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Kurzfassung
Seit einigen Jahrzehnten ist die Entwicklung eines zuverlässigen Quantenrechners eine der zen-
tralen Forschungsschwerpunkte. Quantenrechner versprechen bestimmte Probleme zu lösen,
welche für klassische Rechner nicht zu bewältigen sind. Ein Beispiel ist die Simulation von
quantenmechanischen Systemen. Bei der experimentellen Umsetzung eines Quantenrechners
ist das zugrundeliegende quantenmechanische System unvermeidlich von Störeinflüssen betrof-
fen. Trotz dieser Störungen ermöglichen ausgefeilte Fehlerkorrekturverfahren die Realisierung
eines Quantenrechners, indem die Information eines logischen Quantenbits auf mehrere physikalis-
che Quantenbits verteilt wird. Diese Technik ermöglicht die Ausführung beliebig langer Quan-
tenalgorithmen, obwohl die zugrundeliegenden physikalischen Komponenten fehlerhaft sind.
Im Rahmen dieser Arbeit wird die Kodierung eines logischen Quantenbit in sieben physikalis-
chen Quantenbits, bestehend aus 40Ca+ Ionen demonstriert. Das implementierte Protokoll
entspricht einem funktionsfähigen, zweidimensionalen, topologischen Fehlerkorrekturcode und
ebnet somit den Weg für einen fehlertoleranten Quantenrechner. Eine Grundvoraussetzung für
die Realisierung eines fehlertoleranten Quantenrechners ist die Implementierung universeller
Quantengatter, angewandt auf dem logischen Quantenbit. Die Rechenkapazität des Systems
wird gezeigt, indem eine Reihe von Quantengattern, im Speziellen Clifford-Gatter, auf dem
logischen Quantenbit angewandt werden. Die Leistungsfähigkeit eines Fehlerkorrekturcodes
ist von den Eigenschaften der Störeinflüsse des jeweiligen Systems abhängig. Wichtige Merk-
male eines Fehlerkorrekturcodes, wie zum Beispiel die maximal tolerierbare Fehlerrate werden
durch theoretische Simulationen ermittelt. Diese Simulationen stützen sich hauptsächlich auf
die Grundlage von einfachen Fehlermodellen ohne Berücksichtigung von räumlichen Korrela-
tionen. Im Rahmen dieser Arbeit wird eine Methode zur Charakterisierung von räumlichen Ko-
rrelationen allgemeiner Quantenprozesse beschrieben und an einem realen Störprozess demon-
striert.



vi

Abstract
The development of a reliable quantum computer has been a central focus of research during
the last decades. A quantum computer promises to solve certain problems, that are intractable
for classical computers, such as simulating any quantum mechanical system. In experimental
realizations of a quantum computer it is unavoidable that noise acts on the quantum system.
Nevertheless, the construction of a quantum computer is possible using sophisticated error cor-
rection procedures that distribute the information of a single logical qubit over multiple physical
qubits. This error correction enables arbitrarily long quantum computations to be performed on
the encoded logical qubit even if the underlying physical components are faulty. In this work,
the encoding of a logical qubit in seven physical qubits, consisting of trapped atomic 40Ca+ ions
is demonstrated. The implemented code represents the minimal instance of a fully functional
two-dimensional topological quantum error correction code, the color code, paving the way
towards fault tolerant quantum computation. The realization of a fault tolerant quantum com-
puter requires the implementation of a universal set of gates on the logical level. Here, we
demonstrate the computational capabilities of the system by performing the entire set of Clif-
ford operations on the encoded qubit. The performance of any quantum error correction code
for fault tolerant quantum computation relies on the characteristics of the noise of the particular
physical system. Theoretical simulations used to obtain important characteristic parameters,
such as the maximum tolerable error probability of the faulty components, are typically based
on simple models where spatial correlations are not considered. In the course of this work, a
method is described that enables the quantification of spatial correlations of an arbitrary quan-
tum process and is demonstrated on real noise processes.
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Chapter 1

Introduction

The development of quantum mechanics at the beginning of the 20th century was certainly
one of the most revolutionary contributions to physics. The field of quantum mechanics not
only changed our fundamental understanding of the microscopic world of atoms and their inter-
action with light but also paved the way towards novel applications in science and in our daily
life, including superconductivity, magnetic resonance imaging, light-emitting diodes, lasers and
electron microscopy, just to name a few examples. The foundation of quantum mechanics was
laid around 1900 with the description of two physical phenomena that could not be explained
by physicists at this time: first, the question of the black-body radiation and the resulting so-
lution of the “ultraviolet catastrophe” by Max Planck [1] and second, the photoelectric effect,
discovered in 1887 by Heinrich Hertz and explained by Albert Einstein in 1905 [2]. Subse-
quently, in the mid-twenties, a profound mathematical description of the state of a quantum
mechanical system (e.g., molecules and atoms) was formulated in a groundbreaking work by
Erwin Schrödinger [3].

At that time, discussions about the non-classical behaviour of single particles were of a
theoretical nature, since experiments with single atoms or molecules did not seem to be achiev-
able [4]. However, in the following years Wolfgang Paul and Hans Georg Dehmelt realized the
first ion traps, enabling the storage and control of single particles [5]. Their pioneering work
had far-reaching consequences, since quantum mechanical phenomenons, such as the discovery
of quantum jumps [6–8] as well as techniques for the control of single particles, could now be
investigated [9, 10].

At the same time, physicists investigated the question whether quantum systems could be
useful for computational tasks. This question arises naturally from the rapid development of
classical computers and especially the incredible increase of computer hardware power, first
described by Moore’s law in 1965. Continuing improvements in computer power boosted by
shrinking electronic components will inevitably lead us to a situation where quantum effects
starting to play a role. Motivated by this progression, the idea was born to make a fundamental
change and to use quantum systems for computation following the rules of quantum mechanics
instead of classical physics. Further motivation for the development of a quantum computing
device was the pioneering work of Richard Feynman in 1982, in which he showed that any
quantum mechanical system cannot be simulated efficiently with a classical computer but could
be with a potential quantum computer [11]. Here, inefficient means that the computation time
scales exponentially with the size of the simulated system. This important statement can be
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2 Chapter 1. Introduction

understood intuitively by the fact that the number of parameters required to describe the state
of a quantum system scales exponentially with the number of particles in the system. In 1985,
David Deutsch described the first concrete concept of a universal quantum computer, which is
able to perform arbitrary computations and, even more important, has the potential to outper-
form a classical computer [12]. This exceptional result, that a quantum computer could solve
computational problems more efficiently than classical computers, was proven by Peter Shor
ten years later with the development of the Shor algorithm, enabling efficient prime factoriza-
tion of any integer with a quantum computer [13]. The invention of the Shor algorithm had
far-reaching impact, since and demonstrated the computational power of quantum computers,
since no efficient algorithm has yet been found for prime factorization on a classical computer.

About one year later, Peter Zoller and Ignacio Cirac proposed a theoretical concept for the
realization of a quantum computer with trapped atomic ions [14]. Following these ideas, the
first realization of a two-qubit controlled-NOT quantum gate was demonstrated by the Inns-
bruck ion-trap group [15], enabling further achievements, such as for example deterministic
quantum teleportation [16, 17] and large scale entanglement of up to 14 ions [18–20]. In the
years since, prototypes of quantum computers have been implemented in various physical sys-
tems, including nuclear magnetic spins, single photons, superconducting electrodes and neutral
atoms in optical lattices [21]. The requirements to realize a quantum computer are independent
of the particular physical system and were formulated by DiVincenzo in 1996 [22]:

• a scalable system with well-characterized qubits,

• the ability to initialize the system in a given state,

• a universal set of quantum gates,

• coherence times much longer than the time required for the quantum gate operations,

• a qubit-specific measurement procedure.

In real world systems, the implementation of a quantum computer is challenging, as quan-
tum systems cannot be shielded perfectly from the environment, which interacts with the sys-
tems, resulting in faulty quantum operations — referred to as decoherence. As a consequence,
a quantum computer that is able to run extensive algorithms will not be achievable without
correcting errors affecting the quantum system during the computation. Even the information
encoded in a system acting as a quantum memory is prone to errors and cannot be success-
fully restored. The developers of early classical digital computers faced similar problems, as
these machines were also affected by noise processes, leading to erroneous computation. It was
proven that arbitrarily long computations are possible with classical digital computers in the
presence of noise by using error correction procedures, thus enabling fault-tolerant computa-
tion [23].

Classical fault-tolerant computing is based on redundancy, which means that an intended
operation is applied to several copies of the original information. After the computation, the
copies are compared and a majority vote reveals the original information. Fault-tolerant com-
putation was used as early as in the 1960s, e.g., for the Saturn V rocket guidance computer.
Further applications of fault-tolerant computing have been to guarantee correct operation of
critical computers, e.g., in nuclear power plants.
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It was not clear at first whether the concept of redundancy could be applied to quantum com-
puters, as the state of a qubit can not be copied, as proved by Wooters and Zurek in 1982 [24].
Peter Shor and Andrew Steane provided the first quantum error correction codes with their pio-
neering work in 1996 and revolutionized the development of quantum computers [25, 26]. The
idea of any quantum error correction (QEC) code is to distribute the information of a quantum
bit (qubit) over several qubits using entanglement. These QEC protocols provide an essential
ingredient for fault-tolerant quantum computation (FTQC) [21].

FTQC is based on encoding the information using a quantum error correction code and exe-
cuting all required operations on the encoded qubit while performing repetitive error correction.
Dorit Aharonov and Michael Ben-Or showed that the successful realization of FTQC is possible
if the error probability of the individual qubits is below a certain threshold — also known as
the quantum threshold theorem [27, 28]. Fulfilling this threshold implies that the probability
of an uncorrectable error on the encoded qubit during the computation is smaller than the error
probability of the individual qubits, which enables the computation of arbitrarily long quantum
algorithms.

The construction of “good” QEC codes for FTQC is not a trivial task, since codes differ in
the number of physical qubits, the tolerable error rate and the overhead to implement quantum
operations on the encoded qubit. As an example, consider the smallest QEC code distributing
the information of one qubit over five qubits, developed by Raymond Laflamme in 1996 [29].
Laflamme’s code requires only five qubits compared to seven qubits in the case of the Steane
code, which seems to be advantageous. Nevertheless, the five-qubit code requires nontrivial
entangling operations on the entire register to realize quantum operations on the encoded qubit.
In contrast, performing the same quantum operation on qubits encoded in the Steane code re-
quires only bit-wise operations on each physical qubit — a property known as transversality.
Transversality of QEC codes is a powerful property, as any transversal code entails the imple-
mentation of quantum operations in a fault tolerant way.

A widely used method to realize FTQC is to combine elementary QEC codes (e.g. Steane
code, Shor code, etc.) in multiple layers, which is known as concatenation. The concept of
concatenation originates from classical computation theory and was developed by Dave Forney
in 1966 [30]. Effectively, the error probability of the encoded qubit is reduced with the number
of concatenated layers, leading to an enhancement of the robustness against noise but with the
drawback of an exponential increase in the number of required qubits. Estimated error rate
thresholds for concatenated codes are typically on the order of 10−5 [31].

A different and revolutionary course was set by Alexei Kitaev in 1997 with his studies on
two-dimensional spin lattices [32]. Kitaev suggested that qubits arranged on a two-dimensional
lattice with periodic boundary conditions (a torus) can be used as a quantum computer and
proposed the first topological QEC code, the Kitaev toric code. The hallmark of topological
codes is that information is encoded in global degrees of freedom, and therefore they are robust
against perturbations that act locally on a subgroup of qubits [33]. The original toric code was
adapted to open boundaries, which is a more realistic approach towards the experimental im-
plementation [34]. In 2006, Hector Bombin and Miguel A. Martin-Delgado proposed a new
class of topological codes, the color codes.

To date, topological codes represent the most promising approach towards the realization of
a fault tolerant quantum computer, as they provide error thresholds on the order of 1%, which
is orders of magnitude larger than in concatenated codes [35]. The behavior of a QEC code
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is estimated by theoretical simulations based on certain noise models. These simulations typi-
cally assume simple noise models, such as spatially uncorrelated noise. The influence of spatial
correlations on a QEC code is of particular interest to current research. A method developed
recently by Angel Rivas and Markus Müller enables the characterization of the amount of spa-
tial correlations of an arbitrary quantum process [36]. The method is based on full tomography
of the corresponding process, which scales unfavorably — in fact exponentially — with the
system size [21]. Tomographic methods using additional qubits (ancilla qubits) and entangled
states enable the tomography of processes with a reduced number of experimental settings [37].

The experiments described within this work were carried out on an ion-trap based quan-
tum computer [38]. Here, the quantum information is encoded in electronic states of single
40Ca+ions, trapped in a string in a linear Paul trap [39]. In particular, this work is focused
on the first experimental implementation of the minimal instance of the color code in a string
consisting of seven ions. The capability of detecting arbitrary single-qubit errors as well as the
implementation of multiple operations on the encoded qubit are demonstrated. The thesis is
structured in the following way:

• Chapter 2 presents a theoretical introduction to the basics of quantum computation.

• Chapter 3 gives a detailed description of our ion-trap based quantum computer and the
experimental realization of coherent and incoherent operations.

• The implementation of ancilla-assisted process tomography of unitary and non-unitary
operations on a single qubit is discussed in Chapter 4.

• Chapter 5 describes the method used to quantify the amount of spatial correlations of
arbitrary processes. In particular, in Sec. 5.1 the theoretical model is introduced, whereas
in Sec. 5.2 the measured spatial correlations of real noise processes in our system are
shown.

• In Chapter 6, the concept of QEC is introduced with the emphasis on FTQC and stabi-
lizer codes. Furthermore, the basic principles of topological quantum codes is introduced
with emphasis on the Kitaev toric code (Sec. 6.3.1) and the color code (Sec. 6.3.3).

• Chapter 7 presents the experimental results of the implementation of the topological
color code in our system. In particular, Sec. 7.1 details the encoding of the logical qubit.
Demonstration of the error detection capabilities is given in Sec. 7.4. The implementation
of transversal Clifford operations on the encoded qubit as a major requirement for FTQC
is described in Sec. 7.6.



Chapter 2

Quantum computation

2.1 Introduction to quantum computation
This chapter gives a basic introduction to quantum computation as well as a more detailed the-
oretical understanding for the characterization of coherent and incoherent quantum processes.
In classical computation, the smallest unit of information is called bit and can either be in the
state 0 or 1. The quantum mechanical counterpart to the classical bit, the quantum bit (qubit),
is theoretically described as a quantum mechanical two-level system. Independent of the phys-
ical platform encoding the qubit, it is treated as a mathematical object following the rules of
quantum mechanics. The qubit is spanned by the two states |0〉 and |1〉, which are named com-
putational basis states and correspond to the states 0 and 1 of the classical bit. The difference
between the qubit and a classical bit is that the qubit can also be in a superposition of the two
basis states

|ψ〉 = a |0〉+ b |1〉 ,
with the complex numbers a and b satisfying |a|2 + |b|2 = 1. Measuring the qubit will result
in state |0〉 with probability |a|2 and |1〉 with probability |b|2, respectively. Therefore the qubit
state |ψ〉 corresponds to an element of a two-dimensional vector space with the orthonormal
basis |0〉 and |1〉 [21]. The quantum state |ψ〉 can also be expressed by the following equation:

|ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 , (2.1)

with the rotation angle 0 ≤ θ ≤ π and the phase 0 ≤ φ ≤ 2π. An intuitive and commonly used
picture of the state |ψ〉 is the Bloch sphere representation, which is shown in Fig. 2.1. Each
single qubit state |ψ〉 with the angles θ and φ define one point on the Bloch sphere. The states
|0〉 and |1〉 define the north and south pole of the Bloch sphere, whereas the equatorial plane is
spanned by the superposition states 1/

√
2(|0〉 + eiφ |1〉). We will see later on that also single

qubit operations can be visualized in the Bloch sphere representation.
In general, the state |ψ〉N of an N -qubit register can be expressed by the superposition of all
possible basis states |k〉N [21]:

|ψ〉N =
2N−1∑
i=0

ci |i〉N , (2.2)

where the pre-factors ci fulfill the normalization condition
∑2N−1

i=0 |ck|2 = 1 and the notation of
the basis states is equivalent to the binary representation of the number i in an N-digit register.

5



6 Chapter 2. Quantum computation

Figure 2.1: Bloch sphere representation: Bloch sphere representation of a single qubit where each
state |ψ〉 is defined by one point on the Bloch sphere. The significant points are given by the states |0〉
and |1〉 on the north and south pole as well as the four superposition states 1√

2
(|0〉±|1〉 and 1√

2
(|0〉±i |1〉

arranged on the equatorial plane.

For example, the state |5〉3 of a 3-qubit register corresponds to the state |101〉 (101 = (1)22 +
(0)21 + (1)20). An alternative formulation of quantum states is the density matrix (operator).
The density matrix ρ of a quantum system is given by [21]:

ρ =
2N−1∑
i=0

pi |ψi〉 〈ψi| ,

with the probability pi of the system occupying the state |ψi〉. The density matrix formalism
is used to describe ensembles of quantum states and effective decoherence [21]. The density
matrix yields a complete description of a quantum system and has to fulfill the following condi-
tions: (1) tr(ρ) =

∑
n ρnn = 1, which is equivalent to the normalization condition and (2) that

ρ is a positive semidefinite operator satisfying 〈i| ρ |i〉 ≥ 1 for any state vector |i〉. Furthermore,
if the system is prepared in a known state |ψ〉 the density operator is given by ρ = |ψ〉 〈ψ|, also
referred to as a pure state. In contrast, if the state is not known exactly, the density operator
describes a mixed state with relative probabilities pi. The quantum system described by the
density operator ρ is in a pure state only if tr(ρ2) = 1 and otherwise (tr(ρ2) ≤ 1) in a mixed
state. A more detailed and extensive introduction is given in Ref. [21].

The term quantum computation describes the manipulation of quantum information by ap-
plying changes to the state of a quantum register. In the simplest case, the transformation of a
single qubit state |ψ〉 = a |0〉+ b |1〉 to the output state |ψ′〉 = a′ |0〉+ b′ |1〉 can be expressed by

|ψ′〉 =

(
a′

b′

)
=

(
U11 U12

U21 U22

)(
a
b

)
, (2.3)

with the 2x2-dimensional transformation matrix U . Because of the fact that the output state |ψ′〉
has to fulfill the normalization condition as well, there is the restriction of U being a unitary
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matrix, meaning that UU † corresponds to the identity operation 1. An important set of single-
qubit unitary gates are the Pauli matrices {X = σx, Y = σy, Z = σz}:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.4)

Further on, the Pauli matrices can be used to define arbitrary rotations around the (x, y, z) axis
of the Bloch sphere by the following unitary rotation matrices [21]:

Rx(θ) = e−i
θ
2
X =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
(2.5)

Ry(θ) = e−i
θ
2
Y =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
(2.6)

Rz(θ) = e−i
θ
2
Z =

(
e−iθ/2 0

0 eiθ/2

)
. (2.7)

For example the unitary operation Rx(π/2) corresponds to a π/2 rotation around the x-axis of
the Bloch sphere. In classical computation a subset of logical operations (e.g. AND, NOT)
are used to perform all kind of computational tasks. Similar to that, a set of quantum gates
exists also for the quantum computer. A set of quantum gates, which has the capability to
implement arbitrary unitary operations is referred to as universal set of gates. It can be proven
that each unitary operation U can be decomposed into a product of single-qubit unitary gates
and controlled NOT-gates (CNOT), which enables universal quantum computation [21]. The
CNOT operation is an example of a conditional gate and acts on a system of two qubits. The
operation of the CNOT gate is demonstrated in Table. 2.1. The target qubit is flipped if the state
of the control qubit is |1〉 and otherwise left unchanged.

Control qubit Target qubit CNOT Control qubit Target qubit
|0〉 |0〉 → |0〉 |0〉
|0〉 |1〉 → |0〉 |1〉
|1〉 |0〉 → |1〉 |1〉
|1〉 |1〉 → |1〉 |0〉

Table 2.1: Controlled NOT-gate: The targer qubit is flipped dependent on the state of the control qubit.
Is the control qubit is in the state |1〉, then the target qubit is flipped from |0〉 to |1〉 and vice versa.

One possible set of single-qubit operations included in the universal set of gates consists of the
Hadamard gate H , the Phase gate S and the π/8 gate T :

H = 1/
√

2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
.

Similar to the circuit diagrams in classical quantum information, the performance of a quantum
algorithm is illustrated by quantum circuits, as shown in Fig. 2.2 for the given set of universal
quantum gates. Each line represents one qubit and the timeline proceeds from left to right.
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H

S

(a)

(b)

(c)

T

(d)

H
(e) (f)

H

Figure 2.2: Universal set of quantum gates: Circuit representation of a universal set of quantum gates,
consisting of the single-qubit (a) Hadamard gate H , (b) phase gate S, (c) T gate and (d) the two-qubit
CNOT operation. In (e) the creation of a maximally entangled state is shown as a demonstration of a
two-qubit algorithm.

A simple two qubit quantum algorithm is shown in Fig. 2.2(e), consisting of only one Hadamard
operation and one CNOT gate. The resulting output state |ψ〉 = 1√

2
|00〉 + |11〉 belongs to a

class of states, which exhibit strong non-classical correlations between the qubits and have the
property that they can not be described by a product of two states |ψ〉 6= |ψ1〉 |ψ2〉 - also known
as entanglement. Entanglement is assumed to be the key element why quantum computers can
outperform classical computers with algorithms like Shor’s factorization, quantum simulations
or quantum teleportation. The experimental implementation of the introduced universal set of
quantum gates in a system of 40Ca+ions is described in Sec. 3.

2.2 Characterization of a quantum system

2.2.1 Quantum operations and measurements
Within the following section a more detailed insight into the description of unitary and non-
unitary quantum operations is provided as well as the concept of projective measurements in a
certain basis will be given. Furthermore, the basics about state and process tomography with
the focus on the Choi-Jamiolkowski isomorphism will be discussed. In the previous section, el-
ementary quantum operations used to realize universal quantum computation were introduced.
This section gives a more general picture of quantum operations, describing also non-unitary
operations, which are fundamental for the understanding of noise processes in quantum infor-
mation science.

Assume a system is initially prepared in the state ρ and a unitary process U acting on that
system leads to an output state ρ′ = E(ρ) = UρU †. The unitary process can be seen as a black
box, which could for example stand for a certain quantum algorithm. Here, E represents the
process mapping an input state ρ to an output state ρ′ . For closed quantum systems, the process



2.2. Characterization of a quantum system 9

can be described by the unitary transformation but in the case of open systems the situation
is different. The evolution of an open quantum system can be described by the interaction of
the system of interest ρ with the environment. In more detail, assume that the system and the
environment initially form a product state ρ ⊗ ρenv. The system and the environment interact
with each other, described by the transformation U and finally the environment is traced out to
obtain the information of the system of interest [21, 40]:

E(ρ) = trenv[U(ρ⊗ ρenv)U †]. (2.8)

In general, the output state E(ρ) can not be represented by a unitary transformation applied to
the initial state. Within this representation of a quantum operation, knowledge about the state
of the environment is required. Nevertheless, Equ. 2.8 can be formulated differently in terms of
operators acting on the system of interest [21]

ε(ρ) =
∑
k

EkρE
†
k, (2.9)

with the Kraus operatorsEk. This formulation is known as operator sum representation and is a
convenient method to describe the dynamics of a quantum system, since the information is given
by the operators and no assumptions about the environment have to be made. Quantum systems
can interact in a different way with the environment but lead to the same quantum process. For
a trace preserving operation, the operators have to fulfill the relation

∑
k E
†
kEk = 1 [21]. This

may also be interpreted as the fact that no population of the Hilbert space is being lost.
The operator sum representation will later be experimentally demonstrated by two non-

unitary processes, namely amplitude- and phase damping (dephasing). Theses processes are
essential elements for the description of different errors affecting a quantum system. The exper-
imental quantification of these processes is discussed in Sec. 4. Amplitude damping leads to a
loss of the population and coherence of a quantum system, whereas phase damping causes only
a loss of the coherence without changing the population. The Kraus operators for amplitude
and phase damping are given in Table 2.2.

Process E0 E1

phase damping
√

1− p
(

1 0
0 1

)
=
√

1− p 1 √
p

(
1 0
0 −1

)
=
√
p Z

amplitude damping
(

1 0
0
√

1− γ

)
√
γ

(
0 1
0 0

)

Table 2.2: Amplitude- and Phase damping: Kraus operators of phase- and amplitude damping oper-
ations as essential processes in the theory of quantum error correction.

The effect of the two processes on a quantum system initially prepared in the state ρ can be
described using the operator sum representation E(ρ) = E0ρE

†
0 + E1ρE

†
1. The output state

Ephase(ρ) for the phase damping process and the output state Eampl(ρ) for the case of amplitude
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damping is given by:

Ephase(ρ) =

(
ρ11 ρ12(1− 2p)

ρ21(1− 2p) ρ22

)
(2.10)

Eampl(ρ) =

(
1− (1− γ)(1− ρ11) ρ12

√
1− γ

ρ21

√
1− γ ρ22(1− γ)

)
. (2.11)

The error probabilities for the phase- and amplitude damping process are related to the param-
eters p and γ respectively. From the Kraus operators in Table 2.2 the phase damping process
can be interpreted as phase flip operations occuring with the probability p. Complete dephasing
occurs at a phase damping parameter p = 0.5. The probability of the population decay into the
ground state is given by the parameter γ. In the case of full amplitude damping (γ = 1) the
off-diagonal elements vanish, which is indicating dephasing and the whole population is in the
ground state |0〉.

A convenient illustration of a quantum process is the Bloch sphere representation, which
was introduced in the previous section. The idea is simply to apply the process of interest to
each single qubit state lying on the surface of the Bloch sphere, which corresponds to a mapping
of the initial Bloch sphere to the Bloch sphere of the output state. In Fig 2.3 the amplitude and
phase damping processes are applied to the single qubit Bloch sphere.

Z
Z‘

Y Y‘

Z
Z‘

Y Y‘

X X‘

X X‘

Z
Z‘

Y

Y‘

Y‘

Z
Z‘

Y

X X‘

X
X‘

Y‘

amplitude damping

phase damping

Figure 2.3: Amplitude- and phase damping: Illustration of the amplitude and phase damping process
acting on the single qubit Bloch sphere. The particular process is applied to each state of the Boch sphere
leading to a new deformed Bloch sphere.

The phase damping process is characterized by the fact that the whole Bloch sphere is shrinking
along the X-Y plane, whereas in addition the amplitude damping process leads to a damping
along the Z-axis towards the ground state. The black axes (X,Y,Z) in Fig 2.3 corresponds to
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the frame of the unperturbed Bloch sphere and the blue axes (X’,Y’,Z’) belong to the mapped
Bloch sphere. This allows the illustration of rotations around different axes.

The operator sum representation is a powerful tool to describe irreversible decoherence pro-
cesses arising in every quantum system. Especially the theory of quantum error correction is
based on this representation of incoherent processes, where the parameters p and γ are related
to the probability at which an error occurs (see Sec. 6). Another more phenomenological inter-
pretation of decoherence is based on the relaxation processes appearing in NMR systems. The
spin-spin interactions and the thermalization of the spins to the temperature of the environment
lead to an exponential damping of the density matrix elements. Note that the phase and am-
plitude damping processes also lead to a damping of the density matrix elements. The density
matrix transformation can be described by the following relation [21]:

ρ =

(
a b
b∗ (1− a)

)
→
(

(a− 1)e−t/T1 + 1 b e−t/T2

b∗e−t/T2 (1− a)e−t/T1

)
, (2.12)

with the longitudinal relaxation time T1 and the transverse relaxation time T2. The parameters
T1 and T2 are characteristic for any quantum system and allow the quantification of the coher-
ence time T2. In our system, T1 corresponds to the natural lifetime of the qubit transition (see
Sec.3). Please note that both descriptions of incoherent processes are identical but dependent
on the purpose one or the other description is used. For example, in the framework of quantum
error correction the operator sum representation is very advantageous, since processes can be
related to error probabilities. This allows a comparison between different quantum systems,
which is difficult when comparing the relaxation times. During the following chapters, both
descriptions of incoherent processes will be used.

Measurements

So far, the described quantum algorithms included only coherent operations acting on the qubits.
For qubit preparation, reset and measurements, incoherent operations are required. At the end
of a quantum algorithm, the experimenter aims to obtain the information of the register or parts
of it. In general, we are interested in measuring a certain observable M , which corresponds to
an Hermitian operator acting on the state space of the system [21]. The observable M can be
decomposed into the projectors Pm onto the eigenspace of the observable M with the eigenval-
ues m:

M =
∑
m

mPm. (2.13)

The probability of obtaining the outcome m when measuring the observable M of the state |ψ〉
is given by p(m) = 〈ψ|Pm |ψ〉. The state |ψ〉meas after the measurement if the outcome m was
observed is given by:

|ψ〉meas =
Pm |ψ〉√
pm

. (2.14)

For example, let’s assume the measurement of the observable Z = σz with the eigenvalues
m = {±1} and the corresponding eigenstates {|0〉 , |1〉}. Preparing the coherent superposition
state |ψ〉 = 1/

√
2(|0〉 + |1〉) and measuring Z = |0〉 〈0| − |1〉 〈1| would result in the outcome
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±1 with probability 1/2. Measuring the outcome 1 projects the system to the state |0〉 and al-
ternatively the outcome −1 leads to the output state |1〉. Therefore the measurement destroys
the coherence of the system and leads to a collapse of the state, which is a main property of
quantum mechanics.

Our experimental measurement procedure (see Sec. 3) corresponds to the described projec-
tive measurement in the computational basis {|0〉 , |1〉}. In fact, dependent on the implemented
algorithm, we aim to perform a measurement in a different basis than the experimentally feasi-
ble measurement in the computational basis. For example the realization of quantum teleporta-
tion requires the measurement in the Bell basis [16]. The measurement in the Bell basis is an
important application in Sec. 4 and therefore will be discussed in more detail. The Bell states
belong to the class of maximally entangled states. The quantum circuit creating the Bell states
is shown in Fig. 2.2(e). Given the two qubit computational basis states {|00〉 , |01〉 , |10〉 , |11〉}
as input states to this circuit (Fig. 2.2(e)), the resulting output states correspond to the Bell states
B = {|φ+〉 , |φ−〉 , |ψ+〉 , |ψ−〉}:

|00〉 Ubell−−−−−−→ 1√
2

(|00〉+ |11〉) = |φ+〉 (2.15)

|11〉 Ubell−−−−−−→ 1√
2

(|00〉 − |11〉) = |φ−〉 (2.16)

|10〉 Ubell−−−−−−→ 1√
2

(|10〉+ |01〉) = |ψ+〉 (2.17)

|01〉 Ubell−−−−−−→ 1√
2

(|01〉 − |10〉) = |ψ−〉 . (2.18)

The circuit diagram creating the four Bell states can also be expressed by a unitary operation
Ubell acting on the computational basis states:

Ubell = (H ⊗ 1) CNOT = 1/
√

2


1 0 0 1
0 1 1 0
1 0 0 −1
0 −1 −1 0

 . (2.19)

Therefore, the unitary Ubell corresponds to the transformation of the computational basis states
to the Bell basis, forming an orthonormal basis (〈Bi|Bj〉 = δi,j). The measurement in the Bell
basis can be performed by undoing the unitary Ubell, which transforms the Bell basis into the
computational basis. This simply means that the circuit in Fig. 2.2(e) has to be inverted by
applying first the CNOT operation on the entangled state followed by the Hadamard operation
on the control qubit and measuring in the computational basis (see Fig. 2.2(f)). Analog to the
projective measurement, the probabilities pm of obtaining the Bell state Bm when measuring
the state |ψ〉 in the Bell basis is given by the following equation:

pm = 〈ψ|Bm〉 〈Bm|ψ〉 = 〈ψ|U Pm U−1 |ψ〉 , (2.20)

with Pm = {|00〉 〈00| , |01〉 〈01| , |10〉 〈10| , |11〉 〈11|} the projector onto the two qubit compu-
tational basis states. Note that this procedure can also be applied to any other basis of interest
as long as the unitary transformation to the computational basis is known.
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2.2.2 Quantum tomography of states and processes
The evolution of open- and closed quantum systems is theoretically described by quantum op-
erations, which were introduced in the previous section. The question arises if the measurement
of quantum operations can be related to experimentally accessible parameters. This section pro-
vides an answer to this question and describes the experimental tomography of quantum states
and most importantly of quantum operations.

Quantum state tomography:

The goal of quantum state tomography is to reveal experimentally all elements of a density
matrix ρ. It is well known that it is not possible to identify with certainty a quantum state given
only one copy [21]. Nevertheless, if there exist many copies of the same state ρ, it is possible
to describe the quantum state by measuring a set of observables. Assume the description of the
state ρ by a set of matrices forming an orthonormal basis. Here, the set of matrices corresponds
to the Pauli matrices {1, X, Y, Z}. Therefore the state ρ of a single qubit can be expressed by:

ρ =
1+ tr(Xρ)X + tr(Y ρ)Y + tr(Zρ)Z

2
, (2.21)

with the observables (tr(Xρ), tr(Y ρ), tr(Zρ)) corresponding to the expectation values (〈X〉, 〈Y 〉, 〈Z〉)
respectively. The expectation value 〈Z〉 can be obtained by a projective measurement of the op-
erator Z [21]:

〈Z〉 =
∑
m

m p(m), (2.22)

with the possible outcomes m = {+1,−1} and the probability p(m) = tr(PmP
†
mρ) of mea-

suring the outcome m. The value p(m) corresponds to the probability of measuring the two
computational states |0〉 , |1〉, which can be measured in our experimental setup (see Sec. 3).
Therefore, simply performing a projective measurement of the state ρ with a certain number of
repetitions results in the probability p(m) and therefore the expectation value of the Z operator.
With a number of repetitions N , the uncertainty of measuring the probability p(m) is given by

the projection noise ∆p(m) =
√

p(m)(1−p(m))
N

[41].
The measurement of the two remaining operators X and Y can be performed by mapping the
eigenstates {|+〉X , |−〉X} and {|+〉Y , |−〉Y } of the X and Y operators to the Z eigenstates via
a unitary matrix U analog to the Bell state measurement. Therefore the measurement of 〈X〉
and 〈Y 〉 can be performed by:

〈ψ|U †y Z Uy |ψ〉 = 〈ψ|X |ψ〉 (2.23)

〈ψ|U †x Z Ux |ψ〉 = 〈ψ|Y |ψ〉 , (2.24)

i.e. by applying unitary operations Uy = Ry(π/2)† and Ux = Rx(π/2) corresponding to π/2
rotations around the Y and X axis of the Bloch sphere respectively. This procedure can be
extended to measure the density matrix of an N qubit register, which requires 3N different mea-
surement settings. For example a two-qubit state tomography requires the measurement of the
expectation values of the observables {X, Y, Z}⊗{X, Y, Z}. For more details concerning state
tomography, the reader is referred to [42, 43].
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Quantum process tomography

The main idea of quantum process tomography is to evaluate a process E by probing the pro-
cess with a set of properly chosen input states {ρ1, ..., ρd2}, where d corresponds to the di-
mension of the state space (d = 2 for a single qubit). The input states are chosen in such
a way that the density operators ρi form a basis set for any dxd-dimensional matrix. The
next step is to apply the operation of interest E to each of the input states and finally per-
forming a measurement of the operators {Z,X, Y } with the corresponding projectors Π =
{|0〉 〈0| , |1〉 〈1| , |+〉x 〈+|x , |−〉x 〈−|x , |+〉y 〈+|y , |−〉y 〈−|y}. From the experimental point of
view it would be preferable to reveal the process E directly from experimentally available data.
Therefore, assume the expansion of any complete positive map (CP map) E by a fixed set of
basis elements Ei [21]:

E(ρ) =
∑
m,n

χm,n EmρE
†
n. (2.25)

The property of complete positivity restricts any physical quantum process to preserve the pos-
itive semidefiniteness of the density matrix as well as the trace of the mapped density operator.
The elements Ei form a basis for the set of operators acting on the state space and will be cho-
sen to be the Pauli matrices {1, X, Y, Z} for each qubit. In the previous section the operator
sum representation was used to describe a quantum process. The Kraus operators of a certain
process can be expanded in terms of the set of Pauli matrices. The expansion coefficients χm,n
are necessary, since the basis is fixed for any process acting on the system. Consequently, the
matrix χ contains the whole information about the quantum process E . This particular repre-
sentation of a quantum process is known as chi-matrix representation [21]. The χ-matrix is
a d2xd2-dimensional positive Hermitian matrix. For a single qubit, χ contains d4 − d2 = 12
independent parameters (4 input states x 3 measurements for the state tomography). In general,
the number of experimental settings scales with 12N, where N is the number of qubits, which is
experimentally unfavorable. A different method based on ancilla assisted process tomography
is described in Chapter 4 and allows a reduction of the experimental settings to 4N.

The reconstruction of the χ-matrix directly from the experimentally obtained data by linear
inversion is described in Ref. [21]. This method is straightforward but has the difficulty of po-
tentially yielding an unphysical result, as for example negative eigenvalues or tr(ρ2

out) > 1 of
the output state ρout due to measurement errors. The same problem arises for the reconstruction
of quantum states and can be overcome by the maximum-likelihood (ML) method as described
in Ref. [44]. The idea is to find the quantum state, which describes the measurement results as
closely as possible and simultaneously fulfills the requirements for a physical density matrix ρ
(i.e. positive semidefiniteness and tr(ρ) = 1). The ML-method incorporating the required con-
straints for complete positivity and trace preservation of the quantum process can be formulated
similar to the ML approach for reconstructing quantum states [44]. The main idea is based on
the isomorphism between the CP map E and a positive semidefinite operator S. The CP map E
transforms an input state ρin of the Hilbert space H to an output state ρout associated with the
Hilbert space K, whereas the operator S acts on the higher-dimensional Hilbert space H ⊗K.
In other words, the quantum process is equivalent to a higher-dimensional density operator,
which enables the reconstruction of the χ-matrix using the ML approach analog to quantum
state reconstruction. The equivalence of the quantum process E and the density operator S is
also known as Choi-Jamiolkowski isomorphism [44].
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The construction of the Choi-Jamiolkowski matrix S is illustrated in Fig. 2.4 and is based
on the following approach: Assume an entangled state |ψ〉AB on the Hilbert stateH⊗H , which
can be expressed in the following way:

|ψ〉AB =
d∑
j=1

|j〉A |j〉B , (2.26)

with the dimensions d = dim(H) = dim(K) of the input and output Hilbert space. The Choi-
Jamiolkowski matrix S is defined by applying the process E only to one part of the entangled
state |ψ〉AB:

S = 1A ⊗ EB(|ψ〉AB 〈ψ|). (2.27)

Therefore S corresponds to an operator acting on the Hilbert space H ⊗ K. The quantum
process is only applied to the system partB of the maximally entangled state and the subsystem
A is unchanged by the identity operator. The output state ρout can be calculated by multiplying
the matrix S with the input state ρTin and partially tracing over the input Hilbert space H [44]:

ρout = TrH(SρTin ⊗ I). (2.28)

Thus, the output density matrix S of the process acting on one of the two maximally entangled

A

B

A

B

Figure 2.4: Choi-Jamiolkowski isomorphism: The Choi-Jamiolkowski state S is realized by applying
the process E to one part of the maximally entangled state |ψ〉AB .

subsystems can be directly used as a superoperator to calculate the transformation from the input
state ρin to output state ρout. The constraint of E being a trace preserving map is incorporated
in the Choi-Jamiolkowski matrix S by the requirement that TrK(E) = IH [44]. As an example
consider the identity operation 1 and a single qubit bit flip X . For the two cases the S matrices
can be calculated easily and lead to the maximally entangled Bell state |φ+〉 for the identity
operation and |ψ+〉 for the bit flip. The two matrices are plotted in Fig. 2.5.
As already described above, the experimental procedure for the reconstruction of a quantum
process is to prepare a set of input states ρm and perform for each of the input states a set
of measurements described by the operators Πml. For the standard process tomography the
measurement operators correspond to the projectors {|0〉 〈0| , |1〉 〈1| , |+〉x 〈+|x , |−〉x 〈−|x ,
|+〉y 〈+|y , |−〉y 〈−|y} used for the state tomography. The reconstruction method is applicable
for any set of measurement settings (state preparation and measurement operators) allowing the
calculation of the χ matrix. For example in Chapter 4 the χ matrix is reconstructed for the case
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Figure 2.5: Choi-Jamiolkowski matrix: Illustration of the theoretically expected Choi-Jamiolkowski
matrix S for the identity 1 and the bit-flip operation X .

of Bell state measurements. The Choi-Jamiolkowski isomorphism enables the reconstruction
of a physical matrix S by maximizing the following log-likelihood function [44, 45]:

L(fml, pml(S)) =
∑
m,l

fmlln(pml)− Tr[ΛS], (2.29)

where fml corresponds to the probability of measuring the projectors Πml
1, pml = Tr(ΠlΠ

†
lρm)

is given by the theoretically expected probabilities dependent on the matrix S and Λ = λ⊗ IK .
As already mentioned before, the same approach is used for the reconstruction of quantum
states. The second term Tr[ΛS] is a Lagrange multiplier and takes the trace preservation of the
process into consideration, fulfilling TrK(E) = IH . It can be proven that the log-likelihood
function L is maximized if the following equation is satisfied [44, 45]:

S = Λ−1KS, with K =
∑
m.l

fml
pml

ρTm ⊗ Πml. (2.30)

Using the hermiticity of S it follows that S = SKΛ−1, which can be inserted again in Eqn. 2.30
and leads to S = Λ−1KSKΛ−1. The matrix Λ is calculated by tracing over the Hilbert space K
and leads to Λ =

√
TrK [KSK]. Eqn. 2.30 and the expression for λ allows the maximization of

the log-likelihood function iteratively by starting from an unbiased density matrix S0 = IH⊗K
2

.
Therefore S0 is inserted in the right side of Eqn. 2.30, which leads to new matrix S1 considering
λ. This iterative procedure can be repeated until S converges to a final density operator. The
requested condition of positive semidefiniteness and trace preservation is fulfilled after each
iteration step. Please note that the creation of the maximally entangled state |ψAB〉 by expansion
of the Hilbert space is a theoretical concept of the Choi-Jamiolkowski isomorphism and does not
have to be realized experimentally. The described procedure can also be applied to entangled

1i.e. corresponds to {|0〉 〈0| , |1〉 〈1| , |+〉x 〈+|x , |−〉x 〈−|x , |+〉y 〈+|y , |−〉y 〈−|y} for standard process to-
mography
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input states (see Sec. 4). The S matrix resulting from the iterative ML algorithm has to be
mapped to the χ matrix, which is described in Appendix B.



Chapter 3

Experimental setup

In the following chapter, the experimental setup used to realize the presented experiments will
be explained. Here, the main focus is on the detailed description of implementing the Raman-
sideband cooling technique as well as on improvements of the existing setup.

3.1 40Ca+ as a quantum bit

The experimental setup described here is a prototype of a small scalable quantum informa-
tion processor, which is based on a string of 40Ca+ ions confined in a linear macroscopic Paul
trap [46, 39]. Since parts of the experimental setup are already described in Refs. [46, 39], the
following sections will only provide a brief overview about the setup and a detailed description
of the improvements carried out within this PhD project.
Our qubit is encoded in the ground and metastable states of a single 40Ca+ ion. The required
quantum gates, state initialization, detection of the quantum state and cooling of the motion is
performed with precise laser pulses on or close to resonance with the optical transition connect-
ing the two qubit states and will be described in the following sections. 40Ca+ has one valence
electron and therefore shows a level structure similar to the hydrogen atom. Additionally, the
laser wavelengths required for cooling, detecting and manipulating the ions can be generated
with commercial diode laser systems. In Fig. 3.1 a simplified level scheme of the 40Ca+ ion,
including the most relevant energy levels, is shown.

The optical qubit is encoded in the 42S1/2 ground state and the 32D5/2 excited state.
More precisely, the ground- and excited states split up into 2J + 1 Zeeman sublevels (J =
(1/2, 5/2) for the ( 42S1/2 , 32D5/2 ) states) by a constant magnetic field, which defines the
direction of the quantization axis. The magnetic field strength is in the order of 4 G, which
induces a splitting of the corresponding energy levels of about 2.7 MHz/G for the 42S1/2 state
and 1.6 MHz/G for the 32D5/2 state. Our preferred choice of encoding the two-level system(
|0〉, |1〉

)
is the 42S1/2 (mj = −1/2) = |1〉 → 32D5/2 (mj = −1/2) = |0〉 transition, as

shown in Fig. 3.1. The most obvious source of decoherence for optical qubits is the natural
lifetime of the excited state. In the case of 40Ca+, the excited state 32D5/2 has a natural lifetime
τ = 1.17 s [47], which is approximately a factor of 105 larger than the typical gate-operation
times of about 10 µs. In addition to the qubit transition, multiple other optical transitions need
to be addressed; an overview of the individual transition wavelengths as well as their purpose is

18
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Figure 3.1: Schematic representation of the relevant level schemes of 40Ca+: The optical qubit is
encoded in the Zeeman states 42S1/2 (mj = −1/2) = |1〉 and 32D5/2 (mj = −1/2) = |0〉. The
42S1/2 → 42P1/2 transition at a wavelength of 397 nm is used for state detection and Doppler cooling
(see main text for detailed explanation). The 866 nm and 854 nm light is used for repumping from the
32D5/2 and 32D3/2 state to the 42S1/2 ground state.

presented in Table 3.1.

Transition Transition Wavelength Purpose AOM Frequ. shift
42S1/2→ 42P1/2 397.69990 nm state detection and Doppler cooling +80 MHz
42S1/2→ 32D5/2 729.14732 nm coherent manipulation +520 MHz
32D5/2→ 42P3/2 866.21460 nm repumping during detection +360 MHz
32D3/2→ 42P1/2 854.20958 nm qubit reset and quenching for sideband cooling +460 MHz
4s1S0→ 4p1P1 422.67235 nm Photoionization –
4p1P1→ continuum 375 nm Photoionization –

Table 3.1: Required wavelengths for the 40Ca+qubit: Wavelengths, as shown at the wavemeter of the
required transitions used for detection, cooling, repumping and state manipulation of the 40Ca+qubits
(see also Ref.[46]). All wavelengths are measured with the WS7 wavemeter from High Finesse. The
WS7 wavemeter has an accuracy of 10 MHz and therefore the wavelength numbers are reference values
for typical experimental procedures. The actual applied laser frequency is shifted from the given value
by the AOM frequency.

3.1.1 Laser systems

The requirements on the different laser systems depend on their role, where cooling and re-
pumping lasers need to be stabilized to approximately 1 MHz and the qubit laser is required to
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be stabilized to≤ 10 Hz. Frequency stability is achieved by stabilizing each laser to a reference
cavity using the Pound Drever Hall (PDH) locking technique [48].

Ti-sapphire laser system at 397 nm:
The Ti:sapphire laser system from Coherent corresponds to a vertically mounted ring-laser in-
cluding a Ti:sapphire crystal, which is pumped by a diode pumped solid state laser (DPSS)
(Verdi V10) at a wavelength of 532 nm. The output of the Ti:sapphire laser at a wavelength of
794 nm and a pump power of 8 W is in the order of 650 mW. The output of the Ti:sapphire laser
is frequency doubled to 397 nm by a commercial frequency doubling system1. The resulting
maximum output power at 397 nm is in the order of 120 mW, which corresponds to a doubling
efficiency of approximately 20%. A detailed description of the Ti:sapphire ring laser system is
given in Ref. [49].

Ti:sapphire laser system at 729 nm:
The laser system used for coherent manipulation of the optical qubit is a Ti:sapphire laser at a
wavelength of 729 nm. Since the natural linewidth of the optical qubit transition is 136 mHz and
the coherence time of our quantum system is directly given by the laser linewidth, the required
linewidth is in the order of 1 Hz. This demanding task can be accomplished by locking the
Ti:sapphire laser to a reference cavity with a finesse of F ≈ 480000. The achieved linewidth
is in the order of 1 Hz over a time period of 1 second and 40 Hz over 2 hours. A detailed
description of the locking procedure as well as technical details about the reference cavity is
given in Refs. [49, 50].

Diode laser systems at 866 nm and 854 nm:
Optical repumping during the detection process is realized by a Toptica2 diode laser system
at 866 nm with an output power of about 30 mW. The light from the diode laser is amplified
by a tapered amplifier (TA)3 and directly coupled to an optical polarization maintaining (PM)
single-mode fiber. The residual light power at the fiber output is on the order of 160 mW at a
TA current of 1284 mA.
The required laser light at 854 nm for resetting the qubit and quenching the 32D5/2 state for
sideband cooling is generated by a DL 100 Toptica diode laser system with a maximum output
power of about 30 mW. Both laser systems are stabilized to reference cavities and exhibit a
residual linewidth of less than 200 kHz.

1Spectra Physics SC-Block, SB550 102
2Toptica DL pro - Tunable Diode Laser
3semiconductor amplifier TA pro
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Diode laser systems at 375 nm and 422 nm:
The 40Ca+ions are generated by an isotope selective two-step photoionization process from

the 4s1S0 ground state of neutral calcium to the excited state 4p1P1 at a wavelength of 422 nm
followed by ionization with 375 nm light. A detailed description of the ionization procedure
can be found in Ref. [51]. The frequency of the 422 nm diode laser is controlled by a grating
integrated in Littrow configuration, whereas the 375 nm diode laser is free running. The optical
power of both laser systems is on the order of about 8 mW.

3.1.2 Qubit initialization and state detection
A typical experimental sequence consists of four steps: (1) Doppler cooling and state initializa-
tion (2) sideband cooling of the motional axial modes (3) coherent operations (4) state detection.
Fig. 3.2(a) shows the pulse sequence of one experimental cycle. The first step is the cooling of
the trapped 40Ca+ions on the 42S1/2 ↔ 42P1/2 dipole transition to a mean vibrational quantum
number n̄ ≈ 12 phonons using the Doppler cooling method followed by initializing the ion in
the 42S1/2 ground state [52, 10]. State initialization is performed by repumping the population
from the 32D5/2 state by the 854 nm laser and optical pumping from the 42S1/2 (mj = +1/2) to
the 42S1/2 (mj = −1/2) via σ− polarized 397 nm light (see Fig. 3.2(b)). As an alternative, the
optical pumping from the 42S1/2 (mj = +1/2) state can be carried out in a frequency selective
way, shelving the population from the 42S1/2 (mj = +1/2) state to the 32D5/2 (mj = +3/2)
state by the 729 nm laser and simultaneously pumping the 32D5/2 population to the 42S1/2

(mj = −1/2) ground state by 854 nm light (see Fig. 3.2(c)). The latter approach has the advan-
tage of not being sensitive to the polarization and therefore is very useful when the direction of
the magnetic field is changed (e.g. to compensate for the electric quadrupole shift).
In the second step, the motion of the ion is cooled using a resolved sideband cooling technique
on the qubit transition. This method enables the cooling of the ions to a mean phonon number
of n̄ ≤ 0.1. Within the current work, this cooling method was extended by a sideband cooling
technique using Raman beams on the qubit transition, which will be explained in Sec. 3.7. In
the third step, the coherent operations are applied on the 42S1/2 → 32D5/2 qubit transition us-
ing the narrow linewidth 729 nm laser. Finally, the population of the 42S1/2 and 32D5/2 state of
each individual qubit is detected. This can be achieved by exciting the 42S1/2 ↔ 42P1/2 tran-
sition at the end of the sequence. If the ion is in the state 42S1/2 the population is transferred
to the 42P1/2 state and decays back to the 42S1/2 state, while emitting light. The emitted light
is detected by a photomultiplier tube4 and by a CCD camera5. During the 397 nm detection
pulse, the 866 nm repumping beam is applied to the ion continuously to avoid population loss
into the 32D3/2 state. If the ion is in one of the 32D5/2 Zeeman levels it remains dark after the
detection pulse. This measurement method, also known as electron shelving, projects any state
of the qubit onto the σz eigenstates (|0〉 , |1〉) (see Ref. [46] for further details).

4HAMAMATSU H10682-210
5Andor iXon Ultra 897
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Doppler cooling + State initialization Sideband cooling Coherent manipulation State detection

(b)  (c)  

(a)  

time...

Figure 3.2: Experimental cycle and optical pumping schemes: Illustration of one experimental cy-
cle (a) consisting of Doppler cooling and state initialization, sideband cooling of the motional state,
coherent manipulation of the qubit and finally state detection using electron shelving. Optical pump-
ing during the state initialization can be performed in two ways: (b) shelving the population from the
42S1/2 state polarization selective via σ− light to the 42P1/2 state and (c) frequency selective pump-
ing using the 42S1/2 (mj = +1/2)→ 32D5/2 (mj = −3/2) transition followed by optical pumping to
the 42S1/2 state.

3.2 Laser-ion interaction

As already mentioned, the 40Ca+ions are confined to a string in a linear Paul trap by electric
fields [53]. The design of the linear Paul trap used in our experimental setup is shown in Fig. 3.3.
The trap consists of two tip electrodes separated by 5 mm along the axial z-direction and four
radio frequency (RF) electrodes with a distance of 1.6 mm [39]. More precisely, the trapping
potential along the axial direction is generated by a positive voltage on the order of 1 kV to
1.5 kV and can be well described by a harmonic trapping potential. The radial confinement is
realized by a time-varying potential with a frequency of 23 MHz and a voltage amplitude of
several 100 V.

The motion of the ion can be described by 3D harmonic oscillations around the minimum of
the trapping potential in the axial and radial (secular motion) direction with typical frequencies
of ωz = (2π)1 MHz and ωr = ωx = ωy = (2π)3 MHz respectively. The secular motion of the
ion is modulated by a harmonic oscillation at the trap-drive frequency (23 MHz), the so-called
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z y

Figure 3.3: Linear Paul trap design: Drawing of the linear Paul trap used to confine a string
of 40Ca+ ions [39]. The picture was taken from Ref. [46].

micromotion. The micromotion can be compensated along the x- and y direction by shifting
the ion to the minimum of the trap potential by DC voltages applied on two compensation
electrodes (see Fig. 3.3). A detailed analysis of the equations of motion of a particle confined in
a harmonic potential is presented in Ref. [54]. In the following, we will only consider a quantum
mechanical description of the motion in the axial direction, neglecting the micromotion and the
radial degrees of freedom. For the complete quantum mechanical description of an ion stored
in a trap the harmonic motion of the particle has to be considered. In our case we make use of
the axial center-of-mass (COM) mode to enable coupling of the ions, which is essential for the
generation of entangled states (see Sec. 3.6). The combined system is composed of the qubit,
which is described by a two-level system and the quantum mechanical oscillator, illustrated in
Fig. 3.4.

=

n=0

n=1

n=2

n=3

..
.

n=0

n=1

n=2

n=3

Figure 3.4: Two level system coupled to a harmonic oscillator: Coupling of a two level system with
the ground state |1〉 and excited state |0〉 to a harmonic oscillator with the oscillation frequency ωz . The
wave function of the joined system |ψ〉 ⊗ |n〉 =

∑
n cn |ψ, n〉 contains besides an arbitrary state |ψ〉 of

the two-level system also a motional part with the harmonic oscillator eigenstates |n〉. The model of the
combined system illustrates the coupling to the carrier with the Rabi frequency Ωn,n, as well as to the
red- and blue-sidebands with the coupling strengths Ωn,n−1 and Ωn,n+1, respectively.
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A useful illustration of the composite system is the level scheme shown Fig. 3.4, which
reveals that not only transitions between the two-qubit levels |0〉 and |1〉 can be driven by a
laser field, but also transitions between states with different motional numbers n, as shown in
Fig. 3.4. The interaction between light and the joint system of a trapped ion can be expressed
by the following Hamiltonian H [54]:

H = H0 +HI (3.1)
H0 = ~ωz(a† a+ 1/2) + 1/2~ω0σz (3.2)

HI = 1/2~Ω(eiη(a+a†)σ+e−iνLt + e−iη(a+a†)σ−eiνLt), (3.3)

where H0 corresponds to the Hamiltonian of the internal two-level system and the quantum me-
chanical harmonic oscillator with a, a† the annihilation and creation operators and the Pauli
operator σz. The Hamiltonian HI describes the interaction with the laser field and σ+ =
|e〉 〈g| , σ− = |e〉 〈e|. Here, the frequencies ω0, ωz and νL correspond to the two-level reso-
nance frequency, the axial trap frequency and the laser frequency, respectively. The coupling
strength of the light field with the two-level system is given by the Rabi frequency Ω. The
parameter η, named Lamb-Dicke parameter, describes the ratio of the laser wavelength λ to the
spatial expansion of the ground-state wave packet of the harmonic oscillator ∆x0

6:

η = k

√
~

2mωz
=

2π

λ
∆x0. (3.4)

In the case of η2(2n + 1) � 1 with the motional quantum number n of the harmonic oscil-
lator state, the spatial extension of the ion is small compared to the wavelength of the laser
field, which is known as the Lamb-Dicke regime. In the Lamb-Dicke regime the interaction
Hamiltonian HI can be simplified by the following (cut off) Taylor expansion:

e±iη(a+a†) ≈ 1± η(a+ a†). (3.5)

The Lamb-Dicke approximation leads to a suppression of the coupling between states with a
difference in the motional quantum number of more than two quanten of motion. The coupling
strength Ωn,n to the carrier transition between the states |0, n〉 and |1, n〉 is in second order
Lamb-Dicke approximation dependent on the motional quantum number n:

Ωn,n = Ω(1− nη2).

Detuning the resonance laser frequency by ωz enables the coupling between the states |0, n〉
and |1, n+ 1〉, which is referred to as blue-sideband transition (see Fig. 3.4). In contrast to the
excitation of the blue sideband, setting the laser frequency to ω0−ωz will drive transitions from
|0, n〉 to |1, n− 1〉 , known as red-sideband respectively. The corresponding coupling strength
for the blue- and red-sidebands is given by the following equation [54]:

Ωn,n+1 = Ωη
√
n+ 1 blue sideband transition

Ωn,n−1 = Ωη
√
n red sideband transition

6If the laser and the direction of the axial motion form an angle φ, then the Lamb-Dicke paramter is modified
to 2π

λ ∆x0 cos(φ).
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The coupling strength to the red- and blue-sideband is weaker by η than to the carrier transition
given the same laser light intensity. In our system, we assume that the Lamb-Dicke approxi-
mation is valid, as typical values for the Lamb-Dicke parameter in our setup are in the order of
η = 0.06.

3.3 Optical setup
The geometry of the vacuum vessel, containing the linear Paul trap in the center, is sketched in
Fig. 3.5. The different laser beams described in the previous sections are aligned with respect
to the trap axis in various directions. The quantization axis is defined by the superposition of
the magnetic field ~Bσ and ~BD generated by two coils, illustrated in Fig. 3.5(a). By changing
the current of the Doppler (BD) and σ (Bσ) magnetic field coils the magnitude and direction of
the quantization axis can be aligned. An additional magnetic field ~Bgrad is used to compensate
for magnetic field gradients along the ion string and one coil (Bgrad) on the bottom side of the
vessel compensates for vertical bias fields (e.g. earth magnetic field). Typical values for the
magnetic field currents are (Iσ, ID, Igrad, Ivert) = (1.7,−0.4,−0.3, 0.1) A, which results in an
effective magnetic field of 3.8 G. A detailed description of the magnetic field calibration is given
in Ref. [49]. The Doppler beam as well as the 866 nm and 854 nm repumping laser beams are
overlapped by a single mode photonic crystal fiber and aligned perpendicular to the quantization
axis. The photoionization beams (375,422) nm are aligned counterpropagating. For the purpose
of optical pumping the σ− polarized 397 nm laser beam is aligned along the quantization axis.
The beams used for Raman sideband cooling are overlapped with the Doppler- and σ− beam, as
shown in Fig. 3.5(a). The detailed structure of the optical setup for the UV beams is illustrated
in Fig. 3.5(b). It is important to note that the quality of optical pumping (σ− beam) and Raman
cooling (σ+ beam) strongly depends on the polarization of the light. Therefore it is advisable
to use high-quality polarizing beam cubes (PBS) at the output of the fiber7.

We use two 729 nm beams for the coherent manipulation of the qubits, aligned from two
different directions onto the trap (see Fig. 3.5(a)): (a) The global beam is aligned with an
angle of 22.5◦ with respect to the trap axis, which leads to an effective Lamb-Dicke factor of
ηglobal = 0.06 [46]. The purpose of the global beam is the realization of collective coherent
operations (see Sec. 3.5) on the entire ion string as well as entangling operations (see Sec. 3.6).
Due to the fact that the global beam has an angle with respect to the ion string, the beam
is elliptically shaped to guarantee equal intensity and coupling strength on all ions. A more
detailed treatment is given in Sec. 3.5. (b) A tightly focused beam is aligned with an angle
of 67.5◦ with respect to the trap axis and is used to perform operations on individual ions. In
contrast to the global beam, the aim of the addressed laser beam is the realization of ac-Stark
shifts on single qubits, which will be explained further in Sec. 3.4. The Lamb-Dicke factor
ηaddr = 0.03 of the addressed beam is lower compared to the global beam, which leads to a
reduction of the coupling strength to the motional sidebands.

7Here we used Glan-Thompson Polarizers (GTH5-B) from Thorlabs with an extinction ratio of 105 : 1.
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Figure 3.5: Optical setup: Schematic representation of the optical setup around the vacuum vessel. (a) Alignment of the used laser beams and
magnetic field coils with respect to the trap. (b) Detailed schematics of UV and IR optics.
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3.4 Addressed single qubit operations
Single qubit operations are an essential constituent of the set of quantum operations forming a
universal set of gates. The aim of the addressed gates is to perform rotations around the z-axis
of the Bloch sphere without changing the population of the state, which is shown in Fig. 3.6(a).
The rotation around the z-axis is equivalent to changing the phase of a quantum state and can be
experimentally realized by shining in laser light with the frequency ωL, detuned by ∆ from the
resonance frequency, as illustrated in Fig. 3.6(b). Using the optical Bloch equations, it can be

(a) (b)

Figure 3.6: Single qubit phase rotation: Phase rotation of an arbitrary state on the Bloch sphere (a) can
be achieved by (b) coupling the ground- and excited state of a two-level system with a laser field detuned
by the frequency ∆ from the resonance frequency ωL + ∆.

shown that the interaction of an off-resonant laser field with a two-level system leads effectively
to an ac-Stark shift of the ground- and excited states, depending on the strength of the applied
electric field and the detuning [55–57]. With the assumption of ∆ � Ω, the shift δE of the
energy levels with respect to the uncoupled system is given by:

δE = ±~Ω2

4∆
, (3.6)

with the Rabi-Frequency Ω in case of resonant excitation. Considering an arbitrary state |ψ〉 on
the Bloch sphere, the ac-Stark shift of the levels effectively leads to a time dependent phase-shift
and therefore corresponds to a rotation of the Bloch vector around the z-axis with the rotation
frequency Ω2

4∆
(see Fig. 3.6(a)). Therefore, the rotation of the state vector |ψ〉 can be formulated

in terms of a unitary operation UZ as

UZ(θ)|ψ〉 = e−i
θ
2
σz |ψ〉 = |ψ′〉, (3.7)

with the rotation angle θ:

θ = ΩACt and ΩAC =
Ω2

4∆
. (3.8)
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In the case of addressing one out of several ions, the unitary operator UZ has to be reformulated
and is given by the following operator:

U
(j)
Z (θ) = e−i

θ
2
σ
(j)
z , with σ(j)

z = 1⊗ ...⊗ 1⊗ σz ⊗ 1 = 1j−1 ⊗ σz ⊗ 1N−j (3.9)

where the index j identifies the ion being addressed and N corresponds to the total number of
ions. For example assume the addressing of the second ion (j = 2) out of a two-ion string
(N = 2), then U (2)

Z (θ) is given by:

U
(2)
Z (θ) = e−i

θ
2
σ
(2)
z = cos(θ/2)12 − i sin(θ/2)(1⊗ σz) =

=


cos(θ/2)− i sin(θ/2) 0 0 0

0 cos(θ/2)− i sin(θ/2) 0 0
0 0 cos(θ/2)− i sin(θ/2) 0
0 0 0 cos(θ/2) + i sin(θ/2)


Please note that the unitary operator U (j)

Z (θ) corresponds to a 2N × 2N dimensional matrix. The
notation of an addressed single qubit operation in the experimental control software on ion j
with a rotation angle θ is defined as Rzred(θ,j).

3.4.1 Addressing single ions - optical setup
A simplified illustration of the optical setup used to perform operations on individual ions is
shown in Fig. 3.7. All components of the addressing system are outside the vacuum chamber.
The light at 729 nm is guided by a polarization maintaining single-mode optical fiber from
the experiment table to the addressing setup close to the vacuum chamber and collimated by
a 60FC-4-M5-10 fiber collimator from Schaefter and Kirchhoff. Afterwards, the polarization
of the beam is adjusted by a PBS in combination with a λ/2 plate and guided through the
electro-optical deflector (EOD)8 illustrated in Fig. 3.7.

Electro optical deflector

The EOD is the basic element of the addressing setup and enables the controlled deflection of
the laser beam. The functionality of the EOD is based on the principle of gradient scanners
and is illustrated in Fig. 3.8(a). The incident wave is propagating along the z-direction of a
crystal, whereas a linear gradient of the index of refraction is generated along the x-direction
perpendicular to the direction of propagation. This effectively leads to an increasing retardation
of the wavefront transverse to the propagation direction and finally to a bending of the rays
towards increasing index of refraction. The total deflection angle θ can be calculated by the
optical path difference ∆z along the crystal with the length L:

θ =
∆z

D
=

∆nL

D
. (3.10)

Here, it was assumed that sin(θ) ≈ θ due to the small deflection angle. The required linear
gradient of the index of refraction is technically realized by making use of the electro-optical

8Leysop LTB - 1 mm aperture
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Figure 3.7: Addressing setup: Schematic representation of the addressing setup used to perform single
qubit operations around the z-axis of the Bloch sphere. The beam is expanded by a telescope, formed
by the lenses L1 and L2 and finally focused to a narrow spot at the position of the individual ions.
Additionally, the objective is imaging the fluorescence picture of the ion string to the CCD camera. The
position of the beam can be switched within the sequence by an electro optical deflector (EOD). See
main text for detailed information.

Pockels effect of certain crystals, as for example Lithium Niobate. The Pockels effect leads
to a modulation of the index of refraction by applying an electric field along the optical axis
of the crystal. Here, we assume that the polarization of the incident beam matches the optical
axis along the x-direction. Therefore, the modification of the index of refraction ∆n can be
expressed as:

∆n = n3
0rxxE,

with the unmodified ordinary index of refraction n0 and the Pockels coefficient rxx along the x-
direction. Fig. 3.8(b) shows a picture of the used EOD, which clearly illustrates the hyperbolic-
shaped crystal with the attached electrodes. Due to the special crystal shape, a DC voltage V0

applied to the electrodes creates an electric quadrupole field. The electric potential φ in the x, y
plane of the crystal (see Fig. 3.8(a)) can be written as:

φ(x, y) = − V0

2R2
(x2 − y2),

with the radius of curvature R. The gradient ∆n along the x-direction is then given by:

∆n = n3
0rxx∆Ex = n3

0rxx(−∇φ(x, y)~ex)∆x = n3
0rxx

V0

R

and therefore the total deflection angle θ can be written as:

θ = n3
0rxx

V0

R

L

D
. (3.11)



30 Chapter 3. Experimental setup

(b)(a)

x

z

D

L

X

n(x)

θ

y

hyperbolic electrodes

Figure 3.8: EOD: (a) Schematic representation of the crystal with the dimensions D =1 mm and
L =11 mm. (b) Picture of the electro-optical deflector (EOD) with the hyperbolic-shaped crystal (source:
The University of St.Andrews Microchip Laser Research Group).

For a Lithium Niobate crystal, typical values are n0 = 2.3 and rxx = 10−10m/V. For a crystal
length of L =11 mm and a DC voltage of 500 V the total deflection angle is θ ≈ 6 mrad under
the assumption that the whole aperture is illuminated (R = D = 1 mm).
The figure of merits for any beam deflector are the switching speed and the resolution N , which
is defined by the ratio of the total deflection angle θ and the beam divergence δθ of the incident
beam [58]. A Gaussian beam with the beam diameter D at the crystal surface and a wavelength
λ the resolution N , which is also named number of resolvable spots, is given by:

N =
θ

δθ
=

∆nπ

4

L

λ
, (3.12)

with the beam divergence angle δθ = 4λ
πD

. The switching speed of the EOD is limited by the
high-voltage amplifier9 used to apply the DC voltage to the electrodes of the crystal. The cur-
rent of the amplifier is limited to 40 mA and therefore limits the charging time of the crystal
with an intrinsic capacity C (see Ref. [46] for more information). The time until the position of
the beam has settled after applying a step function is on the order of 20µs - 30µs, depending
on the deflection angle. The characteristic parameters of the EOD are listed in Table. 3.2.

9TreK Model 623B

https://www.st-andrews.ac.uk/~bds2/mchip.html
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Aperture R 1 mm
Dimensions 25x25x11 mm
Total deflection angle θ 5 mrad
Capacity C 50 pF
switching Speed 50 kHz
DC Voltage V0 ± 2 kV
Optical loss @ 729 nm ≤ 2%

Table 3.2: Summary of the characteristic parameters of the used EOD.

3.4.2 Optical design of the addressing- and imaging system
After passing through the EOM, the addressing beam is expanded by two lenses L1 (f=25 mm)10

and L2 (f=200 mm) 11 (see Fig. 3.7), which form a telescope with a magnification of 8. Fur-
thermore, the beam is focused ideally to a diffraction-limited spot through the objective12(see
Fig. 3.9). The optical addressing setup, shown in Fig. 3.9, was designed with the optic simu-
lation software Zemax-OpticStudio. With the physical optics toolbox in Zemax, the setup can
also be simulated for a Gaussian input beam. The beam waist at the input of the telescope is
0.46 mm, as measured by a beam profilometer after collimating the beam with the used fiber
collimator. It is advisable to measure deviations from an ideal Gaussian beam directly after the
fiber collimator with a wavefront sensor, since deformations of the wavefront can be induced by
the collimation lens of the fiber collimator. The lens L2 is mounted on a motorized XYZ trans-
lation stage13 used to steer the beam onto the position of the ion. The maximum displacement
in all directions is 1 cm.

The objective consists of 5 optical elements and was designed to minimize aberrations aris-
ing from the vacuum window. Since the details about the vacuum window of our setup is not
known, we assumed for the simulations fused silica window with a thickness of 6 mm (see
Fig. 3.9). The simulations show that the actual material of the window does not seem not be
critical. The characteristic parameters of the addressing setup are listed in Table 3.3. The min-
imal spot size is defined by the diffraction limited Airy disc radius, which is 1.53 µm with a
numerical aperture of NA = 0.29.
Besides the task of single ion addressing, the objective was also designed to simultaneously im-
age the fluorescence light of the ion string onto the CCD camera14 (see Fig. 3.7). The separation
of the emitted fluorescence beam at 397 nm and the addressing beam at 729 nm is performed
by a dichroic mirror (beam splitter). Before assembling the addressing system, the position of
the objective was adjusted with respect to the fluorescence image of the ions on the camera.
Therefore, according to the simulations, the camera was placed at a distance of about 1550 cm
from the objective and the distance from the objective to the ion string was aligned by focusing
the image onto CCD camera.

10Thorlabs AC127-025-B
11Thorlabs AC508-200-B
12Silloptics S6ASS2241
13Newport NSA12 motorized actuator and 460A translation stage
14Andor iXon
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beam waist at the collimator 0.46 mm
focal length of L1 25 mm
focal length of L2 200 mm
distance between L1 and L2 130 mm
effective focal length 66 mm
numerical aperture NA 0.29
diffraction limited spot size (Airy-fringe radius) 1.53µm

Table 3.3: Summary of the characteristic parameters of the addressing setup and the objective.

As a first approach, the objective was mounted on a XYZ translation stage15 to optimize the
fluorescence image of a single ion on the camera. With these 3 degrees of freedom, it proved
difficult to align the objective along the optical axis without inducing any tilt, which leads to
optical aberrations dominated by coma and astigmatism. Tilting the objective manually without
a precision rotation stage seemed to be impossible due to the high sensitivity and confined
space around the inverted viewport. Therefore, two rotational stages16 were mounted on the
translation stage, which allow tilting of the objective along the horizontal and vertical plane.
An example of a typical fluorescence picture of a two-ion crystal is shown in Fig. 3.10(a),
clearly indicating a significant tail to the left. The image defect of this picture can be identified
by the optical aberration coma.
Since it is practically difficult to distinguish between an improvement of the image when tilting
the objective and a mismatch of the focus (z-position), a useful method to find the correct align-
ment of the objective and correct for optical aberrations is to defocus the objective. The camera
picture of a single ion out of focus is shown in Fig. 3.10(b). Fig. 3.10(c) illustrates a qualitative
simulation of the picture by tilting the objective in x- and y-direction of about 2◦. Both, the ion
picture and the simulation show that tilting the objective leads to an inhomogeneous illumina-
tion of the diffraction ring on the upper left side. Therefore, the aberrations can be corrected
by optimizing the homogeneous illumination of the ring by iteratively shifting and tilting the
objective. Fig. 3.10(d) shows the two-ion crystal picture after the optimization procedure.
An important parameter for the characterization of the objective is the optical magnification,
which can be quantified via the camera image of a two-ion crystal (see Fig 3.11). This is
achieved in the following way:
The main idea is to measure the axial trap frequency ωz of the COM mode of a two-ion crystal by
spectroscopy on the qubit transition, which allows the calculation of the ion distance. According
to Ref. [59] the distance dcalc of two ions in a harmonic trap potential is given by the following
expression:

dcalc =

[
Z2e2

4πε0mω2
z

]1/3

× 2.018

N0.559
cos(φ), (3.13)

with the ion mass m, the electron charge e, the degree of ionization Z, the vacuum permittivity
ε0, the trap frequency ωz, and the number of ions N . Note that φ considers the angle of the ion
chain with respect to the optical axis of the objective. The magnification M is then given by the

15Opto Sigma TSD-655L
16OptoSigma Rotation Stage 65 mm,124-0055
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Figure 3.9: Zemax design of the addressing setup: Optical design of the addressing setup using the
Zemax-OpticStudio software. The telescope and the z-position of the objective were optimized with
respect to the size of the focal point. The vacuum window was simulated by a 6 mm fused silica glas.

ratio of the distance of the ions on the camera picture dcam and the calculated distance dcalc:

M =
dcam
dcalc

apixel,
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(a) (d)

(b) (c)

Figure 3.10: CCD camera image two ions:(a) Picture of a two-ion crystal taken with a CCD camera
showing the optical aberration coma. (b) The inhomogeneous illumination of the diffraction ring indi-
cates the optical aberration and can be used to optimize the fluorescence image. (c) Zeemax simulation
of the camera picture by tilting the objective 2◦ in x- and y-direction. (d) Image of the two-ion crystal
after the optimization procedure.

with the pixel size apixel. Fig 3.11(a,b) shows the measurement of the fluorescence counts
summed along the cross section of the camera image for an endcap voltage of 1000 V (ωz =
(2π)1.209 MHz) and 1500 V (ωz = (2π)1.481 MHz). A multiple Gaussian regression function
for both endcap voltages (blue curves) leads to a distance dcam = (102.6 ± 0.1)µm (dcalc =
4.96µm) for 1000 V and dcam = (89.8 ± 0.1)µm (dcalc = 4.33µm) for 1500 V. With a pixel
size of apixel = 16µm and an angle φ = 22.5◦ the magnification of the objective is given by
20.7± 0.3. The imaging resolution is determined by the width (1/e) of the Gaussian regression
function and is given by (22 ± 1)µm. Therefore, two ions with a distance of (1.08 ± 0.03)µm
can still be resolved by the imaging system.

3.4.3 Addressing of single ions

After adjusting the objective with respect to the fluorescence image of the ions on the camera,
the addressing setup was assembled as illustrated in Fig. 3.7 without the EOD. The focal point
of the 729 nm beam at the position of the ions was optimized by adjusting the distance of the
objective to the ion and subsequently realigning the beam onto the ions with the dichroic mirror.
Moving the z-position of the objective is slightly affecting the focal position of the fluorescence
image, which can be compensated by changing the distance of the camera to the objective. The
aligment of the addressed beam is optimized by applying the laser light continuously to the ion
string and detecting the excitation on the qubit transition. If the laser beam is properly aligned
with respect to the ions, then the qubit transition is saturating and the detection count rate of the
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(a) (b)1000V 1500V

Figure 3.11: Objective magnification measurement: Measurement of the objective magnification us-
ing the camera picture of a two-ion crystal at an endcap voltage of (a) 1000 V and (b) 1500 V. The
magnification can be obtained by the ratio of the ion separation dcam of the camera image and the dis-
tance dcalc of the ions in the trap. The ion separation in the trap is determined by the axial trap frequency
ωz . The camera images were all obtained with an exposure time of 100 ms.

PMT will drop to 50% of the initial value17. This regime is not advantageous to optimize the
addressing beam alignment, because the qubit transition is saturating and therefore the count
rate can not be reduced further. The count rate is increased by repumping the population back to
the ground state using the 854 nm laser, which allows the optimized positioning of the addressed
beam with respect to the ion string. An improvement of the beam alignment will result in a
reduction of the detection count rate. Increasing the 854 nm laser power is used to adjust the
count rate back to the previous value. This procedure can be iteratively repeated until the count
rate can not be reduced further. An improvement of the focal point can be observed when the
optimization with the dichroic mirror becomes more sensitive. The next step is the adjustment
of the distance between the telescope lens L1 and L2 using the motorized translation stage of
L2. From experience, it is advisable to change the z-position of L2 iteratively and re-optimize
the x- and y position for each step, since a slight angle between the beam and the lens will
couple the x- and y position with z. The beam profile at the focal point is obtained by scanning
the beam across the ion string via the motorized translation stage and measuring the excitation
probability of each single ion with the CCD camera. Fig 3.12(a) shows a scan of the lens L2

17Typical optical power used for the optimization procedure is on the order of 2 mW.
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across a three-ion crystal with an axial frequency ωz = (2π)1.209 MHz at an endcap voltage
of 1000 V. The width of the addressed beam at the focal point is measured via a Gaussian
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Figure 3.12: Addressing Excitation probability of the 32D5/2 (mj = −1/2) state when scanning across
a (a) three and (b) six-ion crystal with a tightly focused laser beam. The excitation of the individual ions
leads to the possibility of single-ion addressing. The measured beam waist at the focus is about 1.6µm.

beam profile fitted to the excitation profile of Fig 3.12. Since the units of the abscissa are given
by the step size of the motorized translation stage, the axis has to be calibrated. This is done
similar to the method used for measuring the objective magnification using the dependence of
the ion distance on the axial trap frequency. The width of the beam at the focus is defined
by the waist ω0 at which the Gaussian regression function is 1/e2 of its maximum value. The
measurement of the beam waist results in ω0 = 1.6 µm. Zemax simulations lead to an expected
waist of ωsim = 1.3 µm at the position of the focal point. Considering that the distance of
the objective to the ions is not known exactly and that aberrations lead to an increase of the
width, the measured value is in good agreement with the expected simulated result. In optical
systems, the minimal achievable focus is given by the Airy disc radius Rairy, which arises from
diffraction off the aperture of an optical system [58]. The radius of the Airy disc is defined as
the distance from the maximum to the first diffraction minimum. Here, with the used optical
system the minimal expected Airy disc radius Rairy = 1.22λ

2NA
= 1.53µm, with the maximal

numerical aperture NA = 0.29 (see Table 3.3). Assuming a sinc-type regression function and
fitting the data shown in Fig 3.12(a) leads to a radius Rairy = 2.37µm. The measured radius is
bigger than expected from the diffraction limit because the aperture of the EOD limits the initial
beam waist and therefore also the beam size at the objective, which reduces the effectively used
numerical aperture to NA = 0.18. Considering the reduced numerical aperture, the calculated
Airy disc radius is 2.47µm, which is again in good agreement with the measured value. Since
the measured waist is still smaller than the minimal distance of a 7-ion crystal (3µm at 700 V
endcap voltage) it is not necessary to further decrease the beam waist. A possibility to illuminate
the whole objective would be to increase the divergence of the Gaussian beam via the telescope,
but this would also lead to an increase of spherical aberrations. The optimal way to decrease
the beam waist further is to use an EOD with a larger aperture and expand the initial beam to a
collimated Gaussian beam with a waist of 20 mm. Fig 3.12(b) demonstrates the addressing of a
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six-ion crystal at a tip-voltage of 700 V.
By including the EOD, the same excitation pattern as shown in Fig. 3.12(a,b) is observed

when scanning the control voltage of the EOD. Fig. 3.13(a) shows the excitation profile of the
individual ions as a function of the control voltage. Therefore, each ion can be addressed during
the sequence by setting the corresponding EOD control voltage. In Fig. 3.13(b) the control
voltage is set to −0.1 V(100 V at the EOD) and coherent Rabi oscillations are performed on
the third ion. Besides the Rabi oscillations on the addressed ion, excitation on the neighbouring
ions 2 and 4 are observed, caused by optical aberrations. The crosstalk on the i-th ion when
addressing ion j is quantified by the ratio εij of the Rabi frequencies Ωi and Ωj respectively.
Hence, εij = Ωi

Ωj
with εij = 1 for i = j. Nevertheless, the crosstalk for the six ions is maximally

3%, which is reasonable and can be reduced further by addressing error correction, which is
described within the next section.
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Figure 3.13: Addressing of single ions: (a) Addressing profile of a six-ion crystal with a distance of
about 3µm by scanning the voltage applied to the EOD. (b) Rabi oscillations on the third ion with
crosstalk to the neighbouring ions of about 3%.

3.4.4 Addressing error correction
Addressing of a single ion is leading to residual light on the neighbouring ions due to the finite
size of the focused beam and especially due to optical aberrations, indicated by the excitation
of ion 2 and 4 in Fig. 3.13(b). Ideally, the aim of the addressing beam is to realize the operation
U

(j)
z (θ) = e−i

θ
2
σ
(j)
z on the j-th ion and the identity operation on the remaining ions. Due to

the addressing error (crosstalk) ε, the effective operation is of the form U
(j)
z (θ) = e−i

∑
i
θ
2
εijσ

(i)
z ,

with the addressing error matrix εij . The question arises if the addressing error can be reduced
further. One method, which is called addressing error correction is to split the operation on the
addressed ion into a specific sequence of multiple operations. As an example let us consider a
bit-flip on ion 1 in a two-ion crystal. The procedure is graphically illustrated in Fig. 3.14 on the
Bloch sphere for both ions. The aim is to achieve only a π-rotation on ion 1 and ideally leaving
the neighbouring ion 2 unaffected. Both ions are initially in the state |1〉, which corresponds to
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the south pole of the Bloch sphere. Applying the π-rotation directly on ion 1 would lead to a
rotation of επ on ion 2, with the addressing error ε = 0.3 (30%). The π-rotation is split into three
pulses, which are pointed out by the paths on the Bloch sphere with numbers (1) to (3). The
first rotation (1) is a π/2 pulse around the y-axis on the first ion, which rotates ion 2 by an angle
of επ/2. The next step (2) is a π-rotation around the z-axis on ion 1 by an off-resonant ac-Stark
pulse, which rotates the Bloch vector of ion 1 to the state |−〉x = 1/

√
2(|0〉−|1〉). The important

fact is that the error induced on ion 2 during the ac-Stark operation on ion 1 scales with ε2, since
the Rabi frequency Ωac = Ω2

4∆
scales quadratically with the resonant Rabi frequency Ω. The final

step (3) is again a π/2-rotation around the y-axis with a phase shift of π with respect to the first
rotation (1). Ion 2 again is affected by the addressing error and is rotated back similarly to step
(1). Therefore, ion 2 is effectively rotated by ε2π instead of επ by splitting a single addressing
pulse into a sequence of three pulses (Fig. 3.15). This method implies a significant improvement
of the addressing error. The addressing error correction protocol is demonstrated experimentally
by performing Rabi oscillations on a single ion. In Fig. 3.15(a) resonant Rabi oscillations on
one ion out of a two-ion crystal are shown. After four oscillations of the first ion, excitation
on the second ion occurs. The ratio of the corresponding Rabi frequencies corresponds to
an addressing error ε1,2 = 2%. The same measurement is repeated following the described

Ion1 Ion2

(1)

(2)

(3)

(1)(2)

(3)

Figure 3.14: Graphical representation of the addressing error correction protocol: The π-rotation
is split into two resonant π/2-rotations (1,3) and one π-rotation around the z-axis (2). The effective
rotation of the neighbouring ion 2 scales with ε2 (for this example, ε = 30%) and therefore leads to a
significant reduction of the crosstalk to the neighbouring ions. In this example, the addressing error on
ion 2 would be 9% instead of 30%.

addressing error method and is shown in Fig. 3.15(b). It is obvious that still after 15 oscillations
no excitation on the second ion is visible, resulting in a reduced addressing error on the order of
10−4. The technique of addressing error correction can be extended by splitting the rotation into
more steps, which would lead to a further reduction of the addressing error. At this stage this is
not necessary, since the errors on the resonant transition are at a level where a single addressing
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Figure 3.15: Addressing error correction: Experimental demonstration of the addressing error correc-
tion protocol by addressing a single ion out of a two-ion crystal. (a) Addressing ion 1 without addressing
error correction leads to a crosstalk of ε1,2 = 2%. (b) Using addressing error correction, the effective
addressing error can be reduced substantially to about 4 · 10−4.

error step leads to a significant improvement. However, the addressed ion gets more sensitive
to intensity fluctuations of the laser.

3.4.5 Spatial light modulator for improved addressing

If the addressing errors of resonant carrier excitation are sufficiently small, these can be further
reduced by using addressing error correction. On the one hand, it is experimentally expensive
to lower the addressing errors on the carrier to a level of ≈ 3%. On the other hand, addressing
error correction lowers the crosstalk but requires three pulses per operation instead of one pulse
and in addition is more sensitive to intensity fluctuations. Therefore it would be desirable to
minimize the crosstalk between the ions to a limit where it becomes feasible to work without
addressing error correction.

One promising method to achieve this goal would be the technique of spatial light modu-
lators (SLMs). These devices are commonly used in projectors and for scientific applications,
as for example optical tweezers, the generation of controllable holograms, the realization of
optical lattices for ultracold atoms, the transport of Bose-Einstein condensates and correction
of aberrations in microscopy [60]. We are not aware of an implementation of SLM devices for
ion-trap based quantum systems. Here, a test setup for the usability of SLM devices for ion-trap
based system is presented. In more detail, the capability of correcting addressing errors using
SLMs will be discussed within this section.

The SLM devices are based on liquid crystal technologies and are mostly used as phase mod-
ulators. With modifications of the optical setup, they can also be used as amplitude modulators.
The SLM we used is a refractive nematic Liquid Crystal on Silicon SLM18. The architecture of
the used SLM is based on a layer structure design. The ground layer contains the corresponding

18Boulder Nonlinear Systems, HSP 256
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image pixel electrodes (256 x 256 pixels). The liquid crystal layer is located between the ground
layer and one transparent electrode. The voltage of each individual pixel can be controlled via a
specific electronic circuit board. The last layer on top is a cover glass layer with anti-reflection
coating, depending on the used wavelength19. The important characteristic of the liquid crystal
used in SLMs for phase modulation is birefringence. This means that the index of refraction
of an incoming beam depends on the orientation of the polarization vector with respect to the
optical axis. If the polarization is perpendicular to the optical axis the beam sees an index of
refraction n0 (fast axis) and ne (slow axis) for the polarization parallel to the optical axis. Light
with arbitrary linear polarization with respect to the optical axis will split up into the ordinary
and extra-ordinary beam, whereas the extra-ordinary beam effectively experiences a retardation
with respect to the ordinary beam due to different velocities. Therefore, the phase Γ of the beam
changes according to Γ = 2π∆n d

λ0
, with the thickness of the liquid crystal layer d and the dif-

ference of the index of refraction ∆n. The maximum phase shift is given by 2π(n0−ne) dλ . The
main effect behind the controlled phase shift in an SLM is that the orientation of the molecules,
which define the optical axis are changing by applying an electric field. Therefore the index of
refraction ne of the extra-ordinary beam also changes with the tilting angle θ. Effectively, the
phase shift can be expressed by Γ(θ) = 2π(n0−ne(θ)) dλ . A more detailed description of SLMs
can be found in Ref. [61].

Laser 785nm

60FC-4-M12-10
Thorlabs
BE05M-A

f=50mmf=450mm

Silloptics S6ASS2241

Olympus Japan 10

Blue Fox

read out 1 pixel

PC control

feedback to Zernike coefficient

SLM, HSP256

Figure 3.16: Correcting aberrations using a SLM device: Optical test setup to demonstrate the us-
ability of SLMs for the correction of aberrations of the wavefront by iteratively changing the Zernike
coefficients of the beam via electronic feedback to the SLM.

The optical test setup is shown in Fig. 3.16. As a light source we used a grating stabilized
diode laser at a wavelength of 785 nm. The spatial mode of the emitted light is cleaned by an
optical fiber and then enlarged by a telescope with a magnification factor of 520. The SLM is
illuminated by a 50:50 beam splitter, which makes it more convenient to align the SLM, and the

19See Boulder Nonlinear Systems for a more detailed description.
20Thorlabs BE05M-A
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reflected light from the SLM is expanded again with a telescope by a factor of 9. The collimated
beam passes the Silloptics objective followed by a glass plate with a thickness of 10 mm. The
size of the beam at the position of the focal point would be too small to be imaged directly
with a CCD camera. Therefore, we placed a calibrated objective21 with a magnification of 10
at the focal point to enable the imaging with a commercial CCD camera22. The procedure used
to correct the beam aberrations is to change the Zernike coefficients of the wavefront via the
SLM and optimize for each coefficient the illumination of the center pixel of the CCD camera.
The feedback to the Zernike coefficients is realized by the SLM control software, which calcu-
lates the required control voltages for each coefficient. The result of the correction procedure
is shown in Fig. 3.17. In Fig. 3.17(a) the camera image as well as a cross section along the X-
and Y direction of the pattern of the initial beam are shown. After the correction procedure,
which takes about five minutes, the shape of the beam results in a diffraction limited spot with
an Airy-disc radius of about 1.6µm, as shown in Fig. 3.17(b). The setup was assembled at the
Division of Biomedical Physics located at the Medical University of Innsbruck with the support
of Dr. Gregor Thalhammer.
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Figure 3.17: Optimization procedure of the optical aberrations using a LCoS-SLM: In (a) the beam
profile of the uncorrected beam is shown and (b) illustrates the camera pattern after 12 optimization
cycles. The result is a diffraction limited spot with an Airy-disc radius of 1.6µm, revealed from the blue
regression curves.

This setup demonstrates the capability of using SLM devices for the correction of optical aber-
rations in our setup. One technical issue, which can be problematic for the addressed pulses is

21Olympus Japan 10
22CCD mvBlueFox-220
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the modulation of the control voltage applied on each pixel. Due to electromechanical effects,
the SLM can degrade by applying DC voltages over a longer time period. Therefore, the control
voltages are typically square wave signals with a frequency of about 6 kHz. This can lead to a
amplitude modulation of the reflected beam, which would directly affect the intensity stability
of the addressed beam. The intensity fluctuations of the used SLM model were measured at
the Division of Biomedical Physics by realizing a diffraction grating and measuring the rela-
tive intensity fluctuations of the 1st order beam. The measurement results show fluctuations of
less than 0.1% at the characteristic modulation frequency, which would be below the intrinsic
intensity fluctuations of the laser light. In principle, this problem could be overcome by uti-
lizing deformable mirrors, which can also be used as phase modulators but with static control
voltages23.

3.5 Collective operations

As already shown in Fig. 3.5(a), collective operations are performed with a wide laser beam
illuminating simultaneously the entire ion string. In contrast to the addressed beam, which is
used to enable σz rotations on individual ions, the purpose of the global beam is the realization
of resonant excitation on the qubit transition. Ideally, the dynamics of global operations is equal
for each ion and can be represented by rotations of the Bloch vector around the X and Y axis.
Therefore, the collective operations can be expressed in terms of a unitary operator U(θ, φ) [21]:

U(θ, φ) = e−i
θ
2 [cos(φ)Sx+sin(φ)Sy] (3.14)

with Sx,y =
∑N

i=1 1
i−1 ⊗ σx,y ⊗ 1N−i the sum of Pauli operators acting on the i-th qubit. The

rotation angle θ = Ωt is given by the Rabi frequency Ω and the excitation time t, φ corresponds
to the phase of the light field. Experimentally, φ is controlled by setting the phase of the radio
frequency (RF) source applied to the acoustic optical modulators (AOM) [55]. The operation in
Equ. 3.14 is represented as RcarX(θ, φ) = U(θ, φ + π, 8), where X is an index for the desired
transition. We use an elliptical shape of the laser beam to approximate constant illumination
of the entire ion string, since the global beam and the ion trap span an angle of 22.5◦ (see
Fig. 3.5(a)). If we assume an ion string of up to ten ions with an axial frequency of 900 kHz,
then the total length of the ion string is about 27.4 µm and the projection along the elongated
horizontal beam axis is 10.5 µm. The ellipticity of the global beam is realized by a pair of
cylindrical lenses, which form a telescope with a magnification of 5 along the vertical direction.
The beam diameter (FWHM) along the elongated main axis is typically around 100 µm and
about 20 µm in the other direction. With the given parameters the maximum relative difference
of the coupling strength along the ion string consisting of ten ions is about 0.7%. This can be
measured by comparing the Rabi times of each individual ion, as shown in Fig. 3.18 for six-
and seven ions.

Let us now consider the damping of these oscillations. In Fig. 3.18 (a,c), Rabi oscillations
are performed after cooling the axial COM mode at a trap frequency of ωCOMz = 1014 kHz
and Fig. 3.18 (b,d) shows the same oscillations with additionally cooling the axial breathing

23Thorlabs - deformable mirror devices

www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3258
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(
√

3ωCOMz ) and egyptian mode (
√

29/5ωCOMz ). A detailed analysis of the oscillation frequen-
cies and direction of the normal modes is given in Ref. [59]. The results clearly show an
improvement of the contrast with additional sideband cooling the two higher axial modes. The
main reason for the damping characteristics is that the coupling strength Ω0 of the resonant
carrier transition depends on the motional states24. This means that the occupation of the mo-
tional Fock states of the higher axial modes leads effectively to an alteration of the coupling
strength of the ion to the light and therefore causes fluctuations of the resonant Rabi frequency.
This fact can also be used to estimate the phonon occupation of the motional states [62]. A
larger damping of the outermost ions is observed in Fig. 3.18 (a,c) without additional cooling,
which can be explained by a larger contribution of the oscillation amplitude of the outer ions
to relevant modes (e.g. breathing mode). Therefore, cooling the breathing and egyptian mode
leads to a significant improvement of the Rabi oscillations as demonstrated in Fig. 3.18 (b,d).
Although the first three axial modes are cooled, the Rabi oscillations still show an effective
damping after several oscillation periods (see Fig. 3.18 (d)). This decoherence could be further
reduced by cooling all axial modes. In addition to the motional modes, fluctuations of the laser
beam intensity (≈ 1%) also causes dephasing. Cooling the higher axial modes leads to a more
balanced coupling strength along the ion string, as the average coupling strength increases with
decreasing phonon number. This fact is indicated by the measured Rabi frequency difference
along the ion string of 1.32%(1.65%) for the 7(6) ions with cooling only the axial COM mode
and 0.93%(0.61%) with additional SB-cooling.

24The carrier Rabi frequency is proportional to (1−η2n), with the Lamb-Dicke factor η and the motional phonon
number n.
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Figure 3.18: Collective Rabi oscillations: Rabi oscillations realized with the global beam on a string of
6 (7) ions. The influence of the higher motional states when only cooling the COM mode is illustrated in
(a) and (c) by the decoherence of the Rabi contrast. In (b) and (d) the breathing and egyptian mode were
cooled additionally and show clearly an improvement of the Rabi contrast.
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3.6 Entangling operation
The implementation of multi-particle entanglement is the most challenging building block of
a universal set of quantum gates. In our setup, an entangled state between multiple ions is
realized by a method originally proposed by Mølmer and Sørensen [63]. In this method, cor-
related spin-flips between the states |↓↓〉 → |↑↑〉 and |↑↓〉 → |↓↑〉, with |↓〉 = 42S1/2 (mj =
−1/2) = |1〉 and |↑〉 = 32D5/2 (mj = −1/2) = |0〉 are generated with an effective Hamil-
tonian H ∝ σφ ⊗ σφ, where σφ = cos(φ)σx + sin(φ)σy. In Ref. [63] the realization of this
effective Hamiltonian is described by coupling the |00〉 and |11〉 states via a two-photon tran-
sition making use of the axial COM-mode. The entire ion string is simultaneously excited by
two different laser frequencies ω± = ω0 ± δ, red-and blue detuned from the resonant qubit
transition frequency ω0 by δ = ν − ε with the axial COM mode frequency ν and a detuning
ε. Experimentally, this is accomplished by a copropagating bichromatic light field at the cor-
responding frequencies. A detailed description of the experimental setup used to realize the
described entangling scheme is given in Ref. [64]. The analysis of the coupling between the
bichromatic laser light and the ions is performed in Refs. [64, 63]. Within the Lamb-Dicke
regime the propagator U(t) describing the interaction can be solved analytically and is result-
ing in the unitary operation U(t = τgate) = exp (iΩ̃τgateS

2
φ) for a specific interaction time

t = τgate and Sφ = cos(φ)Sx + sin(φ)Sy. The effective Hamiltonian after the interaction time
t = τgate = 2π/ε is described by Heff = −2~Ω̃(1 + σφ ⊗ σφ) and is up to some global
phase identical to the collective spin-flip Hamiltonian described before [64] . The parameter
Ω̃ = (ηΩ)2/ε determines the effective coupling strength of the interaction. For a coupling
strength Ω̃ = π/(8τgate) the effective unitary operation is given by Ueff = exp (iπ

8
S2
φ), which

maps the computational states {|00〉 , |10〉 , |01〉 , |11〉} to maximally entangled GHZ states, as
for example Ueff |00〉 = 1/

√
2(|00〉 − i |11〉). By adjusting the phase of the light field, the de-

scribed unitary operation enables the deterministic creation of maximally entangled states and
can be generalized by the following operator:

MS(θ, φ) = exp

(
−iθ4

[∑
i(sin(φ)σ

(i)
y − cos(φ)σ

(i)
x )

]2
)
. (3.15)

The choice of the gate time τgate restricts the optical power of the bichromatic laser beams as
well as the detuning ε. In practice the optical power can be adjusted by measuring the Rabi time
of each bichromatic laser beam on resonance with the qubit transition.

The main advantage of the Mølmer and Sørensen method is that the operation is indepen-
dent of the motional state of the ions, which was already demonstrated in [64, 20] with a mean
phonon number of n = 20 and an entangled state with a fidelity of about 96%. However,
the highest fidelity can be achieved by cooling the qubits into the motional ground state [64].
Additionally, the performance of the MS-gate is affected by systematic ac-Stark shifts of the
respective qubit transition. For an ideal two-level system the ac-Stark shifts of the red- and blue
detuned laser beams would cancel out each other. In practice, coupling to other 32D5/2 Zeeman
states as well as coupling the qubit states 42S1/2 and 32D5/2 to the 42P1/2 and 42P3/2 levels
leads to systematic ac-Stark shifts [65]. This systematic shift can be compensated by detun-
ing both bichromatic beams. But this has the drawback of inducing a time-dependent phase
evolution of the created entangled state, which complictates the calibration of the succeeding
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preparations. To overcome this problem, one can induce an additional ac-Stark shift on the
qubit transition by unbalancing the power of the two bichromatic beams, respectively. A de-
tailed discussion of the ac-Stark compensation methods is given in Ref. [64].

Ramsey experiments under entangling operations

In Ref. [66], the influence of correlated phase noise on a GHZ state was investigated with the
result that any N -qubit GHZ state is N2 more sensitive to phase noise than a single qubit.
Therefore, the dominant error source affecting the performance of the entangling gate opera-
tion is dephasing. Optical qubits are subject to two dominant sources of dephasing: laser and
magnetic field fluctuations. Both error sources lead to a time variation of the qubit transition
frequency and therefore lowering the coherence of the qubit.

The coherence of our quantum system is investigated by Ramsey spectroscopy [67]. A
Ramsey sequence consists of three steps25: (1) resonant global π/2-rotation U(π/2, 0) on the
qubit initially prepared in |1〉, which creates a coherent state (|0〉+ |1〉)/

√
2. (2) a free evolution

time tR (Ramsey time) and (3) applying a second π/2-rotation U(π/2, φ) with a relative phase
φ with respect to the first pulse. When scanning the phase φ for a given free evolution time
tR, the probability of measuring the excited state p|0〉 is given by p|0〉 = 1/2(1 + C(tR) cosφ)),
whereas the contrast C(tR) corresponds to the oscillation amplitude. Therefore, the Ramsey
contrast can be revealed directly from the measured amplitude as a function of phase [67, 49].

The important task at hand is to improve the coherence of the system, for which the dom-
inant noise source has to be identified. This can be achieved by estimating the noise spectral
density of the noise sources and modeling the coherence behaviour of that. One approach to
address this problem is the spin echo method, originally used in NMR systems [68]. The idea is
to interleave the two U(π/2, 0) pulses with one U(π, 0) pulse after the time tR/2. Fig. 3.19
shows Ramsey contrast measurements using the spin echo technique on the 42S1/2 (mj =
−1/2) → 32D5/2 (mj = −1/2) transition for different settings of the 729 nm laser feed-
back control loop [49]. The blue diamonds illustrate the Ramsey contrast before changing the
control loop settings. Different settings are distinguished by the noise spectrum of the in-loop
Pound-Drever-Hall error signal shown by the curves in the inset of Fig. 3.19. The Ramsey con-
trast pattern features a dip at a Ramsey time tR ≈ 100µs, which indicates dominant frequency
components of the laser in the region of 10 kHz. The coherence decay can be investigated the-
oretically assuming a certain laser spectrum S(ω) and fitting the resulting coherence C(tR) to
the measured data points (blue diamonds). The temporal course of the decoherence for the spin
echo sequence can be calculated by the following equation [69, 46]:

C(tR) = exp
[
−t2R

∫ ∞
0

S(ω)2 sinc(ωtR/4)2 sin(ωtR/4)2dω
]

︸ ︷︷ ︸
gn=1(ω,t)

(3.16)

with the power spectral density (PSD) S(ω)2 and a weighting function gn=1(ω, t), where n
specifies the number of interleaved spin echo pulses. Here, we show the usability of this method
for identifying the dominant noise source. For the noise spectrum S(ω) we assume typically a

25Here, for simplification the example is illustrated on a single qubit but can directly be applied on a larger
system.
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narrow Lorentzian profile L(ω) = Γ2

Γ2+ω2 with overlapping Gaussian noise profilesG(ω0,σ)(ω) =
exp−(ω − ω0)2/σ2:

S(ω) = a
[
L(ω) + b G(10kHz,4kHz)(ω) + c G(2.9kHz,30Hz)(ω) + d G(1kHz,200Hz)(ω)

]
, (3.17)

Figure 3.19: Coherence decay measurement: Measurement the coherence decay using the spin echo
method for two different settings of the feedback loop electronics of the 729 nm laser. The blue and
green curve of the inset show the noise spectrum of the in-loop error PDH error signal and the blue (red)
diamonds correspond to the coherence measurement respectively.

where G(10kHz,4kHz)(ω) corresponds to the dominant noise peak at around 10 kHz, which is
indicated by the oscillating behaviour, a narrow Peak at 2.9 kHz, which arises from the Etalon
lock (see Ref. [49]) and a peak at 1 kHz, which could be induced by acoustic noise and explains
the contrast loss up to 1 ms. In Fig. 3.19 the contrast decay according to equation 3.17 with the
fitted parameters [a = 36.5

√
Hz,Γ = 3 Hz, b = 5.3, c = 4.2, d = 1.5] is shown by the red

curve. The coherence loss, indicated by the dip in Fig. 3.19 caused an infidelity of the entan-
gling gate in the order of 10%. After optimizing the parameters of the feedback loop26 the noise
around 10 kHz could be reduced by 20 dBm (green curve of the inset). The coherence decay
measurement after the optimization (green diamonds) clearly indicates that the oscillation van-
ishes and therefore significantly improves the fidelity of the MS gate (≈96% for four ions).

This phenomenological approach is helpful to reveal problems of the laser and magnetic
field current feedback parameters or noise arising from electronic crosstalk (e.g. ground loops).
Further investigation of the sensibility of the ion to specific frequency noise components is not

26In that case, the gain settings of the feedback loop to the electro-optical modulator as well as to the intracavity
Piezo were adjusted. A detailed description of the different feedback loops is presented in Ref. [49].
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possible with this approach. Nevertheless, the described spin echo technique can be advanced to
a more complex scheme, which allows the measurement of the noise spectrum S(ω) with a sin-
gle qubit (see Ref. [69]). This method involves multiple spin echo pulses and can be interpreted
as a single qubit spectrum analyzer. This step is necessary to further explore the sensitivity
of the ion to specific frequency components and can be used to systematically investigate dif-
ferent error sources and improve the coherence of the system. This example demonstrates the
importance of the laser performance for the coherence of our system. Within the next section
a new generation of a Ti:sapphire laser system for the coherent manipulation of the qubits is
introduced.

3.6.1 Improved Ti:sapphire laser system
During the course of this thesis, a new Ti:sapphire laser system from Msquared27 was installed
that is supposed to outperform the current laser system in following properties: Laser out-
put power, Intrinsic frequency noise, Mechanical stabililty and Intensity stability. The system
consists of a diode-pumped solid-state (DPSS) laser system28 at 532 nm, which pumps the
Ti:sapphire laser. The maximum pump power is 15 W, which leads to a maximum output power
after the Ti:sapphire laser of 4 W at 729 nm and a peak power of 4.8 W at 780 nm. The emitted
light from the crystal is enhanced by a resonator including two frequency selective elements:
(a) a birefringent Lyot-Filter enables course frequency adjustment over a free spectral range
(FSR) of 0.5 nm (b) an Etalon filter allows for fine tuning of the frequency. The Etalon is held
on the maximum emission power by a control loop realized by a lock-in detector at a modula-
tion frequency of 19 kHz. This ensures single-frequency-mode operation of the laser system.
Furthermore, the resonator includes two piezo-electrical elements (Piezo), which are used to
stabilize the laser frequency to a ultra-stable reference resonator with a Finesse of 490.000. The
frequency response of the fast Piezo is flat up to 30 kHz and has a 90◦ phase shift at 50 kHz with
a resonance at 105 kHz. The fast Piezo has a frequency gain of 35 MHz/V, whereas the slow
Piezo with a bandwith of only 100 Hz shows a frequency gain of 25 GHz/V. In the following
section the stabilization of the Msquared laser to our high finesse resonator will be described in
detail.

Fig. 3.20 shows an illustration of the experimental setup used to stabilize the Ti:sapphire
laser onto the high finesse resonator. Part of the laser output light is split up by a polarizing
beamsplitter (PBS) and guided through an optical multimode fiber to the High Finesse WS-7
wavemeter. After the PBS (100 mW) the laser light is passing through an acousto-optical mod-
ulator (AOM) (“noise eater”), which is used as a high bandwidth frequency control. Part of
the first order diffracted light is sent to a 50:50 beamsplitter, overlapped with light from an-
other narrow linewidth laser system [70] and sent to a photodiode (PD), which provides a beat
measurement. The light transmitted through the PBS is coupled into a polarization maintaining
single-mode fiber, which is guided to the high finesse resonator. There it is necessary to cancel
phase noise induced in the optical fiber by acoustic noise affecting the fiber medium. The phase
noise cancellation technique was originally described in Ref. [71].

Stabilization of the laser to the resonator is realized via the Pound-Drever-Hall (PDH) lock-
ing technique introduced in Ref. [48]. The error signal is applied to the input of two different

27Msquared - SolsTis SA PSX R
28Sprout High Power CW 532 nm DPSS Lasers Sprout-G Series
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Figure 3.20: Laser locking scheme: Schematic illustration of the experimental setup for locking the
next generation qubit laser to an optical resonator with a finesse of 490.000. The PDH error signal
is applied to the fast and slow internal piezo as well as to a noise cancellation AOM. The fiber noise
cancellation setup is necessary for cancelling phase noise of the fiber to the reference cavity.

proportional-integral-derivative controllers (PID controllers), each acting on a different actuator.
The fast branch of the feedback is realized by shifting the frequency of an AOM - “noise eater”
(see Fig. 3.20), which exhibits a bandwidth of 1.5 MHz.29 The feedback signal to the AOM is
generated by a Toptica Falc 110 PID controller, which has a bandwidth limit of 10 MHz and
several integrating circuits. The actuating variable for the noise cancelling AOM is the driving
frequency, which has to be biased by the AOM center frequency of 80 MHz. The correspond-
ing electronic circuit is shown in Appendix A. The feedback to the slow piezo is realized by
the unlimited integrator of the Falc PID controller to compensate slow frequency drifts induced
by temperature changes. The drift of the laser directly after switching on the Etalon lock was
obtained from the beat measurement and is on the order of 470 kHz/min. The third feedback
loop is applied to the fast Piezo, which is mainly required to compensate acoustic noise up to
3 kHz. The dominant frequency noise is in the acoustic domain, which results in a high gain
in the lower kHz frequency regime. The laser system is mounted on a vibration isolation plat-
form integrated in an acoustically shielded box to lower the acoustic noise coupling into the
laser. The acoustic box leads to a suppression of more than 30 dBm for frequencies larger than
100 Hz. More details concerning the acoustic box will be given in the master thesis of Roman
Stricker. All adjustments of the PID controllers are described in detail in Appendix A.

29The bandwith is limited by the speed of sound in the crystal and the beam diameter.
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The measurement of the laser linewidth is performed by beating the laser light with an in-
dependent ultra-stable diode laser system described in the master thesis of Lukas Postler [70].
Hence, the linewidth of both lasers can be benchmarked. The beat measurement is realized by
overlapping both lasers onto a photodiode with a bandwidth of 1 GHz. Note that the light from
the other narrow laser system is guided through a 20 m long optical fiber and therefore phase
noise cancellation has to be integrated, which is not shown in Fig. 3.20. Fig. 3.21(a) shows the
beat measurement of the free running (including Etalon lock) Msquared laser with the diode
laser at a residual bandwidth of 1 kHz and averaging over 20 measurements. This results into
a total measurement time of 20 ms. A gaussian fit to the beat measurement gives a linewidth
of 125(2) kHz, which is significantly lower than the intrinsic linewidth of the previously used
Ti:sapphire laser of about 500 kHz [49].
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Figure 3.21: Laser linewidth measurement: Beat measurement of the Msquared laser with the diode
laser locked to a high finesse cavity. (a) Beat measurement of the free running (Etalon lock) Msquared
laser with a diode laser locked to a high finesse cavity over a measurment time of 20 ms and 1 kHz
residual bandwidth. The FWHM linewidth of the gaussian fit function is 125(2) kHz. (b) Overlap of five
single beat measurement with a resolution bandwidth of 1 Hz (1s measurement time). The offset of the
individual measurements was corrected and the resulting lorentzian fit leads to a linewidth of 1.01(1) Hz.

In Fig.3.21(b) the beat measurement was performed with locking the Msquared laser to the
high finesse cavity. The measurement shows the overlap of five single beat measurements with
a residual bandwidth of 1 Hz (1 s measurement time), whereas the frequency offset of each
measurement was corrected. The lorentzian fit leads to a FWHM linewidth of 1.01(1) Hz.
The result corresponds to a convolution of the frequency profiles of both lasers, which im-
plicates that the linewidth of the two lasers can be estimated to be around 500 mHz, since
∆ = ∆Msquared + ∆diode for two lorentzian laser profiles under the assumption that both lasers
contribute equally to the measured linewidth.

As already pointed out above, the spectrum of the error signal reveals important informa-
tion about the laser performance and is therefore compared with the error signal of the current
Ti:sapphire laser system. Fig. 3.22 shows the measurement of the error signal of both laser
systems. The signals were measured with an audio analyzer (SR1). The error signal of the
Msquared laser system (blue curve) shows a significant reduction of the noise level for the



3.7. Implementation of Raman-sideband cooling 51

entire frequency domain up to 100 kHz and almost 45 dBm suppression up to 20 kHz The dom-
inant narrow peak at 13 kHz corresponds to the modulation frequency of the Etalon locking
branch.
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Figure 3.22: Comparison of the currently used Ti:sapphire laser (green) with the Msquared laser system
(blue) locked to the high finesse resonator by measuring the Fourier spectrum of the in-loop error signal.

Fig. 3.23 shows Ramsey contrast measurements on the 42S1/2 (mj = −1/2)→ 32D5/2 (mj =
−1/2) transiton for the Msquared laser (green diamonds) and the previously used laser sys-
tem (blue diamonds). The measurement clearly shows an improvement of the coherence for the
Msquared laser. The coherence at a Ramsey time of 10 ms is about 97%, whereas the coherence
with the current laser system is about 88%. The improvement of the coherence for timescales
lower than 5 ms is related to the low laser noise level for frequencies larger than 200 Hz. Low
frequency noise (≤200 Hz) leads to an enhanced coherence decay for timescales larger than
5 ms. The new laser system shows also an improved performance in the low frequency domain,
as indicated by the Ramsey contrast measurements in Fig. 3.23. Besides the study of the co-
herence, further investigations of the fidelity of single- and muti-qubit gate operations have to
be accomplished using randomized benchmarking [72]. First single-qubit randomized bench-
marking results of the global beam did already show an improvement of the gate fidelity by a
factor of 20 using the Msquared laser system and resulting in an infideltiy of 6.2(2)× 10−4 for
resonant global operations on a single qubit. Further investigations will also be accomplished
within the master thesis project of Roman Stricker. Another parameter, which is crucial for the
gate operation fidelity is the stability of the laser intensity. The intrinsic laser intensity stability
without active stabilization was measured with a photodiode and is on the order of 0.1%. This
is already an enormous improvement compared to the existing setup, which exhibits intensity
fluctuations up to 10% (see master thesis of Roman Stricker).

3.7 Implementation of Raman-sideband cooling
As already pointed out in the previous sections, cooling the motion of the ions close to the
motional ground state is mandatory for the realization of high fidelity gates. In previous experi-
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Figure 3.23: Ramsey contrast measurement: Msquared laser system performance compared to the
previously used Ti:sapphire laser system by measuring the Ramsey contrast on the 42S1/2 (mj =
−1/2)→ 32D5/2 (mj = −1/2) transiton. The Msquared laser system (green diamonds) shows a clear
improvement of the coherence compared to the old Ti:sapphire laser (blue diamonds).

ments, this task has been achieved by resolved sideband cooling on the 42S1/2 (mj = −1/2)→
32D5/2 (mj = −5/2) transiton [73]. Here, the implementation of resolved sideband cooling on
the 42S1/2→ 42P1/2 Raman transition is described. After summarizing the resolved sideband
cooling technique, the Raman cooling scheme is introduced with emphasis on coherent Rabi
oscillations on the Raman transition as well as the measurement of the cooling parameters -
cooling rate and minimal phonon number.

3.7.1 Resolved Sideband cooling

Sideband cooling (SB-cooling) of a two-level system in a harmonic potential is illustrated in
Fig. 3.24(a). The two-level subspaces for the different vibrational levels {|n− 1〉 , |n〉 , |n+ 1〉}
are split by the trap frequency ωz. Two important aspects are assumed: (1) the condition of re-
solved motional sidebands, which implies that Γ� ωz with the linewidth Γ of the excited state
and (2) fulfilling the Lamb-Dicke condition, which allows us to consider only transitions with
∆n = 0,±1.

A detailed description of the SB-cooling dynamics is given in [74, 52]. The important
parameters describing the cooling dynamics are the cooling rate and the steady state phonon
number. Here, we follow the approach of a rate equation model to calculate the cooling rate
and the mean steady state phonon number. When exciting the two-level system with laser light
detuned by the frequency ∆ ≤ 0 from the resonant carrier frequency ω0, different processes
lead to an increase (heating) and a decrease (cooling) of the phonon number, as indicated in
Fig. 3.24(a) where each cycle consists of a stimulated absorption process followed by a sponta-
neous decay to the electronic ground state. The excitation probability of the upper level |e, n〉
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without changing the motional state is given by P (∆) =
Ω2

0

4∆2+Γ2 , whereas the probability of
exciting the red- and blue sideband transition is given by Γη2nP (∆) and Γη2(n + 1)P (∆) re-
spectively. Fig. 3.24(b) shows a simple illustration of the corresponding cooling rates R(1,2)

−

as well the heating rates R(1,2)
+ . With the corresponding excitation probability the cooling- and

heating rates can be calculated to:

n-1

n

n+1
(a) (b)

Figure 3.24: Resolved sideband cooling: (a) Heating and cooling processes of a two-level system in a

harmonic potential. (b) Rate model for the cooling dynamics with the cooling ratesR(1,2)
− and the heating

rates R(1,2)
+ . If the laser frequency is detuned close to the red sideband (∆ = ωz), then the cooling rate

is larger than the heating rate, which effectively leads to cooling of the motional mode.

R
(1)
+ = Γη2(n+ 1){P (∆− ωz) + αP (∆)}

R
(1)
− = Γη2(n+ 1){P (∆ + ωz) + αP (∆)}

R
(2)
+ = Γη2n{P (∆− ωz) + αP (∆)}

R
(2)
− = Γη2n{P (∆ + ωz) + αP (∆)}.

Please note that the spontaneous decay rate Γ from the state |e, n〉 to the states |g, n± 1〉 is
modified by a factor α < 1, which considers the spread of the population to the different
motional modes30. The rate coefficients R(1)

± scale with (n + 1) and R(2)
± with n respectively.

Therefore, the rate equation for the population pn of the motional state with n phonons is given
by the following equation:

dpn
dt

= {−
[
(n+ 1)A+ + nA−

]
pn + (n+ 1)A−pn+1 + nA+pn−1}, (3.18)

with the rate coefficients A+ = Γη2{P (∆ − ωz) + αP (∆)} and A− = Γη2{P (∆ + ωz) +
αP (∆)}. A more general solution of this equation is given in Ref. [74], but here it is sufficient

30In the case of a dipole transition α = 2/5.
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to consider only the lowest vibrational levels {|n = 0〉 , |n = 1〉}, since we are interested in the
cooling dynamics close to the motional ground state. This simplifies Equ. 3.18 to the following
expression:

dp0

dt
= {−A+p0 + A−p1}.

With n̄(t) = 〈n〉 =
∑∞

n=0 npn = p1(t) and p0(t)+p1(t) = 1, the solution of the inhomogeneous
linear differential equation of first order is given by:

p1(t) = n̄0 exp (−Rt) +
β

R
[1− exp (−Rt)], (3.19)

with the cooling rate R = (A− − A+), the heating rate β = A+ and the phonon number n̄0

at the time t = 0. This yields a steady state phonon number of n̄(t → ∞) = β
R

. The cooling
parameters R and n̄ can be calculated from the excitation probability distribution P (∆) while
considering that Γ� ωz:

R = A− − A+ ≈
Ω2η2

Γ
(3.20)

n̄(t→∞) =
A+

A− − A+

≈ Γ2

ω2
z

(
1

16
+
α

4
). (3.21)

This means that on one hand, a narrow linewidth of the upper state leads to a lower minimal
achievable steady state phonon number n̄(t → ∞). On the other hand, the cooling rate R is
limited by the spontaneous decay rate Γ and is saturating when the coupling strength ηΩ is equal
to Γ. Therefore a very narrow cooling transition will reduce the cooling rate. For example in
the case of SB-cooling using only the quadrupole transition, the maximum cooling rate would
be in the order of (2π)0.16s−1 and therefore not practical for any experimental implementation.
To overcome this problem, the transition is broadened by exciting further to a third level via a
dipole transition with a smaller lifetime [73].

Using the 42S1/2 → 42P1/2 dipole transition instead of the quadrupole transition would
enable higher cooling rates due to the stronger coupling of the laser field to the dipole transition
and the larger scattering rate. Furthermore, the Lamb-Dicke parameter for the Raman-transition
is almost a factor of two larger compared to the quadrupole transition at 729 nm. But one has to
consider that increasing the cooling rate also implies a larger mean phonon number. Besides the
cooling rate, there is one major advantage of using the Raman cooling technique. The dipole
transition at 397 nm is far detuned from the quadrupole transition and therefore the coherence of
the stored quantum states is not affected by the Raman cooling beams. This opens the possibility
of in-sequence laser cooling, which was already successfully used for the implementation of the
Shor algorithm [75] and the correction of a quantum measurement on a single qubit [76].

3.7.2 The Raman transition
The Raman transition is realized by two laser beams coupling to a Λ-system formed by the
Zeeman sublevels of the 42S1/2 → 42P1/2 dipole transition. The Λ-system for the Raman
transition is generated by the 42S1/2 (mj = −1/2) = |1〉, 42S1/2 (mj = +1/2) = |2〉 and
42P1/2 (mj = +1/2) = |3〉 Zeeman sublevels, as shown in Fig. 3.25. Transition between
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these levels {|1〉 , |2〉 , |3〉} with the energies {0, ~ω21, ~ω31} are driven by two off-resonant
laser beams. The first laser beam with the frequency ω1 drives the |1〉 → |3〉 transition, whereas
the levels |3〉 and |2〉 are coupled by a laser field with frequency ω2. The selection rules for
the dipole transitions (∆m = 0,±1) require σ+ polarization of the first laser beam and π
polarization of the second laser light field.

Figure 3.25: Raman transition: The Raman transition consists of Zeeman levels of the 42S1/2 ground
state and the 42P1/2 (mj = +1/2) state forming a Λ-system system. Two Raman beams detuned by ∆
from the 42P1/2 (mj = +1/2) level are effectively coupling the two ground states. Resonant excitation
of the Raman transition is observed if the frequency difference bewtween the two Raman beams is equal
to the ground state splitting. The effective Rabi frequency is given by Ωeff =

Ωπ ·Ωσ+
2∆ . The Zeeman

level 42P1/2 (mj = −1/2) = |3′〉 is greyed out as it is not of importance here, but will be considered
within the next sections.

The time evolution of the states can be described by solving the Schrödinger equation, which
leads to a system of three coupled differential equations. A detailed theoretical description
of the Λ-system is given in Ref. [77]. Here, the detuning ∆ of the two laser beams from the
upper level |3〉 is typically several GHz and therefore ∆ � Ωσ+ ,Ωπ,Γ, δ holds, with the Rabi
frequencies Ωσ+ ,Ωπ, the natural linewidth Γ of the state |3〉 and the detuning δ = ω1−ω2−ω31

from the resonance. As a result of this, the wavefunction amplitude of state |3〉 is small and
varying at much faster timescales (∝ 1/∆) compared to the amplitude of |1〉 and |2〉. This
allows the adiabatic elimination of the upper state |3〉 and effectively reduces the Λ-system to
a two level system, consisting of states |1〉 and |2〉. The effective coupling between |1〉 and |2〉
is given by Ωeff =

Ωσ+Ωπ
2∆

[77]. So far the system was introduced as a three level system,
which is a simplification, since the two beams can also couple to the 42P1/2 (mj = −1/2)
state and induce additional frequency shifts, which will be discussed within the next sections.
Before the realization of coherent Raman oscillations and the characterization of the effective
Rabi frequency Ωeff is discussed, the experimental system is described in detail.
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The Raman laser setup

The optical setup for the σ+- and π Raman beams at the experimental table is shown in Fig. 3.5.
The two laser beams were generated with a laser diode system31. The detailed optical setup
as well as the logic control of the pulses is shown in Fig. 3.26. The laser system consists of a
diode laser at 794 nm with an output power of 30 mW, which is amplified by a tapered amplifier
(TA) to a maximal power of 500 mW. The amplified light is coupled into a second harmonic
generation (SHG) module, generating light at 397 nm and a nominal output power of maximal
100 mW. The laser frequency is stabilized by standard Pound-Drever-Hall locking technique
with respect to a reference cavity (details about the cavity system can be found in the PhD
thesis of Mathias Brandl) with a free spectral range of 1.5 GHz. The laser frequency can be
tuned adjusting the cavity length with a piezoelectric crystal. The light at the output of the SHG
is split by a polarizing beam cube into two optical paths (σ+ and π). Each of the two paths are
frequency shifted by 2×80 MHz using an AOM in double pass configuration. The AOMs are
used for switching the optical beams within the sequence, controlling the frequency and power
respectively. Finally, the beams are guided to the experiment with 25 m long single mode and
polarization maintaining fibers. The coupling efficiencies of the fibers are about 35%. The
control logic for the two AOMs is shown in the box of Fig. 3.26.
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Figure 3.26: Raman cooling setup: Optical setup used for the realization of Ramana sideband cooling.
The two Raman beams (σ+ and π) are generated by a diode laser system at 794 nm in combination with a
tapered amplifier (TA) and a SHG module. The laser system is stabilized to a resonator with a finesse of
about 10.000. The frequency and optical power of the laser beams is controlled by two AOMs in double
pass configuration with the control logic shown in the inset box.

31Toptica DL-Pro with tapered amplifier and SHG



3.7. Implementation of Raman-sideband cooling 57

Driving the Raman transition resonantly requires that the difference frequency of the two Raman
beams match the energy gap of the two ground state Zeeman levels (see Fig. 3.25). Therefore,
the frequency of the AOM controlling the σ+ Raman beam is set up to a fixed value of 80 MHz
using a frequency synthesizer. The π beam instead is scanned by the second direct digital
synthesis (DDS) output of the pulse generator (Pbox)32 with respect to the frequency of the σ+

AOM. The σ+-pulses within the sequence are generated by a RF-switch33 with the control TTL
signal provided by channel 08 of the Pbox. The output of the RF-switch is applied to a voltage
controlled attenuator34 (VCA) stabilizing the optical power of the σ+ light. The output voltage
of a sample and hold PID regulator is applied to the control voltage input of the VCA with
the aim to stabilize the intensity of the σ+ beam between each sequence. The intensity of the
beam is measured with a photodiode (PD) directly behind the output of the fiber coupler (see
Fig. 3.26).

Coherent Raman operations

The first step towards the realization of Raman sideband cooling was to measure the Rabi fre-
quency of the individual beams. This was accomplished by investigating the optical pumping
process from the ground state |1〉 to the state |2〉, which enables the optimization of the σ+- and
π polarization as well as the characterization of the individual coupling strength Ωσ+ and Ωπ

respectively. The pulse sequence used to perform the presented experiments is schematically
illustrated in Fig. 3.27.
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Figure 3.27: Raman sequence: Schematic diagram of the pulse sequence used to realize optical pump-
ing as well as coherent Rabi oscillations on the Raman transition.

32The TTL signals, which are used to control the RF-switches are generated by the pulse generator (Pbox). A
detailed description of the Pbox is given in Ref. [55]

33ZASWA-2-50DR
34mini circuits ZX73-2500+
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The schematics in in Fig. 3.27 shows the sequence of laser pulses within one experimental cy-
cle. The first two steps include Doppler cooling, state preparation and sideband cooling of the
axial COM mode. The next step involves state manipulation using the Raman beams. Here,
the light beams are switched on simultaneously, which requires the TTL signal generated by
Pbox-Ch08 to be high. During this time the 866 repump laser has to be switched on, otherwise
population gets transferred to the 32D3/2 state. The induced qubit dynamics of the Raman
pulses is detected by population transfer from state |1〉 to state |2〉. This is achieved by mapping
the remaining population of state |1〉 to the 32D5/2 (mj = −1/2) qubit state using the 729 nm
laser and subsequent detection of the 32D5/2 state population.

As a first measurement, the coupling strength of the individual Raman beams was measured
by applying each Raman beam separately to the ion for a time period T, following the sequence
in Fig. 3.27. The detuning of both laser fields from the upper level is ∆ = 4 GHz. The measured
population of the state |1〉 as a function of the excitation time T fot the σ+ and π beam is shown
in Fig.3.28. The σ+-beam leads to off-resonant excitation of the state |3〉 and subsequent decay
to the state |1〉 with rate 2Γ/3 and to state |2〉 with the rate Γ/3. Therefore, the population of
state |1〉 is completely pumped to the dark state |2〉, which can be seen clearly in Fig.3.28(a).
The same measurement was performed with the π-beam applied to the ion for time T. In that
case, the population of the state |1〉 is pumped via the 42P1/2 (mj = −1/2) = |3′〉 state to level
|2〉 with the decay rate 2Γ/3, but also the same process is pumping back from |2〉 to the ground
state |1〉. This dynamics effectively leads to a steady state population of the two ground states
of 50%, which is confirmed by the measurement result in Fig. 3.28(b).
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Figure 3.28: Optical pumping: Measurement of the Rabi frequency Ωσ+ (a) and Ωπ (b) via optical
pumping. In (a) only the σ+ Raman beam was applied to the ion, whereas in (b) the π beam was exciting
the |1〉 → |3′〉 transition for a time T. For each case the population of the state |1〉 was measured as a
function of the excitation time T. The measured decay rate of the pumping process enables the calculation
of the Rabi frequencies (see main text) and additionally the calibration of the effective Rabi frequency
Ωeff without performing coherent Rabi oscillations.
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Both processes can be described theoretically by an exponential decay of the population p|1〉
with the effective decay rates Rσ+ and Rπ:

p|1〉 = exp(−Rσ+t),with Rσ+ =
Γ

3

(Ωσ+

2∆

)2

(3.22)

p|1〉 = exp(−Rπt) +
1

2
,with Rπ =

2Γ

3

(Ωπ

2∆

)2

. (3.23)

Therefore, the decay rates Rσ+ and Rπ can be revealed from fitting the corresponding expo-
nential regression curves (Fig. 3.28(a,b)) to the measured data. With the fitted decay rates
Rσ+ = 9.2(3) · 103s−1 and Rπ = 3.3(2) · 103s−1, the detuning ∆ = 4 GHz and a natural
linewidth of Γ = (2π)20.7 MHz, we obtain the Rabi frequencies Ωσ+ = (2π)116.6 MHz and
Ωπ = (2π)49.4 MHz. Out of that result, the effective Rabi frequency Ωeff can be calculated and
yields (2π)720 kHz. The optical power typically used to obtain the measured Rabi frequencies
is on the order of 500 µW.

After characterizing the individual Raman beams, the Raman transition was driven with both
beams simultaneously. First, a spectrum was measured by applying the sequence in Fig. 3.27
and scanning the frequency of the π-Raman beam with respect to the σ+-beam. The result of
the Raman spectrum measurement is shown in Fig. 3.29(a). The spectrum was measured with a
pulse length of 2.5 µs. The spectrum clearly indicates the carrier of the |1〉 → |2〉 Raman tran-
sition at a centre frequency of -390.299 MHz and the red- and blue SB detuned by±1.158 MHz
from the carrier. Please note that the control frequency of -380 MHz corresponds to the physi-
cal DDS output frequency of 80 MHz. The carrier is shifted about 680 kHz from the expected
transition frequency, which arises from a differential ac-Stark shift caused by the σ+-beam and
will be discussed within the next section.

Finally, coherent Rabi oscillations on the Raman transition were realized by setting the
frequency of the π-beam to the center frequency (-390.299 MHz), which corresponds to an
effective frequency shift of 10.3 MHz relative to the σ+-beam frequency35 and scanning the
duration T of both pulses. Fig. 3.29(b) shows the coherent Rabi oscillations on the 42S1/2 to
42P1/2 Raman transition. The Rabi oscillations reveal coherent oscillations between the two
ground states |1〉 and |2〉 including an exponential decay characteristics. The Rabi time T2π as
well as the decay time τ extracted by fitting the following regression function (green curve) to
the measured population p|1〉(t):

p|1〉(t) =
[A

2
cos(2πt/T2π +B) exp−(t/τ)

]
+ C,

with the oscillation period T2π = 4.78(2) µs, the amplitude A = 1.03(2), the offset C = 0.50(1),
the phase B = -0.32(4) and the decay time τ =18(1) µs. The main reason for the decay of the
Rabi oscillations is off-resonant excitation of the upper Raman state |3〉, which has an intrinsic
lifetime of only 7.7 ns. Due to the detuning of 1.56 GHz and typical Rabi times on the order
of (2π)50 MHz the excitation probability (Ω/2∆)2 of the upper state is on the order of 10−4,
which decreases the effective lifetime. Further increasing of the detuning ∆ would lower the
excitation probability of state |3〉 and therefore enhance the coherence time.

35Please note that the AOMs used to shift the π- and σ+-laser beam frequency are in double pass configuration.
Therefore, the shift of the π-beam AOM is 5.15 MHz with respect to the σ+ AOM (80 MHz).
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Figure 3.29: Coherent Raman operation: Measurement of the Raman spectrum (a) and coherent Rabi
oscillations on the Raman transition (b) of a single ion. The spectrum was measured by scanning the
relative frequency of the two Raman beams and measuring the population of state |1〉. The center fre-
quency as well as the red and blue sidebands are indicated by the red lines. By setting the frequency
resonant to the Raman transition, coherent Rabi oscillations were realized. The effective Rabi frequency
Ωeff and the decay time τ were obtained from the sinusoidal regression function (green curve) and
lead to Ωeff = (2π)209.2 kHz and τ =18(1) µs. Both measurements were performed with a detuning
∆ = 1.56 GHz.

3.7.3 Raman sideband cooling

Within this section, the measurement of the characteristic cooling parameters, as the cooling
rate R and the mean phonon number n̄ are presented. Additionally, two methods used to obtain
the mean phonon number are discussed. As already mentioned before, it was observed that
the Raman spectrum is shifted depending on the power of the σ+-laser beam. In the following
section, the characterization of the effective ac-Stark shift is presented.

ac-Stark shift measurement

At the beginning of Sec.3.7, the Raman process was described in a pure three level system,
which could be simplified to a two level system (|1〉 , |2〉) coupled by the two Raman beams
with an effective coupling strength Ωeff . This point of view is not entirely true, since the
upper 42P1/2 (mj = −1/2) = |3′〉 state was not considered. In the case of the three level
system, the ground state splitting between the two residual Raman levels |1〉 and |2〉 is changed
by light shifts depending on the intensity of the σ+- and π-beam. Considering the present
42P1/2 (mj = −1/2) state, the π-Raman beam drives not only the |2〉 → |3〉 transition but also
the transition from |1〉 to |3′〉 (as shown in Fig. 3.30). This leads to the fact that the differential
light shift is canceled, assuming that the Zeeman splitting of the two ground states (≈10 MHz)
is small compared to the detuning ∆ ≥1.5 GHz. Therefore, the frequency difference of the
two Raman levels is shifted only due to the coupling of the σ+ laser field to the |1〉 → |3〉
transition. The differential light shift δac is given by δac =

Ω2
σ+

4∆
and depends on the intensity

Iσ+ ∝ Ω2
σ+ of the σ+ beam and the detuning ∆. The intensity fluctuations of the σ+ laser beam
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Figure 3.30: Complete Raman scheme: Schematic representation of the Raman level scheme including
the 42P1/2 (mj = −1/2) = |3′〉 state. In contrast to the three level system, coupling of the σ+-
beam to the |1〉 → |3〉 transition leads to an effective differential light shift between the two ground
states, whereas the ac-Stark shifts induced by the π-beam is cancelled out assuming that the ground state
Zeeman splitting is small compared to the detuning ∆.

were measured with a photodiode after the optical fiber to the experiment (see Fig. 3.26) and are
on the level of 7% on a timescale of minutes, which dominantly results from polarization drifts
in the optical fiber. For example with the parameters obtained from the decay measurements
in Fig. 3.28, the expected light shift from the resonance is about 850 kHz and agrees with
the value observed in the spectrum (see Fig. 3.29(a)). The ac-Stark shift was characterized

200 400 600 800 1000 1200 1400 1600 1800
10

11

12

13

14

15

16

17

18

19

Figure 3.31: ac-Stark shift measurement: The relative shift with respect to the expected center fre-
quency ν0 as a function of the laser power Pσ+ . The obtained sensitivity of the ac-Stark shift is about
5 kHz/µW.

by measuring the frequency shift of the carrier transition as a function of the σ+ laser beam
power. The difference of the fitted center frequency ν and the expected unperturbed carrier
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frequency at ν0 = -389.610 MHz is plotted in Fig. 3.31 as a function of the optical power Pσ+ .
The measurement result reveals a clear linear dependence between the induced ac-Stark shift
and the optical power. The linear fit function in Fig. 3.31 results in a sensitivity (slope of the
linear function) of about 5 kHz/µW . Fluctuations on the order of 7 % at an optical power of
500 µW lead to relative frequency fluctuations of about 175 kHz. The intensity fluctuations
were actively compensated for with the sample and hold stabilization described above (see
Fig. 3.26). Changing the power of the π-beam did not lead to any differential light shifts.

Raman sideband cooling - Experimental results

The scheme used for Raman sideband cooling is shown in Fig. 3.32. The three level system is
defined by the two ground states |1〉 , |2〉 and the upper state |3〉. The cooling process can be de-
scribed in a similar way as the two-state sideband cooling process on the quadrupole transition.
A detailed theoretical description is given in Ref. [78]. Consider the ion initially prepared in the

n

n+1

n-1

n

n+1

n-1

Figure 3.32: Three beam Raman cooling scheme: Schematic representation of the three beam Raman
cooling scheme. Population from the |1, n〉 state is transferred by exciting the red SB Raman transition
to the |2, n− 1〉 state and simultaneously pumped back to the ground state |1, n− 1〉 by the σ− laser
beam.

ground state |1〉. The π beam is detuned red by the axial trap frequency δ = ωz from the Raman
carrier (see Fig. 3.29) which leads to a population transfer from the |1, n〉 ground state to the
|2, n− 1〉 state. This Raman transition on the red-SB acts similar to the excitation process of the
two-level sideband cooling process (see Fig. 3.24) with the effective Rabi frequency ηRΩeff .
Here, the Lamb-Dicke factor ηR for the Raman transition is given by ηR = 2π

λ
|∆~k|x0cos(α)

and depends besides the wavelength and the ground-state wave packet expansion x0 on the dif-
ference ∆~k = ~ek1 − ~ek2 between the wave vectors of the two Raman beams and the angle α
between the vector ∆~k and the direction of the axial motional modes. Therefore, cooling of
the axial mode is only possible if the effective k-vector difference ∆~k includes a projection
along the motional mode and is maximized if the Raman beams are counter-propagating along
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the motional mode direction. The population of the |2, n− 1〉 state is pumped by a third σ−-
polarized laser beam via the upper level |3′〉 back to the initial state |1, n− 1〉, which closes
the cooling cycle and can be compared to the decay of the two-level SB-cooling scheme. This
Raman cooling process involves three laser beams (two Raman beams and one repump laser)
and therefore is denoted as three-beam Raman cooling. The pulse sequence used for Raman
SB-cooling is shown in Fig. 3.33. During the three-beam Raman cooling sequence both Raman
beams as well as the 397 nm σ− beam are switched on simultaneously within the cooling time
T. Again, the 866 nm repump laser has to be on during the whole cooling process. After the
Raman cooling sequence the σ− beam is switched on for a short time interval of 50 µs to pump
remaining population of the state |2〉 back to the initial state |1〉. The cooling performance can
be analyzed by two different methods, denoted as A1 and A2 in Fig. 3.33 followed by detec-
tion. After repeating this sequence with the number of cycles (100-200) the σ+ beam intensity
stabilization is applied.
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Figure 3.33: Raman cooling sequence: Schematic diagram of the pulse sequence used to realize the
described Raman SB-cooling process. The main cooling part consists of simultaneously turning on the
two Raman beams as well as the 397 nm σ− laser beam. The two different analysis pulses A1 and A2
correspond to red- and blue SB pulses respectively and are used to measure the mean phonon number.

At the first stage, the performance of the Raman cooling sequence can be optimized by apply-
ing a red SB-pulse of about 800 µs on the qubit transition after the cooling step followed by
detection. The closer the motional state of the ion to the ground state |1, n = 0〉, the lower the
excitation on the red SB. To quantify the mean phonon number n̄, two different methods are
introduced:

Excitation ratio:

A simple method for the determination of the mean phonon number is to measure the excitation
when driving the red- and blue SB. It can be shown that the ratio of the red SB excitation prsb
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to the excitation on the blue SB pbsb is only dependent on the mean phonon number [73, 52]:

R =
prsb
pbsb

=
n̄

n̄+ 1
,

assuming that the same excitation length and power is used for each SB transition and off-
resonant excitations are negligible. The ratio R can be extracted by scanning over the red- and
blue resonance and revealing the excitation amplitudes of prsb and pbsb.

Blue SB oscillations:

A more sensitive method, which was used in the presented work is to coherently excite the blue
SB on the 42S1/2 → 32D5/2 transition. The idea is that the coupling strength of the blue SB
transition depends on the motional state. Therefore, the coherent dynamics corresponds to a
superposition of Rabi oscillations with different Rabi frequencies Ωn,n+1. More detailed, the
excitation probability pbsb on the blue SB is given by [73, 52]:

pbsb(t) =
∞∑
n=0

n̄n

(n̄+ 1)n
1

2
{1− cos(Ωn,n+1t)}, (3.24)

and depends on the phonon occupation probability of the n-th motional state p(n) = n̄n

(n̄+1)n

assuming a thermal distribution. The idea is to fit the excitation probability pbsb(t) with the
mean phonon number n̄ as free parameter. Fig. 3.34 shows a measurement of the mean phonon
number n̄ of the axial COM mode of a three ion crystal for different cooling times T. The
measurement was performed with Raman SB-cooling (red squares) and two-level SB cooling
on the qubit transition (blue stars) respectively. The mean phonon number was measured by
Rabi oscillations on the blue SB of ion 1 out of three ions, as shown in the inset of Fig. 3.34.
The population of the two remaining ions was spectroscopically decoupled in the 32D5/2 (mj =
−5/2) state. The experimentally obtained oscillations on the blue SB with the corresponding
fit result (green curve) at a cooling time of T= 200 µs leads to a mean phonon number of
n̄ ≈ 0.44. The result clearly shows the exponential decay behaviour of the cooling dynamics as
expected by Equ. 3.19. A fit of Equ. 3.19 results in the characteristic cooling rate R ≈ 19 µs for
Raman SB-cooling and R ≈ 228 µs for the two-level SB cooling. In case of the Raman cooling
process, the minimal phonon number n̄ ≈ 0.44 is achieved after a cooling time of T= 200 µs
and for the two-level SB-cooling method the minimal phonon number is about 0.068 after a
cooling time of 7 ms. Therefore, Raman SB-cooling allows us to cool a string of three ions to
a mean phonon number of n̄ = 0.44 within 200 µs, which is sufficient for in-sequence cooling.
The typically used cooling time in Ref. [76, 75] was about 200 µs for sympathetically cooling
a three and five ion crystal via one ion.
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Figure 3.34: Raman SB-cooling: Experimental result of the mean phonon number n̄ as a function of
the cooling time T for the three beam Raman SB-cooling (red squares) and the two-level SB-cooling
(blue stars). Using Raman cooling, a steady state phonon number of about 0.44 could be reached after
T=200 µs, whereas SB-cooling via the quadrupole transition reaches a lower phonon number of about
0.07 after 7 ms. Both measurements were applied on one ion out of a three ion crystal. The inset figure
demonstrates blue SB oscillations on ion 1 with the aim of revealing the mean phonon number n̄ (see
main text). The experimental parameters for the Raman cooling are ∆ = 1.56 GHz, Rσ+ ≈ 110 µs and
Rσ+ ≈ 292 µs.



Chapter 4

Direct Characterization of Quantum
Dynamics1

4.1 Introduction

Characterizing quantum dynamics is an important primitive in quantum physics, chemistry, and
quantum information science for determining unknown environmental interactions, estimating
Hamiltonian parameters, and verifying the performance of engineered quantum devices. This
has led to a major effort in developing tools for the full characterization of quantum processes,
known as quantum process tomography (QPT). As already pointed out in Sec. 2, the standard
approach for QPT is resource intensive, requiring 12N experimental configurations for a sys-
tem of N qubits [21, 80], where each experimental configuration consists of the preparation of
4N input probe states and a full state tomography for each of the imput states. An alternative
method, ancilla assisted process tomography (AAPT), for the tomography of unknown quan-
tum processes using additional qubits (ancilla qubits) was proposed in Refs. [81, 82]. As the
name suggests, this method uses ancilla qubits but is restricted to joint separable measurements.
Here, the number of experimental configurations is still 12N [83, 81, 84]. The advantage of non
entangled AAPT compared to the standard QPT (SQPT) is that only a single input state is re-
quired.

However, the use of many-body interactions to ancilla qubits in the preparation and/or mea-
surements can significantly decrease the number of experimental configurations to anywhere
from 4N to a single configuration depending on the nature and complexity of quantum cor-
relations [84]. Using two-body interactions only, DCQD (Direct Characterization of Quantum
Dynamics) requires up to 4N experimental configurations for full quantum process tomography.
It is furthermore possible to estimate certain physical parameters with only one experimental
setting. Examples are the characterisation of the relaxation times T1 and T2 [85, 86]. Prior
experimental efforts in this direction include a partial implementation of DCQD [87, 88], an
ancilla-assisted process tomography [81, 83]. Simultaneously to the presented work, an effort
to efficiently implement DCQD in a photonic system [89] has been undertaken.

Alternatively, efficient gate-fidelity estimation methods such as randomized benchmark-

1Text paragraphs, pictures and data of the following chapter are based on the original work Ref. [79] and
presented in a more detailed way.
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ing [72], or tomographic methods such as selective and efficient QPT [90, 91] and compressed
sensing for quantum process tomography [92–94] have been developed to overcome the ex-
ponential increase of the required experimental configurations. Generally, these methods are
tailored to estimate a polynomial number of effective parameters, such as gate fidelities [72]
or they require a priori knowledge about the quantum system to make a sparse quantum pro-
cess/Hamiltonian assumption [94].

Within this chapter, the implementation of the DCQD technique and extensions in our sys-
tem of trapped 40Ca+ ions is described in detail [79]. The experimental tomography of single-
qubit processes with only four experimental configurations using DCQD, and alternatively with
just a single configuration using a generalized measurement (GM) is demonstrated. In addition,
we quantify the relaxation times T1 and T2 in our system with a single configuration. This tech-
nique can also characterize more realistic environments affecting not only the probe but also the
ancilla qubit collectively.

The estimation of the dynamical parameters T1 and T2 (longitudinal and transverse relax-
ation times [21]) is a task involving two non-commuting observables (e.g. σx and σz) that can-
not be measured simultaneously. These parameters describe the influence of noise on atomic-,
molecular- and spin-based systems induced by the interaction with the environment. An alterna-
tive approach based on DCQD, henceforth called Direct Characterization of Relaxation Times
(DCRT), enables the measurement of both T1 and T2 simultaneously with a single experimental
configuration [95].

4.2 Direct characterization of quantum dynamics

Following the χ matrix representation of a quantum process, as introduced in Sec. 2, we
consider only processes which can be described by a completely positive, linear and trace-
preserving map E mapping the input state ρ onto the output state ρ′. For a single qubit this can
be written as

E : ρ→ ρ′ =
4∑

m,n=1

χm,n σm ρ σ†n, (4.1)

with σm, σn being the Pauli operators {1, σx, σy, σz} and χ a positive Hermitian matrix contain-
ing the complete information about the process. In standard quantum process tomography the
process is applied to all four input states and subsequently followed by full state tomography of
each output state, which for a trace preserving map consists of three measurements, resulting in
4× 3 = 12 experimental configurations.

In contrast, the DCQD method requires input states that entangle the system qubit S and the
ancilla qubit A. The DCQD tomography technique is illustrated in Fig. 4.1(a). The unknown
quantum process E is applied on the system qubit A and finally a single Bell state measurement
(BSM), which is described in Sec. 2, is performed on the collective system (see Fig. 4.1(a)).
The four different input states ρi = |ψj〉 〈ψj| and the Bell state basis |Ψ±〉 and |Φ±〉 are defined
in Table 4.1 and in lead to 4 × 1 = 4 experimental configurations. According to Sec. 2 the
probabilities pi,j of measuring the Bell-state projectors Pi = {|Φ±〉〈Φ±|, |Ψ±〉〈Ψ±|} for each
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input state ρj are determined by the following relations [85, 96]:

pi,j = Tr(Pi E(ρj)) =
4∑

m,n=1

χm,n Λi,j
m,n (4.2)

with Λi,j
m,n = Tr(Pi(σm ⊗ 1)ρj(σn ⊗ 1)†).

Equation 4.2 can also be written in a vector form:
p1,1

p1,2
...
p4,4

 =


Λ1,1

1,1 Λ1,1
1,2 . . . Λ11

16,16
...

...
...

...
...

...
...

...
Λ4,4

1,1 Λ4,4
1,2 . . . Λ44

16,16



χ1,1

χ1,2
...

χ4,4

 , (4.3)

which is equivalent to the following equation:

p = Λ(ρi, Pj) · χ, (4.4)

with the vector p containing the measured probabilities pi,j , the predefined 16x16 matrix Λ and
χ, which is the process matrix in vector form. For a given set of input states and measurement
operators the process vector χ can be obtained directly by linear inversion of the matrix Λ,
yielding χ = Λ−1 · p. The matrix Λ contains the information about the chosen measurement
bases and input states. The set of input states ρj and the Bell-state projectors Pi have to be
chosen such that the 16 equations in Eq. (2) are linearly independent, which ensures that Λ is
invertible (Table 4.1). The invertibility of Λ is fulfilled if det(Λ) 6= 0.

Input states ρj = |ψj〉〈ψj| Bell-state basis
|ψ1〉 = |00〉+ |11〉 |Φ+〉 = |00〉+ |11〉
|ψ2〉 = α|00〉+ β|11〉 |Ψ+〉 = |01〉+ i|10〉
|ψ3〉 = α|+ +〉x − β| − −〉x |Ψ−〉 = |01〉 − i|10〉
|ψ4〉 = α|+ +〉y − β| − −〉y |Φ−〉 = |00〉 − |11〉

Table 4.1: Input states and measurement basis: Input states and BSM basis used for the implemen-
tation of DCQD (|±〉x = |0〉±|1〉√

2
, |±〉y = |0〉±i|1〉√

2
). The determinant of Λ in Eq. (2) is maximized for

α = cos(3π
8 ) and β = exp(iπ2 ) sin(3π

8 )) to ensure the invertibility [96]. The BSM is realized by a
measurement with the projectors Pi = {|Φ±〉〈Φ±|, |Ψ±〉〈Ψ±|}.

The reconstruction method can be illustrated more intuitively by the following example:
Assume the preparation of the input state ρ1 = |Φ+〉〈Φ+| given in Table 4.1. If the process E
corresponds to the identity 1 the output state E(ρ1) = |Φ+〉〈Φ+| and therefore the expectation
value of the BSM projector P1 = |Φ+〉 〈Φ+| is 1 which is equivalent to detecting both ions in
the state |11〉 after the BSM in the basis |Φ+〉 (see Sec. 2). In the case of the bit-flip process on
qubit S the output state is mapped onto the state |01〉 by the BSM and therefore the probability
of measuring the projector P2 = |Ψ+〉 〈Ψ+| is 1. The considerations are similar for a phase-flip,
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or bit- and phase-flip processes. Therefore, the diagonal elements of the process matrix χi,i cor-
responding to the 1, σx, σy, and σz process are obtained by the first input state ρ1 in combination
with one BSM, χi,i = Tr(Pi E(ρ1)). The off-diagonal elements of the χmatrix are measured by
the preparation of the three non-maximally entangled input states (|ψ2〉 , |ψ3〉 , |ψ4〉) followed
again by one BSM [97]. The free parameters α and β of the three non-maximally input states
(see Table 4.1) are determined by maximizing the determinant of Λ. The realized parameters
(α, β) = (cos(3π

8
), exp(iπ

2
) sin(3π

8
)) lead to the maximum value det(Λ) = 1.

(a) DCQD - scheme

(b) GM - scheme
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Figure 4.1: Schematics and pulse sequence for the DCQD- and GM-scheme: Procedure to character-
ize a single-qubit process with DCQD and a GM. In DCQD (a) each experimental configuration consists
of the preparation of one of four input states ρj entangled between the system ion S and the ancilla ion A.
The process E is applied on S followed by a BSM on the output state E(ρj), which consists of a single
MS operation followed by a projection onto the computational basis. (b) Generalized measurement via
many body interactions (see text). (picture also shown in Ref. [79])

4.3 Generalized method
Full QPT of a single-qubit process is also possible with a single experimental configuration by
using additional ancillas and a generalized measurement (GM). Here, we expand the dimension
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of the Hilbert space HA ⊗HS , with the system Hilbert space HS and the ancilla Hilbert space
HA, such that the dimension of the total Hilbert space is equal to the number of free parameters
in the process matrix χ [84]. For a single-qubit process one has to determine all 16 superoperator
elements χm,n which leads to an 8-dimensional ancilla Hilbert space. Therefore we used three
ancilla qubits A1, A2 and A3 to quantify a full process E acting on the system qubit S. This GM
is realized by entangling the system and ancilla qubits using many-body interactions [63, 98],
then applying the process E on S and finally performing simultaneously a BSM on the pairs
SA2 and SA13, which is illustrated in Fig. 4.1(b).

4.4 Experimental realization of DCQD
Our experiments were realized on a system consisting of 40Ca+ ions confined to a string in a
linear Paul trap [46]. A detailed description of the setup is presented in Chapter 3. The BSM is
experimentally realized by a maximally entangling operation MS(π

2
, π

4
), which maps from the

Bell-state basis to the computational basis {|00〉 , |01〉 , |10〉 , |11〉}, followed by individual-ion-
resolving fluorescence detection with a CCD camera [46]. We demonstrate the DCQD method
by characterizing the full quantum process of the complete set of unitary rotations σx, σy and
σz as well as controlled non-unitary processes such as amplitude- and phase-damping. For the
complete quantum process tomography using DCQD it was considered that the process of inter-
est only acts on the system qubit. To minimize the crosstalk between the ancilla qubit(s) and the
system qubit S, all unitary operations were performed with the refocusing technique, described
in Sec. 3.4.4. The controlled realization of phase- and amplitude damping on the system qubit
S is described in detail in Appendix D.

Fig. 4.2(a,b) shows the reconstructed χ matrices for σx and σy rotations. As described in
Chapter 2 a single-qubit process can also be visualized by transforming the ensemble of pure
states on a Bloch sphere. In this Bloch sphere representation, decohering processes map the
unit Bloch sphere (shown as a transparent mesh) to an ellipsoid of smaller volume [21]. Imple-
mented amplitude- and phase-damping processes taking place with a 60% probability (γ = 0.6)
are shown in this representation in Fig. 4.2(d,f). For each input state the experiment was re-
peated up to 250 times for statistical averaging. All processes were reconstructed with a maxi-
mum likelihood algorithm using the Choi-Jamiolkowski isomorphism as described in Chapter 2
to ensure trace preservation and positivity of the χ matrix [43]. The fidelity F of a process
describes the overlap between the measured χmeas and the ideal superoperator χid. Accord-
ing to the relation between a quantum process and the Choi-Jamiolkowski matrix, described in

Chapter 2, the process fidelity is calculated by F =
(
tr
(√√

SidSmeas
√
Sid
))2

with the cor-
responding Choi-Jamiolkowski matrices Sid and Smeas obtained from the maximum likelihood
algorithm [43, 99, 100]. Table 4.2 shows the estimated fidelities for the implemented DCQD
and for SQPT. The uncertainty in the fidelity was estimated by parametric bootstrapping based
on projection noise in our measurement [101](see Chapter. 2).

We also demonstrated the reconstruction of a full quantum process with a single experimen-
tal setting and 3 ancillas. Figure 4.1(b) shows the sequence to implement the GM method,
which proceeds as follows. First, we create an entangled input state using maximally and
non-maximally entangling Mølmer - Sørenson interactions in combination with global and
addressed single-qubit rotations. After applying the process E on S we perform a pairwise



4.4. Experimental realization of DCQD 71

Target process DCQD, F (%) SQPT, F (%)
1 97.5± 0.6 98.1± 1.3
σx 96.5± 1.0 98.1± 1.3
σy 96.6± 1.4 97.5± 1.4

amplitude damping 95.3± 1.9 95.2± 2.7
phase damping 97.4± 0.8 95.7± 0.8

Table 4.2: Measured single qubit processes: Calculated process fidelities F between implemented and
target processes as characterized with DCQD and SQPT. All processes were measured with a total of
1000 experimental cycles, which correspond to 1000/4 cycles per experimental configuration for DCQD
and 1000/(4×3)∼84 for SQPT. The SQPT of the phase damping process was measured with a total of
3000 experimental cycles.

BSM on the combined output state by implementing two non-maximally entangling operations
MS(π

4
) and two addressed AC-Stark pulses U (1)

Z (π) and U (3)
Z (π), which separate the entangled

system H(S,A1, A2, A3) into a product state of two subsystems H(A1, A3)⊗H(S,A2). These
operations are equivalent to two pairwise maximally entangling gates MS(π

2
) acting on the two

subsystems H(A1, A3) and H(S,A2). The 16 results of the measurement are directly linked to
the 16 superoperator elements χm,n by a matrix Λ similar to Eq. (2). Using this technique we
reconstructed unitary processes {1, σx = U(π, 0), σy = U(π, π

2
), σz = U

(1)
z (π)} acting on a

single qubit with a fidelity of {99.70± 0.02, 97.30± 0.29, 99.80± 0.01, 99.40± 0.02}%. The
process fidelities were obtained by comparing the ideal process with the measured one applied
on experimentally created state (measured by full state tomography). All processes were mea-
sured with a total of 5000 samples.

The presented QPT measurements were characterizing engineered processes, but we are
also able to characterize phase and amplitude damping that occurs naturally in our system due
to laser-and magnetic field fluctuations and spontaneous decay [18, 46]. The dynamical pa-
rameters T1 and T2 can be determined simultaneously with only the first input state ρ1 being
subject to the DCQD scheme if the damping processes act collectively on both qubits (as in our
experimental system [18]). This method, named DCRT above, consists of preparing the first
input Bell state ρ1 = |Φ+〉〈Φ+|, exposing both qubits to the damping processes for time t and a
final BSM, which yields the diagonal elements χi,i of the process matrix.

The dynamics is described by a global thermalization process acting on the entire system
for the time t. The evolution of the density matrix is described by the two parameters T2 and
T1 as discussed in Chapter 2. As described in Appendix C and assuming Markovian noise the
dynamical parameters can then be estimated from:

e
−N

2t
T2 = χ1,1 − χ4,4 (4.5)

= Tr
{[
|Φ+〉〈Φ+| − |Φ−〉〈Φ−|

]
E
(
|Φ+〉〈Φ+|

)}
,

1 + 2e
− 2t

T1 − 2e
− t

T1 = 1− 2(χ2,2 + χ3,3), (4.6)

with N the number of ions. From the two equations it becomes obvious that the relaxation
times T2 and T1 depend only on the digonal elements of the process matrix χ. In particular,
T2 only depends on χ1,1 and χ4,4, which corresponds to the probability that no error or phase
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Figure 4.2: Representation of measured processes: Experimental results of DCQD for unitary and de-
coherence processes. (a-b) Results of the measured superoperator χ for the rotation operations U(π, 0)
in (a) and U(π, π/2) in (b). Ideally, the target processes have only nonzero elements at positions in-
dicated by the orange-bordered bars. (c-d) Bloch sphere representation of the ideal (c) and measured
(d) amplitude damping process with 60% probability. (e-f) Bloch sphere representation of the ideal (e)
and measured (f) phase damping process with 60% probability. Bloch sphere axes in black evolve into
the spheroid primed axes in blue. A slight imperfection due to residual light on the ancilla ion can be
observed as a rotation of the spheroids in the measured decohering processes.(picture also shown in
Ref. [79])

flips occur on the entire system, whereas T1 can be revealed from χ2,2 and χ3,3, corresponding
to the occurrence of bit-flips. A fit of DCRT measurements χi,i to Eqns. (4.5-4.6) at different
times t thus yields T1 and T2 using a single experimental configuration. We explored this DCRT
technique in our experimental system. The measurement results of the decoherence estimation
are shown in Fig. 4.3(a). The green dots show the difference between the diagonal elements
χ1,1 and χ4,4 as a function of the waiting time t. The spontaneous decay of the system is shown
in Fig. 4.3(b) by plotting 1 − 2(χ2,2 + χ3,3) as a function of time. For every waiting time t the
experiment was repeated 250 times. The exponential fit (green line) of Eqn. (4.5) to the data
was estimated with N = 2 (collective dephasing) and yields TDCRT2 =18.8(5) ms.

We can compare the DCRT technique with two traditional methods that use product input
states: Ramsey-contrast measurements for phase-decoherence estimation and direct sponta-
neous decay measurements if the timescales T1 and T2 are not similar [102]. The Ramsey-
contrast measurement is realized by initializing the ion in the state (|0〉 + |1〉)/

√
2 by a global

rotation U(π
2
, 0), followed by a waiting time t and finally applying a second rotation U(π

2
, φ)

in which the phase φ is varied. The observed contrast as a function of φ corresponds to the re-
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maining phase coherence. Spontaneous decay measurements, instead, consist of preparing both
ions in the excited state |0〉 and measure its decay as a function of time. The results of these
Ramsey-contrast (spontaneous-decay) measurements are shown in Fig. 4.3(a) (Fig. 4.3(b)) as
red diamonds (blue triangles). The measured relaxation times corresponding to the traditional
methods are called Ttrad

1 and Ttrad
2 . The Ramsey-contrast measurements (red diamonds) were

carried out on a single ion and yield a coherence time of Ttrad2 =19.4(8) ms. The green dotted
line in Fig. 4.3(a) corresponds to the single-qubit coherence decay estimated from DCRT and
shows good agreement with the single-ion Ramsey-contrast measurement. Therefore the DCRT
technique enables the characterization of the phase decoherence of the collective system (green
line) and also gives a conclusion about the phase decoherence of a single ion (green dotted line).
An exponential fit of the decay data of Fig. 4.3(b) to Eq. (4.6) gives the characteristic lifetime
TDCRT

1 = 1130(47) ms for the DCRT technique (green line) and Ttrad
1 = 1160(30) ms for the

traditional method (blue dotted line), which are in good agreement with previously measured
values [103] of 1148(18) ms.
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Figure 4.3: Measurement of the relaxation times: Simultaneous measurement of phase decoherence
(a) and the spontaneous decay (b) of a two-qubit system. The DCRT technique (green dots) is com-
pared to a Ramsey-contrast measurement (red diamonds) and a spontaneous decay measurement (blue
triangles) (see text). The measurement using the DCRT method in (a) was carried out on the entan-
gled two-qubit system (exp(− 4t

TDCRT2
) scaling) whereas the red diamonds were measured on a single

qubit with the Ramsey-contrast technique (exp(− t
T trad2

) scaling). The shaded areas correspond to the

envelope of the curves with the decay times TDCRT,trad1,2 ± ∆TDCRT,trad1,2 , considering the statistical

errors ∆TDCRT,trad1,2 . The relaxation time measurements, using the DCRT method and, in compari-
son, the traditional Ramsey-contrast and spontaneous decay measurement, yield: TDCRT2 =18.8(5) ms,
Ttrad2 =19.4(8) ms, TDCRT

1 = 1130(47) ms and Ttrad
1 = 1160(30) ms. (picture also shown in Ref. [79])

In summary, we have experimentally demonstrated two different approaches for the full
characterization of single-qubit quantum processes, lowering the required experimental con-
figurations from 12 to 4 using DCQD and a single configuration via the GM method. The
reconstruction of coherent and incoherent processes was shown with fidelities of ≥ 97% using
DCQD. In particular, we have observed a lower statistical uncertainty of the fidelity of some of
the processes compared to the SQPT.

Experimentally, a reduced number of experimental configurations implies a substantial re-
duction of measurement time for a full QPT using DCQD as compared with SQPT. As sup-
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porting evidence in the reduction of measurement time of DCQD as compared with SQPT, let
us consider, for example, the performed simulation with 6 qubits [104], where the simulation
would be completely characterized by process tomography. The most important point to note
is that in our laboratory the time it takes to change an experimental configuration is almost two
orders of magnitude slower (≈ 1 s) than that of one experimental cycle (≈ 40 ms). To compare
the performance of the two process tomography methods, we consider that for each method
we use the same number of copies or instances of the process and call this the total number of
cycles. If the time to change experimental configurations were zero, under this conditions, both
methods would take the same time. However, this is not the case and we will distribute the total
number of cycles among the required experimental configurations for each method. Therefore,
the total number of cycles is equal to the number of cycles per experimental configuration times
the required total number of experimental configurations.

The DCRT technique, based on the DCQD protocol, was used as a powerful tool to charac-
terize the noise in our system by measuring the relaxation times T1 and T2 simultaneously with
one experimental setting. This technique indicates good agreement with traditional methods as
Ramsey-contrast and spontaneous decay measurement. In principle, there is an improvement
of a factor of two in the measurement time if T1 is of the same order of magnitude as T2, which
is not the case for our setup. In contrast, spin-based solid state systems are collectively af-
fected by noise and T1≈T2, which would lead to a significant improvement of the measurement
time [105]. Another application of DCRT could be for biological systems where dissipative
dynamics play a crucial role [106, 107]. The same measurement procedure can also be used as
a tool to quantify Hamiltonian parameters efficiently, which can not be realized with other cur-
rently known techniques besides full QPT [95, 86]. Furthermore, DCQD offers the capability
to reveal the non-Markovian properties of system-bath interactions [86, 108].



Chapter 5

Characterization of spatial correlations

The evolution of a quantum system is inevitably affected by noise processes. Therefore, it
is one of the main tasks for each quantum computer architecture to reveal the different noise
sources and investigate tools to characterize such processes. In the following, we will discuss a
method to quantify spatial correlations in noise acting on a quantum register. The encoding of
quantum information using quantum error correction codes provide the possibility to perform
arbitrary long quantum computation if the error threshold theorem is fulfilled - the error rate
has to be lower than a certain value. Theoretical assumptions used to calculate the error thresh-
old are mostly rather simple and based on spatially uncorrelated noise models, and Markovian
noise (i.e. temporally uncorrelated noise) [21]. In practice this simplified assumptions are not
fulfilled, which would strongly affect the error threshold. Fortunately, it has been proven theo-
retically in Ref. [109] that the concept of fault tolerant quantum computation and the calculation
of an experimentally reasonable error threshold is still possible under spatial correlated noise if
the noise is weak enough and the correlation length is short compared to the system size.
For the realization of fault tolerant quantum computation in any quantum architecture, the main
questions will be: How strong are the spatial correlations for any quantum dynamics and how
big is the correlation length compared to the separation of the qubits? If the qubit separation
distance is bigger compared to the correlation length, then can the noise considered to be spa-
tially uncorrelated? A method recently proposed by Angel Rivas and Markus Müller allows
to quantify spatial correlations of quantum dynamical processes [36]. Within this chapter we
demonstrate the experimental implementation of the proposed technique and show that this
method can be employed as a useful toolbox to investigate spatial correlations.

5.1 Theoretical model

The model proposed in Ref. [36] provides a measure of the spatial correlations between two
subsystems A and B of a larger system. The advantage of this method is that the measure does
not depend on any a priori knowledge about the underlying dynamics. The general idea of the
method is based on the Choi-Jamiolkowski isomorphism described in Sec. 2.2. The dynamics
of the quantum system (e.g. a certain unitary operation or noise processes) can be described by
the Choi-Jamiolkowski state ρCJ embedded in a higher dimensional Hilbert space. The corre-
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lation measure of the dynamics is then based on the quantum mutual information of the state
ρCJ .

The introduced measure can already be motivated by the classical mutual information. As-
sume two random variables X and Y with the joint probability distribution p(x, y). The mutual
information of X and Y is given by the following equation [21]:

H(X : Y ) = H(X) +H(Y )−H(X, Y ) =
∑
x,y

p(x, y) log
( p(x, y)

p(x)p(y)

)
, (5.1)

with the marginal entropies H(X) =
∑

y p(x, y), H(Y ) =
∑

x p(x, y) and the joint entropy
H(X, Y ) =

∑
x,y p(x, y) log(p(x, y)) following the definition of the Shannon entropy [21]. An

intuitive picture is that the mutual information corresponds to the correlation between the two
variables X and Y or in other words, how much information they have in common. It can be
seen clearly that if the two variables X and Y are completely independent, which means that
p(x, y) = p(x)p(y), then the mutual information H(X : Y ) = 0. The quantum mechanical
analogon to the classical Shannon entropy is given by the Von Neumann entropy, whereas the
density matrix corresponds to the probability distribution.

The Von Neumann entropy S of a quantum state ρ is given by the following expression:

S(ρ) = −tr(ρ log(ρ)) = −
∑
i

λi log(λi), (5.2)

with λi the eigenvalues of ρ. Note that the entropy for an eigenvalue λi = 0 is given by
0 log(0) = 0, since lim

n→0
n log(n) = 0. The quantum mechanical mutual information can be

defined similar to the classical case using the Von Neumann entropy. Assume the joint Hilbert
spaceHA⊗HB of the two subsystems A and B. The mutual information I(ρAB) of the quantum
system is given by:

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (5.3)

The marginal entropy of the subsystems A and B is defined by tracing over the corresponding
system: S(ρA) = trB(ρAB) and S(ρB) = trA(ρAB). The mutual information of the quantum
state ρAB is a measure of the correlations between the subsystems A and B. If the joint state can
be written as a product state ρAB = ρA ⊗ ρB, then the mutual information is 0.

The quantum dynamics can be directly linked to a quantum state by the Choi-Jamiolkwski
isomorphism. Therefore the correlations of a quantum dynamical process correspond to the
correlations of the Choi-Jamiolkowski state ρCJ , which can be quantified by the mutual infor-
mation as defined above. Analog to the definition of the Choi-Jamiolkowski state introduced
in Sec. 2.2 the quantum system S=AB is expanded by the ancillary system S’=A’B’, as illus-
trated in Fig. 5.1. Further assume a maximally entangled state |ψSS′〉 between the system S’
and S [36]:

|ψSS′〉 =
1

d

d∑
k,l=1

|k〉A |l〉B ⊗ |k〉A′ |l〉B′ , (5.4)

with the dimensions dim(HA) = dim(HB) = d. Please note that this state is equal to the prod-
uct of the maximally entangled states between AA’ and BB’, which correspond to the Choi-
Jamiolkowski states of the system AA’ and BB’. The Choi-Jamiolkowski state ρCJS is realized
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Figure 5.1: Schematics of quantifying spatial correlations: The characterization of the spatial corre-
lations of a quantum process is based on the Choi-Jamiolkowski isomorphism. The system S is expanded
by the ancillary system S’ and a maximally entangled state |ψSS′〉 between the system S and S’ is re-
alized (left). The process of interest ES is acting on the system S (middle). If the process is inducing
correlations in the system S=AB, then the total system SS’ becomes correlated with respect to AA’ and
BB’, which is quantified by the mutual information of the Choi-Jamiolkowski state.

by applying the process ES on the principle system S and the identity operation 1S′ on the
system A’B’ (see Sec. 2.2):

ρCJS = ES ⊗ 1S′(|ψSS′〉 〈ψSS′ |). (5.5)

If the quantum map ES introduces correlations between A and B the Choi-Jamiolkowski state
ρCJS exhibits correlations with respect to the subsystems AA’ and BB’. The amount of spatial
correlations Ī(ES) of the quantum process ES is defined by the quantum mutual information I
of the state ρCJS [36]:

Ī(ES) :=
1

4 log(d)

[
S(ρCJS )AA′ + S(ρCJS )BB′ − S(ρCJS )

]
. (5.6)

From the definition of the classical mutual correlations it was obvious that the correlations are
0 for independent probability distributions (p(x, y) = p(x)p(y)). The measure introduced for
quantum maps can be interpreted similar to the classical counterpart. The introduced measure
fulfills three important and necessary properties, which are proven in Ref. [36]:

• The quantity Ī(ES) ≥ 0. Ī(ES) = 0 if and only if the process ES is uncorrelated, which is
fulfilled if ES = EA ⊗ EB.

• In the framework of resource theory, one essential law for the useful measure of corre-
lations is that the mutual information is not increased by composition with uncorrelated
dynamical maps [21]. In Ref. [36] it is proven that this theorem is fulfilled for the intro-
duced measure.

• The maximum value of Ī(ES) = 1 can only be achieved if the quantum map ES corre-
sponds to a unitary operation ES(ρ) = USρU

†
S with USU

†
S = 1.
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An interesting example of the spatial correlations that arise between the systems A and B is the
CNOT operation introduced in Chapter 2. Although the CNOT gate can be used to generate
highly correlated entangled states the spatial correlation only reaches 0.5. A reason for this
is that the creation of correlations induced by the CNOT operation depends on the input state
of the system. For example the two qubit state |0〉 + |1〉 ⊗ |0〉 is mapped onto a maximally
entangled state |00〉+ |11〉 by the CNOT operation, whereas the input state |0〉+ |1〉⊗ |0〉+ |1〉
is left unchanged. The SWAP operation is an example of a unitary map inducing the maximum
amount of spatial correlations.

5.2 Spatial correlations in an ion-trap-based quantum com-
puter

In this section we present an application of the described method to quantify spatial noise cor-
relations to real noise dynamics. As a first test of the method, we investigated the spatial corre-
lations of real-noise dynamics acting in our ion-trap based quantum system [46]. The quantum
bit is encoded in the S1/2(mj = −1/2) and D5/2(mj = −1/2) Zeeman levels of 40Ca+ ions.
Therefore, frequency fluctuations of the laser which excites this qubit transition as well as mag-
netic field fluctuations at the position of the ions cause a loss of coherence. Since the magnetic
field is de-facto constant over the spatial extension of the linear ion chain and coherent oper-
ations are performed in our setup with a global laser beam illuminating the whole ion chain
simultaneously it is expected to induce noise that is strongly correlated in space. Here we in-
vestigate whether the degree of spatial correlations in our system can be quantified and verified
by simulations or analytical calculations.

5.2.1 Quantum Process of a two-qubit system
Each dynamical process can be described by a complete positive and trace-preserving map E
acting on a system S with initial state ρS. The output state E(ρS) for a single qubit process can
be written in the following form [21]:

E(ρS) =
d2∑

i,j=1

χi,jσiρSσ
†
j , (5.7)

with {σ0 = 1, σ1 = σx, σ2 = σy, σ3 = σz} the set of Pauli operators and d = dim(HA) =
dim(HB) = 2. Thus, the d2 ⊗ d2 dimensional matrix χ contains the whole information about
the process for a given basis. Similarly, in the case of a two-qubit process the output state can
be written in the same form:

E(ρS) =
d4∑

i,j=1

χi,j(σi ⊗ σj)ρS(σi ⊗ σj)†. (5.8)

In the framework of standard process tomography, the evaluation of the full process matrix
χ requires 12N measurements settings (with N the number of qubits) [21]. For example in
the case of a two-qubit process tomography 16 different input states are required, followed by
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implementing the (unknown) quantum process and finally performing a full state tomography
(9 measurement settings) for each input state. Similar to the reconstruction of quantum states
(quantum state tomography) it has to be guaranteed that the evaluated process matrix is physical,
i.e. fulfills complete positivity and trace preservation. The most commonly used method for
the reconstruction of quantum states is the Maximum Likelihood (ML) reconstruction method
proposed in Ref. [45]. By mapping the quantum process onto a higher dimensional state ρCJ

via the Choi-Jamiolkowski isomorphism, all techniques available for the reconstruction of a
quantum state can be applied in a one-to-one manner to the state ρCJ.

The Choi-Jamiolkowski isomorphism is outlined at the example of a process tomography of
a two-qubit system S = AB. An additional auxiliary system S′ = A′B′ of the same dimension
is added to S and the combined system is initialized in the maximally entangled state |ΦSS′〉:

|ΦSS′〉 = 1/d
2∑

k,l=1

|kl〉AB ⊗ |kl〉A′B′ (5.9)

= 1/2{|1A1B1A′1B′〉+ |1A0B1A′0B′〉+ |0A1B0A′1B′〉+ |0A0B0A′0B′〉}. (5.10)

Then, the actual physical map E applied to the system S, the identity operation 1S′ on the
mathematical auxiliary system S′ leading to the d4-dimensional Choi-Jamiolkowski state ρCJ:

ρCJ
S = E ⊗ 1(|ΦSS′〉〈ΦSS′|). (5.11)

This state contains the entire information about the dynamical process E . Finally, the amount of
spatial correlations Ī of the quantum process can be calculated directly from ρCJ, as described
in Sec. 5.1.

5.2.2 Measurement of spatial correlations of real noise
The experimental characterization of the spatial correlations of real noise in our system has been
carried out by the following procedure (see inset of Fig. 5.2): In between the preparation of the
required input states for the process tomography and the state tomography pulses, a waiting
time T was included. During the waiting time, the initially prepared state is prone to dephasing
increasing with the waiting time T. Therefore, given that the noise - as argued above - is
expected to act in a spatially correlated way, an increase of the mutual correlation measure Ī as
a function of the waiting time T is expected. In Fig. 5.2(a) the experimentally determined spatial
correlation measure Ī is plotted for different waiting times T. The data shows that the spatial
correlations increase rapidly with increasing waiting time, and converge to a certain value for
longer waiting times. Averaging of the correlations for T ≥ 40 ms leads to an estimation of
this saturation value around 11.5% (Ī = 0.115). In order to obtain further understanding of
this temporal behavior we numerically simulated the measurements, and derived an analytical
solution within a simple model.

For the simulation of a perfectly correlated phase damping process on the two-qubit system
we assume a random phase-kick process with equal strength on both qubits. This process can
be written as

E(ρ) =

∫ ∞
−∞

f(θ, σ)U(θ)ρU †(θ)dθ, (5.12)
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where U(θ) corresponds to a σz rotation on the whole system with a rotation angle θ, and
where f(θ, σ) represents the probability distribution of θ. Since the spatial correlation measure
Ī is calculated from the Choi-Jamiolkowski state, we write the expression in the operator-sum
representation:

E(ρ) =

∫ ∞
−∞

f(θ, σ)
[∑
i,j

χi,j(θ)(σi ⊗ σj)ρ(σi ⊗ σj)†
]
dθ = (5.13)

=
∑
i,j

∫ ∞
−∞

f(θ, σ)χi,j(θ)(σi ⊗ σj)ρ(σi ⊗ σj)†.

It can be shown that the χ-matrix describing this process contains in total 16 nonzero elements.
If one furthermore assumes a noise probability distribution f(θ, σ) with an even parity, which
implies that f(θ, σ) = f(−θ, σ) the number of nonzero elements reduces to 8, which can be
characterized by 3 parameters

χ′(0,0,0,0) ≡ Cc,

−χ′(0,0,3,3) = χ′(0,3,0,3) = χ′(0,3,3,0) = χ′(3,0,0,3) = χ′(3,0,3,0) = −χ′(3,3,0,0) ≡ Csc,

χ′3,3,3,3) ≡ Cs,

with [Cc, Cs, Csc] defined as

Cc =

∫ ∞
−∞

f(θ, σ) cos(θ/2)4dθ

Cs =

∫ ∞
−∞

f(θ, σ) sin(θ/2)4dθ

Csc =

∫ ∞
−∞

f(θ, σ) sin(θ/2)2 cos(θ/2)2dθ.

In the case of a Gaussian spectral noise density fGauss(θ, σ) of the rotation angle θ:

fGauss(θ, σ) =
1√
2πσ

e−
θ2

2σ2 , (5.14)

the parameter σ corresponds to the width of the Gaussian curve and determines the dephasing
probability. For a value of σ = π rad, 95% of the rotation angle θ is within the interval [−π, π]
and therefore corresponds already to complete dephasing 1. The integrals can be readily solved
analytically, yielding

Cc = 1/8[3 + e−2σ2

+ 4e−σ
2/2]

Cs = 1/8[3 + e−2σ2 − 4e−σ
2/2]

Csc = 1/8[1− e−2σ2

]

Fig. 5.2(b) shows the results of the numerical simulation of the spatial correlation for the Gaus-
sian noise probability distribution fGauss as a function of the width σ. In comparison, the

1The unitary operation U(θ = π) corresponds to a phase-flip on the entire system
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Figure 5.2: Measured and simulated spatial correaltions for real noise dynamics: (a) Measurement
of the spatial correlation of a dephasing process caused by laser- and magnetic field fluctuations. (b)
Simulation of the experimental data for a Gaussian (blue stars) and Lorentzian (green dots) noise prob-
ability distributions as well as a analytically derived solution for the spatial correlations for comparison
(red dotted curve).

same simulation was performed assuming a Lorentzian noise probability distribution fLorentz =
1
π

σ
θ2+σ2 (blue stars). It can be seen that the numerical simulation with the Gaussian noise dis-

tribution is in agreement with the measured data in Fig. 5.2(a). In Fig. 5.2(b) the correlations
level out exactly at a value of 12.5% (resulting from the analytical solution for long waiting
times, Cc = Cs = 3/8 and Csc = 1/8 for σ → ∞), which is within our experimental accu-
racy in agreement with the experimental result. For smaller timescales the initial increase of
the correlations depends on the intrinsic noise probability distribution of the particular physical
system, whereas the saturation value is independent of the noise distribution and only originates
from the fact that the phase noise is perfectly correlated. The experimentally obtained data in
Fig. 5.2(a) and the simulations in Fig. 5.2(b) are not plotted in the same graph, since the rela-
tion between T and the parameter σ has to be evaluated. For the characteristic behavior of the
spatial correlations in our system and the validation of the noise model, the relation between the
two parameters is not important. Fig. 5.3 shows the analytical solution and the experimentally
obtained χ-matrix for a waiting time T = 100 ms. The agreement provides further evidence
that on the experimentally explored time scales the dominant noise in our system is correlated
phase-noise.
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Figure 5.3: Measured process matrix in comparison with the simulated noise process: Measured
two-qubit process matrix for a waiting time of T = 100 ms (green bar). The agreement with the ana-
lytical χ-matrix (black frame) confirms the fact that the real noise in our system is dominantly given by
correlated phase noise.



Chapter 6

Quantum computations on a topologically
encoded qubit

Within this chapter, the fundamental ingredient for the realization of a quantum computing
device - quantum error correction (QEC) - is discussed. The basic elements of quantum error
correction are summarized in the first section with the emphasis on the stabilizer formalism of
QEC codes including the properties of Calderbank, Shor, Steane (CSS) codes. In the second
section, the fundamental concept of fault tolerant quantum computation (FTQC) is introduced.
The subsequent section is providing a detailed introduction to the field of topological QEC codes
within the framework of FTQC. Furthermore, the Kitaev toric code as the first topological QEC
code is described to give an introduction to the basic elements of topological QEC codes. At the
end of the chapter, the so called tolopological color-codes and some of their central properties
are introduced as well as the experimental implementation of a minimal two-dimensional color
code in our ion trap based quantum computer is provided.

6.1 Quantum error correction

6.1.1 Introduction

The concept of error correction was invented within the broad field of classical computation. For
example think about a classical bit 0 or 1, which is sent from the sender to the receiver through
some channel (cable, radio waves, glass fiber, ...). In principle, the classical channel can be
noisy and cause errors affecting the transmitted information, the bit. In classical information
the typical error is a bit-flip error 0→1 (1→0). The reliable transmission of information is only
possible if the corrupted bits are detected and corrected before further processing. The main
method to address this task is based on redundancy. The main idea is to copy each information
bit several times and send the whole information through the noisy channel. The receiver sees
a series of bits and performs in the simplest case a majority voting. Assume the information
bit initially was 0. Then the first step (encoding step) is to create a copy of the information bit
0→000 1. Note that using three bits for the encoding step is the simplest possible case. The
bit string is sent through the channel, which might cause a flip on one of the three bits, say

1If the information bit is in 1, then the encoding is similar 1→111
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e.g. the second bit. Therefore the information at the receiver will be 010. The receiver has to
decide which bit was flipped by the majority voting. Since the majority is 0, the receiver would
guess that the original information bit was 0 and if necessary correct the error. This code is
also known as the repetition code. Now assume that two bit-flip events occurred, leading to the
bit string 110. The result after the majority voting would be 111, which finally would cause an
error and therefore the method did fail. It becomes apparent that the method is failing if two or
more bit-flip errors occur. In the case of an independent and equal strength single bit-flip error
probability p, the failure probability pf of the code is given by the probability of two and three
bit-flip errors pf = 3p2(1−p)+p3 2. Without encoding and correction the error probability is p
and therefore the error correction code makes the transmission more reliable if pf < p, which is
satisfied if p < 0.5. Therefore the classical error correction procedure works only if the single
bit-flip error probability is below a certain value. Using more bits in the encoding will make the
error correction code more robust.

It is certainly the case that each quantum information architecture is prone to errors affecting
the quantum states (e.g. due to decoherence, faulty operations, preparation and measurements).
The errors affecting a quantum system are more complex compared to the classical bit-flip er-
ror. Besides bit-flip errors mapping the state |0〉 → |1〉 (|1〉 → |0〉) we also have to consider
phase-flip errors |0〉 → |0〉 (|1〉 → − |1〉), which are not possible in classical computation. This
implies that reliable quantum information processing will only be realizable with the investi-
gation of quantum error correction codes. The question arises if the described classical error
correction method can be directly converted to quantum systems. Note that the principle of the
classical repetition code is to make several copies of the bit. Assume that there exists any opera-
tion which generates a copy of the state |ψ〉 and |φ〉: |ψ〉 → |ψ〉⊗ |ψ〉 and |φ〉 → |φ〉⊗ |φ〉. The
operation applied to the superposition of the two states leads to |ψ〉+|φ〉 → |ψ〉+|φ〉⊗|ψ〉+|φ〉.
Due to the linearity of quantum mechanics, this has to be equal to |ψ〉+ |φ〉 → |ψ〉 |ψ〉+ |φ〉 |φ〉,
which is not fulfilled for arbitrary states |φ〉 and |ψ〉 . This simple example is a proof of the no-
cloning theorem, indicating that there exists no code which is able to perfectly copy an arbitrary
quantum state [24]. Nevertheless, there exists a possibility to avoid the obstacle of copying the
quantum state by distributing the information over a larger quantum register using entangle-
ment. The first pioneering work towards the realization of a quantum error correction code was
accomplished by Peter Shor in 1995 with the nine-qubit Shor code [110]. Before we describe
the Shor code in more detail, let us consider the simplest QEC codes, the three-qubit bit-flip
and phase-flip code, which form the basic elements of the Shor code. Assume a general quan-
tum state |ψ〉 = α |0〉 + β |1〉 with |α|2 + |β|2 = 1. The goal of the three-qubit bit-flip code
is to protect the coherent state |ψ〉 against a bit-flip error. This code can be interpreted as the
quantum version of the classical repetition code and is shown in Fig. 6.1.

The first encoding step of the bit-flip code consists of two CNOT operations on the qubit
pairs q1q2 and q1q3. The state after the encoding step is given by:

α |0〉+ β |1〉 → α |000〉+ β |111〉 := α |0〉L + β |1〉L . (6.1)

The two states |0〉L and |1〉L are called the codeword basis states. The state space, which is
spanned by the superposition of the two codeword basis states is called the code space and

2Here, the assumption of independent and equal strength bit-flip errors was made. In general, each error cor-
rection code (classical or quantum) assumes a certain error noise model and is designed to tackle errors according
to the specific noise model.
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Encoding Decoding Correction

q1

q2

q3

Figure 6.1: Three qubit repetition code: The schematic of the simplest QEC code able to correct single
bit-flip errors. Here, the information of a single qubit q1 is distributed over three qubits by generating
a highly entangled state |ψ〉L (encoding). After the decoding step, the state of the two qubits q1 and q2
is |00〉 if no error occurred on q1 and |11〉 if q1 was affected by a bit-flip error. In the latter case, the
CCNOT (Toffoli) operation corrects the bit-flip error.

the state |ψ〉L = α |0〉L + β |1〉L after the encoding is called the logical qubit. This nota-
tion is used throughout the whole chapter. Assume that after the encoding step, the logi-
cal qubit is affected by three independent single-qubit bit-flip channels Ebit with the single-
qubit bit-flip probability p. At the end of the sequence, the encoding process is reversed
followed by the correction step. If the state |ψ〉 was left unchanged, the state after the de-
coding step is |ψ〉dec = α |000〉 + β |100〉 = |ψ〉 ⊗ |00〉 and the last CCNOT gate (Toffoli
gate [111]) does not change the state |ψ〉. In the case of a bit-flip error on the first qubit, the
state |ψ〉dec = α |111〉+β |011〉 = |ψ〉⊗|11〉 consists of the product stateX |ψ〉⊗|11〉. Now the
second and third qubit are in the state |11〉 instead of |00〉, which leads to a bit-flip of stateX |ψ〉
induced by the last correction step (Toffoli gate). Therefore the bit-flip error on the state |ψ〉 is
corrected successfully. The success probability of the correction depends on the bit-flip proba-
bility p and is - as in the case of the classical three-bit repetition code- given by 1− 3p2 + 2p3.
The three-qubit bit-flip code presented in Fig. 6.1 corrects bit-flip errors appearing on the state
|ψ〉. After the decoding step, the qubits q2 and q3 are in the state |00〉 if no error on q1 appears
and |11〉 if q1 is flipped. What happens if the second or the third qubit is flipped by the error
channel? If q2 is flipped from |0〉 to |1〉 the state after the decoding step is |ψ〉 ⊗ |10〉 and if
q3 was affected by a bit-flip the state ends up in |ψ〉 ⊗ |01〉. Therefore, it becomes obvious that
the information about the occurrence and location of a bit-flip error on the logical state |ψ〉L
is determined by the state of q2 and q3. After the correction step, q2 and q3 have to be reset
for repeating of the whole error correction step, as demonstrated in Ref. [112]. Let us focus
on the question how the complete logical state |ψ〉L can be recovered. If we could reveal the
information about the location of the bit-flip error, then the logical state could be recovered with
absolute accuracy at least if only a single bit-flip error occurs. The problem is that the direct
measurement of q2 and q3 would destroy the coherence of the logical state. A more sophisti-
cated method to readout the information is to use two ancilla qubits A1 and A2, as shown in
Fig. 6.2.

The main idea is to map the information about the error on the ancilla qubits followed by a
measurement in the computational basis. The measurement result of each ancilla qubit leads to
two outcomes {|0〉 , |1〉}. In total we receive two bits of information, which is enough to encode
the four possible errors (no error, bit-flip on q1, bit-flip on q2 and bit-flip on q3). The first step
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Encoding Syndrome

q1

q2

q3

A1

A2

Figure 6.2: Three qubit syndrome measurement: Quantum circuit for the error syndrome measure-
ment of the three-qubit bit-flip code. The information about the error syndrome is mapped by four CNOT
operations (Syndrome) on two ancilla qubits A1 and A2. The measurement of the ancilla qubits results
in four different outputs, corresponding to the eigenvalues of Z1Z2 and Z2Z3.

is to apply a CNOT operation on the qubits q1, q2 and the ancilla qubit A1. Assume that no
error occurred on the logical qubit |ψ〉L, then the final state after the two first CNOT operations
(see Fig. 6.2) is |ψ〉L ⊗ |00〉. In the case of a bit flip on q1, the final state would end up in
(α |100〉+ β |011〉)⊗ |10〉. The measurement of the ancilla qubit A1 would yield different out-
comes, depending if an error appeared on q1 or q2. Therefore, the occurrence of a bit-flip error
on q1 or q2 would result in a measurement of A1 in the state |1〉 and if no error occurred, A1
would remain in |0〉. This procedure is equivalent of measuring the eigenvalues of the operators
Z1Z2 = Z ⊗ Z ⊗ I. The states of the two qubits q2 and q3 are compared by measuring the
eigenvalue of the operator Z2Z3 = I⊗ Z ⊗ Z accomplished by the last two CNOT operations.
The four different outputs of the eigenvalues contain the whole information about the different
error scenarios, which is also referred to as error syndrome measurement. The error syndrome
of the three-qubit bit-flip code is summarized in Table 6.1.

Error Z ⊗ Z ⊗ I I⊗ Z ⊗ Z output state
no error +1 +1 (α |000〉+ |111〉)⊗ |00〉
bit flip on q1 -1 +1 (α |100〉+ β |011〉)⊗ |10〉
bit flip on q2 -1 -1 (α |010〉+ β |101〉)⊗ |11〉
bit flip on q3 +1 -1 (α |001〉+ β |110〉)⊗ |01〉

Table 6.1: Error syndrome of the three qubit QEC: Complete error syndrome of the three-qubit bit-
flip code. The complete information about the error syndrome is obtained by measuring the eigenvalues
of the two operators Z⊗Z⊗ I and I⊗Z⊗Z. This is realized by mapping the eigenvalues to the ancilla
qubits A1 and A2 followed by a non-destructive measurement (see Fig. 6.2).

The measurement of the ancilla qubits can be realized in our system by a non-destructive
way, which is also known as quantum non demolition measurement (QND) and demonstrated
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in Ref. [113]. As mentioned above, only correcting for bit-flip errors will certainly not be
enough since a quantum state can also be perturbed by phase-flip errors. The three-qubit bit-
flip code can be transformed to the three-qubit phase-flip code. Instead of the logical states
|0〉L = |000〉 and |1〉L = |111〉 used for the bit-flip code, let us think about encoding the logical
qubit |φ〉L = α |+ + +〉+ β |− − −〉 with |±〉 = 1√

2
(|0〉 ± |1〉). A bit-flip on one of the qubits

would not change the logical state but for example a phase-flip on the first qubit would result
in the state α |−+ +〉 + β |+−−〉. The basis change from {|0〉 , |1〉} to {|+〉 , |−〉} can be
performed by applying a Hadamard operation H after the encoding procedure of Fig. 6.1:

H(α |000〉+ β |111〉)→ (α |+ + +〉+ β |− − −〉). (6.2)

The error syndrome measurement described in Fig. 6.2 can also be mapped to the basis {|+〉 , |−〉}
by applying the Hadamard H before the CNOT operations (see Fig. 6.2). The basis transforma-
tion followed by measuring the ancilla qubits can be interpreted as a syndrome measurement of
the observables X1X2 = X⊗X⊗ I and X2X3 = I⊗X⊗X , since H⊗3Z1Z2(H⊗3)† = X1X2

as well as H⊗3Z2Z3(H⊗3)† = X2X3. The encoding of the three-qubit phase-flip code and the
syndrome measurement is illustrated in Fig. 6.3.

Encoding Syndrome
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H

H

H

H

H

H

Figure 6.3: Three-qubit phase-flip code: Quantum circuit for the encoding and error syndrome mea-
surement of the three-qubit phase-flip code. The phase-flip code is directly obtained from the bit-flip
code by transformation of the basis {|0〉 , |1〉} to the {|+〉 , |−〉} basis. The error syndrome measurement
is performed by measuring the eigenvalues of X1X2 and X2X3 (see text).

The combination of the three-qubit bit-flip code and the three-qubit phase flip code forms the
nine-qubit Shor code, which has the capability to correct single-qubit bit-flip and phase-flip
errors [21]. The encoding is demonstrated in Fig. 6.4. The outer layer of the code (q1,q4,q7) is
encoded by the three-qubit-phase flip code and each qubit is again encoded by the three-qubit
bit-flip code using two additional qubits respectively. This layer structure is also known as
concatenation.

Arbitrary errors

It was mentioned before that quantum states can be corrupted by bit-flip and phase-flip errors.
The nine-qubit QEC code is able to detect and correct both error types, the bit- and phase-
flip error on a single qubit. However, the errors on a single qubit can be much more complex
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Figure 6.4: Nine-qubit Shor code: Circuit of encoding a single logical qubit in nine physical qubits by
concatenation of the three-qubit phase-flip and bit-flip code.

than a discrete flip from |0〉 to |1〉 or from |+〉 to |−〉 and vice versa. In Sec. 2 continuous
rotations on a single-qubit were introduced. The question arises, if such operations can be
corrected with the described QEC codes. What about the important dephasing process (phase
damping), dominating the loss of coherence? Is it possible to correct any arbitrary single- qubit
error under the assumption of being able to correct bit -and phase-flip errors? To answer this
question, consider the description of a general quantum process E acting on the encoded qubit
ρL = |ψ〉L 〈ψ|:

E(ρL) =
∑
i

EiρLE
†
i . (6.3)

The operators Ei can be expanded by the set of the Pauli operators {1, X, Y, Z} [21]:

Ei = ai01+ ai1X + ai2Y + ai3Z, (6.4)

which was already used for the χ-matrix representation of quantum processes. For example
assume a rotation Rx(θ) about the X axis on qubit q1 with a rotation angle θ. This rotation can
be expressed by the Pauli operators:

R(q1)
x (θ) = e−i

θ
2
X(q1)

= cos(θ/2)1⊗3 − i sin(θ/2)(X ⊗ 1⊗2). (6.5)

Following the encoding and syndrome measurement described in Fig. 6.2 for the three-qubit
bit-flip code, the output density matrix after the error (rotation) is given by:

E(ρL) = R(q1)
x (θ)ρL(R(q1)

x (θ))†. (6.6)
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Note that the last two qubits are used for the syndrome measurement. After performing the
error syndrome mapping demonstrated in Fig. 6.2, the state results in:

E(ρL) = cos(θ/2)2ρL ⊗ |00〉 〈00|+ sin(θ/2)2
[
X ⊗ 1⊗2ρL1

⊗2 ⊗X
]
⊗ |10〉 〈10| . (6.7)

Therefore, the state remains unchanged with the probability cos(θ/2)2, which for each case
leads to the state |00〉 of the ancilla qubits. With the probability sin(θ/2)2 the qubit is affected
by a bit-flip, which results in the syndrome output |10〉 and finally will be corrected. This
approach can be applied to an arbitrary process, as for example dephasing on qubit q1 can be
expressed by the Kraus operators (see Sec. 2):

E1 =
√

1− p1⊗3, E2 =
√
pZ ⊗ 1⊗2. (6.8)

The argumentation is completely analogous to the rotation error. Therefore we summarize that
any QEC code, which is able to correct a discrete set of errors (no error 1, bit-flip X , bit-and
phase-flip Y , phase-flip Z) has the capability to correct arbitrary errors without any further ef-
forts. This fact is of fundamental importance for quantum error correction.

6.1.2 Some general properties
Here, some notations and properties used to describe different QEC codes are presented [21]:

• Logical operators: Logical operators are operators acting on the logical qubit |ψ〉L. The
logical X operation denoted as X̄ maps the state |0〉L to |1〉L and vice versa. The logical
Z operation denoted as Z̄ acts on the logical state similar as Z on the physical qubit,
Z̄ |0〉L = |0〉L and Z̄ |1〉L = − |1〉L. Besides the logical X̄ and Z̄ operation, further
logical gates are required to perform arbitrary operations on the logical qubit, e.g. the
logical Hadamard H̄ , the logical phase gate S̄, the logical T-gate T̄ and the logical two-
qubit CNOT gate. As an example, the logical Hadamard operation maps the state |0〉L
to a coherent superpositon state 1√

2
(|0〉L + |1〉L), analog to the Hadamard applied to the

physical qubit. Within the following chapters the logical operations on the encoded qubit
will play a major role.

• Distance d: A QEC code that is able to correct t errors has a code distance d = 2t+1. The
code distance is also equivalent to the minimal weight of the logical X̄ and Z̄ operator.
The weight of an operator is given by the number of qubits it acts non-trivially on (no
identity). For example the operator X ⊗ Y ⊗ X has weight 3, whereas the operator
I⊗ I⊗ I has weight 0.

• A quantum code that encodes k logical qubits using n physical qubits and with a code
distance d is written in the following form: [[n,k,d]]. For example the nine-qubit Shor
code is a [[9,1,3]] code, since one logical qubit is encoded by nine physical qubits and
has the capability to correct one arbitrary single qubit error.

• The construction of a good QEC code is not at all a trivial task. So far we have discussed
the nine-qubit Shor code consisting of the simplest three-qubit codes. But besides that,
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there are many other different QEC codes, where each QEC code has different properties
as for example the complexity of encoding, syndrome measurement and correction, the
number of qubits, the robustness against errors and so forth. However, there are concrete
restrictions concerning the capability of a QEC code, motivated by the fact that it is not
possible to encode many logical qubits in a small number of physical qubits and aiming
to protect many errors. The Quantum Singleton bound states that any [[n,k,d]] QEC has
to satisfy the following condition [21]:

n ≥ 4t+ k. (6.9)

This means that there exists no QEC code, which is able to encode one logical qubit in
less than five physical qubits and being able to correct arbitrary single qubit errors. For
the nine-qubit Shor code the condition is fulfilled, since 9 ≥ 4 + 1. In principle the
number of physical qubits n could be even lower. Within the next chapter, QEC codes are
described, showing the capability of detecting and correcting arbitrary single-qubit errors
with only seven and five qubits. The five-qubit QEC code is saturating the Singleton
bound (5 = 4 + 1) and therefore represents the smallest QEC code being able to correct
arbitrary single-qubit errors [114].

6.1.3 Stabilizer codes
In the previous section, the QEC codes were described by the codewords defining the logical
code space. But there is a more elegant and powerful description of QEC codes using the sta-
bilizer formalism. The main idea is to describe the codes not explicitly by the vector states, but
rather by certain operators. This leads to an efficient description of the QEC codes. Further-
more, the syndrome measurement as well as operations on the logical qubit can be described by
the stabilizer formalism.

The stabilizer formalism can be illustrated by a simple example. Assume the GHZ state
|ψ〉 = 1√

2
(|000〉+ |111〉). The GHZ state is the unique state which fulfills the three conditions:

Z1Z2 |ψ〉 = |ψ〉
Z2Z3 |ψ〉 = |ψ〉

X1X2X3 |ψ〉 = |ψ〉 .

This is why the set of operators {Z1Z2, Z2Z3, X1X2X3} is said to stabilize this state. A more
precise definition of the stabilizer is the following: Assume that the group S is a subgroup of
the Pauli group 3 containing a set of n-qubit Pauli operators P (n). The group S is said to be
the stabilizer of the vector space V if for all elements P (n)

k and states |ψ〉j ∈ V the following
constraint holds:

P
(n)
k |ψ〉j = |ψ〉j ∀ k, j. (6.10)

In other words, each element of the vector space V is stabilized by the elements of the sta-
bilizer group. It is important to note that S can only be a stabilizer of a non-trivial vector space
if the following two conditions are fulfilled: (a) The element −1 /∈ S and (b) all elements of S

3The Pauli group of one qubit contains the elements {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}
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have to commute with each other. If−1 was an element of S, then−1 |ψ〉 = |ψ〉 would have to
be fulfilled, which is a contradiction. To prove condition (b) assume two stabilizer operators A
and B of S. Then it follows that A |ψ〉 = |ψ〉 and B |ψ〉 = |ψ〉. For the case of anti-commuting
operators AB = −BA, it follows that AB |ψ〉 = |ψ〉 = −BA |ψ〉 = − |ψ〉, which leads also to
a contradiction. Only the trivial element |ψ〉 = 0 would repeal the contradiction.

Consider again the example of the GHZ state. Besides the three operators Z1Z2, Z2Z3 and
X1X2X3 the state is also stabilized by the operator Z1Z3, X1X2X3 and the identity. There-
fore we define the stabilizer group S = {1, Z1Z2, Z2Z3, Z1Z3, X1X2X3} of the state |ψ〉 =

1√
2
(|000〉+ |111〉). Please note that the operators are acting on a three-qubit state. The elements

of the stabilizer S can be defined by only three operators Z1Z2, Z2Z3 and X1X2X3 of S, since
Z1Z2Z2Z3 = Z1Z3 and (Z1Z2)2 = 1. This subgroup of S is called the generator group of S.
The elements gj of a group G, which is a subgroup of S, are called generators of the group
G, if all elements of S can be written as a product of elements in G [21]. Therefore the group
G = {Z1Z2, Z2Z3, X1X2X3} generates the stabilizer S.

A QEC code is called an [n,k]4 stabilizer code, if the codeword basis states are stabilized by
the stabilizer S, which is generated by n − k independent and commuting generator elements
gj [21]. The idea of the stabilizer formalism is explained by the previous example of the [3,1]
bit-flip code. The code space is spanned by the two states |000〉 and |111〉. Using the previous
definition, the stabilizer is generated by 3−1 = 2 generators. The two operators g1 = Z1Z2 and
g2 = Z2Z3 are generating the stabilizer S = {1, Z1Z2, Z2Z2, Z1Z3} of the bit-flip code. Please
note that any superposition of the basis states is also stabilized by S. What happens if we apply
the errors E = {1, X1, X2, X3} on the logical qubit? The errors lead to a transformation of the
generators {gj} to EgjE†.

Error E generators {gj}
no error-1 {Z1Z2, Z2Z3}
bit flip on q1-X1 {−Z1Z2, Z2Z3}
bit flip on q2-X2 {−Z1Z2,−Z2Z3}
bit flip on q3-X3 {Z1Z2,−Z2Z3}

Table 6.2: Three-qubit stabilizer code: The two gerators g1 = Z1Z2 and g2 = Z2Z3 of the three-qubit
bit-flip code are mapped by the different errors (left column) to the generators listed in the right column.
The different generators indicate the principle of uniquely detecting different errors (see main text).

Table. 6.2 shows the generators of the three-qubit bit-flip code affected by the correctable errors
E. There is a unique structure of the transformed generators, which allows the clear distinction
of the error syndromes. If we compare this result with the described error syndrome measure-
ment in the previous section it becomes clear that the measured operators in Table. 6.1 are
identical with the signs of the transformed generators. The error syndrome of an [n, k] stabi-
lizer code is uniquely defined by measuring the eigenvalues of the n − k independent genera-
tors. This implies that the three-qubit bit -and phase-flip code belongs to the class of stabilizer
codes. Since the nine-qubit Shor code can be constructed by concatenation of the two different

4Similar to the definiton used before, n corresponds to the number of physical qubits and k is equal to the
encoded logical qubits.
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three-qubit codes, it can also be described by the stabilizer formalism. In the original work of
Ref. [110], the code is described by the state vector notation. The eight stabilizer generators of
the nine-qubit Shor code are listed in Table 6.3.

generator Operator
g1 ZZ1111111
g2 1ZZ111111
g3 111ZZ1111
g4 1111ZZ111
g5 111111ZZ1
g6 1111111ZZ
g7 XXXXXX111
g8 111XXXXXX

Table 6.3: Nine-qubit Shor code generators: Generators of the nine-qubit Shor code.

The occurrence of any single qubit error X , Z and in combination Y can be detected by a
change of the expectation value of one or several of the eight generators from +1 to -1. The
unique detection of error syndromes in a stabilizer code leads to a certain constraint of the
errors:

• Any error described by the operatorE can only be detected by the syndrome measurement
if E anti-commutes with at least one of the generators g. Therefore the acting of the error
E onto one state of the code space |ψ〉L results in E |ψ〉L = Eg |ψ〉L = −gE |ψ〉L, which
leads to g(E |ψ〉L) = −(E |ψ〉L). The logical state after the error is a -1 eigenstate of at
least one, but in general more generators g.

Every logical operator L̄, as for example X̄ and Z̄ should not map any logical state to a state
outside the code space. Making use of the same argumentation as before, this implies that every
logical operator L̄ has to commute with every element of the stabilizer S and therefore with
each of the generators g. The simplest logical Pauli operators, which are constructed for every
stabilizer code are given by X̄ = X1X2...Xn and Z̄ = Z1Z2...Zn. Within the next chapter, the
construction of more complex logical operators required for computational tasks is presented.

The investigation of theoretical concepts in the field of QEC has led to a variety of QEC
codes. Another prominent QEC code belonging to the group of stabilizer codes is the seven-
qubit Steane code [25]. The Steane code is a [[7, 1, 3]] code and similar to the Shor code is
able to correct arbitrary single-qubit errors by encoding a logical qubit in seven physical qubits.
At the same time, Raymond Laflamme discovered the smallest possible QEC using only five
physical qubits, which is capable of detecting and correcting arbitrary single-qubit errors [114].
The generators of the seven-qubit Steane and the five-qubit QEC code are listed in Table. 6.4.

A closer look at Table 6.4 shows that the generators of the Steane code are either X-type
(g1, g2, g3) or Z-type (g4, g5, g6) Pauli operators. The X-type generators enable the detection
of phase-flip errors, whereas the Z-type generators detect bit-flip errors. This feature of the
seven-qubit Shor code enables the independent detection and correction of phase- and bit-flip
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Steane code Operator five qubit code Operator
g1 111XXXX g1 XZZX1
g2 1XX11XX g2 1XZZX
g3 X1X1X1X g3 X1XZZ
g4 111ZZZZ g4 ZX1XZ
g5 1ZZ11ZZ
g6 Z1Z1Z1Z

Table 6.4: Steane code and five-qubit code: Generators of the seven-qubit Steane code and the five-
qubit QEC.

errors, which is a general property of so called CSS (Calderbank-Shor-Steane) codes [115, 116].
In contrast, the generators of the five-qubit code do not show this advantageous property (see
Table 6.4), because the five-qubit code does not belong to the class of CSS codes [21]. This
fact is also reflected in the complexity of the operations on the logical qubit, which will play an
important role for the concept of FTQC discussed within the next section.

6.2 Fault tolerant quantum computation
The necessity of quantum error correction was motivated in the previous section by protecting
a single qubit against arbitrary errors. So far, the general picture was to encode the logical
qubit, perform the syndrome measurement, correct the error if necessary and finally apply the
decoding step. This procedure is useful when storing quantum information or transmit the in-
formation through some noisy channel. But the most powerful application of QEC would be
the protection of the quantum information against errors occurring during the computation [21].
The main problem is that any building block used to perform quantum computation is faulty
and cannot be implemented perfectly. The quantum computation scheme shown in Fig. 6.5 is
illustrating this fact. The state preparation (1) at the beginning of the computation is already

1

U2

4

3

Figure 6.5: Quantum circuit: Illustration of an arbitrary quantum circuit consisting of (1) state prepa-
ration and initilaization, quantum operations (2) and measurements in a certain basis (4). Each of this
elemementary building block is faulty. Even between the individual gates, the system is affected by
decoherence processes (3).

faulty, for example due to imperfection in the polarization of the repumping lasers. The imple-
mentation of coherent unitary operations (2) can only be performed with a certain fidelity, as
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described in Chapter 3. Even between the different operations (3), the coherence of the quantum
state is affected by non-unitary processes as dephasing and spontaneous decay, which induce
errors. The measurement of the qubits’ information at the end of the computation exhibits some
amount of infidelity, for example due to spontaneous decay during the measurement process
or background counts. Following the general idea of QEC described in the previous section,
the qubit information would be encoded, followed by error detection and correction and finally
decoding the information. This procedure would be repeated periodically. The bad news is that
this procedure alone would not be sufficient to overcome the faulty operations during the com-
putation. The reason is illustrated by the following example [21]: Assume the encoding step of
the three-qubit bit-flip code, illustrated in Fig. 6.6(a). In the case of an ideal encoding procedure,

Encoding

q1

q2

q3

Encoding

q1

q2

q3

(a) (b)

Figure 6.6: Error propagation: Non-fault-tolerant encoding of the three-qubit bit-flip code. (a) Ideal
case of the encoding procedure, resulting in the state α |000〉+ β |111〉. (b) A single-qubit bit-flip error
on qubit q1 leads to a propagation of the error onto qubit q2 and q3.

the state at the output yields α |000〉 + β |111〉. If qubit q1 is affected by a bit-flip error before
the encoding step, consisting of the two CNOT operations, then the final state at the output of
the encoding procedure results in α |000〉 + β |111〉, which effectively corresponds to a three-
qubit bit-flip error (see Fig. 6.6(b)) . Therefore the CNOT operations did lead to a propagation
of the single-qubit bit-flip error onto the whole register. The propagation of errors caused by
operations is the main problem of protecting a logical qubit during quantum computation. The
good news is that arbitrary long quantum computation is still possible even with faulty gates.
The basic idea is to perform the quantum computation directly on the encoded qubit without
the necessity of decoding. All operations on the logical qubits have to be performed in such
a way that errors appearing on the individual qubits do not cause multiple errors in any of the
other logical qubits. This basic concept behind this idea is called fault tolerant quantum com-
putation (FTQC). Fig. 6.7 represents the circuit shown in Fig. 6.5 within the framework of fault
tolerant quantum computation [21]. The logical qubits are encoded in several physical qubits in
a fault tolerant way. After some time fault tolerant (FT) error correction is performed on each
logical qubit followed by the FT logical operations (CNOT,U) and finally a FT detection of the
logical qubits. This scheme works only if all building blocks are implemented in a fault tolerant
way, preventing the uncontrolled propagation of errors, and if the error probability per gate is
below a certain error threshold.

A more detailed definition of fault tolerant quantum operation on logical qubits is the fol-
lowing: A quantum operations on the logical qubit is called fault tolerant, if the failure of one
component used to perform the logical operation causes at most one error in the output of each
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Figure 6.7: FTQC scheme: Illustration of FTQC between two logical qubits |0〉L. The main idea is
to perform all elementary building blocks (see Fig. 6.5) on the encoded qubit. If the operations on the
logical qubit are implemented in such a way that errors on the physical qubits are not propagating along
the whole system (fault tolerant), then arbitrary long quantum compution will be possible, if the error
probability is below a certain threshold.

logical qubit [117, 21]. For example a failure in one of the physical gates implementing the fault
tolerant unitary operation U in Fig. 6.7 corresponds to the perfectly implemented operation up
to one error on a single qubit at the output. If more errors would appear on the logical qubit,
quantum error correction would fail and resul in the accumulation of errors. This definition of
fault tolerance is the same for the state preparation, detection and error correction building block
(see Fig. 6.7). For any fault tolerant quantum code, there exists a threshold pth, such that if the
error rate per physical gate p is lower than pth (p < pth) arbitrary long quantum computations
is feasible [21, 117]. The performance of any QEC code depends on the construction of the
code. This means that the way of encoding, the implementation of logical gates, the syndrome
measurement and correction of errors determines if the code is fault tolerant. Similar to that,
the error threshold pth depends strongly on the implementation of the different building blocks
and the underlying noise model. There are different approaches for the construction of fault
tolerant codes, showing different error thresholds. In the following, two different approaches
will be discussed - concatenated codes and topological codes. Besides that, a property of the
Steane code will be explained, which allows the fault tolerant implementation of logical gates.

6.2.1 Transversality and FT quantum operations

As motivated above, the basic idea of FTQC is to encode the logical qubit and perform a uni-
versal set of fault tolerant operations on the encoded qubit. The difficulty is to find a way to
perform the logical operations in a fault tolerant way, which implies for logical single-qubit
operations that a single-qubit error is not spreading out to other qubits. In the case of the log-
ical two-qubit CNOT gate, fault tolerance requires that an error on a physical qubit does not
spread out to more than one qubit in the other layer. Depending on the QEC code used to en-
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code the logical qubit (Steane code, Shor code, five qubit code, ...) the implementation of fault
tolerant gates will differ from each other in terms of the complexity. Here, a useful method
is presented, allowing the construction of fault tolerant quantum operations. In particular, this
method is demonstrated by implementing a set of logical single-qubit operations on the seven-
qubit Steane code [116]. Analog to the quantum computation on the physical qubit introduced
in Chapter 2, universal computation within the framework of FTQC requires the implementa-
tion of the logical Hadamard gate H̄ , the logical phase gate S̄, the logical CNOT operation and
the logical π/8-gate T̄ . The realization of the logical single-qubit operations in the Steane code
is shown in Fig. 6.8.
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Figure 6.8: Transversal single-qubit gates: Transversal implementation of the X̄ , Z̄, Hadamard H̄ and
phase gate S̄ on one logical qubit encoded in the Steane code.

Fig. 6.8 reveals a clear archetype for the implementation of the logical X̄ , Z̄, H̄ and S̄ gate-
all operations on the logical qubit are performed by bit-wise operations on the individual phys-
ical qubits. This bit-wise implementation of a logical operation on an encoded qubit is called
transversality [21]. For example assume the bit-wise implementation of the logical Hadamard
H̄ (Fig. 6.8(c)). If one single component of the whole block is affected by some error, then
this error is not affecting other qubits, because the operations are performed on each qubit in-
dividually. Therefore, one individual error is causing only one error at the output of the whole
block after the logical Hadamard operation. For example assume that one qubit is affected by
a bit flip error X before the logical Hadamard operation is applied. Then the whole operation
HX = HXH†H is equivalent to ZH , which corresponds to a perfect Hadamard gate in combi-
nation with a phase-flip error. The transversal implementation of the logical phase gate S̄ should
transform the logical operator Z̄ to Z̄ and the operator X̄ to Ȳ . This can be understood by the
fact that the logical S̄ gate transforms an eigenstate of the logical X̄ operator to an eigenstate
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of the logical Ȳ operator. Applying only S on each physical qubit would transform X̄ to −̄Y
with an additional phase-flip, which can be compensated by adding a transversal Z̄ operation
(see Fig. 6.8(d)).

So far, only transversal single-qubit operations on the logical qubit (see Fig. 6.8) were dis-
cussed. Fortunately, the implementation of the logical CNOT operation can also be performed
transversely, as illustrated in Fig. 6.9 [21]. The transversal CNOT gate is implemented by pair-

Figure 6.9: Transverse CNOT gate: Transversal implementation of the logical CNOT operation on two
qubits encoded in the Steane code.

wise CNOT operations between the physical qubits of each encoded block. Therefore, if one
single component fails (e.g. an error on a single qubit) then only one error appears at the output
of the whole block. The logical single-qubit operations X̄ , Z̄ H̄ and S̄ as well as the logical two-
qubit CNOT operation can be realized transversely in the seven-qubit Steane code. This group
of gate operations is known as the Clifford group, which does not represent a universal gate set
(see Chapter 2) but still enables the realization of interesting protocols such as quantum state
distillation and quantum teleportation [118, 119]. This set of operations can be completed to a
universal set of gates by complementing the set of Clifford gate operations by a non-Clifford op-
eration, the logical T̄ -gate [21, 117]. As compared to the Clifford operations, the logical T̄ -gate
(π/8-gate) can not be implemented transversely in terms of bit-wise operations on the physical
qubits. Nevertheless, the fact that there exists no transverse implementation of the T̄ -gate does
not imply that there exists no fault-tolerant realization. As already mentioned in the previous
sections, the measurement of the stabilizers is mandatory to get the information about the er-
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ror syndrome. Furthermore, the measurement of an operator can also be applied as a powerful
technique for state preparation, which will be used for the fault tolerant implementation of the
T̄ -gate. Before we describe the scheme, which is used to realize the T̄ -gate, the fault-tolerant
measurement procedure will be discussed.

6.2.2 Fault-tolerant measurement
The measurement of an operator M is one of the main requirements for the realization of fault
tolerant quantum computation. The main principle for measuring an operatorM is to use an an-
cilla qubit initially in the state |0〉(A) and mapping the information about the eigenvalues of the
operator to the ancilla qubit. The simplest circuit to perform this task is shown in Fig. 6.10(a).
Assume the ancilla qubit (physical qubit) is initially prepared in the state |0〉(A) and the logical

(a)

(b)

(c)

Figure 6.10: Measurement circuit: (a) Measurement of the operator M of the logical qubit |ψ〉L by
mapping the information about the expectation value of M to the ancilla qubit initially prepared in the
state |0〉(A). (b) Concrete example of measuring the logical operator Z̄. Mapping the information about
the expectation value to the ancilla qubit is not fault tolerant, as illustrated in (c). One error occurring on
the ancilla qubit (red arrow) will lead to seven errors on the logical qubit.

qubit, which is being measured, is in any arbitrary superposition state |ψ〉L = a |0〉L + b |1〉L.
The circuit consists of preparing the ancilla qubit in a superposition state, applying a condi-
tional M -operation on the logical qubit, followed by a second Hadamard operation and finally
measuring the ancilla qubit in the computational basis. The circuit can be understood better by
considering a concrete example. Assume the measurement of the logical operator Z̄ illustrated
in Fig. 6.10(b). The mapping of the input state |0〉(A) ⊗ |ψ〉L = |0〉(A) ⊗ (a |0〉L + b |1〉L) via
the circuit of Fig. 6.10(b) is explicitly shown:

|0〉(A) ⊗ (a |0〉L + b |1〉L)
H(A)

−−−→ 1√
2

(|0〉(A) + |1〉(A))⊗ (a |0〉L + b |1〉L)
C Z̄−−→

1√
2

(a[|0〉(A) + |1〉(A)] |0〉L + b[|0〉(A) − |1〉(A)] |1〉L)
H(A)

−−−→ a |0〉(A) |0〉L + b |1〉(A) |1〉L .
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Therefore, measuring the ancilla qubit at the end of the sequence will yield with probability |a|2
the eigenvalue +1 and with probability |b|2 the eigenvalue -1. This is exactly the result which
would be obtained by directly measuring the Z̄ expectation value, since Z̄(a |0〉L + b |1〉L) =
(+1)a |0〉L + (−1)b |1〉L. In Fig. 6.10(c), the circuit of measuring Z̄ of a logical qubit encoded
in the seven-qubit Steane code is shown. Due to the transversality property of the Steane code,
the controlled operation can be implemented by pair-wise operations. In the previous section
it was shown that transversal gates are fault tolerant. But what is happening if a bit-flip error
occurs on the ancilla qubit, which is illustrated in Fig. 6.10(c) by the red arrow? The single
qubit error is spreading out on the whole logical block and effectively leads to seven bit-flip
errors. Therefore, this implementation of measuring an operator will not be fault tolerant.

Nevertheless, there exists a possibility to make the circuit shown in Fig. 6.10 fault toler-
ant [21, 120]. The circuit diagram of a fault tolerant measurement is illustrated in Fig. 6.11
specifically for the measurement of the logical Z̄ operator of a qubit encoded in the seven-qubit
Steane code, but it can be generalized for any other transversal code.

...

...
preparation verification controlled operation decoding 

Figure 6.11: Fault tolerant measurement scheme: A fault tolerant implementation of measuring the
logical operator Z̄. Compared to the scheme in Fig. 6.10, the ancilla qubits are encoded in a GHZ state
(preparation), followed by a verification step. The verification step checks if the GHZ state was corrupted
by an error and leads to a repetition of the preparation step if neccesary. Then the controlled Z̄ operation
is implemented transversely, followed by reversing the preparation step and measuring the ancilla qubit.
To deal with errors appearing on the ancilla qubits and corrupting the measurement results, the whole
procedure is repeated several times and making a majority voting (see main text). Note that for simplicity
only a subset of the required qubits is shown [21].

As already pointed out, the main problem are errors on the ancilla qubit spreading out and lead-
ing to multiple errors. Assume the logical qubit in the state |ψ〉L is encoded in seven physical
qubits and there is one extra ancilla qubit in the state |0〉(A)

L for each of the seven qubits. Note
that for simplicity only a part of the qubits involved is shown in Fig. 6.11. In general, 14 qubits
would be required for the measurement scheme (7 ancilla qubits and 7 for the logical qubit).
The basic idea to fight the measurement errors is to perform a verification procedure. The first
step is to prepare the ancilla qubits in an entangled GHZ state 1√

2
(|000〉 + |111〉), indicated by

the first (blue) circuit block. The verification is realized by measuring the parity operators Z1Z3
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and Z1Z2 by mapping the information to two additional ancilla qubits and performing a mea-
surement of the two qubits. Only if both ancilla qubits remain in the state |0〉, the ancilla qubits
have been in the GHZ state and the measurement procedure will be carried on. If the verifica-
tion procedure fails, which means that the parity measurement shows that the GHZ state was
corrupted, then the preparation is repeated. The next step is the mapping of the measurement
information onto the ancilla qubits by the controlled Z̄ operations, as described in Fig. 6.10. As
a reminder, the controlled operations are performed pair-wise in a fault tolerant way. The last
step is to decode the information and measure the first ancilla qubit, which contains the infor-
mation about the expectation value of the logical Z̄ operator. But why is this procedure fault
tolerant compared to using only one ancilla qubit? For example errors during the preparation or
verification step can lead to multiple errors on the ancilla qubits. An important fact is that phase-
flip errors occurring on the ancilla qubits during the whole procedure (preparation, verification,
controlled operations and decoding) will not affect the encoded logical qubit but will result in a
final measurement error. To overcome this problem, the whole measurement procedure will be
repeated several times and a majority voting is performed on the output information. Similar to
the previously described three-qubit code, the verification procedure together with the majority
voting will lead to a failure probability of the measurement procedure of at most O(p2), with
the failure probability p of a single component. With only one ancilla qubit as described before,
the failure probability would scale with p. The same argument holds for errors occurring on the
ancilla qubits during the decoding step. In case of the bit-flip errors, it can be revealed from the
circuit diagram that one bit-flip error can maximally lead to one error on the logical qubit |ψ〉L.

6.2.3 Implementation of the logical T̄ -gate
The realization of the T̄ -gate is based on injecting the state of interest from an ancilla qubit to the
logical qubit using the set of Clifford operations, which can be implemented fault-tolerantly [21,
121]. The general scheme is shown in Fig. 6.12. The main task of the circuit is to apply

Figure 6.12: T̄ -gate implementation: Circuit diagram for the implementation of a logical T̄ -gate on
an arbitrary logical state |ψ〉L = a |0〉L + b |1〉L using the technique of magic-state injection [121] (see
main text).

the T̄ -gate on a general logical state |ψ〉L and generate the state T̄ |ψ〉L. Assume the ancilla
qubit starts in the logical state |0〉(A)

L and the logical qubit in an arbitrary superposition |ψ〉L =

a |0〉L + b |1〉L. The first step is to create the ancilla state |φ〉(A)
L by applying the Hadamard

operation H̄ followed by the T̄ -gate, as shown in Fig. 6.12. The output state after these two
operations is given by |φ〉(A)

L = 1/
√

2(|0〉(A)
L + eiπ/4 |1〉(A)

L ). The next step is to create a CNOT
operation with the ancilla qubit acting as the control qubit. The whole system is resulting in the
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state:

1/
√

2
[(
α |0〉(A)

L + βeiπ/4 |1〉(A)
L

)
⊗ |0〉L +

(
αeiπ/4 |1〉(A)

L + β |0〉(A)
L

)
⊗ |1〉L

]
. (6.11)

Therefore, if the system qubit is found in the state |0〉L after the measurement, then the an-
cilla qubit will be in the state

(
α |0〉(A)

L + βeiπ/4 |1〉(A)
L

)
, which corresponds to the operation

T̄ |0〉(A)
L . In this case, the implementation of the logical T̄ gate has been successful. If the

measurement of the logical qubit reveals the state |1〉L, then the ancilla qubit is projected to the
state

(
αeiπ/4 |1〉(A)

L + β |0〉(A)
L

)
. In this case, the ancilla state can be transformed to the target

state by applying the logical S̄ gate followed by the logical X̄ operation, which results in the
state e−iπ/4

(
α |0〉(A)

L + βeiπ/4 |1〉(A)
L

)
. Therefore, up to some irrelevant global phase, the right

target state is achieved. We know already that the logical CNOT operation, Hadamard H̄ , the
phase gate S̄, the logical X̄ as well as the measurement procedure can be implemented in a fault
tolerant way. But how does the realization of the T̄ - gate on the ancilla qubit used to prepare
the injection state |φ〉(A)

L work? We can make use of the fact that the injection state |φ〉(A)
L is

a +1 eigenstate of the operator M = e−iπ/4S̄X̄ . Therefore, the state |φ〉(A)
L can be prepared

by measuring the operator M . The schematics of the corresponding measurement protocol is
illustrated in Fig. 6.13(a). Fig. 6.13(b) shows the circuit of measuring the operator M by only

(a) (b)

Figure 6.13: FT T̄ -gate implementation: (a) Realization of the magic state |φ〉L on the ancilla qubit,
required for the implementation of the logical T̄ -gate. The state |φ〉L can be prepared by measuring the
the operator M = e−iπ/4S̄X̄ on the logical qubit |φ〉L following the measurement procedure illustrated
in Fig. 6.10. (b) Decomposition of the measurement in (a) into transverse operations, enabling the fault
tolerant implementation of the T̄ -gate.

using transverse Clifford operations on the logical qubit and the T -gate applied on the ancilla
qubit. Here, we assume that there is only one ancilla qubit prepared in the state |0〉(A). The state
of the joined system right before the measurement is given by:

1/
√

2
[ (
|0〉L + eiπ/4 |0〉L

)
⊗ |0〉(A)︸ ︷︷ ︸

|φ〉L

+
(
|0〉L − eiπ/4 |0〉L

)
⊗ |1〉(A)︸ ︷︷ ︸

Z̄|φ〉L

]
. (6.12)

Therefore, measuring the state of the ancilla qubit projects the logical qubit to the right state |φ〉L
if the ancilla qubit is in the state |0〉(A). In the other case, where the ancilla qubit is measured in
the state |1〉(A), the logical qubit will be in the wrong state Z̄ |φ〉L. The logical Z̄ rotation can
be easily corrected for by an additional Z̄ rotation on the logical qubit. As already mentioned,
it was assumed for simplicity that only one physical ancilla qubit is used for the measurement
procedure, which does not provide fault tolerance. The scheme presented in Fig. 6.13(b) has to
be realized following the verification protocol shown in Fig. 6.11.
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6.2.4 Concatenated codes

In the previous section, a detailed introduction to fault tolerant quantum computation was pre-
sented with the main focus on the seven-qubit Steane code. It was already mentioned that the
error threshold is different for various QEC codes. There is one class of QEC codes based on the
idea of concatenation, which was already introduced in terms of the three-qubit code. The basic
idea is to encode the logical qubit within multiple layers of a small QEC code, as for example
the Steane code [25] or the five qubit QEC code [114]. An example of the concatenation of the
Steane code is shown in Fig. 6.14. The error probability p of an operation on the physical qubit
is reduced by encoding the information to cp2, with a code specific constant c. If the encoding
is recursively repeated for each qubit in the first layer encoding, then the error probability of
an error occurring on the logical encoded qubit is reduced further to c3p4 [122, 21]. In general,
concatenation of k steps reduces the error rate proportional to p2k . The concatenation method

2nd level1st level

Figure 6.14: Concatenation: A qubit in the state |ψ〉 is encoded in multiple layers of an elementary
QEC code. Here, the principle of concatenation is illustrated by the seven-qubit Steane code. Each layer
of encoding reduces the probability of errors occurring on the logical qubit only if the single-qubit error
probability is below a certain threshold (see main text).

for the reduction of the failure probability is only successful if the overall failure probability
of the encoded qubit is smaller than the error rate of the physical qubit, cp2 < p. The noise
threshold pc is defined by the equality of the equation cp2

c = pc. Concatenation of a QEC code
reduces the effective error probability on the logical qubit exponentially with k, whereas the
overhead in physical qubits scales exponentially with the number of concatenation steps. The
provable error rates for concatenated quantum codes are typically on the order of 10−5 [123],
which is at the limit of the experimentally realizable single-qubit gate fidelities (see Sec. 3.5).
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6.3 Topological Quantum Codes5

The realization of FTQC with the Steane code and other different elementary codes, such as
the five-qubit (non-CSS-type) code [29, 125] or the nine-qubit code proposed by Shor [26] is
typically via concatenation (see Sec. 6.2.4). Concatenation requires a considerable overhead in
qubits, which grows exponentially in the number of encoding layers used in the encoding hi-
erarchy. Furthermore error detection and correction generally involves operations between far-
distant qubits of the code. In topological quantum error correcting codes, protection of errors
is achieved in a qualitatively different way: logical qubits are encoded in large lattice systems
of physical qubits. Here, due to the topological nature of the codes, quantum error correction
operations, such as measurements of the stabilizer or check operators defining the code space
respect the spatial structure of the underlying lattice, i.e. they act on groups of physically neigh-
boring qubits belonging for instance to the plaquettes of the lattice. Due to this locality property
topological codes are ideally suited to be embedded in physical 2D architectures [126], where
individual qubits and groups of few adjacent qubits can be addressed and manipulated locally
[32, 127, 128]. Robustness of logical qubits is achieved by encoding logical qubits in larger
and larger lattice structures. Roughly speaking, such large code structures can tolerate more
and more errors occurring locally on physical qubits, before the logical quantum information,
encoded in global (topological) properties of the many-qubit system, cannot be recovered after
the occurrence of too many errors on the register. Provided that single-qubit errors occur with
a low enough error rate, and the error syndrome formed by the stabilizer information can be
measured with sufficient accuracy, quantum information stored in large topological codes can
be protected from errors and processed fault-tolerantly [129]. The robustness and error thresh-
olds have been studied analytically and numerically for various topological quantum codes,
including color codes [35, 130–136], and Kitaev’s toric code and related models [129, 137–
144]. Here, threshold values are code-dependent and also strongly depend on the noise model
considered, typically yielding error thresholds on the order of 10−2 to 10−1 for phenomenolog-
ical noise models and somewhat lower threshold values on the order of 10−3 to 10−2 for circuit
noise models, where errors are taken into account at the level of imperfections in the quantum
circuitry which is required for the readout of the error syndrome.

6.3.1 The toric code

The concatenation of quantum codes provides a way to improve the robustness of a logical qubit.
In 1996, A. Yu. Kitaev proposed the realization of fault tolerant quantum computation in a two-
dimensional system, which established the field of topological quantum error correction [145].
Topology is a mathematical field, which describes objects by global properties instead of the
detailed local structures. Thus, different objects with apparently completely different structures
can share certain global topological features and being topologically equivalent. One example
of such a topological equivalence is homeomorphism, which includes the continuous distortion
of an object like stretching and bending. Two objects are homeomorphic if they can be mapped
to another by continuous deformation. An example of two topologically equivalent objects in
terms of homeomorphism is shown in Fig. 6.15(a). Although the coffee mug and the torus seem

5Some text extracts and pictures of this chapter are similar to Ref. [124].
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(a) (b)

Z
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(c) L x L lattice

Figure 6.15: Kitaev toric code: (a) Topological quantum computation is based on the idea of encoding
information in global properties of a topological system and therefore being robust against local errors.
One example of two topologically equivalent objects are the coffee mug and the torus. The two objects
can be mapped to each other by continuous deformation - the objects are said to be homeomorphic.
(b) Illustration of the Kitaev toric code embedded on the surface of a torus with the logical Z̄1 and X̄1

operation (see main text). (c) The qubits are arranged on the edges of an LxL lattice with the plaquette
and vertex operators forming the stabilizer generators.

to be completely different structures, they are topologically homeomorphic.
The basic idea of topological quantum codes is to encode the logical information in global

topological properties, which are robust against local deformations (errors). The first topolog-
ical quantum code proposed by Kitaev - Kitaev’s toric code - consists of qubits arranged on a
two-dimensional lattice wrapped around a torus to fulfil periodic boundary conditions assumed
originally by Kitaev (see Fig. 6.15(b)). More precisely, the qubits are arranged on the edges
of an L×L lattice, as shown in Fig. 6.15(c). The qubits at the boarder are not filled to illus-
trate the periodic boundary conditions. In total there are N = 2L2 qubits on an L×L toric
code. The Kitaev toric code belongs to the class of stabilizer codes, which requires the exis-
tence of stabilizer generators as well as logical X̄ and Z̄ operators for each encoded qubit. The
toric code defines two different types of stabilizer generators, associated geometrically with
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plaquettes and vertices. The plaquette operators are products of Z-type operations acting on
four qubits surrounding one particular plaquette, as highlighted in Fig. 6.15(c). The second
type of stabilizer operators are tensor products of X-type Pauli operators acting on four qubits
nearby to a vertex. In total there are L2 plaquette and vertex operators. As already mentioned
in the previous section, the stabilizer generators of a stabilizer code have to commute with each
other. Operators, which are not adjacent mutually commute with each other, since all operators
belong to different qubits. Neighboring plaquette and vertex operators are commuting, since
they share one qubit with each other and each operator commutes trivially with itself. In the
case of neighboring plaquette and vertex operators the situation is slightly different, since they
share two different qubits. The X and Z operators are acting both on the two respective qubits.
Although X and Z Pauli operators do not commute, the tensor product operators X ⊗ X and
Z⊗Z are commuting with each other and therefore also adjacent vertex and plaquette operators
commute.

How many logical qubits are encoded by the toric code? To answer this question we have to
count the number of independent stabilizer generators. A trivial answer would be that there are
L2 plaquette and vertex operators, but the product of all plaquette operators (vertex operators)
is resulting in the identity operation. Therefore, the plaquettes (vertices) do not form an inde-
pendent set of generators. The solution is simply to remove one plaquette and vertex operator
from the whole set. Therefore, with L2 − 1 independent plaquette (vertex) operators and 2L2

qubits, the toric code encodes 2L2− 2(L2− 1) = 2 logical qubits. This section provides only a
summary of the toric code, since a more detailed discussion would be beyond the scope of the
current work. Further details are presented in [145, 146, 123].

Each of the encoded logical qubits is associated with two logical operations Z̄ and X̄ . It
can be shown that the logical Z̄1 operation of the first encoded qubit corresponds to a closed
loop of Z operations winding around the torus, as shown in Fig. 6.16 (red line). The logical
X̄1 operation on the first qubit has to anti-commute with the logical Z̄1 operation. The logical
X̄1 operation for the toric code is defined by a closed loop of X operations around the torus
perpendicular to the Z̄1 loop but shifted from the original lattice edge by half a lattice cell (see
Fig. 6.16 (green line)). The shifted lattice is also called dual lattice, which offers a convenient
tool to describe the toric code. The vertex operators of the original lattice corresponds to pla-
quette operators in the dual lattice and vice versa. Obviously, the logical Z̄1 and X̄1 operation
share only one qubit at the point of intersection and therefore anti-commute with each other.
The two logical operations of the first encoded qubit are also illustrated by the red and blue
loop around the torus in Fig. 6.15(b). The logical Z̄2 and X̄2 operation on the second encoded
qubit are obtained by turning the Z̄1 and X̄1 operations by 90◦.

Errors affecting the lattice qubits are detected by measuring the stabilizer generators, which
is a unique feature of any stabilizer code. If no error occurred, then the eigenvalues of all vertex
and plaquette operators are +1. Let us assume that a single qubit Z error occurs anywhere in the
lattice. All plaquette operators will commute with the error, since Z2 = 1. In contrast, the ver-
tex operators directly adjacent to the affected qubit will not commute with the error operation,
since Z and X Pauli operations anticommute. Therefore, a Z error will result in a -1 eigenvalue
of the neighboring vertex operators. In the case of a string of Z errors only the vertex operators
at the end of the error string are affected. An example of a string of a string of Z errors with the
corresponding error syndrome is shown in Fig. 6.17(a). The appearance of a string of X errors
in the dual lattice leads to a flip of the neighboring plaquette operators in the original lattice or
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Figure 6.16: Logical operations: The logical operations Z̄1, X̄1 and Z̄2, X̄2 of the two encoded qubits
are implemented by Z-and X-type string operators around the torus. The logical operations of the two
encoded qubits are perpendicular to each other [146, 123].

of the vertex operator in the dual lattice, which is sketched in Fig. 6.17(b). In both cases, the
error syndrome results in a flip of the eigenvalue of stabilizer generators at the end of the string.

The correction of errors can be performed by applying the inverse to the error operation E,
or the same operation in the case of the Pauli Z and X operators. Here, the difficulty is to find
the correction operation to a certain measured error syndrome, since different errors can lead to
the same error syndrome. Therefore, the relation between the errors and the error syndrome is
not unique. If the correction operation C obtained from the measured syndrome differs only by
a stabilizer operator S from the real error E, meaning that EC = S, then the combination of
the error chain E and the correction operation C will effectively generate a stabilizer operation
and leaves the encoded qubit invariant [146]. This leads to a successful correction of the error.
If the combined operation EC forms a closed loop around the whole torus corresponding to a
logical operation, then the encoded qubit is not corrected successfully. The “guessing” of the
right correction step given a certain syndrome measurement is performed by certain decoding
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Figure 6.17: Error detection in the toric code: Error syndrome of Z-errors (phase-flip) and X-errors
(bit-flip) in the toric code. (a) The appearance of Z-errors lead to a flip of the vertex operators at the end
of the errors string, whereas bit-flip errors implicate a flip of plaquette operators in the original lattice
connecting the error string (b) (see main text) [146, 123].

algorithms, as for example the minimum weight algorithm, which finds the minimum weight
error string leading to the measured syndrome [146].

6.3.2 The surface code

One assumption for the originally proposed realization of the toric code was the periodic bound-
ary condition. This assumption seems to be inconvenient from a practical perspective. Bravyi
and Kitaev described the realization of the toric code on a lattice with boundaries, which
promises to be a more realistic implementation [147]. Compared to the toric code, the sur-
face code shows two different kind of boundaries - the rough and smooth boundaries, which is
illustrated in Fig. 6.18. At the boundary of the lattice, the stabilizer generators are modified to
act only on three instead of four qubits. As illustrated in Fig. 6.18, the surface code consists of
two different kind of qubits - the data qubits (blue big dots) arranged on the edges of the 2D
lattice and the syndrome qubits (red small dots), which are located between the data qubits. The
stabilizer generators consist of the previously introduced Z-type plaquette operators and X-type
vertex operators, which act on the four qubits respectively and commute with each other. The
smallest instance of the surface code consists of 13 physical qubits, encoding one logical qubit
with a code distance of 3 ( [[13,1,3]]) [146, 123]. However, there exists a rotated surface code
with distance d=3 that requires only 9 instead of 13 qubits [148]. Note that if the boundaries
of the lattice are all equal, then there is effectively no logical qubit encoded. Here, the logical
operators correspond to the topological property of deformable but non-contractible strings that
connect opposite boundaries of the same type. This is similar to the Kitaev toric code, where
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Figure 6.18: Surface code: Illustration of the surface code following the approach of Ref. [34]. The
surface code consists of the data qubits (blue big dots) arranged on the edges of the lattice and the syn-
drome qubits (red small dots) adjacent to the data qubits. The stabilizer generators as well as the logical
operators are defined similar to the toric code with the difference that the stabilizers at the boundaries are
acting on three qubits [146, 123]. The syndrome qubits are used to prepare the logical qubit and reveal
the syndrome by measuring the stabilizer generators.

logical operators are encoded in non-contractible loops around the torus [146, 123, 145]. The
logical Z̄L operator acting on the logical qubit corresponds according to Fig. 6.18 to a string
of Z operators connecting the rough boundaries of the lattice. In contrast, the logical X̄L op-
erator is equal to a string of X operators connecting the smooth boundaries. In general, with
L2 + (L − 1)2 physical qubits arranged on a LxL lattice and encoding one logical qubit, the
parameters of the surface code are [[L2 + (L − 1)2, 1, L]]. A more detailed introduction to
the surface code and the implementation of fault tolerant quantum computation is presented in
Ref. [34]. The purpose of the syndrome qubits appearing in the surface code is the readout of
the stabilizer generators by mapping the information of the generators to the syndrome qubits
using the technique described in Sec. 6.2.2. Additionally, the syndrome qubits are used to pre-
pare the logical qubit in the +1 eigenstate of the stabilizer generators [34].

As already pointed out in the introduction of the Steane code, the main goal is the fault
tolerant implementation of a universal set of gates on the logical qubit. Here, a brief descrip-
tion of the main ideas for the realization of fault tolerant quantum computation on the surface
code is given. The implementation of a universal set of gates requires arbitrary operations on
one logical qubit as well as CNOT operations on two logical qubits. The Hadamard opera-
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tion can be implemented “transversely” in the surface code with the drawback of rotating the
whole lattice by 90◦. The lattice can be rotated back to the original orientation, as described in
Refs. [34, 146]. The implementation of the phase gate K as well as the T-gate to perform arbi-
trary single-qubit operations on the logical qubit can be realized with state injection. The basic
idea of the state injection in the surface code is similar to the method described in Sec. 6.2.3 and
will not be discussed here. A nice overview of state injection in the surface code is presented
in [34, 148].

There are two substantially different ways of encoding a logical qubit in the surface code
and performing multi-qubit operations [34, 146]. The first method is to encode several logical
qubits within one lattice, whereas in contrast the second method is encoding one logical qubit
in one lattice and using multiple lattices for computation.

As already mentioned before, the encoding of one logical qubit in one lattice requires two
different boundaries (see Fig. 6.18). A qubit can also be encoded by creating a “hole” in the
lattice. The expression “hole” does not mean that a set of qubits are removed physically from
the lattice. A hole is created by just removing for example a subset of plaquette operators and
the vertex operators acting on the qubits inside the hole. The induced hole is called “smooth
hole”, because the boundary of the hole is smooth (see Fig. 6.19(a)). The logical Z̄S operator
of the smooth hole qubit corresponds to the Z-loop around the hole and the X̄S operator cor-
responds to the X-string connecting the hole region with the outer boundary of the lattice. In
the case of two smooth holes forming one logical qubit, then the logical X̄S operator connects
the two boundaries of the hole, which is indicated in Fig. 6.19(a). The qubits inside the pla-
quette are disconnected from the lattice. The same procedure can of course be applied to the
vertex operators, creating a rough qubit with the corresponding logical operators Z̄R and X̄R

(see Fig. 6.19(b)). The CNOT operation between the smooth and rough qubit can be realized
by moving the smooth qubit around the rough qubit, which is also known as braiding [34].

Encoding one logical qubit in one lattice is also known as planar logical qubit. One ap-
proach towards the implementation of a CNOT gate between two planar logical qubits are
bit-wise CNOT operations between adjacent lattice qubits. A different method proposed in
Ref. [148] is to merge and split the planar qubits, which also leads to the possibility of creating
a CNOT operation. The splitting and merging of two lattices is also known as lattice surgery
(see Fig. 6.19(b)). The main advantage of the braiding approach with respect to the transversal
CNOT gate between two encoded qubits is that only nearest neighbor interaction is required.
On the other hand, the braiding method needs more qubit overhead than the lattice surgery ap-
proach, also maintaining nearest neighbor interactions. In Ref. [148], the realization of a CNOT
gate using lattice surgery is proposed with 53 physical qubits instead of 143 qubits using the
braiding technique.

6.3.3 The color code

The color code belongs to the class of topological stabilizer codes and was originally proposed
by H. Bombin and M. A. Martin-Delgado [128, 149]. In contrast to the Kitaev code, topological
color codes offer the distinctive feature that the entire group of Clifford gate operations can be
implemented transversely [21]. This versatile set of operations directly enables protocols for
quantum distillation of entanglement, quantum teleportation and dense coding with topologi-
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smooth hole

(a) (b)

Figure 6.19: CNOT operation via braiding: (a) Illustration of a smooth hole qubit consisting of two
smooth holes with the corresponding logical operators Z̄S and X̄S . The holes are generated by removing
a set of plaquette operators (in this case four). The same procedure can be done to create a rough qubit
by removing vertex operators. In (b) the realization of a CNOT gate between a smooth and rough qubit
is shown by moving the smooth qubit around the rough qubit. This procedure is known as braiding [34,
146].

cal protection [128]. Moreover, a universal gate set, enabling the implementation of arbitrary
quantum algorithms, can be achieved by complementing the Clifford operations with a single
non-Clifford gate [21]. For color codes in two-dimensional (2D) architectures [128], such an
additional gate can be realized by magic-state injection [121], which was already described in
Sec. 6.2.3. Remarkably, 3D color codes enable the implementation of a universal set of gates on
the logical qubit only using transversal operations and without the need of magic-state injection,
which is not possible within the Kitaev code [149]. Furthermore, 3D gauge color codes allow
the implementation of single-shot error correction protocols, as proposed in Ref. [150].

Two-dimensional color codes are topological quantum error-correcting codes that are con-
structed on underlying 2D lattices [128] for which three links meet at each vertex and three
different colors are sufficient to assign color to all polygons (plaquettes) of the lattice such that
no adjacent plaquettes sharing a link are of the same color. The smallest, fully functional 2D
color code involves seven qubits and consists of a triangular, planar code structure formed by
three adjoined plaquettes with one physical qubit placed at each vertex. The minimal instance
of the color code is demonstrated in Fig. 6.20(a). As all stabilizer codes, the color code is de-
fined by a set of commuting stabilizer operators {Si}, each having eigenvalues +1 or -1. More
precisely, the code space hosting logical or encoded quantum states |ψ〉L is fixed as the simulta-
neous eigenspace of eigenvalue +1 of all stabilizers, Si |ψ〉L = + |ψ〉L [151, 21]. In color codes,
there are two stabilizer operators associated with each plaquette, which for the seven-qubit color
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Figure 6.20: Two-dimensional color code: (a) One logical qubit is embedded in seven physical qubits
forming a 2D triangular planar code structure of three plaquettes. The code space is defined via six
stabilizer operators S(i)

x and S(i)
z , each acting on a plaquette which involves four physical qubits. (b) The

same quantum code as in (a) with a different visual representation of the plaquettes. (c) The minimal
instance with distance d=3 can be sclaced up to the distance d=5 color code that can correct at least
arbitrary errors on any of the 17 qubits. (picture also shown in Ref. [124])

code (see Fig. 6.20(a)) results in the set of four-qubit X and Z-type operators

S(1)
x = X1X2X3X4, S(1)

z = Z1Z2Z3Z4,

S(2)
x = X2X3X5X6, S(2)

z = Z2Z3Z5Z6, (6.13)

S(3)
x = X3X4X6X7, S(3)

z = Z3Z4Z6Z7.

Here, Xi, Yi and Zi denote the standard Pauli matrices acting on the i-th physical qubit with
the computational basis states |0〉 and |1〉 [21]. The stabilizers in Equ. (6.13) impose six inde-
pendent constraints on the seven physical qubits and thus allows the encoding of one logical
qubit. The logical basis states |0〉L and |1〉L spanning the code space are entangled seven-qubit
states and given as the eigenstates of the logical operator ZL = Z1Z2Z3Z4Z5Z6Z7, where
ZL |0〉L = |0〉L and ZL |1〉L = − |1〉L [128]. Fig. 6.20(b) shows a slightly different illustration
of the minimal color code instance with distance d=3. This representation clearly shows the
construction of the two-dimensional color code consisting of 17 qubits and with distance d=5
(Fig. 6.20(c)).

The seven-qubit color code with distance d=3 has the capability to detect and correct single-
qubit errors. As for all stabilizer codes, errors on the physical qubits are detected by measuring
the expectation values of the stabilizer generators - syndrome measurement. A single-qubit er-
ror on the encoded logical qubit shown in Fig. 6.20(a) leads to a sign flip of the eigenvalue of
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Figure 6.21: Error detection: Different errors occurring on the logical qubit (red arrow) affects the
corresponding plaquettes (black-shaded ellipse) and induces a sign change of the eigenvalues of different
plaquette operators (yellow boxes). (a) Phase-flip error on qubit 5 induces a sign change of the S(2)

x

operator, whereas a bit-flip error on qubit 2 (b) leads to a change of the Z-type stabilizers S(1)
z and S(2)

z .
(c) A combined X-and Z-type error (Y error) on qubit 3 manifests itself in negative eigenvalues of all 6
plaquette operators. (picture also shown in Ref. [124])

at least one plaquette operator from +1 to -1. An example of three different errors affecting the
logical qubit encoded in the seven-qubit color code is demonstrated in Fig. 6.21. Fig. 6.21(a)
shows a phase-flip error on qubit 5 (red arrow), which affects the stabilizer of the second (blue)
plaquette (visualized by the black-shaded ellipse) and leads to a negative eigenvalue of the S(2)

x

plaquette operator (visualized by the yellow box). A bit-flip error on qubit 2 is affecting both
Z-type stabilizers of the first (red) and second (blue) plaquette and manifests itself by negative
eigenvalues of the S(1)

z and S(2)
z (see Fig. 6.21(b)). Fig. 6.21(c) shows a combination of a bit-flip

and phase-flip error on qubit 3, which induces a sign change of all 6 plaquette operators. The
examples illustrated in Fig. 6.21 indicate that Z-type errors manifest themselves in a violation
of the X-type stabilizers and X-type errors in a violation of the Z-type stabilizers, which reveals
the CSS character of the topological color code.

As described above, errors in the Kitaev code show up by a sign flip of the vertex (plaque-
tte) operators at the end of the errors string (see Sec. 6.3.1). The appearance of errors in the
color code is demonstrated by a larger 2D color code system with distance d=11 (see Fig. 6.22),
able to correct 5 errors. In the left part of the lattice, a scenario is shown where, a sequence
of single-qubit errors of the same type, e.g. bit-flip errors (indicated by red wiggled arrows),
affects four physical qubits (marked by black filled circles). This physical error chain results in
an error chain (white dashed line), where the (equally-colored) plaquettes at the two end points
of the chain are in -1 eigenstates of the corresponding (S(i)

z ) stabilizer operators - these stabilizer
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d=11

4-error chain

5-error string-net

Figure 6.22: Branching of error string nets: The occurrence of an error string is illustrated in the left
part of the figure by the 4-error chain. The four errors (indicated by red wiggled arrows) induce a flip
of the eigenvalues of the corresponding plaquette operators at the end of the error string, visualized by
the black-shaded ellipses. A different scenario is shown in the lower part of the figure by inducing 5
physical errors. These errors result in an error string-net, which undergoes branching and affects three
different plaquettes (three endpoints of the string-net). This distinctive feature of the color code cannot
be observed in the Kitaev code. (picture also shown in Ref. [124])

violations are indicated as black-shaded ellipses on the red plaquettes. This behaviour is similar
to the occurrence of errors in the Kitaev code. A distinctive feature of color codes compared
to the Kitaev code is that sequences of physical errors (such as the combination of 5 physical
errors shown in the right part of the lattice) cannot only be connected by chains, but also result
in error string-nets (dashed white line) that undergo branching [128, 149]. In the displayed ex-
ample, the string-net has three endpoints terminating at the three plaquettes of different colors,
which will display stabilizer violations (-1 eigenvalues) of the associated plaquette operators in
the syndrome measurement.



Chapter 7

Experimental implementation of the color
code1

This chapter presents a detailed description of encoding a topological qubit within seven phys-
ical qubits, building the minimal instance of a topological color code. Furthermore, the re-
alization of transversal Clifford operations on the encoded logical qubit, being a fundamental
requirement for FTQC, is shown. The details concerning the experimental system and opera-
tions are addressed in Chapter 3. Main parts of the presented results are also discussed in [124].

7.1 Encoding of the logical qubit
The code space hosting logical states |ψ〉L is fixed as the simultaneous eigenspace of eigenvalue
+1 of the six S(i)

x and S(i)
z stabilizer operators, defined in Sec. 6.3.3. The initial preparation of

the logical state |0〉L (encoding) is realized deterministically by applying the quantum circuit
illustrated in Fig. 7.1 to the seven-ion system. The first initialization step of the seven-qubit
system in the logical |0〉L state consists of converting the state of the 7 qubits, initialized by
optical pumping in the state |1111111〉, into the state |1010101〉. This state fulfills the Z-type
stabilizer constraints, as it is a +1 eigenstate of three S(i)

z -stabilizers as well as of the logical
operator ZL. In the remaining three steps, the subsets of four qubits belonging to each of the
three plaquettes of the code, are sequentially entangled to also fulfill the stabilizer constraints
imposed by the three operators S(i)

x . This is achieved by spectroscopically decoupling the ions
hosting inactive qubits (e.g. qubits 5, 6, and 7) not participating in the plaquette-wise entangling
operation, shown in Fig. 7.1.

Spectroscopically decoupling and recoupling

For the experimental initialization of the encoded qubit in the logical state |0〉L, the main re-
source is an entangling operation acting on a subset of four out of seven qubits. Fig. 7.2A
shows a more detailed circuit diagram of the sequence used for encoding. In the first step an
entangling operation MS(π/2, 0) is to be applied to ions 1, 2, 3, 4 without affecting the ions

1 Text paragraphs, pictures and data of the following chapter are based on the original work Ref. [124] and
presented in a more detailed way.
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Figure 7.1: Initialization of a topological encoded qubit: Encoding of the logical qubit is achieved
by coherently mapping the input state |1010101〉 onto the logical state |0〉L, using a quantum circuit
that combines plaquette-wise entangling operations with de- and recoupling pulses (yellow and white
squares, respectively). Dashed (solid) lines denote decoupled or inactive (recoupled or active) qubits
(picture also shown in Ref. [124]).

5, 6 and 7. However, as the laser beam of the entangling MS gate operation illuminates the
entire ion string, an entangling operation on a subset of ions can be achieved in two different
ways: One can resort to refocusing techniques, as originally pioneered in NMR systems [152].
Here, partially entangling global MS gate operations are interspersed with single-qubit ac-Stark
shifts, which eventually lead to an effective decoupling of (subsets of) ions from the entangling
dynamics of the remaining ions (see e.g. [153] for more information). However, in the present
case, such decoupling of 3 ions, using refocusing pulses, from the entangling dynamics of the
remaining 4 qubits belonging to one plaquette of the quantum code, would require a large over-
head in terms of (partially entangling) MS gate operations and addressed, single-ion refocusing
pulses. Thus, in the present experiment we pursue an alternative approach, where we decouple
ions spectroscopically from the dynamics induced by the global MS gate operation. To this
end, we coherently transfer and store the quantum state of qubits (say 5, 6 and 7) encoded in
the states S1/2(mj = −1/2) and D5/2(mj = −1/2), which do not participate in the entangling
dynamics of qubits 1, 2, 3, and 4, in a subset of the remaining Zeeman levels.

The latter has the advantage that the entangling operation, acting only on the subset of 4
qubits in a 7 ion string, can be realized with a fidelity of 88.5(5)%, as determined by a 4-qubit
state tomography of the created 4-qubit GHZ state, (|0101〉 + |1010〉)/

√
2. Besides imperfec-

tions in the entangling operation, this value thus also includes the effect of small imperfections
in the preparation of the initial product state |1010〉. The fidelity of the entangling operation on
4 out of 7 ions is substantially higher than the fidelity with which a seven-qubit GHZ state can be
created by a global entangling operation (acting on all 7 ions). From population and parity mea-
surements we estimate the fidelity for a 7-ion entangling operation to be about 84%. Generating
the required entangling operation on 4 out of 7 qubits would require two of theses operations
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and therefore lead to poor performance. In Fig. 7.2, the decoupling (DEC) steps, highlighted as
colored boxes (DEC) are illustrated by a reduced level scheme of the relevant Zeeman states.
The decoupling sequence can be adapted, so that – depending on the internal state of the phys-
ical qubit – only a minimal number of decoupling pulses have to be applied. For example,
the decoupling of qubits 5 and 6 (blue and red box) before the first entangling operation is
realized as follows: The population of qubit 5 (initially entirely in state S1/2(mj = −1/2))
is transformed to the D5/2(mj = −5/2) state via a pulse sequence of 3 coherent single-qubit
operations: a resonant π/2-pulse U (5)(π/2, θ) with arbitrary, but fixed phase θ on qubit 5, fol-
lowed by a Z rotation U (5)

Z (π) and finally another resonant U (5)(π/2, θ−π) rotation with phase
θ − π. Effectively, this sequence realizes a π-flop (i.e. complete population transfer) between
the computational basis state S1/2(mj = −1/2) and the storage state D5/2(mj = −5/2). This
population transfer could in principle also be performed by a single resonant U (5)(π, θ) pulse.
The reason for splitting this up into 3 addressed pulses is to minimize errors on neighboring
ions, which is described in Sec. 3.4.4

Similarly, spectroscopic decoupling of ions with population being entirely in theD5/2(mj =
−1/2) state is achieved by transferring the electronic population first to the S1/2(mj = 1/2)
ground state and subsequently to the D5/2(mj = −3/2) state, as shown in the red box of
Fig. 7.2B. This sequence requires in total 3 single-qubit operations: U (6)(π/2, θ), U (6)

Z (π) and
U (6)(π/2, θ− π) on the D5/2(mj = −1/2)→ S1/2(mj = 1/2) transition, and a similar 3-pulse
sequence on the S1/2(mj = 1/2) → D5/2(mj = −3/2) transition, respectively. Therefore, de-
coupling and also recoupling (REC) of one qubit with populations in (and coherences between)
both computational basis states requires in total 9 single-qubit operations with a pulse length of
about 10µs per pulse (see green box in Fig. 7.2B). It should be noted that although this requires
resonant operations on the addressed laser beam, no phase coherence between this beam and
the global laser beam is required, as the phase of the addressed beam drops out after recoupling.

The MS gate operation, applied to the remaining active qubits (say, qubits 1, 2, 3, and 4) cre-
ating the four-qubit GHZ-type entangled state. Under this operation, for instance in the first step
the state |1010101〉 is mapped onto the superposition |1010101〉 ± i|0101101〉 (see e.g. [153]).
The ±π/2 phase shift of this state with respect to the target state |1010101〉± |0101101〉 can be
compensated for at any later instance during the remaining encoding sequence. To this end, af-
ter the encoding sequence we apply an ac-Stark shift compensation pulse U (1)

Z (±π/2) on qubit
1 located at the corner of the first (red) plaquette, which does not participate in entangling op-
erations of the other two plaquettes. Thus, the four-qubit entangling operation in combination
with the phase compensation pulse creates the |1010101〉+ |0101101〉 superposition state after
the first step of the encoding sequence. The successful preparation of this intermediate state is
indicated by the measurement of electronic populations in the 27 = 128 computational basis
states and the stabilizer operators, as shown in Fig. 7.3(A). Here, the data shows the two domi-
nant expected populations, as well as the GHZ-type coherence as signaled by the non-vanishing
expectation value of S(1)

x .
In the second and third step, similarly, entanglement between the qubits of the second (blue)

and third (green) plaquette is created, which is reflected (see Fig. 7.3B and C) by the appearance
of electronic populations in the four and eight expected computational basis states, respectively,
as well as by the step-wise build-up of non-vanishing coherences 〈S(2)

x 〉 and 〈S(3)
x 〉. After the

third step and the application of the three phase compensation pulses the encoding of the sys-
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Figure 7.2: Spectroscopically decoupling and encoding: (A) Circuit diagram of the encoding step -
preparation of the seven-qubit system in the logical state |0〉L. The encoding consists of three steps,
where consecutively all three colored (red, green, blue) plaquettes are prepared by applying an entan-
gling MS gate on the subset of qubits involved in the plaquette under consideration (e.g. qubits 1, 2,
3 and 4 for the plaquette), starting in the initial product state |1010101〉. (B) The qubits, which do not
participate in a particular plaquette, are not affected by the entangling operation by means of spectro-
scopic decoupling pulses (DEC). Here, their quantum state is stored in additional electronic levels, by
coherently transferring the electronic population of the S1/2(mj = −1/2) and D5/2(mj = −1/2) qubit
states to the Zeeman“storage" states {D5/2(mj = −5/2), D5/2(mj = −3/2)} by a sequence of up to 9
addressed single qubit rotations. The working principle of the decoupling and recoupling (REC) pulses
is illustrated in (B) and described in detail in the main text. (picture also shown in Ref. [124]).

tem in the logical state |0〉L = |1010101〉+ |0101101〉+ |1100011〉+ |0011011〉+ |1001110〉+
|0110110〉 + |1111000〉 + |0000000〉 is signaled by positive (ideally +1) values of all six stabi-
lizer and the logical ZL operator.
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The described three-step sequence realizing plaquette-wise entangling operations to pre-
pare the system in the state |0〉L works in principle by starting in any of the eight components
{|1010101〉 + |0101101〉 + |1100011〉 + |0011011〉 + |1001110〉 + |0110110〉 + |1111000〉 +
|0000000〉} of state |0〉L. The advantage of choosing the initial input state |1010101〉 (instead
of e.g. |0000000〉) is that for this initial state the seven-qubit state is during part of the encoding
sequence in a decoherence-free subspace (DFS), in which the system is insensitive to global
phase noise, as caused by magnetic field and laser fluctuations of the, which to leading order
affect all ions in the same way. This type of noise constitutes one of the dominant noise sources
in our setup [38]. Whereas the ideal quantum state after the second state (as given explicitly in
Fig. 7.3B) still resides entirely in a DFS, the final state still benefits from partial protection with
respect to the described global noise. This partial phase noise protection is described in Sec. 7.7
and essential to achieve the proper initialization of the system in the code space, despite the
complexity and overall length of the complete encoding sequence (see Table 7.1).
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Figure 7.3: Step-wise encoding of a topological qubit: The step-wise encoding of the system in the
logical state |0〉L is observed by measurements of the 27 = 128 electronic populations in the com-
putational basis states, as well as by the measured pattern of expectation values of the six stabiliz-
ers {S(1)

z , S
(2)
z , S

(3)
z , S

(1)
x , S

(2)
x , S

(3)
x } together with the logical stabilizer ZL. The initial product state

|1010101〉 is ideally a +1 eigenstate of all three S(i)
z stabilizers and of ZL. (A) In the first step, GHZ-type

entanglement is created between the four qubits belonging to the first (red) plaquette, which is signaled
by the appearance of a non-vanishing, positive-valued S(1)

x expectation value. In the subsequent entan-
gling steps acting on the second (blue) (B) and third (green) (C) plaquette, the system populates with
high probability the expected computational basis states, and the created coherences show as non-zero
expectation values of S(2)

x and S(3)
x . (picture also shown in Ref. [124]).
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The number of addressed laser pulses used for decoupling and recoupling of the population
within the encoding sequence is much larger than the number of global rotations, as indicated
in Table 7.1. Therefore, the addressing errors due to crosstalk between adjacent ions is further
reduced by distributing the physicals qubits (Fig. 7.1) along the ion chain in such a way, that the
qubits being exposed to many addressed pulses are hosted by ions located further away from
the center. Table 7.2 shows the convention, mapping the qubits to the ions and the number of
addressing operations applied to ions (qubits) respectively. For example, qubit 5 is exposed to
25 addressed laser pulses and therefore is realized ion 1, which is located at the edge of the
ion crystal. The redistribution of the qubits can be done without any change of the principle
encoding sequence, but the information of Table 7.2 has to be considered for the evaluation of
the measured data.

qubit 1 2 3 4 5 6 7

pulses 19 21 0 21 25 15 7

ion 7 2 4 6 1 3 5

Table 7.2: Mapping of the physical qubits to ions: . The table shows the number of addressed laser
pulses each physical qubit is exposed to in the course of the encoding sequence, as shown in Fig. 7.1.
In order to minimize the effect of residual errors due to cross-talk with neighboring ions during spec-
troscopic decoupling and recoupling pulses, the physical qubits are distributed along the chain in such a
way that the physical qubits exposed to many (few) addressed laser pulses are hosted by ions at the edge
(center) of the chain (see also [124]).

7.2 Phase optimization procedure

In the previous section, the encoding of the logical state |0〉L was described in detail. The
preparation of the logical qubit is realized by three plaquette-wise entangling operations, acting
in each case on four qubits. The states of the decoupled qubits are affected by off-resonant light-
shifts induced by the entangling gates, which manifest themselves in systematic and undesired
phase shifts occurring on the decoupled qubits [154].

The fidelity of the encoded state is affected by these systematic phase shifts, which requires
the compensation of the systematic errors at the end of the encoding sequence. For simplicity we
consider the state after the 1st encoding step, the GHZ state |ψ1〉 = 1√

2
(|1010〉+|0101〉)⊗|101〉,

which evolves due to phase shifts to the state |ψ′1〉 = 1√
2
(|1010〉 + eiφ |0101〉) ⊗ |101〉 with an

unknown but constant phase eiφ. A measurement of the stabilizer expectation values 〈S(1)
z 〉 and
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〈S(1)
x 〉 of the first plaquette leads to the following results:

〈S(1)
z 〉 = 〈ψ1|Z1Z2Z3Z4 |ψ1〉 = 1

〈S(1)
x 〉 = 〈ψ1|X1X2X3X4 |ψ1〉 = cos(φ).

The expectation value of the Z-type stabilizer remains unaffected but the X-type stabilizer
is alternating between the ideally expected value of +1 and the opposite value -1. Due to
the fact that the undesired error corresponds to a constant phase shift, a single qubit rotation
Ucomp = exp (iθσz) on any of the four qubits enables the compensation of the phase shift error.

This example demonstrates the main idea of the compensation procedure but the situation
becomes more complicated after the second encoding step. The ideal target state after the sec-
ond encoding step is

|ψ2〉 =
1

2
(|0000000〉+ |0110110〉+ |1111000〉+ |1001110〉).

The state up to this stage maximizes the value of the X-type stabilizer generators S(1)
x , S

(2)
x ,

as well as the product S(1)
x S

(2)
x of the two stabilizers. During the encoding sequence, the state

accumulates unknown phases and evolves to the state |ψ′2〉

|ψ′2〉 =
1

2
(|0000000〉+ eiφ1 |0110110〉

+eiφ2 |1111000〉+ eiφ3 |1001110〉). (7.1)

The idea is to apply Z-rotations on three of the six qubits taking part of the two encoded pla-
quettes and iteratively optimizing the expectation values of the three stabilizers S(1)

x , S
(2)
x and

S
(1)
x S

(2)
x . The optimization procedure after the second step of the encoding sequence is demon-

strated in Fig. 7.4. Fig. 7.4(a) shows the measured expectation values of the stabilizer generators
of the first (red) and second (blue) plaquette right after the second encoding step. The initial
state |ψ′2〉 does not correspond to the target state, since the expectation value 〈S(1)

x 〉 of the first
plaquette is flipped. As a first iteration, a Z-rotation is applied on qubit 2 resulting in a sinu-
soidal behaviour of the expectation values 〈S(1)

x 〉 and 〈S(2)
x 〉 (see Fig. 7.4(b)). The expectation

value 〈S(1)
x 〉 (red bold line) is maximized with respect to the ac-Stark phase, indicated by the or-

ange circle in Fig. 7.4(b). The expectaion value of S(2)
x is maximized by applying an additional

Z-rotation on qubit 5 (Fig. 7.4(c)). At the end of the iteration steps, the stabilizer generators are
measured again and show that the Z-type stabilizer did not change, whereas the X-type stabi-
lizers both reveal positive and maximal values (Fig. 7.4(d)). The phase optimization procedure
converges already after two iteration steps, independent of the starting position. The required
measurement duration for the whole procedure is about 7 minutes. An alternative to this phase
optimization procedure would be full state tomography of |ψ′2〉 and calculate the Z-rotations
required to maximize the fidelity with the ideal target state |ψ2〉. A complete six-qubit state
tomography requires about 48 minutes without including state reconstruction and calculation
of the correction pulses. This makes clear that using tomography for optimizing the relative
phases is not feasible.

The same iterative procedure is applied to the final state at the end of the encoding sequence,
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Figure 7.4: Experimental implementation of the phase optimisation protocol. Demonstration of
the iterative phase optimization procedure used to compensate the relative phases of the state |ψ′2〉 after
the second encoding step. (a) Stabilizer generator expectation values of the initial uncorrected state
|ψ′2〉. (b) Z-rotation applied to qubit 2 and subsequently scanning the ac-Stark phase θ. The expectation
value 〈S(1)

x 〉 is optimized, indicated by the bold red line. (c) The Z-rotation on qubit 2 is fixed to the
maximum value (orange dot of (b)) and a Z-rotation is applied to qubit 5, optimizing 〈S(2)

x 〉. The Z-
rotation on qubit 5 is fixed to the optimum obtained from scan (c) resulting in all stabilizers being positive
and maximal. (d) Stabilizer generator expectation values of |ψ′2〉 after the optimization procedure. In
each scan, different values for the phases characterizing the single-qubit rotations were applied with an
elementary step-size of 2π/10. For each phase value, the experiment was repeated 200 times. (picture
also shown in Ref. [154]).

shown in Fig. 7.1. The seven-qubit state |ψ′3〉 = |0′〉L evolves during the encoding sequence to

|0′〉L =
1

2
√

2
(|0000000〉+ eiφ1 |0110110〉+ eiφ2 |1111000〉

+ eiφ3 |1001110〉+ eiφ4 |0011011〉+ eiφ5 |0101101〉
+ eiφ6 |1100011〉+ eiφ7 |1010101〉), (7.2)

and is determined by seven relative phases {φ1, ..., φ7}. The optimization procedure works sim-
ilarly to the case of the two plaquettes, but now we have to apply Z-rotations on all seven ions,
maximizing the seven expectation values 〈S(1)

x 〉, 〈S(2)
x 〉, 〈S(3)

x 〉, 〈S(1)
x S

(2)
x 〉, 〈S(2)

x S
(3)
x 〉, 〈S(1)

x S
(3)
x 〉

and 〈S(1)
x S

(2)
x S

(3)
x 〉. Fig. 7.5 shows the iterative optimization procedure of the encoded logical

qubit. The stabilizer generators of the initially prepared state |0′〉L are presented in Fig. 7.5(a).
The measured X-type stabilizers of the uncorrected state (Fig. 7.5(a)) reveal large deviations
from the ideal expectation values - e.g. the expectation value 〈S(3)

x 〉 is almost 0. Starting from
the initial state, the phase optimization procedure (see Fig. 7.5(b)-(i)) compensates the phase
shift errors after two rounds of optimization and results in the final state shown in Fig. 7.5(j).
Fig. 7.5 shows only one of the two optimization cycles. The second cylce is identical to the first.
Similar to the case of two plaquettes, the Z-type stabilizer generators are not affected by the op-
timization procedure. The optimization procedure for the three plaquette case is converging
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Figure 7.5: Experimental phase optimization of the complete seven-qubit quantum error correct-
ing code. Demonstration of the iterative phase optimization procedure used to compensate the relative
phases of the state |0′〉 after complete encoding sequence. (a) Stabilizer generator expectation values of
the initial uncorrected state |0′〉. (b-i) The seven expectation values 〈S(1)

x 〉, 〈S(2)
x 〉, 〈S(3)

x 〉, 〈S(1)
x S

(2)
x 〉,

〈S(2)
x S

(3)
x 〉, 〈S(1)

x S
(3)
x 〉 and 〈S(1)

x S
(2)
x S

(3)
x 〉 are optimized iteratively by applying Z-rotations on each of

the seven qubits respectively. The maximal expectation value of the corresponding stabilizer operator
(indicated by bold lines) is highlighted by the orange circle. (j) Stabilizer generator expectation values
of |0′〉 after two steps of the optimization procedure. In each scan, different values for the phases char-
acterizing the single-qubit rotations were applied with an elementary step-size of 2π/10. For each phase
value, the experiment was repeated 200 times. (picture also shown in Ref. [154]).

already after two optimization steps, which is in agreement with numerical simulations pre-
sented in Ref. [154]. A more detailed mathematical explanation of the optimization procedure
and the convergence for larger systems is presented in Ref. [154].
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7.3 Characterization of the encoded qubit

One of the main tasks after encoding the logical qubit is to characterize the prepared logical
state. The experimentally generated states can be described by seven-qubit density matrices ρ,
which could be reconstructed from seven-qubit quantum state tomographies [21]. This approach
is experimentally not practical, since the number of required measurement settings is 37 = 2187.
The measurement time for a complete reconstruction of the density matrix ρ would be several
hours. Here, we follow a different approach, outlined in [155] enabling the estimation of the
logical state fidelity from a subset of Pauli operators. The main assumption of the method
described in [155] is that the ideal target state ρt is pure, which is the case for the logical
state |0〉L and all other states generated by logical operations. Furthermore, if the target state
corresponds to a stabilizer state, then the number of required measurements is reduced from d2

to d with d = 2n the dimension of the n-qubit Hilbert space [155]. Therefore, the fidelity of the
logical states can be revealed from d = 2n = 128 measurement settings.

Besides the overall fidelity of the experimental state ρwith the ideal state ρt other interesting
figures of merit such as the overlap with the code space, as well as the quantum state fidelities
within the code space can be revealed from the reduced set of measurements. For n qubits a
general state ρ of the system can be described in the operator basis formed by all possible Pauli
operators Wk, k = 1, . . . , d2 = 4n, with Wk the n-fold tensor product of the Pauli matrices
1, X, Y, Z for each qubit, with tr(WiWj/d) = δij . As an example, a two qubit state (n = 2) can
be expanded by 42 = 16 operators Wk = {1, X, Y, Z} ⊗ {1, X, Y, Z} = {11,1X, ..., ZZ}.
A general quantum state can be expressed as ρ = 1

d

∑
k tr(Wkρ)Wk, where all 4n expansion

coefficients contribute to the sum. For stabilizer states ρs = |ψ〉 〈ψ|, for which Wk |ψ〉 = ± |ψ〉
if Wk belongs to the stabilizer group of state |ψ〉, only the 2n coefficients corresponding to the
set of stabilizer elements Wk can be non-zero: tr(Wkρ) = ±1. The quantum state fidelity of the
experimental state ρ with the ideal target stabilizer state as ρt is given by

F(ρ, ρt) = tr(ρt ρ) =
1

d

∑
k

tr(Wkρt)tr(Wkρ). (7.3)

Since there are 2n non-zero coefficients tr(Wkρt) contributing to this sum, it is sufficient to
measure the expectation values of the corresponding 2n Pauli operators Wk, 〈Wk〉ρ = tr(Wkρ),
to determine the quantum state fidelity according to Eq. (7.3). For the present case of seven-
qubit stabilizer states, this requires the measurement of only 128 expectation values 〈Wk〉ρ. In
the following we will consider the overlap with the protected code space. Note that the six ideal
encoded states ρt = {ρ|1〉L , ρ|0〉L , ρ|±x〉L , ρ|±y〉L} are determined by the six stabilizer generators
S

(i)
x and S(i)

z , i = 1, 2, 3 and the corresponding logical operator OL = {ZL, XL, YL}:

ρt =
1

128
(1±OL)︸ ︷︷ ︸

:=P±OL

3∏
i=1

(1 + S(i)
x )

3∏
j=1

(1 + S(j)
z )︸ ︷︷ ︸

:=PCS

. (7.4)

Here, PCS denotes the projector onto the code space, defined as the +1 eigenspace of the six
stabilizers generators S(i)

x and S
(i)
z , and P±OL is the projector onto the desired logical state
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within the code space. Concretely, the encoded states ρt can be written as:

ρ|1〉L = |1〉 〈1|L =
1

128
(1− ZL)PCS, (7.5)

ρ|0〉L = |0〉 〈0|L =
1

128
(1 + ZL)PCS, (7.6)

ρ|±x〉L = |±x〉 〈±x|L =
1

128
(1±XL)PCS, (7.7)

ρ|±y〉L = |±y〉 〈±y|L =
1

128
(1± YL)PCS. (7.8)

Note that the logical operator YL = +iXLZL = −∏7
i=1 Yi for the seven-qubit color code.

Quantum state fidelity of the experimentally generated state ρ with the ideal target state, say
ρ|1〉L , is given by F(ρ, ρ|1〉L) = 1

128

∑128
k=1〈Wk〉, which is the equal-weighted sum of expecta-

tion values of the 128 Pauli operators appearing in the product of the projectors in Eq. (7.5),
{W1 = 1, W2 = −ZL, . . ., W128 = −ZLS(1)

x S
(2)
x S

(3)
x S

(1)
z S

(2)
z S

(3)
z = −X1Z2X3Z4X5Z6X7}.

Similarly, there is a set of 128 operators for each logical state, according to the 128 Pauli oper-
ators appearing in Eqs. (7.6) - (7.8).

Overlap with or population in the code space is given by pCS = tr(PCSρ) = 1
64

∑64
k=1〈Wk〉,

where the sum extends over the expectation values of the 64 Pauli operators contained in the
expansion of the projector onto the code space PCS (see Eq. (7.4)). The projected (and nor-
malized) density matrix of the experimental state ρ within the code space is given by ρCS :=
PCSρPCS/pCS . Thus, for a given experimental state ρ, the quantum state fidelity within the
code space with the ideal target state ρt = P±OLPCS is given by

F(ρCS, ρt) = tr(P±OLPCS PCSρPCS)/pCS

= tr(P±OLPCSρ)/pCS

= F(ρ, ρt)/pCS. (7.9)

From the latter expression one sees that the fidelity F(ρ, ρt) = pCSF(ρCS, ρt) is indeed given
by the product of the overlap with the code space and the fidelity with the target state within the
code space.

Measurement of the required set of 128 operators {Wk} for a given encoded logical target
state |ψL〉, requires the application of a sequence of local unitaries after the preparation se-
quence for |ψL〉. As in standard quantum state tomography [21], this is needed to transform
a given Pauli operator Wk into the measurement basis (Z) of the fluorescence measurements.
Pulse sequences for these basis transformations are determined by applying an optimized pulse
sequence realizing the required local unitaries. The optimal decomposition into the operations
was developed by Esteban Martinez and is described in Ref. [156].

The fidelity of the state |0〉L after the encoding sequence yields 32.7(8)%. Using the current
values for the MS gate fidelity of fMS = 0.89 and a fidelity of f1ion = 0.993 2 for the single-ion
pulses thus yields a rough estimate of FSP = (fMS)(F1ion)100 ≈ 35% for the encoding fidelity,
which is in good quantitative agreement with the measured quantum state fidelities of the pre-
pared encoded states. Due to the fact that the encoding of the logical |0〉L state in the present

2The fidelity of the single-ion operations was obtained from single-qubit randomized benchmark measurements
and is mainly limited by intensity fluctuations and beam pointing
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experiment requires three 4-out-of-7-ion MS entangling gates and over one hundred addressed
single-qubit operations for spectroscopic decoupling, the encoding fidelity is limited by the per-
formance of the single-ion pulses. Besides the fidelity, the population pCS of the logical state
|0〉L in the code space is 32(1)%, whereas the fidelity of the experimental state with the target
state within the code space is 102(3)%. Due to the fact that the population in the codespace
is within the experimental errors equal to the overall fidelity, the fidelity within the code space
is nearly perfect within the experimental uncertainty. Therefore, the preparation of the logical
color code state is limited by the overlap with the code space 32(1)%.

The error bars of the measured quantum state fidelities and overlap with the code space were
determined by a Monte-Carlo method, resampling the measured fluorescence data based on the
uncertainty given by the limited number of measurement cycles. Therefore, the measurement
data was randomly resampled using a multinomial distribution with a statistical uncertainty
of
√
p(1− p)/N for each measured probability p and number of repetitions N . The fidelity

F(ρ, ρt), F(ρCS, ρt) and the populations in the code space pCS are calculated from the mean
value and standard deviation of all Monte-Carlo results.

7.4 Error syndrome detection
As already pointed out before, the topological seven-qubit code has the distance d = 3, which
implies that it can correct (d − 1)/2 = 1 physical error appearing on any of the seven qubits.
Any single-qubit error pushes the system out of the logical code space and causes a violation of
the +1 eigenvalue of certain plaquette operators. The eigenvalues of the six plaquette operators
show a unique fingerprint of the induced errors - the error syndrome. The error detection ca-
pability of the seven-qubit code is demonstrated by inducing all single-qubit errors coherently
and detecting the corresponding error syndrome. Fig. 7.6 shows single-qubit errors applied to
the encoded state |0〉L, which is prepared (Fig. 7.6A) with all plaquette operators showing a
positive eigenvalue. Single-qubit X errors manifest themselves as violation of the Z-type sta-
bilizers (Fig. 7.6B), whereas single-qubit Z errors leads to a flip of the X-type stabilizers only
(Fig. 7.6C). This behaviour of independently detecting X-and Z-type errors clearly reveals a
characteristic feature of CSS codes. Fig. 7.6D shows the effect of a Y-type error on a single
qubit, which is equivalent to a combination of a X and Z error and is signaled by simultane-
ously flipping of the X and Z stabilizers. The complete error syndrome table including all 21
possible single-qubit errors is shown in Fig. 7.8.
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Figure 7.6: Single-qubit error detection: (A) The initial logical state |0〉L, prior to the occurrence of

single-qubit errors, is reflected (i) by the error syndrome, in which all six S(i)
x and S(i)

z stabilizers are
positive-valued, and (ii) by a positive expectation value of the logical operator ZL (XL). (B) A bit flip
error (red wiggled arrow) on qubit 2 (marked in black) affects the blue and red plaquettes (visualized by
grey-shaded circles) and manifests itself by negative S(1)

z and S(2)
z expectation values and a ZL sign flip.

(C) A phase flip error on qubit 5 only affects the blue plaquette and results in a sign flip of S(2)
x . (D)

A Y3 error – equivalent to a combined X3 and Z3 error – affects all three plaquettes and induces a sign
change in all six stabilizers and ZL. Double-error events, such as a Z5 phase flip (Fig. 2C), followed by
a Z2 (E) or a Z3 error (F) result in an incorrect assignment of physical errors, as the detected stabilizer
patterns are indistinguishable from single-error syndromes – here, the ones induced by a Z1 (Fig. 2E)
or a Z4 (Fig. 2F) error. In the correction process, this eventually results in a logical error – here a ZL
phase flip error. Stabilizer violations can under subsequent errors hop (white non-wiggled arrow) to an
adjacent plaquette, as in Fig. 2E, where the violation disappears (open grey circle) from the blue and
reappears on the red plaquette. Alternatively (Fig. 2F), they can disappear (from the blue plaquette), split
up (white branched arrow) and reappear on two neighboring plaquettes (red and green). (picture also
shown in Ref. [124]).
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Figure 7.7: Complete error syndrome: Table of the recorded error syndromes for the logical qubit ini-
tially prepared in the encoded state |0〉L, and subsequently exposed to all 21 single-qubit errors. (picture
also shown in Ref. [124]).
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Within the experimental uncertainties the measured error syndromes can unambiguously as-
sociated with the error syndromes induced by single-qubit errors. To quantify the classification
quality of the individual measured syndromes, we perform a Monte-Carlo based simulation of
the measured fluorescence data. The idea is to sample the measured data using a multinomial
distribution and calculate the stabilizer pattern for each sampled data. For each of the simulated
stabilizer patterns, the success of correctly assigning the observed error syndrome to the induced
single-qubit error is quantified by calculating the classical trace distance between the sampled
stabilizer distributions S(sample)

i and the 21 measured reference stabilizers S(ref)
i of Fig. 7.8.

The trace distance D between the two classical distributions of the six stabilizer expectation
values is given by

D =

√√√√ 6∑
i=1

[
S

(ref)
i − S(sample)

i

]2

,

and yields D = 0 if the distributions are equal. The pattern of stabilizers, as generated by the
Monte-Carlo method, is then associated to the reference syndrome for which the trace distance
is minimal. Figure 7.8 shows the success rate of assigning the right error syndrome as a func-
tion of the number of measurement cycles ncycles. The success rate is defined by the fraction
of cases, in which the error syndrome has been correctly assigned to the corresponding single-
qubit reference error syndrome, divided by the total number of attempts. It can be seen that the
success rate converges rapidly to 100% after about 20 measurement cycles.
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Figure 7.8: Error detection success rate: Simulation of the success rate to identify the right error
syndrome for a given number of measurement cycles ncycles. The success rate converges rapidly towards
100% for ncycles > 20 measurement cycles, implying that in these cases the error syndromes can be
clearly distinguished and perfectly associated to the induced physical single-qubit error. The number of
Monte-Carlo samples used to determine each data point is 5000. (picture also shown in Ref. [124]).

Correction of two or more single-qubit errors is beyond the error correction capacity of the
seven-qubit code, and requires the encoding of a logical qubit in more physical qubits (such as,
e.g., the distance d = 5 2D color code shown in Fig. 6.20). The failure of the seven-qubit code
is studied experimentally for two cases: Fig. 7.6E and F of the main text show the recorded error
syndromes after inducing two single-qubit phase flip errors Z on qubits 5 and 2 ( Fig. 7.6E),
and qubits 5 and 3 (Fig. 7.6F), respectively. The comparison with the single-qubit syndrome
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table in Fig. 7.8 shows that the recorded error syndromes are indistinguishable from the error
syndromes induced by a Z1 error (first column, first error syndrome) and a Z4 error (first col-
umn, fourth error syndrome), respectively. Consequently, the erroneous deduction that a Z1

(Z4) error has happened, instead of the physical Z5 and Z2 errors (Z5 and Z3 errors) effectively
result in the application of the operators Z1Z2Z5 (Z3Z4Z5) to the encoded qubit. These oper-
ators are equivalent to the logical operator ZL = Z1Z2Z3Z4Z5Z6Z7 (since Z1Z2Z5 = ZLS

(3)
z

and Z3Z4Z5 = ZLS
(1)
z S

(3)
z ) and thus result in an uncorrectable logical phase flip error ZL on

the encoded state.
For useful QEC, the error syndrome has to be measured in a non-destructive way, as de-

scribed in Sec. 6.2.2. A quantum non demolition (QND)-measurement of a four-qubit stabilizer
operator has been demonstrated in a previous experiment [157]. Such a multi-qubit measure-
ment can be realized in our setup by a quantum circuit involving two MS gates between the four
stabilizer qubits and an ancillary qubit, in addition to a few local rotations. The fidelity of the
QND readout of a qubit stabilizer can thus be estimated as FQND ≈ (FMS)2 ≈ 79%, which is
in agreement with the values found in Ref. [157].

7.5 Global order in the color code state

From our daily experiences, we all know that matter can have different kind of phases or states
- solid, liquid, gas and plasma. Each of the different phases can be distinguished by the internal
structure of the atoms or molecules. This internal structure is also known as order. For example
the atoms in the gas phase are moving randomly and independent of the other atoms. Therefore,
the state of the gas shows no correlations and order. In contrast, at low enough temperatures
the atoms can form a crystal, which is manifested by a regular internal structure or order. This
order depends on the interaction between the atoms, the temperature and the pressure. A fun-
damental question in physics is the understanding about the transition from one phase of matter
to another - also known as phase transition. A groundbreaking step towards the description of
phase transitions was provided by Landau in 1937 [158]. The Landau theory states that the
order or internal structure of matter is related to a symmetry and a phase transition corresponds
to breaking this symmetry. For example in the case of the transition from the gas phase to the
solid state, the symmetry changes from continuous translation symmetry to discrete translation
symmetry [159].

In the last century, many other different phases of matter were discovered, as for exam-
ple (anti)-ferromagnets, superfluids or liquid crystal phases. These phases are described by
the ground state of the system Hamiltonian at low temperatures [159]. Analog to the classical
phases, the different quantum phases reveal different structures (order) and can be quantified by
local order parameters, as for example the correlation of adjacent spins in a magnetic material.
The local order parameters correspond to parameters of the system Hamiltonian and changes
when the system undergoes a quantum phase transition.

In the 1980s, experiments with a two-dimensional electron gas at low temperatures and
strong magnetic fields led to the discovery of the fractional quantum Hall effect (FQH)
[160]. The surprising fact was that the orders of different FQH states did not correspond to
any symmetry breaking and therefore could not be explained by Landau theory [160]. The dif-
ferent FQH phases could not be distinguished by local order parameters as mentioned before,
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but rather by correlations extending over the entire system (long-range entanglement). This
type of global order is also known as topological order.

Topological quantum codes also reveal the property of global order, which can be detected
and manipulated by acting on groups of physical qubits extending over the whole spin sys-
tem. In the case of the investigated color code states, the expectation value of the logical op-
erator ZL acting on the whole system corresponds to the global order parameter. Note that
the code space is defined as the simultaneous +1 eigenspace of all plaquette stabilizers, thus
Si |ψL〉 = + |ψL〉 for any encoded quantum state |ψL〉. This property allows one to transform
the logical operator ZL into logically equivalent operators Z̃L by multiplication with (combina-
tions of) stabilizers: For instance, for the smallest color code, involving seven physical qubits,
ZL = Z1Z2Z3Z4Z5Z6Z7 and ZL |ψL〉 = ZLS

(2)
z |ψL〉 = ZLZ2Z3Z5Z6 |ψL〉 = Z1Z4Z7 |ψL〉.

This shows that the string operator Z̃L = Z1Z4Z7 in the code space is fully equivalent to ZL.
Whereas the logical operator Z̃L only acts on three instead of all seven physical qubits, it is still
a global operator as it extends over the entire side length of the triangular code. We confirm
that topological quantum states cannot be characterized by local order parameters but rather by
global properties of the system by measuring two -and three-qubit correlations. Here, local op-
erators refer to one or two-qubit operators, whereas global operators such as Z̃L at least involve
3 physical qubits. For the experimental study of the quantum order of the encoded qubit, we first
prepare the seven-qubit system in the logical state |1〉L and |+x〉L, and subsequently perform a
series of quantum state tomography measurements on subsets of two and three qubits. Due to
the absence of local order, the two-qubit state tomographies are expected to yield completely
mixed states, confirming no correlations between any two-qubit subset. In contrast, the three
qubit tomography of the qubits 1, 4 and 7 is supposed to show global order property, manifasting
in non-vanishing 3-qubit correlations 〈Z1Z4Z7〉.
• We perform 2-qubit tomographies on all 21 two-quit subsets, and reconstruct the reduced

two-qubit density matrices. We find that these yield an average Uhlmann-fidelity [161]
with the two-qubit completely-mixed state of 98.3(2)% (the largest and smallest obtained
fidelity values are 99.0(4)% and 97.7(8)%, respectively). Figure 7.9A shows as a repre-
sentative example the elements of the reconstructed reduced density matrix of qubits 2
and 5.

• From a 3-qubit state tomography on qubits 1, 4 and 7, we determine the expectation
value of the global string operator Z̃L = Z1Z4Z7, which yields 3-qubit correlations
〈Z1Z4Z7〉 = −0.46(6), signalling the presence of global quantum order. Figure 7.9B
shows the reconstructed reduced 3-qubit density matrix.

• Furthermore, we also prepared the logical superposition state |+x〉L = (|0〉L + |1〉L)/
√

2.
Here the global order becomes manifest in non-vanishing three-qubit correlations of
the X-type string operator X̃L = X1X4X7, which is equivalent to the logical XL =

X1X2X3X4X5X6X7 operator (X̃L = XLS
(2)
x ). We find 〈X1X4X7〉 = 0.40(5). See Fig-

ure 7.9C for the reconstructed reduced 3-qubit density matrix.

These measurements confirm the topological character of the encoding of the logical qubit,
as they clearly demonstrate the absence of local order in the experimental state, as well as the
presence of global quantum order, which for the present size becomes manifest in non-vanishing
3-qubit correlations.
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Figure 7.9: Absence of local and presence of global quantum order in the topologically encoded
qubit: Real and imaginary elements of reconstructed 2- and 3-qubit density matrices. Matrix elements
of the ideal states are indicated as transparent bars. The respective encoded logical state is schematically
indicated for each sub-figure, together with the subsets of qubits (marked as yellow filled circles) on
which quantum state tomographies have been performed. Electronic populations D (S) corresponds to
populations in the computational |0〉 (|1〉) state. (A) Measured 2-qubit density matrix of qubits 2 and 5,
clearly indicating the large overlap (98.3(2)%) with the ideal completely mixed 2-qubit density matrix
(B) The displayed reduced 3-qubit density matrix (of qubits 1, 4 and 7) has a quantum state fidelity of
85(2)% with the ideal state, which is an incoherent equal-weighted mixture of the four 3-qubit basis
states |111〉, |001〉, |010〉 and |100〉. (C) The measured reduced 3-qubit density matrix (of qubits 1, 4
and 7) for the logical qubit initially prepared in |+x〉L, yields a quantum state fidelity of 83(2)% with the
ideal state. (picture also shown in Ref. [124]).
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7.6 Clifford operations on the logical qubit
The concept of FTQC, introduced in Sec. 6.2, requires computations to be performed directly on
the logical qubit level. Errors appearing during the computation are indicated by violation of the
plaquette stabilizer operators. The two-dimensional color code enables the bit-wise (transver-
sal) implementation of the group of Clifford operations which are generated by the elementary
gate operations Z, X , the Hadamard H and the phase gate K,

H =
1√
2

(
1 1
1 −1

)
, K =

(
1 0
0 i

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
. (7.10)

For registers containing several logical qubits the C-NOT gate can also be realized transversally.
Note that this concept is different to the surface code, where logical operations are realized by
controlled quasi-particle excitations (see Sec. 6.3.2). Here, we implement the generating gate
operations ZL, XL, HL and KL of the single-qubit Clifford group on the topologically encoded
qubit and show first experiments demonstrating multiple logical gate operations on the encoded
qubit.

7.6.1 Experimental implementation of logical single-qubit Clifford gate
operations

We will show that the logical quantum states |ψ〉L remain within the code space under these
transversal logical operations. The logical operators ZL = Z1Z2Z3Z4Z5Z6Z7 and XL =
X1X2X3X4X5X6X7, share an odd number (seven) of physical qubits, and thus fulfill the correct
anti-commutation relation {XL, ZL} = 0. Furthermore, they commute with the six stabilizers
generators S(i)

x and S(i)
z , i=1, 2, 3, of the code, as the logical operators share 4 physical qubits

with each stabilizer operators. This means that the logical ZL-gate can be implemented in our
setup by single-ion Z rotations, ZL =

∏7
i=1 U

(i)
Z (π). The logical XL is realized by a collective

local rotation around the X-axis, XL = U(π, 0). The logical YL operation is given by the se-
quential application of both an XL and a ZL operation, YL = +iXLZL = −Y1Y2Y3Y4Y5Y6Y7..

The logical Hadamard gateHL = H1H2H3H4H5H6H7 is implemented by a collective local
Y rotation, followed by single-ion Z-rotations: HL =

∏7
i=1 U

(i)
Z (π)U(−π/2, π/2). We further-

more emphasize that – in contrast to other quantum codes, such as the five-qubit code [21],
where the logical Hadamard operation requires a five-qubit entangling unitary [162] – here, ow-
ing to the transversal character of the logical Hadamard gate operation in the seven-qubit code,
the implementation is achieved using exclusively non-entangling local operations.

Finally,the logical phase or KL gate is realized in a transversal way. As compared to other
topological codes, it is a distinguishing feature of 2D color codes to enable a transversal imple-
mentation of the KL gate operation [128], not requiring the technique of magic-state injection
via an ancillary qubit [121] nor multi-qubit entangling operations such as, e.g. in the non-
transversal five-qubit code [21]. Note that the logical KL gate operation is required to fulfill
KLXLK

†
L = YL = iXLZL. Note that for KL = K1K2K3K4K5K6K7, however, one obtains

KLXLK
†
L = −iXLZL; thus KL defined in this way acts as K†L within the code space. This

can be easily avoided by redefining KL :=
∏7

i=1K
†
i . We implement the KL gate operation by

bit-wise Z-rotations, KL =
∏7

i=1 U
(i)
Z (−π/2).
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7.6.2 Preparation of the encoded cardinal states
Fig. 7.10A and Fig. 7.10B show the required circuits to prepare the six logical states lying
on the axes of the logical Bloch sphere, starting with the logical qubit initially in state |0〉L.
The experimentally generated states, required logical gate operations, average stabilizer ex-
pectation values (〈Si〉 = 1

6

∑3
i=1(〈S(i)

x 〉 + 〈S(i)
z 〉)), and length L of the logical Bloch vector

(L =
√
〈XL〉2 + 〈YL〉2 + 〈ZL〉2) for each state are listed in Table 7.3.

Furthermore, the average values of the six stabilizers for each logical state are uncorrelated

logical state 〈Si〉 L required Clifford gates F (%) pCS (%) FCS(%)
|0〉L 0.42(1) 0.38(6) - 32.7(8) 32(1) 102(3)
|1〉L 0.54(1) 0.57(6) XL 28(1) 27(2) 101(5)
|+x〉L 0.52(1) 0.48(2) HL 33(1) 35(2) 95(3)
|−x〉L 0.49(2) 0.58(2) XL and HL - - -
|+y〉L 0.39(1) 0.42(2) HL and KL - - -
|−y〉L 0.42(1) 0.38(2) HL, KL, and XL - - -

Table 7.3: Logical Clifford operations: Characterization of the experimentally implemented Clifford
operations on the encoded qubit. The six logical states, located on the axes of the Bloch sphere (see
Fig. 7.10) are generated by a sequence of Clifford gates. The average stabilizer expectation values 〈Si〉,
the length L of the logical Bloch vector as well as the required Clifford operations are listed for each
state. The overall fidelity, the overlap with the code space pCS as well as the fidelity FCS within the code
space were only measured for the three states {|0〉L, |1〉L and |+x〉L}.

from the number of logical gate operations applied to prepare them (up to three). Thus, cur-
rently imperfections in the initial encoding dominate over errors induced by the relatively short
Clifford gate sequences acting on the encoded state. This behavior is confirmed by the mea-
sured overlap with the code space of pCS for the states |0〉L, |1〉L and |+x〉L (see Table 7.3).
The number of required pulses to generate the six logical states on the Bloch sphere is listed in
Table. 7.4.
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Figure 7.10: Single qubit Clifford gate operations applied on a logical encoded qubit. Starting from
the logical |0〉L state, sequences of logical Clifford gate operations {XL, HL} in (A) and {HL,KL, XL}
in (B) are applied consecutively in a transversal way (i.e. bit-wise) to realize all six cardinal states
{|0〉L , |1〉L , |−x〉L , |+x〉L , |+y〉L , |−y〉L} of the logical space of the topologically encoded qubit. The
dynamics under the applied gate operations is illustrated by rotations of the Bloch-vector (red arrow) on
the logical Bloch-sphere as well as by the circuit diagram in the background. Each of the created logical
states is characterized by the measured pattern of S(i)

x and S(i)
z stabilizers and the logical Bloch vector,

with the three components given by the expectation values of the logical operators XL, YZ and ZL. The
orientation of the logical Bloch vector changes as expected under the logical gate operations. (picture
also shown in Ref. [124]).
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7.6.3 Sequences of encoded gate operations

The computational capabilities of the encoded qubit were explored by performing multiple gate
operations on the encoded qubit. After preparing the encoded qubit in the logical state |−y〉L
by three Clifford gate operations (see Fig. 7.10B), we applied up to 10 additional logical XL

gate operations to evolve the logical qubit between the +1 and -1 eigenstates of YL. The ex-
perimental result of the logical expectation values 〈YL〉, 〈XL〉 and 〈ZL〉 as a function of the
number of logical gates ngate is shown in Fig. 7.11. A weighted exponential fit of the form
A exp (−ngate/B) into the 〈YL〉 expectation values yields a decay rate of the average expecta-
tion value of 3.8(5)% per gate. This decay is consistent with what we expect from the accuracy
with which collective resonant π-rotations U(π, 0) can be implemented on a string of seven ions
in our setup. A fidelity as high as about 99.5% of a single collective resonant π-rotation per ion
would already lead to a fidelity loss of ≈ 3.5% per gate operation.

number of logical X gates

A B
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Figure 7.11: Repetitive application of logical quantum gate operations: (A) Preparation of the |−y〉L
state by applying a HL, KL and XL gate operation on the qubit initially prepared in the |0〉L state. (B)
Subsequently, flips between the logical |+y〉L and |−y〉L states are induced by consecutively applying
logical XL gate operations up to 10 times. The sign flip of the YL expectation value (red diamonds) after
each step signals clearly the induced flips of the logical Bloch vector, whereas the expectation values of
ZL (blue squares) and XL (black circles) are close to zero as expected (the average of {〈ZL〉, 〈XL〉}
yields {0.01(1),−0.01(1)}). Average S(i)

z (S(i)
x ) stabilizer expectation values after each XL gate are

shown as grey (green) bars. (picture also shown in Ref. [124]).

Here, two error sources dominate the measured fidelity loss per gate: (i) The relative inten-
sity inhomogeneity of the global laser beam across the ion string (≈ 1%) lowering the Rabi-
frequencies at the ions located at the edge of the string, and (ii) thermal occupation of motional
modes, which lead to decoherence of the global Rabi oscillations (see Sec. 3.5). The latter error
could be improved by additionally cooling the higher axial motional modes, as described in
Sec. 3.5. The application of the pulses for 10 XL gate operations requires a time of 200µs. This
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is a factor of 18 shorter than the 1/e time of 3.6(6) ms on which logical coherences, as indicated
by the expectation value 〈XL〉, of the qubit initially prepared in |+x〉L, decay (see Fig. 7.12).
A decay of the coherence of the logical superposition state |+x〉L is indicated by a vanishing
expectation value of the logical 〈XL〉 stabilizer. This behaviour can be compared to the decay of
the 〈X〉 expectation value of a coherent superposition state |0〉+ |1〉 of a physical qubit affected
by decoherence. The corresponding decay constant has been obtained by a weighted exponen-
tial fit into the 〈XL〉 stabilizer expectation values. Thus, for the executed circuit of encoded
quantum gates, imperfections in the logical Clifford gate operations dominate over the effect of
the bare decoherence of the logical qubit. A more extensive study of the decoherence properties
of the logical qubit is presented in Sec. 7.7.
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Figure 7.12: Coherence decay of a logical superposition state: Characterization of the coherence of
the logical qubit, initially prepared in the XL eigenstate |+x〉L. A measurement of the decay of the
XL expectation value (black circles) as a function of time yields a 1/e-time of 3.6(6)ms, while the ZL
expectation value (blue diamonds) remains zero as expected (on average 0.001(8)). (picture also shown
in Ref. [124]).

7.7 Coherence during the encoding procedure
As already discussed before, the fidelity of the encoded logical qubit is mainly limited by the
single-qubit pulses used for spectroscopic decoupling. During the encoding process, which
consists of three different steps preparing the corresponding plaquettes (see Fig. 7.3), the whole
system is unavoidably affected by dephasing. In Chapter 5, a model for dephasing in our ex-
perimental system was introduced, based on the assumption of collective dephasing. Therefore,
it is important to understand the influence of collective dephasing. We analyze the effect of
dephasing on the state after each of the three encoding steps, shown in Fig. 7.3.

A more detailed analysis of the dynamics of the entire system during the encoding would
be computationally expensive and our analysis allows us to choose a suitable encoding pro-
cedure. First, let us consider the effect of noise (e.g. laser and magnetic field fluctuations)
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acting on a single qubit prepared in the superposition state |ψ〉 = 1√
2
(|0〉 + |1〉). The fluctu-

ations can be described by a Hamiltonian H = 1/2µA(t)σz, where µA(t) corresponds to the
instantaneous qubit-laser detuning caused by the imperfections (e.g. magnetic field fluctua-
tions). After the time t, the state |ψ〉 accumulates a dynamical phase shift and evolves to the
state |ψ(t)〉 = exp(−i

∫
t′
H(t′)dt′) |ψ〉 [66]:

|ψ(t)〉 =
1√
2

(e−i
φ(t)
2 |0〉+ e+i

φ(t)
2 |1〉).

with the phase φ(t) = µ
∫ t

0
A(t′)dt′. Therefore, the density matrix of the state ρ(t) is given by

ρ(t) =
1

2
(|0〉 〈0|+ e−iφ(t) |0〉 〈1|+ e+iφ(t) |1〉 〈0|+ |1〉 〈1|).

In the experiment we always average over multiple runs and thus we can apply the Gaus-
sian momentum theorem, which states the average of the phase over random noise trajectories
〈ei±φ(t)/2〉 = e−1/2〈φ(t)2〉. Therefore the density matrix evolves finally to

ρ(t) =
1

2
(|0〉 〈0|+ e−1/2〈φ(t)2〉 |0〉 〈1|+ e−1/2〈φ(t)2〉 |1〉 〈0|+ |1〉 〈1|). (7.11)

A detailed analysis of the function e−1/2〈φ(t)2〉 and the dependence on the noise correlation for
our system is presented in Refs. [66, 42]. Here we do not need to consider the exact temporal
behaviour. Equ. (7.11) shows that only the coherences (off-diagonal elements) of ρ are affected
by the fluctuations. If we consider a more complex two-qubit Bell state |φ+〉 = 1√

2
(|00〉+ |11〉),

the effect of dephasing is completely identical to the previous state but with a four times stronger
decay characteristics [42]. In contrast, the phase evolution of the two states |10〉 and |01〉 of the
Bell state |ψ+〉 = 1√

2
(|10〉 + |01〉) is identical and therefore the relative phase can be absorbed

in a global phase. This Bell state is robust against collective dephasing and is part of so called
decoherence free subspace (DFS). An intuitive picture of the robustness of this state against
global dephasing is illustrated in Fig. 7.13, showing the level scheme of a two-qubit system.

Figure 7.13: Decoherence free subspace: Intuitive picture of the robustness of a decoherence free state
|ψ+〉 = 1√

2
(|10〉+|01〉). Changes in the magnetic field, indicated by the arrows, lead to a frequency shift

of the energy levels. The two levels |10〉 and |01〉 are shifted by the same amount assuming collective
dephasing and therefore the relative phase of the entangles state |ψ+〉 = 1√

2
(|10〉+ |01〉) is canceled out.



7.7. Coherence during the encoding procedure 141

The two qubits are prepared in the state the |ψ+〉 as highlighted in Fig. 7.13 and affected by
magnetic field fluctuations of equal strength on both qubits, which are indicated by the arrows.
The fluctuations lead to a change of the energy splitting between the |00〉 state and the |11〉 state,
which causes fluctuations of the relative phase. In contrast, the frequency difference between
the two states |10〉 and |10〉 remains the same and therefore also the relative phase.

The sate |ψ〉1 = |1010101〉 + |0101101〉 after the first step of the encoding sequence can
be expressed in the form |ψ〉1 = (|1010〉 + |0101〉) ⊗ |101〉. The first four qubits are in the
Bell state 1√

2
(|1010〉 + |0101〉), being robust against collective dephasing. The state |101〉 of

the remaining qubits (5,6,7) will induce a global phase eiφ(t)/2 during the time evolution, which
does not influence the coherence of the state. The coherence of |ψ〉1 is probed by measuring
the expectation value of the X-type stabilizer S(1)

x of the first plaquette after a waiting time t.
An effective loss of coherence due to magnetic field and laser fluctuations would be indicated
by a decay of the X-type stabilizer. The Z-type stabilizer of the first plaquette is signaling the
population of the state, which is not sensitive to decoherence. Therefore the expectation value
S

(1)
z is expected to remain constant. The measurement of the S(1)

x (green diamonds) and S(1)
z

(blue diamonds) expectation values as a function of the waiting time t is shown in Fig. 7.14.
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Figure 7.14: Coherence after the first encoding step: Measurement of the coherence after the first
preparation step, encoding the first plaquette (red). The coherence is probed by preparing the entangled
state |ψ〉1 (see text), including a waiting t and measuring by the expectation value of the S(1)

x stabilizer
(green diamonds). The results reveal no decay of the coherence, which indicates the robustness of the
state against global phase noise. The population remains constant over time, which is confirmed by
measuring the expectation value of the S(1)

z stabilizer (blue diamonds).

The results clearly show that the expectation value 〈S(1)
x 〉 remains constant, indicating the ro-

bustness of |ψ〉1 against global dephasing.
After the second step of the encoding sequence, the resulting state is |ψ〉2 = (|101010〉 +
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|010110〉 + |110001〉 + |001101〉) ⊗ |1〉 (see Fig. 7.3), which features also coherences (entan-
glement) between the qubits in the second plaquette (blue). The subspace of |ψ〉2 including the
coherences between qubits 1 to 6 reveals the characteristic of a decoherence free state, since the
same number of qubits are in the state |1〉 leading to a cancellation of the relative phases. The
effect of the dephasing was measured similar to the characterization of the first plaquette (see
Fig. 7.14). The state |ψ〉2 was prepared according to the sequence in Fig. 7.1, followed by a
waiting time t and subsequent measurement of the four plaquette stabilizers S(1)

x , S
(2)
x , S

(1)
z , S

(2)
z .

In Fig 7.15, the mean values of the two X-type stabilizers (S
(1)
x + S

(2)
x )/2 and the two Z-type

stabilizers (S
(1)
z + S

(2)
z )/2 are plotted as a function of the waiting time t. Since each of the

X-type stabilizers indicate a decay of the coherence, the average of the two stabilzers is plotted.
The average Z-type stabilizer (blue diamonds) remain constant, which indicates that no popula-
tion loss occurs during the waiting period. The X-type stabilizer (green diamonds) is constant
up to a waiting of 1 ms, which indicates the robustness of the state against global phase noise.
The measurement reveals a slight decay of the coherence after 1 ms, which is probably caused
by drifts of the expectation values 〈S(1)

x 〉 and 〈S(2)
x 〉. Further measurements including longer

waiting times would be required to provide meaningful statements about the decay.
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Figure 7.15: Coherence after the second encoding step: Measurement of the coherence after the
second preparation step, encoding the first and second plaquette (red, blue). The coherence is probed by
preparing the entangled state |ψ〉2, including a waiting t and measuring by the mean expectation value
of the S(1)

x , S
(2)
x stabilizers (green diamonds). The result reveals no decay of the coherence up to 1 ms,

which is expected from the DFS characteristic. The populations remain constant over time, which is
confirmed by measuring the mean expectation value of the S(1)

z , S
(2)
z stabilizers (blue diamonds).
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Finally, the coherence of the complete encoded logical qubit |0〉L after the third step of
the encoding sequence is investigated. The influence of collective dephasing on the logical
state |0〉L is different compared to the first and second encoding steps. The final state |0〉L =
|1010101〉 + |0101101〉 + |1100011〉 + |0011011〉 + |1001110〉 + |0110110〉 + |1111000〉 +
|0000000〉 shows 8 non-zero populations. The first seven states have all three qubits in the state
|0〉 and four qubits in the state |1〉, which leads to an effective phase accumulation of e+iφ(t)/2

for all 7 states. In contrast, the fully polarized state |0000000〉 picks up the phase e−7iφ(t)/2

evolving over the time t into

|0L(t)〉 = e+iφ(t)/2(|1010101〉+ |0101101〉+ |1100011〉+ |0011011〉+
|1001110〉+ |0110110〉+ |1111000〉) + e−7iφ(t)/2|0000000〉.

The density matrix after decoherence ρ0(t) = |0L(t)〉 〈0L(t)| can be expressed in the basis of
physical states forming the 8 components of the logical state |0〉L:

1 e−8〈φ(t)2〉 . . . e−8〈φ(t)2〉

e−8〈φ(t)2〉 1 . . . 1

... 1 . . . 1

... 1 . . . 1

e−8〈φ(t)2〉 1 . . . 1




using the relation 〈e±4iφ(t)/2〉 = e−8〈φ(t)2〉. The density matrix reveals an interesting aspect of
the coherence property of the color code state: The 7x7 block, highlighted by the red box, of the
8x8 density matrix corresponds to the identity and implies that a large part of the whole state
is not affected by global phase noise. The only non-vanishing decay components appear in the
coherences between the |0000000〉 state and the 7 remaining states. Therefore, the final color
code state is not a decoherence free state. The X-type stabilizer expectation values 〈S(i)

x 〉(i =
1, 2, 3) evolve into

〈S(i)
x (t)〉 = tr(ρ0(t)S(i)

x ) =
1

4
(3 + e−8〈φ(t)2〉)→ 0.75 for t→∞. (7.12)

The mean value of the three X-type (blue diamonds) and three Z-type (red diamonds) stabilizers
are measured for different waiting times, as shown in Fig. 7.16. The decay characteristics of the
X-type stabilizer in Fig. 7.16 shows a plateau up to 0.5 ms with an average value of 0.3 followed
by a decay up to 1.5 ms. The expectation value is leveling out at ≈ 0.2, which is about 3

4
of the

initial value and is in agreement with the theoretical prediction.
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Figure 7.16: Coherence after the third encoding step: Measurement of the coherence after the third
preparation step, encoding the logical state |0〉L. The coherence is probed by preparing the logical
state |0〉L (see text), including a waiting t and measuring the mean expectation value of the X-type
stabilizers S(1)

x , S
(2)
x , S

(3)
x (blue diamonds). The logical color code state is not fully protected against

global dephasing (see text) and a decay of the mean X-type stabilizer to 3
4 of the initial value is expected.

This behaviour is confirmed by the experimental result. The populations remain constant over time,
which is confirmed by measuring the mean expectation value of the Z-type stabilizers S(1)

z , S
(2)
z , S

(3)
z

stabilizers (red diamonds).

7.8 Perspectives for experimental error correction using the
seven-qubit code

In stabilizer quantum error correcting codes - within the framework of topological quantum
codes as well as within the approach based on concatenated codes - protection of quantum
states against errors is realized by (i) encoding the information in collective, entangled quantum
states distributed over many physical qubits, and (ii) subsequent active "supervision" of the sys-
tem by repetitive "in-situ" measurements of the stabilizer generators in order detect and keep
track of dynamically occurring errors, possibly followed by quantum or classical feedback op-
erations to undo the effect of the errors [129, 120]. In this section we estimate the experimental
requirements that need to be met in general and in our specific setup, in order to use in the future
the seven-qubit code for active error correction.

The simplest model for QEC is perfect initial state encoding, perfect QND measurements
of the plaquette stabilizers, and the only errors originate from uncorrelated single-qubit errors
occurring at a rate p per error correction round. Under ideal conditions, an encoded logical
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quantum state |ψL〉 can be recovered if either no error or at most one error occurs on one of the
7 physical qubits. The recovery probability pidealrec in this case is

pidealrec = (1− p)7 + 7p(1− p)6 = 1− 21p2 (7.13)

where the leading term quadratic in p corresponds to the 21 possible, non-correctable double-
error events. Thus, for small single qubit error rates p, protection becomes effective, as under
these conditions (pidealrec ) the encoded qubit shows less errors than a single unencoded qubit. We
now consider a more realistic scenario that includes the two dominant and generic sources of
imperfections, which reduce the recovery probability for an encoded quantum state |ψL〉: (i)
First, a logical quantum state |ψL〉 can only be encoded with a finite fidelity FSP < 1, giving
rise to a state ρ which we model for the purpose of our estimate by a mixture of the ideal logical
state |ψL〉 〈ψL| and the fully mixed density matrix,

ρ = FSP |ψL〉 〈ψL|+
1−FSP

d
1, (7.14)

with d = 27 for the seven-qubit code and 1 the 7-qubit identity operator. (ii) Furthermore, we
take into account that in one round of error correction of bit-flip (phase flip) errors the three Z-
(X-)type plaquette stabilizers need to be measured in a non-destructive way in order to deduce
the error syndrome. These QND measurements of stabilizer operators can be achieved by a
quantum circuit (see Fig. Fig. 7.17(B)) which coherently maps the eigenstates of the stabilizers
S

(i)
z (S(i)

x ) onto the computational states |0〉 and |1〉 of ancillary qubits, followed by measure-
ments of these ancillary qubits. In practice, the QND stabilizer measurements are faulty as
well and can only be realized with a fidelity FQND. Thus, under these conditions the recovery
probability is reduced to

pnrec ≥ FSPF3
QNDp

ideal
rec . (7.15)

It is straightforward to show that for small enough imperfections (fidelities FSP ,FQND) there
exist single-qubit error rates p, where pnrec > 1 − p and using an encoded qubit is favourable
over using a pure physical qubit:

FSPF3
QND & 1− 1

4

1

21
' 1− 0.012 = 98.8%. (7.16)

Fig. 7.17(B) displays the discussed lower bounds for the recovery probabilities for an unencoded
qubit, as well as for the 7-qubit code under ideal and non-ideal conditions.
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Figure 7.17: Quantum error correction using the seven-qubit code: (A) (i) Encoding of a quantum
state in 7 physical qubits is followed by (ii) QND measurements of the set of α = X or α = Z-
type stabilizer operators (generators) via 3 ancillary qubits. The collection of measurement outcomes
(the error syndrome) is used to deduce the most probable pattern of physical errors. Note that the set
of stabilizers can also be measured sequentially using a single ancillary qubit, which is reset after the
measurement of each stabilizer (see also Sec. 6.2.2). (B) Logical recovery probability for a quantum
state stored in an unprotected, single qubit (black solid line) and using the seven-qubit code under ideal
(blue dashed-dotted line) and non-ideal (red dashed line) conditions, as a function of the single-qubit
error rate p. The seven-qubit code offers under ideal conditions increased protection – as compared to
a non-encoded qubit – provided that the single-qubit error rate p is not too large (p . 1/21). Under
more realistic conditions, where errors in the encoding (i) and the QND measurement of stabilizers (ii)
are taken into account (see text for details), the seven-qubit code starts to offer improved protection –
as compared to single physical qubits – in a finite region of single-qubit error rates p, once the overall
fidelity for the encoding and syndrome measurement is larger than about 98.8%. For completeness, the
inset shows the recovery probabilities over the full range 0 ≤ p ≤ 1 of single-qubit error rates. (picture
also shown in Ref. [124]).



Chapter 8

Summary and Outlook

The presented work focuses on the implementation of a topological error correction code in an
ion trap based quantum computer. The properties of the color code were investigated for the
smallest instance, encoding one logical qubit in seven physical ions. This proof of principle ex-
periment demonstrated important key prerequisites for FTQC: (a) encoding of the logical qubit
(b) detection of the complete error syndrome of all 21 single-qubit errors and revealing that the
color code belongs to the class of CSS stabilizer codes. (c) applying the set of Clifford opera-
tions {HL, XL, ZL, KL} transversally on a logical qubit and generating all 6 cardinal states of
the logical Bloch sphere. Additionally, up to 10 logical operations were applied, showing that
the fidelity loss per gate is only 3.8%. The fidelities of the generated logical states were esti-
mated by measuring a set of 128 stabilizer operators instead of full state tomography on seven
qubits, leading to an enormous reduction of the required measurement settings from 2187 to
128. Protection of the encoded information by successfully correcting occurring errors could
not be demonstrated within this work, as the encoding procedure reveals a fidelity of 35% and
therefore is not in a regime where the encoded qubit performs better than a single unprotected
qubit (see Sec. 7.8).

The performance of the encoding procedure is given by the fidelity of the operations on
the physical qubits. In particular, the single-qubit operations are significant for the encoding
fidelity due to the large number of pulses (≈120). In the course of this work, the quality of the
addressing gates was improved in terms of reducing the addressing errors with the optical setup
described in Sec. 3.4.1. Limitations of the single-qubit operations are due to intensity fluctua-
tions of the laser light and beam pointing instabilities. Further efforts including active intensity
stabilization and changing the mechanical setup of the objective mount will significantly im-
prove the fidelity.

The fidelity of the coherent global operations was characterized within the master thesis
project of Roman Stricker by randomized benchmarking on a single qubit and yielded an infi-
delity of about 10−3 for single-qubit π/2 rotations. This could be improved by implementing
the qubit laser system described in Sec. 3.6.1, yielding an infidelity of about 10−5. This remark-
able result pushes the global operations towards the fault tolerant regime.

The effect of the improved coherence of our system on the entangling operations will be
investigated with interleaved randomized benchmarking on two qubits in the near future [163].
At the moment, the coherence of our system is limited by fluctuations of the magnetic field,
probably caused by current stabilization electronics. Recently, an impressive work by Ruster
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et al. demonstrated a coherence time of 2 s of a qubit encoded in the two Zeeman levels of
the 42S1/2 ground state of 40Ca+using permanent magnets instead of active current drivers [164].
This approach will also be adapted for our future experiments to further improve the coherence
of our system and increase the fidelity of the entangling operations.

Improving the physical operations will allow further investigations of the color code. An
essential step towards the realization of fault tolerant quantum computation is the correction
of occurring errors. This requires the readout of the stabilizer operators in a non-destructive
way using the scheme presented in Sec. 7.8. Furthermore, a fundamental proof of concept ex-
periment towards the realization of a universal set of operations on the encoded qubit is the
achievement of a non-Clifford operation (T-gate) on the logical qubit via magic state injection
using one logical qubit and one physical ancilla qubit.

The experimentally implemented color code represents a proof-of-principle experiment in
a small-scale ion trap quantum computer. Nevertheless, the fundamental steps required to suc-
cessfully encode the logical qubit are certainly of particular importance for other physical plat-
forms. The method used to correct unknown but constant phase shifts appearing during the
encoding procedure (see Sec. 7.2) can be applied to other AMO systems. In addition, noise
models including spatial correlations play a crucial role for the simulation of QEC codes in a
realistic setting. The technique introduced in Ref. [36] is readily applicable to any quantum
system and was demonstrated in this work to act as a practical tool for the characterization of
spatial correlations (see Sec. 5.2).

As a long term goal, the presented color code as well as the achieved concepts are preferably
adapted to scalable 2D architectures using trapped ions [165] and various other atomic, optical
and solid-state systems [126]. Further technological progress of the scalable quantum architec-
tures will potentially enable fault tolerant QC on a topologically protected qubit and pave the
way towards a useful quantum computer. The demonstrated proof of concept experiments in
this work and the investigated methods contribute to this progress and to our vision of keeping
a qubit alive.



Appendix A

Msquared laser locking details

As already described in Sec. 3.6.1, the Msquared laser is locked to the reference cavity by a
feedback loop to one external AOM and two Piezos mounted within the laser resonantor. The
AOM has the capability to cancel out high frequency noise up to 1 MHz, whereas acoustic
fluctuations up to 100 kHz are compensated by the fast Piezo. The slow Piezo is ony used to
compensate slow drifts of the laser frequency.
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Figure A.1: Noise cancellation AOM electronics: Electronic circuit diagram used to feedback on the
noise cancellation AOM. The output signal of the PID regulator (PID Out) is added up with a constant
voltage and applied to the voltage controlled oscillator (VCO). The constant offset voltage is adjusted by
the potentiometer and sets the VCO center frequency to 80 MHz.

Fig. A.1 shows a schematic representation of the electronic circuit used to actuate on the noise
cancellation AOM (see Fig. 3.20). The output signal of the Falc 110 PID controler is added
to an internal offset voltage, which is created by the REF01 precision voltage reference in
combination with a voltage divider. The signals are added up by a summing amplifier OPA470
with a gain-bandwidth product of 6 MHZ. The final signal is applied to a voltage controlled
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oscillator (VCO) MW500-1531 with a center frequency of 80 MHz and a tuning voltage of
0.4 V to 4 V and a frequency sensitivity of 1MHz/V. The offset voltage is adjusted to set the
radio frequency to 80 MHz. The feedback to the AOM is realized by a limited intergrator and a
differntiator branch. Furthermore, the output of the ulimited integrator (± 5V output range) of
the Falc 110 is used to compensate for slow drifts.

Actuator Dip switch settings lower frequency (gain) higher frequency (gain)
AOM (limited in-
tegrator)

[4,5] 370 Hz (37 dB) 22 kHz (1.6 dB)

AOM (differentia-
tor)

[7,8] 140 kHz (0 dB) 750 kHz (15 dB)

fast Piezo (slow
limited integrator)

[5] 240 Hz (37 dB) 14 kHz (1.6 dB)

fast Piezo (fast
limited integrator)

[7] 14 kHz (0 dB) 170 kHz (15 dB)

slow Piezo (unlim-
ited integrator)

[1,5] 30 Hz -

Table A.1: Settings of the Falc 110 PID controller used to feeback on the slow Piezo as well as the noise
cancelling AOM.

The AOM feedback has gain of 37 dB up to a frequency of 370 Hz and decreases to 1.6 dB
at a frequency of 22 kHz. The higher frequency range is covered by the differentiator, which
has a voltage gain of 0 dB up to a frequency of 140 kHz and increases to 15 dBm at 750 kHz.
The main gain is required at frequencies in the lower kHz range, which leads to the assumption
that the dominant noise is also in the same frequency regime. Nevertheless, we observed that
acoustic noise is broadening the laser linewidth up to several hundred kHz and therefore we
could not achieve stable locking only by actuating on the fast Piezo. The feedback to the fast
Piezo is required to increase the stability in the acoustic frequency domain (≤ 2 kHz). Therefore
an additional Falc 110 controller was used to actuate on the fast Piezo with a 37 dB gain level
up to 240 Hz. The settings of the Falc 110 regulators are shown in Table A.1. It was observed
that the fast Piezo leads to an improvement of the locking stability with respect to perturbations
in the acoustic frequency domain. The most dominant resonance peak when stimulating the
laser system with external acoustic noise was observed at 1.9 kHz.



Appendix B

From Choi-Jamiolkowski to χ
representation

The main task is to find a map from the Choi-Jamiolkowski representation S to the χ matrix.
The χ matrix representation of a quantum process is defined by the following equation:

E(ρ) =
∑
m,n

χm,n AmρA
†
n. (B.1)

The process E is expanded in the basis A with the expansion factors χm,n. In general, the basis
used for this representation consists of the Pauli matrices {1, σx, σy, σz}. Without any kind of
restriction, the process E can also be written in a different basisB. The mapping of the χmatrix
caused by the basis transformation will be calculated in detail. Assume that the transformation
between the basis A and B can be written in the following way:

Bi =
∑
k

CkiAk (B.2)

with the transformation matrix C. The process EB in the basis B can be defined by:

EB =
∑
m,n

χ(B)
m,nBmρB

†
m =

=
∑
m,n

χ(B)
m,n(

∑
k

Ck,mAk)ρ(
∑
l

C∗l,nA
†
l ) =

=
∑
k,l

∑
m

∑
n

Ck,mχ
(B)
m,nC

†
n,l︸ ︷︷ ︸

=[Cχ(B)C†]kl

AkρA
†
l

As a result, the transformation between the chi matrices χ(B) and χ(A) is given by the following
expression:

χ(B) = Cχ(A)C†. (B.3)

The basis transformation matrix C can be calculated from the following equation:
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C = (AA)−1 AB, (B.4)

with the corresponding matrix elements (AA)i,j = Tr(AiAj) and (AB)i,j = Tr(AiBj). The
reason for calculating the possible basis transformation is that the S matrix has a particular form
when choosing a special basis G of the process. Assume the orthonormal basis G with:

G1 =

(
1 0
0 0

)
, G2 =

(
0 1
0 0

)
, G3 =

(
0 0
1 0

)
, G4 =

(
0 0
0 1

)
. (B.5)

It can be shown easily that the S matrix using the basis G for the χ matrix representation is
identical to χ, therefore S = χ. This means that the S matrix corresponds to the χ matrix in the
basis G. Therefore the basis transformation from G to the Pauli basis σ by the transformation
map CG→σ applied to the Choi-Jamiolkowski matrix S will result in the χ matrix:

χ = CG→σSC
†
G→σ (B.6)



Appendix C

Direct characterization of collective
longitudinal and transverse relaxation
processes

Let us consider a global quantum homogenization or thermalization process acting on some
qubits for a time t. Thus for each single-qubit density matrix ρ, with ρ00 = a and ρ01 = b in the
computational basis, ρ evolves into the state ρ(t) with ρ00(t) = (a − a0) exp(−t/T1) + a0 and
ρ01(t) = b exp(−t/T2), where T1 and T2 (T2 6 2T1) are relaxations and dephasing time-scales
of the system, respectively. That is, the system approaches an equilibrium state identified by
a0 ∈ [0, 1].
In order to measure these time scales using the DCQD approach we need to create quantum cor-
relations between each pair of neighboring qubits, e.g., in the form of a Bell-state ρ = |Φ+〉 〈Φ+|
where |Φ+〉 = (|00〉 + |11〉)/

√
2, and then let all of the qubits evolve for a time t leading to

state E(ρ). Thus by performing a Bell-state measurement between the same neighboring qubits
we obtain ([95], 1):

Tr[P 11E(ρ)]− Tr[P 44E(ρ)] = e
− 2t
T2

where P kk′ =
∣∣Bk
〉 〈
Bk′
∣∣, and |Bk〉 for k = 1, 2, 3, 4 corresponds to the Bell-states |Φ+〉, |Ψ+〉,

|Ψ−〉, and |Φ−〉, respectively, where |Φ±〉 = (|00〉 ± |11〉)/
√

2, |Ψ±〉 = (|01〉 ± |10〉)/
√

2.
Using the fact that Tr[P 11ET (ρ)] = χ1,1 and Tr[P 44ET (ρ)] = χ4,4 we obtain:

e
− 2t

T2 = χ1,1 − χ4,4. (C.1)

It is important to mention that this expression is only valid for Markovian noise acting on the
entire system. For our system it was observed [18] that the phase decoherence of Greenberger-
Horne-Zeilinger (GHZ) states scales with exp(−N2t) instead of exp(−Nt), with N the number
of ions. Therefore Eq. (1) has to be modified, which leads to the following result for the phase-
decoherence:

e
−N2t

T2 = χ1,1 − χ4,4. (C.2)
1M. Mohseni, in preparation, 2012
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processes

In the case of T1, the outcome of a BSM within the DCQD formalism yields:

1− 2(Tr[P 22E(ρ)] + Tr[P 33E(ρ)]) =

= (1− 2a0)2(1− 2e
− t
T1 ) + (2 + 4a0(a0 − 1))e

− 2t
T1 . (C.3)

For our system the equilibrium state is described by the ground state and therefore a0 = 1,
which leads to:

1− 2(χ22 + χ33) = (1− 2e
− t
T1 ) + 2e

− 2t
T1 .

For a unital quantum homogenization process (E(I) = I ), we have a0 = 1
2

(i.e., a completely
stochastic equilibrium state). Thus the relation for T1 becomes:

e
− 2t

T1 = 1− 2(χ2,2 + χ3,3).

It is remarkable that even if we use the relations developed for the ideal DCQD scheme,
assuming T1 and T2 acting only on the system qubit (considering the other system as a reference
signal or a noiseless ancilla), we can still obtain both T2 and T1 only to be smaller than the
actual value by a factor of 2. Note that, due to orthogonality of the BSM outcomes, it is easy
to unambiguously distinguish T1 from T2. Traditionally, in order to measure the longitudinal
and transverse relaxation times, one needs to measure two non-commutative observables (e.g.,
Pauli operators σz and σx) on two sub-ensembles of identical systems.



Appendix D

Controlled amplitude- and phase-damping

The process of phase damping is implemented by the following steps (see Fig. D.1(a)): (i)
Hiding the population of the D5/2(mj = −1/2) state of both ions by applying a π-pulse on
the D5/2(mj = −1/2) ↔ S1/2(mj = 1/2) transition. (ii) Transfering a certain amount of the
population of the S1/2(mj = −1/2) state to the D5/2(mj = −5/2) state. The excitation prob-
ability is experimentally controlled by the pulse length t and is given by γ = sin(πt

T
)2, with the

Rabi-oscillation period time T . (iii) Repumping the transfered population into the P3/2 state by
a laser pulse at a wavelength of 854 nm whereupon the system qubit decays spontaneously into
the ground state. (iv) Finally the second step is repeated to reverse the hiding process. Because
of the spontaneous decay after the third step the state loses its phase information. The hiding
process described in the first step is necessary to prevent the D5/2(mj = −1/2) state from not
being affected by the repumping process which would have the same effect as amplitude damp-
ing.

Amplitude damping is carried out within two steps (see Fig. D.1(b)). First the population is
coherently transfered from the D5/2(mj = −1/2) to the S1/2(mj = 1/2) state by an addressed
laser pulse with length t. Then the population of the S1/2(mj = 1/2) state is transfered to the
S1/2(mj = −1/2) ground state by an optical pumping process performed by a σ−-polarized
laser beam at 397 nm exciting the ion first to the P1/2(mj = −1/2) state followed by sponta-
neous decay to the S1/2(mj = −1/2). The ancilla ion is not affected by the optical pumping
process because the σ−-polarized pulse can only excite the S1/2(mj = 1/2) ground state.
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Figure D.1: Amplitude- and phase-damping: Schematic of the phase damping (a) and amplitude
damping (b) processes acting on the system ion S: (a) Transfer of the S1/2(mj = −1/2) population
with a probability of γ to the P3/2 state followed by optical repumping to the ground state while the
population of the D5/2(mj = −1/2) state is hidden in the S1/2(mj = 1/2) state. (b) The ampli-
tude damping process is carried out by coherently transfering the population of the D5/2(mj = −1/2)
state to the S1/2(mj = 1/2) state of the system ion followed by optical pumping to the ground state
S1/2(mj = −1/2). The ancilla ion is not affected during the whole processes, as shown in the inset
figures. (picture also shown in Ref. [79]).
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