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Abstract

This thesis presents experiments on a quantum simulator, based on up to 20 individ-
ually addressable 40Ca+ ions, that are confined in a linear Paul trap. The focus lies
on the application of state characterization tools for large quantum systems and the
demonstration of three quantum simulation experiments.

The increasing research interest in large quantum systems raises the demand on
efficient tools for their characterization. The first two projects of this thesis study en-
tanglement and state estimations of large, locally correlated quantum states. Utilizing
only 27 measurement bases, we witness genuine multipartite entanglement of up to
5 neighbouring qubits in a 20-qubit system. The same set of measurement bases is
used to realize the first experimental application of matrix product state tomography.
We reconstruct and certify the quantum state of 14 entangled qubits, and measure an
overlap of (74± 5)% between the state in the laboratory and the reconstructed state.

The third project is concerned with the quantum simulation of quantum transport in
a 10-qubit network. The network nodes are represented by 10 trapped ions, coupled via
long-range spin-spin interaction. Integrating an arbitrary waveform generator into our
single-ion addressing setup allows us to disturb the interaction through static energy
mismatch (disorder) and even with dynamic noise of practically any desired spectrum.
Under strong energy disorder and in absence of noise, we observe effects of Anderson
localization. At intermediate noise levels, the transport efficiency is enhanced by an
effect called environment-assisted quantum transport (ENAQT). Under coupling to
strong noise quantum transport is suppressed, indicating the transition to the quantum
Zeno regime. We find that coherences dominate only under the localizing conditions,
while in the ENAQT regime they decay quickly and the transport becomes mainly
diffusive. Furthermore, we observe that the transport efficiency is strongly influenced
by the spectral structure of the applied noise.

The last two projects correspond to experimental realizations of variational quantum
simulation. In the first experiment we simulate the molecular ground-state poten-
tials of H2 and LiH. We apply different trotterized transformations to map the target
Hamiltonian to our ion system, compare the simulation results and study the impact
of entangling gate errors. In the last simulation experiment, the target Hamiltonian
is not directly mapped onto the laboratory system. Instead, the variational circuit
is assembled heuristically in order to leverage the unique capabilities of our quantum
simulator, and at the same time preserve the symmetries of the target model. This
allows us to variationally simulate the lattice Schwinger model with up to 20 qubits - a
previously intractable problem. We determine ground states and the energy gap to the
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first excited state, and observe a quantum phase transition. Finally, we provide algo-
rithmic error bars for the obtained energies and prove self-consistency of the quantum
simulator. With this we address the long-standing challenge of verifying the results of
a quantum simulator.

Zusammenfassung

Diese Dissertation behandelt Experimente an einem Quantensimulator mit bis zu 20
einzel-adressierbaren 40Ca+ Ionen, die in einer linearen Paulfalle gefangen sind. Der
Fokus liegt auf Methoden zur Zustands-Charakterisierung für große Quantensysteme,
sowie der Demonstration dreier Quantensimulationsexperimente.

Mit wachsendem Forschungsinteresse an großen Quantensystemen steigt auch der
Bedarf an effizienten Methoden zu deren Charakterisierung. Die ersten beiden Pro-
jekte dieser Arbeit beschäftigen sich mit der Quantifizierung von Verschränkung sowie
der Zustandsbestimmung großer, lokal-korrelierter Quantenzustände. Unter Auswer-
tung von nur 27 Messbasen gelingt uns der Nachweis von Vielteilchen-Verschränkung
von bis zu fünf benachbarten Qubits in einem System von 20 Qubits. Wir verwenden
dieselbe Anzahl an Messbasen, um erstmals die Methode der Matrix-Produktzustands-
Tomographie experimentell anzuwenden. Damit bestimmen wir den Quantenzustand
von 14 verschränkten Qubits inklusive Fehlerabschätzung und messen eine Überein-
stimmung von (74± 5)% mit dem Zustand im Labor.

Das dritte Projekt zeigt die Quantensimulation von Quantentransport durch ein
Netzwerk von 10 Qubits. Die Knotenpunkte des Netzwerks werden durch 10 Io-
nen repräsentiert, welche über langreichweitige Spin-Spin Wechselwirkungen gekop-
pelt sind. Diese Wechselwirkung kann mit beliebigen statischen Energiebarrieren (Un-
ordnung) und dynamischen Rauschspektren gestört werden. Dazu erweitern wir die
Einzelionen-Adressierung um einen Signalgenerator, welcher beliebige Wellenformen
generieren kann. Bei starker energetischer Unordnung und in Abwesenheit von Rau-
schen beobachten wir Effekte der Anderson-Lokalisierung. Rauschen mittlerer Stärke
steigert die Effizienz des Quantentransports – ein Effekt der als Umgebungs-unterstützter
Quantentransport (ENAQT) bekannt ist. Koppelt das Netzwerk an starkes Rauschen,
so sehen wir eine Unterdrückung des Quantentransports, was den Übergang in das
Quanten-Zeno Regime einleitet. Kohärenzen sind fast ausschließlich im lokalisierten
Fall zu beobachten, während sie im ENAQT-Regime schnell zerfallen und der Trans-
port größtenteils diffusiv verläuft. Weiters sehen wir, dass die Effizienz des Quanten-
transports stark von der spektralen Struktur des Rauschens beeinflusst wird.
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Die letzten vorgestellten Projekte sind experimentelle Realisierungen variationeller
Quantensimulation. Im ersten Experiment simulieren wir die Potentiale molekularer
Grundzustände von H2 und LiH. Wir bilden den Ziel-Hamiltonoperator mit verschiede-
nen digitalen Transformationsmethoden auf unser Ionensystem ab, vergleichen die Sim-
ulationsergebnisse und untersuchen die Auswirkung von Gatterfehlern. Im letzten
Simulationsexperiment wird der Ziel-Hamiltonoperator hingegen nicht direkt auf das
Laborsystem abgebildet. Stattdessen ist die variationelle Quantenschaltung heuris-
tisch aufgebaut, um die einzigartigen Fähigkeiten unseres Quantensimulators zu nutzen
und gleichzeitig die Symmetrien des Ziel-Hamiltonoperators zu erhalten. Diese Vorge-
hensweise erlaubt uns die, bisher nicht durchführbare, Quantensimulation des Schwinger-
modells mit bis zu 20 Qubits. Wir bestimmen die Grundzustände und den Energieab-
stand zum ersten angeregten Zustand und beobachten einen Quantenphasenübergang.
Schließlich ermitteln wir algorithmische Fehlerbalken für die erhaltenen Energien und
belegen die Selbstkonsistenz des Quantensimulators. Dies ist ein Weg, um die Ergeb-
nisse des Quantensimulators zu verifizieren.
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1. Introduction

Quantum theory is the most accurately tested description of the microscopic world. A
deep understanding of our world at the nanoscale level allows us to explain observations
and predict processes of the macroscopic, daily life. For example, in material science
and condensed matter physics [1], chemistry [2] and biology [3] quantum mechanical
theories are applied to characterize complex systems and even predict their behaviour.
Many of these systems are very challenging to access, control and manipulate directly.
As a result, many fields of research focus on efficient modelling and simulation of com-
plex systems. However, already for systems with tens of particles quantum mechanical
calculations become computationally demanding for classical computers. As an exam-
ple, the simple storage of a quantum state with 69 particles requires more memory than
what is available in all technological devices on earth nowadays [4]. Furthermore, the
time-evolution of such a state would require the exponentiation of a 269 × 269 matrix.

At this point, the concept of a Quantum Simulator comes into play, as proposed in the
early 1980’s by Richard Feynman and others [5]. The idea is to employ a highly control-
lable, well accessible system, which itself obeys quantum mechanical laws, to model and
simulate another quantum system. In other words, one utilizes the intrinsic capacity of
the simulator system to contain and process an exponentially large amount of informa-
tion in a relatively small amount of physical space. To date, proof-of-principle quantum
simulators have been experimentally realized on various platforms such as supercon-
ducting circuits, neutral atoms, polar molecules, electrons in semiconductors, nuclear
spins, photonic systems, and ions. Each experimental platform has its advantages and
weaknesses with respect to scalability as well as individual control and readout [6].
Our research group’s expertise lies in experimenting with laser-cooled, trapped ions,
which allows us to repeatedly and reliably prepare a quantum state, to control their
dynamical evolution, create entanglement and carry out quantum measurements with
high efficiency. A lot of research in our group is dedicated to the development of scal-
able ion trap architectures as well as quantum error correction schemes. The excellent
control over all quantum degrees of freedom and the comparably simple mechanism for
trapping and manipulating tens of qubits, makes trapped ions a suitable platform for
quantum simulators [7].
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Nowadays, much research is actively aiming at the realization of quantum devices
with tens of qubits [8–11], to show the first practical application in which quantum sim-
ulators outperform their classical counterparts. For many years, the general definition
of quantum simulation distinguished between digital and analog quantum simulation.
However, recently pioneering experiments [12–15] applied a novel approach to quan-
tum simulation, namely Variational Quantum Simulation (VQS). This method allows
for studying a wide variety of previously intractable target models, beyond the capabil-
ities of analog and digital quantum simulation. In VQS, complex quantum states are
prepared variationally, using a feedback loop between a classical optimization algorithm
and our quantum computer. This approach forgoes the requirement of realizing the tar-
geted system directly in the laboratory, and allows one to use only quantum operations
that are well tailored to the available quantum hardware. However, scalability repre-
sents a key challenge also for VQS. On the one hand, scaling to larger system sizes is
limited by the available quantum computing hardware. On the other hand the number
of variational parameters and the number of required measurements increases rapidly
with system size. Those challenges can be tackled by exploiting intrinsic symmetries
of the system to be simulated, and by using advanced global optimization algorithms
suited for high-dimensional and noisy problems [16]. As soon as quantum simulators
succeed to solve classically intractable problems, we will be concerned with important
tasks: Can we trust the result and how can we verify it? This goes hand in hand with
the necessity to develop efficient tools to characterize large quantum systems.

This thesis focuses on quantum simulation, quantum state estimation, entanglement
propagation and state characterization in a quantum system of up to 20 trapped ions.
The first two chapters introduce the reader to the theoretical background of quantum
theory and ion trapping, as well as the methods for quantum simulations with trapped
ions. This is followed by a chapter which demonstrates the experimental setup and
the technical innovations that pave the way to more complex quantum simulations
with even longer strings of ions. The last three chapters report on experimental work
in the context of quantum simulation with long ion strings. The appendix focuses
on the implementation of certain gates, pulse and measurement sequences and other
mathematical and experimental tools which were applied in the projects discussed in
the previous chapters. In more detail, the thesis is organized as follows.

Chapter 2 discusses the theoretical framework of quantum information science and
how trapped 40Ca+ ions can be employed as qubits and pseudospins.

Chapter 3 firstly introduces the three methods of quantum simulation. Secondly, it
contains both the theory and experimental tools for the realization of quantum
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simulation with trapped ions, from the bare laser-atom interaction, over the cou-
pling to the motion of a trapped ion, to laser-induced spin-spin interactions with
tunable interaction range.

Chapter 4 describes the technical innovations to the existing setup. These innovations
allow Doppler cooling and coherent manipulation of up to 51 qubits, in-sequence
intensity stabilization of the addressing and the collective qubit-manipulation
path, as well as simultaneous and automatized single-ion addressing. Further, the
application of EIT cooling and PG cooling are presented – two efficient methods
for sub-Doppler cooling of long ion strings.

Chapter 5 gives a detailed characterization of large states in our quantum simulator.
We perform measurements for constructing the reduced density matrices of all
groups of three neighbouring particles. This small set of measurements is used to
study the spread of correlations and to extract witnesses for genuine multipartite
entanglement. The second part of this chapter focuses on MPS tomography, a
scheme that can accurately estimate many-qubit states of a broad class of quan-
tum systems with an effort that scales at most polynomially with the number of
particles. We apply MPS tomography to reconstruct and verify dynamical states
of our quantum simulator with up to 14 entangled and individually-controlled
spins – a size beyond the practical limits of full quantum state tomography.

Chapter 6 investigates the transport behaviour of a spin-excitation through a 10-node
network of interacting qubits. We study the interplay between coherent transport,
energy disorder and environment-induced Markovian noise. Not only, we find
effects of Anderson localization under strong disorder. We also observe, that
coupling to intermediate noise levels can increase the transport efficiency and
that the transport is suppressed under strong noise due to the quantum Zeno
effect. The chapter further examines the influence of the spectral structure of
non-Markovian noise to the quantum transport.

Chapter 7 introduces the quantum-classical feedback loop, building the basis of varia-
tional quantum simulation. This is followed by two experimental applications of
this novel technique: The first application presents the variational simulation of
molecular ground states. Using the variational quantum eigensolver method, we
study molecular energy potentials of H2 and LiH as a function of the internuclear
separation. We investigate the influence of measurement noise and decoherence
on this trotterized way of VQS. The second part of this chapter focuses on an
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alternative approach, which only uses quantum operations that are well tailored
to the available quantum hardware. This method allows us to study ground states
of the lattice Schwinger model for up to 20 qubits. The chapter closes targeting
the long-standing challenge of verifying the results of our variational quantum
simulator.



2. Theoretical framework

The experiments presented in this thesis are performed on a state-of-the-art quantum
simulator, based on trapped calcium ions interacting with laser light. The aim of this
chapter is to introduce foundations of quantum theory as well as basic concepts of our
experimental system. First, I define a few technical terms from quantum information
science, concerning quantum states, their manipulation and tomography. This is fol-
lowed by an introduction of the atomic level structure of calcium and a theoretical
discussion on trapping ions in a linear Paul trap.

2.1. Quantum information science

Classical information is processed with digital computers, transmitted via electronic
signals and manipulated with algorithms. Analogous concepts apply to quantum in-
formation science: Quantum information can, for example, be transmitted via photons
and manipulated with algorithms based on quantum logic gates. The following sections
cover an introduction of pure, mixed and entangled quantum states as well as single-
and multiple qubit gates. Further, I discuss methods to estimate the state of a quantum
system in the laboratory.

2.1.1. Quantum bit

The smallest unit of information in classical computers is represented by binary digits or
bits. A bit can take the value of logical 0 or 1, commonly corresponding to two discrete
voltage levels in a transistor. In analogy with their classical counterparts, quantum
computers identify their smallest unit of information as quantum bits or qubits, again
based on two distinguishable states, typically indicated in the Dirac notation as |0〉 and
|1〉, or equivalently |↑〉 and |↓〉. These states can be quantum-mechanical properties,
e.g. the polarization of photons, the excitation state of atoms or the magnetic flux of
artificial structures like superconducting circuits. The key difference to classical bits is
that qubits can also be in superposition states, so in both states |0〉 and |1〉 at the same
time. The properties of a quantum bit are described by its so-called wave function |ψ〉.

5



6 2. Theoretical framework

Pure states

For a single qubit, the wavefunction of a pure state takes the form:

|ψ〉 = c0 |0〉+ c1 |1〉 , (2.1)

with the normalization condition |c0|2 + |c1|2 = 1. The linear combination explicitly
expresses that the system is in a coherent superposition of both the states |0〉 and |1〉.
The coefficients c0 and c1 are complex and can not be measured directly. Only repetitive
measurements permit the determination of the occupation probabilities |c0|2 and |c1|2

of the qubit states |0〉 and |1〉, respectively. For N measurement repetitions, also called
measurement cycles, the corresponding uncertainty of the probability p ∈ [0, 1] is given
by

∆p =

√
p(1− p)
N

(2.2)

and is known as quantum projection noise.
A useful way to write down a pure state is by identifying the two levels as column

vectors |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
, such that a pure state takes the form |ψ〉 =

(
c0

c1

)
.

This vector representation simplifies the formal treatment of a quantum state: a logic
gate that is applied to a qubit corresponds to a rotation operation of the qubit vector on
the Bloch sphere (see next paragraph), which mathematically is realized by matrices.

x

y

z

Figure 2.1.: The Bloch sphere is a tool to visually represent singe-qubit states. A pure quantum
state |ψ〉 lies on the surface of the unit sphere and is defined by two angles (θ, φ). A fully mixed
state, instead, lies in the center of the sphere.

A good graphical representation of a qubit vector and its rotations is provided by
the so-called Bloch sphere. Figure 2.1 illustrates the Bloch sphere together with a pure
qubit state |ψ〉, mapping out a vector of length one and thus lying on the surface of
the unit sphere. Each point on the Bloch sphere is specified by the polar angles (θ, φ)
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with the North pole (θ = 0) and the South pole (θ = π) defining the states |0〉 and
|1〉, respectively. Replacing the coefficients c0 and c1 by the polar angle representation,
Eq. (2.1) can be rewritten as

|ψ〉 = cos
(
θ

2

)
|0〉+ eiφsin

(
θ

2

)
|1〉 . (2.3)

States along other values of θ and φ, thereby correspond to superposition states of
|0〉 = |+〉z and |1〉 = |−〉z, e.g.

|+〉x = 1√
2

(|+〉z + |−〉z) = 1√
2

(
1
1

)
, and

|+〉y = 1√
2

(|+〉z + i |−〉z) = 1√
2

(
1
i

)
. (2.4)

Now, we want to extend this formalism to multiple ions: The total Hilbert-spaceH(N)

for N qubits is constructed by expanding the individual single-qubit Hilbert spaces Hn
with the tensor product:

H(N) =
N⊗
n=1
Hn = Hn ⊗Hn−1 ⊗ · · · ⊗ H1 , (2.5)

following the convention to count qubits from right to left, according to the compu-
tational, binary representation of numbers. Analogously, a pure state of N qubits is
described by the tensor product of the individual states of the subsystems |ψ〉n (see
Eq. (2.1)):

|ψ〉(N) = |ψ〉n ⊗ |ψ〉n−1 ⊗ · · · ⊗ |ψ〉1 . (2.6)

A state that can be written in this fully separable form is called a product state. An
example for such a product state of a two-qubit system is

|ψ〉(2) = (c01 |0〉1 + c11 |1〉1)⊗ (c02 |0〉2 + c12 |1〉2)

= c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 =


c00

c01

c10

c11

 . (2.7)

Here, the notation |ij〉 implies that qubit 1 is in the state i and qubit 2 in state j. The
linear combination, again, specifies the superposition of all four possible combinations
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of states for two qubits. In the vector representation one simply extends the length
of the column vector. This description can be generalized to any number of qubits
such that an N -qubit register is described by 2N coefficients c. This means, that the
amount of information stored in these coefficients grows exponentially with the size of
the register, which is the basis of the huge benefit of quantum computation.

Mixed states and density matrix formalism

The most general way to describe any quantum mechanical system is the density matrix
ρ [17]:

ρ =
(
〈|c1|2〉 〈c1c

∗
2〉

〈c∗1c2〉 〈|c2|2〉

)
=
∑
i

pi |ψi〉 〈ψi| . (2.8)

For a conceptional explanation, consider an ensemble of N identical two-level particles,
with the two levels again represented by |0〉 and |1〉 and their occupation probabilities
|c0|2 and |c1|2. The 〈•〉 in Eq. (2.8) indicates the average value for the ensemble and
pi the probability of finding the quantum system in a pure state |ψi〉, with ∑i pi = 1.
Expression (2.8) allows us to describe not only pure superposition states, as in Eq. (2.1),
but also statistical mixtures of states |0〉 and |1〉. An ensemble with N1 particles in
state |0〉 and N2 particles in state |1〉 is an example for a fully mixed state, described
by:

ρmix =
(
N1/N 0

0 N2/N

)
. (2.9)

Here, each individual particle either has |c1| = 1 and |c2| = 0 or vice versa. For particles
in coherent superposition states, instead, both |c1| and |c2|, and thus 〈c1c

∗
2〉 and 〈c∗1c2〉,

are non-zero. Therefore, non-zero off-diagonal elements in the density matrix identify
the presence of quantum coherences in a system. A parameter which refers to the degree
of mixture of a quantum state is e.g. the purity P (ρ) = Tr(ρ2), with P ∈

[
1

2N , 1
]
, where

P (ρ) = 1 refers to a pure state and P (ρ) = 1
2N to a fully mixed state of an N -qubit

system.

With the above mentioned properties of pure states, the different |ψi〉 in Eq. (2.8)
represent an orthonormal basis of a vector space called Hilbert space H. A convenient
set of orthonormal bases is the Pauli group

1 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 i

−i 0

)
, σz =

(
1 0
0 −1

)
. (2.10)
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With this, the density matrix of a single-qubit, as defined in Eq. (2.1), takes the form

ρ = 1
2(1 + ~n · ~σ), with ~n =


〈σx〉
〈σy〉
〈σz〉

 and ~σ =


σx

σy

σz

 , (2.11)

where 〈σi〉 = Tr(σiρ) denotes the expectation value of the density matrix for the re-
spective Pauli operator σi. This closes the loop to the Bloch vector representation
of a quantum state: the components of the vector correspond to projections onto the
three axis and are equivalent to the expectation values 〈σi〉. For example, the state
|+〉x = 1√

2( 1
1 ) as defined in Eq. (2.4), corresponds to the eigenstate with eigenvalue

+1, of the σx Pauli operator.
Consider dividing a general quantum system ρ into two subsystems A and B. The

state of system A is then defined as the partial trace of ρ over the basis states |j〉B of
system B

ρA =
∑
j

〈j|B ρ |j〉B = TrBρ , (2.12)

where ρA is also called the reduced density matrix of ρ on subsystem A. In words, we
“trace out” system B to be left with the reduced state on A.

Entanglement

One of the most counter-intuitive concepts of the quantum world is entanglement, a
feature which is impossible to simulate within any classical formalism. Formally, an
entangled state is defined as a state which cannot be decomposed into a product of states
of its constituents, as in Eq. (2.7). The total Hilbert space, however, is the product
Hilbert space of the subsystems. A system is in a fully entangled state (with respect to
all its subsystems), if and only if all bipartite partitions generate mixed reduced density
matrices [18], as defined in Eq. (2.12). A popular example for maximally entangled
states in a two-qubit system are the Bell states:

|Φ±〉 = 1√
2

(|00〉 ± |11〉), |Ψ±〉 = 1√
2

(|01〉 ± |10〉) . (2.13)

The entangled, non-decomposable, form of the Bell states implies that the measurement
of the state of one qubit immediately reveals the state in which the other qubit is.
Einstein describes this property a “spooky action at a distance”.

The characterization and measurement of entanglement is a wide field of current
research and is also addressed in Chapter 5 of this thesis. In principle, one can extract
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any information, including entanglement properties, from the full density matrix of a
system. An example for an entanglement measure which is relevant with respect to the
experiments presented in this thesis is the bipartite negativity N (ρ). While it is difficult
to verify entanglement between several subsystems, the negativity is an efficient tool
to verify entanglement in a bipartite mixed state ρAB, consisting of the subsystems ρA
and ρB.

N (ρAB) = ||ρ
TA ||1 − 1

2 =
∣∣∣∣∣∑
n

µn

∣∣∣∣∣ , (2.14)

where µn are the negative eigenvalues of ρTA , the partial transpose of ρAB. Negative
eigenvalues µn are a distinct feature of entanglement between ρA and ρB, while N (ρAB)
vanishes for unentangled states [19]. So, if and only if N (ρAB) > 0 then the subsystems
ρA and ρB are entangled.

With increasing number of qubits in a system it gets soon impossible to reconstruct
its full density matrix (see Subsection 2.1.3). Therefore it is often preferable to describe
a quantum state by other means, for example by its fidelity, which quantifies the overlap
of a given quantum state with another known quantum state.

2.1.2. Quantum logic gate operations

The processor of a classical computer performs millions of binary logic gate operations
(like NOT or NAND) on single or two bits of information. A computer program de-
termines how to link the gate operations to a logical circuit in order to perform the
requested task. Finally, the results are output as a new set of bits.

The basic functioning of a quantum computer is much the same. Quantum logic gate
operations (in the following abbreviated as “gates”) are connected to quantum circuits,
which carry out operations on an input register of N qubits. Finally, measurements
on the new set of output qubits are performed to obtain a set of N classical bits of
information. At this stage it appears that quantum computation has no advantage over
its classical counterpart. However, the key point is that with an input register of N
qubits the quantum processor effectively manipulates 2N amplitude coefficients. For
specific tasks and clever programming, a quantum computer can therefore process and
obtain information much more efficient than a classical machine. A detailed presenta-
tion of quantum algorithms would go beyond the scope of this thesis, but I want to cite
the first algorithm which demonstrated that a quantum computer can be exponentially
faster than a classical one, namely Deutsch’s algorithm [20]. The simulation of complex
quantum systems is another class of tasks which benefits from the use of a quantum
computer (in this context also called quantum simulator). A more detailed discussion
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on quantum simulation follows in Chapter 3.
Just as with its classical counterpart, it turns out that one only needs a very small

number of quantum logic gates (a few single-qubit gates and one multiple-qubit gate)
to perform any quantum computation task [17]. In the following I give a few examples
for the most relevant quantum logic gates with respect to the projects presented in this
thesis.

Single- qubit gate operations

Following the column vector representation of a qubit, a single-qubit gate is described
by a 2× 2 matrix M (

c′0
c′1

)
=
(
M11 M12

M21 M22

)(
c0

c1

)
. (2.15)

The requirement on matrix M is unitarity MM† = 1, which implies that all quantum
gates must be reversible [17]. The effect of a single-qubit gate is to change the amplitude
coefficients ci in the qubits wave function such that

|ψ〉 = c0 |0〉+ c1 |1〉
gateU−−−−→ |ψ′〉 = c′0 |0〉+ c′1 |1〉 . (2.16)

The change of a qubit’s amplitude coefficients corresponds to altering the position of
the vector which represents the qubit on the Bloch sphere (Fig. 2.1). In other words,
gate operations amount to rotations of the qubit Bloch vector.

The Pauli matrices defined in Eq. (2.10) provide a convenient way to describe rota-
tions around the axes k = {x, y, z} of the Bloch sphere. The Pauli eigenstates |±〉k (see
Eq. 2.4) correspond to the points where the respective axis k intersects the surface of
the Bloch sphere. A rotation by an amount θ about an axis k can thereby be expressed
as rotation operator Rk(θ) = cos

(
θ
2

)
1− i sin

(
θ
2

)
σk. More generally, a rotation by θ

about an arbitrary unit vector ~n = (nx, ny, nz) is given by [21]

R~n(θ) = e−i
θ
2~n~σ = cos

(
θ

2

)
1− i sin

(
θ

2

)
(nxσx + nyσy + nzσz) . (2.17)

Furthermore, it follows from Euler’s theorem, that it is possible to decompose an arbi-
trary single qubit operator U into a concatenation of three rotations:

U = eiαRz(δ)Ry(γ)Rz(β) , (2.18)

where Rz and Ry are rotations about the y- and z-axes by the angles β, γ, δ. The
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global phase shift α can be discarded, since the absolute phase of a wave function is
not observable.

To give an example, a θ = π/2 rotation around the x-axis, applied to the basis state
|ψ〉 = |1〉 brings the qubit to the coherent superposition state |+〉y = 1√

2(|0〉+ i |1〉):

Rx(π/2) |ψ〉 = e−i
π
4 σx |1〉 =

[
cos

(
π

4

)
1− i sin

(
π

4

)
σx

](0
1

)

= 1√
2

(
1 −i
−i 1

)(
0
1

)
= 1√

2

(
−i
1

)
= e−iπ/2√

2

(
1
i

)
Eq. (2.4)= |+〉y .

Another important gate maps the basis state |0〉 onto the superposition state |+〉x =
1√
2(|0〉+ |1〉) and is referred to as Hadamard gate H:

H = e
−iπ2

(
σx+σz√

2

)
= 1√

2

(
1 1
1 −1

)
. (2.19)

Considering the example where the qubit is represented by a two-level atom, arbitrary
single-qubit gates can be performed by resonant light-atom interactions, where the
amplitude and phase of the electromagnetic pulse determine the angles of the vector
rotation and thereby the applied gate (details follow in Section 3.2.1).

Multiple- qubit gate operations

Together with the arbitrary single-qubit operations, defined in Eq. (2.17), only one
multi-qubit gate is necessary in order to perform any quantum computation task [17,
22]. The Mølmer-Sørensen (in the following abbreviated as MS) gate is an example for
such a multi-qubit operation [23–25]:

UMS(φ) = e−i
π
4 S

2
φ = exp

−iπ4 ∑
i<j

σ
(i)
φ ⊗ σ

(j)
φ

 , (2.20)

where σ(i)
φ = cos(φ)σ(i)

x + sin(φ)σ(i)
y . The angle φ defines the rotation axis, and σ(i)

x and
σ

(i)
y denote the corresponding Pauli operator acting on qubit i. The effect of the MS gate

is to drive collective state rotations of the involved qubits, as shown in the following
example: Consider two qubits, starting in the state |ψ〉 = |1〉 ⊗ |1〉 = |11〉 =

( 0
0
0
1

)
.
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Applying the MS gate with φ = 0 generates an entangled state:

UMS(π/2, 0) |11〉 = e−i
π
4 σ

(1)
x σ

(2)
x |11〉 = 1√

2


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1




0
0
0
1



= 1√
2


−i
0
0
1

 = 1√
2

(|11〉 − i |00〉) . (2.21)

The advantage of the MS gate over some other entangling gates such as the Cirac-Zoller
gate [26], is its insensitivity to the motional state of the qubit [27]. A more thorough
description of the effects of the MS gate is given in Section 3.3.2 and instructions for
the experimental implementation of MS gates in our setup are given in Appendix B.

Decoherence and error correction

The manipulation of coherent superposition states builds the basis for reliable quantum
computation. Uncontrolled coupling to the environment introduces noise that triggers
random behaviour. For example, thermal motion of surrounding particles could cause
a qubit to flip its logical state randomly and thereby lose the stored quantum infor-
mation [17]. This fragility of qubits is due to what is called decoherence. Traditionally
we distinguish between two types of decoherence processes, quantified by the time con-
stants T1 and T2: (i) The T1 process describes coherence loss due to spontaneous,
stochastic decay, or “relaxation”, of the excited qubit state. The relaxation rate is
governed by the lifetime of the excited level. (ii) The T2 constant describes a dephasing
process, where the phase of the qubits wavefunction is scrambled e.g. due to laser
intensity noise.

The number of gates that can be performed before decoherence destroys superposi-
tion states, is given by NG = min(T1,T2)

TG
, with TG denoting the required time to perform

the gate operation. Table 2.1 compares NG for a few physical systems commonly used
for quantum computation. Apparently a trade-off has to take place: On the one hand
a strongly isolated quantum system, which barely interacts with its environment, is
preferable. On the other hand such a system is unsuitable for quantum computation,
as we have to efficiently interact with it to perform gate operations. Therefore, the de-
velopment of fault-tolerant quantum computation protocols has drawn great attention
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System T2 (s) TG (s) NG (s)
Trapped ions [28] 60 10−6 106

Superconducting flux qubits [29] 10−4 10−8 104

Quantum dots [30] 10−4 10−7 103

Table 2.1.: Decoherence times T2, two-qubit gate operation times TG and number of gate
operations NG before decoherence occurs. The listed physical systems are potentially scalable
and therefore commonly considered as suitable for quantum computation [17].

over the last two decades: Analogously to classical error-checking protocols, there exist
quantum error correction algorithms to correct for decoherence effects [31, 32]. The
idea is to use additional ancilla qubits, and to apply syndrome measurements to re-
trieve information about a potential error, without disturbing the quantum information
in the encoded state. The syndrome measurement tells us not only whether a qubit
has decohered but also which qubit was corrupted and in which way (state or phase
flip). Based on this, correction operations can be applied to reconstruct the original
quantum state. Experimental demonstrations of quantum error correction in ion trap
systems have already been carried out, e.g. in Refs. [33, 34].

2.1.3. Quantum state tomography

Quantum state tomography denotes the experimental determination of a density matrix
by performing measurements on the system, without any initial information about it.
The knowledge of the precise density matrix allows one to answer any question about
the state of a quantum system (e.g. regarding entanglement or purity). Full state
tomography is based on the concept given in Eq. (2.11) for the case of a single qubit:
Any quantum state can be decomposed into a sum of operators O (which form a
basis of the Hilbert space), that are multiplied by their respective expectation values.
Typically, the Pauli group is chosen as the set of orthonormal bases of the Hilbert
space: O ∈ {σx, σy, σz}. Therefore, by measuring the expectation values 〈σi〉 = Tr(σiρ)
for the respective Pauli operators, the density matrix ρ of the quantum system can
be reconstructed. For an N -qubit system this amounts to applying 3N measurement
settings, which is highly demanding for large systems.
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Linear reconstruction

A straight-forward linear reconstruction of the quantum state

ρlin = 1
2 (1 + 〈σx〉σx + 〈σy〉σy + 〈σz〉σz) (2.22)

is mathematically correct, however, experimentally it is not possible to determine
the expectation values, and thereby the quantum state, with absolute precision. For
example, to estimate 〈σx〉 the observable σx is measured a large, but only finite number
of times, m, and the outcomes x1, x2, ..., xm are all equal to +1 or −1. For large m, the
distribution of the outcomes is approximately Gaussian, with the mean ∑i xi/m being
an estimate for 〈σx〉 [21]. The related uncertainty is determined by quantum projection
noise, given in Eq. (2.2) and imperfect experimental control. Employing Monte-Carlo
simulations [35], the mean density matrix and its standard deviation is derived. A
drawback of the linear reconstruction method is that the obtained density matrices may
not necessarily be physical (i.e. result in normalized and positive hermitian matrices).
Fig. 2.2 a) visualizes the problem for a single-qubit quantum state: In particular for
pure states, the finite number of measurements and imperfect experimental control may
result in unphysical density matrices with negative eigenvalues, i.e. Tr(ρ2) > 1.

y
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0

1

1

a) b)

Figure 2.2.: Sector of a Bloch sphere (gray) with two axes of coordinates. A physical quan-
tum state has to lie on (red point) or within the Bloch sphere. The coordinates of the point
correspond to the states expectation values of σx, σy, σz. a) Projection noise and imperfect ex-
perimental control induce uncertainties on the expectation values (yellow halo). A bare linear
reconstruction may return a density matrix which lies outside the Bloch sphere. b) Simply
restricting the reconstruction of a quantum state to a physical density matrix may return a
state without overlap with the actually measured state.

Maximum likelihood reconstruction

One solution to the possible predictions of unphysical density matrices from a simple
linear reconstruction is the maximum likelihood estimation (MLE) [36]. It implements
the constraint on the estimated density matrix ρMLE to be physical, directly in the
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evaluation: A likelihood function L is maximized, to find a physical density matrix
which fits the measured data best [37, 38]

ρMLE = arg max
ρ
{L(M, ρ) | ρ ≥ 0} . (2.23)

Here, L(M, ρ) = ∏
i(Tr[Miρ]) denotes the likelihood of the semipositive density matrix

ρ to generate the measured data M = {M1,M2,M3, ...Mm}, with Mi representing the
operator of the i-th observation. Since L has a unique local maximum at ρlin, it can be
shown that if ρlin lies outside of the closed region of physical states, ρMLE must lie on
the boundary of that region (see Fig. 2.3) [38]. In other words, MLE is a minimal fix for
tomography, returning the physical state that is closest to ρlin. MLE is the commonly

lin

unpyhsical tomographic 

estimates

Physical states

Figure 2.3.: Comparison of single-qubit state estimations reconstructed via different methods.
The shown domain is a cross section of the Bloch sphere (e.g. along the equator). The density
matrix ρlin, resulting from straight-forward linear reconstruction, lies in the unphysical area
(blue). The constrained state ρMLE, reconstructed via MLE, lies on the boundary between the
physical (orange) and unphysical region. (Picture adapted from Ref. [38])

used tomography method in Innsbruck, even though it has some flaws; e.g. it typically
yields a density matrix estimate with one or more zero eigenvalues. Such an estimate
implies that some measurement outcomes are impossible, which can not be justified by
any finite amount of data.

An alternative tomography procedure, also not without drawback, is Bayesian mean
estimation (BME). In contrast to MLE, it does not search a unique maximally likely
state, but additionally considers other states that are slightly less plausible. The basic
principle is that the final estimate is an average over all states which are consistent with
the data, weighted by their likelihood. Further discussion can be found in Refs. [38, 39].



2.1. Quantum information science 17

Matrix Product State tomography

Experimentally, it is highly demanding to obtain the full density matrix of a multiple-
qubit system, as the matrix grows exponentially with the number of qubits. Therefore,
both full tomography methods discussed above soon become impractical for many-
body systems with more than a few qubits. An alternative approach is Matrix Product
State (MPS) tomography [40], which accurately estimates many-qubit states of a broad
class of quantum systems, with an effort that increases at most polynomially with the
number of constituents [41].

MPS tomography is suited for states in which significant quantum correlations only
exist over a maximum distance. The information required to identify such states is
typically accessible locally. MPS tomography recognizes this property and requires only
measurements on subsets of qubits of the same neighbourhood, in order to estimate
the state in the laboratory. Such locally correlated states are e.g. generated during the
dynamical evolution of systems with short-ranged interactions. In Chapter 5 I present
the MPS tomography scheme and its experimental application in more detail. Note
that the applied protocol expects pure states and also returns pure state estimates.
The scheme is in principle also applicable to mixed states, but without the possibility
of certifying the estimated states.

Quantum compressed sensing

Quantum compressed sensing is another technique to reconstruct a quantum state
by measuring only a subset of all 3N observables. This mitigates the unfavourable
scaling of the measurement and computation effort with increasing system size. The
method relies on “compressed sensing”, a technique that is widely used in the field
of classical data analysis with applications in image processing, seismology, wireless
communication and many more [42]. This technique recovers a vector with only a
few non-zero entries in a specified basis, using a small number of measurements that
are linear functions of the vector entries. Choosing a small number of measurements
randomly (in a certain precise sense), allows one to uniquely determine the vector by
an efficient convex optimization algorithm [43, 44].

Quantum compressed sensing is most effective on density matrices with a small num-
ber of dominating eigenvalues – this is, quantum states which are close to pure states.
This is usually the case, as most quantum information experiments apply near-unitary
processes to pure states, which again generate quantum states close to pure states,
described by a low-rank density matrix. The reconstruction of such a matrix with
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dimension d and rank r � d, requires only O(rd log2(d)) measurement settings. De-
spite the still exponential scaling, the improvement can be considerable, compared to
standard full tomography methods that require d2 parameters. The acquired data is
also used to certify that the state is close to pure, so no a priori assumptions are
required [42]. Quantum compressed sensing protocols have been experimentally imple-
mented on diverse quantum platforms to characterize quantum states [45, 46] as well
as quantum gates [47, 48].

Direct Fidelity Estimation

In contrast to quantum state tomography, state verification checks by how much an
arbitrary experimental state overlaps with another given quantum state. While state
verification requires less resources than tomography and may be up to exponentially
faster [49, 50], a priori assumptions are necessary to find a reasonable state to which the
overlap is measured. An example for a verification method is direct fidelity estimation,
which is discussed in Section 5.2.3, on the basis of an experiment.

2.2. Trapped Ca+ as qubit and pseudospin

Our experimental platform is based on 40Ca+ ions confined in a linear Paul trap. In the
following I will present the atomic structure of the singly ionized calcium ion and explain
why it represents a suitable qubit/pseudospin1 for quantum computation/simulation.
The chapter closes with a discussion on the techniques and consequences of confining
ions in a linear Paul trap.

2.2.1. Atomic structure of Ca+

40Ca is an alkaline-earth element with two outer valence electrons in the 4s shell and no
nuclear spin, so no hyperfine splitting. The singly charged 40Ca+ ion has a single outer
valence electron and therefore a hydrogen-like electronic level structure. The three
lowest orbitals, shown in Fig. 2.4 a), can be coupled with commercially available solid
state lasers. The spectroscopic notation n(2S+1)LJ used here, defines an electronic level
by its quantum numbers n, L, S, J . Here, n is the principal quantum number and the
capital letter L designates the electronic orbital2, (2S+1) denotes the spin multiplicity,

1The terms qubit and pseudospin-1/2 are equivalent, but are typically used in the context of quantum
computation and simulation, respectively.

2The electronic orbitals are identified with quantum numbers L or capital roman letters L:
0 =̂ S, 1 =̂ P, 2 =̂ D, 3 =̂ F ...
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42S1/2

32D3/2
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Figure 2.4.: Reduced energy level scheme of 40Ca+. a) Schematic level scheme with wave-
lengths and decay probabilities (in %) for the relevant transitions with regards to the experi-
ments presented in this thesis. Doppler cooling and state detection are carried out on the fast
cycling dipole transition S1/2↔P1/2 with 397 nm laser light. The qubit is encoded in two Zee-
man sublevels of the S1/2↔D5/2 quadrupole transition with a linewidth of Γ/(2π) = 136 mHz
and is manipulated with 729 nm laser light. Two infrared lasers pump out the metastable D-
states to prevent population trapping. b) A magnetic field of about 4 G lifts the degeneracy
of the Zeeman states, identified by the quantum numbers mj . In all experiments discussed in
this thesis the qubit is encoded in the states |1〉 = |↓〉 ≡ |S1/2,mj = 1/2〉 and |0〉 = |↑〉 ≡
|D5/2,mj = 5/2〉.

in which the spin quantum number S for a system with a single valence electron is
S = 1/2. The spin-orbit interaction3 induces energy shifts such that a level with the
orbital quantum number L splits into two sublevels J = L ± 1/2. The electronic
levels addressed within this thesis are distinguishable even without mentioning the
quantum numbers n and S, which justifies an abbreviated notation: n(2S+1)LJ → LJ ,
e.g. 42S1/2 →S1/2.

Additionally, an external magnetic field induces the so-called Zeeman effect, lifting
the degeneracy of each electronic level, which is split into mj sublevels ranging from
−J to +J (Fig. 2.4 b)). The corresponding energy shift for a magnetic field Bz along
an axis z (the quantization axis) is given by

∆E = −µzBz = gJ µBmj Bz . (2.24)

The z-component of the magnetic dipole, µz, of the atom is given by the Landé fac-
tor gJ = 1 + J(J+1)+S(S+1)−L(L+1)

2J(J+1) , the Bohr magneton µB and the number of the
corresponding Zeeman level mj . As an example, for the magnetic field typically used
in our experiment Bz = 4.18 G, the ground state S1/2 splits into two sublevels with
mj = ±1/2 with a frequency difference of ∆S = 11.7 MHz.

3This can be understood as the interaction between the magnetic field induced by the motion of the
electron in its orbit, and the magnetic dipole associated with the spin of the electron.
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Considering the criteria of David P. DiVincenzo [51], trapped 40Ca+ ions represent
suitable candidates for quantum computation and simulation:

1. Well characterized qubits: An optical qubit/pseudospin-1/2 can be encoded
in the ground state |1〉 = |↓〉 ≡ |S1/2,mj = 1/2〉 and the metastable excited state
|0〉 = |↑〉 ≡ |D5/2,mj = 5/2〉. The latter has a lifetime4 of τ = 1.168(7) s [53],
which is 4 − 5 orders of magnitude longer than the duration of typical quantum
gates. Although this stretched state is more sensitive to magnetic field noise, we
use it for most experiments presented in this thesis as it has two major advantages
over other Zeeman levels: (i) Its motional mode spectrum has less overlap with
other levels. This reduces the chance of undesired coupling to other levels, which
becomes important in spin-spin interaction experiments with many ions. (ii) It
can be efficiently used for sideband cooling. More detailed considerations on spin-
spin interactions and motional mode coupling can be found in Sections 3.2.3 and
3.3.

2. The ability to initialize a simple fiducial state: The fast-cycling elec-
tric dipole transition S1/2 ↔ P1/2 at 397 nm is used to perform Doppler cool-
ing [54, 55], aided by a laser beam at 866 nm which repumps population from
the metastable D3/2 state back into the cooling cycle. The minimum achievable
temperature (Doppler limit) for 40Ca+ is TD ≈ 0.5 mK.

Sideband cooling [56, 57] to the motional ground state is achieved by exciting the
red sideband of the |D5/2,mj = 5/2〉 level (see Section 3.3.1) and quenching on
the D5/2 ↔ P3/2 transition with 854 nm light.

Finally, the electronic state can be initialized reliably using the frequency-resolved
729 nm-optical pumping technique, which transfers population from the
|S1/2,mj = −1/2〉 to the |D5/2,mj = 3/2〉 state. Following the dipole selec-
tion rules, 854 nm light pumps the population to the |P3/1,mj = +3/2〉 and
|P3/1,mj = +1/2〉 levels from where it decays predominantly to the |S1/2,mj =
1/2〉 ground state. In our experiment, the |S1/2,mj = 1/2〉 state is initialized
after repeating this pumping cycle for 200µs.

3. A universal set of quantum gates can be realized with arbitrary single-qubit
rotations (Section 3.2.2) and the MS entangling gate (Section 3.3), with typical

4Defining the qubit on a quadrupole transition reduces the spontaneous decay rate of the excited
qubit state (and therefore extends its lifetime) by a factor f ≈ (ka0)2 compared with a dipole
transition [52]. Here, k = 2π/λ is the wave number and a0 is the Bohr radius.
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gate operation times between 2− 100µs.

4. Coherence times much longer than the gate operation time: In our
experiment, the transition between the qubit states is driven using a laser at
729 nm with a linewidth of ∆νFWHM = 12 Hz, measured over 50 s [58]. Together
with Samarium-Cobalt permanent magnets5 defining our quantization axis, the
qubit has a coherence time of over 60 ms [60].

5. Qubit measurement capability: The quantum state can be detected with al-
most unity fidelity [61], using the electron shelving technique [62]: If the electron
populates the S1/2 state, a 397 nm laser can drive the strong S1/2 ↔ P1/2 transi-
tion. Additional 866 nm light repumps on the D3/2 ↔ P1/2 transition and causes
millions of 397 nm-photons to be scattered per second – the ion fluoresces. If the
electron populates the D5/2 state instead, the 397 nm laser can not drive any tran-
sition and no photons will be scattered – the ion remains dark. A back-lit electron
multiplying charged coupled device (EMCCD) camera detects the fluorescence,
and is able to spatially resolve the individual emitters simultaneously such that
the actual quantum state of the entire string can be identified. Qubit rotations
prior to the state detection allow us to measure quantum states in arbitrary bases.

More details on Doppler cooling, state detection, optical pumping and 40Ca+ spec-
troscopy performed in our experiment can be found in C. Hempel’s PhD thesis [63].

2.2.2. Ion trapping

The first step to confine 40Ca in an ion trap is to ionize them in a two-step photoion-
ization process: We run a current of ∼ 2.6 A through a commercial calcium source6 to
evaporate neutral calcium in a beam directed towards the ion trap. A tunable laser
at 422.79 nm excites an outer valence electron from the 4s2 1S0 ground state to the ex-
cited 4s4p 1P1 level. Note that the wavelength of this first ionization step selects which
calcium isotope7 will be ionized and subsequently trapped. The second ionization step
transfers the electron into continuum and thus requires a wavelength below 390 nm (we
use a laser at 375 nm).

5 Sm2Co17 permanent magnets from BVI-Magnet GmbH have a remanence of > 1 T with a temper-
ature dependence of 0.015 %/K - the lowest value known to us for common permanent magnets.
Thereby, the provided magnetic field, and wit that the transitions between the Zeeman levels, are
insensitive to temperature changes in the laboratory, resulting in longer coherence times [59].

6Alvatec AS-2-Ca-50-C
7There are six naturally occurring Ca isotopes 40Ca, 42Ca, 43Ca, 44Ca, 46Ca, 48Ca, where 40Ca has

the highest natural abundance of 96.94(16)%. The isotope shifts on the relevant transition for the
first ionization step lie between 393− 1513 MHz [64].
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Figure 2.5.: Schematic of a linear Paul trap from two perspectives. A DC voltage UDC
applied on tip-shaped electrodes generate a static electric potential Φax along the z-axis. In
our experiment, the tip electrodes have holes of 0.5 mm in diameter for optical access along the
principal axis of the ion string. A time-dependent voltage Ur + VRF cos(ΩRF t) applied to one
pair of radio frequency electrodes (RF-blades) creates a confining quadrupole potential Φrad in
the xy-plane. The distance from the trap center to the surface of the radial and tip electrodes
is denoted by r0 and z0, respectively.

The singly ionized 40Ca+ is then confined by a Paul trap [65, 66], which creates a
quadrupole potential for charged particles. This section only offers a brief summary of
the equations and dynamics of linear Paul traps as the topic has already been discussed
in great detail in literature (for example, Refs. [67, 68]). Typical linear Paul traps
consist of two pairs of electrodes which provide the confinement of an ion string in
the radial or x, y-plane, using dynamic electric fields (radio frequency). An additional
pair of tip-shaped electrodes provides axial confinement using a static electric field (see
Fig. 2.5). The trapping potential Φ can be decomposed into a static axial part Φax and
a time-dependent radial part Φrad which varies sinusoidally with the radio frequency
ΩRF applied to the RF-blades. The lowest-order terms of a Taylor expansion around
the center of the trap, are good approximations8 for the trapping potential:

Φrad(x, y, z, t) = Ur + VRF cos(ΩRF t)
2r2

0

(
αxx

2 + αyy
2 + αzz

2
)

Φax(x, y, z) = UDC
2z2

0

(
βxx

2 + βyy
2 + βzz

2
)
. (2.25)

Here, VRF and ΩRF are the peak amplitude and frequency of the RF drive, respectively.
Ur is a DC bias voltage optionally applied to one of the RF-blade pairs and r0 denotes
the distance from the trap axis to the surface of the RF-blades (see Fig. 2.5). UDC

describes the static voltage applied to the tip electrodes for axial confinement and z0

8Higher order terms (anharmonicities) only become important when the size of the trapped particle or
the amplitude of its motion are comparable to the spacing between the particle and the electrodes.
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the distance from the center of the trap to the surface of the tip electrodes. Every
potential in freespace has to fulfill the Laplace equation ∆Φ = 0 at any instant in time,
which leads to restrictions in the geometry factors: ∑i αi = 0 = ∑

i βi. Ideal linear
Paul traps obey these conditions by choosing

αx = −αy , αz = 0 and

−(βx + βy) = βz > 0 e.g. βx = βy = −1
2βz . (2.26)

Classically, the motion of a particle with mass m and charge Q, trapped in the
potentials (2.25), can be described by Mathieu’s differential equations

d2x

dξ2 + [ax − 2qx cos(2ξ)]x = 0 , with the substitutions

ξ = ΩRF t

2 , ax = 4Q
mΩ2

RF

(
αx
Ur
r2

0
− βx

UDC
z2

0

)
, qx = αx

2QVRF
mΩ2

RFr
2
0

(2.27)

and analogously for the other directions y, z. Considering the relations in Eq. (2.26),
stable solutions for a trapped particle in a linear Paul trap are found in all three
dimensions. The resulting particle trajectory is approximately

ri(t) ≈ Ai cos(ωit)
(

1− qi
2 cos(ΩRF t)

)
, (2.28)

with i ∈ {x, y, z}. This trajectory corresponds to a superposition of two motions:
harmonic oscillations with amplitude Ai and frequency ωi = ΩRF/2 ·

√
ai + q2

i /2, called
secular motion, and fast, driven excursions at the trap drive frequency ΩRF, called
micromotion. Using the relations from Eq. (2.27), the secular frequencies are given by:

ωz =
√

2βxQUDC
mz2

0
,

ωx =
√
αxQUr
mr2

0
+ (qxΩRF)2

8 − ω2
z

4 , ωy =
√
−αxQUr

mr2
0

+ (qxΩRF)2

8 − ω2
z

4 . (2.29)

From these equations we can see that the axial trapping voltage UDC directly influ-
ences the radial motional modes: a stronger axial confinement decreases the radial
frequencies. Further, a DC bias voltage Ur applied to one pair of RF-blades, lifts the
degeneracy of the two radial motional frequencies ωx, ωy.

In the quantum-mechanical picture, an ion confined in a quadratic potential can be
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Figure 2.6.: Left panel: The simplified two-level picture of a qubit with two electronic levels
defining the states |↓〉 , |↑〉, split by an energy ~ω0, is combined with the harmonic oscillator
eigenstates |0〉 , |1〉 , ... of a trapped particle. Right panel: Combined level picture of a har-
monically trapped qubit.

described as harmonic oscillator in a static potential [69–71] with the Hamiltonian

Hosc = p2
i

2m + 1
2mω

2
i x

2
i = ~ωi

(
n̂i + 1

2

)
, i ∈ {x, y, z} . (2.30)

The number operator n̂i = â†i âi is defined by the harmonic oscillator raising and low-
ering operators â†i , âi with the properties

a† |n〉 =
√
n+ 1 |n+ 1〉 , a |n〉 =

√
n |n− 1〉 . (2.31)

The quantized harmonic oscillator eigenstates |n〉, called Fock states, indicate the num-
ber of motional quanta (phonons) n in the system. Combined with the electronic levels
defining the qubit states (Section 2.2.1) a trapped-ion qubit has a ladder-like level
structure (Fig. 2.6).

The alignment of multiple ions in a linear Paul is governed by the balance between
the mutual Coulomb repulsion of the ions and the force provided by the axial trapping
potential Φax. Typically, the axial potential is chosen such that the ions align as a string
along the trap axis. The frequencies for the center-of-mass motion of the ion string in all
three directions are equivalent to Eqs. (2.29). Already for four ions, the determination
of the other motional mode frequencies involves numerical calculations [72]. However,
the harmonic oscillator picture from Eq. (2.30) and Fig. 2.6 holds for all common
motional modes. Laser coupling to these collective motional modes allow the qubits
to interact and share information independent of their location in the ion chain (see
Chapter 3).



3. Quantum simulation with trapped ions

In contrast to other linear Paul trap experiments in our group, we concentrate more
on quantum simulation instead of quantum computation. More precisely, we specialize
on spin-spin interactions using the transverse motional modes of long ion strings. In
the first part of this chapter I introduce different approaches to quantum simulation.
The second part discusses how we realize effective spin-spin interactions with tunable
interaction range in our laboratory.

3.1. Quantum simulation

Quantum theory is the most accurate and best-tested description of the microscopic
world, from which many observations of our macroscopic world can be deduced. Many
systems in material-science and condensed matter physics, chemistry and biology are
extremely difficult to access, control and manipulate directly, such that efficient mod-
elling and simulation has become a great cornerstone in research during the past two
decades [6]. However, already for systems with rather few constituents (tens of quantum
particles), quantum mechanical calculations become extremely demanding for classical
computers. Already the simple storage of a quantum state of 69 particles requires
more memory9 than what is available in all technological devices on earth nowadays
(based on estimates in Ref. [4]). Simulating the time evolution of a quantum system
with N constituents is even more challenging, as it corresponds to solving a differential
equation represented by a 2N × 2N matrix.

This is when the concept of a Quantum Simulator comes into play, as proposed in
the early 1980’s by Richard Feynman and others [5]. The idea is to employ a highly
controllable, well accessible system which itself obeys quantum mechanical laws, to
simulate a complex quantum system of interest. Trapped ions allow experimenters
to repeatedly and reliably prepare a quantum state, control its dynamical evolution,
create entanglement and carry out quantum measurements with high efficiency (cf.

9A quantum state vector for N = 69 qubits, has 2N complex coefficients. Storing these as 2N+1

double-precision floating numbers (8 bytes per number), requires 2N+1 · 8 bytes ≈ 9 ZB of memory.

25
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Section 2.2). This control over all quantum degrees of freedom makes trapped ions
suitable candidates for realizing quantum simulators [7].

As soon as quantum simulators solve classically intractable problems, an important
question arises: Can we trust the result or how can we verify it? One possible solution
is to perform checks across different quantum platforms and simulation techniques. In
the following I present three approaches to quantum simulation, differing in the way in
which the Hamiltonian of interest is implemented, in error sensitivity and also in the
requirements for the available gates and interactions.

3.1.1. Digital quantum simulation (DQS)

The time evolution of a quantum system under a certain (time-independent) Hamilto-
nian Hsys is defined as a unitary operator U acting on an initial state |ψ(0)〉: |ψ(t)〉 =
U(t) |ψ(0)〉 = e−iHsyst |ψ(0)〉. The direct implementation of the evolution operator U
is only possible in specific cases (cf. analog quantum simulation). A digital quan-
tum simulator, however, encodes the initial state of the system of interest in qubits
and translates its unitary dynamics into a circuit of elementary universal quantum
gates [73]. The underlying principle is, that any Hamiltonian can be approximated by
a sum of local10 Hamiltonians Hj , such that Hsys ≈

∑m
j Hj . For the case that all in-

dividual local terms commute, [Hj , Hk] = 0, the unitary dynamics can be decomposed
into

U(t) = e−iHsyst = e
−i
∑m

j
Hjt =

m∏
j

e−iHjt , (3.1)

corresponding to a sequential application of Hj ’s, which are realized with circuits of
single- and multi-qubit gates. For general Hamiltonians, however, the commutation
relation above does not hold and the decomposition of the unitary into local gates has
to be performed using the Trotter expansion [21, 74]:

U(t) = e−iHsyst = e
−i
∑m

j
Hjt = lim

n→∞

∏
j

e−iHjt/n

n , n ∈N . (3.2)

In words, the evolution under each local Hamiltonian Hj is divided into discrete time
steps, t/n, and the sequential application of all truncated Hj ’s defines one block, or
Trotter step (see Fig. 3.1). This block is repeated n times to add up to a total simulation
time t. The finer the temporal slicing, the more Trotter steps n have to be performed

10The terminology local Hamiltonian refers to Hamiltonians whose interaction strength decays with
increasing distance.
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and the better the time dynamics of the system is approximated. For infinitely small
time steps t/n forn→∞−−−−−→ 0, the approximation of Hsys becomes exact. Theoretically, the

for

... ...
encoding time evolution read-out

Figure 3.1.: Digital quantum simulation based on Trotter expansion. The initial state
|ψ(0)〉 is encoded in a set of qubits. The states time evolution under a Hamiltonian H is
approximately simulated using the Trotter expansion of order n. H is decomposed into a sum
of local Hamiltonians H1, H2, H3, realized by a combination of single- and multi-qubit gates
(denoted by orange and yellow blocks in the inset). All local interactions are subsequently
applied, each for a time t/n, defining one Trotter step. This sequence is repeated n times to
add up to a total simulation time t, and finally the evolved state |ψ(t)〉 is measured.

digital quantum simulation scheme allows for simulating the evolution of any system
with local interactions, while the complexity of the simulation grows only polynomially
with the number of qubits [75]. In practise, n is finite and the related approximation
errors can be minimized only at the expense of an increasing number of concatenated
gates. Unfortunately, experimental gates have errors themselves and a trade-off be-
tween approximation errors and cumulative gate errors has to be found. To utilize its
full universality potential, a freely programmable, universal quantum computer with
correction schemes for gate errors would be desirable. Moreover, the simulation of
quantum systems with many particles requires scalable quantum computer architec-
tures, whose development is still a long-term goal [76, 77]. In terms of a practical
implementation in the near future, analog quantum simulation (see next subsection) is
more advantageous.

3.1.2. Analog quantum simulation (AQS)

An analog quantum simulator mimics the evolution of the system of interest, Hsys,
directly. That is, by mapping Hsys onto controllable interactions and parameters, nat-
urally available in the simulator: Hsys ↔ Hsim. The main task in this scheme is to
identify the accessible control parameters in the simulator system and relate them with
the relevant variables of the simulated system. Sometimes it even requires additional
externally applied fields or ancillary systems to mediate various interactions [6]. The
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accuracy of AQS is mainly limited by the quality of the state preparation, the read-out
of the result and the degree to which the simulator can reproduce the dynamics of the
system of interest. Moreover, analog quantum simulators lack error correction proto-
cols. However, an important advantage over DQS is the smaller sensitivity to errors,
because valuable qualitative answers (e.g. the occurence of a quantum phase transi-
tion [78]) can be obtained even without perfect parameter control or full quantitative
agreement between simulator and simulated system. The drawback of this approach is
that simulator and simulated system have to be sufficiently similar, such that the class
of problems that can be simulated is limited by the available simulator interactions [73].
A demonstration of AQS on our experimental apparatus is presented in Chapter 6.

3.1.3. Variational quantum simulation (VQS)

Variational quantum simulation represents a third, new method of quantum simulation,
based on quantum-classical hybrid algorithms which variationally optimize a given cost
function. The VQS feedback loop (Fig. 3.2) basically consist of three steps:

1. The simulator prepares a quantum state |ψ(θ)〉 by applying a quantum circuit,
which is based on the naturally available gates of the simulator and a related set
of control parameters θ.

2. The cost function of interest is measured. For example, the cost function to simu-
late the ground state of a target Hamiltonian, ĤT , corresponds to the expectation
value: E = 〈ψ(θ)| ĤT |ψ(θ)〉.

3. A classical computer calculates the cost function from the measurement results.
Further, it employs an optimization algorithm to minimize the cost function by
varying the parameter set θ, which is then handed over to the quantum simulator.

Steps 1 − 3 are repeated until the optimization converges. The variational principle
implies that, in the absence of experimental imperfections, the cost function E is always
bigger or equal to the lowest eigenvalue of ĤT .

In summary, the quantum device performs the computationally expensive generation
and evaluation of potentially highly entangled states. The classical computer, instead,
is employed to solve noisy, high-dimensional and gradient-free optimization problems.
In this quantum simulation scheme, the target Hamiltonian only exists as a measure-
ment prescription and is never realized physically in the experimental quantum device.
This endows the approach with great flexibility in the models which can be simulated.
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Figure 3.2.: VQS quantum-classical feedback loop. A quantum simulator generates a
state |ψ(θ)〉 by applying a sequence of gates, e.g. multi-qubit entangling gates (green boxes)
and single-qubit rotations (blue circles). Individual gate settings are controlled by a set of
parameters θ. State read-out is performed in the measurement bases (gray boxes) relevant
for the reconstruction of the cost function of interest. A classical CPU runs an optimization
algorithm to minimize the cost function and hands over new parameters θ to the quantum
device.

The requirements that the quantum device has to meet are high experimental repeti-
tion rates, a fast exchange between the classical- and quantum co-processors and an
advanced classical optimization algorithm.

Pioneering experiments employed VQS on 2 to 6 qubits, to successfully tackle com-
plex problems in quantum chemistry [13, 14, 79, 80], as well as condensed matter and
high-energy physics [12, 15]. Combining quantum variational techniques with a state-of
the art, potentially scalable, analog quantum simulator unites the advantages of DQS
and AQS. This enables the simulation of large, complex Hamiltonians, which are out
of reach for AQS and DQS, as we could show in Ref. [16]. A more thorough discussion
on variational quantum simulation and the respective experiment performed in our
laboratory, follows in Chapter 7.
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3.2. Laser interaction with a harmonically trapped, two-level
atom

This section presents an overview on the interaction of coherent laser light with a two-
level atom, confined in a harmonic trap. First, a review of the manipulation of the bare
electronic states, and the experimental realization of single-qubit rotations is given.
Finally, I discuss the manipulation of motional levels and the coupling of electronic and
motional degrees of freedom.

3.2.1. Laser light and a two-level atom

First, we focus on the case where a two-level atom, representing a qubit, is held at a
fixed position in space and excited by a laser beam. The full Hamiltonian, describing
the bare atom Ha and the atom-light interaction Hal is given by [68]

H = Ha +Hal = ~ω0
2 σz + ~Ω(σ+ + σ−) cos(ωl t+ φl) . (3.3)

The two atomic levels are typically labelled as |g〉 = |−〉z (ground state) and |e〉 =
|+〉z (excited state). They correspond to the eigenstates of the σz Pauli operator (cf.
Section 2.1.1) and are split by an energy ~ω0. Frequency and phase of the laser light
are denoted ωl and φl, respectively. The operators σ+, σ− describe the excitation and
de-excitation of the electronic state: σ+ = |e〉 〈g| , σ− = |g〉 〈e|. Finally, the Rabi
frequency Ω accounts for the coupling strength between the atom and the laser field.
More precisely, for the optical qubit used in our experiments (see Section 2.2.1) the
coupling mechanism is defined by the interaction of the atomic quadrupole moment Q̂
with the electric field gradient Hl = Q̂ · ∇E, which yields the form as in Eq. (3.3) with
the Rabi frequency defined as [52, 72]

Ω = eE0
2~

√
15λ3A

cα8π3 · Λ(mg,me)g∆mj (3.4)

Here, E0 is the electric field amplitude, related to the laser intensity I via E0 ∝
√
I.

α is the fine structure constant, A the spontaneous decay rate (or natural linewidth)
of the excited state, λ the laser beam’s wavelength and Λ(mg,me) the corresponding
Clebsch-Gordan coefficient [81] of the transition between the two chosen atomic levels
|g〉 , |e〉 with corresponding Zeeman levels mg, me. The geometric factor g∆mj accounts
for the polarization and the angle between the laser beam’s wave vector and the mag-
netic field quantization axis [63, 82]. The two transitions relevant for the experiments
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Figure 3.3.: Geometric factor charts. The geometric factor g∆mj
influences the coupling

efficiencies for transitions between different Zeeman levels ∆m. It depends on the wave vector
and polarization of the incident beam with respect to the quantization axis. Here, φ denotes the
angle between the laser beam’s k vector and the quantization axis and γ is the angle between
a linear polarization and the plane of incidence, which is spanned by the quantization axis and
the laser’s k vector.

presented in this thesis are |S1/2,mj = 1/2〉 ↔ |D5/2,mj = 5/2〉, where |∆m| = 2,
and |S1/2,mj = 1/2〉 ↔ |D5/2,mj = 3/2〉, where |∆m| = 1. Following the geometric
factor charts in Fig. 3.3, we choose right-circular polarized light (σ−), travelling along
the quantization axis (φ = 0◦) to drive the ∆m = 1 transition, |S1/2,mj = 1/2〉 ↔
|D5/2,mj = 3/2〉, with maximum strength. To efficiently drive the ∆m = 2 transition,
|S1/2,mj = 1/2〉 ↔ |D5/2,mj = 5/2〉, we use a laser beam that travels perpendicular
to the quantization axis (φ = 90◦), with a linear polarization whose vector encloses
γ = 90◦ with the plane of incidence (spanned by the quantization axis and the laser’s
k vector).
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3.2.2. Experimental realization of single-qubit rotations

After transforming Hamiltonian H from Eq. (3.3) to the interaction picture11 with re-
spect to Ha and applying the rotating wave approximation12 the atom-light interaction
Hamiltonian reads as:

Hint = ~Ω2
(
e−i(∆·t+φl)σ+ + ei(∆·t+φl)σ−

)
, (3.5)

where ∆ = ωl − ω0 describes the detuning of the laser frequency from the transition
between the two atomic levels. The σ± = (σx±iσy)/2 terms show that the perturbation
induced by the laser field leads to single-qubit rotations around different axes on the
Bloch sphere. Generally, we need to distinguish between two different cases: resonant
and non-resonant laser field.

(i) Resonant laser field ∆ = 0: The interaction induces coherent population ex-
change between the qubit states |g〉 and |e〉, with the related unitary operation

U(θ, φ) = e−iHintt/~ =

 cos
(
θ
2

)
−ie−iφl sin

(
θ
2

)
−ieiφl sin

(
θ
2

)
cos

(
θ
2

)  . (3.6)

By comparing with Eq. (2.17), we can identify this unitary as a rotation by an angle
θ = Ω · t, around an axis σφl = cos(φl)σx + sin(φl)σy in the equatorial plane of the
Bloch sphere (cf. Fig. 2.1). In other words, the rotation angle of a resonant single-
qubit rotation is defined by the duration t for which the laser is applied to the atom and
the Rabi frequency Ω, which includes the light intensity and coupling efficiency to the
corresponding transition, cf. Eq. (3.4). The rotation axis is determined by the optical
phase φl of the light field. A full qubit flip from |g〉 to |e〉 is commonly called π-pulse,
which is realized by applying a resonant laser for the duration t = π/Ω. Continuous
population exchange between |g〉 and |e〉 under continuous application of the laser is
called Rabi oscillation (Fig. 3.4 a)).
(ii) Non- resonant laser field ∆ , 0: Also a non-resonant light field induces pop-
ulation transfer between |g〉 and |e〉. After preparing the atom initially in |g〉, the
11It is convenient to change into the interaction picture [83], to investigate the dynamics induced

by the laser-atom Hamiltonian Hal. This way, the time evolution driven by the laser-interaction
is separated from the evolution of the unperturbed system. The transformation into the in-
teraction Hamiltonian Hint is performed via Hint = U†aHUa with Ua = e−iHat/~. Further,
|ψ(t)〉 = Uae

−iHintt/~U†a |ψ(0)〉.
12The rotating wave approximation (RWA) neglects terms rotating at the sum frequency ωl + ω0 as

they oscillate much faster than ∆ = ωl − ω0, and thereby average out over the time scale of the
induced dynamics.
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probability amplitude pe to find it in the excited state is quantified by solving the
optical Bloch equations [84, 85]

pe(t) = Ω2

Ω2 + ∆2 sin2
( √

Ω2 + ∆2 t

2

)
= Ω2

Ω2
eff

sin2
(Ωeff t

2

)
, (3.7)

with an effective oscillation frequency Ωeff =
√

Ω2 + ∆2. Panel a) in Fig. 3.4 shows
the effect of a non-resonant laser field on the Rabi oscillations. Apart from suppressed
population transfer, an off-resonant light field also induces a shift of the atomic lev-
els, the so-called AC-Stark shift. The related Hamiltonian is derived by transforming
Eq. (3.3) to the interaction picture with respect to the applied laser frequency:

HAC
int = −~∆2 σz + ~Ω2 σx . (3.8)

The corresponding eigenvalues, λ± = ± ~2
√

Ω2 + ∆2 determine how much the energy of
a level is shifted by the AC-Stark shift. For the case of large laser detuning, ∆ � Ω,
the eigenvalues are approximated by λ± ≈ ±

(
~∆
2 + ~Ω2

4∆

)
and the related energy shift

becomes δ = λ± − λ±(Ω = 0) = ±~Ω2

4∆ , where the sign of the detuning also determines
the sign of the shift for the individual levels. For example, a blue detuned laser (∆ > 0)
shifts the upper level downwards and the lower level upwards (see Fig. 3.4 b)) such that
the overall AC-Stark shift of the transition frequency becomes

δAC = −Ω2

2∆ . (3.9)

For this case of large detuning, rapidly oscillating terms in the Hamiltonian can be
neglected [86], resulting in the effective Hamiltonian HAC

eff , with the corresponding
unitary U(δAC):

HAC
eff = ~2δAC σz , U(δAC) = e−iH

AC
eff t/~ =

e−i δAC
2 t 0

0 ei
δAC

2 t

 . (3.10)

Comparing with Eq. (2.17), this unitary is identified as a rotation by an angle φ = δAC·t,
around the z-axis of the Bloch sphere. Also in this case one can define AC-Stark Rabi
oscillations ΩAC. Note that for a real atom the calculation of the induced AC-Stark
shift is quite complex, as the laser couples far off-resonantly to many electronic levels
(Section 2.2.1), which all contribute to the effective energy level shift. For a detuning ∆
of tens of MHz, we typically observe AC-Stark shifts of tens of kHz, which are predom-
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inantly caused by off-resonant coupling to electric dipole transitions in the calcium ion.
The corresponding AC-Stark Rabi frequencies are in the order of ΩAC ≈ (2π) 100 kHz.

1

0.8

0.6

0.4

0.2

0
5 10 15 20 25 30 35

t (   )

a) b)

E

Figure 3.4.: Effects of resonant and non-resonant laser interaction. a) Rabi oscillations
with Ω = (2π) 100 kHz for different laser detunings ∆ = 0 (blue), ∆ = Ω (orange) and ∆ = 4Ω
(green). The probability pe to find the atom in the excited state is plotted as a function of the
laser application time t. b) Energy level shifts ±δ induced by a red detuned (∆ < 0) or blue
detuned (∆ > 0) laser light with respect to the atomic transition.

Pulse sequence for single-qubit rotations

In our experiments we typically use a combination of (i) resonant laser pulses and (ii) a
far off-resonant, tightly focused laser beam, in order to realize single-qubit rotations13:

1. A global pulse, resonant with the qubit transition at 729 nm, is applied for the
duration t1 = π/(2Ω) to rotate every qubit’s state vector from |↓〉 to the equatorial
plane of the Bloch sphere.

2. A tightly focused laser beam, with a frequency detuned between ∆ = −60 MHz
and ∆ = −90 MHz from the qubit transition, addresses a single ion. The pulse
is applied for a duration t2, such that it’s AC-Stark shift rotates the state vector
within the equatorial plane, by an angle φ = δAC · t2.

3. The final, global laser pulse of duration t3 = π/(2Ω) is again resonant to the
qubit transition, but its optical phase φl is shifted by π with respect to the pulse
in step 1. Therefore, it effectively undoes the first π/2 - pulse for all ions which
were not addressed while completing the single-qubit rotation for the addressed
ion.

13The sequence presented here is based on AC-Stark shift pulses, which leads to a narrowed effective
beam width compared to resonant pulses, and therewidth minimizes crosstalk. A detailed discussion
on single-ion addressing can be found in C. Hempel’s thesis [63].
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Figure 3.5.: AC-Stark shift sequence for realizing single-qubit spin flips. (1) All qubits
are rotated into the equatorial plane by a global, resonant laser beam. (2) An addressed, far
detuned laser pulse rotates the state vector of a single qubit by an angle φ = π. (3) A second
global, resonant pulse completes the single-qubit rotation for the addressed ion, while all other
qubits are flipped back to the initial state.

Composite pulse sequence for single-qubit rotations

For experiments with a large number of ions (N > 10) the global beam driving collec-
tive, resonant qubit rotations (steps 1. and 3.) has a weaker coupling to the ions at
the ends of the chain, due to its intrinsic Gaussian intensity profile. This causes the
state vectors of these outer qubits to be under-rotated, compared to the qubits close to
the center of the chain. Using cylindrical lenses, the beam is shaped elliptically (see P.
Jurcevic’s thesis [87]), which improves the situation: the remaining difference in beam
intensity between the center and the outermost ion is 30%, for N = 20 ions (axial trap-
ping frequency ωz = (2π) 217 kHz). This corresponds to up to 15% discrepancy in the
Rabi frequencies, and single-qubit flip errors of ∼ 5%. An advanced, composite pulse
sequence is more robust against these inhomogeneities, resulting in improved single-
qubit flip fidelities of up to 99.7% (Appendix C). The idea is to turn the under-rotated
state vector into the equatorial plane and thereby convert the rotation error mainly
into an offset on the equator. This is achieved by two additional pulses (step 2. and
4.) in the sequence:

1. A global, resonant π/2 - pulse with phase φl = 0 and small under-rotation ε is
applied.

2. A global, resonant π/2 - pulse with phase φl = π/2 converts the under-rotation
to an offset in the equatorial plane. Note that all resonant pulses suffer the same
under-rotation ε.

3. A tightly focused laser beam pulse, with a frequency detuned between ∆ =
−60 MHz and ∆ =−90 MHz from the qubit transition, addresses a single ion. The
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pulse is applied for a duration t2, rotating the state vector within the equatorial
plane, by an angle φ = δAC · t2 = π.

4. A global, resonant π/2 - pulse with phase φl = −π/2 flips the qubit vectors back
into the z-y plane.

5. A global, resonant π/2 - pulse with phase φl = π completes the single-qubit
rotation for the addressed ion, up to a small error, caused by the imperfect global
rotations. All other ions are rotated back to the initial state without remanent
error.

Addressed AC Stark shift pulse

3.

x

y

z

x

y

z

Global, resonant pulse

5.

x

y

z

Global, resonant pulse

1. 2.

x

y

z

Global, resonant pulse

4.

x

y

z

Global, resonant pulse

Figure 3.6.: Advanced AC-Stark shift sequence for realizing single-qubit rotations.
Pulse sequence as in Fig. 3.5 extended by two pulses (2) and (4) in order to convert an under-
rotation, ε, by the global, resonant beam into an offset in the equatorial plane. This composite
sequence diminishes the single-qubit flip errors from 5% to 0.3%.

3.2.3. Spin-motion coupling in a trapped ion

Now, we consider the case where the two-level atom, or ion, interacts with a laser,
while it is trapped in a harmonic potential (symbolizing an ion trap, cf. Section 2.2).
In the ion’s rest frame, its oscillating motion at frequency ω alters the phase φl of the
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incident light field depending on the ion’s position. The associated Doppler shift results
in an effective frequency modulation which appears as motional sideband transitions at
ω0±ω and allows for a joint manipulation of the ion’s electronic (“spin”) and external
(motional) degrees of freedom (Fig. 3.7).

...

car bsb

rsb

Figure 3.7.: Energy levels of a harmonically trapped, two-level ion. The combined
state picture has a ladder-like structure, with |↓〉 , |↑〉 denoting the electronic and n the mo-
tional states, split by multiples of the motional energy ~ω. Black arrows indicate carrier (car)
transitions, blue (bsb) and red (rsb) arrows the corresponding sideband transitions.

For a formal description, we extend Hamiltonian (3.3) from the previous discussion
with a position operator x̂ and the motional term from Eq. (2.30),

H = Ha +Hal +Hm

= ~ω0
2 σz + ~Ω(σ+ + σ−) cos(kx̂− ωlt− φl) + ~ω(a†a+ 1

2) , (3.11)

where k is the laser’s wave vector, ω is the oscillation frequency of the ion in the
harmonic potential, ω0 is the bare atomic transition frequency and ωl is the laser
frequency. Transforming this Hamiltonian to an interaction picture with respect to the
atomic terms Ha + Hm, and after applying the rotating wave approximation (getting
rid of terms that oscillate at optical frequencies), one arrives at:

Hint = ~Ω2
(
σ+e

−i(∆ t+φl)eiη(ae−iωt+a†eiωt) + σ−e
i(∆ t+φl)e−iη(ae−iωt+a†eiωt)

)
. (3.12)

Here, the Lamb-Dicke parameter η was introduced in order to express the position
operator x̂ in terms of the creation and annihilation operators a, a† of the harmonic
oscillator. The Lamb-Dicke parameter relates the spatial extension x0 of the harmonic
oscillator’s ground state with the wavelength of the atomic transition. In other words,
it describes how well the impinging light field, which encloses the angle α with the
direction of ion motion, couples to the motion in the harmonic trap:

kx̂ = η(a+ a†) , with η = |k| cos(α)x0 = |k| cos(α)

√
~

2mω . (3.13)
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An ion is said to be in the Lamb-Dicke regime, if the extent of the motional wave packet
is small compared to the laser’s wavelength14. With this assumption we can simplify the
exponential in Hint by a Taylor expansion, eiη(ae−iωt+a†eiωt) = 1+ iη(ae−iωt + a†eiωt) +
O(η2), resulting in:

Hint = ~Ω2
(
σ+e

−i(∆ t+φl)
[
1 + iη(ae−iωt + a†eiωt) +O(η2)

]
+ h.c.

)
. (3.14)

In the resolved sideband limit, the fundamental Rabi frequency Ω is small compared to
the oscillation frequency Ω� ω. In this regime, a second rotating wave approximation
can be performed, neglecting terms which oscillate at ω or higher. Depending on the
detuning ∆ = ωl − ω0, three important types of transitions can be distiniguished [68],
which can be independently driven if the linewidth of the driving laser is small compared
to the trap frequency, ωl � ω:

• Carrier transition ∆ = 0: Absorption of resonant laser light does not change
the motional quantum number n of the ion by coupling |↓, n〉 ↔ |↑, n〉. Taking
into account terms up to second order in η, Hamiltonian (3.14) turns into

Hcar = ~Ωn,n

2
(
σ+e

−iφl + σ−e
iφl
)
, with Ωn,n = Ω(1− η2n) , (3.15)

corresponding to the single-qubit rotation Hamiltonian introduced in Section 3.2.2.
Note that population of higher motional states n > 0 reduces the coupling
strength.

• Red sideband transition ∆ = −ω: Absorption of red detuned laser light
decreases the motional quantum number n, by coupling |↓, n〉 ↔ |↑, n− 1〉 with
a coupling strength that scales as Ωn−1,n = η

√
nΩ [68]:

Hrsb = i~Ωn−1,n
2

(
σ+ae

−iφl − σ−a†eiφl
)
. (3.16)

In our experiment, we perform sideband cooling by driving red sideband transi-
tions, alternated with a dissipative process (repumping) to bring the spin state
back to |↓〉 while the motional quantum number remains mostly unchanged. The
state |↓, 0〉 remains uncoupled.

• Blue sideband transition ∆ = +ω: Absorption of blue detuned laser light
14This holds as long as η2(2n̄+ 1)� 1. This can be achieved by cooling the ion close to the motional

ground state such that the mean vibrational quantum number n̄ is small. Experimentally, this is
usually satisfied after Doppler cooling with n̄ ≈ 10− 20.
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increases the motional quantum number n, by coupling |↓, n〉 ↔ |↑, n+ 1〉 with a
coupling strength that scales as Ωn,n+1 = η

√
n+ 1Ω [68]:

Hbsb = i~Ωn,n+1
2

(
σ+a

†e−iφl − σ−aeiφl
)
. (3.17)

In the case of multiple ions confined in the same trapping potential, they influence each
other due to their Coulomb interaction. This results in 3N sidebands, describing the
motion of the ion chain in all 3 dimensions. The sideband transitions, as described
above, allow one to convert the spin excitation of an ion into a collective motion of
the ion chain and to transfer this excitation to any other ion that shares the motional
mode. In other words, the motion acts as a bus system, which mediates the interaction
between multiple ions in a chain.

3.3. Simulating effective spin-spin interactions

This section contains the theoretical background about spin-spin interactions and the
tools for their experimental realization in trapped-ion experiments. In the first part, I
introduce the radial motional spectrum of long ion strings and explain their crucial role
in our experiment. In the second part, I summarize how to realize effective spin-spin
interactions between multiple ions, using a light field with three frequency components
(trichromatic beam). Further experimental techniques for trapping and manipulating
long ion strings are discussed in P. Jurcevic’s thesis [87].

3.3.1. Radial motional modes of long ion strings

As mentioned in the previous section, motional sidebands are crucial in trapped-ion
experiments, since they are used as the bus system to mediate an interaction between
multiple ions. In a linear Paul trap such as the one we use in our experiment, the axial
motional modes15 have well-separated frequencies and an intrinsically high stability.
Therefore, they are well suited to realize Mølmer-Sørensen entangling gates by coupling
the laser to a distinct mode (see below and Appendix B). The radial motional mode
spectrum, instead, is more bunched, which opens up the possibility to induce more
flexible and complex interactions by coupling the laser to multiple modes. However, the
motional frequencies need to be stabilized, which requires the RF-voltage across the RF-
blades to be measured and controlled. Further, all involved modes need to be ground-
15The term “axial motional modes” denotes the sideband spectrum which belongs to the motion along

the principal axis of the ion string.
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state cooled in order to reduce fluctuations in coupling strength and AC-Stark shifts,
and thereby assure controlled time evolution of the interaction gate (see Ref. [87]).
Ground-state cooling of all 2N radial modes is achieved by the resolved sideband cooling
(SBC) technique, where a narrow laser is tuned to the lower (red) motional sideband
to reduce the motional state by one phonon in each step [88, 89]. Other methods to
cool the motional state below the Doppler cooling limit are electromagnetically induced
transparency (EIT) cooling or polarization-gradient (PG) cooling (Chapter 4).

The theoretical description of the motional mode spectrum for multiple ions involves
numerical calculations via the equilibrium positions of all ions [72]. However, measuring
the spectrum with resolved sidebands is an easy task in our experiment. The few Hertz
narrow [58] 729 nm beam used for sideband probing, sideband cooling, entanglement
operations and collective qubit rotations, is shaped elliptically with 16.5µm × 190µm
by using cylindrical lenses [87]. This allows us to probe the red sideband spectrum
of a string of 20 ions, trapped at an axial frequency of ωz = (2π) 219.4 kHz. Fig. 3.8
shows the resulting spectrum with and without applied sideband cooling pulses. A bias
voltage on one pair of RF-blades (see Section 2.2.2) allows us to lift the degeneracy of
the two sets of modes, which are linked to the two radial directions of motion of the
ion string. In our Paul trap, a bias voltage of 0.5 V results in a mode splitting of about
(2π) 30 kHz such that the two radial center-of-mass (COM) modes have frequencies
ωCOM1

rad = (2π) 2.712 MHz and ωCOM2
rad = (2π) 2.681 MHz. All 40 radial modes are cooled

to the ground state by four consecutive pulses, denoted by the red arrows in Fig. 3.8,
in a total cooling time of 11 ms.
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3.3.2. Spin-spin interaction with tunable interaction range

The red and blue motional sideband of an ion can be excited simultaneously, by applying
a bichromatic light field (Fig. 3.10 a)) with frequencies ω±l = ω0 ± (ω + ∆). Both, the
resonant (∆ = 0) and off-resonant (∆ , 0) case result in very interesting ion-light
interactions.

Resonant bichromatic field

When the red and blue motional sideband are excited simultaneously and resonantly,
the arising interaction is described by the sum of the two Hamiltonians (3.16) and
(3.17), with the coupling strengths Ωn−1,n = Ωn,n+1 = Ω made equal:

Hbic = i~η
Ω
2
(
σ+ae

−iφr − σ−a†eiφr
)

+ i~η
Ω
2
(
σ+a

†e−iφb − σ−aeiφb
)
, (3.18)

with φr and φb denoting the phases of the red and blue detuned light fields, respectively.
Using the definitions

φ+ = φr + φb
2 − π

2 and φ− = φr − φb
2

we can rewrite Hamiltonian (3.18)

Hbic = ~ηΩ
2 {σx cos(φ+) + σy sin(φ+)}{(a† + a) cos(φ−) + i(a† − a) sin(φ−)} . (3.19)

In this form, we immediately see that the Hamiltonian simultaneously couples all states

|↓, 0〉 ↔ |↑, 1〉 ↔ |↓, 2〉 ↔ |↑, 3〉 ↔ ... and

|↑, 0〉 ↔ |↓, 1〉 ↔ |↑, 2〉 ↔ |↓ 3〉 ↔ ...

It effectively describes an oscillating force, which resonantly drives the harmonic oscil-
lator representing the ion’s motional state. Fig. 3.9 a)-b) shows, how a resonant driving
force displaces the motional ground state |0〉 in phase space to a coherent motional state

|α〉 =
∑
n

e−|α|
2/2 αn√

n!
|n〉 , (3.20)

where |n〉 are the Fock states, indicating the number of phonons n in the system, and
α contains the amplitude, frequency and phase information of the driving field [17, 84].
In contrast to the standard model of a driven quantum harmonic oscillator, the driving
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force in Eq. (3.19) is spin-dependent and displaces the two electronic eigenstates |±〉x of
Hamiltonian Hbic into opposite directions in phase space [90], as depicted in Fig. 3.9 c).
Consider the case where φr = φb = π/2 such that φ+ = φ− = 0, and apply Hamiltonian
Hbic to a qubit in an equal superposition of eigenstates |↓〉 = 1√

2(|+〉x − |−〉x) and in
the motional ground state |0〉. The corresponding unitary time evolution U(t) can be
written in terms of the displacement operator D̂(α) = eαa

†−α∗a, with α = − iηΩt
2 :

|ψ(t)〉 = U(t) |↓〉 |0〉 = e−iHbict
1√
2

(|+〉x − |−〉x) |0〉

= 1√
2
e−i

ηΩ
2 σx(a†+a)t (|+〉x − |−〉x) |0〉 = 1√

2
D̂(α)(|+〉x − |−〉x) |0〉

= 1√
2

(|+〉x |α〉 − |−〉x |−α〉) , (3.21)

The resulting state |ψ(t)〉, referred to as motional Schrödinger cat state [91, 92], is
a superposition of coherent states |±α〉 that are maximally entangled with the qubit
states |±〉x. The situation becomes particularly interesting, when the bichromatic light
field is applied to multiple ions, as will be discussed in the following subsections.

a) b) c)

Figure 3.9.: Effect of a resonant driving force. a) Phase space picture of the particle
trajectory for a resonantly driven harmonic oscillator, initially at rest. The amplitude of the
trajectory is steadily increasing with time. The size of the grey circle represents the particles
uncertainties in position and momentum. b) Phase space picture in the co-rotating frame. The
motional ground state |0〉 is displaced by the operator D(α) on a straight line, to a coherent
state |α〉. φd is the phase relation between the harmonic oscillator and the driving force. c) A
resonant bichromatic light field pushes the two eigenstates |±〉x of Hbic in opposite directions.
The angle of the trajectories is determined by the phase difference φ− between the red and blue
light field component.

Off-resonant bichromatic field - MS entangling gate

We now consider the case, in which the applied bichromatic laser field is detuned
by an amount ∆ from the red and blue motional sidebands (Fig. 3.10 c)), such that
ω±l = ω0 ± (ω + ∆). The additional detuning expresses itself as additional, time-
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dependent light phase in the red and blue sideband transitions, (3.16) and (3.17):
φr = φr,0 −∆t, φb = φb,0 + ∆t. Therefore, the motional phase becomes time-dependent
φ− = (φr,0 − φb,0)/2−∆t such that eigenstates of σx are no longer displaced on a
straight line in phase space as in Fig. 3.9, but their direction changes continuously with
∆t, such that they evolve along circles and return to their initial position after the time
τ = 2π/|∆| (Fig. 3.10 b)). This situation effectively describes an off-resonantly driven
harmonic oscillator. In contrast to a classical oscillator, however, the enclosed area
appears as accumulated phase in the quantum mechanical wave function (see definition
of Φ in Eq. (3.24)). Choosing φr,0 = π and φb,0 = 0 for simplicity, the corresponding
interaction Hamiltonian reads as

H
(1)
MS = i~η

Ω
2 σx(a†e−i∆t − aei∆t) . (3.22)

We now apply this detuned, bichromatic field to two ions and focus on coupling to the
sidebands of the center-of-mass (COM) mode of the ion pair. This configuration was
first studied by A. Sørensen and K. Mølmer as well as E. Solano [23–25] and allows
for entangling the internal states of the qubits via their joint motional mode. Detailed
derivations of the Hamiltonian and its application to trapped ions are thoroughly cov-
ered in Ref. [82, 93]. Here, I will briefly summarize the important equations and effects,
starting from the two-qubit Mølmer-Sørensen (MS) interaction Hamiltonian, directly
deduced from Eq. (3.22):

H
(2)
MS = i~η′

Ω
2 S

x(a†e−i∆t − aei∆t) , (3.23)

with Sx = σx1 + σx2 , where σx1 and σx2 denote the Pauli spin-operators for ion 1 and 2,
respectively, and η′ is the Lamb-Dicke parameter of the respective two-qubit system.
The corresponding unitary evolution of this time-dependent Hamiltonian is given by

UMS(t) = D̂(α(t)Sx)eiΦ(t)(Sx)2
,

with α(t) = i

(
η′Ω
2∆

)
(e−i∆t − 1) and Φ(t) =

(
η′Ω
2∆

)2
(sin(∆t)−∆t) .

(3.24)

The time-dependent displacement operator is again defined by D̂(α) = eαa
†−α∗a. As

mentioned above, and shown in Fig. 3.10 b), qubits in the eigenstates |++〉x and
|−−〉x are displaced on circles in phase space. The enclosed area is proportional to
the accumulated phase Φ, called geometrical or Berry phase. States |+−〉x and |−+〉x
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instead, remain stationary, since the net force cancels16.
b)
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Figure 3.10.: Schematics to the Mølmer-Sørensen gate. a) Electric field of the beat signal
E(t) ∝ cos(ω0t+φ+) cos((ω+∆)t+φ−), resulting from a bichromatic laser field with frequency
components ω±

l = ω0 ± (ω + ∆). b) The state-dependent force displaces the two-qubit states,
|++〉x and |−−〉x, on circular trajectories with the same direction of rotation but on opposite
sites in phase space. The picked up geometric phase is denoted Φ and visualized as gray dashed
area. For states |+−〉x and |−+〉x the net force cancels such that they remain stationary in
phase space. c) Spin-motion level manifold for two qubits, coupled to a bichromatic laser field
with detuning ∆ from the red and blue motional sidebands ±ω. Motional states are denoted by
|n〉, electronic qubit states by |↓〉 and |↑〉. The transition |↓↓〉 ↔ |↑↑〉 is coupled via constructive
interference of the four paths. The states |↓↑〉 ↔ |↑↓〉 are coupled equivalently. d) Experimental
data of the electronic state population in the z-basis as a function of time, for two ions driven
by a bichromatic light field with detuning ∆ = (2π) 9.9 kHz. An entangled state is created after
t ≈ 100µs.

When applying the unitary (3.24) for a multiple of the time τgate = 2π/|∆|, the
displacement operator becomes one and the accumulated phase Φ is left in the electronic
states:

U(τgate) = e
−i
(
η′Ω
∆

)2
πσx1σ

x
2
.

This means, that the motional state returns to its initial state and the transition states
are not populated any more. At this point spin and motion have disentangled and the
gate is independent of the motional state of the qubits. Moreover, a Rabi frequency
of Ω = |∆|/(2η′) yields the unitary of the MS entangling gate, as it was introduced in
16Note that this is only true for the COM mode, whereas for the 2-qubit stretch mode the exact

opposite statement holds.
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Section 2.1.2:
UMS = e−i

π
4 σ

x
1σ

x
2 ·sign(∆) , (3.25)

with corresponding Hamiltonian

HMS(τgate) = ~π4 sign(∆) · σx1σx2 . (3.26)

When applied to the states |↓↓〉, |↓↑〉, |↑↓〉 or |↑↑〉, this corresponds to a maximally
entangling gate. In order to keep the coupling to the carrier transition low, the Rabi
frequency Ω has to be small compared to the detuning (ω + ∆) from the carrier. Con-
sidering the above mentioned condition for a maximally entangling gate, Ω ∝ η−1τ−1

gate,
the question of whether Ω � (ω + ∆) holds, becomes crucial in the limit of desirable
fast gate operations. Additional shaping of the laser pulse as a Blackman window,
suppresses off-resonant carrier excitation further [82].

Fig. 3.10 d) shows the temporal evolution of the initial state |↓↓〉 under unitary (3.24)
with a detuning ∆ = (2π) 9.9 kHz. The plotted electronic state populations arise from
the interference of the four paths in Fig. 3.10 c). An entangled state, close to the Bell
state |Ψ〉 = 1/

√
2 (|↓↓〉 − i |↑↑〉), is generated at time t = 2π/∆ ≈ 100µs. A short

tutorial of how to experimentally set up a MS entangling gate in our experiment is
given in Appendix B.

Ising and XY-Hamiltonian

We now introduce an additional asymmetric detuning δ � ∆, named centerline detun-
ing, to the bichromatic laser field such that the two laser components have frequencies
bic± = ±(ω + ∆) + δ as shown in Fig. 3.11 a). As in the previous subsections, we can
derive the Hamiltonian for this configuration by summing (3.16) and (3.17), with the
corresponding laser frequencies and choosing φ+ = φ− = 0:

Hasym bic = ~ηΩ
2 (aei∆t + a†e−i∆t)(σ+e−iδt + σ−eiδt) .

For N ions, σ± are extended to global spin operators, S± = ∑N
i σ
±
i , where σ±i denotes

the spin raising and lowering operator acting on ion i. Assuming that we couple to a
center-of-mass mode of the N -ion string, the coupling parameter η is equal for all ions
and reduces by a factor 1/

√
N :

Hasym bic = ~ η√
N

Ω
2 (aei∆t + a†e−i∆t)(S+e−iδt + S−eiδt) , (3.27)
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If the coupling strength of the bichromatic light field on the sidebands is much weaker
then the detuning from the sidebands, ηΩ � ∆, the system is said to be in the weak
coupling regime. In this regime, the qubit-light interaction hardly changes the motional
state, and consequently spin and motion of the qubit are only virtually entangled at
all times, not only at τgate. An excellent approximation for such an interaction is an
effective Hamiltonian which describes correlated spin flips and results from (3.27) after
applying the Magnus expansion and Taylor approximation in δ/∆ [87, 90]:

Hspin-spin = ~J
N∑
i,j

(
σ+
i σ

+
j e
−2iδt + σ+

i σ
−
j + σ−i σ

+
j + σ−i σ

−
j e

2iδt
)
, (3.28)

with the spin-spin coupling strength J = Ωη/(
√
N2∆). The experiments presented in

this work were performed in two different regimes, accessible by tuning the parameter
δ:

• δ ≈ J : The transformation into the interaction picture with respect to the Hamil-
tonian H0 = − δ

2
∑
i σ

z
i yields a time-independent form of (3.28), the so-called

transverse field Ising-Hamiltonian

HIsing = U †0(Hspin-spin −H0)U0 = ~J
N∑
i,j

σxi σ
x
j +B

∑
i

σzi , (3.29)

where B = δ/2 corresponds to an effective transverse magnetic field, directly
depending on the detuning δ.

• δ � J : Here, we can apply the rotating wave approximation, neglecting terms
oscillating at δ such that the interaction simplifies to an effective XY-Hamiltonian

HXY = ~J
N∑
i,j

(
σ+
i σ
−
j + σ−i σ

+
j

)
. (3.30)

The energy spectrum of this Hamiltonian with the ground state |↓↓ ... ↓〉, is split
into N+1 subspaces, identified by the number of excitations |↑〉 in the system [94].
Transitions between subspaces involve additional spin flips, which become ener-
getically more and more unfavourable, with increasing detuning δ. Therefore,
Hamiltonian (3.30) is excitation conserving. In our experiment, we typically work
in the regime where transitions between energy subspaces are strongly suppressed.

So far, we only considered the case where the bichromatic laser field couples to the
COM mode of an ion string. In this mode all ions move with the same amplitude
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Figure 3.11.: Schematic transition spectrum and arrangement of the interaction
beams. The carrier transition is denoted as high black line at frequency ω0, red (rsb) and
blue (bsb) radial sidebands are denoted as red and blue lines at frequencies ±ω. Green arrows
represent the laser fields, inducing interesting spin-spin interactions. a) Bichromatic laser
field with asymmetric detuning δ � ∆ from the COM mode. For δ = 0, the field induces
the MS-interaction. Tuning δ > 0 induces the transverse field Ising-Hamiltonian or the XY-
Hamiltonian. b) If N motional modes couple to a bichromatic field, the spin-spin interaction
strength decays approximately as Jij ∝ 1/|i− j|α, where the interaction range α can be tuned
by the parameter ∆. c) A third frequency component (trichr) is added to the laser field in order
to compensate the AC-Stark shifts arising from the asymmetric coupling of the bichromatic field
to the ion’s transitions.

and phase, which reflects in a single Lamb-Dicke parameter, η, for all ions. If the
bichromatic light field couples to several motional modes (Fig.3.11 b)), we need to
introduce a generalized, non-uniform Lamb-Dicke parameter ηi,m for each ion i and
each mode m. The coupling, Jij , between a pair of ions i and j, is then given by the
sum over all couplings mediated by the different motional modes. In other words, ηi,m
imprints the structure of each motional mode m, with frequency ωm onto the coupling
matrix Jij [90, 95]:

Jij = Ω2

2
∑
m

ηi,mηj,m ·
ωm

(ω + ∆)2 − ω2
m

, with (3.31)

ηi,mηj,m = bi,mbj,m
~k2

2Mωm
. (3.32)

Here, bi,m represent the eigenvectors of the motional modes and M is the ion mass.
The coupling matrix Jij approximately follows a power law decay with ion-ion distance
|i− j| [96, 97]:

Jij ∝
1

|i− j|α
. (3.33)

where the interaction range α can be tuned, by changing the detuning ∆ and thereby
modifying the relative contribution of each mode. In the limit of small ∆, the laser field
mainly couples to the COM mode, inducing an infinite range interaction with α = 0.
For a large detuning ∆, however, all modes are degenerate and couple equivalently



3.3. Simulating effective spin-spin interactions 49

strong, which results in an interaction with dipolar decay at α = 3. Note that those
extreme cases are difficult to achieve experimentally: For a very small detuning ∆,
the system would no longer be in the weak coupling regime17, while for a very large
detuning, the overall coupling strength would decrease to zero.

One technical innovation that was realized within my doctoral studies, was the mod-
ification of the single-ion addressing unit, such that the effective magnetic field B in
Hamiltonian (3.29) is not restricted to be time-independent and homogeneous over all
ions. Instead, it is now possible to disturb the spin-spin interaction dynamically and
for each ion independently: HIsing = ~J∑N

i,j σ
x
i σ

x
j + ∑

iBi(t)σzi . Section 4.4 presents
details on the modification and Chapter 6 discusses an experimental application.

Trichromatic light field

In an ideal two-level system, the AC-Stark shift, induced by the off-resonant bichromatic
light field on the carrier transition would cancel, since the detuning is symmetric with
respect to that transition. However, in real ions the light field additionally couples
off-resonantly to all available energy levels of the ions. That is, it couples to the
dipole transitions and the other quadrupole transitions within the S1/2 ↔ D5/2 Zeeman
manifold such that a net AC-Stark shift remains. The solution in our experiment is to
add a third, off-resonant frequency component to the light field (Fig. 3.11 c)), whose
intensity is chosen such that it counteracts the undesired shift [98]. Experimentally,
this trichromatic light field is realized by applying three frequencies to a fiber-coupled
acousto-optic modulator (AOM)18. Furthermore, the intensity distribution of the global
laser field which induces the interaction, is non-uniform (but elliptical Gaussian) over
the ion string and thus induces spatially dependent AC-Stark shifts. Since all three
light fields of the trichromat are coupled to the same fiber, their spatial modes are
identical which enables the compensation field to also cancel these spatially dependent
AC-Stark shifts. Typical parameters for an experimentally realized spin-spin interaction
on 20 ions with trapping frequencies ωz = (2π) 217 kHz, ωCOM1

rad = (2π) 2.71 MHz and
ωCOM2

rad = (2π) 2.68 MHz, are: detuning ∆ = (2π) 40 kHz, centerline detuning δ =
(2π) 3 kHz and trichromat frequency ∆trichr = (2π) 1.2 MHz. A detailed description
on how to experimentally set up the spin-spin interactions and calibrate the AC-Stark
shift compensation beam, can be found in P. Jurcevic’s thesis [87].
17To achieve long-range interactions, α ≈ 0, a better strategy is to use a bichromatic beam along the

principle axis of the ion string and thereby induce the interaction over the axial COM mode, instead
of the radial modes.

18Gooch&Housego, model SFO4912-T-M150-0.5C2W-3-F2P-01





4. Experimental setup and technical
innovations

All experiments presented in this work, have been carried out at the Institute of Quan-
tum Optics and Quantum Information (IQOQI). The linear Paul trap, the vacuum
system, the basic laser system and the computer control were set up by my predeces-
sors, and to a large extent, their original setups are still used. Detailed descriptions can
be found in the corresponding diploma and PhD theses [63, 82, 99–101]. In the follow-
ing I focus on those significant modifications of the experimental setup and software,
which substantially contributed to the results presented in Chapters 5, 6 and 7.

4.1. Overview

The macroscopic linear Paul trap, shown in Fig. 4.1 a) forms the heart of the exper-
iment. It is based on a blade design [102], with an electrode-ion distance of 565µm
and additional holes, with 0.5 mm diameter, through the tip electrodes allowing for
direct optical access along the principal axis of the ion string. Stray electric fields on
the linear Paul trap can push the ion out of the RF null along the trap’s symmetry
axis, and therefore induce excess micromotion. Additional micromotion compensation
electrodes along the axial direction are used to counter these stray fields and minimize
micromotion (for details see Ref. [63]).

The vacuum vessel, illustrated in Fig. 4.1 b), encloses the ion trap. It is an octagon
made of 316 stainless steel, with eleven flanges for optical access, three connected vac-
uum pumps and a residual gas analyzer (RGA), allowing for in-situ vacuum diagnostics.
The trap holder is attached to the top flange, together with the RF power feedthrough
that connects to the helical resonator. The voltages for the tip and compensation
electrodes are provided through a low-pass filter board on an adjacent high-voltage
feedthrough. The commercial calcium oven is mounted on the bottom flange, next to a
non-evaporative getter (NEG). A six-way cross on the western horizontal flange carries
a titanium sublimation pump, an ion pump and a Bayard-Alpert ion gauge. See C.
Hempel’s thesis [63] for more details. The optical access points of the vacuum chamber

51
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Figure 4.1.: a) Linear Paul trap. Photograph and schematic drawing, showing the ground (A)
and RF (D) blades, the tip shaped electrodes (B) and the micromotion compensation electrodes
(C). The RF blades are connected in series by a copper bridge (E). All parts are kept together
by a Macor holder (F). b) Schematic drawings of the vacuum vessel with beam and
imaging directions. The compass rose on the top left and the laboratory coordinate system
(x,y,z), depict the orientation of the chamber and the points of view. Copper holders (brown
boxes) on the north and south viewports encase 40 permanent magnets each, which provide a
magnetic field along the axial (z) direction of the trap. The originals of these modified pictures
are taken from C. Hempel’s thesis [63], the photograph was taken by M. Rambach.

and the corresponding laser beams are shown in Fig. 4.1 b). The duration and relative
timing of all laser pulses is coordinated with an FPGA-based device, the so-called “Pulse
box”. It is equipped with 2 digital inputs and 16 digital outputs and two independent
direct digital synthesizers (DDS). The DDSs are used to set the frequency, phase and
pulse shape of the RF signals sent to the AOMs for coherent qubit manipulation and
single-ion addressing. As part of my doctoral work, the following major changes were
implemented with respect to the setup reported in previous theses [63, 87]:

• East viewport, single-qubit addressing: The single-qubit addressing path
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was upgraded with a sample-and-hold intensity stabilization. The circuit reduces
laser intensity fluctuations during pulsed gate sequences, right before the beam
enters the ion trap (see Section 4.3). Further, within the master project of L.
Pernthaler [103], the addressing unit was redesigned and subsequently integrated
into the ion trap apparatus. The improved optical setup and a new acousto-optic
deflector19 (AOD) enable individual-qubit addressing of up to 50 ions. The new
AOD has a process time of 11.3µs, which required adding a delay in the start time
for single-ion addressing pulses20. Finally, we found that our Pulse box switches
off the RF to the AOD (DDS2 in the Pulse box), for about 300 ms after each
data point. This leads to a varying temperature level of the AOD, which results
in intensity variations in the addressing beam. To circumvent this problem, we
installed an additional DDS (DDS60), which continuously sends an RF of 80 MHz
and 29.5 dBm to the AOD, whenever it is not controlled by the Pulse box itself21.

• North-East viewport: This beam path is used for Doppler cooling (397 nm)
and repumping (854 nm and 866 nm). We facilitated the alignment of the re-
pumping lasers by overlapping of the 854 nm and 866 nm laser beams through
a customized dichroic beam combiner22 and coupling both to a single photonic
crystal fiber23. Further, the fiber coupler of the 397 nm was replaced with cus-
tomized anamorphic beam shaping optics24. This generates an elliptical beam
with 147µm× 375µm full axes lengths at the position of the ions, which enables
homogeneous Doppler cooling and fluorescence detection of long ion strings (see
Section 4.2).

• North viewport: We overlapped the beam paths for the two photoionization
lasers (375 nm and 422 nm) and a 397 nm beam and coupled all three beams into
a single fiber to facilitate their alignment through the holes in the tip electrodes
of the Paul trap. Here, the latter beam is used to cool the axial ion motion of the
ion string using polarization-gradient cooling (see Section 4.6.2). A combination
of two achromatic lenses25, allows us to focus all three beams to the center of

19Acal BFi, Acousto-optic deflector LS55-NIR.
20Using the variable “add add time”, we added a 11.3µs time delay to the “start time” of each pulse

which uses the AOD (e.g. the class “rf pulse”). This was done in the file “user function.py” lying
in the folder “C:\IQOQI\expcontrol\python\innsbruck”.

21The switch used for this, is toggled by “TTL1”.
22Schäfter&Kirchhoff, Multicube 48MC-LI-19.5 with polarization beam cube 48PM-CC-B.
23NKT Photonics, aeroGUIDE-5-PM-A LMA-PM-5, with FC/APC connectors.
24Schäfter&Kirchhoff, 60SMS-1-4-A11-01 coupler with anamorphic beam shaping optics 5AN-3-V-35

and micro-focusing optics 5M-S325-33-S.
25Edmund Optics, NUV 12.5 X 40 UV-VIS CTD #65-973 and NUV 50 x 200 UV-VIS TS #35-997.
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the ion trap with minimized deviation of the focal points caused by the different
wavelengths.

• West viewport, collective qubit-manipulation: This beam path is used to
drive collective spin-rotations and to realize spin-spin interactions by applying
three RF signals to an AOM, generating a trichromatic laser beam (see Sec-
tion 3.3.2). A new fiber-AOM26, where both the input and output path are
fiber-coupled, was integrated into the setup. This bilateral fiber-coupled AOM
eliminates anti-correlated intensity fluctuations between the three frequency com-
ponents, that are caused by beam pointing drifts when coupling free space into
an AOM. Since the new fiber AOM runs at a center frequency of 150 MHz (in-
stead of 80 MHz), we installed two new DDSs: DDS27 drives the fiber AOM at
145.5 MHz and 0 dBm, with the option of toggling a trichromatic field, where fre-
quency components are added through RF combiners. The second DDS (DDS26)
continuously drives an upstream AOM at 65.5 MHz and −1.5 dBm, to achieve a
frequency shift of 80 MHz27. Further, this path was upgraded with sample-and-
hold intensity stabilization (see Section 4.3).

• South viewport: The 397 nm beam constitutes the second arm of the polariza-
tion-gradient cooling setup (Section 4.6.2). Its fiber coupler was replaced such
that the foci of the two counter-propagating beams match.

4.2. 51 Doppler cooled and coherently manipulated ions

Customized anamorphic beam shaping optics generates an elliptical beam profile (Fig 4.2
a)) for the 397 nm laser, used for Doppler cooling and state detection. This enables
homogeneous illumination, and thereby homogeneous Doppler cooling and detection
fluorescence of long ion strings, at reduced intensity losses. Unfortunately, the wave-
length difference is too large to get a comparable optical effect on 397 nm, 866 nm and
854 nm light simultaneously, as shown in Fig. 4.2 b)-c). This prevents the insertion of
the two repumping lasers through the same fiber coupler as the 397 nm beam.

The second technical challenge is the uniform and single-ion resolved detection of a
long ion string, using our custom imaging objective28 and a back-lit EMCCD camera29.
26Gooch&Housego, SFO4912-T-M150-0.5C2W-3-F2P-01.
27All qubit manipulation lasers obtain a frequency shift of 80 MHz by the final single-pass AOMs used

for fast pulse switching.
28Sill Optics, S6 ASS 2241
29Andor iXon “blue” DU-897-DCS-BBB, with custom AR-coated front window with 89.27 % transmis-

sion at 397 nm.
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Figure 4.2.: Effect of the elliptical beam shaping optics. a) The 397 nm beam measures
Gaussian diameters of 147µm and 375µm, at the position of the ions. b) Effect on the 854 nm
beam: 8300µm × 2800µm. c) Effect on the 866 nm beam: 8300µm × 2900µm. All profiles
were recorded with the Thorlabs camera beam profiler BC106-VIS.

A Labview program associates pixels of interest to each ion, based on a maximum
likelihood detection algorithm (see C. Hempel’s thesis [63] for details). Depending on
the maximum detected fluorescence, the program assigns all pixels whose fluorescence
level lies above an adjustable brightness threshold (for 10 ions we typically choose 35 %
of the maximum value). From these regions of interest for each ion, the software
determines the individual quantum states.

The imaging path was originally designed to map a <100µm long object to the
camera chip. Straight ion strings with 50 ions, however, extend over more than 200µm.
Hence, the fluorescence of the outermost ions is not efficiently captured and the state
detection program fails at assigning pixels of interest to those ions, for reliable quantum
state detection (Fig. 4.3 a)). Simply increasing the brightness threshold for all ions,
overexposes the center ions, which results in overlapping regions of interest and thereby
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Figure 4.3.: Imaging of long ion strings. a) Section of a camera image without correction
multiplier, brightness threshold 35 %. Pixels of interest (red dots) are only assigned to 48 out of
51 ions (light blue). For better visualization, the computed array of pixels of interest is shifted
by two pixels left and fife pixels up, with respect to the ion picture. The selected image section
contains about 22 × 380 pixels. b) Image without correction multiplier, brightness threshold
15 %. All 51 ions are identified, but the pixels of interest of the center ions overlap. c) Image
with correction multiplier, brightness threshold 35 %. All 51 ions are identified and pixels of
interest are assigned without overlap. d) Collective Rabi flops on 51 ions. Connected points
are experimental data, solid lines are fits of the type y = sin2(α · x). The elliptical but still
Gaussian beam profile of the driving laser causes lower Rabi frequencies for the outer ions in
the chain. This is observable as fanning out of the individual Rabi flops.

wrong quantum state assignment (Fig. 4.3 b)). In order to solve this problem, the entire
detection image is multiplied30 with a correction function C that varies over the length
l of the ion string. The best performance for 50 ions is observed with the function
C = a · |l|b + 1, with a = 1.7, b = 2.5. This function amplifies the brightness for the
outer ions by a factor 2.7, while leaving the value of the innermost ion unchanged.
Fig. 4.3 c) shows a successful assignment of pixels of interest to all ions in the string.
Finally, this allowed us to drive and detect collective, coherent qubit-rotations on 51
ions, as shown in Fig. 4.3 d).

During the writing of this work, an aperture in the imaging path, right in front of the
camera chip, was expanded such that the fluorescence of the outermost ions is no longer
shielded (see T. Brydges’ thesis [60]). Nevertheless, we use the image correction feature
30This image correction can be turned on or off using the “Ion image correction” button at the lower

right corner of the camera program, while variables a and b are adjustable in the “Reference Pictures”
tab. The SubVI that executes the correction is called “pictureMultiplier.vi” and is integrated in
“PikTURE.vi”, which evaluates the raw camera images.
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for strings of ∼ 50 ions, where the regions of interest for the middle ions can overlap
and compromise correct quantum state assignment. In the long-term we should replace
the imaging software by a more advanced program, which assigns regions of interest to
each ion individually, independent of the maximum fluorescence level, and which can
deal with overlapping regions of interest.

4.3. Sample-and-hold laser intensity stabilization

We stabilize the laser intensity on both the single-ion addressing path and the laser
path perpendicular to the principal axis of the ion crystal, used for collective qubit-
manipulation. In both paths, a pellicle beamsplitter is used to reflect 8% of the beam
onto a 2.5 MHz USB-photodiode, which provides the control variable for a sample-
and-hold stabilization circuit31. A trigger, fed through the “PID” input, toggles the
sampling and holding functions. This allows us to stabilize the laser intensity right
before the beams enter the vacuum vessel and even during the pulsing of the lasers in
experimental sequences. In the sampling mode, the photodiode signal is sampled and
the optical intensity is stabilized, by adjusting a voltage-variable attenuator, which
regulates the RF amplitude to the last AOM in the optical path. With the trigger’s
falling slope, the holding mode of the stabilization circuit is initiated and the last value
of the correcting variable is applied till the next rising slope of the trigger. Setpoint
and gain of the proportional–integral–derivative (PID) control unit are adjustable using
external trim-pots, while observing the error signal on an oscilloscope. In both paths,
the pellicles are installed after polarizing optics, as shown in Fig. 4.4 a)-b). This way,
also polarization fluctuations of the laser beams are reduced, after their transformation
into intensity fluctuations. Moreover, the polarization of the two counter propagat-
ing beams is chosen such that the collective qubit-manipulation laser has maximum
coupling efficiency (Fig. 3.3), while the polarization for the single-ion addressing laser
is perpendicular to it32. Once each beam passed through the ion trap, the polariza-
tion optics of the other path withdraws it. This prevents the two counter-propagating
beams from being reflected by some optical components back onto the ions, causing
uncontrolled qubit manipulation.

31The circuit “PID Controller with S+H V1.1 Chicken 2015” was designed and built by Gerhard Hendl.
32Single-ion addressing in our experiment is based on AC-Stark pulses (see Section 3.2.2), for which

the polarization of the light field does not play any role.
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Figure 4.4.: Simplified optical and electronic configuration (yellow background) for
sample-and-hold (S&H) intensity stabilization. a) Single-ion addressing setup. The
stabilization optics, consisting of a polarizer and a pellicle, is mounted right before the single-
ion addressing optics. A logic circuit, combining three pulse box TTLs, triggers the sampling
function during Doppler cooling. b) Collective qubit-manipulation setup. The stabilization
optics, consisting of a polarizing beam splitter (PBS) cube and a pellicle, is mounted inbetween
two cylindrical lenses L1 and L2 [87]. A logic circuit, combining two pulse box TTLs, triggers
the sampling function during sideband cooling.

4.3.1. Single-ion addressing path

Fig. 4.4 a) shows the optical and electronic arrangement for the intensity stabilization
of the single-ion addressing beam. We chose a pellicle33 as beamsplitter, in order to
minimize the influence on the sensitive, tightly focused laser beam. The sampling part is
performed in each sequence during Doppler cooling, by including an addressing pulse at
50 MHz RF to the Doppler cooling script34. The corresponding trigger consists of three
combined transistor-transistor logic (TTL) signals from the pulse box: 9 ∧ 10 ∧ ¬6.
This assures that sampling is performed if and only if the single-ion addressing path
carries light (TTL 9 ∧ 10) and Doppler cooling is executed (inverted TTL 6). Finally,
the stabilization circuit reduces intensity fluctuations measured over five minutes from
1.8% to 0.2%.

4.3.2. Collective qubit-manipulation path

The optical and electronic configuration is shown in Fig. 4.4 b). Here, the sampling part
is triggered by two combined pulse box TTLs: 5 ∧ 12. In an experimental sequence,
TTL 5 activates the “Listmode” of the RF function generator used for sideband cool-
ing35, and TTL 12 assures that the collective qubit-manipulation path carries light.

33Thorlabs BP108
34The corresponding Doppler cooling python sequence is called “DopplerCooling40 sampling.py”.
35The “Listmode” in function generator “Rhode&Schwarz SMB 100A” allows us to apply many side-

band cooling pulses consecutively, using only one out of the 16 available transitions objects in our
control software. The corresponding sequence is called “SBCooling40 bic.py”.
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The beam intensity is therefore sampled during sideband cooling of each sequence.
The stabilization circuit reduces intensity fluctuations from 2% to 0.3%.

4.4. Simultaneous single-ion addressing

The single-ion addressing beam is used for preparing initial quantum states or perform-
ing measurements on individual qubits. For these applications it is sufficient to apply
a single radio frequency at a time to the acousto-optic deflector (AOD). This refracts
the laser to a single beam which is then tightly focused and subsequently steered to-
wards an ion. Application of multiple radio frequencies to the AOD generates multiple
beams and allows us to address multiple ions at the same time. This enables new, in-
teresting experiments, for which simultaneous single-qubit manipulation is required. In
the following, I describe the technical extension which was implemented for achieving
multiple-ion addressing and highlight important guidance concerning its usage. The
final subsection contains some applications and characterization measurements.

4.4.1. The arbitrary waveform generator

The most flexible way to generate multiple-frequency waveforms is by an arbitrary
waveform generator (AWG). In our experiment, we use a model36 which is installed on
a PCI Express interface and which can be controlled directly by a PC. The AWG has
an onboard memory for a fast replay of waveforms, 16 bit resolution, an output rate
of 1.25 GS/s, a bandwidth of 400 MHz, and external trigger and clock inputs. Arbi-
trary waveforms are programmed via a python-interface and output can be obtained
in different modes: single-start, continuous loop, gated or sequenced. The generated
waveform is then sent to an RF switch, which is triggered by the pulse box TTL 11:
at low trigger voltage, the AOD receives a single-tone RF from DDS2 of the pulse box.
At high trigger voltage, the multi-tone waveform from the AWG is supplied, instead.

Applying a waveform with multiple frequency components

y =
N∑
i=1

Ai · sin(ωRFi · t) (4.1)

to the AOD, generates multiple laser beams, each targeting a different ion and shifted
by 60− 90MHz with respect to the qubit transition (see Fig. 4.5). The RF amplitude
Ai for each beam can be regulated independently, resulting in individually adjustable
36Spectrum M4i.6631-X8.
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AC-Stark shifts on all ions simultaneously, reaching up to a few kHz. Static waveforms,
for constant AC-Stark shifts, are programmed with a gated trigger. These waveforms
consist of a single time segment of typically 100µs. The gated trigger will continuously
replay the waveform during the high voltage period of TTL 11.

Moreover, the AWG allows us to program temporally modulated AC-Stark shifts,
by concatenating time segments with different RF amplitudes Ai in a phase-coherent
manner (see I-III in Fig. 4.5). Each segment is typically 10µs long. For temporally-
modulated waveforms, we use the single-start trigger, which plays a waveform once,
after a single trigger event from TTL 11. Note that a temporally-modulated waveform
with a total length of tens of ms, and a resolution of 1 ns, takes several minutes to
be generated by the python program. Therefore, it is nice to outsource this task to a
separate computer, while running the experiment. Appendix D contains the most im-
portant considerations and programs for performing simultaneous single-ion addressing
with the AWG in our experiment.

lens array

AOD

ion string

laser beam

RF waveform

I II III

AWG

Figure 4.5.: Schematic AWG setup. The AWG sends a multi-tone RF waveform to the
AOD, which results in multiple laser beams. An array of lenses focuses all beams, such that
finally each beam targets a single ion in the string. The RF waveform is composed of time
segments (denoted as I-III), each of which consists of a sum of sine-functions with multiple
frequencies ωRFi . For each time segment, the RF amplitudes Ai can be set independently.

4.4.2. Characterization and experimental application

The intensities of the addressing beams are not homogeneous over the ion string. This is
mainly caused by clipping of the largely expanded addressing beam on the focusing op-
tics. Due to the inhomogeneity, the ions have different pi-times, as shown in Fig. 4.6 a).
These pi-time differences are “calibrated out” with an according correction factor for
each RF amplitude Ai in Eq. (4.1). With this, we can then apply arbitrary AC-Stark
shift patterns, e.g. we can homogenize the Rabi frequencies as shown in Fig. 4.6 b).
Comparing the pulse box DDS2 with the AWG as RF source, no quality differences
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Figure 4.6.: Addressed AC-Stark Rabi flops using the AWG. a) Simultaneous addressed
Rabi flops on a 10-ion string. The inhomogeneous intensity profile over the ion string causes
a multiplicity of Rabi frequencies. b) Example of equalized Rabi frequencies after calibration
(step 2 above). Here, the collective Rabi frequency was chosen to be 60 % of the lowest frequency
measured in a). c) Addressing error associated with cross-talk for a 10-ion string, trapped at
ωz = (2π) 217 kHz axial frequency. Every second ion in string is addressed, but only ion 4
(blue), 5 (red) and 6 (green) are shown, for simplicity.

in the single-ion addressing pulses are detected: Short-term fluctuations37 appear only
after multiple Rabi flops, e.g. around 800µs in Fig. 4.6 c). Long-term drifts are not
discernible38 from quantum projection noise, and hence lie below 3 %. Fig. 4.6 c) shows
the cross-talk between neighbouring ions, when driving AC-Stark Rabi flops on every
second ion in a 10-ion string. The associated addressing error ε = Ωi±1/Ωi is given by
the ratio of the Rabi frequencies Ωi of the considered ions, and lies below 1 %.

An interesting application for temporally modulated addressing of arbitrary ions, is
the suppression and/or recovery of spin-spin interaction (c.f. Section 3.3.2) for deter-
mined ions in the chain. The interaction can be suppressed by applying a magnetic
field gradient over the ion string, using a pair of current-carrying coils. This shifts
the qubit’s energy-levels out of resonance with respect to each other. If this energy

37Fluctuations on the order of a few kHz could be caused by noise on the RF source or by intensity
fluctuations of the laser beam, e.g. due to vibration-induced beam pointing instabilities.

38Drifts are detected by observing the excitation at a pulse length which is associated with a slope
of the Rabi oscillations (e.g. 700µs in Fig. 4.6 c)). We choose the longest possible pulse length,
which is still not affected by short-term fluctuations, and observe the excitation at 200 measurement
repetitions (sequence cycles) for several minutes.
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difference is larger than the laser-induced spin-spin coupling strength, the interaction
is suppressed. On the other hand, the coupling blockade can be lifted, by applying a
modulated AC-Stark shift to one of the ions, with the modulation rate corresponding
to the energy-level difference. This induces modulation sidebands, over which the in-
teraction occurs. Fig. 4.7 shows a proof of principle experiment with two ions and a
spin-spin coupling strength of Jij = (2π) 83 Hz: At first, one of the qubits is excited to
the |↑〉 spin state. The spin-spin coupling to the second qubit is suppressed, by sending
a current of 95 mA through the coils, corresponding to ∆ν = (2π) 111 Hz difference
between the carrier transitions of the two qubits. Finally, the interaction is successfully
recovered by addressing one of the ions with the single-qubit addressing beam modu-
lated at a rate of about (2π) 110 Hz. The modulation is carried out by switching the
addressing beam on and off at a period of 1.4 ms.
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Figure 4.7.: Controlled suppression and recovery of spin-spin interaction for two
qubits. a) A magnetic field gradient induces a difference of ∆ν = (2π) 111 Hz between the
qubit transitions of the two ions. Therefore the laser-induced spin-spin interaction, at a strength
of Jij = (2π) 83 Hz, is suppressed. Consequently, the spin excitation of ion 1 (red) is not
transferred to ion 2 (blue). b) Modulating the single-qubit addressing beam at a rate of about
(2π) 110 Hz bridges the interaction barrier and enables the interchange of spin excitation.

The experimental application presented in Chapter 6 goes one step further: In a
chain of 10 interacting ions, single-qubit AC-Stark shifts are applied to multiple ions
simultaneously. The shifts can be (i) static to suppress the spin-spin interaction, or (ii)
temporally modulated to recover the interaction. With this, we mimic static energy
disorder and dynamic noise in an interacting spin chain, or in other words, we simulate
excitation transport in a disordered network and noisy environment. The flexibility of
the AWG allows us to apply practically any desired spectral noise properties. Another
application can be gleaned in Ref. [104], where we report on the temporal evolution of
entanglement entropy in an interacting quantum system with and without disorder: For
the unperturbed system, we observed linear (ballistic) entropy growth. In the presence
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of disorder, however, we found a many-body localized phase, in which the system does
not thermalize and the entropy grows strongly restrained.

4.5. Automatized addressing calibration

Over a time of 10 minutes, the positions of the ions in our Paul trap drift39 by about
40 nm along the principal axis of the chain, and 5 nm along the perpendicular direction.
Measurements suggest that these drifts are caused by surface charging effects triggered
by the Doppler cooling beam (397 nm). To counter this, we detect the changes of the
ion positions every 10 minutes using the camera. Then we feed back on the voltage
of the trap tip electrodes in order to cancel the shifts. Finally, we also recalibrate the
addressing Rabi frequency of each ion, to make sure that the coupling of the addressed
beam with the ion is maximized.

For long ion strings and when performing contiguous experiments over many hours,
it is beneficial to automatize the calibration procedures, so the experiment can run
stand-alone and overnight. For example, for the measurements presented in Section 7.3
this automatized calibration was essential. Using the script function in QFP40, we pro-
gram the experimental scans to be automatically interlaced by a clock-measurement41

every 2-3 minutes, and a calibration of the individual ion pi-times every 10 minutes.
Appendix E shows an example of such a qsc-script.

4.6. Sub-Doppler cooling of long ion strings

Sub-Doppler cooling of long ion strings is a prerequisite for most entanglement-gener-
ating atom-light interactions, employed in quantum information processing, quantum
simulation and quantum metrology. The challenge is, to efficiently cool many modes
(possibly spread over hundreds of kHz) close to the motional ground state, in the
shortest possible time. As a reference, the typically sequentially applied resolved-
sideband cooling technique requires about 10 ms to cool all radial modes of a 20-ion
string. This is already 50% of the line-cycle42 time. In our experiment we investigated
39Measurements performed with 10 ions at (2π) 217 kHz axial trapping frequency.
40Quantized Fluorescence Program (QFP) is the multi-threaded Labview software for controlling the

experiment.
41Two qubit-transitions are measured every few minutes and a feedback to the laser is applied, such

that it is locked on resonance with the current qubit-transitions [63].
42The alternating current (AC) in our electric power grid, has a nominal oscillation frequency of 50 Hz.

Or in other words, a line-cycle with a period of 20 ms. Every experimental sequence is triggered to
start at the same phase within this line-cycle to secure reproducibility.
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two methods for sub-Doppler cooling: EIT cooling (Section 4.6.1) and polarization-
gradient cooling (Section 4.6.2). After a short overview on motional states for single
ions and ion strings, the basic principle and results of the two cooling methods are
presented.

Methods for motional state analysis

There exist several methods to analyze the achieved motional state of a single ion or
an ion string, for example:

• Rabi oscillations of the carrier transition. The amplitude of the carrier oscillations
is damped due to the weak dependency of the Rabi frequency on the phonon
number n. In the case of a single ion, and coupling to a single motional mode,
the relation is well approximated by: Ωn,n = (1 − η2n)Ω0. The mean phonon
number n̄ is then extracted by fitting the probability amplitude pcarr(t) to find
the ion in the excited state:

pcarr(t) = 1
2

(
1−

nmax∑
n=0

p̃n cos(Ωn,n t)
)
, with p̃n = n̄n

(n̄+ 1)n+1 ,

where phonon numbers up to nmax � n̄ are considered and p̃n is the respective
thermal probability distribution of the motional state. In the case of a single
motional mode, this fitting method is simple and works well for Doppler- or sub-
Doppler cooled ions, not too close to the motional ground-state.

However, the fitting complexity increases for an ion string, where the Rabi flops
are influenced by the coupling to multiple motional modes: Following the atom-
light interaction as derived in Eq. (3.15), the Rabi frequency of the carrier tran-
sition is influenced by each motional mode m according to:

Ω(j)
n,n = Ω0

∏
m

(
1− η2

m,jn
)
, (4.2)

where the Lamb-Dicke parameter ηm,j varies for different modes as well as for
different ions j. The fitting of such a multi-variable function does hardly con-
verge such that sophisticated fitting techniques have to be used to estimate the
motional state of a long ion string using this method. One solution is to fit
the experimental data via a combined simulation and least-squares optimization
approach as described in Ref. [105].

• The idea of extracting the motional state by fitting to Rabi oscillations is also
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applicable to the sideband transition of a particular motional mode. For exam-
ple, the Rabi frequency of the blue sideband transition of mode m is given by:
Ωm
n,n+1 =

√
n+ 1ηmΩ0. The respective probability amplitude pbsb

m (t) to find the
ion in the excited state is given by:

pbsb
m (t) = 1

2

(
1−

nmax∑
n=0

p̃n cos(Ωm
n,n+1 t)

)
.

The advantage of the sideband-method is, that it reveals the motional state of
a particular mode. Note that this scheme is also applicable to ion strings, if the
laser is focused to address only a single ion such that the mode- and ion-dependent
coupling parameter ηm stays a single fitting parameter.

• Instead of the Rabi flops, one can also analyze the ratio between the red and blue
sideband population of a particular mode m. Here, the k-th order of a sideband
is excited on its red and blue component, using an arbitrary pulse length (but
the same for red and blue). The mean phonon number n̄m is then given by the
ratio Rk between the population of the red (prsb

m ) and blue (pbsb
m ) sideband:

n̄m = (Rk)1/k

1− (Rk)1/k , with Rk = prsb
m

pbsb
m

.

This relation is only valid for thermal states and small phonon numbers. Fur-
ther, the method is most sensitive for sideband orders k close to n̄m, which is
disadvantageous because the laser-ion coupling scales as ηkm. However, also this
method can be extended to ion strings using a single-ion addressing beam.

• An alternative method is the rapid adiabatic passage [106] on a red motional
sideband, in which the phonon number n̄m is directly mapped to the number of
collective electronic excitations in the ion string. This method requires a number
of ions N ≥ n̄m, it is suited for long ion chains, large phonon numbers and is
not constrained to thermal states. A more detailed description of the method,
especially the implementation in our setup, is given in Appendix F.

4.6.1. Electromagnetically Induced Transparency (EIT) cooling

In the following, I summarize the results of the method and defer to the PhD thesis of
R. Lechner [107] for a detailed discussion on the theoretical background, experimental
setup and results.
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We applied EIT cooling to the radial vibrational modes, as most of our experi-
ments employ this part of the motional spectrum to perform spin-spin entangling gates.
The EIT technique can be implemented in an atomic three-level system in lambda-
configuration [108], represented in our system by Zeeman sublevels |S1/2,mj = 1/2〉,
|S1/2,mj = −1/2〉 and |P1/2,mj = 1/2〉, and coupled by two 397 nm laser beams.
The laser detunings are chosen such that they pump the atomic system into a dark
state, which does not couple to the laser fields, to first order. For this reason, sponta-
neous photon emission rates, and therefore the related heating processes, are very low.
Transitions that change the motional state are generally allowed, however red-sideband
transitions are strongly favoured above blue-sideband transitions. Consequently, the
frequency range over which the ion motion is cooled is wider, and the achievable cool-
ing rates are higher, as compared to resolved-sideband cooling [109]. The good optical
access to our ion trap allowed us to arrange the two EIT beams such that the overlap
between the resulting Raman wave vector is equal with both radial directions of motion:
The σ+-polarized EIT dressing beam was oriented anti-parallel to the magnetic field
axis, while the π-polarized EIT probe beam propagated at an angle of 60 ◦ with it43.
In summary, we achieved sub-Doppler cooling of all radial motional modes of an 18-ion
string with a single cooling pulse. Applying the rapid adiabatic passage, we found a
cooling rate of (19± 3)103 s−1, resulting in mean phonon numbers between 0.01− 0.03
after 300µs of EIT cooling.

However, the beam arrangement in our EIT cooling setup also caused an overlap of
the Raman k-vector with the axial direction of motion of the ion string. For the axial
trapping frequencies around ωz = (2π) 217 kHz, which we typically use for trapping
long ion strings, we observed heating of the axial motional modes, during optimum EIT
cooling of the radial modes. The mean phonon number of the axial motion increased
from 〈n〉Doppl ≈ 180 after Doppler cooling, to 〈n〉EIT ≈ 320 after EIT cooling. This
affected the coupling efficiency and fidelity of our single-qubit rotation gates44. A
possible explanation is the high vibrational excitation of the axial modes after Doppler
cooling. This might lift the suppression of the carrier transition, which is usually
provided by the EIT method, resulting in off-resonant scattering processes that heat
up the ions. One could overcome this problem, by avoiding an overlap of the Raman
k-vector with the axial direction of motion. For this, we would need to rearrange the
beam access and change the magnetic field axis, such that the k-vector propagates

43See Refs. [107, 109] for schematics of the optical setup.
44The wave-function of a high Fock state has a smaller overlap with the Gaussian laser beam, than

the ground state wave-function. This reduces the coupling efficiency. The thermal distribution of
the Fock state results in fluctuations of the coupling strength, which reduces the gate fidelity.
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perpendicular to the axial direction of motion. As we don’t want to drastically change
the setup for the time being, we decided to continue using resolved-sideband cooling.

4.6.2. Polarization-gradient (PG) cooling

Sisyphus cooling by means of polarization-gradients (PG), is another technique for
cooling multi-ion crystals from far outside the Lamb-Dicke regime to below the Doppler
cooling limit [110–112]. Here, I summarize the basic idea and the achieved results
for PG cooling of the axial vibrational modes of a single ion and large ion crystals.
Section 4.1 in this work, addresses the experimental setup. Detailed discussions on the
theoretical background and results can be found in Refs. [105, 113].

The underlying idea is to create an optical field with periodically varying polariza-
tion gradient, along the desired cooling direction (labelled as z-axis in the following).
Experimentally we achieve this by two counter-propagating laser beams at 397 nm,
with mutually orthogonal linear polarizations, both blue detuned from the S1/2 ↔ P1/2

transition by 210 MHz. This generates an optical field along the z-axis, with peri-
odic right-hand circular and left-hand circular (lin-perp-lin) polarization, as depicted
in Fig. 4.8. An ion that moves along this axis, experiences a periodic light shift be-
tween the two Zeeman energy levels |S1/2,mj = −1/2〉 and |S1/2,mj = 1/2〉. The ion
looses kinetic energy when travelling along the optical field, as it climbs up the optical
potential hill. Furthermore, the transition rules for the involved energy levels and the
chosen laser beams are such that the population transfer between the two sublevels is
maximum, whenever the ion reaches a peak of the potential energy curve. This way,
the ions’ state is transferred to the lower lying energy level via optical pumping and the
procedure starts again. So in summary, the interplay between the spatially dependent
light shifts and pumping rates gives rise to an efficient cooling mechanism.

The optimum cooling performance is achieved if the ion is positioned at the steepest
part of the optical potential [110]. However, in our experiment it is not feasible to
reliably place the ion within tens of nm of a particular position in the static standing-
wave. Therefore, we detune one of the two cooling beams with respect to the second
beam, by a frequency smaller than the lowest motional frequency (we choose 60 kHz).
The resulting travelling standing-wave ensures that the ion is not positioned at a poor
cooling point but rather samples multiple phases of the polarization gradient field during
the cooling pulse. For long ion chains this consideration is not essential, as the ions are
spatially spread over many positions of the standing wave. Hence, it is likely that at
least one ion lies at the optimum position to climb the potential hill and sympathetically
cools the chain.
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Figure 4.8.: Schematics on polarization-gradient cooling. Two counter-propagating laser
beams (broad green arrows) with mutually orthogonal linear polarizations generate an optical
field along the z-axis with periodic right hand circular, σ−, and left hand circular polarization,
σ+. This field couples the two Zeeman ground states to an excited state and causes a polariza-
tion gradient varying at a periodicity of λ/2 along the propagation direction z. An ion travelling
along that direction experiences a periodic shift of the Zeeman sublevels |S1/2,mj = ±1/2〉, re-
ducing the kinetic energy of the ion as it climbs the potential hill. At the peaks of the potential
curve the population is transferred to the lower lying energy level via optical pumping.

In our experiment, we investigate PG cooling along the principal axis of the ion trap.
Sub-Doppler cooling is achieved on (i) a single ion and (ii) long strings of calcium ions
as well as two-dimensional ion Coulomb crystals in a linear Paul trap. The phonon
numbers and cooling rates are estimated by fitting to the decaying Rabi flops on the
carrier transition, as well as Rabi flops on the sideband transition probed on a single
ion in the chain [105].

(i) Single ion: A single ion, strongly confined at ωz = (2π) 1.1 MHz axial frequency,
reaches phonon numbers below 2 after 200µs of PG cooling. The cooling rate measures
6.6 · 104/s. At trap frequencies below (2π) 400 kHz, the cooling rate is lower because
the Lamb-Dicke regime is left. At ωz = (2π) 217 kHz, we measure 8-10 phonons after
200µs of PG cooling.

(ii) Long ion strings: We apply PG cooling on a linear ion string with 22 ions,
confined at an axial trapping frequency of ωz = (2π) 217 kHz. The effect on the motional
spectrum of a long chain is shown in Fig. 4.9 a)-b). It shows the excitation of each
ion, for all first order red and blue sidebands of the axial motion, as well as the carrier
transition. For the case of a Doppler cooled ion chain (a), all sidebands are strongly
excited and the spectrum is crowded, indicating the occupation of high lying phonon
states for all motional modes. After 1 ms of PG cooling (b), the spectrum is noticeably
less crowded and we observe an asymmetry between the red and blue sidebands, which
indicates the occupation of low lying phonon states. Fig. 4.9 c)-d) visualize the effect of
PG cooling onto coherent laser manipulation. We resonantly drive the carrier transition



4.6. Sub-Doppler cooling of long ion strings 69

using the global beam and perform Rabi spectroscopy. In the case where the ions
are only Doppler cooled (b), the Rabi flops dephase already after 20µs due to the
occupation of high vibrational states. Applying PG cooling for 1 ms additionally (c),
improves the time scale for coherent control significantly, inferring successful cooling
of the ion crystal. Note that the reduced Rabi frequency of outer ions in the chain, is
attributed to their coupling to micromotion along the principal trap axis.
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Figure 4.9.: Effect of PG cooling on a 22-ion chain. a) Individual qubit excitations as
a function of the laser frequency shift, after Doppler cooling for 3 ms. The blue (left hand)
and red (right hand) sidebands are strongly and equally excited, indicating the occupation of
high lying phonon states. b) Spectrum after additional 1 ms of PG cooling, the blue sidebands
are excited noticeable less, indicating cooling to low lying phonon states. c) Resonant qubit
excitation with the global laser beam, after 3 ms Doppler cooling, results in quickly decohering
Rabi flops. d) Additional PG cooling for 1 ms improves the coherent control significantly.

Finally, we also estimate the mean phonon numbers after PG cooling [105]: In a
linear Paul trap, long strings of ions have to be trapped at a weak axial confinement
ωz ≈ (2π) 100 kHz, prone to high motional heating by electric field noise, in particular
for the COM mode. Given a heating rate of about 1400 quanta/s, for a single ion,
we estimate a heating rate on the order of 30 000 quanta/s for 22 ions. Consequently,
PG cooling achieves mean phonon numbers between 25-45 for the COM mode, while
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other modes are cooled down to 1-10 phonons. These numbers are estimated with
single-ion resolved Rabi flops on individual motional sidebands. Least-square fitting
on carrier Rabi flops confirms the result for the COM mode, but overestimates the
phonon numbers for high-frequency modes. We assign this discrepancy to the thermal
occupation of the high-frequency modes, affecting the shape of the carrier oscillations
only weakly. Moreover, we apply PG cooling to a 51-ion chain and observe that the
cooling performance is quantitatively the same as for the 22-ion chain. This indicates,
that the presented cooling technique is scalable.

When working with strings of about 50 ions, sub-Doppler cooling of the axial modes
of motion is essential: Large phonon numbers result in a large spatial spread of the indi-
vidual ions. This again, affects the single-ion addressing quality as the ions’ wavepackets
extend beyond the addressing beam. Fig. 4.10 compares single-ion addressing with and
without PG cooling. Finally, we find that the PG cooling method also succeeds in
cooling the in-plane modes of a two-dimensional 22-ion crystal (see [105]).
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Figure 4.10.: AC-addressed Rabi flops of ion 30 in a 51 ion chain, with and without polarization-
gradient cooling. Without sub-Doppler cooling of the axial motional modes, addressed Rabi
flops decay quickly (red circles), while the phase coherence is well maintained for the PG cooled
case (black circles).

In conclusion, we demonstrate efficient sub-Doppler cooling of trapped ions. For
high trapping frequencies, phonon numbers between 1-2 are achieved. At low trapping
frequencies, the cooling rates compete with motional heating by electric field noise,
resulting in higher phonon numbers for the COM mode. Our investigation shows that
PG cooling is scalable to large ion crystals and is efficient to simultaneously cool a
broad frequency range even from outside the Lamb-Dicke regime.

While PG cooling cannot compete with EIT cooling when it comes to cooling multiple
modes close to the ground state, EIT cooling achieves high cooling rates only over a
comparatively small frequency range. This is due to the narrow dressed state that
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facilitates cooling. Moreover, the highest EIT cooling rate scales with Wcool ∼ ω [114],
such that EIT cooling becomes slow for low-frequency modes.





5. Characterization of quantum many-body
states

The studies presented here are published in:
Nature Physics 13, 1157-1162 (2017) &

Phys. Rev. X 8, 021012 (2018)

Quantum state tomography (QST) is the gold standard technique for estimating the
state of small quantum systems. Applying this technique to systems with more than a
few qubits soon becomes impractical as the required effort grows exponentially with the
number of particles. At the same time, the generation and understanding of complex
states in large quantum systems is of fundamental importance to a broad range of cur-
rent research fields, including quantum computing, quantum simulation, quantum com-
munication, and quantum metrology. With this, more and more precisely-controllable
quantum systems, well beyond the reach of QST, are emerging in today’s laboratories.
Therefore, there is a considerable ongoing effort to develop more efficient tools for the
characterization of large quantum systems [40–42, 47, 49, 50, 115].

At the beginning of the chapter I describe the generation of large, locally correlated
quantum states in our laboratory. These states have been characterized within two
separate experimental projects, published in the journals mentioned above. The first
project focuses on witnessing genuine multipartite entanglement in our states and is
discussed in the first part of this chapter. General properties of the quantum states as
well as entanglement estimates are extracted from a practical number of measurements.
The second part of the chapter focuses on Matrix Product State (MPS) tomography,
a technique, which is theoretically proven to accurately estimate the states of a broad
class of quantum systems, with an effort that increases efficiently with the number of
qubits [40]. After an introduction of the concept of MPS, I present the MPS tomography
scheme and its application to an experiment. We successfully reconstructed quantum
states of up to 14 entangled qubits. This achievement is far beyond the practical
limits of quantum state tomography. Moreover, the presented MPS scheme allows one
to assess the lower bound of the fidelity between the reconstructed state and the state
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generated in the laboratory. The last section describes the experimental implementation
of ”direct fidelity estimation”, a technique that allows for measuring the real overlap
of the estimated state with the laboratory state.

5.1. Large, locally correlated quantum states

In our laboratory, we trap one-dimensional strings of up to 20 40Ca+ ions in a linear Paul
trap. Two electronic states of each ion encode a spin-1/2 particle (Section 2.2). Using a
trichromatic laser beam, we engineer interactions between the spins (Section 3.3), such
that the entire system is well described by the Hamiltonian

HXY =~
∑
i<j

Jij(σ+
i σ
−
j +σ−i σ+

j ) + ~B
∑
j

σzj . (5.1)

Here, Jij describes the N × N spin-spin coupling matrix of spins i and j, where N
denotes the number of qubits. σ+

i (σ−i ) is the spin raising (lowering) operator and
σzj is the Pauli Z matrix for spin j. The interactions decrease with distance |i − j|,
approximately following a power-law Jij ∝ 1/|i−j|α. To quantify the interaction range
α in our system we find a best fit between the eigenmode spectrum of HXY in the one-
excitation subspace, with the eigenmode spectrum of an interaction that reduces with
1/|i− j|α. The decay parameter α of the best fit, yields an effective interaction range
of α = 1.58 (8 spins), α = 1.27 (14 spins) and α = 1.1 (20 spins). For these interaction
ranges, one can observe spreading wave packets of quantum correlations [94, 116, 117].
Applying MPS tomography to such complex out-of-equilibrium states, generated by
interactions that are not strictly of finite range, represents a stringent test of its scope
of application.

The ground state of the model Hamiltonian (5.1) corresponds to the state with all
spins down |↓z〉⊗N . Spin-up states |↑z〉 are quasiparticle excitations, which disperse
and scatter in the system [94]. We choose the Néel state as the initial state in our
experiment, as it is highly excited (N/2 excitations) and leads to the emergence of
locally correlated entangled states involving all N particles. After evolving this state
under the XY-Hamiltonian for a desired time t, the spin interactions are abruptly turned
off, freezing the generated state and allowing for spin measurements. At the end of every
such experimental run, the state of each spin is determined using the standard electron
shelving technique and a single-ion resolving CCD camera. This measurement setting
corresponds to measuring each spin in the Z-basis, that is, projecting each spin into
either of the two eigenstates of the Pauli σz operator. Moreover, we can measure any
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spin in any single-spin basis via laser-driven spin rotations that map the eigenstates of
the desired single-spin-operators onto the eigenstates of the Pauli σz operator. After
this, electron shelving detection is carried out as in the Z-basis measurements. In this
way we measure arbitrary combinations of single-spin bases, e.g. the first spin in the
Z basis, the second in X, the third in Y , etc.

5.1.1. Correlation spread in light-like cones

Consider an N -component quantum system in a separable pure state (e.g. the Néel
state) in which the spin-spin interactions (5.1) are turned on abruptly (quench). In the
case of finite-range interactions, information and correlations spread over the system
with a strict maximum group velocity [118–120]. As we do not have finite-range in-
teractions in our experiment, information does not spread at a strict maximum speed.
However, light-cone like trajectories provide a practically useful description of the cor-
relation dispersal. Fig. 5.1 a) to d) show the spread of spin excitations over the entire
ion chain. The lines t = d/v delineate the light-like cones, where d = |i− ic| denotes the
distance of the ion sites i = 1...N to the centre ion ic. The spread velocity v is estimated
by considering a nearest-neighbour model of our system, where the homogeneous cou-
pling strength J = 1

N−1
∑N−1
i=1 Ji,i+1 is given by the average nearest-neighbour coupling

of the original (full) coupling matrix Jij . Then, we calculate the corresponding eigen-
mode spectrum of this truncated system, and determine the gradient between every
pair of consecutive eigenvalues. The largest of these gradients corresponds to the maxi-
mum velocity vmax at which energy and correlations disperse in the system. Finally we
renormalize vmax by the algebraic tail of the original coupling matrix: Specifically, we
choose the central ion ic = 5 (7) respectively for 8 (14) ions and average between the left
and right algebraic tail, resulting in the normalization factor G = 1

2J
∑
i,j (Jj,ic + Jic,j)

such that v = vmax
G .

After a finite evolution time under the interaction Hamiltonian, there is a maximum
distance over which correlations have spread across the system. Beyond this so-called
correlation length L, correlations decay exponentially in distance. The information re-
quired to describe the corresponding quantum state is largely contained in the local
reductions – the reduced density matrices of all groups of neighbouring particles con-
tained within L (see Fig. 5.1 e)). In 1D systems, such states are well described by a
compact MPS [121, 122] and one only needs to perform the measurements required to
reconstruct the local reductions, to identify the entire N -component state at a certain
point in time (Section 5.2.2). The light-like cones presented in Fig. 5.1 serve as a guide
to interpret correlation spreading in our system. This way they help to estimate the
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Figure 5.1.: Generation and evolution of locally correlated quantum states. a), b)
Single-spin magnetization dynamics 〈σzi (t)〉 during a quench of Hamiltonian (5.1) for 8 ions.
Light-light cones are visualized as orange dotted line for the initial state with a single spin
excitation, and analogously as black dotted lines for the Néel initial state. The cones exemplify
an estimate for the maximum speed at which correlations spread. c), d) Same as in a) and b)
for a 14 ion chain. e) (1) Quantum spins arranged in a one-dimensional chain, are initialized
into the Néel state. Finite-range spin–spin interactions are turned on abruptly, and quantum
correlations spread out with a maximum group velocity. Black arrows (only a few are shown)
denote the light-like cones of the correlation spread, producing a locally correlated entangled
state. (2) After a particular evolution time, quantum correlations have spread to neighbouring
spin triplets, expressed via the correlation length L = 3. The correlation length increases at
most linearly in time. The total N -spin state is accurately described by a compact MPS. (3) It
suffices to reconstruct all N − L + 1 neighbouring spin triplet reduced density matrices ρi,j,k,
in order to obtain an accurate MPS estimate for the state in the laboratory. At any given
evolution time, the experimental effort therefore increases linearly in spin number N .

correlation length at each time step and reveal when measurements over larger sites
become necessary for successful MPS tomography. For the state reconstruction in our
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experiment, we measure the local reduced density matrices ρ(k) of all blocks45 of indi-
vidual spins (k = 1), neighbouring spin pairs (k = 2) and spin triplets (k = 3). For each
neighbouring k-spin block we measure all 3k bases, corresponding to all combinations
of single-qubit Pauli operators (see details in Appendix I).

The set of measurements for reconstructing all reduced density matrices of up to three
neighbouring spins, contains 27 measurement bases with 1000 repetitions per basis.
These data reveal a large set of correlations between spin-pairs all over the ion chain.
Examples of two-qubit correlation matrices in a 20-qubit system are shown in Fig. 5.2:
Panel a) shows the development and spread of correlations 〈Yi(t)Yj(t)〉 − 〈Yi(t)〉 〈Yj(t)〉,
between spins i and j, as a function of time. Here, Y is the standard Pauli spin
operator σy. The second term in this correlation function removes pure-state classical
correlations such as those present in the initial state. Therefore, the correlation matrix
at time t = 0 ms contains all zero entries to within the error limits. Panels b) to
d) present correlation matrices after t = 2 ms interaction time, where strong pairwise
correlations have emerged beyond next-nearest neighbours, in different bases.

5.1.2. Entanglement studies

The data set for the reconstruction of k-qubit local density matrices allows us to extract
interesting properties:

1. We can reconstruct each local k-spin reduced density matrix ρ(k) via full quan-
tum state tomography and standard maximum likelihood estimation [37]. From
this we obtain arbitrary information about all neighbouring two- and three-body
states, e.g. entanglement measures [123].

2. The experimental data allow us to define genuine multipartite entanglement wit-
nesses, beyond the fully reconstructed states of three neighbouring qubits [124].

1. Two- and three-body properties:

We reconstruct the density matrices of all subsets of two and three neighbouring qubits.
From these local reductions we can extract dynamical properties of all neighbouring
spin pairs and spin triplets. Fig. 5.3 a) shows an example for a reconstructed density
matrix of two spins after 3 ms quench dynamics on an 8-ion Néel initial state. Fig. 5.3
b) shows the Von Neumann entropy S(ρ) = −Tr(ρ ln(ρ)), quantifying the degree of
mixing of some selected local reductions ρi,j,k of the three-qubit system (i, j, k). Note
45A 1D chain of N spins has N − k + 1 blocks of k neighbouring spins. We can measure them

simultaneously, requiring a total of 3k measurements bases for the entire string.
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Figure 5.2.: Spin pair correlation matrices in a 20-spin system. a) Development of
correlations 〈Yi(t)Yj(t)〉 − 〈Yi(t)〉 〈Yj(t)〉, between spins i and j, as a function of time. At time
t = 0 ms there are no correlations to within the error limits. b) - d) Correlation matrices at
time t = 2 ms in different bases, as stated in the panel titles. The performed measurements for
the reconstruction of 3-qubit density matrices do not contain all spin-spin correlations. Missing
data is denoted by hatched squares.

that the von Neumann entropy vanishes for a pure state and reaches the maximum value
ln(2N ) for a maximally mixed state of N qubits. Finally, we calculate the overlap46

between all neighbouring spin-pair states and a maximally entangled two-qubit state,
the |Ψ+〉 = (|01〉 + |10〉)/

√
2 Bell state. Fig. 5.3 c) shows that the overlap reaches its

maximum around 3 ms.

We quantify entanglement by the bipartite logarithmic negativity LN2 for spin pairs,
and tripartite logarithmic negativity LN3 for spin triplets. Logarithmic negativity
LN(ρ) = log2 ‖ρTA‖1 is an entanglement measure that can be computed for a generic
bipartite mixed state ρ, from the trace norm of its partial transpose ρTA [126]. This
expression vanishes for unentangled states and we use it to quantify the degree of

46Quantifying entanglement in terms of the overlap with a maximally entangled two-qubit state has an
operational meaning: two-qubit states with fidelities above 50% are distillable. That is, from many
copies of qubit-pairs with fidelities above this threshold, local actions on each qubit can distill a
smaller number of states with higher quality entanglement [125].
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Figure 5.3.: Properties extracted from local reductions in an 8-spin system. a)
Absolute value of the reduced density matrix of spins 3 and 4 at time t = 3 ms, reconstructed via
full QST and standard maximum likelihood estimation. b) Von Neumann entropy in example
local reductions of a single spin (blue), two spins (red) and three spins (black). Shapes: entropy
of the experimentally measured local reductions. Error bars are of similar size as the symbols.
Solid lines: theoretical model based on ideal quantum simulator states. Dashed lines: the
maximum entropy for a fully mixed state of N qubits. c) Overlap of the maximally entangled
|Ψ+〉 Bell state with the absolute value of all experimentally reconstructed neighbouring 2-spin
density matrices. Spin pairs symmetrically distributed around the centre of the string are shown
in the same color. Solid lines connecting points with error bars: experimental data. Error
bars represent one standard deviation obtained via the Monte Carlo simulation of quantum
projection noise. Dashed lines: theory from ideal model of the simulator.

entanglement in the reduced 2-qubit density matrices ρ(2) of neighbouring spin pairs,

LN2(ρ(2)) = log2 ‖ρTA‖1 = log2

(
2 · |

∑
n

µn|+ 1
)
, (5.2)

where µn are the negative eigenvalues of ρTA . For a qualitative discussion of entan-
glement evolution in neighbouring spin triplets ρ(3), we define tripartite logarithmic
negativity LN3 as the geometric mean of the three bipartite logarithmic negativities
(similar to the definition of tripartite negativity in [127]):

LN3(ρ(3)) = 3
√
LN2(ρI−JK) · LN2(ρJ−IK) · LN2(ρK−IJ) , (5.3)

where LN2(ρI−JK) = log2 (2 · |∑i µ̃i|+ 1), with µ̃i as negative eigenvalues of ρTI , the
partial transpose of ρ(3) with respect to subsystem I. Fig. 5.4 reveals that entanglement
between neighbours maximizes at 2 ms, and spin-triplet entanglement around 3 ms. As
the simulator evolves further, entanglement reduces first in pairs, as correlations have
then spread out to include more distant spins. Then, entanglement reduces in spin
triplets, in agreement with the continuing spread of correlations in the system.
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Figure 5.4.: Temporal evolution of two- and three-body entanglement in an 8-spin
system. a) Bipartite logarithmic negativity LN2 for neighbouring spin pairs and b) tripartite
logarithmic negativity LN3 for neighbouring spin triplets. The evolution time under the XY-
Hamiltonian is given in each panel. The values are extracted from the measured k-spin local
reductions. Error bars represent one standard deviation derived from Monte Carlo simulation
of quantum projection noise.

2. Genuine multipartite entanglement witnesses:

The acquired data for the reconstruction of all neighbouring 3-qubit density matrices
can also be used to design multipartite entanglement witnesses. Every qubit added
to the system doubles the Hilbert space dimension, in which the collective quantum
state is described. This makes it challenging to determine if and how an N -qubit
quantum system is entangled. For an arbitrary mixed state, the problem is at least NP
hard, such that a mixed 5-qubit state is already at the practical limit of our available
computers and algorithms [128]. One may ask, is multipartite entanglement not implied
if e.g. every neighboring qubit pair is entangled as we know that this applies to our
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system (c.f. Fig. 5.4)? The answer to this question is no. There are states that feature
entanglement in every 2-qubit reduction, yet still feature only bipartite entanglement.
Nonetheless, it is often possible to detect genuine multipartite entanglement (GME)47

purely from inspection of the reduced density matrices of overlapping groups of qubits.
In Ref. [124] we report on the partial characterization of a 20-qubit system via

custom-build witnesses to detect GME. The designed witnesses are not a function
of every element of the density matrix and therefore require only a limited number
of measurements. For any group i of k neighbouring qubits we aim to find a witness
operator Q(k)

i , whose expectation value provides a lower bound on the k-qubit genuine
multipartite negativity Ng [129, 130]. The constraints are

(i) that it can be written as a linear function of the 27 projectors that we measured
in our experiment,

(ii) it maximizes the inequality

− Tr(Q(k)
i ρki ) ≡ S

(k)
i ≤ Ng(ρki ) , (5.4)

where S(k)
i is the witness expectation value for a specific k-qubit state ρki and

(iii) inequality (5.4) has to be satisfied for all possible k-qubit states.

We employ a numerical search to find k-qubit witnesses for GME. This search is com-
putationally demanding, as the used optimization resources increase exponentially with
k. Theoretical details on the analytical derivation of the GME witnesses are given in
Ref. [124]. Here, I want to summarize the experimental results when applying the
established methods to a 20-qubit state.

The experimental results in Fig. 5.5 present the witness expectation values S(k)
i for

the ith group of up to k = 5 neighbouring qubits, for different time steps in the
dynamics. The witness detects k-qubit GME (Ng > 0) if it is larger than zero. We
find, that between 2-3 ms the majority of all neighbouring groups of 3, 4 and 5 qubits
shows GME, to within at least 1 standard deviation of experimental uncertainty. We
further compare the experimental results with two different theoretical models:

1. The “pure” model assumes the preparation of a perfect initial product state and
a pure time-evolved state. Although this model succeeds in describing the en-

47A pure state |ψ〉 is called biseparable if there exists a bipartition A|B such that |ψ〉 = |φ〉A |χ〉B
for some |φ〉A and |χ〉B , and is called genuinely multipartite entangled otherwise. Mixed states
are GME if their density operators cannot be written as convex combinations of biseparable pure
states [124].
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tanglement dynamics qualitatively, the experimental data are generally offset to
lower values.

2. A more sophisticated “mixed” model includes known imperfections48 in the prepa-
ration of the Néel-ordered initial state. This model is able to explain part of the
experimental data offset, the remaining difference is attributed to additional mix-
ing processes during the laser-induced spin-spin interactions.

The theory error bars in Fig. 5.5 indicate one standard deviation of the mean and orig-
inate from a finite number (1000) of numerically simulated measurements per basis.
These errors denote that the fluctuations in the data are well explained by statistical
noise. Amongst the 27 measurement bases, 3-qubit measurements are repeated (dupli-
cated) more often in the measurement pattern than 4-qubit or 5-qubit measurements -
leading to the observed variations in the statistics. We conclude that we could benefit
from taking more measurements, in order to witness 4- and 5-qubit GME with greater
statistical significance.

48Out of 1000 attempts to generate the Néel state, we observe the correct output state 829 times. In
the remaining 171 cases, 146 correspond to single qubit flip errors and the rest to errors with two
or more qubit flips. We model these errors as leading to the preparation of a statistical mixture of
those different logical initial states, with corresponding weights. The error source is attributed to
uncontrolled fluctuations in laser intensity and frequency.
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5.2. Matrix Product State Tomography

So far, the largest application of full QST was on an 8-qubit W-state, requiring ten
hours of measurements in 6561 different bases [131]. In our experiment, we applied
MPS tomography to study complex out-of-equilibrium states on 8- and 14-qubits, gen-
erated by quench dynamics under the XY-Hamiltonian. We succeeded to accurately
reconstruct entangled states using measurements in only 27 bases taken over a few tens
of minutes.

MPS tomography is most efficient for states with a maximum distance over which
significant quantum correlations exist. Example states are the 2D cluster states (uni-
versal resource states for quantum computing) and the ground states of a broad class
of 1D systems. MPS tomography recognizes that the information needed to identify
these states is accessible locally – that is, it only requires measurements on subsets of
neighbouring particles. In this case, the total effort to obtain a reliable estimate for the
state in the laboratory increases at most polynomially in system components [40, 41].

5.2.1. Matrix Product States

Matrix Product State representation is a way to parametrize a many-particle wave
function. MPS are hierarchical, that is, the matrix size is related to the degree of
entanglement. In principle, any state can be expressed as MPS. However, for locally-
correlated states – representing a broad class of physical states – it offers a compact
description with a number of parameters that increases only polynomially in system
components. A great advantage of MPS is, that it is mathematically easy to apply
operators onto and that they are efficient to search through (e.g. for finding the low-
est energy for a given Hamiltonian). In the following I explain first intuitively, then
mathematically, how to derive a compact MPS from the well-known density matrix
representation [132]:

Let us consider a general pure quantum state, given by L particles on a one-dimen-
sional lattice, where each particle can be in d local states |σi〉 (e.g. for spin-1/2 particles
{|σi〉} = {|↑i〉 , |↓i〉}). The state is described by

|ψ〉 =
∑

σ1,...,σL

cσ1...σL |σ1, ..., σL〉 ,

with dL coefficients cσ1...σL . While the following discussion holds for lattices of arbitrary
dimension, the most natural and intuitive picture is a 1D lattice.

Intuitive derivation: The first step in the construction of an MPS is the division
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of the quantum system into two parts (bipartition), such that the first qubit |σ1〉 is set
apart from the rest of the lattice |aL−1〉, as depicted in iteration 1 of Fig. 5.6. The
information about the correlations between the two subsystems is condensed into a
Matrix Aσ1 and the remanent subsystem |aL−1〉, such that the state is described by

|ψ〉 =
∑

aL−1,σ1

〈aL−1, σ1|ψ〉 |aL−1〉 |σ1〉 ≡
∑

aL−1,σ1

Aσ1 |aL−1〉 |σ1〉 .

This bipartition and matrix decomposition is recursively swept over the entire quantum
system until all qubits are transformed: |ψ〉 = ∑

σ1,...,σL A
σ1Aσ2 ...AσL |σ1, ..., σL〉.

Mathematical derivation: The transformation of a the density matrix into an
MPS representation is based on a tool from linear algebra, the so-called Singular value
decomposition (SVD) (see Appendix J). There are three related methods to generate
MPS, indicating that the MPS representation of a state is not unique. In the following
I focus on the generation of so-called “left-canonical matrix product states”49:

1. Bipartition: Reshape the state vector with dL entries, into a matrix Ψ of dimen-
sion [d × dL−1] such that Ψσ1,(σ2...σL) = cσ1...σL . Applying SVD onto matrix Ψ,
results in:

Ψσ1,(σ2...σL) =
r1∑
a1

Uσ1,a1Sa1,a1(V †)a1,(σ2...σL) ,

with the rank r1 ≤ d. The matrix S is diagonal with non-negative entries Sa,a –
the so-called singular values – and describes the bond between the two subsystems
of the bipartition.

2. Matrix decomposition: Now, the matrix U is decomposed into a collection of
d row vectors Aσ1 , with the entries Aσ1

a1 = Uσ1,a1 . Further, matrices S and
V † are multiplied and reshaped into a new matrix Ψ(a1σ2),(σ3...σL) of dimension
[r1d× dL−2]. In summary the original coefficient vector of Eq. (5.2.1) turns into:

cσ1...σL =
r1∑
a1

Aσ1
a1 Ψ(a1σ2),(σ3...σL) .

The combination of reshaping (step 1.) and matrix decomposition (step 2.) corresponds
to one iteration of the conversion into a matrix product state, as depicted graphically
in Fig. 5.6. In the second iteration, the new matrix Ψ(a1σ2),(σ3...σL) is decomposed into

49In contrast to “right-canonical matrix product states” and “mixed-canonical matrix product states”,
where the state decomposition starts from the right side, or simultaneously from the left and from
the right.



86 5. Characterization of quantum many-body states

its singular values:

Ψ(a1σ2),(σ3...σL) =
r2∑
a2

U(a1σ2),a2Sa2,a2(V †)a2,(σ3...σL) .

Again, U is replaced by a set of matrices Aσ2 as in step 2, such that the original
coefficient vector turns into

cσ1...σL =
r1∑
a1

r2∑
a2

Aσ1
a1U(a1σ2),a2Sa2,a2(V †)a2,(σ3...σL) =

r1∑
a1

r2∑
a2

Aσ1
a1A

σ2
a1,a2Ψ(a2σ3),(σ4...σL) ,

where Aσ2 is of dimension [r1 × r2] with entries Aσ2
a1,a2 = U(a1σ2),a2 . Upon further

iterations we obtain

cσ1...σL =
∑

a1,...,aL−1

Aσ1
a1A

σ2
a1,a2 ...A

σL−1
aL−2,aL−1A

σL
aL−1 = Aσ1Aσ2 ...AσL ,

such that an arbitrary quantum state is represented in the form of an exact matrix
product state:

|ψ〉 =
∑

σ1,...,σL

Aσ1Aσ2 ...AσL |σ1, ..., σL〉 . (5.5)

Iteration 1

Iteration 2

...

...

Figure 5.6.: Graphical representation of the iterative MPS construction from a pure
quantum state. The first black rectangular block represents the coefficients cσ1...σL

of state
|ψ〉, from which the physical states |σ1〉 to |σL〉 stick out vertically. After the first iteration we
obtain a matrix Aσ1

a1
, represented by a black circle and a reduced block, identified as |aL−1〉 (c.f.

Eqs. (5.8)). The connecting horizontal arms correspond to the matrix indices a1,...,aL. They
are auxiliary degrees of freedom, connecting the subsystems of each bipartition.
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Compression of MPS

The matrices in an MPS representation can be exponentially large, as e.g. states with
long-range correlations have many non-negative eigenvalues and thereby large singular
value matrices S. For exponentially decaying singular values Sa,a, it is possible to
reduce the matrix dimension without appreciable loss of precision [132]. The following
section summarizes the process of compressing an MPS, which is explained easiest
using another form of matrix product representation, the so-called mixed-canonical
representation.

Analogously to left-canonical MPS, the decomposition of the state can be performed
likewise from the right side of the lattice, setting apart qubit |σL〉 at first, and decom-
posing (V †)aL−1,σL (instead of the matrix U) into matrices BσL

aL−1 . The states build
in this manner are called “right-canonical matrix product states”. One can also mix
the decomposition from the left and from the right, constructing a “mixed-canonical
matrix product state”: Assume a bipartition of the system universe into a subsystem
A, running from lattice site [1, `], and subsystem B running from [`+ 1, L]. We apply
a decomposition of system A from the left up to site `, such that

cσ1...σL =
∑
a`

(Aσ1 ...Aσ`)Sa`,a`(V †)a`,(σ`+1...σL) .

Hereupon we carry out successive SVD on V †, from the right side up to site σ`+1 such
that

(V †)a`,(σ`+1...σL) =
∑

a`+1,...,aL−1

B
σ`+1
a`,a`+1 ...B

σL
aL−1 and thereby

|ψ〉 =
∑

σ1,...,σL

Aσ1 ...Aσ`SBσ`+1 ...BσL |σ1...σL〉 . (5.6)

Introducing two orthonormal bases states |a`〉A, |a`〉B for subsystems A and B, we can
read off the Schmidt decomposition (see Appendix J) of the state:

|a`〉A =
∑

σ1,...,σ`

(Aσ1 ...Aσ`)1,a` |σ1...σ`〉

|a`〉B =
∑

σ`+1,...,σL

(B`+1...BσL)a`,1 |σ`+1...σL〉 (5.7)

|ψ〉 =
∑
a`

|a`〉A Sa`,a` |a`〉B

For exponentially decaying singular values Sa`,a` , we can cut the spectrum at the Db
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largest values, without appreciable loss of precision. This reduction of the bond dimen-
sion goes along with compressing the matrices Aσ` and Bσ`+1 , by retaining the first
Db columns of Aσ` and the first Db rows of Bσ`+1 . In summary, we obtain an efficient
approximate representation of the state.

5.2.2. MPS reconstruction scheme

As discussed above, the representation as MPS is suitable for states with a maximum
distance over which significant quantum correlations exist between constituents. In
particular, we find that MPS tomography is well-suited to characterize the states gen-
erated in our experiment from the dynamical evolution of a Néel initial state under the
XY-Hamiltonian. As described in section 5.1, the spread of information and correla-
tions is well described by a maximum group velocity. Therefore, after a finite evolution
time, we identify a maximum distance over which correlations extend in the system –
the correlation length L. Beyond this length, correlations decay exponentially in dis-
tance. The information required to describe the state is largely contained locally: in
the density matrix reductions of all groups of neighbouring particles contained within
L. MPS tomography recognizes this fact and requires only measurements on subsets of
particles that lie in the same neighbourhood. Each local reduction can be determined
by full quantum state tomography (QST), requiring measurements in at most 3L bases.

In our experiment, we perform measurements up to L = 3, amounting to a maximum
of 27 measurement bases. The reduced state estimates are then passed to a classical
algorithm which finds an MPS estimate in a time polynomial in the number of qubits
N . In the following, I give an overview on how the experimental data is processed to
reconstruct a pure MPS estimate of the unknown state in the laboratory, and how we
construct a fidelity certificate. The development of the reconstruction process, as well
as the application to our data was performed in the team of Prof. Martin Plenio (Uni-
versity of Ulm). The Supplementary Material of Ref. [123] provides a more detailed
mathematical description of the process.

The experimental data comprises up to 27 different measurement settings, each re-
peated 1000 times. These samples are split into two parts of 500 samples (Part 1 and
Part 2 in Fig. 5.7). The first part is used to obtain a pure MPS estimate |ψkc 〉 of the
unknown state ρlab in the laboratory. The second part is used to obtain a certificate,
that is, an assumption-free lower bound on the fidelity between the unknown state and
our MPS estimation of this state. The motive to split the data is to ensure statistical
independence of the process of obtaining the MPS estimate |ψkc 〉, and the process of



5.2. Matrix Product State Tomography 89

obtaining the certificate.

Tr

local outcome probabilities

local measurements

Figure 5.7.: Flow process chart of certified MPS tomography. Measurement data from
the unknown state in the laboratory ρlab is split into two parts. The first part is used to obtain
a certified MPS estimate |ψkc 〉 and a parent Hamiltonian H. The second part is processed to
obtain a fidelity lower bound F kc ±∆F kc .

Part 1. Identify an initial MPS estimate: The first part of the experimental
data is processed with linear inversion to obtain estimates of the local k-spin reduced
density matrices. These reduced density matrices are processed by the modified singular
value thresholding (SVT) algorithm from Ref. [40], to return a pure MPS estimate. This
pure state is used as the start vector for the iterative likelihood maximization algorithm
over pure states [115], which uses the 6k outcome probabilities50 as input and returns
an initial MPS estimate |ψest〉 of the unknown lab state. Both algorithms search for
an MPS that is compatible with the local outcome probabilities, and has a small bond
dimension Db. For the 8 qubit experiment, we use Db = 2 for t ≤ 2 ms and Db = 4
for other times. For 14 qubits we use Db = 16 for all times. The initial estimate |ψest〉
reproduces the local outcome probabilities well but it may or may not be close to the
unknown state ρlab in the laboratory. Therefore, an additional step is necessary to

50Each of the 3k settings has 2k distinguishable outcomes, which amounts to 3k × 2k = 6k outcome
probabilities.
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verify the correctness of the result.
Part 2. Certify an MPS estimate: We use the second part of the experimental

data to obtain estimates for the fidelity lower bound F kc and its statistical uncertainty
∆F kc , caused by the finite number of measurements. We start with finding the so-called
parent Hamiltonian of the initial estimate |ψest〉. A parent Hamiltonian of a pure state
|ψGS〉 is any hermitian linear operator H such that |ψGS〉 is the ground state of H. If
H is a sum of local terms – that is, terms acting only on k neighbouring spins – the
3k measurements described above suffice to define it, and obtain its energy spectrum.
We define a set of candidates H1, H2, ... for parent Hamiltonians, for which the overlap
between their ground states and |ψest〉 lies above a certain threshold. For all candidate
parent Hamiltonians we compute the ground state |ψGS〉 as well as the smallest and
second smallest eigenvalues E0 and E1. In order to return the highest fidelity lower
bound, the final parent Hamiltonian has to provide the best compromise between two
conditions:

1. The related ground state |ψGS〉 must be close to the initial MPS estimate |ψest〉.
This means, the Hamiltonian has to minimize

D(|ψest〉 , |ψGS〉)− (E1 − E0) , (5.8)

where D(|ψ〉 , |ψ̃〉) = ‖ |ψ〉〈ψ| − |ψ̃〉〈ψ̃| ‖1/2 =
√

1− | 〈ψ|ψ̃〉 |2 is the trace dis-
tance [21].

2. The gap between the two smallest eigenvalues E1−E0 must be much bigger than
the measurement uncertainty of the energy E of the unknown state ρlab in terms
of the parent Hamiltonian H: E = Tr(Hρlab)

Finally, we denote by |ψkc 〉 the ground state of the chosen parent Hamiltonian, and
define it as the final estimate of the unknown state in the laboratory ρlab. Since the
ground state is non-degenerate, i.e. E0 < E1, a lower bound to the fidelity between the
state |ψkc 〉 and any pure or mixed state ρlab is given by [40]

〈ψkc |ρlab|ψkc 〉 ≥ 1− E − E0
E1 − E0

⇒ F kc 1 ≡ 1− ε(D)− E0
E1 − E0

. (5.9)

The information about the laboratory state is obtained from a finite number of mea-
surement outcomes (distributed according to an unknown probability distribution).
This leads to uncertainty in our estimate of the energy E, which we express by intro-
ducing the estimator ε(D). The term estimator refers to a quantity that is given by
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many independent random variables – in our case, the measurement data D – to obtain
an estimate ε(D) of the true value E [133]. Our uncertainty about the value of E is
quantified by Vε(D), as the mean squared error of ε(D) and defines the uncertainty of
the fidelity lower bound:

∆F kc =
√
Vε(D)

E1 − E0
. (5.10)

Experimental results

Figure 5.8 a) presents the certified fidelity lower bound F kc ≤ 〈ψkc |ρlab|ψkc 〉 from MPS
tomography during 8-qubit quench dynamics of an Néel-ordered initial state |φ(0)〉 =
|↑, ↓, ↑, . . .〉. The results closely match an idealized theoretical model where MPS to-
mography is applied to exact local reductions of the ideal time-evolved states. Mea-
surements at t = 0 on individual sites (k = 1) yield an MPS (pure-state) reconstruction
with F 1

c = 0.98 ± 0.01 and |〈ψ1
c |φ(0)〉|2 = 0.98, indicating that the system is initially

well described by a pure product Néel state. The fidelity lower bound based on such
single-site measurements rapidly degrades as the simulator evolves with time, falling to
0 by t = 2 ms. Nevertheless, an accurate MPS description is still achieved by measuring
on larger (k = 2) and larger (k = 3) sets of neighbouring sites. The fidelity bounds F 3

c

begin to clearly drop after t = 3 ms, consistent with the time at which the informa-
tion wavefronts are expected to reach next-nearest-neighbours, developing correlations
beyond 3 sites (see light-like cones, in Fig. 5.8 b)). Beyond t = 3 ms it becomes increas-
ingly difficult to uniquely distinguish (and certify) the global state based on 3-site local
reductions. This agrees with the growing amount of entanglement with time, as can be
seen from the inset in Fig. 5.8 a). It also agrees with the properties measured directly
in the local reductions (Fig. 5.4), in which entanglement in spin triplets maximizes
around 3 ms. To reconstruct the state in the laboratory beyond t = 3 ms with high
fidelity, it would be necessary to measure on an increasing number of sites, demanding
measurements that grow exponentially in k.

Figure 5.9 shows MPS tomography results from a 14-spin quench (panel d)) – a many-
body state far beyond the practical limit of full QST, which would require measuring
in more than 4 million bases. The state reconstruction presented here uses only 27
local measurement bases instead, to obtain the reduced density matrices of all k = 3
neighbouring sites. Figs. 5.9 a)-c) compare spin-spin correlation matrices at time t =
4 ms from the certified MPS |ψ3

c 〉 (lower panels) with those obtained in the laboratory
directly via additional measurements (upper panels). The certified pure MPS captures
the strong pairwise correlations in the simulator state and correctly predicts the sign
and spatial profile of correlations beyond next-nearest neighbour. This means, that the
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Figure 5.8.: MPS tomography results for an 8-qubit quench. a) Lower bound on the
fidelity F kc between the certified MPS estimate |ψkc 〉 and the generated state in the labora-
tory ρlab, as a function of the simulator evolution time (c.f. panel b)). Shapes: Data points for
which the MPS estimate was reconstructed from measurements over k neighbouring sites. Error
bars reflect one standard deviation uncertainty ∆F kc due to the finite number of measurements
and are derived in the certification process. Dashed lines: Theoretical model for which MPS
tomography was applied to k-site local reductions derived from ideal simulator dynamics of
perfect Néel initial states. Shaded areas simulate the outcomes of the finite number of mea-
surements per basis used in experiments (1000). Insert: Half-chain von Neumann entropy of
the reconstructed state: Red triangles from |ψkc 〉, black line from ideal model. b) Single-spin
magnetization dynamics 〈σzi (t)〉 during a quench of the XY-Hamiltonian. Light-like cones are
visualized as black dotted lines, exemplifying the maximum speed of correlation spread.

scheme is able to predict state properties beyond those that are measured to reconstruct
the state.

The MPS estimate |ψ3
c 〉 yields a certified minimum fidelity of F 3

c = 0.39 ± 0.08.
However, F kc is only a conservative lower bound and even lies quite far from the one
expected from an idealized theoretical model (0.78). It is natural to ask what the true
state fidelity is. Using the estimated state |ψ3

c 〉 from MPS tomography, we perform
Direct Fidelity Estimation (see Section 5.2.3) with the experimentally generated state.
This reveals a fidelity of FDFE = 0.74± 0.05. In summary, MPS tomography provided
an accurate estimate of the 14-spin simulator state, and the fidelity lower bound of
F 3
c = 0.39± 0.08 is correct. We find, that the certification process is compromised by

errors in initial state preparation, introducing mixture at the single spin level. The
current state initialization error per-spin limits the ability to accurately and efficiently
characterize its state. A revised optical addressing setup should improve single-qubit
operations and allow for a smaller and constant error-per-spin.
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Figure 5.9.: MPS tomography results for a 14-qubit quench. a)-c) Two-spin correlation
matrices 〈A(t)iB(t)j〉 − 〈A(t)i〉〈B(t)j〉 at time t = 4 ms in the quench dynamics (c.f. panel d)).
A, B as labelled in the graphs, with X, Y and Z denoting standard Pauli spin operators. The
correlations of the upper panels are measured directly, with hatched squares denoting non-
measured correlations. The lower panels show correlation matrices extracted from the certified
MPS estimate |ψkc 〉, which captures many of the correlations between spins up to four sites
apart. The weak correlations over greater distances in the laboratory state develop effectively
instantly in quench dynamics, due to the long-range components of our interactions. d) Single-
spin magnetization dynamics 〈σzi (t)〉 during a quench of the XY-Hamiltonian. Light-like cones
are visualized as black dotted lines, exemplifying the maximum speed of correlation spread.

Scalability considerations

We determine the scalability of MPS tomography, by studying the dependency of the
estimation error on the number of spins N , under a constant total number of mea-
surements. The estimation error is quantified with the trace distance D =

√
1− F

between the density matrices of the two pure states, where F describes the estimation
fidelity lower bound. We carried out numerical simulations, estimating states contain-
ing a significant amount of entanglement (Half-chain von Neumann entropy ∼ 0.58).
Specifically, we reconstructed states of N ∈ {8, 20, 32, 48, 64} spins, that would be
generated after 3 ms under an quench of an ideal nearest-neighbour model. The cou-
plings and fields of this model are set to the average values of the 8-spin experiment
described above. For each state, we simulate M measurements in each k-spin basis.
The results in Fig. 5.10 show that the estimation error D decreases slightly with N ,
if we hold the ratio c = M/N2 constant. This means, that our scheme achieves an
(at most) constant estimation error D, with a total number of measurements given by
MT = cN2(N − k+ 1)3k which is only cubic in N . The post-processing time to obtain
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the state increases with ≈ N1.2. Hence MPS tomography involves an experimental and
computational effort that scales polynomially in N while standard tomography scales
exponentially. Unfortunately, we could not experimentally demonstrate the efficiency
of MPS tomography beyond 14 spins, for technical reasons: During the preparation of
the initial state, addressing errors51 introduce mixture at the single spin level. These
error-per-spin obviously accumulates, such that MPS tomography could not return a
useful pure-state description in our 20-qubit quench experiment. Nevertheless, the pro-
cess was considered successful because it returned a vanishing fidelity lower bound for
the state estimate, denoting that the procedure failed.

A generalization of the MPS tomography scheme to higher spatial dimensions and to
mixed states is possible, using matrix product operators [41, 115]. However, for mixed
states no general certification method is currently known [134].
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Figure 5.10.: Resource cost of MPS tomography, obtained from numerically simulated
MPS reconstructions of ideal nearest-neighbour quench states. Shown is the constant estimation
error D =

√
1− F , as a function of the number of spins N . The reconstruction procedure was

repeated 10 times to estimate fluctuation errors due to the finite number of measurements M .
Lines show connected average values.

5.2.3. Direct fidelity estimation

The fidelity returned by the certification procedure is only a lower bound for the overlap
between the state in the laboratory ρlab and the estimated MPS |ψ3

c 〉. The actual
overlap between the two states could take any value between the certificate and unity,
51The new optical addressing setup, built during the writing of this work [103], yields improved single-

qubit operations and should allow for a small constant error-per-spin beyond 20 spins.
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and is determined via Direct Fidelity Estimation (DFE) [49, 50]. This method uses a
set of measurements on the (generally mixed) laboratory state to determine a fidelity
between this state and a given pure state – in our case the output MPS from our
tomography scheme. In this section, I provide an overview of DFE with emphasis on
the current experiment. Mathematical details, in particular error analysis, can be found
in the Supplementary Material of Ref. [123].

In general, the fidelity is given by

F
(
|ψ3
c 〉 , ρlab

)
= 〈ψ3

c | ρlab |ψ3
c 〉 =

4N∑
k=1

ρklabσ
k ,

where ρklab = Tr(P kρlab) is the lab state’s expectation value of the normalized Pauli
string operators P k, and σk = 〈ψ3

c |P k |ψ3
c 〉 is the expectation value of the MPS |ψ3

c 〉.
The brute force approach of measuring all 4N observables is impractical for systems
composed of more than a few qubits. The DFE method leverages the knowledge of
the MPS estimate to overcome this infeasibility: the expression above is replaced by
a preferential summation over those values of k for which MPS-estimate components
σk are likely to be large. In other words, more measurements are made in those Pauli
operators P k for which |ψ3

c 〉 has a large expectation value. Therefore, we first rewrite the
fidelity as the expectation value of the variable ρklab/σ

k over the probability distribution
qk

def= (σk)2:

F =
4N∑
k=1

qk
ρklab
σk

.

Next, this expression is evaluated using a Monte Carlo approach: We draw M ran-
dom indices (k1, k2, ...kM ) with ki ∈ {1, 2, ..., 4N} according to the distribution qk and
approximate the fidelity with

F ≈ F = 1
M

M∑
i=1

ρkilab
σki

.

In the experiment we set M = 250 and repeat the measurements many times. Specif-
ically, the number of copies Nk spent to measure a particular Pauli operator P k is
proportional to the inverse square of its calculated expectation value σki . This way
we prevent the error in F to be dominated by those terms for which σki is small. In
total we prepare and evaluate 5× 105 copies of the state. Fig. 5.11 shows the distribu-
tion of ρkilab/σ

ki for different i, from which we infer the fidelity estimate and its error:
0.74± 0.05.
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lab/σ
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(red dashed line) and standard deviation are the respective estimators of the fidelity F and its
error.

5.3. Conclusion

We applied MPS tomography to successfully reconstruct and verify dynamical states
of our quantum simulator towards classically intractable regimes. Performing mea-
surements in only 27 bases, we estimated states comprising up to 14 entangled and
individually-controlled spins – a size far beyond the practical limits of QST. Even if
the obtained fidelity lower bound was conservative, direct fidelity estimation proved
that MPS tomography provided an accurate estimate of the 14-spin quench state.

Our results revealed the dynamical growth of entanglement and description com-
plexity in our quench experiments: As the quantum simulator evolves, the correlation
length in the system increases. With this, the number of measurements to estimate
local reductions and obtain an accurate pure MPS description, grows exponentially.
This puts practical limits on the evolution time until which a state in our quantum
simulator can be efficiently characterized via MPS tomography. Once correlations have
spread out over the whole system, the effort becomes the same as for full QST.

We determined the scalability of MPS tomography, by studying the dependency of
the reconstruction fidelity on the number of spins N , under a constant total number
of measurements. Numerical simulations revealed that for a constant fidelity the re-
quired number of measurements scales as the third power in N . The post-processing
time to obtain the state increases with ≈ N1.2. Hence, MPS tomography involves an



5.3. Conclusion 97

experimental and computational effort that scales only polynomially in N .
The here presented technique for characterizing large quantum states is not restricted

to 1D systems nor to those with strictly finite-range interactions. Further, MPS to-
mography does not require prior assumptions about the state in the laboratory (for
example, if it is pure or well-described by a compact MPS), because the obtained state
estimate can be certified. Therefore, it could become a standard procedure, to employ
MPS tomography to obtain a first estimate of a large quantum state, and then apply
direct fidelity estimation or Renyi entropy measurements [104] for further characteriza-
tion. With this, MPS tomography should find widespread use to study large quantum
many-body systems and to benchmark and verify quantum simulators and computers.





6. Environment-assisted quantum
transport

The work presented here is published in:
Phys. Rev. Lett. 122, 050501 (2019)

The way in which energy is transported through a network governs fundamental phe-
nomena in nature, such as thermal and electric conductivity and phase changes. In
recent years, investigations of quantum transport have drawn great inspiration from
quantum biology, especially from chromophoric light-harvesting complexes [135–140]
that are central elements of photosynthesis. The transport through these complexes
is governed by a highly non-trivial interplay between coherent quantum dynamics and
dissipative environmental noise that destroys the quantum coherence. Energy mis-
match in disordered materials leads to destructive interference of the quantum state’s
wavefunction, resulting in suppressed transport efficiency [141, 142]. However, the
interaction with environmental noise can lift this localization and enhance quantum
transport, an effect known as environment-assisted quantum transport (ENAQT) [143].
This intriguing interplay has motivated several recent proof-of-principle experiments in
highly-controlled model systems. However, these experiments were limited to at most
four network nodes, represented by photonic wave-guides, classical electrical oscillators,
superconducting qubits, or trapped ions [144–149].

In this chapter, I present an experimental in-depth study of the interplay between
coherent quantum transport, energy disorder, and environment-induced noise on a 10
node network. The chapter begins with the introduction of the experimental realiza-
tion of a disordered network, which couples to a Markovian dephasing noise. Then,
controlled studies of quantum coherences and diffusion dynamics are presented. The
second part of the chapter discusses the effect of non-Markovian dephasing baths on
the transport behaviour.
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6.1. Experimental implementation

The nodes of our quantum network are realized by 10 trapped 40Ca+ ions, where
two internal electronic states encode spin-1/2 particles: |↓〉 ≡ |S1/2,mj = 1/2〉 and
|↑〉 ≡ |D5/2,mj = 5/2〉. A global, trichromatic laser beam couples the states of all
ions, inducing a long-range spin-spin interaction H1 = ~∑i,j Jij

(
σ+
i σ
−
j + σ−i σ

+
j

)
(Sec-

tion 3.3). This Hamiltonian describes the hopping of spin excitations between sites i
and j, conserving the number of spins in the excited state |↑〉. The measured hopping
rates have a peak strength Jmax between (2π) 28 Hz and (2π) 33 Hz and an interaction
range of α = 1.22. An important feature of our experimental setup is the individual
controllability and detection of the quantum state of each network node. We investi-
gate the transport dynamics by observing the spread of a single electronic excitation
over the sites of the network. To do so, we introduce an excitation at time t = 0 at the
source site isource = 3, by preparing spin isource in the σz eigenstate |↑〉 while keeping
all other spins in the eigenstate |↓〉 (Fig. 6.1). We observe the transport of the exci-
tation through the network to the target site itarget = 8 under the disturbed spin-spin
interaction Hamiltonian (6.1).
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Figure 6.1.: Sketches of the transport network in different aspects. a) All ions (blue
circles) interact with each other through a long-range coupling. Darker and thicker connection
lines indicate higher coupling strengths. The red flash denotes the manipulation of the source
ion, the red arrow denotes the read-out of the target ion. b) The network represented as a chain
of spin-1/2 particles, with the spin states denoted as blue arrows. A few green connection lines
indicate the long-range spin-spin coupling, spreading of the spin excitation from the source ion
over the network. c) Illustration of the static on-site energy disorder Bi as gray dashed line,
inducing energy-mismatch between the network sides. d) Illustration of dephasing noise Wi(t),
as temporally modulated energy-mismatch.

The source and target sites are chosen such that the transport dynamics is not
immediately influenced by boundary effects. We define the transport efficiency to a
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particular site i by ηi ≡
∫ tmax
0 pi(t) dt. Here, pi(t) = (〈σzi (t)〉+ 1)/2 is the instanta-

neous probability to find the excitation at site i and tmax = 60 ms ≈ 11.7/Jmax is the
system’s evolution time. The time is chosen such that the evolution is long enough to
observe ENAQT and short enough to minimize decoherence from amplitude damping
due to spontaneous decay [150]. Any residual amplitude damping effect is eliminated
by postselecting measurements with a single excitation in the system. Typically more
than 77% of the measurements lie within this subspace.

Considering static disorder (energy mismatch) and coupling to the environment, the
full spin-spin interaction Hamiltonian reads as [151]:

H = ~
∑
i,j

Jij(σ+
i σ
−
j + h.c.) + ~

∑
i

(Bi +Wi(t))σzi . (6.1)

Experimentally, the static disorder Bi and dynamic dephasing noise Wi(t) are realized
by individually tunable on-site AC-Stark shifts, inducing an energy-mismatch between
the network sites (Fig. 6.1 c)-d)). These AC-Stark shifts are induced during the inter-
action dynamics, by applying multiple radio frequencies to an acousto-optic deflector.
This generates a set of laser beams which are then tightly focused to simultaneously
address multiple ions (Section 4.4). The corresponding laser frequency is detuned from
the qubit’s carrier transition by 60−90 MHz. The RF amplitudes (and thereby the
intensity) for each beam can be regulated independently, resulting in individually ad-
justable AC-Stark shifts of up to a few kHz. Note that cross talk between neighbouring
ions and sub-harmonics of the driving frequencies are negligible, such that noise at
different sites is uncorrelated. For both static disorder and dephasing noise, we ap-
ply up to 40 different instances and average the observations. Therefore, the values
Bi are randomly sampled from a uniform distribution [−Bmax, Bmax], where Bmax can
take two different values: weak static disorder Bmax,weak = 0.5 · Jmax and strong static
disorder Bmax,strong = 2.5 · Jmax.

The time-varying on-site energies, ~Wi(t), induce dephasing between the |↓〉 and
|↑〉 states, simulating environmental noise. It is engineered by temporally modulating
the intensity (and in turn the applied AC-Stark shift) of each addressing laser beam
individually. For this, we use an arbitrary waveform generator with a switching time
much faster than any time scale in the dynamics (Section 4.4). It individually modulates
the intensity of each frequency component of the multitone RF, driving the acousto-
optical deflector. Generally, we simulate a noise process with broadly tunable spectral
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power [152, 153]

S(ω) = lim
T→∞

1
T

∫ T

0

∫ T

0
〈〈Wi(t)Wi(t′)〉〉 eiω(t−t′)dt′dt , (6.2)

where 〈〈•〉〉 denotes averaging over up to 40 different noise instances.
Strong52 energy mismatch in an interacting system lead to destructive interference

of the wavefunction causing localization of the electronic excitation. Generally, static
disorder and environmental coupling are expected to have negative impact on the trans-
port efficiency. However, as we demonstrate in the following, the interaction with the
environment can enhance the excitation spread under certain conditions. We investi-
gate the quantum transport behaviour under two types of noise: white, or Markovian
noise where S(ω) = const. (Section 6.2) and non-Markovian noise, where S(ω) has a
Lorentzian shape (Section 6.3).

6.2. Markovian dephasing baths

First, we study the effect of static disorder and coupling of the network to white (or
Markovian) dephasing noise Wi(t), for which S(ω) = const. For this, we randomly
sample Wi between two values {−Wmax

2 , Wmax
2 } with equal probabilities, every ∆T =

100 − 200µs in the dynamics. This is equivalent to tossing a coin at a rate λ =
1/∆T , which is chosen to be much faster than the maximal hopping Jmax, such that
the process is well approximated as white noise with S(ω) = W 2

max
λ . This constant

spectral power defines the noise strength and gives a rate of dephasing γ = W 2
max
λ .

This dephasing noise is applied to the interacting quantum network under weak static
disorder, where Bmax,weak = 0.5 · Jmax ≈ (2π) 15 Hz and strong static disorder, where
Bmax,strong = 2.5 · Jmax ≈ (2π) 75 Hz.

Fig. 6.2 shows the measured transport efficiency η8 as a function of the dephasing
rate γ/Jmax: Weak static disorder (blue markers) does not affect transport consider-
ably. However, with additional noise at a level beyond γ = Jmax the transport efficiency
gradually decreases. This regime, where noise is the dominant effect and inhibits quan-
tum transport, is known as the quantum Zeno regime. Under strong static disorder
(red markers), the phenomenology becomes even richer: At weak dephasing, γ < Jmax,
excitation transport is suppressed corresponding to Anderson localization. Around
γ ≈ Jmax, the noise cancels the destructive interference causing the localization, and
thereby enhances the transport efficiency, which is the hallmark of ENAQT. For strong
52The energy mismatch Bmax are to be compared with the peak interaction strength Jmax. We consider

the case Bmax > Jmax as strong energy mismatch.
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Figure 6.2.: Quantum transport under Markovian-like dephasing. Transport efficiency
η8 to the target (ion 8) under different strengths of static disorder (blue: Bmax,weak = 0.5 ·Jmax,
red: Bmax,strong = 2.5 · Jmax) and dephasing with rate γ. Experimental points (shown as
dark squares and triangles) result from averaging over 20− 40 random realizations of disorder
and noise, with 25 experimental repetitions each. Error bars are derived via bootstrapping,
based on 1000 samples (see Ref. [154] for details). The regimes of localization, ENAQT and
quantum Zeno effect are indicated in shaded gray on the top of the graph. The data agrees
well with theoretical simulations of the coin-tossing random process (light blue and orange
bullets) realized in the experiment, while simulations with ideal Markovian white noise (lines)
underestimate the transport efficiency at large γ. The simulation averages over 300 random
realizations. The gray labels a, b, c, mark data points under strong static disorder, for which
the magnetization dynamics 〈σzi (t)〉 is shown in the lower three panels. The suppression or
enhancement of excitation spread in the three transport regimes are well depicted.

noise, γ > Jmax, the quantum Zeno effect again suppresses transport. The experimental
results agree well with theoretical simulations of the coin-tossing process (light bullets
in Fig. 6.2). At very strong dephasing, the induced energy shift Wmax becomes compa-
rable to the coin flipping rate λ and the Markovian approximation is no longer fulfilled.
In this case, deviations from ideal Markovian white noise (lines) become noticeable, as
discussed in [150]. Such non-Markovian effects will be further discussed in Section 6.3.
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6.2.1. Coherence and diffusion dynamics

The role of coherences in ENAQT has been much discussed in the context of exciton
transport in photosynthetic complexes [140, 155–158]. To investigate the existence and
development of coherences in our system, we observe the time-resolved dynamics of the
excitation probability of spin 8, p8(t), for strong static disorder and several strengths
of dephasing noise (see Fig. 6.3). Without dephasing noise, γ = 0, we find strong
oscillating behaviour, indicative of quantum coherent transport. Already in the regime
where ENAQT becomes relevant, γ ≈ Jmax, the noise damps out any perceivable coher-
ent oscillations, with spurious oscillations lying in the range of statistical fluctuations.
Further, at sufficiently large times, t� 1/γ, and for large values of γ, the dynamics of
the excitation probability of spin i, pi(t), is well described by a classical rate equation
(blue solid lines, Fig. 6.3). Here, the coherences between sites have been adiabatically
eliminated (see Appendix G), resulting in the equation

ṗi =
∑
`,i

Γ`i(p` − pi) , (6.3)

with the classical hopping rate Γ`i = 4γJ2
i`

4(Bi−B`)2+γ2 , derived from the experimental spin–
spin coupling matrix Ji` and the applied static on-site energies Bi as well as dephasing
noise rate γ. This set of coupled differential equations describes a purely diffusive
transport of the spin excitation. For weak dephasing, we observe deviations from rate
equation (6.3) at short times, which indicates a temporal crossover from coherent to
diffusive transport, similar to what has recently been resolved in classical Brownian
motion [159]. With increasing dephasing strength, the observed coherences are damped
and the system converges to a diffusive rate equation. This highlights the fact that
Anderson localization is a wave phenomenon caused by destructive interference, which
is lifted by dephasing.

Crossover from ballistic to subdiffusive transport

The transport behaviour can be quantified by examining the spatial dispersal of the
excitation, i.e. by measuring the spatial width σWP of the excitation wave packet. This
analysis is analogous to experiments with ultracold atoms in a momentum space lattice
[160] and to experiments in a photonic system on a discrete quantum walk [161]. The
width σWP is calculated via the single-ion resolved excitation dynamics pi(t), shown in
the left panels of Fig. 6.4. We start from the common definition of the wave packet
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Figure 6.3.: Excitation probability at ion 8 as a function of time, for strong static disorder
Bmax = 2.5 · Jmax and increasing dephasing rate, from (a) to (d). Each data set (red to
magenta triangles) results from averaging over 20− 40 random realizations, with 25 repetitions
each. Error bars are derived with bootstrapping [154], based on 1000 samples. With increasing
γ, coherent oscillations damp out and the data converges towards a model following diffusive,
classical rate equations (blue solid line). This theoretical approximation is valid for times
t � 1/γ. (The crossover tc = 1/γ is illustrated by a blue dashed line.) The coloured areas
show the time evolution of a theoretical model with ideal Markovian noise, averaged over 100
random realizations.

width

σ′WP(t) =
√
〈x̂2〉 − 〈x̂〉2 =

√√√√√( 10∑
i=1

pi(t) · i2
)
−
( 10∑
i=1

pi(t) · i
)2

and rewrite the expression relative to the source site i3:

σ′′WP(t) =

√√√√(∑
i

pi(t) · (i− i3)2

)
−
(∑

i

pi(t) · (i− i3)
)2

.

This formula is then modified, in order to reduce boundary effects: Since the excita-
tion is inserted off-center, we can increase the spatial and temporal range over which
the width is evaluated. For this, we discard the data between source and the nearer
boundary, where boundary effects appear early. Instead, we only consider the region
between source and the boundary that is farther away. We mirror this region around i3,
thus obtaining an imagined system where the excitation spreads symmetrically around
i3. This description is valid as long as the effects from the nearer boundary do not
influence the data in the evaluated region. Mathematically, we split the sums at i3 and
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assume mirror symmetry, which yields

σWP(t) =

√√√√(∑i<i3 pi(t) · (i− i3)2)+
(∑

i>i3 pi(t) · (i− i3)2)
−
(∑

i<i3 pi(t) · (i− i3) +∑
i>i3 pi(t) · (i− i3)

)2
≈

√√√√√2

∑
i>i3

pi(t) · (i− i3)2

 . (6.4)

A quantitative description of the transport behaviour is gained by fitting a power law
σWP(t) = A · tC . In order to exclude data in which effects from the nearer boundary
become relevant, we fit the data only up to the time where the excitation has hopped
from ion 3 to the left boundary and back to ion 2. We estimate this time through a
modified hopping strength J̃ij , consisting of the original hopping rate Jij , reduced by
the applied disorder Bmax and dephasing γ,

Jeff. = min{J̃ij , Jij} ,with J̃ij =
J2
ij

B2
max + γ2 (6.5)

Based on the hopping rate Jeff., we calculate the maximum speed at which an excita-
tion spreads in our system (see [116] and methods in [123]) and visualize it as orange
dotted light-like cones in the left panels of Fig. 6.4. Since we do not have finite-range
interactions, these are not strict maximum speeds. Still, they provide a practically
useful description of the excitation spreading in our system.

Depending on the relationship to time, σWP(t) ∝ tC , one distinguishes between
‘normal diffusion’ as it occurs in classical random walks (C = 0.5), ‘subdiffusion’ (0 <
C < 0.5), and ‘superdiffusion’ (C > 0.5). The case C = 1 is referred to as ballistic
transport. As we show now, we observe ballistic, diffusive, and subdiffusive behavior
in our experiment. The excitation dynamics pi(t) is displayed in the left panels of
Fig. 6.4 for three exemplary parameter values. At small γ an interference pattern is
clearly visible. This hallmark for coherence is rapidly washed out as γ increases. We
fit a power law of the form σWP(t) = A · tC to the width of the wave packet, as shown
in the right panels of Fig. 6.4. However, we only include data up to the time where
the excitation has been reflected from the left boundary back to ion 2, as denoted by
blue arrows in the left panels of Fig. 6.4. Without any disorder and noise, the width
increases linearly in time with C = 1.01± 0.09, corresponding to ballistic spreading.
In the regime around γ = Jmax (Fig. 6.3 (b)), where ENAQT is most efficient, we find
that within very short times t ∼ 1/Jmax the transport evolves from ballistic to mainly
diffusive dynamics (as theoretically predicted in Ref. [162]), yielding C = 0.76± 0.18.
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For strong dephasing, γ = 18.4 · Jmax, we observe subdiffusive transport with a power
exponent C = 0.44± 0.02.
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Figure 6.4.: Left panels: Single-ion resolved excitation dynamics pi(t) for (a) the unperturbed
system (no static disorder and no noise), (b) static disorder Bmax = 2.5 · Jmax with dephasing
γ = Jmax, and (c) static disorder Bmax = 2.5 · Jmax with γ = 18.4 · Jmax. The orange
dotted line shows the maximum speed at which an excitation spreads in order to estimate up
to which time the reflection from the left boundary can be neglected (blue arrows). Right
panels: Spatial width of the excitation wave packet σWP(t), calculated from the data in the
left panels. Blue solid lines are fits of the form σWP = A · tC (fits from the respective other
panels are included as dashed lines for comparison). The expected maximum of σWP(t) lies
at σmax = 5.3, and corresponds to a single excitation distributed equally over all ions. (a)
A = (1.2 ± 0.8) · 10−3, C = 1.01± 0.09 (b) A = (5.1 ± 7.6) · 10−3, C = 0.76± 0.18. (c)
A = (3.9±0.9) ·10−2, C = 0.44± 0.02. All error bars are derived via bootstrapping [154], based
on 100 samples.

The theoretical simulations in Fig. 6.5 compare the temporal evolution of the wave
packet width for two different cases: one where the coupling strength corresponds to
the experimentally realized coupling matrix Jij , approximately following a power law
Jij = Jmax/|i − j|α with interaction range α = 1.22. The second case considers a
nearest-neighbour model, where the interaction is averaged between the left and right
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algebraic tail JNN
i,i+1 = ∑

j Jij/2. From the observed time relationship σWP ∝ tC we
conclude that subdiffusive dynamics is a consequence of our long-range interactions.
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Figure 6.5.: Theoretical simulation of the temporal evolution of the wave packet width σWP
for two different coupling models: (green) Experimentally implemented coupling matrix Jij ,
with coupling range α = 1.22, (blue) nearest-neighbour model. The simulation averages over
100 random realizations of strong disorder Bmax = 2.5 · Jmax, and large Markovian dephasing
at rate γ = 18.4 · Jmax. The spatial width of the excitation wave packet is fitted with a power
law (orange dotted line). The obtained fitting parameters are A = 0.01, C = 0.49 (green data)
and A = 0.04, C = 0.40 (blue data).

6.3. Non-Markovian dephasing baths

In Fig. 6.2, the experimentally observed transport efficiencies for γ > Jmax are higher
than the simulated values for ideal Markovian noise. This discrepancy could indicate
that non-Markovian effects can increase the transport efficiency. To investigate non-
Markovian dephasing further, we study ENAQT under noise with a spectral density
function S(w) of Lorentzian shape, which we generate using the frequency-domain al-
gorithm described in Ref. [163]. This algorithm allows us to compute the time series
of AC-Stark shifts which is required to realize dephasing noise with arbitrary spectral
power (see Appendix H). In this study, we choose a single configuration of random
static disorder (Bmax = 2.5 · Jmax) in order to have full knowledge of the disordered
system and its eigenvalues.

Fig. 6.6 shows that the spectral structure of the noise model has a strong influence
on the transport efficiency: Non-Markovian structured noise that covers all difference
frequencies of the spin system’s eigenenergies (models 3 and 4) can enhance excitation
transport as much as white (Markovian) noise (model 1). Moreover, the efficiency for
different target ions is equal (Fig. 6.6 (b)). Narrowband noise models, instead, only
manage to couple a few eigenstates. In this case, the spectral position determines for
which target ions excitation transport is enhanced (cf. models 5 and 6 in Fig. 6.6).
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Figure 6.6.: Excitation transport under strong static disorder and different noise
models. a) Spectral density functions S(ω) of the applied noise models. [1] white noise,
[2]-[6] non-Markovian noise models of Lorentzian shape. All curves are averaged over ∼ 30
random realizations, each generated by a Gaussian random process based on 600 sampling
points [163]. The inset shows a zoom into the low-frequency domain. Vertical grey lines denote
the difference frequencies between all eigenenergies of the disordered system. b) Comparison of
ηtarget to target ion 8, 9, and 10 for the noise models shown in (a), as indicated by corresponding
colors and numbering. The black circle shows suppressed efficiency under strong static disorder
without any noise. While broadband noise in the correct frequency range generically enhances
transport efficiencies, for narrowband noise the enhancement depends on the source and target
ions. Each data point results from averaging over 25−30 random realizations, with 15 repetitions
each. Error bars are derived with bootstrapping [154], based on 1000 samples. c)-d) Excitation
probability of target ion 9 as a function of time under strong static disorder Bmax = 2.5 · Jmax.
Panel c) shows the result for the Markovian noise model [1]. Oscillations, indicating coherent
dynamics, are strongly damped. Panel d) shows the effects of a narrowband Lorentzian noise
model covering only a few eigenstates (model [6]). Here, coherences are maintained stronger
and are clearly discriminable from measurement errors up to ∼30 ms.

Integrating the applied local energy shifts over the entire interaction time, we find that
with narrowband non-Markovian noise we can achieve similar transport efficiencies as
with Markovian noise, but already at half the energy cost (cf. noise models 1 and
6 in Fig. 6.6 (a)). Further, panels (c) and (d) in Fig. 6.6 show that coherences are
maintained better for narrowband noise models than for Markovian-like noise.

6.4. Conclusion

Our setup enables us to investigate ENAQT in a controlled quantum network, with
arbitrary disorder and dephasing noise. Our network does not have a simple lattice
structure restricted to close-neighbour interactions, but has a tunable interaction range.
This permits us to microscopically study quantum transport in a tunable, scalable sys-
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tem. With the help of an arbitrary waveform generator (Section 4.4), integrated into
the single-ion addressing setup, we can disturb the interaction with practically any
desired noise spectrum. Under strong static disorder, we observed effects of Anderson
localization in the absence of noise, an increased transport efficiency by ENAQT at
intermediate noise levels, and finally suppression of quantum transport under strong
noise due to the quantum Zeno effect. Further, we found that in the regime where
ENAQT is most effective the transport is mainly diffusive, displaying coherences only
at very short times. Coherences dominate only in the localized regime (at very low
noise strengths). In all other regimes of Markovian noise, the dynamics is well cap-
tured through a diffusive rate equation describing a classical random walk. Finally, we
observed that the spectral structure of non-Markovian dephasing strongly influences
quantum transport, with the possibility to reach efficiencies as high as with white noise
while maintaining long-lived coherences.

This work constitutes significant progress in controlled studies of quantum transport,
with importance in fields ranging from condensed-matter physics and material science,
to quantum chemistry and quantum biology. Our approach allows us to study the pos-
sibility of stochastically accelerated hyper-transport, generated, e.g., by time-evolving
disorder [164]. Further, we have the possibility to investigate quantum transport with
multiple interacting excitations or to study localization using out-of-time-ordered cor-
relators (OTOCs) [165, 166].
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The studies presented here are published in:
Phys. Rev. X 8, 031022 (2018) &

Nature 569, 355 (2019)

Quantum simulators are promising instruments for solving classically challenging prob-
lems in a broad range of fields, including chemistry, high-energy physics and materi-
als science. Next to digital and analog quantum simulators (Section 3.1), variational
quantum simulation (VQS) has recently emerged as a third, new method of quantum
simulation. It leverages the unique capabilities of quantum devices by combining them
with a classical subroutine: Hybrid quantum-classical algorithms employ a feedback
loop between a classical computer and a quantum co-processor. Variational quantum
simulators aim at variationally solving optimization problems, while forgoing the re-
quirement of realizing the targeted Hamiltonian directly in the laboratory. As will be
shown in this chapter, this allows the study of a wide variety of previously intractable
target models using quantum resources as available in today’s laboratories.

After an introduction to the quantum-classical feedback loop, two experimental im-
plementations of variational quantum simulation are demonstrated. First, I present the
study of molecular ground state potentials, employing up to four ions in our quantum
simulator in a digital way. We investigate the potential energy as a function of the
internuclear distance for two different molecules. Different methods for mapping the
fermionic Hamiltonian to qubits are compared and the effects of measurement noise
and decoherence are discussed. The second experimental application focuses on the
lattice Schwinger model. In this project, we employed our quantum simulator with up
to 20 qubits in an analog way, capable of generating large entangled states while re-
specting symmetries of the target model. We successfully determined ground states as
well as the energy gap to the first excited state, and observed a quantum phase transi-
tion. Furthermore, our scheme provides algorithmic error bars for the obtained energies
by measuring variances of the target Hamiltonian. This addresses the long-standing
challenge of evaluating or verifying the simulation results.
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7.1. Quantum-classical feedback loop

An efficient quantum-classical feedback loop requires high experimental repetition rates
of the quantum device and a fast exchange between the classical computer and the
quantum coprocessor. The loop is depicted in Fig. 7.1 and the basic functionality can
be divided into three steps:

1. The quantum simulator in the quantum-classical feedback loop prepares an ini-
tial state |ψ0〉 and applies a given quantum circuit. This generates a (potentially)
highly entangled, variational state, called trial quantum state, |ψ(θ)〉 = U(θ) |ψ0〉.
The circuit is represented by the unitary operator U(θ) and consists of quantum
gates, e.g. Mølmer-Sørensen entangling gates, spin-spin interaction gates and
single-qubit rotation gates (Section 2.1.2). The related set of parameters θ con-
trols gate settings such as laser phases and laser pulse lengths. The gate set is
chosen such that it efficiently explores the Hilbert space. In particular, the target
state of the problem has to lie within the set of possible trial states.

There are different ways for generating suitable trial states: (i) Start from an
approximate ground-state wavefunction and apply excitation operations which
incorporate the structure of the Hamiltonian of interest and known properties of
the solution state. In Section 7.2 (Application I), we used this so-called “uni-
tary coupled cluster” ansatz to simulate molecular ground state potentials. (ii)
Another approach applies a quantum circuit which is tailored specifically to the
naturally available gates of the corresponding simulator. Section 7.3 presents this
ansatz in the simulation of lattice models.

2. The next step is to extract the cost function of interest: The role of the quan-
tum device is to perform the classically difficult task of evaluating observables
from potentially highly entangled states. Therefore, a set of measurements – rel-
evant for the reconstruction of the respective cost function – is applied to the
state |ψ(θ)〉. For example, the cost function to find the ground state of a target
Hamiltonian, ĤT corresponds to the energy E(θ), given by the expectation value
E(θ) = 〈ĤT 〉 = 〈ψ(θ)| ĤT |ψ(θ)〉. A generic Hamiltonian

ĤT =
∑
`

c`H` =
∑
`

c`

N⊗
j=1

σ
αj
j (7.1)

is decomposed into strings H` = σα1
1 ⊗ σα2

2 ⊗ . . . σαNN of Pauli operators σαj ,
where j labels the qubit and α Cartesian coordinates. With this, the cost
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function becomes a sum of expectation values of correlation functions E(θ) =∑
` c` 〈Ψ(θ)|H` |Ψ(θ)〉, which are individually measured on the quantum device.

A classical computer then calculates the cost function by adding up the correla-
tion measurements.

Section 7.3 presents an advanced scheme for variational quantum simulation, in
which the target Hamiltonian ĤT only exists as this set of measurement prescrip-
tions and never needs to be realized physically in the laboratory. This endows us
with great freedom in the choice of models to simulate on our quantum device.

3. A classical computer employs an optimization algorithm to minimize the cost
function by varying the parameter set θ, which is handed over to the quantum
simulator. Ritz’s variational principle implies that the energy E(θ) of every trial
state |ψ(θ)〉 is always bigger or equal to the lowest eigenvalue of ĤT . In summary,
the feedback loop variationally seeks to prepare the ground state of ĤT . A suc-
cessful and efficient optimization requires an advanced global algorithm, which
is specifically suited for noisy53, high-dimensional and gradient-free optimization
problems. Furthermore, a reuse of measurement data allows one to find ground
states of whole classes of Hamiltonians more efficiently.

Steps 1−3 are repeated until the optimization algorithm reaches a pre-defined stopping
criterion, although the definite determination of this criterion is a challenging open
question. A typical stopping criterion for optimization algorithms is the comparison
against a fixed goal. However, this only translates the problem to how to define this
goal, ideally independent from a-priori knowledge of the system, and not based on
comparisons with classical simulations. The stopping criterion we applied in Section 7.3,
is to continue the optimization until an allocated resource budget is exhausted: The
algorithm is provided with a finite, total measurement budget that it can spend during
the optimization process. It autonomously selects how to distribute this budget between
new unexplored points and refinement re-evaluations on promising points, to reduce the
statistical errors. This selection procedure is based on methods from decision theory
and optimal computing budget allocation (OCBA)[167]. Another criterion involves the
evaluation of stationarity: the optimization has converged, if the proposed solution is
no longer improving as more points in the cost-function landscape are sampled. The
proposed solution could for instance be the minimum of the parameter landscape, as
predicted by a metamodel. At the termination of the optimization, the final set of
53The obtained expectation values will be noisy, due to the limited sampling statistics of the trial

quantum states.
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experimental parameters corresponds to a simple prescription for the generation of the
ground state of the system.
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Figure 7.1.: VQS quantum-classical feedback loop. A quantum simulator generates a state
|ψ(θ)〉 by applying a sequence of gates, e.g. spin-spin interactions (green boxes) and single-qubit
rotations (blue circles). Individual gate settings are controlled by a set of parameters θ. State
read-out is performed in the measurement bases (gray boxes) relevant for the reconstruction of
the cost function of interest. A classical CPU runs an optimization algorithm to minimize the
cost function and hands over new parameters θ to the quantum device. The right panel assigns
steps 1-3 as described in the main text.

7.2. Application I: Molecular ground state potentials

Particularly compelling applications of quantum simulators are quantum chemistry
problems, such as reaction mechanisms or the molecular binding energies [168]. Effi-
cient quantum simulations of classically intractable electronic structures promise break-
throughs in our understanding of basic chemistry and could revolutionize research of
new materials, pharmaceuticals, and industrial catalysts54. The high potential of vari-
54A detailed understanding and prediction of the reaction mechanism for biological nitrogen fixa-

tion is of great importance for fertilizer production. The industrial Haber–Bosch method is very
energy-intensive, while the naturally occurring FeMoco-process functions at room temperature and
standard pressure. To date the mechanism in FeMoco is not understood, but there exist proposals
for its investigation using quantum simulators [169].



7.2. Application I: Molecular ground state potentials 115

ational quantum simulation for quantum chemistry applications, has triggered great
experimental work over the last years, on architectures ranging from quantum pho-
tonics, NV centers, superconducting qubits to trapped ions [12, 14, 79, 80, 170–172].
The beginning of this chapter summarizes the basic method of quantum chemistry for
mapping the electronic structure Hamiltonian to a spin Hamiltonian. Furthermore, I
discuss the generation and evaluation of the trial quantum states and give an overview
on the classical optimization algorithm. In the second part, I report on the experimental
implementation of the quantum-classical hybrid algorithm on our trapped-ion quantum
simulator. Specifically, we employed the variational quantum eigensolver (VQE) algo-
rithm, to find the electronic ground states for molecular hydrogen and lithium hydride,
for given separations between their atoms. From this, we can calculate the related
energy and obtain the molecular potential curves. The project discussed here, was
published in Ref. [13].

7.2.1. Theoretical background

The central problem of theoretical chemistry is the computation of the lowest energy
eigenvalue of the molecular electronic structure Hamiltonian. This Hamiltonian encom-
passes the wave functions and energies of electrons and describes their state of motion
in the electrostatic field created by stationary nuclei. It thereby contains all inter-
esting properties of a molecule. The following subsections describe how we find good
approximations to a molecular Hamiltonian and its electronic wave function. These
approximations then serve as a starting point for the variational quantum simulation,
with the goal of finding the electronic ground state and related energy for a given
interatomic distance.

Hamiltonian mapping

The first-quantized formulation of the molecular Hamiltonian reads as

HI = −
∑
i

∇2
Ri

2Mi
−
∑
i

∇2
ri

2 −
∑
i,j

Zi
|Ri − rj |

+
∑
i,j>i

ZiZj
|Ri −Rj |

+
∑
i,j>i

1
|ri − rj |

, (7.2)

where Ri,Mi, Zi denote the positions, masses and charges of a collection of nuclei,
and ri describes the position of the electrons in the system. The second-quantized
formulation is derived, by applying the Born-Oppenheimer approximation, to treat the
nuclei as fixed classical point charges [173]. The electronic wavefunction is represented
in a basis φi of molecular orbitals, which are constructed as linear combinations of
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atomic orbitals using the Hartree-Fock method (see Appendix K for details). With
this, the electronic structure Hamiltonian in the second-quantized form reads:

HII =
∑
pq

hpqa
†
paq + 1

2
∑
pqrs

hpqrsa
†
pa
†
qaras , (7.3)

where the indices p, q, r, s identify the molecular orbitals. The scalar coefficient hpq
represents the one-electron terms, describing the kinetic energy of the electron and its
potential energy in the presence of the nuclei. The coefficient hpqrs describes the two-
electron Coulomb repulsion. These coefficients contain all spatial and spin information
of the electrons and can be calculated classically as the overlap integrals of the orbital
basis functions φi:

hpq =
∫

dσ φ∗p(σ)
(
∇2
r

2 −
∑
i

Zi
|Ri − r|

)
φ∗q(σ)

hpqrs =
∫

dσ1 dσ2
φ∗p(σ1)φ∗q(σ2)φs(σ1)φr(σ2)

|r1 − r2|
.

(7.4)

Here, σi = (ri, si) encodes the spatial and spin coordinates of the electron. Note that
the fermionic nature of the electrons is enforced through the anti-commutator relations
of the electron creation and annihilation operators a†i and aj .

Before the implementation on our quantum simulator, Hamiltonian (7.3) and its
electronic wave functions have to be mapped to qubits. There are two common trans-
formation schemes: (i) The Jordan-Wigner (JW) transformation uses the state of a
qubit to encode whether or not a particular basis orbital is occupied [174]. That is, the
fermionic creation and annihilation operators are directly mapped to qubit states. (ii)
In the Bravyi-Kitaev (BK) transformation instead, even qubits store occupations and
odd qubits keep track of the parity of all qubits with smaller indices [175].

For both transformations, the resulting spin Hamiltonians H take the form

HII
JW, BK−−−−−→ H =

∑
`

c`H` =
∑
`

c`

N⊗
j=1

σ
αj
j .

Here, H` are products H` = σα1
1 ⊗ σ

α2
2 ⊗ . . . σ

αN
N of Pauli matrices σαj , where j labels

the qubit and α Cartesian coordinates. The scalar values c` capture the integrals from
Eq. (7.4). Those integrals can be pre-calculated classically, for any given internuclear
separation R. Mathematical details on the two transformation methods can be found
in Refs. [176, 177] and in the Appendix of Ref. [13].
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• H2 Hamiltonian under BK: In the STO-3G basis (Appendix K), each hydro-
gen atom contributes a 1s orbital to the molecular electronic wavefunction, as
depicted in Fig. 7.2 a). The BK transformation maps the molecular ground state
wavefunction to the four-qubit state ϕHF = |0001〉. In the same basis, Hamilto-
nian (7.3) transforms to

HBK = a0I + a1σ
z
0 + a2σ

z
1 + a3σ

z
2 + a4σ

z
1σ

z
0 + a5σ

z
2σ

z
0 + a6σ

z
3σ

z
1

+ a7σ
x
2σ

z
1σ

x
0 + a8σ

y
2σ

z
1σ

y
0 + a9σ

z
2σ

z
1σ

z
0 + a10σ

z
3σ

z
2σ

z
0 + a11σ

z
3σ

z
2σ

z
1

+ a12σ
z
3σ

x
2σ

z
1σ

x
0 + a13σ

z
3σ

y
2σ

z
1σ

y
0 + a14σ

z
3σ

z
2σ

z
1σ

z
0 .

Here, {σxj , σ
y
j , σ

z
j } denote Pauli matrices, acting on the j-th qubit. The coefficients

ai depend on the internuclear separation R between the hydrogen atoms and are
classically computable from the integrals (7.4). We see, that qubits 1 and 3 are
only exposed to identity and σz operations. The Hamiltonian stabilizes these
qubits, such that they are never flipped throughout the simulation. This allows
us to reduce the Hamiltonian above to an effective two-qubit Hamiltonian, with
the reference state ϕHF = |01〉.

HBK
eff = c0I + c1σ

z
0 + c2σ

z
1 + c3σ

z
0σ

z
1 + c4σ

x
0σ

x
1 + c5σ

y
0σ

y
1 (7.5)

• H2 Hamiltonian under JW: Under the JW transformation the electronic
ground state is mapped to ϕHF = |0011〉, and the Hamiltonian gets

HJW = c0I + c1(σz0 + σz1) + c2(σz2 + σz3) + c3σ
z
3σ

z
2 + c4σ

z
1σ

z
0

+ c5(σz2σz0 + σz3σ
z
1) + c6(σz2σz1 + σz3σ

z
0)

+ c7(σx3σ
y
2σ

y
1σ

x
0 + σy3σ

x
2σ

x
1σ

y
0)− c7(σx3σx2σ

y
1σ

y
0 + σy3σ

y
2σ

x
1σ

x
0 ) , (7.6)

with the coefficients ci again computed from the integrals (7.4).

• LiH Hamiltonian under BK: LiH is a heteronuclear molecule with four elec-
trons. We encode its electronic structure via the Hartree-Fock method, using a
STO-6G basis set of the molecular orbitals (Appendix K). A direct BK transfor-
mation would lead to a 12-qubit Hamiltonian. We reduce the number of qubits
by only considering single- and double excitations and thereby defining an active
space of two electrons in three molecular orbitals (Fig. 7.2 b)). Such active spaces
average out (or “freeze”) the core electrons, since they are not considered to par-
ticipate strongly in the molecular bonding. Finally, we select the two dominant
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contributions to the active space such that the effective Hamiltonian involves
operations on 3 qubits only. Under the BK transformation it takes the form:

H = c0 + c1σ
z
0 + c2σ

z
1 + c3σ

z
2 + c4σ

z
1σ

z
0 + c5σ

z
2σ

z
0 + c6σ

z
2σ

z
1 + c7σ

x
1σ

x
0

+ c8σ
y
1σ

y
0 + c9σ

x
2σ

x
0 + c10σ

y
2σ

y
0 + c11σ

x
2σ

x
1 + c12σ

y
2σ

y
1 , (7.7)

with the reference electronic ground state ϕ = |111〉.
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Figure 7.2.: Molecular orbitals (MO) constructed from the atomic orbitals (AO) of
the individual elements. a) H2 molecular orbitals are built from 1s orbitals, contributed
by the two hydrogen atoms. b) LiH molecular orbitals generated from the 1s orbital of the
hydrogen atom and the 1s, 2s, 2p orbitals from the lithium atom. The three orbitals among
which the Hamiltonian’s excitation operators act is highlighted in yellow (active space).

Generation and evaluation of trial wavefunctions

Once the mapping of the fermionic Hamiltonian to qubits is chosen, we need to prepare
suitable trial states for the variational quantum simulation, as outlined in step 1. of
Section 7.1. A good starting point is the approximate ground state wave function |ϕHF〉
of the respective Hamiltonian, as indicated in the previous subsection. This electronic
wavefunction is derived via the Hartree–Fock method and consists of the lowest-energy
set of molecular orbitals (details in Appendix K).

The initial state |ϕHF〉 is then exposed to a series U(θ) of quantum operations, gener-
ating the trial wave function |ϕ(θ)〉 = U(θ) |ϕHF〉, in order to explore the Hilbert space
perturbatively. The ansatz unitary ideally incorporates the structure of the Hamilto-
nian of interest as well as known properties of the solution state. In the experiment
presented here, we parameterize our ansatz using the unitary coupled-cluster method
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UCC – a cornerstone method of electronic structure theory [80, 178]. The unitary
U(θ) is constructed by exponentiation of the so-called cluster operator T (θ) for an N

electron system:

U(θ) = eT (θ)−T †(θ) , where T (θ) =
N∑
i

Ti(θ)

and T1(θ) =
∑
i∈occ
j∈unocc

θ
(j)
(i) â

†
j âi , T2(θ) =

∑
i,j∈occ
l,k∈unocc

θ
(k,l)
(i,j) â

†
l â
†
kâj âi , . . .

Here, θ describes a vector of experimental parameters that are variationally optimized
and the coefficients θ(j)

(i) are the related coupled cluster amplitudes. To date, no efficient
implementation of this method has been developed for a classical computer, but in
principle, it can be operated efficiently on a quantum device: One can define a reduced
cluster operator T (k) = ∑k

i Ti, which suggests a set of fermionic operators Ti up to a
given excitation degree k. This allows one to systematically explore all relevant excited
wavefunctions, while sampling only a polynomial number of experimental parameters θ.
Typically, the cluster expansion is truncated at the double level of excitation (UCCSD)
Tθ = T1θ + T2θ, which after exponentiation also introduces higher excitations.

eT (θ) = 1 + T1(θ) + T2(θ) + T 2
1 (θ)
2! + T1(θ)T2(θ) + T 2

2 (θ)
2! + . . .

This signifies, that the number of parameters θ quickly increases. Thus, the imple-
mentation of the UCC method in state-of-the art quantum devices requires further
truncations and approximations, involving symmetries of molecular orbitals and quan-
tum number selection rules [13]. Once the relevant unitary coupled cluster operators are
determined, they also have to be mapped to qubit operators, using the Jordan-Wigner
(JW) or Bravyi-Kitaev (BK) transformation:

• H2 unitary under BK: Considering only single and double excitations as rele-
vant for this molecule, we determine the unitary UUCCSD(θ) = eθ(a

†
2a
†
3a1a0−a†0a

†
1a3a2),

where the indices correspond to the set of molecular orbitals and a, a† to the
fermionic annihilation (creation) operator. The BK transformation leads to the
effective qubit unitary

UBK
UCCSD(θ) = e−iθσ

x
1σ

y
0 ,

acting on the Hartree-Fock ansatz state |ϕ(0)BK〉 = |01〉. Following the relations
in Appendix L, the UCCSD operator is translated into a combination of two
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Mølmer-Sørensen gates (Appendix B) and a single-qubit rotation:

UBK
UCCSD(θ) = exp

(
i
π

4σ
x
1σ

x
0

)
exp (−i(θ + π)σz1) exp

(
i
π

4σ
x
1σ

x
0

)
.

The corresponding quantum circuit is depicted in Fig. 7.3 a).

• H2 unitary under JW: The same fermionic unitary coupled cluster operator
UUCCSD(θ) = eθ(a

†
2a
†
3a1a0−a†0a

†
1a3a2) transforms under the JW mapping into

UJW
UCCSD(θ) = e−iθσ

x
3σ

x
2σ

x
1σ

y
0 ,

with the related Hartree-Fock state |0011〉. The corresponding quantum circuit
also consists of a single-qubit rotation and two MS entangling gates, and is de-
picted in Fig. 7.3 b).

• LiH unitary under BK: The complete UCCSD ansatz for the four electrons
in the LiH molecule, contains 32 single and 168 double excitation operators. The
number of operators can be reduced, by identifying an active space of two electrons
that stay in three molecular orbitals (Fig. 7.2 b)). Considering only excitations
from orbital 1 to orbitals 2 and 3 we obtain the approximated unitary coupled
cluster operator

UUCCSD = eα(a†5a
†
4a3a2−a†2a

†
3a4a5) · eβ(a†7a

†
6a3a2−a†2a

†
3a6a7) .

In this notation, spin-orbitals with odd (even) indices correspond to spin-up (spin-
down) electrons, such that a†2a

†
3 denotes occupation of the first orbital with one

spin-up and one spin-down electron. The two angles α, β are two components
of the parameter vector θ for the variational optimization. After transformation
under BK, we find that only three qubits are acted on non-trivially with the
dominant subterms being

UBK
UCCSD(α, β) = e−iασ

x
2σ

y
4 · e−iβσx2σ

y
6 ,

acting on the HF state |111〉. The corresponding quantum circuit is shown in
Fig. 7.3 c), where the lower panel shows the actual implemented circuit using the
refocusing technique: A fully entangling MS gate acting on a subsystem is rewrit-
ten to a sequence of two global half-entangling gates (Appendix B), interleaved
with an addressed π phase shift. The phase-shifted qubit is decoupled from the
other qubits, such that it is not participating in the entanglement of the rest of
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Figure 7.3.: Abstract quantum circuits which implement the UCCSD operators. a)
Encoding of the H2 molecule with respect to the Hartree-Fock (HF) ansatz state |01〉, mapped
from fermions to qubits via BK transformation. Fully entangling gates are denoted by MS,
local qubit rotations are denoted as X and Z, with the respective rotation angles π and θ. b)
Encoding of the H2 molecule with respect to |0011〉, using JW transformation. c) Encoding of
the LiH molecule with respect to |111〉, mapped from fermions to qubits via BK transformation.
The qubits are indexed Q0, Q1, Q2. The lower panel depicts the actual circuit implemented in
the experiment. Each locally acting MS gate split up into global half-entangling gates (MS*),
and interleaved with a local π phase shift (refocusing). This modified sequence allows us to
apply global MS gates, while the entangling operation is restricted to the non-addressed qubit
subset, e.g. (Q0,Q1).

In summary, the so constructed unitaries incorporate many properties of the Hamil-
tonian of interest and are expected to construct suitable trial states, when applied to
the ansatz states: U(θ) |ϕHF〉 = |ϕ(θ)〉. Finally, the trial states |ϕ(θ)〉 are evaluated
by projective measurements, given by the Pauli operators H` of the respective Hamil-
tonians (7.5), (7.6) and (7.7). A much simpler approach for generating trial states is
presented in Section 7.3, where trial states are generated heuristically.

The optimization algorithm

The experimental parameters in the preparation of trial states are variationally op-
timized by a classical optimization algorithm, in order to explore the Hilbert space
systematically. The goal of the optimization is to find the ground state wavefunction
of the target Hamiltonian ĤT , by minimizing its energy at a given interatomic distance
R – the cost function

E(R, θ) = c0(R)1+
∑
`

c`(R) 〈H`(θ)〉 . (7.8)
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We decided to employ the Nelder-Mead direct search algorithm, a common numerical
method for finding the minimum of a function in a multidimensional space [179]. How-
ever, intrinsic experimental errors55 lead to fluctuations in the cost function evaluation
and can prevent the algorithm from converging. Fig. 7.4 illustrates that the opti-
mization algorithm can be trapped in a local minimum: We simulated the experiment
(including quantum projection noise) and repeated the full variational optimization
run 10 times, with the same inital guess of variational parameters α0, β0. For better
visibility, we plotted only the last 20 points of each optimization run, after which the
algorithm converged to a stable position. We find, that each repeated run converged
to a different local minimum, leading to a deviation from the exact energy value, as
predicted by the numerical method of exact diagonalization.
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Figure 7.4.: a) Exemplary optimization run for LiH under the basic Nelder-Mead search al-
gorithm, for a nuclear separation of R = 0.6 Å. The graph shows the energy 〈ĤT (θ)〉 vs the
iteration number of the optimization algorithm. Stars represent experimental data with error
bars derived from quantum projection noise. Circles depict a theoretical simulation of an ideal
experiment (without noise). The red line indicates the target value, calculated numerically (ex-
act diagonalization). b) Simulations of the optimization run, considering quantum projection
noise. The colored clusters of symbols represent the 20 final steps of 10 independent repetitions
of the same simulation. All runs started at the same initial variational parameter set α0, β0
but converged to different values. None of the final parameter sets coincides with the optimum
combination (black dot) of the global minimum as predicted by exact diagonalization.

We conclude that the basic Nelder-Mead search method is not suitable for an op-
timization problem in our noisy environment. To combat this, we employed a hybrid
algorithm, which combines both the Nelder-Mead algorithm and an element of simu-
lated annealing [180]: The algorithm introduces random perturbations that are sampled
from a distribution D and added to the cost function (7.8). We heuristically choose D

55The two main sources are: (i) measurement errors due to quantum projection noise, and (ii) noisy
gate operations e.g. due to fluctuations in laser intensity.



7.2. Application I: Molecular ground state potentials 123

to be on the order of the energy error caused by quantum projection noise, such that
the perturbations only become dominant in the vicinity of the global minimum. For
example, at R = 1.6 Å of the LiH molecule, the energy error from quantum projection
noise after 500 experimental repetitions lies between 0.01 Ha ≤ ∆ 〈H〉 ≤ 0.04 Ha(56),
depending on the specific parameter set {α, β}. Hence, we chose to sample from the
uniform distribution D = [0.01, 0.08] Ha, with mean D̄ = 0.045 Ha, comparable to the
range above. This way, the algorithm is forced to continuously sample the surrounding
of the minimum, without converging any further. Once the fluctuations of the energy
values in the optimization run are on the order of the mean perturbation strength D̄, we
proceed for another 10−20 iterations before stopping the algorithm. The large number
of samples in the region of interest allows us to fit a convex function to the obtained
energy landscape and to extract the minimum. For the example of LiH we compared
(1) a Gaussian process regression (GPR) machine learning fit [181] with (2) a two-
dimensional quadratic fit to a subset of the VQE iterations (four standard deviations
from the median). Comparing the results (Subsection 7.2.2) with the ideal theoretical
calculation shows, that the GPR-based fit appears to systematically underestimate the
energy, which highlights the impact of the data evaluation method.

7.2.2. Experimental results

The ultimate goal is to determine the molecular potential curve – in other words, the
ground state energy of the electrons interacting in the fixed external potential of the
atomic nuclei, specified by the internuclear distance R. First, we prepare the trial
states |ϕ(θ)〉 and measure the expectation values 〈H`(θ)〉 = 〈ϕ(θ)|H` |ϕ(θ)〉, where
H` consist of tensor products of Pauli matrices (see Eqs. (7.5)–(7.7)). The molecular
energy is then obtained, by combining 〈H`(θ)〉 with the respective pre-calculated scalar
values c` and adding up, according to Eq. (7.8).

The H2 molecule

Let us consider the case in which we encode the problem in the two-qubit Bravyi-
Kitaev mapping, with the Hartree-Fock reference state |ϕHF〉 = |01〉. As visible from
Fig. 7.3 a), the quantum circuit contains two-qubit MS gates and only a single vari-
ational parameter θ in form of a single-qubit rotation angle. For the entangling gate
we measured a fidelity of 99(3)%. With a single variational parameter, it is still pos-
sible to efficiently scan the complete parameter space θ = [0, 2π] with a resolution of
56In chemistry, energies are usually expressed in Hartree (Ha), where 1 Ha = ~2

mea0
≈ 27.2 eV, with the

electron mass me and the Bohr radius a0
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0.05 and 100 experimental repetitions. Each setting θ produces a trial state |ϕ(θ)〉,
which is projected onto three measurement bases, to obtain the five expectation values
HBK
` = {Z0, Z1, X0X1, Y0Y1, Z0Z1} of Hamiltonian (7.5). The limited resolution scan

over the parameter space can be extrapolated by fitting e.g. sinusoidal functions to the
individual expectation values (Fig. 7.5 a)). Finally, we obtain the molecular energy of
the ground state for each internuclear distance R by combining the expectation values
for each value of θ with their respective coefficients c`(R), according to Eq. (7.8), and
picking the result with the minimal total energy in post-processing. Fig. 7.5 b) shows
the resulting potential curve, which represents an experimental reference for the per-
formance of our quantum simulator, and is used to compare the following variational
simulation results to.

We implement the VQE algorithm at five different internuclear separations R, yield-
ing the results in Fig. 7.5 b). For each optimization we start at a random initial value
θ0 and apply the gate sequence depicted in Fig. 7.3 a) to first prepare the trial state
|ϕ(θ0)〉 and then measure the expectation values 〈H`〉 (θ0). Then the associated energy
E(R, θ0) is passed to the optimization algorithm, which evaluates the result and sug-
gests a new value for θ (Fig. 7.5 c)). Throughout the iterations, the energy maps out a
1D landscape. The corresponding energy minimum is extracted by fitting a sinusoidal
function to the parameter space, with each point weighted according to the quantum
projection noise from its constituent measurements. Fig. 7.5 d) shows such an example
of the explored energy landscape and the associated fitting. The error returned by the
fitting routine defines the error bars of the VQE results.

The LiH molecule

LiH is a heteronuclear molecule with four electrons, which increases the complexity
of simulating its ground state energy. Under the BK encoding, with reference state
|ϕHF〉 = |111〉, the implementation requires three qubits, and a circuit with 8 half-
entangling gates and two variational parameters, α and β , as shown in Fig. 7.3 c).
The MS gate fidelity for three qubits reaches 97(3)%. Again, we first perform a param-
eter scan to establish a baseline for the performance of our system. We scan over the
section α = [1.5, 6], β = [2, 5] of the two-dimensional parameter space in a grid-like pat-
tern, with resolutions 0.1 and 0.15, respectively. For each parameter combination, we
perform three projective measurements to determine the expectation values of Hamil-
tonian (7.7): H` = {Z0, Z1, Z2, Z1Z0, Z2Z0, Z2Z1, X1X0, Y1Y0, X2X0, Y2Y0, X2X1,
Y2Y1}. Combining the results via Eq. (7.8), we obtain a two-dimensional energy land-
scape E(α, β) for each separation R. Fig. 7.6 a) shows the experimentally scanned
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Figure 7.5.: H2 in the two-qubit BK encoding and Hartree-Fock reference state
|ϕHF〉 = |01〉. a) Expectation values vs. the variational circuit parameter θ. Dots denote
experimental data with 100 measurement repetitions, while solid lines are fits. Error bars
from quantum projection noise are omitted for clarity, but taken into account in the fitting
routine. b) Blue: Molecular potential curve from a parameter scan with sinusoidal fits, where
the shaded area denotes the 1σ confidence band. Red: Results from VQE optimizations with
final sinusoidal fitting of the energy landscape. c) Example for the VQE implementation at
internuclear distance R = 0.5Å. Energy is shown as a function of optimization iterations.
Experimentally data is plotted as red stars with error bars are derived from quantum projection
noise. The noise-free circuit simulation (black stars) shows a good convergence to the target
value (blue line), obtained by exact diagonalization. The inset shows single-ion rotation angle
θ vs. the iteration number, illustrating the convergence of the VQE algorithm. d) VQE
implementation at R = 0.5Å. Energy vs. rotation angle θ with sinusoidal fitting for extracting
the parameters of the energy minimum (black: noise-free simulation, red: experiment).

parameter space, superimposed on a theoretical calculation of the full range. The fi-
nal molecular potential curve of the ground state is derived by fitting two-dimensional
functions to the energy landscapes and extracting the fit minima. We investigated
two fitting approaches: (1) a Gaussian process regression (GPR) fit and (2) a two-
dimensional quadratic fit E(α, β) = 〈H(R)〉α,β = m + (c · α − a)2 + (d · β − b)2 to a
restricted area around the energy minimum, that is all data points within four standard
deviations from the median. While resulting in a smooth potential energy surface, the
GPR-based fit systematically underestimates the energy. This highlights how much the
data evaluation method influences the result. Fig. 7.6 b) shows the resulting molecular
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potential curves, in comparison with an ideal theoretical calculation and data points
obtained from VQE implementations.

Despite a significant increase in experiment runtime, it is still possible to sequentially
scan the two-dimensional parameter space of LiH. However, scaling up to more complex
molecules reveals the true power of the VQE approach: Sparse and adaptive sampling
of a potentially very high-dimensional energy landscape. We implement the iterative
VQE procedure for two internuclear distances R = 1.6 and R = 2.75. In contrast to the
H2 molecule, the optimization algorithm is now dealing with two variational parameters
α and β. Fig. 7.6 a) shows how the VQE implementation at R = 1.6 samples over the
parameter space. The employed hybrid algorithm ensures a large enough number of
data points around the minimum, for successful fitting of all data points within four
standard deviations from the mean, as illustrated in Fig. 7.6 c).

7.2.3. Impact of gate imperfections and decoherence

We investigate the impact of gate imperfections and decoherence in the context of pa-
rameter scans of the H2 molecule. Depending on the method for mapping the fermionic
to spin expressions (Eqs. (7.5 and 7.6)), the variational simulation can be performed
on either two qubits (BK) or four qubits (JW), and correspondingly the UCCSD op-
erators contain two- and four-qubit entangling gates. Also the projective measure-
ments for the expectation values 〈H`(θ)〉 depend on the Hamiltonian transformation
method: The BK-transformed case requires three measurements to obtain HBK

` = {Z0,
Z1, X0X1, Y0Y1, Z0Z1}. In the JW-transformed case, we obtain 14 expectation values
HJW
` = {Z0, Z1, Z2, Z3, Z1Z0, Z2Z0, Z2Z1, Z3Z0, Z3Z1, Z3Z2, Y3Y2X1X0, Y3X2X1Y0,

X3Y2Y1X0, X3X2Y1Y0} from 5 different measurements. This spans a great experimen-
tal space in which we study four different cases: (1-2) operations within and outside
a decoherence-free subspace that is protected against correlated dephasing, and (3-4)
implementations with high and low MS gate fidelity.

(1-2) In the BK mapping, we can perform a basis rotation at the level of the Hamil-
tonian, which results in a sign changes of the c`(R) coefficients and a different
initial state |ϕHF〉 = |11〉. Note that the UCCSD operator and its circuit imple-
mentation are maintained. The initial state |01〉 transforms in our gate sequence
through a decoherence-free subspace, while |11〉 is prone to decoherence.

(3-4) Within the JW mapping, we compare the results with 97(4)% and 93(3)% MS
gate fidelity.
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Figure 7.6.: LiH results. a) Energy landscape at internuclear distance R = 1.6 Å. The
black box inset marks the experimentally scanned parameter range. It is superimposed on a
theoretical calculation with dashed red lines marking the coordinates of the targeted energy
minimum. Connected white lines show the iterations taken by the VQE algorithm, with the
starting point marked by a filled red dot and the abortion point by a red square. b) Potential
energy curves, obtained from experimentally scanning the parameters (as in a)), in comparison
with the theoretical solution, calculated via exact diagonalization (black). The experimental
curves are offset in order to overlap at maximum distance R for a better illustration of the well-
depth differences. The data points result from sampling the energy landscape 〈H(R)〉α,β with
the VQE algorithm. The explored space is fitted with a Gaussian process regression (GPR)
based machine learning algorithm (red dashed line) or a 2D quadratic fit (blue solid line), as
illustrated in panel c), to extract the minimum energy value. Error bars are obtained from the
fits with the underlying data weighted by quantum projection noise. The slight kink close to
R = 3.5 Å is due to the interplay of rounding errors introduced in the fitting routine with small
deviations originating in our active space approximation. c) VQE data (red) at R = 1.6 Å,
fitted with the two-dimensional quadratic function E(α, β) = m+ (c · α− a)2 + (d · β − b)2.

A comparison of the cases 1-4 is shown in Fig. 7.7 a). It reveals that correlated
dephasing errors as well as reduced gate fidelities shift the absolute molecular energy
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Figure 7.7.: Impact of gate imperfections and decoherence, on the example of the H2
molecule. a) Potential energy curve of the ground state for different experimental settings:
The data sets vary the number of qubits, the Hartree-Fock reference states and gate fidelities,
as denoted in the legend on the right. All colored lines are derived from weighted sinusoidal fits
to the energy surface formed from experimental parameter scans. The black line corresponds to
the theoretical solution, calculated via exact diagonalization (ED). b) Data from panel a), nor-
malized to the theoretical dissociation energy at large internuclear separations R. The dashed
and dotted lines indicate the well depth associated with the binding energy of the molecule
and the position of the energy minimum, respectively. c) Simulation of decoherence and MS
depolarizing errors of 1% (red), compared with the corresponding experimental parameter scan,
including error band (blue). The inset shows the data from the main panel with respect to the
numerical theory from ED (black line). d) Scaling of the energy error, related to quantum
projection noise. Each color-coded curve corresponds to a 1σ error in the energy calculated
from the expectation values 〈H`〉, weighted by the respective scalars c`(R).

to higher values. In particular, we observe that a two-qubit ansatz that is not pro-
tected against correlated dephasing yields similar results as a decoherence-protected
four-qubit ansatz. The latter is significantly more sensitive to correlated dephasing due
to the larger number of qubits. This highlights the benefit of employing decoherence-
free subspaces in algorithmic implementations. In chemistry, measurements generally
refer to energy differences as opposed to absolute values. Therefore, it is common to
translate the potential energy curves to their nominal reference value at large sepa-
ration R as illustrated in Fig. 7.7 b. This depiction more clearly demonstrates the
respective upshift in energy with respect to the calculated binding energy (or well
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depth) and the simultaneously occurring shift in the position of the energy minimum
towards larger internuclear distances. Fig. 7.7 c) compares a simulation including gate
errors and decoherence57, with the experimental result for the best conditions (BK
mapping, |ϕHF〉 = |01〉, 99% gate fidelity). We observe, that the upshift in energy is
largely captured by the gate and coherence infidelities. A recent numerical study [182]
reveals the impact of errors in the simulation of the ground state energy of H2 and
LiH in more detail. Possible workarounds to this problem could be the introduction of
ancilla qubits, which detect whether the decoherence-free subspace was maintained, or
the use of quantum circuits which are tailored to the experimental capabilities.

Finally, we apply the widely used concept of chemical accuracy as reference to bench-
mark our results. In chemistry, an energy error of ∆G = 1.6 mHa between reactants
and the transition state, translates to a chemical event rate that is off by a factor of
ten [178]. The inset in Fig. 7.7 c) relates the results for the H2 molecule, to this energy
error, also known as “chemical accuracy threshold”. Let us assume no other sources of
noise, than quantum projection noise. In this case, we can estimate a minimum num-
ber of measurements for each observable 〈H`〉, for which the energy error falls below
the chemical accuracy threshold. Fig. 7.7 d) illustrates, that one would need to repeat
each measurement at least 15000 times in order to reach chemical accuracy. Such a
large number of repetitions has a strong impact on the run-time of the experiment. In
addition to technical improvements on the hardware side, there are a number of the-
oretical proposals which appear to significantly reduce the resources required to scale
up these simulations. For instance, in Ref. [183] authors introduce a new class of basis
functions for the simulation of electronic structure problems. They quadratically re-
duce the number of terms in the Hamiltonian from O(N4) to O(N2). Furthermore, an
adaptive measurement strategy might also alleviate the resource needs with respect to
the required number of averages. This could entail varying the number of repetitions
throughout the VQE iterations, based on the observed energy changes in each step.
The measurement precision could be gradually increasing as the algorithm converges
towards the energy minimum.

In conclusion, further work is needed on both the quantum and classical aspects
of this trotterized way of variational quantum simulation. Specifically, the mitigation
of gate errors in the quantum circuits promises improved performance. The most
significant challenge in trotterized variational simulations remains the circuit depth.
A naive application of unitary coupled cluster requires a number of gates that scales

57The decoherence channels include single-qubit dephasing of all qubits during state preparation, e.g.
due to magnetic field fluctuations, considering a dephasing time T2 = 40 ms.
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as O(N4), assuming arbitrary connectivity between qubits. This strongly suggests
that more scalable variational circuits will be needed if we are to approach classically
intractable calculations. An alternative to the unitary coupled cluster ansatz is to
employ an unstructured variational circuit, as demonstrated first in [12] and applied in
Section 7.3.
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7.3. Application II: The Lattice Schwinger Model

An alternative approach to the one presented in Section 7.2, is based on the heuristic
generation of trial states |ϕ(θ)〉 using unitary operations that are more tailored to the
available quantum hardware. Specifically, the main quantum resources for the exper-
iment discussed here are single-qubit rotations of arbitrary angles around the z-axis,
and spin-spin interactions with variable evolution time. With this, the quantum device
efficiently generates possibly highly entangled states that are close to the target state,
almost58 independently of the particular Hamiltonian of interest. In our experiment, we
combined quantum variational techniques with our state-of the art, potentially scalable,
analog quantum simulator. In contrast to analog quantum simulation, this approach
forgoes the requirement of realizing the targeted Hamiltonian directly in the labora-
tory, thus allowing us to study a wide variety of previously intractable target models.
Although the results presented below, focus on the simulation of the lattice Schwinger
model, the technique is also directly applicable to general lattice models in condensed
matter and high-energy physics. Implementing the lattice Schwinger model in a many-
qubit system is far out of reach for current analog and digital quantum simulators:
The complexity of the Hamiltonian has so far prevented a direct realization using ana-
log quantum simulation. Digital quantum simulation of the model has been reported
in [184], however it was restricted to four qubits and four Trotter steps requiring a total
of 220 quantum gates. In contrast, we show that variational quantum simulation allows
for a well-converged preparation of eigenstates of the lattice Schwinger model, for up
to 20 qubits.

A key challenge for variational quantum simulators is the scaling to larger system
sizes, which is limited by the available quantum computing hardware, as well as by
a rapid increase in the number of variational parameters θ. Moreover, the number
of measurements needed for the classical computer to successfully navigate the high-
dimensional energy landscape, rapidly increases with system size. In the project, pub-
slished in Ref. [16], we demonstrate how VQS can be scaled up for lattice models by
incorporating intrinsic symmetries of the Hamiltonian into the trial states and thus re-
ducing the number of variational parameters. Furthermore, our collaborators from the
theory department developed an advanced global optimization algorithm specifically
suited for noisy, high-dimensional and gradient-free problems.

Finally, when variational techniques can be scaled up to a regime where classical
simulations become intractable, we are facing the long-standing problem of how to

58The scheme benefits if symmetries of the Hamiltonian are preserved.
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verify the produced answers, that is, assessing how close the variational trial states
and energies are to the exact values. In the project discussed here, we take a step
towards verifying the quantum simulation: By measuring the Hamiltonian variance
of the prepared states, we are able to estimate the algorithmic error bars of the final
energies, that is, the uncertainty on the approximate ground-state energy. Comparing
these to the energy gap to the first excited state, corresponds to a quantitative self-
verification of the acquired results on the quantum device itself.

7.3.1. Theoretical background

We focus our study on the lattice Schwinger model, a gauge theory of one-dimensional
quantum electrodynamics [185, 186]. In simple words, this model describes the interac-
tion of charged matter and antimatter (represented by a fermion field) with a quantized
electric field. The Kogut-Susskind encoding maps the fermionic configurations to a spin-
1/2 lattice, where a spin down (or spin-up) on an odd (or even) lattice site indicates
the presence of a positron (electron), as illustrated in Fig. 7.8. For open boundary con-
ditions, and using the Jordan-Wigner transformation for mapping fermions to spins,
our target Hamiltonian reads

ĤT = w
N−1∑
j=1

[
σ̂+
j σ̂
−
j+1+H.c.

]
+m

2

N∑
j=1

(−1)jσ̂zj +ḡ
N∑
j=1

L̂2
j . (7.9)

Here, j labels the lattice site, for a system of length N , and σ̂aj are Pauli operators. The
first term in Eq. (7.9) describes the creation or annihilation of a particle-antiparticle
pair, mapped to a spin flip-flop term with coupling w (which we set to w = 1 as the
energy unit). The second term contains the bare mass m of the matter and the last
term is the electric field energy, with coupling ḡ. The 1D character of our model allows
the electric field L̂j to be eliminated due to Gauss’ law [186] L̂j− L̂j−1 = 1

2(σ̂zj +(−1)j),
such that L̂j is expressed in terms of Pauli operators

L̂j = ε0 −
1
2

j∑
`=1

(σ̂z` + (−1)`) .

Here, ε0 is a background electric field, which is set to zero. With this, the Hamiltonian
ĤT reduces to an effective spin-1/2 model with exotic long-range interactions originat-
ing from squaring L̂j . The expectation value of the target Hamiltonian 〈ĤT 〉 can be
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decomposed into three terms ĤT = Λ̂X + Λ̂Y + Λ̂Z with

Λ̂X = w

2

N−1∑
j=1

σ̂xj σ̂
x
j+1,

Λ̂Y = w

2

N−1∑
j=1

σ̂yj σ̂
y
j+1,

Λ̂Z = m

2

N∑
j=1

(−1)nσ̂zj + ḡ
N−1∑
j=1

ε0 −
1
2

j∑
`=1

[
σ̂z` + (−1)`

]2

=
N∑
j=1

dj σ̂
z
j +

N−2∑
j=1

N−1∑
j′=n+1

cj,j′ σ̂
z
j σ̂

z
j′ .

(7.10)

All three components consist of two-spin correlation functions in either the x-, y- or
z-basis. Therefore 〈ĤT 〉 is obtained by projecting onto only 3 bases, regardless of the
system size.

odd sites:

even sites:

Kogut-Susskind encoding:

Figure 7.8.: Encoding of the lattice Schwinger model in a chain of qubits. The box
shows the encoding of particles (e+/e−) and vacuum (vac) into spins. The two spin states ↑/↓
in combination with the parity of each site, define the existence or absence of fermions. The
right pictogram illustrates a specific product state for eight lattice sites in the Schwinger model
and its translation into the spin configuration. The symbols ε0 and Li and the corresponding
numbers below, denote the electric fields, building up between the sites: We set the background
field ε0 = 0. Positively charged particles increase the field by one unit, negatively charged
particles reduce it, whereas empty sites (vac) do not alter the electric field.

On symmetries of the target Hamiltonian and the quantum resource

Matching symmetries between the experimental resources and the target model is highly
beneficial for the overall efficiency of VQS. In particular, preserving symmetries reduces
the Hilbert space to the relevant symmetry sector (Fig. 7.9) – which again reduces the
number of variational parameters required to sample this space. On the other hand
preserving symmetries in the resource that are not present in the target model can trap
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the algorithm in a symmetry sector.

charge conservation:

CP symmetry:

Target

Ground state

Resource

Figure 7.9.: Symmetry considerations for the target Hamiltonian and the quantum
resource. The left-hand panel shows the Schwinger spin model in the Kogut-Susskind for-
mulation where matter fields are represented by spin degrees of freedom. We investigate the
ground state of ĤT restricted to the symmetry sector with quantum numbers σ̂ztot = 0 and
ĈP = +1. The right-hand panel shows the native resources of our ion trap platform. They
can be exploited to engineer symmetry preserving quantum circuits specifically tailored to the
Schwinger model. The realization of an approximate XY-Hamiltonian (orange boxes U (0)

R ), as
given in Eq. (7.11), protects the σztot symmetry. Single-Qubit rotations around the z-axis (blue
circles U (j)

R ) can be forced to be ĈP -symmetric by linking the rotation angles between the left
and the right half of the chain according to θn` = −θN−n+1

` . Such a circuit will protect the
target symmetries, restricting the variational search only within the portion of Hilbert space
of our interest (illustrated in the inset). Note that each unitary U

(0)
R , as well as each set of

{U (j)
R } with j = 1, ..., N defines one layer of the quantum circuit. In this illustration, |Ψ(θ)〉 is

generated by L such layers, so we call it a circuit of depth L.

The Schwinger Hamiltonian ĤT exhibits charge conservation symmetry [ĤT , σ̂
z
tot] =

0, with σ̂ztot = ∑
j σ̂

z
j . Due to this symmetry, matter and antimatter are only created

or annihilated as particle-antiparticles pairs. The specific symmetry subspace of our
interest is the sector with zero total magnetization σ̂ztot = 0, which includes the Néel
state ↑↓ . . . ↑↓ (corresponding to the bare vacuum). Within this charge symmetry
sector, the Schwinger model also retains ĈP symmetry: [ĤT , ĈP ] = 0, which combines
charge conjugation (C) and spatial reflection (P ). In the Kogut-Susskind formalism,
this operation can be implemented only for a lattice with even length N , as spatial
reflection around a bond effectively maps the particle sublattice into the antiparticle
sublattice, and vice versa. Since particles and antiparticles have opposite spin encod-
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ings, all the spins must be flipped upon reflection, i.e. undergo a σx operation (Fig. 7.9).
More mathematical details on the mapping and the symmetries of the Hamiltonian, are
given in the Supplementary Material of Ref. [16].

Having summarized the symmetries of the target model, we have to implement them
on our resource quantum simulator, consisting of up to N = 20 40Ca+ ions, con-
fined in a linear Paul trap. We first prepare the ions in a simple product state |Ψ0〉.
Specifically, we choose a Néel-ordered state, e.g. |Ψ0〉 = |↑↓ · · · ↑↓〉 that lies within the
zero-magnetization sector. Our quantum simulator has two main quantum resources
that preserve the symmetries of the target Hamiltonian:

• The XY-Hamiltonian

Ĥ
(0)
R =

N−1∑
i=1

N∑
j=i+1

Jij(σ̂+
i σ̂
−
j + σ̂−i σ̂

+
j ) +B

N∑
i=1

σ̂zi (7.11)

is realized using a bichromatic laser beam that off-resonantly couples all ions to
the transverse modes of motion [116]. Here, Jij ' J0/|i− j|α are long-range anti-
ferromagnetic couplings with tunable interaction range α, and B is an effective,
uniform magnetic field. This Hamiltonian is capable of creating highly entangled
states, while protecting the z-magnetization. Additionally, Ĥ(0)

R is ĈP invariant
within the zero-magnetization sector. This is visible in the interaction matrix,
which is symmetric under reflection Ji,j = JN+1−j,N+1−i.

• Single-qubit rotations around the z-axis

Ĥ
(j)
R = ∆0

2 σ̂zj

are realized by a steerable, strongly focused off-resonant laser beam which induces
an AC-Stark shift ∆0.

With these Hamiltonians we form a quantum circuit of alternating layers of unitary
operations, to generate a family of variational trial states |Ψ(θ)〉 (see Fig. 7.9, right
panel): The odd layers consist of the entangling operation U

(0)
R (θ) = exp(−iθĤ(0)

R )
where the control parameter θ sets the duration of the time-evolution, while the even
layers contain the local operators U (j)

R (θ) = exp(−i∑N
j=1 θĤ

(j)
R ) acting on every site j.

The single-qubit operations are forced to preserve ĈP by matching the rotation angle
at site j with the rotation angle at site (N + 1− j), specifically

θ(j) = −θ(N+1−j) .
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Both unitaries keep the state in a decoherence-free subspace with respect to the major
experimental sources of decoherence [60]. The preservation of ĈP symmetry reduces
the number of variational parameters for each single-qubit layer to N/2, while restrict-
ing the global search to the symmetry sector of interest. Furthermore, as the number
of lattice sites increases, we expect the Schwinger model to exhibit approximate trans-
lational symmetry within a bulk-region B in the centre of the lattice. We incorporate
this symmetry, by enforcing θ(j) = θ(j+2) for all {j, j+ 2} ∈ B, i.e. far from the ends of
the ion chain. This reduces the number of variational parameters further, essentially
making the number of parameters per layer non-scaling with the system size.

On scalability

In our VQS framework, the number of variational parameters θ scales linearly with the
number of layers nlayers, at fixed size N . Therefore nlayers, also referred to as circuit
depth, is a good quantifier of the variational complexity of the quantum simulation.
For system sizes up to N = 12 sites, we can determine the exact ground state of the
target Hamiltonian on a classical computer, via exact diagonalization. With this, we
can quantify the precision of a variational simulation by calculating the infidelity of the
variationally optimized state with the exact ground state of the model.

We run the variational ground state simulation on a classical computer, and identify
a minimal circuit depth nreq required to prepare the VQS state at a given precision, e.g.
5% infidelity. The observed scaling behaviour suggests that the variational complexity
of the Schwinger ground state is polynomial – not exponential – in the system size
N , ultimately making our VQS procedure scalable. Although we have simulated the
scaling properties only up to 12 lattice sites, we expect our findings to be valid for
larger and more complex systems. In particular, the appearance of a translationally
invariant bulk region for large systems results in a system-size-independent number of
variational parameters per circuit layer.

7.3.2. Optimization algorithm

Efficient variational quantum simulation relies on an advanced global optimization algo-
rithm, which is specifically suited for finding the global minimum in a high-dimensional
and gradient-free landscape, the space of parameters θ. In particular, this space only
reveals itself through inherently noisy measurements of quantum observables, while
typically featuring multiple local minima. In the project presented here, we employ
a variant of the dividing rectangles (DIRECT) algorithm [187, 188]: it divides the
parameter space into regions called hypercells, which are represented by a single cost
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function evaluation taken in its interior as illustrated in Figs. 7.10 a) and b). Cells are
subdivided into smaller cells, if they are considered sufficiently promising to harbour
the global minimum, prioritizing cells with low energy values, as well as cells with large
sizes (Figs. 7.10 c) and d)). The cell size is an important quantity in the algorithm’s
decision making, because larger cells have more unexplored territory. Therefore, they
are statistically more likely to contain the global minimum, compared to small cells.
For a full optimization run, we assign a total budget of (up to) 105 calls to the quan-
tum simulator. A single call involves the variational preparation of a trial state and the
projective measurement of the qubits in a given basis. In order not to waste the finite
iteration budget on high-energy points, we initially invest only a low number (30) of
measurement repetitions per basis at each unexplored point. The low number of initial
samples typically suffices to provide a rough estimation of the energy on which the al-
gorithm can base its subsequent decisions. If two similarly sized cells are competing for
a subdivision step, that is, if it is unclear which function value is lower due to the sta-
tistical uncertainty59, the algorithm can request refinement steps60. Those additional
measurements are then combined with the previous ones, to reduce the statistical error
and to increase the probability of correct decisions. The DIRECT algorithm attempts
to balance between those phases of exploitation (refining a promising point) and ex-
ploration of the unknown areas in parameter space, which ensures that the algorithm
does not get stuck in local minima and ultimately finds the global minimum.

During an optimization run, the algorithm maintains an internal representation,
called metamodel, of the energy landscape in the form of a Gaussian Process [181]: This
machine learning approach models the experimental data points as Gaussian functions
and uses their joint distribution to obtain a continuous function of the energy landscape.
The variance of the data functions implicate a probability distribution of metamodel
functions, such that the Gaussian process yields predictions for the mean values as
well as uncertainties of the energy landscape. The optimization algorithm uses this
metamodel in the decision for subdividing hypercells, as well as for sampling at the
predicted global minimum in exploration steps.

In our experiment, the variational algorithm continues requesting measurements from
the quantum device until the allocated resource budget is exhausted. Another stopping
criterion would be given by stationarity, that is, the algorithm terminates, if the pre-
59The measurements are affected by intrinsic statistical errors, introduced by the finite number of

projective measurements (shot noise), temporal fluctuations in the experimental controls (control
noise), and infidelities in the initial Néel state preparation.

60The algorithm selects when to perform the refinement steps and how many measurements to spend
in this stage, based on methods from decision theory and Optimal Computing Budget Allocation
(OCBA).
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Figure 7.10.: Schematics on the optimization algorithm. Panels a)-c) illustrate the se-
quence of the optimization algorithm: a) Sampling the center of the hypercube in the parameter
space spanned by θ1 and θ2. b) Sampling along each dimension in parameter space and divide
into smaller hyper-cubes. c) Evaluating the cost functions and identifying promising cubes
(here marked by colors), as illustrated in panel d): based on elements from decision theory
(OCBA), the algorithm compares the cost function values and decides which cubes to subdi-
vide and investigate further. One of the largest boxes (pink) is always added to the promising
cubes with low cost function values (blue and green), in order to explore unknown areas.

dicted minimum of the metamodel is no longer changing as more iterations are added.
For more details regarding the optimization algorithm, contact our collaborators from
the theory department61.

7.3.3. Variational Schwinger ground state search for 20 qubits

We perform variational optimization to the ground state of the lattice Schwinger model
with 20 qubits. After preparing the initial Néel state with a fidelity of 91(3)%, we apply
a quantum circuit of depth 6, consisting of 3 entangling and 3 single-qubit rotation lay-
ers (as defined in the subsection On symmetries of the target Hamiltonian and the quan-
tum resource). The entangling operations are realized by long-range spin-spin interac-
tions, following an approximate power-law decay Jij ' J0/|i−j|α, with J0 ≈ (2π) 30 Hz
and an exponent α = 0.98. This coupling is achieved by setting the bichromatic laser
frequencies to be ±(ωcom+δ) from the qubit transition, where ωcom = (2π) 2.71 MHz is
the highest radial mode frequency and δ = (2π) 0.04 MHz. Additionally, both compo-
nents of the bichromatic laser are shifted by δB = (2π) 3 kHz from the qubit transition,
61The optimization algorithm was advanced in the group of Prof. Peter Zoller, primarily by Rick van

Bijnen, at the Institute of Quantum Optics and Quantum Information.
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generating the effective transverse B-field in the system as defined in Eq. (7.11). We
approximate translational invariance in a bulk region of 14 cnetral cites, resulting in a
total of 15 variational parameters θ. The control variables θ adjust the duration of the
time-evolution under the spin-spin interaction, and the individual single-qubit rotation
angles. Finally, we perform spin rotations prior to spatially resolved fluorescence de-
tection, in order to project the quantum state into 3 different measurement bases x,
y and z. Those projective measurements yield the correlation functions in Eq. (7.10)
which are necessary for evaluating the energy E(θ) ≡ 〈Ψ(θ)|ĤT |Ψ(θ)〉.

The entire experimental sequence is repeated 30-200 times and the statistical average
is taken. We partially correct for decoherence and imperfect initial state preparation
by post-selecting on the measurements in the z-basis. This means, that we retain only
those 70% of the measurements which lie within the zero-magnetization subspace. The
results are subsequently passed to a classical computer, which runs the optimization
routine and returns the control parameters θ to the quantum device, in form of a
sequence script file. In each iteration i of the optimization loop, the classical computer
supplies a new set of θi. Note that the experimental control system calibrates itself
every 10 minutes to correct for slow drifts of the experimental parameters such as laser
frequency, the positioning of the ion chain, and drift of the addressing laser beam.

The resulting optimization trajectory for m = 0.9 and w = ḡ = 1 is shown in
Fig. 7.11 a), where the energy E(θi) is plotted as a function of the iteration number i
of the optimization loop. The coloring of the energy values E(θi) serves for visualizing
the different trial states |Ψ(θi)〉, prepared during the optimization run: the color-code
indicates the Euclidian distance |∆θ|, of each set θi to the parameter vector θbest with
the highest theoretical fidelity F = | 〈ΨG|ΨSim(θi)〉 |2. Here, |ΨG〉 defines the exact
ground state and |ΨSim(θi)〉 the variational wave function as simulated numerically
using the parameters θi from the experiment. The graph in Fig. 7.11 c) illustrates
the trend of this fidelity reaching up to 0.8. The algorithm maintains an internal
metamodel of the energy landscape, that is continuously updated as more experimental
data is gathered (c.f. Section 7.3.2). The red solid line in Fig. 7.11 a) indicates the
current estimate of the ground state energy, extracted from this metamodel,
with the shaded area as the 2σ confidence interval of the prediction. As visualized
in Fig. 7.11 b), the employed search algorithm continuously explores new regions in
parameter space, leading to a large spread in the sampled energies. Initially, a local
minimum appears (i), for which the cell size is reduced for fine sampling. However,
that region is finally surpassed by a more promising region, labelled as (ii). Fig. 7.11
d) illustrates how well the experimental results agree with theoretical simulations for
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Figure 7.11.: Variational ground state search with 20 ions. a) Convergence of experimen-
tal energies E(θ) ≡ 〈Ψ(θ)|ĤT |Ψ(θ)〉 vs. iteration number i. The algorithm refines a potential
minimum, but also keeps exploring new regions of the parameter space, leading to high energy
values, even in the later stages of the run. The color-coding of the Energy values E(θi) indicates
the Euclidian distance, |∆θ| of θi to the parameter vector θbest with the highest theoretical
fidelity (see panel c)). The solid red line is the current estimate of the ground state energy
and its 2σ uncertainty (shaded area), extracted from the algorithm’s internal metamodel (see
text). ∆ denotes the exact gap between the energy of ground state, E(0), and first excited state,
E(1). Inset: Zoom into a late stage of the optimization, where dots show experimental data
with statistical errorbars, and crosses show numerically simulated values. b) Visualization of
sampled energy landscape relative to E(0), vs. parameter distance ∆θ and the corresponding
cell size in the optimization algorithm. Distinct local minima are visible as ’fingers’, marked (i)
and (ii), extending towards smaller cell sizes, indicating fine sampling of the parameter space
near a local minimum. c) Theoretical fidelities F of the many-body wavefunctions (see text),
with a rough indication of the local minima (i), (ii) b). d) Correlation between experimentally
measured energy Eexp versus numerically simulated energy Eth, showing agreement within 2σ
(blue shaded area).

corresponding trial states |Ψ(θi)〉. Typical statistical error bars are drawn as a blue
band of thickness 2σ, in which 55% of the data points accumulate.

A similar optimization run for 16 ions found multiple local minima and reached a
final fidelity approaching 0.9 . We attribute the increase in fidelity with lower number
of ions, to less decoherence and a higher fidelity in the preparation of the initial state.
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7.3.4. Quantum phase transition for 8 qubits

Next, we study a quantum phase transition of the Schwinger model for 8 lattice sites.
Specifically, we monitor the change of the order parameter

〈Ô〉 = 1
2N(N − 1)

∑
i,j>i

〈(1 + (−1)iσ̂zi )(1 + (−1)j σ̂zj )〉 (7.12)

as a function of the mass m of the matter. The observable 〈Ô〉 describes the proba-
bility of the lattice to be filled with electron-positron pairs, where the limit m→ +∞
correspond to the bare vacuum, and m→ −∞ to full proliferation of electron-positron
pairs (see insets in Fig. 7.12 a)). The critical point of the Schwinger model with zero
background field ε0 = 0 and w = ḡ = 1 occurs at negative bare mass mc ∼ −0.7 [189].

Experimentally, we probe the phase transition by performing the following steps for
each mass m: We prepare a different initial state, depending on whether the mass is
below or above the critical point: |↓↑ . . . ↓↑〉 and |↑↓ . . . ↑↓〉 for m < mc and m > mc,
respectively. In both cases, the Néel states are prepared with a fidelity of 98(2)%.
Then, we follow the same optimization routine and measurement scheme as described
in Section 7.3.3, to variationally prepare the ground state of the system. The parameters
for the entangling layers of the quantum circuit are Jij ≈ (2π) 37 Hz and α = 1.34. For
each trial state, prepared during the optimization, we calculate the observable 〈Ô〉 and
derive 〈Ô〉avg as the weighted average over all states according to their energies and
statistical error bars62. This procedure is repeated for various masses m in order to
determine the full phase transition. Note that the optimization can be accelerated by
re-evaluating previously sampled data for different values of m – which only changes
the pre-coefficients in the summation of the measurement results (c.f. Eqs. (7.10)).

The experimental results are shown in Fig. 7.12 a), compared with theoretical cal-
culations from exact diagonalization. For the trial states of most masses m we apply
quantum circuits of depth 4 (10 parameters), and run the optimization routine for 2000
iterations. However, we found that the two points in proximity to the phase transition
require an additional entangling layer (amounting to a circuit depth of 5) and about
5000 iterations of the optimization routine to enable convergence of the energies towards
the theoretically expected ground state energy. We further measure the second-order
Rényi entropy S

(2)
A = − log2 Tr(ρ2

A) [104] to quantify entanglement across the phase

62The weighting factor corresponds to the probability for each trial state to be the closest to the
ground state. To estimate this, we perform Monte Carlo sampling of all trial states, based on their
measured energies and error bars. The weighting factor is determined by counting how often the
energy minimum of all Monte Carlo samples occurs in each trial state distribution.
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Figure 7.12.: Quantum phase transition under varying mass m. a) Order parameter
〈Ô〉avg as a function of mass. Circles represent experimental data, where each point is derived
from all trial states of a full variational optimization run. Light-colored circles are based on a
variational quantum circuit of depth 4, while for the dark-colored circles we used a circuit of
depth 5. The solid line is a theoretical result from exact diagonalization. The insets visualize
the bare vacuum and full filling of the 8-site lattice with electron-positron pairs, for the limits
m → ±∞, respectively. The critical point occurs at mc ≈ −0.7. b) Second-order Rényi
entanglement entropy S

(2)
A , with bipartition A–B in the inset. Error bars correspond to one

standard deviation of 〈Ô〉avg and Tr(ρ2
A), respectively.

transition (Fig. 7.12 b)). Here, ρA is the reduced density matrix in the bipartition A–B
shown in the inset. At the critical point we observe an increased entanglement entropy
of the variationally prepared ground state. This is in agreement with the additionally
required entangling layer in the variational quantum circuit for these points.

7.3.5. Algorithmic error bars

Finally, we want to give a quantitative measure for the success of the variational simu-
lation by estimating the error E of the approximate ground-state energy E(θ) ≡ 〈ĤT 〉θ.
For this, we determine the variance of the target Hamiltonian E2(E,θ) = 〈(ĤT − E)2〉.
For an exact eigenstate, E2 is zero. However, for an approximate wave function |Ψ(θ)〉,
as prepared in our VQS, it provides an uncertainty estimate of the energy, according
to the bound |E` − E(θ)| ≤ E(E(θ),θ), with E` the exact eigenstate energy closest to
E(θ). We define the uncertainty E as algorithmic error because it includes statistical
errors, systematic drifts as well as the errors due to the finite depth of the variational
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quantum circuit. Thereby it corresponds to the cumulative uncertainty of the varia-
tional quantum algorithm. Comparing E to the energy gap ∆exp between the ground
state and the first excited state, provides us with a quantitative measure for the quality
of the approximate eigenstate and the self-consistency of the quantum simulation.

In the experiment, we perform a full optimization run for the Schwinger ground
state with 8 qubits and m = 0.1, w = ḡ = 1. The data is shown in Fig. 7.13 a), where
the best approximate ground state (marked with Å) has a theoretical overlap of 0.95
with the exact ground state and a corresponding corresponding energy of E(θopt) =
−3.24± 0.36. The difference E(θopt) − E(0) to the exact ground state energy E(0),
corresponds to 11%± 18% of the energy gap ∆exp = 2.11± 0.24. The energy gap ∆exp

itself is determined experimentally via a quantum subspace expansion strategy (see
Appendix M). We then select six trial states, marked by the squares in the optimization
curve, for which we measure the variances E2(E(θopt),θ) = 〈(ĤT − E(θopt))2〉. That
is, we determine the variance of the target Hamiltonian ĤT under each trial state
|Ψ(θ)〉, with respect to the best approximate ground state energy E(θopt). Compared
to Eq. (7.10), the term 〈Ĥ2

T 〉 contains additional observables such as Λ̂2
X , Λ̂2

Y , Λ̂2
Z as well

as the anticommutators {Λ̂Z , Λ̂X} and {Λ̂X , Λ̂Y }, which include three- and four-body
correlations. This amounts to total of 3N = 24 projective measurements. Fig. 7.13
b) shows the algorithmic error E(E(θopt),θ), in units of the experimental energy gap
∆exp. The graph demonstrates that the variational routine converges to an eigenstate,
manifested by the asymptotically decreasing algorithmic error with a value of E/∆exp =
0.64± 0.20 for the best trial state (marked with Å). Finding a state whose algorithmic
error E is smaller than the energy gap ∆exp to the next excited state proves that the
quantum simulator provides self-consistent results. In other words, this is a quantitative
self-verification of the quantum simulation.

We investigate the dependence of the algorithmic error E on the circuit depth us-
ing numerical simulations on a classical computer: Fig. 7.13 c) shows that the lowest
achievable algorithmic error decreases, as the circuit depth increases.

7.4. Conclusion

This chapter introduced the quantum-classical feedback loop, which builds the basis of
variational quantum simulation (VQS), and presented two experimental applications:
First, we employed the variational quantum eigensolver algorithm to prepare molec-
ular ground states of H2 and LiH. We compared different methods for mapping the
fermionic Hamiltonian to a system of qubits in a trotterized way and studied molecular
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circuit depth

Figure 7.13.: Algorithmic error bars. a) Optimization trajectory for the 8-qubit Schwinger
model with m = 0.1, w = ḡ = 1. The energies E(θ) ≡ 〈ĤT 〉θ of the trial states are plotted
as a function of the iterations of the optimization algorithm (c.f. Fig. 7.11). b) Algorithmic
error E in units of the experimentally determined energy gap ∆exp for 6 selected trial states, as
indicated by squares in panel a). Crosses show numerical simulation, filled circles are data with
statistical error bars. For comparison, the exact energy gap ∆ and the experimental energy gap
with uncertainty σ(∆exp), are indicated. c) Numerical simulations of ground state optimization
experiments. The algorithmic error is plotted against the circuit depth of the algorithm and
complexity of the model (bare mass m). The error decreases for increasing circuit depth,
and increase in proximity of the critical point (orange dots), where the eigenstates are more
entangled, requiring deeper circuits to maintain a high precision.
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energy potentials as a function of the internuclear distance. Further we investigated the
influence of measurement noise and decoherence. For this trotterized approach of VQS,
further work is needed specifically in the mitigation of gate errors and the scalability
of the quantum circuits if we are to approach classically intractable calculations.

An alternative approach is presented as the second application in the chapter: This
method is based on the heuristic generation of trial states, using unitary operations that
are more tailored to the available analog quantum hardware (single-qubit rotations of
arbitrary angles around the z-axis, and spin-spin interactions with variable evolution
time). This approach forgoes the requirement of realizing the targeted Hamiltonian
directly in the laboratory, thus allowing to study a wide variety of previously intractable
target models. We demonstrated this in the variational ground state preparation of the
lattice Schwinger model, for up to 20 qubits – a task which is out of reach for current
analog and digital quantum simulators.

A key challenge for variational quantum simulators is the scaling to larger sys-
tem sizes, which is limited by the available quantum computing hardware, as well
as by a rapid increase in the number of variational parameters. Moreover, the num-
ber of measurements needed for the classical computer to successfully navigate the
high-dimensional energy landscape, rapidly increases with system size. In this second
application, we demonstrated how VQS can be scaled up for lattice models by incor-
porating intrinsic symmetries of the Hamiltonian into the trial states. Within this
project, our collaborators from the theory department developed an advanced global
optimization algorithm specifically suited for noisy, high-dimensional and gradient-free
problems. Finally, we targeted the long-standing problem of evaluating or verifying
the results of the variational quantum simulation. We compared the algorithmic error
of the measured ground state energy with the energy gap to the first excited state,
proving self-consistency of the quantum simulator. Our approach and techniques apply
immediately to a broad class of lattice models in condensed matter and high-energy
physics, as well as programmable quantum simulators on other platforms.

The definite determination of the stopping criterion of the optimization algorithm is
a challenging open question. Up to now, a typical stopping criterion for optimization
algorithms is the comparison against a fixed goal. However, this only translates the
problem to how to define this goal, ideally independent of a priori knowledge of the
system, and not based on comparisons with classical simulations. The stopping criterion
we applied in our second application, is to continue the optimization until an allocated
resource budget is exhausted: The algorithm has a finite, total measurement budget
that it can spend during the optimization process. It autonomously decides how to
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distribute this budget between new unexplored points and refinement re-evaluations
on promising points, to reduce the statistical errors. Another criterion involves the
evaluation of stationarity: the optimization has converged, if the proposed solution is
no longer improving as more points in the cost-function landscape are sampled. The
proposed solution could for instance be the minimum of the parameter landscape, as
predicted by a metamodel.



8. Summary and Outlook

Over the past decade, much research has been directed towards the realization of quan-
tum devices with tens of qubits, in order to show the first practical application in
which quantum simulators outperform their classical counterparts. As soon as quan-
tum simulators succeed to solve classically intractable problems, we will be concerned
with important tasks: Can we trust the result and how can we verify it? This goes
hand in hand with the necessity to develop efficient tools to characterize large quantum
systems.

The work presented here, covered five publications in the field of quantum simula-
tion with tens of qubits. It targeted the long-standing problem of verifying quantum
simulation results as well as the challenge of many-body state characterization. All dis-
cussed experiments were performed with 40Ca+ ions confined in a linear, macroscopic
Paul trap at the IQOQI Innsbruck. The excellent control over all quantum degrees of
freedom and the comparably simple mechanism for trapping and manipulating tens of
ions, renders them a suitable platform for quantum simulators. The applied quantum
circuits focus on arbitrary single-qubit rotations, spin-spin interactions with tunable
interaction range and two-, three- and four-qubit MS entangling gates.

In the following, I summarize the content, the results and the conclusions of the
individual chapters and close this final chapter with an outlook. After an introductory
motivation in Chapter 1, the theoretical framework of quantum information science
and the use of trapped 40Ca+ ions as qubits and pseudospins was discussed. Chapter 3
presented the three variants of quantum simulation and detailed both the theory and
experimental tools for the realization of quantum simulation with trapped ions: from
the bare laser-atom interaction, over the coupling to the motion of a trapped ion, to
laser-induced spin-spin interactions with tunable interaction range. Chapter 4 reported
on the technical innovations to the existing setup which allowed Doppler cooling and
coherent manipulation of up to 51 qubits, in-sequence intensity stabilization of the
addressing and the collective qubit-manipulation path, as well as simultaneous single-
ion addressing with automatized calibration. Further, it presented EIT cooling and
PG cooling as two efficient methods for sub-Doppler cooling of long ion strings. These

147
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technical advances pave the way to more complex quantum simulations with even longer
strings of ions.

The last three chapters focused on the main experimental projects that I carried
out during my doctoral research: Chapter 5 reported on a detailed characterization of
large complex states in our quantum simulator. The quantum states have been gener-
ated from time evolving Néel states under the spin-spin interaction Hamiltonian. We
were able to extract genuine multipartite entanglement witnesses, from the small set
of measurements for constructing the reduced density matrices of all groups of three
neighbouring particles. For some evolution times, entanglement could be witnessed for
all groups of up to four neighbouring qubits. The second part of this chapter presented
the experimental realization of MPS tomography, a scheme that can accurately estimate
many-qubit states of a broad class of quantum systems with an effort that scales at
most polynomially with the number of particles. This tomography method is suited for
states in which significant quantum correlations only exist over a maximum distance.
We applied MPS tomography to successfully reconstruct and verify dynamical states
of our quantum simulator towards classically intractable regimes. For the first time,
we estimated states comprising up to 14 entangled and individually-controlled spins –
a size beyond the practical limits of full quantum state tomography – performing mea-
surements in only 27 bases. Even if the obtained fidelity lower bound was conservative,
direct fidelity estimation proved that MPS tomography provided an accurate estimate
of the 14-spin quench state. Therefore, this tomography scheme could be applied to
obtain a first estimate of a state, and then apply direct fidelity estimation or Renyi
entropy measurements for further characterization.

Chapter 6 discussed the transport behaviour of a spin-excitation through a network
of interacting qubits. We studied the interplay between coherent transport, disorder
and environment-induced noise with 10 qubits. In contrast to previous experiments on
quantum transport, our qubits are coupled by a long-range interaction and disorder as
well as noise are fully controllable with respect to their amplitude and spectral struc-
ture. This allowed us to see a large range of transport phenomena in a single system: we
observed effects of Anderson localization in the absence of noise, an increased transport
efficiency – known as environment assisted quantum transport (ENAQT) – at inter-
mediate noise levels, and finally suppression of quantum transport under strong noise
due to the quantum Zeno effect. We further found that in the regime where ENAQT
is most effective the transport is mainly diffusive, displaying coherences only at very
short times. The chapter closes with the observation that the spectral structure of
non-Markovian dephasing strongly influences quantum transport, with the possibility
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to reach efficiencies as high as with white noise while maintaining long-lived coherences.

Finally, Chapter 7 presented two experimental applications of variational quantum
simulation (VQS). After introducing the quantum-classical feedback loop, which builds
the basis of VQS, I discussed the variational preparation of molecular ground states.
Using the quantum eigensolver algorithm, we studied molecular energy potentials of
H2 and LiH as a function of the internuclear separation. The observed influence of
measurement noise and decoherence revealed that this trotterized approach of VQS
needs further work in the mitigation of gate errors and the scalability of the employed
quantum circuits. The second part of this chapter focused on an alternative approach,
which is based on the heuristic generation of variational trial states, using unitary oper-
ations that are more tailored to our analog quantum hardware. This approach forgoes
the requirement of realizing the targeted Hamiltonian directly in the experiment, thus
allowing to study a wide variety of previously intractable target models. We demon-
strated this in the ground state preparation of the lattice Schwinger model, with up to
20 qubits. A key challenge for variational quantum simulators is the scaling to larger
system sizes, which is limited by the available quantum computing hardware, as well
as by a rapid increase in the number of variational parameters. We demonstrated how
VQS can be scaled up for lattice models by incorporating intrinsic symmetries of the
Hamiltonian into the trial states. Furthermore, we targeted the long-standing problem
of verifying the results produced by the variational quantum simulator. Our approach
and techniques apply immediately to a broad class of lattice models in condensed mat-
ter and high-energy physics, as well as programmable quantum simulators on other
platforms. Another challenging open question is the definite determination of the stop-
ping criterion of the optimization algorithm. The stopping criterion we chose in our
second application, is to continue the optimization until an allocated resource budget is
exhausted. The algorithm autonomously decided how to distribute this budget between
new unexplored points and refinement re-evaluations on promising points, to reduce the
statistical errors. Another criterion would involve the evaluation of stationarity: the
optimization has converged, if the proposed solution is no longer improving as more
points in the cost-function landscape are sampled. The proposed solution could for
instance be the minimum of the parameter landscape, as predicted by a metamodel.

The Appendix focuses on the implementation of certain gates in our experiment, on
pulse and measurement sequences and other mathematical or experimental tools that
have been applied in the projects discussed in this thesis.

Regarding future experiments with long strings of ions, the optical properties of the
729 nm beam, currently used for the global qubit manipulation, has to be improved.
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F. Kranzl found that the beam is not propagating perfectly perpendicular to the ion
string and the wavefront of the beam has a curvature of tens of millimeters. These
properties alter the coupling efficiency depending on the ion position, which compro-
mises the quality of the spin-spin interaction in particular for long ion strings and low
axial confinement. Besides that, we would prefer higher beam intensities to increase the
spin-spin interaction strength. At the time of writing this thesis, a SolsTis ECD-X sys-
tem from MSquared was brought into service. This laser system produces 790 nm light
which is then frequency-doubled to 395 nm for realizing Raman-gates in our experiment.
This will allow us to define the qubit in the Zeeman levels of the ground state, and ben-
efit from largely reduced spontaneous emission. Thanks to the short wavelength of the
Raman laser, the Lamb-Dicke factor increases by a factor of two - yielding a factor of
four in the spin-spin coupling efficiency. Another factor of two is gained due to the two-
photon process of the Raman transition. Details on this setup and related experiments
will be discussed in the forthcoming PhD thesis of T. Brydges [60]. A near-future im-
provement of the setup involves the replacement of the currenet maintainance-intensive
729 nm system from Coherent, with a high-intensity system from MSquared, which was
shown to generate a comparable laser linewidth [58]. Furthermore, the current pulse
box, and accordingly the control software, will have to be replaced, because we are
at the very limit regarding the number of digital outputs and radio-frequency sources.
As a far-future modification, the quantum simulation experiment would largely ben-
efit from a new version of the ion trap, for which the heating rate of the axial COM
mode is about two orders of magnitude lower [190] than in our current trap, for which
we measure 2000 phonons/s per ion at 130 kHz trapping frequency. This sums up to
100 000 phonons/s for a 50-ion string, extending the qubits’ wavepackets beyond the
addressing beam within tens of milliseconds after cooling, which in turn results in
poor single-qubit gates. Ultimately, the ion loading technique could be upgraded from
calcium-oven to ablation target loading. The latter method is already applied in other
experiments in our group where it allows for reloading pure calcium ions much faster af-
ter a chemical reaction event. This would greatly increase the duty cycle of experiments
with long ion strings and be the last step to full automation.
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hat mich zu einem glücklichen, selbstbewussten Menschen gemacht. Dadurch und in
dem Wissen, dass ihr als unerschütterliches Fundament immer hinter mir steht, konnte
ich die große Herausforderung dieses Doktoratsstudiums meistern.
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B. Experimental implementation of MS
gates

B.1. Implementation of full Mølmer-Sørensen gates

The following chapter contains a tutorial-style documentation of how to implement a
fully entangling Mølmer-Sørensen gate, specifically in our experiment:

1. Check the power balancing of the bichromatic light field components:
This step should only be necessary in case of changes in the RF power connections.
The fiber AOM should ensure the optical balance of the bichromat frequency
components. The QFP script: balance bichr.qsc shifts the components of the
bichromatic beam on resonance one at a time, via the double-pass AOM frequency,
and measures the coupling strength in terms of a pi-time. Using the “free Rabi fit”
(in our QFP Analysis tool), you can quickly analyze the Rabi flops (a “free Rabi
fit” is necessary, because the minimal pulse length is not zero, due to Blackman
pulse shaping). Adjust the RF power of MAC 1 or 2 (indicated by (a) in Fig. B.1),
in order to obtain similar pi-times, e.g. pi-times of (6.18, 6.14) µs indicates power
balanced components.

2. Accurate determination of axial COM frequency: Scan the bichromat
frequencies around the approximate COM frequency to get the precise value for
the corresponding bichromat RF power, as it is then used for the gate. The
applied sequence is the following: first bichromat pulse with phase 0 followed by a
second bichromat pulse with phase π. Scan the bichromat frequencies (MAC1 &2
frequency variable, see Fig. B.1 label b)) with high resolution. The FWHM of
the dip is about 1 kHz, for a bichromat pulse length of about half the entangling
gate time. You will find a dip where the frequencies are resonant with the COM
frequency. The obtained value is then copied into the SB panel in the Bichromat
controls tab of QFP (Fig. B.1 label c)).

3. Determining the bichromat detuning: We choose the bichromat detuning
∆ based on the equation in Refs. [27, 93]: ∆ = Ω′2 1√

N
η, where N is the number
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156 B. Experimental implementation of MS gates

of ions and η is the Lamb-Dicke factor of a single ion. The QFP tab Bichromat
offers a calculator (Fig. B.1 label d)) to compute the required detuning ∆ and
corresponding gate time tgate from the parameters: Pi-time of the bichromat,
number of ions, COM frequency (e.g. 1.35 MHz) and angle of incidence of the
bichromatic beam (e.g. 0◦ for the beam coming through the tip electrodes).
For the example of this tutorial, I calculate the desired detuning to be ∆ =
(2π) 9.6 kHz, which corresponds to a gate time of tgate = 2π/∆ = 104µs. In this
time, the first circle in phase space is closed. Note that the coupling strength
in the equation above is given by Ω′ = (2π) 81.4 kHz (i.e. “Boulder notation”,
ΩB = 1/(4 · pi-time) = (2π) 40.7 kHz vs. our usual “Innsbruck notation”, Ω′ =
1/(2 · pi-time) = (2π) 81.4 kHz). After inserting the calculated detuning into the
Bichromat controls panel, Fig. B.1 label e), a first scan of the bichromatic pulse
length yields the measurements in Fig. B.2 a). We want to observe the probability
to find no population of the D state p(2), a single ion populating the D state p(1)
and both ions populating the D state p(0).

4. Determining the gate time: The gate time can be determined more accurately
by scanning the pulse-length of the bichromatic pulse, using two gates in a row and
finding the point where all population is in the S state again (p(2) is maximum).

5. Fine tuning of the coupling strength: Next, we want to ensure that the
crossing point of p(0) and p(2), (i.e. the superposition of both ions in S and
both ions in D), occurs at the time when the circle in phase space closes (p(1)
minimum). For this, we scan the overall RF power of the bichromatic beam,
which corresponds to scanning the power of the bichromat transitions object.
Therefore, it is advisable to set the power to, say -1 dB to start with, to allow for
some leeway in terms of the overall power.

6. Compensating AC-Stark shifts: Finally, we need to compensate for the AC-
Stark shift, induced by the bichromatic light field. With a pulse length corre-
sponding to the gate time tgate, we either use power imbalancing of the bichromat
components or center line detuning. In the first case we imbalance the RF powers
send to the bichromat AOM (e.g. keeping MAC1 fixed and scanning the MAC2
power, and then the other way around). In the latter case, the frequency shift of
the bichromat transition object in QFP is scanned around 0 Hz. The scanning
variable is called bic shift (typically referred to as “center line detuning”) and
shown in Fig. B.1 label f). Optimum AC-Stark shift compensation is achieved
at the minimum of the p(1) population. Also in this case, it is more precise to
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connect two gates in series, and maximize the p(2) population instead. The final
result is shown in Fig. B.2 b).

a)

a)

b)

c)

d)

e)

f)

Figure B.1.: Most important tabs and fields in QFP, for implementing a Mølmer-Sørensen
entangling gate.

B.2. Determining the gate fidelity

The implementation of entangling gates for more ions does not differ from the two-ion
case, although the analysis of the population behaviour is different. Fig. B.3 shows
the evolution of population probabilities during the implementation of an MS gate for
three and four qubits.

Gate fidelity for even ion numbers: For even numbers of ions, the MS gate
generates a GHZ state at the gate time tgate. In this case, we can infer the state fidelity
right away by measuring (i) the population probabilities, averaged over many (>1000)
experimental repetitions (Fig. B.2 c)) and (ii) the parity contrast, which is related to
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Figure B.2.: Implementation and analysis of a 2-ion Mølmer-Sørensen gate. a)-b)
Steps during the setup, as described in the main text. Connected circles denote the probabilities
of measuring no population of the D state (p(0), red), one of the two ions populating the D state
(p(1), black) and both ions populating the D state (p(2), blue). c) Population probabilities,
averaged over 1500 experimental repetitions. d) Parity flops with a contrast of 98.7%.

the coherence of the GHZ state. It is evaluated by adding a π/2 carrier pulse with
variable phase φ, after the MS gate and then measuring the contrast C of the parity
flops (Fig B.2 d)):

rf_729(1,bic_length,0*math.pi,"bichr")

rf_729(1,0.5,phase*math.pi,"carrier")

The finally obtained GHZ state fidelity is given by F = (p(0) + p(2) + C)/2 ≈ 99%.
Gate fidelity for odd ion numbers: In the case of an odd number of ions we

need to add a π/2 carrier pulse right after the entangling gate, in order to generate a
GHZ state and infer a gate fidelity. Note that you have to calibrate the carrier phase
with respect to the bichromat beforehand. This can be done by implementing the pulse
sequence

rf_729(1,0.5,-0.5*math.pi,"carrier")

rf_729(1,bic_length,bic_phase*math.pi,"bichr")

rf_729(1,0.5,0.5*math.pi,"carrier")
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in which first a σx eigenstate is created and then the bic phase adjusted such that the
bichromatic light field has no effect and the second rotation around +Y axis brings the
population back to the ground state.
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Figure B.3.: Temporal evolution of the population probabilities during an MS gate for three
(a) and four (b) qubits. Population p(0) denotes the state where all ions are in S, while the
highest population p(3) (or p(4)) describe the state with all ions in the excited state D. The
gate times are highlighted by dotted lines.

B.3. Implementation of half-entangling gates on three ions

Steps 1-3 of the fully entangling gate (Section B.1) are the same: we measure the
coupling strength of the bichromatic beam, determine the corresponding COM mode
frequency, and use the gate calculator to estimate a detuning ∆ and gate time T . Using
these values an MS gate occurs and accordingly the first circle in phase space closes,
at time T = 2π/∆. Like for the implementation of fully entangling gates, we want to
optimize gate time, overall power and center-line detuning of the bichromat: instead
of using two fully entangling gates in a row and maximizing the population in S, you
should use four half-entangling gates.

Theoretical method: Let us consider that we double the detuning ∆′ = 2∆, and
at the same time we increase the coupling strength of the bichromat by Ω′ =

√
2Ω

(corresponding to raising the laser intensity by a factor of 2). At time T , the acquired
geometric phase Φ(T ) ∼ (ηΩ)(ηΩ)

∆ · T equals twice the phase at time T ′ = 2π/∆′ =
T/2 ⇒ Φ(T ′) = 1

2 · Φ(T ), meaning that the circle in phase space has closed twice (see
Fig. B.4) and we have a half-entangling gate at time T/2.

Experimental realization: In our experiment, increasing the power of the bichro-
mat (and thereby Ω) by a given precise factor is not so easy. Alternatively, we can
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keep Ω constant and simply increase the detuning by ∆′ =
√

2∆. With this, also the
gate time T changes and has to be remeasured. The right settings are found when the
maximum of population p(1) coincides with the (second) minimum of p(0) and p(2) at
the new gate time.

populations 
p(0) and p(2)

bichromat
pulse length half-entangling

bichromat
pulse length

Figure B.4.: Relation between the parameters of a fully- and a half-entangling gate.



C. Composite pulse sequences for
single-qubit rotations

The following Mathematica simulations compare fidelity of the single-qubit flips for
single-qubit addressing with a normal AC-addressing pulse sequence (Listing C.1) and
with composite pulse sequence (Listing C.2). It shows that a 15% error in the Rabi
frequency of the global pulses has a smaller impact to single-qubit flips when using
composite pulse sequences, such that the fidelity increases from ∼ 95% to ∼ 99.7%

Listing C.1: Single-qubit rotations without composite pulse

(* define rotation angle of the first global pulse *)

T = Pi/2;

(* include 15 percent rotation angle error *)

T = T*(1 - 0.15);

(* define phase of the first global pulse *)

Phi0 = 0;

(* define unitary of the first global pulse *)

Ux0 = ( {

{Cos[T/2], -I*Exp[-I*Phi0]*Sin[T/2]},

{-I*Exp[I*Phi0]*Sin[T/2], Cos[T/2]}

} );

(* define rotation angle of the single-qubit addressed pulse *)

P = Pi;

(* define unitary of the single-qubit addressed pulse *)

Uz = ( {

{Exp[-I*P/2], 0},

{0, Exp[I*P/2]}

} );

(* define the phase of the second global pulse *)

Phi1 = Pi;

(* define unitary of the second global pulse *)

Ux1 = ( {

{Cos[T/2], -I*Exp[-I*Phi1]*Sin[T/2]},

{-I*Exp[I*Phi1]*Sin[T/2], Cos[T/2]}

} );

(* define initial state *)

p0 = ({{0},{1}});
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(* apply all three unitaries sequentially to the initial state *)

p2 = Ux1.Uz.Ux0.p0;

(* calculate fidelity / overlap with a perfect qubit flip *)

Norm[{1, 0}.p2]ˆ2

0.945503

Listing C.2: Single-qubit rotations with composite pulse

(* define pulse parameters *)

T = Pi/2;

T = T*( 1 - 0.15);

Phi0 = 0;

Phi1 = Pi;

P = Pi;

p0 = ({{0},{1}});

(* unitaries of the composite pulse sequence, applied sequentially to initial

state *)

c0 = ( {

{Cos[T/2], -I*Exp[-I*Phi0]*Sin[T/2]},

{-I*Exp[I*Phi0]*Sin[T/2], Cos[T/2]}

} ).p0;

c1 = ( {

{Cos[T/2], -I*Exp[-I*Pi/2]*Sin[T/2]},

{-I*Exp[I*Pi/2]*Sin[T/2], Cos[T/2]}

} ).c0;

c2 = ( {

{Exp[-I*P/2], 0},

{0, Exp[I*P/2]}

} ).c1;

c3 = ( {

{Cos[T/2], -I*Exp[-I*3*Pi/2]*Sin[T/2]},

{-I*Exp[+I*3*Pi/2]*Sin[T/2], Cos[T/2]}

} ).c2;

c4 = ( {

{Cos[T/2], -I*Exp[-I*Phi1]*Sin[T/2]},

{-I*Exp[I*Phi1]*Sin[T/2], Cos[T/2]}

} ).c3;

(* calculate fidelity / overlap with a perfect qubit flip *)

Norm[{1, 0}.c4]ˆ2

0.99703



D. Tutorial for simultaneous single-ion
addressing with an AWG

In the following I explain the four most important considerations and programs for per-
forming simultaneous single-ion addressing. An arbitrary waveform generator (AWG)
is used to generate a waveform with multiple frequency components

y =
N∑
i=1

Ai · sin(ωRFi · t) (D.1)

This waveform is sent to the AOD and generates multiple laser beams, each targeting
a different ion and shifted by 60−90MHz with respect to the qubit transition. The RF
amplitude Ai for each beam can be regulated independently, resulting in individually
adjustable AC-Stark shifts on all ions simultaneously, reaching up to a few kHz.

1. Identify the radio frequencies ωRFi related to the deflection angle to target
the individual ions i, using pulse box DDS2 as RF source.

2. Calibrate the inhomogeneity63 in the intensity profile over the N -ion
string. This should be done once for each experimental condition (e.g. number
of ions and trapping parameters) and can then be used for all associated mea-
surements. In this step, the list of radio frequencies ωRFi is handed over to the
AWG, which produces a waveform with N frequencies and plays it in a continuous
loop. The python script to do this is called i0 AC shift calibration.py. The
waveform is then applied to the ions, e.g. using the following command in a QFP
sequence:

rf_729(1,0.5,0*math.pi,"carrier") % global pi/2 pulse, phase=0

ttl_set("ionshuttle2",1) % sets TTL 11 to high voltage

seq_wait(wait_time)

ttl_set("ionshuttle2",0) % sets TTL 11 to low voltage

rf_729(1,0.5,1*math.pi,"carrier") % global pi/2 pulse, phase=pi

63The inhomogeneous intensity profile is mainly caused by clipping of the largely expanded addressing
beam on the focusing optics.
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164 D. Tutorial for simultaneous single-ion addressing with an AWG

This laser pulse sequence applies the corresponding component of the AWG-
waveform to each of the N ions for the length of the variable wait time, resulting
in individual AC-Stark Rabi flops on all ions simultaneously. Due to the inhomo-
geneous intensity profile, all ions have different pi-times, as shown in Fig. D.1 a).
The Rabi flops are analyzed using the Addressing error fit function in our analysis
software. This provides us with a line containing the pi-time for the individual
ions.

In the following these pi-time differences “calibrated out” with an according cor-
rection factor for each RF amplitude Ai in Eq. (D.1). With this, we can then
apply arbitrary AC-Stark shift patterns, e.g. we can homogenize the Rabi fre-
quencies as shown in Fig. D.1 b).

3. Convert an array of desired AC-Stark shifts into a calibrated RF wave-
form. The python program used to generate arbitrary RF waveforms is called
i2 precalculate waveforms.py. It accepts simple matlab arrays, where the
ion number N defines the number of columns. The optional rows correspond
to time segments, required in the case of temporally varying waveforms, such
that the number of rows corresponds to the number of AC-Stark shift changes
in a waveform. The matlab script i1 calc dynamic AC shifts.m gives an ex-
ample of how to generate such a matlab array. In here, the variable rabi ratio
calibrates the Rabi frequencies, as described at the end of step 2. Further, the
matlab program takes into account that the laser intensity (and with it the de-
sired AC-Stark shift strength or the single-qubit Rabifrequency) is not linear in
the RF-amplitude which is applied to the AOD. We empirically observe the fol-
lowing relation64: Ai = 21.53 · x−0.535, where Ai is the RF amplitude required to
obtain a AC-Stark pi-time xi. In addition to the matlab array of RF amplitudes,
the program i2 precalculate waveforms.py asks for the pulse length of the
time segments, so how long each arrangement of AC-Stark shifts is played. Note
that each time segment should be played for at least 10µs, because we want to
distinguish waves within 100 kHz frequency difference, which can be discriminated
only after a runtime of at least 10µs. For static waveforms one can simply use
100µs, and select the appropriate trigger option (see item 4). Moreover, a wave
should have at least 10 sample points during one oscillation period. For waves
with frequencies between 50−100MHz, this is fulfilled at a temporal resolution of

64Note that this relation does depend on the employed AOD and the coupling of the laser beam to
it. The relation has to be retaken for the new AOD system, built by L. Pernthaler for enabling
50-qubit addressing.



165

1 ns, or in other words 1 GS/s. Finally, the python program automatically dumps
redundant laser power, not required on the ions, in an additional 50 MHz compo-
nent, with an amplitude of x = 1−∑N

i=1Ai/N , as given in the code lines 55–56.
The empirically determined factor y = 0.01 · x3− 0.0828 · x2 + 0.3752 · x+ 0.0405
corrects for the non-linear relation between intensity and RF amplitude for this
50 MHz component.

For long waveforms (several tens of ms) the python program can take several
minutes to produce the desired waveform. Therefore it is nice to outsource this
task to a separate computer, while running the experiment. This script saves the
waveform in the “.npy” format under the specified name.

4. Set the desired trigger option and run the experiment. The final script
one needs to run during an experiment is called i3 generate AC shifts.py. It
reads in the .npy file which was created in step 3 and defines how to trigger/gate
the AWG output. For static AC-Stark shifts, we use the gated trigger. Waveforms
for static AC-Stark shifts consist of a single time segment of typically 100µs. The
gated trigger will continuously replay the waveform during the high voltage period
of TTL 11. For temporally modulated AC-Stark shifts, we use the single-start
trigger, which plays a waveform once, after a single trigger event from TTL 11.
Those waveforms consist of many time segments, of typically 10µs each. One
also need to hand over the .mat file with the RF amplitudes (generated in step 3)
because from this file the AWG extracts how long the entire waveform sequence
should be. Finally, the AWG is included into an experimental sequence by calling
the command:

ttl_set("ionshuttle2",1) % sets TTL 11 to high voltage

% the part of your sequence during which the AWG should be on

ttl_set("ionshuttle2",0) % sets TTL 11 to low voltage

Fig. D.1 c) shows the cross-talk between neighbouring ions, when driving AC-Stark
Rabi flops on every second ion in a 10-ion string. The associated addressing error
ε = Ωi±1/Ωi is given by the ratio of the Rabi frequencies Ωi of the considered ions, and
lies below 1 %.
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Figure D.1.: Addressed AC-Stark Rabi flops using the AWG. a) Simultaneous addressed
Rabi flops on a 10-ion string. The inhomogeneous intensity profile over the ion string causes
a multiplicity of Rabi frequencies. b) Example of equalized Rabi frequencies after calibration
(step 2 above). Here, the collective Rabi frequency was chosen to be 60 % of the lowest frequency
measured in a). c) Addressing error associated with cross-talk for a 10-ion string, trapped at
ωz = (2π) 217 kHz axial frequency. Every second ion in string is addressed, but only ion 4
(blue), 5 (red) and 6 (green) are shown, for simplicity.



E. Automatized addressing calibration

Listing E.1 shows an example of a qsc-script that automatically interlaces measure-
ments by a clock-measurement every 2-3 minutes, and a calibration of the individ-
ual ion pi-times every 10 minutes. The corresponding functions are defined in the
“Script manager.vi” in QFP. Lines 3-5 load the pulse-sequence python file and scan
the experimental parameter “meas type” from 0 to 2. After four experiment scans,
the clock-measurements are performed, corresponding to commands 9-24. This process
is repeated nine times, such that after 9 · 4 measurements, the addressing calibration
takes place. The ion position is measured by the camera in lines 28-34, and cor-
rected in line 35. The commands 43-50 finally scan a multiplication factor, named
“AOD frequency”, for each ion’s addressing pi-time, fit it a Gaussian function via
the command “fitlastscan()”, and update the individual ion pi-times automatically via
“get single ion AOD position()”. The updating is only performed for fit results with
an amplitude > 0.35, a FWHM > 0.45 and a resulting pi-time multiplication factor
between 0.65 and 1.45. With this we avoid feedback of faulty fits, caused e.g. by
statistical fluctuations.

Listing E.1: Example for a qsc-script with automatized calibration

1 for clock_run 1 9 1

2 for variational_step 1 4 1

3 LoadSequence ..\measurements\Experiments\2018_Variational\20

IonOptimisation\CurrentSequence.py

4 SetLocalPar SuppressDisplay 0

5 scan Seq.Floats.meas_type,0,2,2,save=yes,queue=last,rnd=no,exp=1

6 Pause

7 endfor

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 LoadSequence protected\clock_measurement.py

10 GetPhysPar RamseyTime gl.rt

11 GetPhysPar B gl.B

12 GetPhysPar Bfet gl.Bfet

13 GetPhysPar f_0 gl.f_0

14 GetPhysPar f_c gl.f_c

15

16 SetLocalPar SuppressDisplay 1

17 SetLocalPar Cycles 100
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18 SetLocalPar Seq.Floats.ramsey_time gl.rt

19 SetLocalPar Seq.Floats.pulse_length 0.5

20 SetVariable (dummy) cam_for_clock_off()

21

22 scan Seq.Floats.meas_type,1,4,3,save=temp,queue=first

23 SetVariable (gl.r11,gl.r12,gl.r21,gl.r22) MeanExcitation()

24 SetVariable (status) ClockEvaluation()

25 Pause

26 endfor

27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28 SetLocalPar SuppressDisplay 1

29 SetVariable (dummy) camera_off()

30 LoadSequence protected\refpic_on.py

31 SetVariable (dummy) camdata_off()

32 SetVariable (dummy) CamComm_ref_full_data()

33 scan Seq.Floats.det_time,5000,5001,1,save=temp,queue=first

34 SetVariable (dummy) GetIonPositionShift()

35 SetVariable (dummy) CorrectPositionShift()

36 SetVariable (dummy) CamComm_ref_full_bg()

37

38 scan Seq.Floats.det_time,5000,5001,1,save=temp,queue=first

39 SetVariable (dummy) camdata_on()

40 SetVariable (dummy) camera_on()

41 Pause

42

43 SetLocalPar Cycles 50

44 LoadSequence 2018_variational\Calibrate_SIA.py

45 SetLocalPar SuppressDisplay 0

46 scanforfit Seq.Floats.AOD_frequency, 0.55,1.45,20,save=yes,queue=first,exp=1

47 SetVariable (dummy) fitlastscan()

48 SetVariable (dummy) get_single_ion_AOD_position()

49 SetLocalPar Transitions

50 SetGlobalPar Transitions

51 Pause



F. Implementation of Rapid Adiabatic
Passage

Rapid Adiabatic Passage (RAP) can e.g. be used to determine the mean phonon
number of a particular motional mode of an ion crystal, to prepare Fock states and to
generate Dicke states. A detailed discussion on the theoretical background and achieved
experimental results is given in Ref. [107]. Here, I want to shortly summarize the idea
and describe the required tools for implementing RAP in our experiment.

The method uses a frequency-chirped and intensity-shaped laser pulse, to adiabati-
cally transfer the population from one state ψ1 to another state ψ2, without remaining
population in intermediate states. The laser properties is changed slow enough that
the system can follow an evolving wave function adiabatically. Rapid refers to the fact
that the time scales of the property change are small compared to the timescales defin-
ing the system (i.e. radiative lifetime and coherence time). Lets consider a two-level
system with levels ψ1, ψ2, interacting coherently with a laser pulse of detuning ∆ and
Rabi frequency Ω. In the rotating wave approximation such a system is described by
the Hamiltonian

H(t) = ~
(

0 1
2Ω(t)

1
2Ω(t) ∆(t)

)
.

The two eigenstates (in the rotating frame) are given by

Φ+(t) = ψ1 sin[Θ(t)] + ψ2 cos[Θ(t)]

Φ−(t) = ψ1 cos[Θ(t)]− ψ2 sin[Θ(t)]

with the angle Θ(t) = 1
2 arctan[Ω(t)/∆(t)] and associated eigenenergies ε±(t) = 1

2 [∆(t)±√
∆2(t) + Ω2(t)]. As depicted in Fig. F.1 a)-b), we can adiabatically evolve an eigen-

state such that it undergoes a transition from one level to the other

ψ1 −→Φ+(t) −→ ψ2

−ψ1 −→Φ−(t) −→ ψ1
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170 F. Implementation of Rapid Adiabatic Passage

where the passage is adiabatic if

| 〈Φ̇+|Φ−〉 | � |ε+ − ε−|

⇒ 1
2 |Ω̇∆− Ω∆̇| � (Ω2 + ∆2)3/2 .

This condition can be achieved, using a smooth laser pulse with large Rabi frequency
Ω and/or large detuning ∆. In other words, a long laser pulse with a frequency chirp
across the resonance transition ψ1 ↔ ψ2, and a shaped intensity (Fig. F.1 c)).
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Figure F.1.: Schematic diagrams on Rapid Adiabatic Passage. a) Avoided crossing in the
adiabatic evolution of eigenstates Φ±. Here, 1 and 2 denote the levels ψ1 and ψ2 respectively. b)
Population transfer from ψ1 → ψ2 during a RAP. c) Laser pulse for RAP, featuring a long pulse
length, a linear frequency chirp (colored area), and a Blackman-shaped intensity. d) Two-qubit
level diagram depicting the functionality of a RAP pulse for motional state analysis. With the
transfer ψ1 → ψ2, the number of phonons n = 2 is transferred to n collective excitations D in
the ion string.

In our experiment, we applied RAP e.g. to measure the motional state population of a
long ion crystal [107, 109]. In this case, the levels are represented by ψ1 = |SSS . . . , n〉
and ψ2 = |DDD . . . , 0〉, where S and D describe the electronic (qubit) states of an
ion and n describes the number of phonons in the system (Fig. F.1 d)). Fig. F.2
a) shows the motional state analysis of an 18-ion crystal with trapping frequencies
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{ωx, ωy, ωz} = 2π {2.71, 2.68, 0.21}MHz. RAP was implemented on the red sideband of
the lowest-frequency radial mode at (2π) 2.08 MHz. This mode was selected because it
is spectrally well separated from other modes. Moreover, this mode has a lower heating
rate than the radial COM modes, allowing a slower frequency sweep for the RAP. The
laser pulse had a duration of 4 ms, a linear frequency chirp of 38 kHz across the red
sideband transition, and the intensity was shaped according to a Blackman function.
This pulse properties are set in the transition objects of our experiment software (QFP),
as shown in Fig. F.2 b). Most importantly, the setting slope defines the rising and
falling time of the Blackman shaping (selected in the field Shaping), and the field
span defines the frequency span, over which the RAP pulse is chirped: 38 kHz means
that the pulse sweeps from -38 kHz to +38 kHz over the transition defined in the field
Shift (this should be the sideband transition on which the RAP is performed). The
laser pulse was applied to all ions simultaneously, using the beam port perpendicular
to the ion string. At the end of the sequence, the electronic state of each ions was
detected by the EMCCD camera. The number of collective excitations in the ion string
corresponds to the number of phonons prior to the RAP pulse.

Note that the same scheme can be applied on the blue sideband, in order to create
Fock states (states with a well-defined number of quanta) or on the red sideband with
n = 1, for generating Dicke-states (multipartite entangled states).
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a)

b)

Figure F.2.: a) EIT cooling dynamics for an 18-ion crystal. The histograms in the inset are
gathered via RAP on the radial motional mode at (2π) 2.08 MHz and show the probability for
finding a given number of excited ions. The mean phonon numbers 〈n〉 in the main graph
are determined by fitting a thermal distribution to the phonon-number distribution (solid line)
of the histograms. This plot was taken from R. Lechner’s thesis [107]. b) Screenshot from
a transition object in our experiment software. The important fields for defining the RAP
parameters (see text) are the Shift, Shaping, slope and span.



G. Classical rate equation for transport
dynamics under dephasing noise

The main idea for arriving at a classical rate equation is to adiabatically eliminate the
coherences between sites, an approximation which becomes valid at times larger than
the inverse dephasing rate. We start from the full master equation for our system,
which reads

ρ̇ = −i[H, ρ] + Lρ , (G.1)

with the Lindblad superoperator for dephasing noise LX = ∑
i
γi
2 (2σ+

i σ
−
i Xσ

+
i σ
−
i −

σ+
i σ
−
i X −Xσ

+
i σ
−
i ).

In the single-excitation subspace and in the case where noise and disorder dominate
over the hopping terms, it is convenient to work in the basis spanned by the states
|i〉 = σ+

i |⇓〉, with i = 1 . . . N and |⇓〉 the fully polarized state. In this basis, the
excitation probabilities (‘populations’) evolve as

ρ̇ii = −i
∑
`,i

(Hi`ρ`i − ρi`H`i) , (G.2)

where we define ρij = 〈i| ρ |j〉 and analogously for Hij = 〈i|H |j〉. The coherences for
i , j evolve as

ρ̇ij = −i

∑
`,i

Hi`ρ`j −
∑
`,j

ρi`H`j


+

[
−i(Hii −Hjj)−

γi + γj
4

]
ρij . (G.3)

Here, the terms Hi` = Ji` (i , `) describe the hoppings and Hii = 2Bi the on-site
disorder (up to a constant).

Under the assumption that the diagonal terms Hii and γi are the dominating energy
scales, we can adiabatically eliminate the coherences. Formally, this amounts to setting
their time-derivatives to zero, which becomes valid on the “slow” time scales on which
the populations evolve, t� 1/

∣∣∣i(Hii −Hjj) + γi+γj
4

∣∣∣.
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174 G. Classical rate equation for transport dynamics under dephasing noise

Solving the Eq. (G.3) for ρ̇ij = 0 to leading order in the hoppings, i.e., assuming
Hij �

∣∣∣i(Hii −Hjj) + γi+γj
4

∣∣∣, we obtain ρij = Hij(ρjj−ρii)
Hii−Hjj−

γi+γj
4i

. Inserting this expression

into Eq. (G.2), we obtain the result

ρ̇ii =
∑
`,i

Γ`i(ρ`` − ρii) , (G.4)

with Γ`i =
γi+γ`

2 Hi`H`i

(Hii−H``)2+
( γi+γ`

4

)2 . By setting γi = γ ∀ i, this set of coupled differential

equations describes the diffusive evolution of the populations pi = ρii according to the
classical rate equation (6.3) given in the main text.

In the regime of large noise, the diffusive rate Eq. (G.4) predicts a decrease of trans-
port efficiency with increasing γ independent of Bmax, in accordance with the exper-
imental observations. In the regime of ENAQT and for γ < Jmax, however, more
complex models are required to obtain reliable predictions, since coherences play an
important role in this regime at short times (see, e.g. Fig. 6.3 b)).



H. Generating Gaussian Random Processes
with arbitrary spectra

The following Matlab code H.1 generates a sequence U of values from a Gaussian
stationary process with a specified spectral density function S. In our experiment,
S is chosen to be a Lorentzian distribution with center S0 and width g: S(ω) =
1

2π ·
g

g2+(ω−S0)2 . Note that in the experiment we can only apply a set of N AC-Stark
shifts to the ions. Following the algorithm in Ref. [163], S is discretized into M parts,
where M � N . Then random values W are drawn from a Gaussian distribution with
zero mean and unit variance. The noise sequence ”dynamic noise”, obtained from the
algorithm, is a set of ”random” variables with the desired power spectral density S.
Finally, all values of the sequence ”dynamic noise” are multiplied by a particular factor,
to reach the desired noise amplitude. Then all N values are converted to actual RF
amplitudes (as explained in Section 4.4.1) and applied to the experiment as AC-Stark
shifts.

Program H.2 is used to graphically compare the generated random noise with the
ideal, desired spectral density function. The result is shown in Fig. H.1.

Listing H.1: Gaussian Random Processes with arbitrary spectra

clear all

% define variables;

dt = 100*10ˆ(-6); % time-stepsize in s, realized in the experiment

S0 = 590.0; % Frequency center of the Lorentzian peak in 1/s

g = 200; % Width of the Lorentzian peak in 1/s

M = 5*10ˆ3; % Number of points for discretizing the spectral density function S

fmax = 20000; % maximum frequency over which I want to define S

W = randn(1,M); % M random values drawn from a gaussian distribution with mean =

0, unit variance

% construct the sequence U following Percivals algorithm, to get a random noise

with Lorentzian spectral density function S = 1/pi*(1/2*g./((1/2*g)ˆ2+(x-x0)

.ˆ2))

U_j = zeros(1,M);

js = 0:M-1;

fj = js./M*fmax;
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176 H. Generating Gaussian Random Processes with arbitrary spectra

U_j(1) = sqrt(Spec_dens_Lorentz(fj(1),S0,g,1))*W(1)*sqrt(dt);

k = 2;

while (k >= 2) && (k < M/2+1)

U_j(k) = sqrt(1/2*Spec_dens_Lorentz(fj(k),S0,g,1))* (W(2*k-1-1) + 1i*W(2*k-1))

*sqrt(dt);

k = k+1;

end

U_j(M/2+1) = sqrt(Spec_dens_Lorentz(fj(M/2+1),S0,g,1))*W(M)*sqrt(dt);

k = M/2+2;

while (k > M/2+1) && (k <= M)

U_j(k) = conj(U_j(M+1-k+1));

k = k+1;

end

% now generate the real-valued noise itself:

for t = 0:M-1

U_t(t+1) = 1/sqrt(M)*sum( U_j.*exp(-1i*fj.*t*dt));

end

U_real(:) = real(U_t);

% only take the first N values of U_t, where N is given by "total time of

experimental sequence / dt"

N = 600;

dynamic_noise(:) = U_real(1:N);

Listing H.2: Compare constructed noise with ideal spectral density function

% Use Periodogram eq. (7) in Percivals paper to generate a spectrum

ww = 0:fj(M)/M:fj(M);

for l = 1:length(ww)

summand = 0;

for tt = 1:N % only take the first N values of U_t

summand = summand + (U_real(tt))*exp(-1i*ww(l)*(tt-1)*dt);

end

test_spec(l) = abs(summand)ˆ2/N;

end

figure(1)

hold on

plot(ww,Spec_dens_Lorentz(ww,S0,g,1)*dt,’-r’,’LineWidth’,2) % ideal spectral

density function

hold on

plot(ww,test_spec,’.-’)
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Figure H.1.: Graphical comparison of the ideal, desired spectral density function S (red) with
the spectral density generated from random noise (connected blue dots).



I. Measuring local reductions for MPS
tomography

MPS tomography requires the ability to estimate the local reduced density matrices of
all blocks of k neighbouring spins. On a linear chain of N spins, there are N − k + 1
such blocks. The straightforward method to reconstruct a single block uses the set of
all k-fold tensor products of the three Pauli operators X = σx, Y = σy, Z = σz and the
identity operator 1. Applying these 4k observables to each block, amounts to a total
of (N − k + 1)4k measurements. For example, a two-qubit reduction (k = 2) can be
reconstructed from 16 expectation values:

〈X1X2〉 〈X1Y2〉 〈X1Z2〉 〈X112〉

〈Y1X2〉 〈Y1Y2〉 〈Y1Z2〉 〈Y112〉

〈Z1X2〉 〈Z1Y2〉 〈Z1Z2〉 〈Z112〉

〈11X2〉 〈11Y2〉 〈11Z2〉 〈1112〉 . (I.1)

However, we can reuse measurements: For example, 〈Z1X2〉 can also be used to extract
the expectation values 〈Z112〉 and 〈11X2〉. This allows us to project each spin into the
eigenstates of the three Pauli operators using only 3k bases measurements on the entire
system of N spins. With this, the measurement settings in example (I.1) reduce to:

〈X,X〉 〈X,Y 〉 〈X,Z〉

〈Y,X〉 〈Y, Y 〉 〈Y, Z〉

〈Z,X〉 〈Z, Y 〉 〈Z,Z〉 . (I.2)

Those 3k measurement settings have to be repeated for each of the N − k + 1 local
blocks on the chain. Independent measurements, performed on each local block while
remaining spins are ignored, would require (N − k+ 1)3k measurement settings. How-
ever, applying a clever combination of the observables to the entire chain, reduces the
total number of measurement settings further: Specifically, for each of the 3k measure-
ment settings, we split the system into dN/ke blocks and replicate the same settings
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on each of the blocks. In our experiment, we set k = 3, i.e., we perform measurements
in 33 = 27 different bases on N spins:

〈Z,Z,Z, Z, Z, Z, Z, . . .〉 〈Z,Z,X,Z, Z,X,Z, . . .〉

〈Z,Z, Y, Z, Z, Y, Z, . . .〉 〈Z,X,Z, Z,X,Z, Z, . . .〉

〈Z,X,X,Z,X,X,Z, . . .〉 〈Z,X, Y, Z,X, Y, Z, . . .〉

〈Z, Y, Z, Z, Y, Z, Z, . . .〉 〈Z,−Y,X,Z,−Y,X,Z, . . .〉

〈Z, Y, Y, Z, Y, Y, Z, . . .〉 〈X,Z,Z,X,Z, Z,X, . . .〉

〈X,Z,X,X,Z,X,X, . . .〉 〈X,Z, Y,X,Z, Y,X, . . .〉

〈X,X,Z,X,X,Z,X, . . .〉 〈X,X,X,X,X,X,X, . . .〉

〈X,X,−Y,X,X,−Y,X, . . .〉 〈X,Y, Z,X, Y, Z,X, . . .〉

〈X,−Y,X,X,−Y,X,X, . . .〉 〈X,Y, Y,X, Y, Y,X, . . .〉

〈Y,Z, Z, Y, Z, Z, Y, . . .〉 〈−Y, Z,X,−Y,Z,X,−Y, . . .〉

〈Y,Z, Y, Y, Z, Y, Y, . . .〉 〈−Y,X,Z,−Y,X,Z,−Y, . . .〉

〈−Y,X,X,−Y,X,X,−Y, . . .〉 〈Y,X, Y, Y,X, Y, Y, . . .〉

〈Y, Y, Z, Y, Y, Z, Y, . . .〉 〈Y, Y,X, Y, Y,X, Y, . . .〉

〈Y, Y, Y, Y, Y, Y, Y, . . .〉



J. Singular Value Decomposition

An arbitrary matrix M of dimensions [NA × NB] can be decomposed into M =
USV † [132], where U has dimension [NA×min(NA, NB)] and has orthonormal columns.
S is of dimension [min(NA, NB)×min(NA, NB)], and is diagonal with non-negative en-
tries Saa ≡ sa (the so-called singular values). The number r of non-zero singular values
is the rank of M . Finally, V † is of dimension [min(NA, NB)×NB] and has orthonormal
rows.

Figure J.1.: Bipartition of “universe” AB into subsystems A and B.

An example application of SVD is the Schmidt decomposition, a very compact repre-
sentation of a state based on the bipartition of the system “universe” into two subsys-
tems A and B: We can rewrite any pure state with respect to a bipartition (Fig. J.1):

|ψ〉 =
dim(HA)∑
i=1

dim(HB)∑
j=1

Ψij |i〉A |j〉B .

Here, {|i〉A} and {|j〉B} are orthonormal bases of A and B, and the coefficients are
written as entries of matrix Ψ. Applying SVD to the matrix

Ψij =
min(NA,NB)∑

a=1
UiaSaaV

∗
aj ,

results in the Schmidt decomposition of the state

|ψ〉 =
r∑

a=1
sa |a〉A |a〉B ,

with |a〉A = ∑
i Uia |i〉A and |a〉B = ∑

j V
∗
ja |j〉B.
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K. Hartree-Fock method for deriving
molecular orbitals

The following summary is based on Refs. [173, 191]. The quantum mechanical de-
scription of the electronic structure of molecules treats electrons as moving under the
influence of the nuclei. The spatial and energetic properties of electrons are described
as molecular orbitals, which surround two or more atoms. In molecular orbital theory,
the electrons are often considered as stochastically independent. In this case, the N -
body electronic wavefunction is approximated by the so-called Slater determinant ϕ –
an anti-symmetrized product wavefunction which consists of N one-electron molecular
orbitals φi:

ϕ(x1,x2, . . . ,xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN (x1)
φ1(x2) φ2(x2) . . . φN (x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) . . . φN (xN )

∣∣∣∣∣∣∣∣∣∣∣
≡ |φ1, φ2, . . . , φN 〉 .

(K.1)
Here, xi denotes the position and spin of the i-th electron. The anti-symmetry ensures
the Pauli principle, by changing sign upon exchange of two electrons. The Hartree-Fock
method is a numerical technique to calculate the individual molecular orbitals φi and
thereby the entire electronic structure of the molecule:

• We begin with defining an ansatz basis {φ̃i} of molecular orbitals. A common
basis set are the so-called Slater-type orbitals (STO), which consist of linear
combinations of atomic orbitals (LCAO).

φ̃i =
∑
α

cαiχα . (K.2)

The atomic orbital functions, χα, can be represented by Gaussian functions, such
that a linear combination of e.g. three (or six) Gaussian functions constructs a set
of Slater-type orbitals named STO-3G (or STO-6G). In the example of molecular
hydrogen H2, we can construct a minimal basis, if each hydrogen atom contributes
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182 K. Hartree-Fock method for deriving molecular orbitals

a 1s orbital. The molecular orbitals are assembled by adding the corresponding
two atomic wavefunctions: In-phase addition results in a lower energy σ1s bonding
orbital with increased electron density between the nuclei, while out-of-phase
addition in an energetically higher lying σ∗1s anti-bonding orbital, associated with
a depletion in electron density between them.

• The chosen basis {φ̃i} is then used to construct the “Fock operator” F̂ , a single-
electron operator which approximates the true N -body Hamiltonian by including
the effects of electron-electron repulsion only in an average way: Electrons do
not interact pairwise, but each electron interacts with a mean-field, collectively
generated by all other electrons.

F̂ =Ĥcore +
N/2∑
i=1

[
2Ĵi − K̂i

]
, with

Ĥcore,i φi(x1) =
[
−∇

2
i

2 −
∑
n

Zn
rin

]
φi(x1) ,

Ĵi φi(x1) =
N∑
p=1

φi(x1)
∫ φ∗p(x2)φp(x2)

r12
dx2 ,

K̂i φi(x1) =
N∑
p=1

φp(x1)
∫ φ∗p(x2)φi(x2)

r12
dx2 .

Here, Ĥcore,i is called the one-electron core Hamiltonian, Ĵi is the Coulomb op-
erator, which describes the inter-electron repulsion for electrons in the same i-th
orbital, and K̂i is the exchange operator, defining the exchange energy upon elec-
tron swapping. With this, the Schrödinger equation turns into a system of N
coupled one-particle equations – the Hartree-Fock equations:

F̂ |φi〉 = εi |φi〉 , (K.3)

with the molecular orbitals |φi〉 and the related orbital energies εi.

• The goal is to variationally optimize the coefficients cαi in the orbitals φ̃i towards
the true eigenfunctions φi, which solve the Hartree-Fock equation. The opti-
mization procedure seeks to minimize the total energy Ẽ of the respective Slater
determinant ϕ̃: Ẽ = 〈ϕ̃|F̂ |ϕ̃〉 ≥ Eexact. The Fock operator itself is constructed
from the orbitals φ̃i, such that each updated set of molecular orbitals also updates
the Fock operator. In this way, the Hartree–Fock orbitals are optimized iteratively
until the change in total electronic energy Ẽ reaches a predefined threshold. The
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resultant Slater determinant, constructed from the lowest-energy set of molecular
orbitals, represents the Hartree–Fock ground state wave function ϕHF.



L. Translating UCC operators to quantum
gates

In order to translate the UCC operators into Mølmer-Sørensen and single-qubit gates,
we employ a technique first demonstrated in Ref. [192], formulae 10-12: Consider ar-
bitary tensor products of Pauli operators A and B with [A,B] , 0 we have:

exp (−iαA) exp (iθB) exp (iαA) = exp (iθB′) ,

with B′ = exp (−iαA)B exp (iαA) and using the fact that Pauli operators are self-
inverse:

B′ = (I cosα− iA sinα)B(I cosα+ iA sinα) .

With the knowledge that A and B do not commute and therefore must anticommute
we obtain:

B′ = B cos 2α− i

2[A,B] sin 2α .

Specifically, for α = π/4 and the example of the H2 molecule under BK transformation
we find:

exp(−iθσy1σxj ) = exp
(
iθ
i[σx1σxj , σz1 ]

2

)

= exp
(
−iπ4σ

x
1σ

x
j

)
exp (−iθσz1) exp

(
i
π

4σ
x
1σ

x
j

)
= exp

(
i
π

4σ
x
1σ

x
j

)
exp (−i(θ + π)σz1) exp

(
i
π

4σ
x
1σ

x
j

)
.
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M. Estimation of the energy gap via
quantum subspace expansion

We experimentally estimate the energy gap between the ground state and the first ex-
cited state by adopting a quantum subspace expansion approximation, commonly used
in quantum chemistry [172]. The method relies, on having a good approximant of the
ground state of the target Hamiltonian. In our case, this is given by the variationally
optimized state |Ψ(θopt)〉 with the highest overlap with the exact ground state. The cor-
responding approximate ground state energy is E(θopt) = 〈Ψ(θopt)| ĤT |Ψ(θopt)〉. We
then construct an excitation subspace by applying a set of symmetry-preserving, low-
energy excitation operators Ôq onto the state: Ôq |Ψ(θopt)〉. The corresponding mea-
surements provide us with the effective HamiltonianHeff

q,q′ = 〈Ψ(θopt)| ÔqĤT Ôq′ |Ψ(θopt)〉,
as well as the overlap matrix Mq,q′ = 〈Ψ(θopt)| ÔqÔq′ |Ψ(θopt)〉. The solution of the
generalized eigenproblem

∑
q′

Heff
q,q′v

(k)
q′ = λ(k)

∑
q′

Mq,q′v
(k)
q′ , (M.1)

with real eigenvalues λ(k) ≤ λ(k+1), yields the approximate energy levels. At this stage,
λ(0) is an improved approximation of the ground state energy and (λ(1) − λ(0)) is an
estimator for the energy gap.

The most relevant excitations Ôq for constructing the quantum subspace of the
Schwinger model include processes of a single, nearest-neighbour, electron-positron
pair creation or annihilation. Such processes preserve the global charge conservation
symmetry. To protect the ĈP symmetry, we tailor these excitations to be explicitly
ĈP -symmetric:

Ôj = σ̂xj σ̂
x
j+1 + σ̂yj σ̂

y
j+1 + σ̂xN−j σ̂

x
N+1−j + σ̂yN−j σ̂

y
N+1−j , (M.2)

for j from 1 to N/2, while Ô0 = 1. According to this prescription, each operator of
the form ÔjĤT Ôj′ can be decomposed in a sum of Pauli operator strings, which can
be measured via n-body correlators. Note that this elementary subspace expansion

185
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requires a number of measurement bases that scales as ∝ N2, to reconstruct the full
matrices Heff

j,j′ and Mj,j′ .
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[28] V. M. Schäfer, et al., Nature 555, 75 (2018), URL https://doi.org/10.

1038/nature25737.

[29] M. Kjaergaard, et al., Annual Review of Condensed Matter
Physics 11, 369 (2020), URL https://doi.org/10.1146/

annurev-conmatphys-031119-050605.

[30] M. Veldhorst, et al., Nature 526, 410 (2015), URL https://doi.org/10.

1038/nature15263.

[31] P. W. Shor, Phys. Rev. A 52, R2493 (1995), URL https://link.aps.org/

doi/10.1103/PhysRevA.52.R2493.

[32] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996), URL https://link.aps.org/

doi/10.1103/PhysRevLett.77.793.

[33] J. Chiaverini, et al., Nature 432, 602 (2004), URL https://doi.org/10.

1038/nature03074.

[34] P. Schindler, et al., Science 332, 1059 (2011), URL http://science.

sciencemag.org/content/332/6033/1059.

[35] N. Metropolis and S. Ulam, Journal of the American Statistical Association 44,
335 (1949), pMID: 18139350, URL https://www.tandfonline.com/doi/

abs/10.1080/01621459.1949.10483310.

[36] Z. Hradil, Phys. Rev. A 55, R1561 (1997), URL https://link.aps.org/

doi/10.1103/PhysRevA.55.R1561.
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