Ref. [135]), these unwanted effects result in an exponentially decaying periodic
signal, oscillating at the frequency of the induced light shift δσ+ . The measured oscillation
frequency thus yields information about the strength of the σ+ component and allows for
suppression of it.

A simpler, though less accurate, alternative would be to transfer the |S1/2,m = +1/2⟩
population to the D5/2 state after cooling using a π-pulse at 729 nm while minimizing
the D5/2 population. Furthermore, one could minimize the fluorescence induced by the
σ-beam [173]. Both methods are not as accurate as the one described above and have not
been used in the context of the presented measurements.

Calibration II: Light shift

In order to cool a particular vibrational mode, the mode frequency has to be well within
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the narrow absorption spectrum generated by the two EIT beams. For a single ion, one
can set the light shift δ induced by the σ−-beam to equal the ion’s oscillation frequency
ωosc. For a planar crystal, however, assuming a large enough cooling range, the light
shift δ is set to match the center frequency of the frequency spectrum to be cooled. In
case of the presented 2d crystal experiments, it is set to the center of the out-of-plane
spectrum, spanning several hundreds of kHz. In the experiment, the induced light shift
is controlled by adjusting the intensity (∝ Ω2

σ) of the EIT σ-beam, which results in an
ac-Stark shift of equal magnitude but opposite sign on both the |S1/2,m = +1/2⟩ and
|P1/2,m = −1/2⟩ states. For calibrating the light shift, we use the following measure-
ment sequence: First, the ion is prepared in the |D5/2,m = +3/2⟩ state using a π-pulse
at 729 nm. Afterwards the σ−-beam is switched on while simultaneously probing the
|S1/2, m = +1/2⟩ ↔ |D5/2, m = +3/2⟩ transition at 729 nm. If resonant with the ac-
Stark-shifted 729-nm transition, the D5/2 state is depopulated by optically pumping into
the |S1/2,m = −1/2⟩ state by the 729-nm beam in conjunction with the EIT σ−-beam. A
relatively low intensity of the 729-nm probe beam should be used to prevent broadening of
the transition while still efficiently depleting the state. Finally, the population in the D5/2
state is measured. The light shift can be determined by finding the minimum excitation
probability of the D5/2 state as a function of the frequency detuning from the undisturbed
729-nm transition. Such a measurement is shown in Fig. 5.9(a), where the light shift is set
to about 2 MHz for measurements with a planar 19-ion crystal. In practice, we keep the
frequency detuning of the 729-nm laser fixed at the desired value (corresponding to the
motional mode frequencies) and scan the power of the dressing beam to find the desired
power minimizing the signal.

The light shift calibration routine can be done using either a single ion or an ion crystal,
the latter of which can yield additional information about the homogeneity of the laser
beam’s intensity profile across the crystal. Moreover, an analog measurement is used to
set the intensity of the EIT π-beam to a small value, avoiding additional light shifts on
the probed transition. Ωπe is typically set to ∼ Ωσ

10 .

Note that another precise calibration method is based on measurements of optical pumping
rates between the two S1/2 Zeeman states. These require precise knowledge of all laser
parameters in addition to the decay rates of the excited states [114]. It was therefore not
used in the experiments described here.

Cooling time

To determine a sufficient EIT cooling pulse length, we measure the excitation probability
on the red sideband of the COM mode - using either the 729-nm OOP-beam or the Raman
beams - as a function of the cooling pulse length. Such a measurement on the COM mode
of a 19-ion crystal is shown in Fig. 5.9(b), where we observe an exponential decay with a
1/e time of about 16 µs. The cooling time for subsequent experiments is chosen well within
the plateau near zero to ensure that the cooling dynamics have advanced to a steady state.
We find that an EIT cooling time of 300 µs, in addition to 3 ms of Doppler cooling, is
sufficient to cool up 105 ions in a planar crystal configuration close to the ground state.

EIT cooled 2d crystals
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Figure 5.10 features red sideband spectra measured with and without an EIT cooling
pulse for ion crystals consisting of 8, 19, 98, and 105 ions, the largest crystal cooled in
our setup so far. Apart from the residual excitation of the COM mode, we observe a clear
suppression of all other motional modes in the out-of-plane spectrum. The spectroscopic
measurements were carried out using the narrow 729-nm OOP laser beam after cooling (3
ms Doppler + 300 µs EIT cooling) and optical pumping (100 µs). During optical pumping
and the 729-nm pulse (1 ms), the crystal - preferentially the COM mode - heats up in
proportion to ˙̄nN . Considering a heating rate of about 16 quanta/s/ion at the time of the
measurements, substantial heating of the COM mode is expected.

For the 8- and 19-ion crystals, pseudopotential simulations were performed to determine
the motional mode frequencies and mode vectors. The simulated OOP mode frequencies
of the 19-ion crystal match well with the spectroscopically measured oscillation frequen-
cies. The simulated mode vectors are also used in thermometric measurements described
in Sec. 5.9.1. Regarding the 8-ion crystal, we observe slight discrepancies between some of
the simulated and experimentally determined mode frequencies. They might be attributed
to a crystal lattice configuration close to a structural phase transition. Supplementary
pseudopotential simulations suggest that slight modifications to the trap oscillation fre-
quencies (on the order of a few kHz) lead to a modified crystal lattice structure, in which
the otherwise vertically aligned square lattice in the center of the 8-ion crystal is tilted
with respect to the y-axis, resembling a zig-zag configuration of the inner ions. The sim-
ulated mode frequencies for the tilted configuration result in a slightly better match with
the experimental data, which is not shown here. Instabilities of the trap frequencies, e.g.
due to rf power fluctuations at that time, might aggravate such a discrepancy between the
measured and simulated values. Further simulations based Floquet-Lyapunov theory as
well as Fourier transformation of the simulated ion motion did not improve the agreement
between simulations and experiment, despite taking the full rf potential into account. In
general, these deviations do not necessarily scale with the number of ions, as we obtain a
better agreement for the 19-ion crystal as opposed to the 8-ion crystal and a 16-ion crystal
(not shown here).

In conclusion, the presented motional sideband spectra qualitatively show that all modes
in crystals with ion numbers of up to N = 105 are cooled close to the motional ground-
state. However, due to complex quantum many-body interactions involved in the side-
band dynamics, quantitative thermometric measurements with larger ion crystals are not
straightforward and will be discussed in Sec. 5.3.
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Figure 5.10: Red vibrational sideband spectra of the out-of-plane modes of 2d crystals
consisting of (a) 8, (b) 19, (c) 98, and (d) 105 ions. All spectra are measured once after
Doppler cooling (red data points) and again after an additional EIT cooling pulse of
300 µs (blue data points). For the smaller ion crystals in (a) and (b), simulated normal
mode frequencies from pseudopotential simulations are indicated as vertical dashed lines.
Generally, a good match is obtained for both spectra; however, for the 8-ion crystal, three
modes at lower frequencies show a discrepancy, the origin of which is not fully understood
(see main text for a discussion).
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5.3 Thermometry of trapped ions

Scaling up quantum systems is generally a very demanding task, which is accompanied by
numerous difficulties, ranging from entropy management to the physical control of many-
qubit platforms. In trapped-ion systems, maintaining control of an increasing number of
motional degrees of freedom is one of the major challenges that needs to be addressed.
Besides the need for efficient ground-state cooling techniques, which was discussed in the
previous sections, the accurate assessment of a prepared state of motion of ion crystals
is another requirement. For many applications with trapped ions, this is essential to rule
out spurious effects or to ensure efficient cooling of certain motional degrees of freedom,
which may be used used to mediate entangling gates.

While the existing methodology for thermometry is sufficient for single ions and small crys-
tals cooled to low phonon numbers, techniques applicable to large, ground-state cooled
crystals are less developed. For single-ion thermometry, we can exploit simple analytical
expressions based on the asymmetry of the red and blue sidebands, which is referred to
as sideband thermometry. With sideband thermometry as the primary tool, further tech-
niques, including singular value decomposition and numerical fits of the motional sideband
dynamics, can provide estimates for single ions and small crystals [160, 174]. Note that
far from the motional ground state, there are several techniques, such as time-of-flight,
Doppler lineshape or image analyses [175–179], yielding satisfactory accuracy for practi-
cally arbitrary ion numbers. In contrast, thermometry of larger ion crystals close to the
ground-state is not straightforward as ion-ion interactions lead to complex many-body
correlations, which have to be addressed. Nonetheless, in many recently published experi-
ments, these many-body interactions have been neglected [35,159,170,180,181] underlining
the demand for accurate thermometry methods for ion crystals. Close to the ground state,
applying the single-ion formula to the modes of a larger crystal usually leads to an under-
estimation of the occupation numbers due to the pronounced asymmetry in the spectrum.
Figure 5.11 shows the blue and red sideband spectra of a 19-ion crystal after Doppler
cooling. Naively applying Eq. (5.22) for single-ion sideband thermometry to modes in this
spectrum, thereby fully neglecting any many-body effects, yields a mean phonon number
of about n̄ ≈ 1. However, after Doppler cooling we expect this number to be about 5-10
phonons, demonstrating that close to the ground state, the consideration of many-body
interactions is crucial for a reliable temperature estimation. However, it is not required if
individual ions in the crystal can be addressed. While, in this case single-ion techniques
can be applied, it may become inefficient due to poor statistics. Moreover, experimen-
tally, it can be challenging to implement single-ion addressing, in particular for large ion
numbers, and in many experiments it may not be required otherwise. In this work, the
presented methods rely solely on collective addressing and readout of ion crystals.

The following sections present techniques and results on thermometry of single ions, 8-ion
crystals as well as a 19-ion crystal. In particular, the generalization of the sideband ratio
technique from a single ion to ion crystals is described, following a collaborative work
published in Ref. [182]. The discussed techniques are based on the assumption that the
ions are in a thermal state. This approximation generally holds well for laser-cooled ions
but it may not always provide an accurate description, especially when using short cooling
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Figure 5.11: Red and blue sideband spectrum of the out-of-plane modes of a 19-ion
crystal. The spectrum was measured on S1/2 ↔P1/2 transition after Doppler cooling
for 3 ms, for which a mean phonon number of about 5-10 phonons would be expected.
When simply applying the formula for single-ion sideband thermometry (Eq. (5.22)), the
asymmetry in the spectrum would result in an underestimation of the phonon number due
to many-body interactions between the ions. The generalization of the single-ion sideband
thermometry technique to many-ion crystals, presented in Sec. 5.9, addresses this problem.

pulses or in the presence of micromotion [160,183–185].

5.4 Coherent sideband dynamics

Single ion

A thermal state of motion for a single degree of freedom is given by

ρ(n̄) =
∞∑

n=0
pn(n̄) |n⟩ ⟨n| , (5.10)

where the probability to find a certain Fock state |n⟩ is given as a function of the mean
phonon number n̄

pn(n̄) = n̄n

(n̄+ 1)n+1 . (5.11)

With the bosonic creation and annihilation operators a and a†, where N̂ = a†a is the
number operator, the mean phonon number is n̄ = Tr

[
ρ(n̄)a†a

]
. In the experiment the

mean occupation can be inferred by measuring the excitation probability on the RSB and
the BSB of a sideband-resolved transition, coupling the motional state to the electronic
state of an ion. To this end, the ion is initialized in the state ρ(n̄) ⊗ |↓⟩⟨↓| before driving
the sideband transition resonantly for a time t. For a single ion, the excitation dynamics
of the vibrational sidebands are described by the Hamiltonians

Hr = g(σ+a+ h.c.), (5.12a)

Hb = g(σ+a
† + h.c.), (5.12b)
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where the index {r, b} denotes the red and blue sideband, respectively and the effective
coupling strength is given by g = Ωn,nη/2, where the carrier Rabi frequency Ωn,n is rescaled
with the Lamb-Dicke factor (η ≪ 1). The spin operators are defined as σ+ = |↑⟩⟨↓| and
σ− = |↓⟩⟨↑|. Using the evolution operator Uα(t) = exp(−iHαt), where α ∈ {r, b}, the
probability to find an ion in the excited state |↑⟩ is given by

Pα(n̄, t) = Tr
[
Uα(t)ρ(n̄) ⊗ |↓⟩⟨↓|U †

α(t) |↑⟩⟨↑|
]
. (5.13)

Explicitly, Pr and Pb for a single ion are given by

Pr(n̄, t) = 1
2

∞∑
n=1

pn(n̄)(1 − cos
(
gt

√
n
)
) , (5.14a)

Pb(n̄, t) = 1
2

∞∑
n=0

pn(n̄)(1 − cos
(
gt

√
n+ 1

)
) . (5.14b)

Ion crystals

For an ion crystal, we assume that each of the vibrational modes is in a thermal state. For
a globally addressed ion crystal, the dynamics on the first-order red and blue sidebands
are given by [182]

Hr = g(J+a+ J−a
†), (5.15a)

Hb = g(J+a
† + J−a), (5.15b)

with the spin operators J± = ∑N
i=1 ηiσ

i
± and the average Rabi frequency9 of the side-

band transitions g, such that ∑i η
2
i = 1. Both the RSB and BSB Hamiltonians in

Eqs. (5.15) have conserved quantities given by
[
Hr, a

†a+ J0
]

and
[
Hb, a

†a− J0
]
, where

J0 = ∑N
i=1 σ

i
+σ

i
− yields the number of electronic spin excitations.

To simulate the exact sideband dynamics for a given system, the Schrödinger equation for
the Hamiltonians (5.15) needs to be time-propagated. Explicitly, the probability of an ion
crystal to remain in the motional ground state is given by

Tr[|0⟩⟨0| ρα(n̄, t)] =
∞∑

n=0
pn(n̄)|⟨0, n|Uα(t) |0, n⟩|2. (5.16)

where |0⟩ = |↓ . . . ↓⟩ is the collective spin ground state, and ρα(n̄, t) = Uα(t)ρ(n̄) ⊗
|0⟩⟨0|U †

α(t) the time-propagated full density matrix of the system excited on the red or
blue sideband (α ∈ {r, b}), and pn(n̄) is the thermal occupation probability of Fock states
(Eq. (5.11)). For large ion crystals, this calculation becomes intractable as its complexity is
growing exponentially with the ion number N . However, considering only the COM mode,
all ions have equal Lamb-Dicke factors (ηi ∝ 1/

√
N ∀i), allowing the sideband dynamics

9In this description, the Lamb-Dicke factors ηi account for all coupling inhomogeneities to the ions,
which, in general, can be calibrated.
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to be calculated in a symmetric Hilbert subspace using the symmetric spin Dicke basis of
states

|M⟩ = 1
M !

(
N

M

)−1/2

SM
+ |0⟩ , with S+ =

N∑
i=1

σ+
i . (5.17)

This approach bypasses the problem’s exponential scaling and renders a numerical fit of
the COM mode feasible even for higher ion numbers. Such a fit of the out-of-plane COM
mode of a 19-ion crystal is shown in Fig. 5.15(c).

5.5 Fitting of coherent dynamics

The expressions given in the previous section can be used to extract the mean phonon
number from the sideband excitations measured as a function of the interrogation time
t, which is discussed in the following section 5.5.1. Similarly, a numerical fit can be
performed for carrier oscillations, which is briefly described in Sec. 5.5.3. However, for an
ion crystal, a fit of the system dynamics is a computationally complex task due to the
exponentially growing state space of N coupled harmonic oscillators. As the propagation
of the full density matrix has to be computed for varying mean phonon numbers in order
to fit the data, this approach is only feasible for small ion numbers. Moreover, a mean-field
approximation neglecting higher-order ion-ion correlations was pursued in the course of
the work for Ref. [182] to simulate the sideband dynamics of a 19-ion crystal; however,
we did not succeed in fully reproducing the experimental data. This attempt is briefly
discussed in Sec. 5.5.2.

5.5.1 Fitting of sideband oscillations using numerical simulations

Assuming knowledge of the secular frequencies and, in the case of an ion crystal, the
mode vectors, the dynamics of a thermal state can be numerically fitted using the mean
phonon number as a free parameter. To this end, a thermal state distribution (Eq. (5.11))
with phonon numbers of nmax ≫ n̄ is considered. The system dynamics are simulated for
varying mean phonon numbers and a least-squares optimization is used to find the best fit
to the data. Provided single-ion addressing, Eqs. (5.14) could be used to extract the mean
phonon number of individual modes in multi-ion a crystal. However, many experiments
are lacking coherent control of individual ions, which also applied to the experimental
setup presented in this work10.

Concerning the accuracy of the estimation of n̄, a Fisher information analysis of the
sideband dynamics of a single ion reveals that it is most beneficial to fit the measured
excitation on the red sideband as the red sideband data contains most information about
the thermal state of the ion and therefore yields the lowest Cramér-Rao bound compared
with the excitation on the blue sideband or a combined measurement scheme such as
the sideband-ratio estimator (Eq (5.23) in Sec. 5.8) [182]. From a practical point of view,
however, the sideband-ratio technique can be advantageous as the blue sideband excitation
therein acts as a gauge for the measurement in the presence of technical noise.

10The foreseen single-ion addressing optics have not yet been set up in the course of this work.
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Figure 5.12: Sideband dynamics and heating rate measurement for an 8-ion crystal.
(a) Mean excitation probabilities on the red and blue sideband as a function of the probe
pulse length. Least-squares fits of the red sideband dynamics are used to determine the
mean phonon number n̄. (b) Global excitation probability as defined in Eq. (5.13), being
the quantity of interest for sideband thermometry of ion crystals (Sec. 5.9). (c) Same
as (a), but with a probe pulse delay of 20 ms. (d) Heating rate measurement. The
mean phonon number is determined using fits of the red sideband dynamics for varying
probe pulse delays. A linear fit (solid red line) is used to determine the heating rate of
˙̄n = 15.8 ± 1.1 phonons/s/ion.
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Sideband dynamics of a planar 8-ion crystal

Figures 5.12(a) and (b) show fits of the sideband dynamics of the out-of-plane COM mode
of an 8-ion crystal recorded immediately after EIT cooling. The crystal was trapped in
a potential with trap oscillation frequencies ω{x,y,z} = 2π × {2.118, 0.702, 0.370} MHz.
729-nm light was used to excite the first order red and blue motional sidebands of the
S1/2 ↔ D5/2 transition. To measure the heating rate of the COM mode, the experiments
were repeated for varying delays introduced before the probe pulse. Fits of the red sideband
data are used to estimate the mean phonon numbers for various delays. A linear fit of
the mean phonon number as a function of the probe pulse delay yields a heating rate of
˙̄n = 15.8 ± 1.1 phonons/s/ion. Note that these measurements were carried out before a
modification of the dc filter boards, which lead to a substantially lower heating rate of
about 0.6 phonons/s/ion (see Sec. 4.6).

5.5.2 Mean-field approximation for ion crystals

In order to validate the thermometry measurements with a 19-ion crystal presented in
Sec. 5.9.1, a mean-field approximation of the sideband dynamics was pursued. In this
approach, higher order ion-ion correlations are neglected and the ground-state probability

Pg = ⟨⊗iσ
gg
i ⟩ ≃

∏
i

(1 − ⟨σee
i ⟩) , (5.18)

where σgg
i and σee

i are projectors to the ground and excited states, respectively, can be com-
puted via a closed set of differential equations, which are given in Appendix B. Figure 5.13
shows the sideband dynamics of a planar 19-ion crystal. Here, the mean occupation num-
ber

〈
a†a

〉
= n̄, used as initial condition in the mean-field approximation, is set to the

value that was obtained from sideband thermometry measurements (Sec. 5.9.1. At the
onset of the excitation dynamics, the simulated curve agrees well with the experimental
data and successfully reproduces the dynamics at the single-ion level. However, for longer
interrogation times (t > 100µs), the approximation fails to replicate the measured data
and even results in unphysical values. It is thus not feasible to use this approximation
for a reliable fit of the data to estimate the temperature. This showcases the complexity
of approximating the multi-ion correlations in the dynamics of even relatively small ion
crystals and underscores the need for reliable thermometry methods for larger crystals.
Although not pursued here, considering higher order terms in the approximation could
potentially yield more accurate results.

5.5.3 Fitting of carrier oscillations using numerical simulations

There is also a weak dependency of the carrier transition’s Rabi frequency on the phonon
number nm of the motional mode m, which is given by [49]

Ω(j)
n,n = Ω0

N∏
m=1

Lnm(η2
m,j) , (5.19)
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Figure 5.13: Attempt to fit the sideband dynamics of a planar 19-ion crystal using a
mean-field approach. (a,b) Fit of the single-ion resolved sideband dynamics measured
on (a) the COM mode and (b) the lowest-frequency mode of the out-of-plane motional
spectrum. The solid lines highlight the regions with good overlap whereas the grayed
out, dashed lines show a substantial discrepancy between experiment and simulation up
to unphysical values for longer evolution times. The insets illustrate the structure of the
investigated modes with arrows proportional to their mode vectors.

where Ω0 is the single-ion Rabi frequency11, Lnm is a Laguerre polynomial, ηm,j is the
Lamb-Dicke parameter for ion j and mode m. The excited state probabilities pj(t) of the
jth ion on the carrier transition, assuming thermal states for N modes with mean phonon
numbers n̄ = (n̄1, n̄2, ..., n̄N ), is given by

pj(t) =
∑

n̄
pth(n̄) sin2(Ω(j)

n,n(n̄)t/2) . (5.20)

As with the sideband dynamics, an increasing number of ions drastically raises the compu-
tational cost of simulating the carrier dynamics for various phonon numbers. To estimate
the mean phonon number from carrier Rabi oscillations of a 22-ion crystal after PG cooling
(Fig. 5.5), a semi-quantitative approach was pursued, using a gradient-free minimization
algorithm to find a parameter set fitting the experimental data. Details on this approach
can be found in Ref. [153] and references therein.

5.6 Rapid adiabatic passage

A rapid adiabatic passage (RAP) in trapped ions can be realized by a frequency-chirped
laser pulse with a time-dependent Gaussian amplitude envelope [186]. Being robust to
instabilities in experimental parameters, it can transfer the population from one internal
state to another with high fidelity. It has further been used to generate Dicke states in
a two-ion crystal [187]. Multiple RAPs can be applied to measure the Fock state of a

11Note that Ω0 might vary for different ions, e.g. due to an inhomogeneous laser beam profile, and
therefore becomes Ω0,j taking these variations into account.
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single ion [188]. In an ion crystal, prepared in the electronic ground state, a globally
applied RAP can be used to transfer the phononic excitation to an electronic excitation
using the red sideband transition. For n̄ < N , there is a 1:1-mapping, such that the count
of electronic excitations in the crystal is a direct measure for n̄. However, it has been
reported in Refs. [135, 173] that for modes other than the COM mode, this approach is
only reliable when n̄ < N/2. Thermometry based on RAP is also plagued and limited
by quantum correlations induced via the common coupling of the spins to the modes of
motion. A reliable inference of the occupation number would require a sufficiently accurate
description of the adiabatic quantum many-body dynamics, which is again not feasible for
large crystals.

5.7 Thermometry using a collective bichromatic drive

Alternatively, the temperature of an ion crystal could be estimated using a bichromatic
laser beam simultaneously driving the red and blue sidebands of a particular mode in
combination with a single-ion readout. By reading out only one particular ion in the
crystal, one can circumvent the increased complexity in the measurement due to quantum
many-body interactions. This approach is briefly summarized in the following; a more
detailed discussion can be found in Ref. [182].

The red and blue sideband dynamics are governed by the Hamiltonian H = Hr + Hb =∑
iH

i with commuting single-particle Hamiltonians H i = gηi(a + a†)σi
x. For a crystal

that is initially prepared in the state ρ0 = |0⟩⟨0| ⊗ ρ(n̄), where the mode is assumed to
be in a thermal state with mean phonon number n̄, the probability to find ion i in the
excited state after bichromatically driving the crystal for a time t is

P i(n̄, t) = Tr
[
e−iHit |↓⟩⟨↓| ⊗ ρ(n̄)eiHit |↑⟩⟨↑|

]
= 1

2
(
1 − e−2(gtηi)2(2n̄+1)

)
. (5.21)

This exponential loss of contrast can be exploited to extract the mean phonon number
n̄ without the burden of many-body correlations across the crystal. However, such a
measurement requires larger statistics, as it measures only single-ion excitations, as well
as longer interrogation times due to a reduced single-ion coupling that scales with ηi,
especially for larger crystals. A quantitative comparison presented in Ref. [182] shows
that the bichromatic method and the sideband thermometry, discussed in the following
sections, are advantageous in complementary regimes. The sideband thermometry of ion
crystals yields better statistics at low temperatures whereas the bichromatic approach can
be beneficial at higher temperatures of n̄ ≳ 1.

5.8 Sideband thermometry of a single ion

This section closely follows the theory presented in Ref. [182].

In Sec. 5.4, we saw that the sideband excitation of a particular mode measured as a
function of the interrogation time t can be fitted to obtain the mean phonon number.
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However, for a single ion in a thermal state of motion with small vibrational excitation,
a simpler and more convenient relation can be used to infer the mean occupation number
by measuring the RSB and BSB excitation probabilities at only a single interrogation
time [49, 58, 156, 189]. Considering a single degree of freedom, the mean phonon number
is given by

n̄ = Pr(n̄, t)
Pb(n̄, t) − Pr(n̄, t) . (5.22)

This formally correct analytical expression12 relates theory and experiment in a simple way
and represents the essence of the widely employed sideband-ratio thermometry technique.
Since this identity is an analytical expression based on exact statistical averages, it holds
only for an infinite number of measurement samples. For this reason, Pα is henceforth
replaced by the relative statistical frequency fα, representing the sampled values of Pα.
The expression for n̄ given in Eq. (5.22) transforms into the statistical estimator for the
mean occupation number

ˆ̄n = fr

fb − fr
. (5.23)

Dealing with statistical estimates entails both a statistical error and a bias for the given
estimator ˆ̄n. Assuming a finite sample size N (with N/2 measurements on the RSB and
N/2 measurements on the BSB transition), the estimate fα is normally distributed and
the statistical variance and bias can be calculated as

δn̄ = ⟨ˆ̄n⟩ − n̄ = 1
N

2PbPr(2 − Pb − Pr)
(Pb − Pr)3 , (5.24a)

∆n̄2
err = ⟨(ˆ̄n− n̄)2⟩ = 1

N
2PbPr(Pb + Pr − 2PbPr)

(Pb − Pr)4 . (5.24b)

5.9 Sideband thermometry of ion crystals

Large parts of the theory and results presented in this section have been published in
Ref. [182].

The sideband dynamics of an ion crystal consisting of N ions are described by Eqs. (5.15).
In contrast to the single-ion case, we now have to account for the many-body interac-
tions of the coupled N -particle system to adequately describe its dynamics. For large N ,
computing the exact dynamics by propagation of the Schrödinger equation becomes an
extremely expensive problem due to the exponential growth of the Hilbert space. Due
to the many-body dynamics, a simple analytical expression, as given by Eq. (5.22) for a
single ion, does not exist for ion crystals. However, according to Ref. [182], we can extend
the single-ion sideband-ratio technique to the case of ion crystals by approximating the
onset of the N -body system’s sideband dynamics, which will be described in the following.

12It can be easily verified using the presented expressions for Pα(n̄, t) and pn+1(n̄)
pn(n̄) = n̄

n̄+1 for thermal
states.
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For convenience we first redefine the ion crystal excitation probability as the complement
of the probability for all ions to remain in the ground state (see Eq. (5.16)), i.e. the
probability of a single or more ions to be excited, as

Pα(n̄, t) = 1 − Tr[|0⟩⟨0| ρα(n̄, t)], (5.25)

where |0⟩ = |↓ . . . ↓⟩ is the collective spin ground state and ρα(n̄, t) = Uα(t)ρ(n̄) ⊗
|0⟩⟨0|U †

α(t) the time-propagated full density matrix of the system excited on the red or
blue sideband (α ∈ {r, b}). In Eq. (5.16), we can see that only diagonal elements of the
time propagation operator Uα contribute to the excitation probability on the sideband
Pα(n̄, t). In the next step these diagonal elements are expanded into a time power series,

⟨0, n|Uα(t) |0, n⟩ ≃
4∑

k=0

(−it)2k

(2k)! ⟨0, n|H2k
α |0, n⟩ + o(t10). (5.26)

Terms of up to eighth order in time are found to sufficiently cover the first fringe of the
sideband excitation, yielding an accurate temperature estimate within this time window.
In the given series expansion only even powers of Hα are non-vanishing and thus contribute
to the global excitation probability. Within this approximation, the matrix elements
become polynomials of a maximal degree of 4 in n and 8 in gt. The average of Eq. (5.26)
with respect to n yields the excitation probability in Eq. 5.25 and finally results in the
functional dependence of the conveniently measurable sideband ratio on the mean phonon
number,

Pr(n̄, t)
Pb(n̄, t) − Pr(n̄, t) = Rt(n̄), (5.27a)

where
Rt(n̄) = n̄+ (gt)2P2(n̄) − (gt)4P3(n̄) + (gt)6P4(n̄) + o(t8) . (5.27b)

The coefficients Pk(n̄) are known polynomials depending solely on the mode coupling
coefficients ηi and can be computed efficiently. They are given explicitly for k = 1, 2
in Appendix B of Ref. [182]. Equations (5.27) are, in essence, a generalization of the
single-ion sideband ratio (Eq. (5.22)) to the case of ion crystals, taking the quantum
correlations between the ions into account. As in the single-ion case, for a finite number of
measurements, the probabilities Pr,b are replaced by the statistical frequencies fr,b, yielding
the temperature estimator for an ion crystal:

ˆ̄n = R−1
t

(
fr

fb − fr

)
. (5.28)

This relation reduces the temperature measurement to solving the polynomial equation by
finding the root of Rt(n̄)−fr/(fb −fr) = 0, which yields the mean occupational number n̄.
Note that the calculation of the polynomial coefficients in Eq. (5.27b) causes the majority
of computational overhead, which depends on the order of the series expansion used for
the approximation. The systematic bias and the variance of the estimator, resulting from
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the finite sampling of the red and blue sideband excitation probabilities Pr,b, are given by

δn̄ = ⟨ˆ̄n⟩ − n̄

= 1
N

[2PbPr(2 − Pb − Pr)
(Pb − Pr)3

1
R′

t(n̄)−

− PbPr(Pb + Pr − 2PbPr)
(Pb − Pr)4

R′′
t (n̄)

[R′
t(n̄)]3

]
,

(5.29)

and

∆ˆ̄n2
error = 1

N
2PbPr(Pb + Pr − 2PbPr)

(Pb − Pr)4
1

[R′
t(n̄)]2 , (5.30)

respectively. The new estimator (5.28) is based on a truncation of the time evolution
of the sideband excitation. For this reason, the estimator’s error increases for longer
interrogation times. For small ion crystals, this error can be calculated numerically, which
revealed no dependence on the crystal size for crystals with N < 12 (details in [182]).
Along the derivation of Eq. (5.28), no restrictions on the number of ions were imposed,
suggesting that the estimator remains valid for ion crystals with large N .

5.9.1 Sideband thermometry of a planar 19-ion crystal

This section presents sideband thermometry measurements with a two-dimensional 19-ion
crystal, based on the sideband ratio for ion crystals (Eq. (5.28)) that was derived in the
previous section. In these measurement, the mean occupation numbers of the COM mode
and the lowest-frequency (LF) mode of the out-of-plane sideband spectrum is determined.
Besides the fundamental interest in thermometry with (2d) ion crystals and the character-
ization of heating in our setup, the purpose of these measurements is to demonstrate the
application of the generalized sideband thermometry technique to a “larger” ion crystal.
The size of the computational state space13 required for the computation of exact exci-
tation dynamics for the 19-ion crystal already surpasses the capabilities of most classical
computers, or presents a substantial challenge at the very least.

Trapping and ground-state preparation

The planar 19-ion crystal was trapped in a potential with oscillation frequencies of
{ωs, ωw1, ωw2} = 2π × {2189, 645, 340} kHz, where ωs is the secular frequency in the
strongly confining (OOP) direction, and ωw1 and ωw2 denote the secular frequencies in the
two weakly confining directions. As in all other measurements with 2d crystals presented
in this thesis, the w2-direction (z) is aligned with the rf-zero line. After Doppler cooling for
3 ms, all N out-of-plane modes are cooled close to their ground states via EIT cooling for
300 µs. The detuning of the EIT beams with respect to the bare 4S1/2 ↔ 4P1/2 transition
is 110 MHz, enabling simultaneous and efficient cooling of all out-of-plane modes. The
center of the EIT cooling range is aligned with the center of the out-of-plane RSB frequency
spectrum, spanning about 300 kHz, by adjusting the power of the σ-polarized dressing
beam (see Sec. 5.2.2 for details on the calibration procedures). Subsequent to cooling,

132N complex numbers to represent an N -qubit state
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Figure 5.14: (a) Red sideband spectrum of the out-of-plane modes of a 19-ion planar
crystal after Doppler cooling (top) and after an additional EIT cooling for 300 µs (bottom).
The mean excitation is given as a function of the detuning from the carrier. The mode
frequencies obtained from pseudopotential simulations are indicated by dashed lines. A
false-color EMCCD camera image of the 19-ion crystal is shown at the top right. The
mode vectors of the COM mode as well as the mode with the lowest out-of-plane frequency
(LF) are represented by red arrows. Their lengths are proportional to the magnitude of
the Lamb-Dicke factors ηi, with the direction indicating the sign of ηi. (b) Measured
mean excitation (top) and simulated mode vectors (bottom) of the individual modes,
demonstrating a good match between the simulations and experiments.
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light at 729 nm is used to optically pump the ions into the |S1/2,m = −1/2⟩ state for 150
µs before each single-shot experiment.

Motional sideband spectrum and dynamics

The implementation of the generalized sideband thermometry protocol requires knowl-
edge of the Lamb-Dicke factors of the individual ions for the motional mode to be ana-
lyzed. Therefore, numerical simulations based on pseudopotential theory were performed
to determine all out-of-plane normal mode frequencies vectors. The obtained Lamb-Dicke
factors are used to calculate the polynomial coefficients in Eq. (5.27b). To verify efficient
cooling as well as the accuracy of the simulation outcome, before the actual thermometry
measurements, the motional sideband spectrum and the sideband dynamics of the inves-
tigated modes are probed on the 4S1/2 ↔ 3D5/2 quadrupole transition. Figure 5.14 shows
the red sideband spectrum of the 19-ion crystal, once after only Doppler cooling and again
after an additional EIT cooling pulse. From a qualitative perspective, all modes are cooled
close to the ground-state. The residual excitation on the COM mode originates from heat-
ing during state initialization (150 µs) and the spectroscopy measurement itself (1 ms).
A good match between the simulated normal mode frequencies (dashed lines in Fig. 5.14)
and the measured spectrum supports confidence in the simulation results used for sub-
sequent temperature estimation. Note, however, that the pseudopotential approximation
can sometimes fail to reproduce experimental data, in particular for planar crystals [56,57].
Alternative approaches might be more successful in some cases (cf. Sec. 5.1).

The measured sideband excitation dynamics, shown in Fig. 5.15, reveal the mode structure
as well as the global excitation probabilities Pr,b of the interrogated modes. The red and
blue sideband transitions were each probed at a fixed carrier Rabi frequency (Ωcarr =
2π× 38.8 kHz) as a function of the pulse length. The structure of the investigated modes
manifests itself in the single-ion resolved data shown in Fig. 5.15(a) and (b) for the COM
mode and the lowest-frequency mode, respectively. The global excitation probabilities Pr,b,
being the quantities of interest in the sideband thermometry measurements, are shown in
Fig. 5.15(c) and (d).

Reference measurements

For arbitrary modes of an ion crystal with as few as 19 ions, it is already challenging to
provide a reliable reference estimate for n̄ or to determine the error in n̄ that is attributed
to a finite interrogation time. This contrasts with smaller crystal sizes, e.g. consisting
of 4 ions in Ref. [182], where it is feasible to compute the exact system dynamics within
a reasonable time. The system dynamics of the COM mode, however, can be computed
efficiently within the symmetric Hilbert subspace as described in Sec. 5.5.1. This is done
for the data displayed in Fig. 5.15(c), where a least-squares fit of the RSB dynamics of the
COM mode yields a mean phonon number of n̄ = 0.147 ± 0.02 phonons. We use the first
20 points (≲ 350µs) to fit the curve, where we find a good match with the experimental
data. For longer interrogation times, the data is impaired by a limited motional coher-
ence due to motional heating and instabilities in the trap oscillation frequencies. Note
that these measurements were taken before a modification of the dc filter boards and a
revision of the rf power stabilization circuit, which substantially improved the motional



155 5 Ground-state cooling and thermometry of 2d ion crystals

Figure 5.15: Sideband dynamics of a planar 19-ion crystal. (a,b) Single-ion excitation
probabilities P i

r,b for (a) the COM mode and (b) the lowest-frequency mode. (c,d) The
global excitation probabilities Pr,b, being the quantities of interest for the thermometry
measurements, are shown for (c) the COM mode and (d) the lowest-frequency mode.
The measured dynamics of the COM mode are fitted via least-squares by simulations in
the symmetric Hilbert subspace of the COM mode. The solid line shows the simulated
dynamics for the fitted value of the mean phonon number (n̄ = 0.147 ± 0.02 phonons),
which is used as a reference for subsequent sideband thermometry measurements (cf.
Fig. 5.16).

coherence (Sec. 4.8).

Another comparative value is provided by measurements with a single ion using sideband-
ratio thermometry. For the transverse mode of motion with a frequency of ωx = 2π ×
2.188 MHz, corresponding to the out-of-plane direction of a planar ion crystal, we find a
mean phonon number of n̄ = 0.06 quanta after EIT cooling. The single-ion heating rate,
at the time of these measurements, was approximately 16 phonons per second. These
values are complemented with measurements and numerical fits of the sideband dynamics
of a planar 8-ion crystal. For this crystal, the exact dynamics can be efficiently calculated,
suggesting a heating rate of 15.8 phonons/s/ion.
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Sideband thermometry of a planar 19-ion crystal

The sideband thermometry measurements of the COM mode and the lowest-frequency
mode in out-of-plane direction were performed after EIT cooling and after optical pump-
ing (adding a probe pulse delay of 150 µs after ground-state cooling). A global beam
perpendicular to the crystal plane excites the ions with a maximum variation in the single-
ion carrier Rabi frequencies of about 6% across the crystal. The excitation probabilities
Pr,b on the |S1/2,m = −1/2⟩ ↔ |D5/2,m = −5/2⟩ transition with a 729-nm laser, were
probed using various carrier Rabi frequencies and interrogation times. The excitation was
measured in N/2 = 4000 individual measurements each on the red and the blue sideband.
Equation (5.28) is used to calculate the mean occupation number n̄. The bias and er-
rors are determined using Eq. (5.29) and Eq. (5.30), respectively. The estimated phonon
numbers of the COM mode and the LF mode are displayed for various values of gt in
Fig. 5.16(a) and (b), respectively. The bias-corrected mean phonon number is estimated
to be n̄ = 0.149(3) for the COM mode and n̄ = 0.081(3) for the lowest-frequency mode.
The magnitude of the bias is well below the error bar for all data points (see paragraph
on Statistical bias below for a discussion). The obtained results are consistent across the
probed parameter space. However, spurious excitation of neighboring modes at higher
Rabi frequencies leads to an overestimation of the mean phonon number, particularly of
the LF mode. This issue is further explored below; see paragraph on Crosstalk.

Heating-rate measurement

In addition to the characterization of the ground-state population directly after EIT cool-
ing, the generalized sideband ratio technique was applied to determine the heating rate
in measurements of vibrationally excited states with higher mean occupation numbers
(1 < n < 10). To this end, sideband thermometry measurements, as described above, were
carried out after a predefined waiting time between 0 and 20 ms following the ground-state
preparation. A linear fit of the estimated mean phonon numbers, weighted with the in-
verse variance obtained from Eq. (5.30), finally yields the heating rate. The data is shown
in Fig. 5.16(c) and reveals a heating rate of 15.3(1.7) quanta/s per ion for the COM mode.
This value is in accordance with previous measurements with a single ion and an 8-ion
crystal. The LF mode does not exhibit significant heating within tens of milliseconds and,
therefore, a heating rate measurement for this mode is not shown.

Another heating rate measurement of the COM mode was carried out after the improve-
ment of the dc filter boards14, which led to a substantial reduction of Johnson noise on the
dc electrodes. The measurement procedure was equivalent to the previous heating rate
measurement. The red and blue sideband excitations were probed in N/2 = 5000 exper-
iments each. The 729-nm laser power was set corresponding to a carrier Rabi frequency
of 2π × 31.25 kHz. The crystal was trapped in a potential with COM mode frequencies
of ωx,y,z = 2π × {2188.8, 644.4, 337.4} kHz measured with the 19-ion crystal, being only
slightly different from the ones used in the previous measurement (∆ω/(2π) < 3 kHz in
all directions). With the improved dc filters, we measure a reduced heating rate of 0.64(8)
phonons/s per ion. This result is backed up by a single-ion heating rate measurement,

14see Sec. 3.4.3 for details
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Figure 5.16: (a,b) Sideband thermometry for varying carrier Rabi frequencies (indicated
by color) and interrogation times of the (a) COM and (b) the lowest-frequency mode.
The mean values are indicated by dashed lines. The dependency of n̄ on the carrier Rabi
frequency is attributed to the unwanted excitation of neighboring modes (see Crosstalk
in main text). Therefore, in the calculation of the mean value for the lowest-frequency
mode in (b), we exclude all data points that are lying outside a range of 1σ from the mean
value obtained from all data points. This affects five data points with the highest values
of n̄, corresponding to measurements at high Rabi frequency. The error bars of individual
thermometry measurements are obtained from Eq. (5.30). (c) Heating rate measurement
of the COM mode. The mean phonon number is measured as a function of the probe
pulse delay. The solid line shows a weighted linear fit used to determine ˙̄n. (d) Same as
(c), but after the modification of the dc filter boards, resulting in a substantial reduction
of the heating rate.
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yielding 0.60(5) phonons/s (Sec. 4.6).

Crosstalk with neighboring modes

When using probe pulses at high laser intensities to measure the red and blue sideband ex-
citation probabilities, unwanted excitation (crosstalk) of the neighboring modes can affect
the mean phonon number estimate. This effect is evident in Fig. 5.16(b), where system-
atically higher mean phonon numbers are observed at increased Rabi frequencies. In the
19-ion out-of-plane spectrum, the neighboring modes of the COM mode as well as the
lowest-frequency mode are separated by less than 30 kHz. Zooming into the excitation of
individual ions in this data set, we can relate the bias at high laser intensities to a spurious
excitation of neighboring modes. Figure 5.17 shows the red and blue sideband excitation
of the individual ions in the 19-ion crystal as well as the global excitation probabilities for
different carrier Rabi frequencies used in the thermometry measurement. In this subset of
data, the blue sideband excitation was kept approximately constant at Pb ≈ 0.6 by choos-
ing the probe pulse length accordingly in the experiments. At higher Rabi frequencies, an
increase in the red sideband excitation probability can be observed for ions that otherwise
do not contribute at lower laser intensity. As an effect, the global excitation probability
Pr increases. The modified excitation probabilities lead to an increased sideband ratio
and, consequently, an overestimation of the mean phonon number. The structure of the
LF mode and the adjacent mode in the frequency spectrum are illustrated in Fig. 5.13(c).
However, bearing this effect in mind, it is relatively straightforward in experiments to
avoid a bias from such crosstalk by measuring at a low Rabi frequency.

Statistical bias

Due to the finite sampling of the red and blue sideband excitations, a bias (Eq. (5.29))
and error (Eq. (5.30)) emerge in the estimate of the mean phonon number. For the
19-ion crystal, we analyze the statistical bias in subsamples of datasets with N = 8000
experiments (4000 experiments on each sideband). The calculated bias (Eq. (5.29)) as
well as the measured bias, based on the data set of all 8000 measurements, are both well
below the error bar (Eq. (5.30)). In our measurements with a sample size of N = 8000,
the calculated bias δn̄/n̄ is about 10−3 (cf Fig. 3(b) in Ref. [182]). Using only subsamples
of the full data set results in an expected increase of the bias. However, the ratio between
the bias and the error remains well below 1, and for a sample size of N = 8000, it is even
below 10−2. Therefore, the effect of the bias in these measurements is minor compared to
the error due to finite sampling.

Experimental drift

Moreover, in order to investigate the influence of the sample size on the experimental out-
come, we performed thermometry measurements with an 8-ion crystal. Figure 5.18 shows
the mean phonon number estimated using the new sideband thermometry technique15 for
two exemplary laser intensity settings as a function of the number of consecutively per-
formed experiments. For both settings, measurements at three different values of the blue

15For the 8-ion data, we used a polynomial up to cubic order in n̄ (6th order in gt) for the estimation -
in contrast to 4th order for the 19-ion data.



159 5 Ground-state cooling and thermometry of 2d ion crystals

Figure 5.17: Analysis of power-dependent crosstalk with neighboring modes of the LF
mode. (a) Single-ion (top) and global (bottom) excitation probabilities on the blue side-
band of the lowest-frequency mode. The global blue sideband excitation probability is
kept around Pb = 0.6 across varying laser intensities. (b) Red sideband excitations analo-
gous to those shown in (a). (c) Sideband ratio. Parasitic red sideband excitations on the
neighboring modes leads to an increase in the measured sideband ratio (5.13), resulting
in an overestimation of the mean phonon number (cf. Fig. 5.16(b)). (d) Simulated mode
structure of the investigated LF mode in the out-of-plane spectrum. The lengths of the
arrows scale with the Lamb-Dicke factors. The overestimation of n̄ at higher carrier Rabi
frequency can be attributed to crosstalk with other motional modes with higher oscilla-
tion frequencies. As a result, the excitation pattern in (b) does not purely match the LF
mode’s pattern of motion.



160 5 Ground-state cooling and thermometry of 2d ion crystals

Figure 5.18: Sideband thermometry of the COM mode of an 8-ion crystal with a carrier
Rabi frequency of (a) Ωcarr = 2π × 18 kHz and (b) Ωcarr = 2π × 86 kHz. The data is
presented as a function of the number of experimental repetitions N/2 on each sideband.
While the bias and variance due to finite sampling are reduced with an increasing number
of measurements, the measurements are limited by instabilities in the experimental setup
due to thermal drifts. The dashed line indicates N/2 = 4000 repetitions, which is the
minimum number of experiments used in subsequent measurements. The indicated color
corresponds to the approximate value of the blue sideband excitation probability Pb, which
is determined by the interrogation time in the experiments.

sideband excitation probability (Pb ≈ {0.4, 0.6, 0.8}) were carried out. Following initial
oscillations, the curves converge towards values that drift as a result of instabilities in
the experimental setup at that time. The main contribution to these drifts is suspected
to stem from temperature variations in the lab that lead to fluctuations in rf power and,
consequently, in the motional mode frequencies. Based on these measurements, we chose
N/2 > 4000 experiments each on the red and the blue sideband for all subsequent mea-
surements with the 19-ion crystal. N = 4000 is well within the plateau of the measurement
outcome, limited by the instability of the motional mode frequencies rather than statisti-
cal shortcomings due to finite sampling. Note that these measurements were conducted
at the IQOQI prior to relocating the experiment to a new laboratory at the University of
Innsbruck. The new laboratory, equipped with an improved air conditioning system, as
well as a number of improvements in the setup lead to an enhanced stability of the entire
apparatus.

5.10 Summary and discussion

In the first part of this chapter, EIT cooling of the out-of-plane modes of ion crystals
with up to 105 ions near the ground-state was presented as a prerequisite for future
quantum simulation experiments. In addition to the stability of the trapped ion crystals
discussed in Chapter 4, precise knowledge and control of the out-of-plane motional modes
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is crucial for mediating entangling interactions. The presented results prove that a large
number of modes, spanning a frequency range of several hundreds of kHz, can be efficiently
cooled close to the ground-state. At the time of the publication of Ref. [60], the ground-
state cooling of complete motional mode spectra (here, in the OOP direction) of crystals
with about 100 ions was about an order of magnitude more than in other experiments
with 2d crystals in rf traps and about a two-fold increase compared to experiments with
linear strings. It was also the first experiment showing sideband-resolved spectra of such
number of cold trapped ions. However, the engineered spin-spin interactions could still be
impaired by hot in-plane modes, resulting in mode-mode couplings and an effective energy
transfer from in-plane modes to the out-of-plane modes. This could lead to decoherence
and adversely affect quantum simulation experiments. In turn, PG cooling of all in-plane
modes can be integrated straightforwardly into the setup to mitigate these processes. So
far, this has not been necessary in the new 2d crystals setup but was demonstrated with
a 22-ion zig-zag crystal in another setup.

In order to characterize the motional state of larger ion crystals, a sideband thermometry
method for ion crystals was presented as a generalization of the well-established single-
ion sideband thermometry, taking many-body interactions in the system dynamics into
account. The truncated power-series expansion in t of the evolution of the quantum many-
body system yields accurate results for probe pulse times that provide a sufficient signal in
experiments. In Ref. [182], the tolerable interrogation time is shown to be independent of
the number of ions for N = 4 . . . 12. It may be reasonable to infer that this is also valid for
larger ion crystals, as the derivation makes no assumptions on the number of ions. The new
method enriches the toolbox for characterization measurements in quantum metrology,
quantum information processing and quantum simulation. From an experimental point
of view, it is easy to implement, although precise knowledge of the investigated modes
as a prerequisite necessitates accurate simulations or single-ion addressed measurements.
Parasitic crosstalk with neighboring modes is a problem that can be avoided easily by
measuring at low laser powers. The statistical bias proves to be a minor problem, even
for a relatively small number of measurements. In the presented results, the accuracy was
limited by thermal drifts in the setup rather than by the theoretical error and bias from
finite sampling.

Concerning the method’s wider applicability, a current constraint is its limitation to canon-
ical thermal states of motion. This assumption does not hold for all cooling techniques, in
particular for sideband cooling or short cooling pulses [160,183]. However, a noncanonical
parametrization of the occupation probability and a systematic derivation of the corre-
sponding estimators is, in principle, feasible. Additionally, one could extend the approach
to correlated spin states to enhance the metrological accuracy, or use a bichromatic drive
and consider many-body interactions to gain from measurements with multiple ions.



Chapter 6

Coherent control via stimulated
Raman transitions

This chapter’s purpose is to provide an overview of the characteristics and dynamics of the
stimulated Raman transition used to implement entangling interactions in the presented
apparatus. At the time of writing this thesis, the work on the optical setup as well as the
characterization of the Raman interaction was still ongoing and, therefore, the number of
measurements presented here is limited. A more comprehensive characterization will be
part of future PhD theses and publications. In the following, after a brief review of the
laser-ion interaction and the most relevant characteristics are discussed. The last section
presents first experiments with a bichromatic field, demonstrating the build-up of quantum
correlations in a 19-ion crystal during the application of an Ising-type interaction.

6.1 Laser-ion interaction of the stimulated Raman transi-
tion

Figure 6.1(a) shows a simple Λ-type level scheme consisting of levels |1⟩ and |2⟩ that are
off-resonantly coupled via a third level |3⟩ using two laser fields. In our experiments,
we use a Raman transition to couple the two Zeeman states of the ground-state qubit.
The wavelength of the Raman beams lies between the transition wavelengths of the dipole
transitions to the 4P1/2 (397 nm) and the 4P3/2 (393 nm) state. We choose the wavelengths
and polarizations of the two beams such that two-photon resonance is achieved with a
combination of a σ+-polarized and a π-polarized laser field. Figure 6.1(b) shows the
relevant levels in 40Ca+. Details on the optical setup are presented in Sec. 3.6.7. Section 6.2
provides more insights on the choice of the wavelength and polarizations, considering ac-
Stark shifts.

Multilevel system interacting with off-resonant laser-field

For the treatment of the laser-ion interaction, let us first assume a simple Λ-type level
scheme, as given in Fig. 6.1(a). In order to describe the interaction between the two off-

162



163 6 Coherent control via stimulated Raman transitions

Figure 6.1: Level schemes relevant for stimulated Raman transitions used in this work.
(a) Simplified Λ-type three-level scheme. (b) Involved sublevels and transitions in the
40Ca+ ion. The 3D5/2 and 3D3/2 levels are not shown.

resonant Raman beams and an ion, we start from a Hamiltonian in the interaction picture
considering the three levels and both laser beams

HI = ℏ
2Ω1 |3⟩ ⟨1| e−i∆1t + ℏ

2Ω2 |3⟩ ⟨2| e−i∆2t + h.c. (6.1)

The Raman interaction is usually treated in an adiabatic elimination of the excited state
level (|3⟩), as done in Refs. [58, 190] and references therein, which yields an accurate de-
scription if the detuning from the third level is large. Another approach without adiabatic
elimination is pursued in Ref. [191], leading to more accurate results for small detunings.
Yet another convenient recipe is provided in Ref. [192] for deriving an effective Hamilto-
nian for the time-averaged dynamics of a detuned quantum system, which in the case of
a Raman process, arrives at

Heff = −ℏΩ2
1

4∆1
(|3⟩ ⟨3| − |1⟩ ⟨1|) − ℏΩ2

2
4∆2

(|3⟩ ⟨3| − |2⟩ ⟨2|)

+ ℏΩ1Ω2

4∆

(
|1⟩ ⟨2| ei(∆1−∆2)t − |2⟩ ⟨1| e−i(∆1−∆2)t

)
, (6.2)

where ∆ = ∆1∆2
∆1+∆2

. The first two terms in this Hamiltonian can be associated with ac-
Stark shifts that are induced by the two light fields. The third term describes coherent
oscillations between the states |1⟩ = |↓⟩ and |2⟩ = |↑⟩ despite the absence of a direct
interaction. Looking exclusively at the third term that represents the dynamics involving
only the two qubit states |1⟩ and |2⟩, where |1⟩ ⟨2| = σ− and |2⟩ ⟨1| = σ+, we can identify
this term as an effective coherent Rabi oscillation between these states. This oscillation
is described by Eq. (2.86), but with the Rabi frequency Ω being replaced by the effective
Rabi frequency

Ωeff ≡ Ω1Ω2

2∆
. (6.3)
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Using the effective Hamiltonian (6.2), the same formalisms as discussed in Secs. 2.5.2ff.
can be applied to derive analogous expressions for spin-motion coupled interactions as
well as entangling interactions via bichromatic light fields. In the case of the stimulated
Raman transition, the phase of the light field ϕL used in Sec. 2.5 is replaced by the phase
difference ϕ1 − ϕ2 between the two laser fields. In the presented experiments, we use a
configuration with two counterpropagating Raman beams that are perpendicular to each
other, with the difference wave vector ∆k = k2 − k1 being aligned with the out-of-plane
direction (x) of the crystal plane (see Fig. 6.2). For balanced intensities of the two Raman
beams, with |k1| = |k2| = k, the coupling to the motional modes is enhanced by a factor
of

√
2 as |∆k| =

√
2k compared to a single light field with k directly coupling to the

out-of-plane modes.

Note that the given expressions are valid for an ideal three-level system, ignoring any
coupling to additional electronic levels. A more general description would go beyond the
scope of this thesis. However, for the treatment of the spontaneous scattering rate as well
as the Raman Rabi frequency, both the P1/2 and the P3/2 levels are considered. A more
general expression for the resonant two-photon Rabi frequency, taking other electronic
levels and polarizations into account, is given by [193]

ΩRaman = 1
2ℏ2

∑
k

∑
p

⟨↑| dEE1ê1,p |k⟩ ⟨k| dEE2ê2,p |↓⟩
∆k

, (6.4)

where the index k denotes the relevant electronic transitions, the index p ∈ π, σ+, σ−

accounts for all polarization components of the Raman laser beams, de denotes the elec-
tronic dipole moment, and ê{1,2},p the polarization unit vectors of the electric fields with
the amplitudes E{1,2}.

6.2 Differential ac-Stark shift

A single off-resonant laser beam interacting with a two-level system results in a Stark shift
of the transition frequency of

δac ≃ Ω2

2∆ . (6.5)

In view of the stimulated Raman transition between the two S1/2 levels, the ac-Stark
shifts of the two ground-state levels |↓⟩ = |S1/2,m = −1/2⟩ and |↑⟩ = |S1/2,m = +1/2⟩
have to be considered. In the presence of laser intensity fluctuations, power-dependent
variations in the frequency shifts of the two states lead to decoherence and thus needs
to be mitigated. For perfectly linearly polarized light, the differential Stark shifts of the
qubit levels is zero (δ↓

ac = δ↑
ac), whereas any non-zero differential Stark shift (δ↓

ac ̸= δ↑
ac)

requires elliptical polarizations.

For two Raman beams interacting with a multi-level system, one has to consider the ac-
Stark shifts from off-resonant coupling to all relevant transitions. Here, the levels of the
P1/2 and the P3/2 manifold are taken into account. Relative to these levels, the coupling
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Figure 6.2: Beam and magnetic-field geometry for the stimulated Raman transition.
(a) Geometry at the vacuum chamber (cf. Fig. 3.15). The Raman 3 beam was part of
the initial setup but has since been removed. (b) Geometry of the Raman k-vectors with
respect to the B-field and the ion plane.

to the D5/2 and D3/2 levels is small. However, in order to cancel the differential Stark shift
on the S1/2 ↔D5/2 clock transition, the magic wavelength of 395.799 nm is used to drive
the Raman transition [139,140]. The light shifts for the two ground state levels are given
by the sum over all dipole-allowed transitions considering all polarization components (σ±

for Raman beam 1 and π for Raman beam 2)

δ↓
ac =

∑
P3/2

k

Ω2
|↓⟩↔k

2∆k
+
∑
P1/2

l

Ω2
|↓⟩↔l

2∆l

for k ∈
{
m = −3

2 ,m = −1
2 ,m = +1

2

}
and l ∈

{
m = −1

2 ,m = +1
2

}
,

δ↑
ac =

∑
P3/2

k

Ω2
|↑⟩↔k

2∆k
+
∑
P1/2

l

Ω2
|↑⟩↔l

2∆l

for k ∈
{
m = −1

2 ,m = +1
2 ,m = +3

2

}
and l ∈

{
m = −1

2 ,m = +1
2

}
. (6.6)

For perfectly linearly polarized light, the differential Stark shifts of the qubit levels is
zero (δ↓

ac = δ↑
ac), whereas any non-zero differential Stark shift (δ↓

ac ̸= δ↑
ac) requires elliptical

polarizations. We now assume driving a stimulated Raman transition using a σ+-polarized
and a π-polarized beam, coupling the two S1/2-ground states via the |P1/2, ,= +1/2⟩ state
as shown in Fig. 6.1 (b). Considering the P1/2 manifold, the σ+-beam would induce a
light shift on the |S1/2,ms = −1/2⟩ state but not on the |S1/2,ms = +1/2⟩ state. This
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imbalance can be lifted by using linearly polarized light to drive both the σ+- and σ−-
transition equally. This way, the differential Stark shift cancels. The beam geometry for
doing so is shown in Fig. 6.2(a). The Raman 1 beam is linearly polarized and propagating
parallel to the magnetic-field axis, driving both σ-components at the same time. In this
configuration the orientation of the polarization vector can, in principle, be arbitrary
within the plane perpendicular to the magnetic field1.

Another effect causing a non-zero differential shift in our setup, is the off-resonant two-
photon coupling of the two qubit states originating from the paths that involve the σ−-
component of the Raman 1 beam. There is an off-resonant coupling with a positive
detuning with respect to the |m = −1/2⟩ state (shown in Fig. 6.1(b)) and an off-resonant
coupling with a negative detuning with respect to the |m = +1/2⟩ state (not shown).
Both cases involve σ−-polarized light, resulting in unequal light shifts for the two states
(on the order of 500 Hz at a Raman Rabi frequency of Ω ≈ 2π × 200 kHz). This can
be counteracted by a slight power imbalance of the two bichromatic components of the
entangling interaction beams. In the presented experiments, we used a ratio of Ωr/Ωb ≈ 0.9
between the red- and the blue-detuned components.

6.2.1 Measurement and minimization of ac-Stark shifts

The ac-Stark shift can be measured in a Ramsey-type experiment: The ion is first prepared
in a superposition of one of the two S1/2 sublevels by a π/2-pulse using the rf coil2. During
the Ramsey wait time, one of the Raman beams is applied to the ion for a variable time
τR. A second π/2-pulse at the end of the sequence concludes the Ramsey experiment.
Repeating this experiment for varying Raman pulse lengths τR leads to oscillating Ramsey
fringes, the frequency of which reveals the light shift induced by the detuned Raman beam.
The measured signal is proportional to sin(∆S · t+ ϕ), where ∆S is the ac-Stark shift. In
order to determine the differential light shift, the measurement is performed once for
the |m = −1/2⟩ and once for the |m = +1/2⟩ ground state. This scheme is also used to
minimize the differential light shifts between ions in a crystal caused by the individual
Raman beams.

6.3 Homogeneity of coupling

A homogeneous laser beam profile is crucial to ensure an equal coupling to the individual
ions in a crystal and maintain coherence between the ions during interactions. In the
current setup, we achieve a maximum variation of the Raman Rabi frequency of 15 %
across a large 91-ion crystal3. During the time of this PhD work, the Raman laser setup
was subject to frequent changes to optimize the coupling strength and reduce spatially
varying ac-Stark shifts across the ion crystal. In the presented experiment, such ac-Stark

1The Raman 1 beam is entering the front viewport at 45◦. Due to polarization-dependent transmission
losses of the focused laser beam (the wave front is not perfectly planar), it can be beneficial to choose a
certain orientation to minimize the inhomogeneity in the laser intensity.

2For this Ramsey experiment, also the S1/2 ↔D5/2 quadrupole transition, coupled via the 729-nm laser,
could be used.

3The Rabi frequency of the outer ions is about 85 % of that of the innermost ions.
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Figure 6.3: Zeeman sublevels of the S1/2 ↔ P1/2 and S1/2 ↔ P3/2 transitions with
squared Clebsch-Gordan coefficients.

shifts are suspected to be caused by polarization-dependent losses at the surface of the
vacuum chamber’s front window, where the Raman 1 beam enters at 45◦. At the window,
the beam is not perfectly collimated, as it is focused onto the ion plane. It therefore
exhibits spatially varying polarization components across the beam profile, which can
translate to a spatially varying profile at the ions, causing some ions to decohere faster
than others. Another potential cause for varying Stark shifts are back reflections of the
beams creating interference patterns across the crystal plane. Although this effect cannot
be excluded, in the geometry of the presented apparatus, this is regarded as unlikely due
to the absence of (near)-parallel surfaces along the beam paths.

6.4 Spontaneous scattering

A finite detuning ∆ causes spontaneous decay from the auxiliary level |3⟩. The involvement
of additional states may lead to further non-negligible scattering. This results in decoher-
ence during laser-ion interactions, thereby introducing errors in quantum gates [194], which
may pose a limitation to spin-spin interactions in future quantum simulation experiments.

In an off-resonantly driven two-level system, the photon scattering rate is given by

R = Γ Ω2

2∆2 , (6.7)

where Γ is the natural decay rate (equivalent to the Einstein A coefficient), the detuning
is ∆1 = ∆2 = ∆, and Ω ≪ ∆. In essence, this expression corresponds to the natural
decay rate times the steady-state probability of finding the ion in the upper state. In the
presented experiments with 40Ca+ ions, we use the “magic wavelength” of 395.799 nm,
which lies between the transition wavelengths of the P1/2 and P3/2 levels. Therefore, we
consider the coupling to and the decay from the Zeeman sublevels of these states (see
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Fig. 6.3). The total spontaneous scattering rate for the stimulated Raman transition can
be calculated as the sum of the scattering rates from all relevant transitions [193]

R =
∑

i

ΓiPi =
∑

α
393,397

∑
β

R1,R2

∑
γ

l1→l2
m1→m2

Γα
Pgs,γ |⟨l1,m1| dEE0,β êβ,γ |l2,m2⟩|2

2∆2
α,β

(6.8)

where E0,β are the peak electric fields of the Raman beams R1 and R2 and Pgs,γ is the
population in the respective level in the ground-state manifold with quantum number
m1 (l1 is 0). In this expression, the coupling to the D5/2 and D3/2 state and the decay
from them is neglected as the detuning from these states is large. The decay channels
P3/2 → D5/2 with a branching ratio of 5.9% [195], P3/2 → D3/2 with a branching ratio
of 0.7% [195], and P1/2 → D3/2 with branching ratio of 6.4% [196] are not taken into
account. In practice, differences in the detuning due to the Zeeman splitting of 11.5 MHz
can be neglected as it is small compared to the detuning from the P levels on the order of
106 THz (∼ 2 nm). The calculation of Rabi frequencies, spontaneous scattering rates and
decoherence rates of hyperfine qubits in various species can be found in Refs. [193,194].

6.4.1 Measurement of the spontaneous decay rate

The spontaneous decay rate is measured separately for the π-beam and the σ-beam. In
this measurement, the qubits are initially prepared in either the |S1/2,m = −1/2⟩ or the
|S1/2,m = +1/2⟩ state. Then, one of the two Raman beams (σ or π) is turned on for a
variable time. Finally, the population in the initial state is transferred to the D5/2 state
by a π-pulse prior to the readout of the S1/2 population. The residual population in the
S1/2 state stems solely from the spontaneous decay from the P -levels, as there is only one
Raman laser beam applied (no stimulated Raman transition). This measurement is carried
out for both the σ- and the π-beam, and for each beam once after preparing the ions in
the |S1/2,m = −1/2⟩ state and again after peparing them in the |S1/2,m = +1/2⟩ state.
The population in the respective S1/2 state as a function of the Raman pulse length is
fitted by an exponential function pd(t) = 0.5(1±e−αt), approaching 0.5 in the equilibrium.
The decay coefficient α measures the rate, at which population is exchanged between the
two qubit states4. The neglection of decays from the P states to the D states affects only
the steady-state population (t → ∞) measured in the experiment and is a negligible offset
from 0.5.

We measured scattering rates individually for the two beams and the two ground states,
yielding a total scattering rate of approximately 20 s−1 per ion for a Raman Rabi frequency
of Ω ≈ 2π × 200 kHz. Further measurements involving randomized benchmarking of
resonant single-ion gates suggest a slower decoherence than expected purely from the
measured scattering rate. Investigations are ongoing and updates can be expected in
future theses and publications.

4The rate equation for the two states is given by ρ̇1 = Γ21ρ2 − Γ12ρ1 and is solved by an exponential
decay approaching Γ12/(Γ12 + Γ21).
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6.5 Decoherence rate

Ramsey experiments with a variable waiting time between the two Rx(π/2) pulses were
performed to determine the coherence time of the Zeeman qubit using the rf coil as well
as the Raman beams. Along with coherence measurements of the optical qubit, these
measurements are presented in Sec. 4.7. They mainly account for dephasing of the Zee-
man qubit due to magnetic-field fluctuations as well as interferometric phase instabilities
between the Raman beams. To capture decoherence effects arising from spontaneous scat-
tering and thermal occupation of motional modes, the decoherence rate was determined
by applying an Ising-type XX interaction (using a bichromatic laser field, see Sec. 6.6)
between the two Ramsey pulses and measuring the contrast decay as a function of the
interaction pulse length, rather than the pure waiting time. Since the XX interaction is
applied to its eigenstate, it decouples the state from the decoherence caused by magnetic
and interferometric noise. We used Ising interaction pulse lengths ranging from 50 µs
to 20 ms, with a sideband detuning of ∆sb/(2π) = 80 kHz and no centerline detuning
(δ = 0). The phase of the second pulse was scanned to obtain Ramsey fringes, which were
fitted by a sinusoidal function to determine the Ramsey contrast. The contrast decay for
increasing interaction time was then fitted with a Gaussian function, yielding the deco-
herence rate γdec. The measurement was done with a 19-ion crystal with an out-of-plane
COM mode frequency of ωx = 2π × 2.2225 MHz. The carrier Rabi frequencies for the
red and blue bichromatic components of the interaction were Ωr/(2π) = 89.97 kHz and
Ωb/(2π) = 99.35 kHz, respectively.5 The resulting decoherence rate is γdec = 17.8 s−1.

6.6 Bichromatic interaction

As introduced in Sec. 2.5.5 and Sec. 2.5.6, an Ising-type interaction can be realized using a
bichromatic light field. Here, this is implemented by combining the red- and blue-detuned
rf signals from two separate AWGs (Sinara Phasers), yielding the two-tone signal to drive
the AOM for the σ-beam. Together with the π-beam, the Raman interaction couples
the red and the blue motional sidebands simultaneously. With a sideband detuning of
∆sb = 80 kHz, no centerline detuning and a carrier Rabi frequency of Ωcarr ≈ 123 kHz,
the ion-ion coupling constant is J0 ≈ 2π × 200 Hz for an approximate power-law decay of
the form Jij ≃ J0/|i− j|α. The exponent α, defining the tunable range of the interactions,
is approximately 1 for these parameters. However, note that Jij does not follow a pure
power-law, in particular for larger ion-ion distances. Similar parameters have been used,
for example, for spin-squeezing measurements presented in Ref. [61] and for further mea-
surements that will be presented in an upcoming publication. For a sideband detuning
of ∆sb = 320 kHz and a carrier Rabi frequency of approximately 2π × 245 kHz, we find
α ≈ 2 and J0 ≈ 2π × 130 Hz. The current maximum achievable carrier Rabi frequency is
about 2π × 500 kHz.
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Figure 6.4: Build-up of correlations in a 2d 19-ion crystal interacting with an off-resonant
bichromatic Raman laser field, creating Ising-type interactions. The ion numbering is
shown in the center of the figure (black crystal). (a) Snapshots during the evolution
illustrate the correlation coefficients Cij(tk) at specific times for ions i = {1, 5, 10, 12}
marked in red. (b,c) Measured correlation coefficients for representative ion pairs as a
function of the interaction time reveal a good agreement with numerical simulations (solid
red lines) until decoherence effects impair the measurements at longer interaction times.
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6.6.1 Build-up of quantum correlations under the Ising interaction

In the experiments presented in the following, we used a bichromatic light field with a
sideband detuning from the COM mode of ∆sb/(2π) = 80 kHz. The carrier Raman Rabi
frequency was Ω/(2π) ≈ 195.1 kHz. The centerline detuning δ was 0, realizing a pure
Ising model with interactions of the form ∝ σ

(i)
x σ

(j)
x without a transverse B-field term

(cf. Eq. (2.110)). As the first experimental implementation of such an interaction in
the presented apparatus, we apply it to a planar 19-ion crystal6 and observe the build-
up of correlations during the time evolution of up to 1 ms. Similar experiments have,
for example, been carried out in Ref. [197]. In our experiments, the sequence consists
of a resonant π/2-pulse about the x-axis (Rx(π

2 )), creating an equal superposition of |↑⟩
and |↓⟩, followed by the bichromatic Raman interaction pulse of variable length, which
induces the coherent evolution of the Ising-Hamiltonian. Subsequently, a Ry(π

2 ) pulse is
applied before the state is detected in the energy eigenbasis (z) to measure the spin-spin
correlations in the x-basis. The correlations between all pairs of ions are then calculated
as

Cij(t) = ⟨σx
i (t)σx

j (t)⟩ − ⟨σx
i (t)⟩⟨σx

j (t)⟩. (6.9)

The correlation coefficients Cij of a few exemplary ions i are illustrated in Fig. 6.4(a).
They are presented as snapshots at various time steps during the evolution of the inter-
action. We observe a clear build-up of correlations, reaching a maximum around 500 µs
before decreasing again. We also performed simulations of the time evolution of the 19-ion
crystal under the Ising Hamiltonian to compare them with the experimental data. The
time evolution of correlations between a few selected ion pairs, along with the simulated
dynamics, are displayed in Figs. 6.4(b-c), showing a good agreement between the measure-
ments and simulations. The discrepancy at longer evolution times most likely originates
from motional decoherence, which was still dominated by a noisy dc filter board at the
time of these measurements.

6.7 Discussion and outlook

This chapter provided an overview of basic characteristics of stimulated Raman interac-
tions in our setup and presented first measurements using a bichromatic interaction. These
measurements demonstrated entanglement in a planar 19-ion crystal in the form of the
build-up of spin-spin correlations under the time evolution of an Ising model. Numerical
simulations support our findings and show that the applied interaction is well-defined and
provides a suitable basis for establishing greater complexity in future experiments. This
work therefore lays the foundation for quantum simulation with 2d ion crystals in the
presented apparatus. The first experiments following those presented here, involve the
creation of spin-squeezed states by the implementation of the one-axis twisting model (see
Sec. 2.5.7). First results of these squeezing measurements are presented in Helene Hainzer’s
thesis Ref. [61], where spin-squeezed states of a 19-ion crystal are generated. The exper-

5They were imbalanced (r : b ≈ 0.9 : 1) to compensate differential ac-Stark shifts; see Sec. 6.2.
6The 19-ion crystal was trapped in a potential characterized by the trap oscillation frequencies ω{x,y,z} =

2π × {2222.5, 697.4, 360.2} kHz.
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iments are currently continued with larger ion crystals of about 100 ions. A variational
approach is used to optimize the squeezing using the Wineland squeezing parameter as a
cost function. These measurements will be subject of a forthcoming publication.

By using the ground-state qubit coupled via a stimulated Raman transition, we benefit
from an increased coupling strength and coherence time compared to the optical qubit at
729 nm. However, note that between the time of the measurements and the submission of
this thesis, the experimental setup has already been subjected to several changes, which
led to further improvements. Modifications of the optical setup and beam parameters
enhanced the coupling strength and homogeneity. In addition, the change of the dc filter
boards (see Sec. 3.4.3) as well as modifications in the electronic setup, after tracking down a
major source of magnetic-field noise created by the vacuum pump7, considerably improved
the motional and electronic coherence of the ground-state qubit. First measurements with
spin-echo suggest a coherence time of about 950 ms, measured with the rf coil, and about
780 ms measured with the Raman beams. Details on an improved setup and further
insights regarding the Raman interactions can be expected in the PhD thesis of Artem
Zhdanov.

7The magnetic-field noise was caused by the connection between the NEG pump and the vacuum pump
controller and could be removed simply by disconnecting the NEG.



Chapter 7

Summary and outlook

Summary and conclusion

This work presented a new ion-trap apparatus targeted at quantum simulation experiments
with individually controllable particles in a planar configuarion to study 2d many-body
physics intractable for classical computers. Prerequisites for such experiments include
deterministic loading and stable trapping of two-dimensional ion crystals as well as main-
taining a stable crystal lattice during the measurements. At the same time, one aims at
minimizing the ions’ micromotion to mitigate adverse effects on the laser-ion interactions.
Quantum simulation experiments further require precise knowledge and control of the ions’
motional modes as well as the ability to cool the motion close to the ground state. This is
crucial, as the engineered entangling interactions are mediated by the ions’ motion (here:
in out-of-plane direction). These requirements entail a number of technical challenges that
have been discussed and overcome in the course of this thesis.

After an overview of the foundations of ion trapping in rf traps as well as an introduction
to quantum optics and quantum information with trapped ions in chapter 2, the experi-
mental setup was presented in chapter 3. The novel rf trap design provides micromotion-
free optical access in an entire plane, enabling high-fidelity quantum operations and an
unobstructed quantum state read-out. The trap design and its geometry was briefly dis-
cussed before focusing on other parts of the setup, such as the vacuum apparatus, the trap
electronics to control the dc and rf potentials, the experiment control, a new unsupervised-
learning scheme for quantum-state readout, the optical setups, and the setup of the rf coil
to manipulate the ground-state qubit.

Chapter 4 presented various characterization experiments, which demonstrated excellent
control of the ions on a classical and quantum level. Laser ablation loading is combined
with precise control of the rf potential depth to remove ions from the crystal. We thereby
achieve deterministic loading of single ions and crystals containing up to about one hun-
dred ions within typically less than a minute. Moreover, this work demonstrated that the
micromotion modulation index can be reduced to βi < 0.02 for all ions in a 105-ion crystal.
Such measurements can be used further to ensure the planarity of ion crystals via adjust-
ments of the voltages applied to the dc trap electrodes. In the absence of any cooling,

173
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we achieve a crystal lifetime of several seconds for ion numbers of up to 91 ions - another
major result. As crystal lattice configuration changes can compromise any quantum mea-
surement, the stability of the crystal lattice was analyzed by an unsupervised classification
of a recorded series of crystal images. The images were assigned to distinct crystal lat-
tice configurations via a clustering algorithm. In this way, we found a finite number of
crystal configurations occurring in large crystals of up to 91 ions. This method further
allowed for the optimization of the rf potential to obtain stable elongated crystals, which
reside in a single symmetric lattice configuration for more than 99 % of the time. These
findings are supported by numerical simulations using simulated annealing. Overall, these
measurement rule out rf heating as a detrimental cause of melting events or crystal lattice
configuration changes in future experiments. Further characterization measurements with
a single ion revealed a heating rate of about 0.6 phonons/s, an electronic coherence time
of the ground-state qubit of about 130 ms without and 370 ms with a spin-echo pulse as
well as a motional coherence time of 105 ms without and 279 ms with spin echo. Note,
that these values have already been improved significantly since the experiments for this
thesis were concluded (see Outlook below). Updated values will be provided in upcoming
publications.

Chapter 5 first presented simulations of the motional mode spectrum of planar crystals
as well as polarization gradient cooling of 22-ion zig-zag crystals as a first step towards
ground-state cooling of planar crystals via a multi-mode cooling technique. Subsequent
experiments demonstrated the ground-state cooling of crystals consisting of up to 105 ions
via EIT cooling. In order to measure the temperature of individual modes in a 2d crystal,
in a collaborative effort [182], a novel generalized sideband thermometry technique was
applied to determine the mean phonon number of the COM mode and the lowest-frequency
mode in out-of-plane direction of a 2d 19-ion crystal. Heating rate measurements of the
COM mode revealed a heating rate of approximately 0.6 phonons/s per ion, which is
consistent with single-ion measurements. The mode with the lowest mode frequency in
the spectrum showed no significant heating after a waiting time of tens of milliseconds.

Chapter 6 gave an overview of the laser-ion interaction using a stimulated Raman tran-
sition to off-resonantly couple the two ground states in the S1/2 manifold. The Raman
transition will be used to implement entangling gates in future experiments, exploiting the
ion-ion coupling due to Coulomb interactions. Besides the presentation of the optical setup
and the geometry in our experiments, various aspects including differential ac-Stark shifts
and spontaneous scattering were discussed as a starting point for further measurements.
The chapter concluded with measurements that demonstrate the build-up of quantum
correlations across a 19-ion 2d crystal under the action of a global bichromatic laser field,
introducing finite-range spin-spin interactions for the first time in the new apparatus.

The results presented in this thesis are disarming several major challenges arising from
working with 2d crystals, including effects induced by micromotion and rf heating, as well
as the influence of crystal lattice instabilities. Previously, these aspects were considered
risks of unknown severity. In the new apparatus, excellent classical and quantum control
of planar ion crystals with up to 105 ions has been achieved, building a robust foundation
for future experiments. By cooling 2d crystals of this size near the ground state and
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conducting initial experiments with bichromatic spin-spin interactions, further milestones
have been reached. Were one to set modesty aside and borrow another popular expression,
one might conclude that the results presented in this work pave the way for future studies
of quantum many-body physics in two dimensions, beyond the capabilities of classical
computers.

Outlook

Despite considering many problems solved, there is still a number of challenges awaiting
on the route to full-fledged quantum simulation with 2d crystals. However, as this thesis is
being written, many of them are already being addressed by my colleagues Matthias Bock
and Artem Zhdanov. Moreover, the PhD thesis of Helene Hainzer [61] may be seen as a
complementary work that is covering other topics such as the analysis of anharmonicities
in the trapping potential, a more detailed discussion of the quantum-state readout scheme,
and a new scheme to probe phase differences in the presence of correlated phase noise based
on N-ion correlation spectroscopy (published also in [76]).

The bichromatic interaction schemes, which have been applied for many years in experi-
ments with linear ion crystals, can be transferred to 2d crystals straightforwardly. This was
done in the first proof-of-principle experiments with bichromatic interactions presented in
chapter 6. The laser system at 396 nm coupling the states of the ground-state qubit
via a stimulated Raman transition is currently being optimized. Modified collimators are
employed to ensure a homogeneous coupling across the crystals while minimizing the scat-
tering of light at the trap electrodes. Spin squeezing experiments are used to benchmark
the entangling interactions using the Wineland squeezing parameter as a figure of merit.
In a variational fashion, an additional classical optimization algorithm is used to maxi-
mize the spin squeezing by acting on the parameters of the applied laser pulse sequence.
These measurements will be part of a publication in the near future. Besides, an electrical
connection between the controller and the NEG pump of the combined ion-NEG pump
attached to the vacuum vessel, although sharing the same electrical ground, was identified
as a major source of decoherence due to magnetic field fluctuations, with a main contribu-
tion at 792.66 mHz. By removing the unused cable, the electronic coherence time could be
improved to nearly one second with the rf coil and 780 ms with the Raman beams (with
spin-echo).

In view of the envisaged experiments, the last missing part in the experiment is the optical
setup for manipulation of individual ions with a tightly focused laser beam. This setup
was designed by Artem Zhdanov and has already been set up by him and Matthias Bock.
It is currently being characterized. Two crossed acousto-optic deflectors (AODs) are used
to steer a single narrow-frequency 729-nm laser beam in two dimensions before being
focused by the objective to a diffraction-limited spot that interacts with single ions. Two
AODs in a 4f-configuration ensure that the laser beam is guided into the objective without
clipping as the deflection angle changes. A dichroic mirror allows for the separation of
the addressing and the imaging beam. The single-ion addressing setup enables sequential
single-qubit rotations as well as the preparation of arbitrary spin states. By shelving ions to
the metastable D5/2-state, where they are not participating in the entangling interactions
induced by the Raman beams at 395 nm, the crystal lattice can be structured to realize
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arbitrary spin geometries.

Another aspect, the exploration of which might yield an improvement of the setup’s per-
formance, is the heating of the in-plane motional modes. Cross-coupling could transfer
energy from in-plane modes, which are currently only Doppler cooled, to the out-of-plane
modes, leading to increased heating rates and, consequently, to motional decoherence.
First measurements suggest a high heating rate in the vertical (y) direction. As a coun-
termeasure, additional cooling via polarization-gradient cooling could be implemented by
using two counterpropagating beams entering through the axial holes in the trap chip. Al-
ternatively, sideband cooling could be used straightforwardly with the axial 729-nm beam
to cool hot modes in the in-plane spectrum.

As a last note, a few suggestions on the modification of the trap chip shall be mentioned.
In the presented setup, we expect to be able to trap several hundreds of ions, although
ion crystals beyond 105 ions have not been explored yet. We encountered a limit for the
applicable rf voltage of about 1 kV peak-to-peak, restricting the achievable trap frequency
and eventually the number of ions that can be trapped in a two-dimensional crystal lattice
configuration. As discussed in Sec. 2.1.5, the ratio between the trap frequencies in strongly
and weakly confined directions have to obey a certain condition, which gets increasingly
difficult with larger ion numbers. Increasing the applicable voltage, however, requires a
modification of the trap design, in particular an increase of the distances between the
electrodes to avoid voltage breakdowns due to shorts between two adjacent trap segments.
In the current design, the width and depth of the trenches used for the electrode separation
in the central area of the trap chip, is restricted by the substrate thickness. The etched
trenches, separating the electrodes at the angled surfaces, need to leave enough substrate
between the electrodes to ensure their mechanical stability. In order to keep the same
geometry and benefit from a monolithic design, increasing the trench dimensions would
require a thicker chip substrate, which could, in principle, still be processed effectively
using selective laser-induced etching.
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Floquet-Lyapunov theory

Floquet theory proposes solutions for a set of linear, ordinary differential equations (ODEs)
with a periodic coefficient matrix. In Refs. [56, 59], it is used to solve Eq. 2.34, a set of
Mathieu equations. A brief summary of this approach, following Refs. [56,59], is given in
this section.

For the f -dimensional Newtonian problem, where f = 3N for N ions in three dimensions,
the Floquet problem is stated in the 2f -dimensional phase space as an ODE of first order
using the definitions

Φ⃗(t) =
(
u⃗(t)
˙⃗u(t)

)
, and Π(t) =

(
0 1f

−(A− 2Q cos(2t)) 0

)
, (A.1)

with 1f being the f -dimensional identity matrix. The standard form of the e.o.m. is then
given by

Φ̇ = Π(t)Φ. (A.2)

There are 2f linearly independent column solutions constituting the fundamental matrix
solution to equation A.2 . A fundamental matrix solution obeying Φ(0) = 12f is unique
and can always be written as Φ(t) = Γ(t)eBtΓ−1(0), where Γ(t + T ) = Γ(t) is periodic
with the period of Π (period of the trap rf drive). The entries of the diagonal constant
matrix B, which is given by

B = diag(iβ1, . . . , iβ2f ) , (A.3)

are known as characteristic exponents of the Floquet problem (Floquet exponents). With
the transformation

Φ(t) = Γ(t)χ(t), (A.4)

known as Floquet-Lyapunov transformation, Eq. A.2 transforms into the time independent
diagonal form

χ̇(t) = Bχ. (A.5)

177



178 A Floquet-Lyapunov theory

Solutions to this equation are given by the Floquet modes,

χν(t) = χν(0)eiβνt. (A.6)

The solution yields 2f (6N) Floquet frequencies βi, where for every βi, there is a βj with
βj = −βi, leaving 3N mode frequencies - equivalent to the normal mode frequencies in
the pseudo-potential calculation discussed earlier.

We are now looking for solutions in form of two linearly independent complex column
vectors

u⃗ =
n=+∞∑
n=−∞

C⃗2n

[
bei(2n+β)t + ce−i(2n+β)t

]
, (A.7)

where b and c are complex constants determined by the initial condition. β will take
real nonintegral values for stable modes and can be chosen in the range of 0 < β < 1 for
trapping parameters in the first stability zone [59]. We use R2n = A− (2n+β)2 to express
C⃗2n by an infinite recursion relation

QC⃗2n−2 = R2nC⃗2n −QC⃗2n+2, (A.8)

which leads to two independent expansions of infinite continued matrix inversions

C⃗2 = T2,βQC⃗0 ≡
([
R2 −Q

[
R4 −Q [R6 − . . . ]−1Q

]−1
]
Q

]−1
)QC⃗0 (A.9)

and

QC⃗2 = R0C⃗0 −QC⃗−2 = T̃0,βC⃗0 ≡
(
R0 −Q

[
R−2 −Q [R−4 − . . . ]−1Q

]−1
Q

)
C⃗0 (A.10)

We define
Y2,β ≡ T̃0,β −QT2,βQ, (A.11)

and, by multiplying Eq. A.9 with Q, we obtain that all characteristic exponents β are
zeros of the determinant of Y2,β.

We are now seeking a the Floquet-Lyapunov transformation, which transforms the e.o.m.
into a time-independent diagonal equation. As already hinted above the solutions for stable
Floquet modes are oscillatory and represented by complex conjugate pairs simplifying

many expressions. B can be expressed in block form B =
(
iB 0
0 −iB

)
, where Bf×f =

diag (β1, . . . , βf ) and all βi are positive.

Using the series of 3N -dimensional vectors C⃗2n,βi
as column vectors, we can now define

U3N×3N =
∑

n

C⃗2n,βi
ei2nt . . . (A.12)

and similarly
V3N×3N = i

∑
n

(2n+ βi)C⃗2n,βi
ei2nt . . . . (A.13)
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The 6N -dimensional fundamental matrix solution can now be represented by

Γ(t) =
(
U U∗

V V ∗

)
, (A.14)

where U∗ and V ∗ denote the complex conjugates of matrices U and V , respectively. It
transforms the Hamiltonian coordinates u⃗ and their conjugate momenta p⃗ = ˙⃗u, to the

variables χ =
(
ξ
ζ

)
, where ξ is the 3N -dimensional vector of coordinates and −iζ are the

conjugate momenta, obeying ξ = ζ∗ due to the realness of u⃗ and p⃗. The time dependence
is then given by Eq. A.6.



Appendix B

Mean-field approximation of
sideband dynamics of an ion
crystal

The equations in this section were derived by Ivan Vybornyi and Klemens Hammerer1 to
fit the sideband dynamics of a 19-ion crystal discussed in Sec. 5.9.1 and Ref. [182]. Due
to discrepancies between the simulated and measured data (see Sec. 5.5.2), this approach
was no longer pursued. Taking higher orders of ion-ion correlations into account could
potentially reduce this mismatch.

The mean-field approach relies on neglecting the higher-order correlations in the system,
thereby simplifying the dynamics of the spin-motion coupling. The sought-for ground
state probability is approximated as

Pg = ⟨⊗iσ
gg
i ⟩ ≃

∏
i

(1 − ⟨σee
i ⟩). (B.1)

Consider the red sideband case with the Hamiltonian 5.15(a). Using the standard com-
mutator relations for the Pauli operators [σ−

i , σ
+
j ] = (1 − 2σee

i )δij , [σ±
i , σ

ee
j ] = ∓σ±

i δij and
the Ehrenfest theorem, we obtain the following closed system of equations

1Institut für Theoretische Physik, Leibniz Universität Hannover
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∂t ⟨σee
i ⟩ = igi

(〈
a†σ−

i

〉
−
〈
aσ+

i

〉)
, (B.2)

∂t

〈
aσ+

i

〉
= igi

〈
a†a

〉
− 2igi ⟨a†aσee

i ⟩ (B.3)

− igi ⟨σee
i ⟩ − i

∑
j:j ̸=i

gj ⟨σ+
i σ

−
j ⟩ ,

∂t

〈
a†a

〉
= i

∑
i

gi

(〈
aσ+

i

〉
−
〈
a†σ−

i

〉)
, (B.4)

∂t ⟨σ+
i σ

−
j ⟩ ≃ i

(
gi ⟨a†σ−

j ⟩
(
1 − 2 ⟨σee

i ⟩
)

(B.5)

− gj ⟨aσ+
i ⟩
(
1 − 2 ⟨σee

j ⟩
))
,

∂t

〈
a†aσee

i

〉
≃ igi

(〈
a†σ−

i

〉〈
a†a

〉
−
〈
aσ+

i

〉
(
〈
a†a

〉
− 1)

)
. (B.6)

In the equations (B.2-B.6) we defined gi = gηi and applied further approximations to
obtain a closed system, including factorization of the higher-order correlations: ⟨aσ†

iσ
ee
j ⟩ ≈

⟨aσ†
i ⟩
〈
σee

j

〉
,
〈
σ−

i a
†a†a

〉
≈
〈
σ−

i a
†
〉〈
a†a

〉
. With initial conditions being

〈
a†a

〉
= n̄ and all

the other variables set to zero, the system of equations is solved to obtain the dynamics
for ⟨σee

i ⟩ and Pg. For the case of the blue sideband given by Eq. 5.15(b), an analogous
system of equations can be derived.
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[30] S. Jain, T. Sägesser, P. Hrmo, C. Torkzaban, M. Stadler, R. Oswald, C. Axline,
A. Bautista-Salvador, C. Ospelkaus, D. Kienzler et al., “Unit cell of a Penning
micro-trap quantum processor,” arXiv:2308.07672 (2023).

[31] B. Yoshimura, M. Stork, D. Dadic, W. C. Campbell, and J. K. Freericks, “Cre-
ation of two-dimensional Coulomb crystals of ions in oblate Paul traps for quantum
simulations,” EPJ Quantum Technology 2, 2 (2015).

[32] Y. Wang, M. Qiao, Z. Cai, K. Zhang, N. Jin, P. Wang, W. Chen, C. Luan, B. Du,
H. Wang, Y. Song, D. Yum, and K. Kim, “Coherently Manipulated 2D Ion Crystal
in a Monolithic Paul Trap,” Adv. Quantum Technol. 3, 2000068 (2020).

[33] M. K. Ivory, A. Kato, A. Hasanzadeh, and B. B. Blinov, “A Paul trap with sectored
ring electrodes for experiments with two-dimensional ion crystals,” Rev. Sci. In-
strum. 91, 053201 (2020).

[34] Y. Xie, J. Cui, M. D’Onofrio, A. J. Rasmusson, S. W. Howell, and P. Richerme,
“An open-endcap blade trap for radial-2D ion crystals,” Quantum Sci. Technol. 6,
044009 (2021).

[35] M. D’Onofrio, Y. Xie, A. J. Rasmusson, E. Wolanski, J. Cui, and P. Richerme,
“Radial two-dimensional ion crystals in a linear Paul trap,” Phys. Rev. Lett. 127,
020503 (2021).

[36] S.-A. Guo, Y.-K. Wu, J. Ye, L. Zhang, W.-Q. Lian, R. Yao, Y. Wang, R.-Y. Yan,
Y.-J. Yi, Y.-L. Xu et al., “A site-resolved two-dimensional quantum simulator with
hundreds of trapped ions,” Nature pp. 1–6 (2024).
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