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Abstract
Ion trap quantum computers use laser pulses to control the state of a qubit encoded
in the ion’s electronic state. In the scope of this master’s thesis we present a laser
beam setup to control the state of a qubit encoded in the ground state of 40Ca+

ions via Raman interactions. This laser setup is used to implement single-qubit
operations on one ion and two ions. We experimentally demonstrate two methods
to entangle two ions with fidelities above 99 %.

Kurzfassung
Ionenfallen-Quantencomputer verwenden Laserpulse um den Zustand eines, im
elektronischen Zustand des Ions kodierten, Qubits zu kontrollieren. In der vor-
liegenden Masterarbeit präsentieren wir einen Aufbau zur Kontrolle eines Grundzu-
standsqubits in 40Ca+ Ionen mittels Raman-Wechselwirkungen. Dieser Aufbau
wird zur Implementierung von Einzelqubitgattern an ein und zwei Ionen verwen-
det. Wir präsentieren zwei Methoden zur Verschränkung von zwei Ionen mit einer
Güte über 99 %.
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1 Introduction
The description of quantum mechanics in the early 20th century led to the de-
velopment of numerous technologies that are seamlessly integrated into our daily
lives. Prominent examples include semiconductor electronics, nuclear magnetic
resonance technologies and laser-based communication and sensing. During the
last two decades, quantum phenomena on the single-atom scale have led to the
proposal and implementation of novel technologies based on the control of single
particles. The emergence of these technologies has coined the term “second quan-
tum revolution” and promises advantages over existing technologies, including se-
cure communication, quantum computation as well as an experimental platform
to gain a deeper understanding of physics.

Quantum computers are expected to outperform classical computers in certain
tasks by using the laws of quantum mechanics. Algorithms performed on a quan-
tum computer use superposition and entanglement to reduce computational com-
plexity, therefore carrying out computations significantly faster than a classical
computer. Notable examples are the Deutsch-Josza algorithm [1], Shor’s algo-
rithm for integer factorisation [2] and Grover’s search algorithm [3].

A physical system capable of hosting a quantum computer needs to fulfil the
requirements outlined by David DiVincenzo [4]. These are

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability.

To this date, various physical implementations that fulfil these criteria have been
proposed and realised, including superconducting qubits [5], photonic qubits [6],
neutral atoms [7] and trapped ions. With system sizes of about 50 qubits and
gate error rates on the order of 0.1 %, the currently available architectures be-
long to the class of “noisy intermediate-scale quantum” (NISQ) computers [8]. It
has already been shown that these quantum computers are able to carry out spe-
cific algorithms faster than their classical counterparts [9]. However, for sequence
lengths on the order of thousands of gates, the noise in the system is estimated to
limit the performance. Fault-tolerant quantum protocols are able to mitigate this
problem but will require systems with thousands of qubits. Scaling up the number
of qubits without the loss of performance is currently a major challenge for all
the aforementioned platforms. Trapped-ion quantum processors are a promising
candidate to solve the problem of scalability by using modular architectures [10].
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In a trapped-ion quantum processor, the information is stored in the electronic
state of individually controllable ions. In 40Ca+ ions, the most frequently used
choice for a qubit is the optical qubit, encoded in the Zeeman sublevels of the 4S1/2
ground state and the metastable 3D5/2-manifold. However, precise operations on
this qubit require narrow-linewidth lasers and are naturally limited by the lifetime
of the 3D5/2 state. Overcoming these challenges can be done by encoding the qubit
in the Zeeman states of the 4S1/2 ground state, as the lifetime of the ground state
is in principle infinite.

In this work we present a setup to control a qubit encoded in the 4S1/2 ground
state of trapped 40Ca+ ions using Raman interactions. We use this setup to demon-
strate single-qubit operations and entangling gate operations on two qubits. We
aim to extend the toolbox of available operations in the ion trap experiments at
Innsbruck.

This thesis is organized as follows: in chapter 2 we present a theoretical frame-
work for the description of a single qubit as a quantum mechanical two-level sys-
tem, followed by a discussion about multiple qubit systems. We then outline the
working principle of a linear Paul trap and how it can be used as a quantum pro-
cessor for trapped ions. Chapter 3 reviews the interaction of a laser field and a
two-level ion and shows how it can be used to generate quantum operations. We
expand the ion’s model to a three-level system and derive how a pair of laser beams
is used to obtain Raman interactions for control of a ground state qubit. This is
followed by a description of two methods to generate entanglement using Raman
interactions. Chapter 4 gives an overview of the ion trap setup used in this thesis.
Furthermore, chapter 4 provides a description of the beam setup that is used to
drive Raman interactions and was developed during the course of this thesis. In
chapter 5 we present experimental results of ground state qubit control using the
beam setup. We demonstrate the application of single-qubit operations, followed
by the demonstration of two-qubit entanglement with different methods. Chap-
ter 6 concludes the thesis and presents an outlook on improvements and future
experiments.
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2 Quantum information processing
In this chapter, we present an overview of quantum information processing with
trapped ions. We start section 2.1 by introducing the quantum bit as a vector
in a two-dimensional Hilbert space. In section 2.2 we present a way to visualise
the qubit on a three-dimensional unit sphere and show how one can manipulate
its state. We discuss entanglement of multi-qubit systems and present a figure of
merit to judge the performance of entangling operations in section 2.3. Section
2.4 gives a short overview of ion dynamics in a linear Paul trap and presents an
architecture for a scalable trapped ion quantum processor.

2.1 The quantum bit
In classical information theory a bit is the most fundamental unit of information
and can be represented by the symbols 1 and 0. In a classical computer, a bit
could, for example, be the current flowing through a transistor, where 0 and 1
correspond to no current flowing and current flowing respectively. Analogous to
the classical bit, a quantum bit (qubit) [11] is the smallest unit of information in
quantum information processing. It is described by two orthogonal states |0〉 and
|1〉 in a two-dimensional Hilbert space. The most general pure state of a qubit |Ψ〉
is described by

|Ψ〉 = α |0〉+ β |1〉 , (2.1)
where α, β ∈ C are probability amplitudes and fulfil the normalisation condition
|α|2 + |β|2 = 1. The likelihood of measuring the qubit in the state |0〉 or |1〉 is given
by |α|2 and |β|2 respectively. If α, β 6= 0, the qubit is in a superposition of |0〉
and |1〉. This is a fundamental property that distinguishes qubits from classical
bits, since classical bits can only be either in the state 0 or 1. The choice of a
physical system to host a qubit can be any two-level system, e.g. the polarisation
of photons or electronic states of an ion. In this work our qubit is encoded the
ground state manifold of the 40Ca+ ion.

2.2 Bloch sphere representation and Pauli operators
Single-qubit states are commonly represented as a vector on a unit sphere, the
Bloch sphere, shown in figure 2.1. Here, the south and north poles correspond to
the |1〉 and |0〉 state, respectively. The qubit state |Ψ〉 can then be described with
the azimuthal angle ϕ and the polar angle ϑ

|Ψ〉 = cos ϑ2 e
−iϕ2 |0〉+ sin ϑ2 e

iϕ2 |1〉 . (2.2)
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Figure 2.1: Bloch sphere for representing qubit states. The states |0〉 and |1〉 are on
the north and south pole respectively. A qubit state |Ψ〉 (red arrow) is represented
as a point on the surface and is fully described by the angles ϑ and ϕ as given in
equation 2.2.

An equal superposition of qubit states is thus represented as a vector in the equato-
rial plane, where the angle φ around the z-axis describes the relative phase between
the two basis states.

Similar to logic gates in classical information processing, quantum logic gates
represent the building blocks of quantum information processing. A quantum
logic operation is described by a unitary operator U acting on an input state |Ψ〉.
For a single qubit, every quantum logic gate can be constructed from a linear
combination of the Pauli operators and the identity operator 1. Writing the basis
states in a vector notation, i.e. |0〉 = (0, 1)T and |1〉 = (1, 0)T, we find the Pauli
matrices in the same basis

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.3)

In the Bloch sphere representation, the application of a quantum operator cor-
responds to a rotation around the Bloch sphere. The most general rotation by
θ about a normalised vector n = (nx, ny, nz) can be constructed using the Pauli
operators σ = (σx, σy, σz) via [11]

Rn(θ) = e−i
θ
2 n·σ = 1 cos

(
θ

2

)
− i sin

(
θ

2

)
(nxσx + nyσy + nzσz). (2.4)

For n = z = (0, 0, 1) the rotation operator Rz(θ/2) describes a rotation
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about the z-axis, which changes the phase ϕ of the qubit state. By choosing
n = (cosφ, sinφ, 0) the state is rotated about a vector in the equatorial plane,
yielding the rotation matrix

R(θ, φ) =
(

cos θ
2 −ie−iφ sin θ

2
−ieiφ sin θ

2 cos θ
2

)
. (2.5)

For φ = 0 and φ = π/2 we find the rotation matrices Rx(θ) and Ry(θ) that rotate
the state about the x-axis and y-axis, respectively. If the state is initially in |0〉,
applying Rx(π/2) will rotate the state into an equal superposition of |0〉 and |1〉.
Similarly, applying Rx(π) to |0〉 will transfer the state from |0〉 to |1〉. The former
is also called a π/2-pulse and the latter a π-pulse. In section 3.1 we present how
ion-light interactions can be used for qubit rotations around the Bloch sphere.

2.3 Multiple qubits and entanglement
For a quantum processor it is required to control the state of multiple qubits. For
N qubits |Ψ〉1 , |Ψ〉2 , ..., |Ψ〉N the total state is described by a vector of length 2N .
Multi-qubit states |Ψ〉 that are described by a product of states

|Ψ〉 = |Ψ〉1 ⊗ |Ψ〉2 ⊗ ...⊗ |Ψ〉N , (2.6)

are called separable states or product states. In the presence of noise, or when
the control of the system is limited, it is possible to act upon different states
with different probabilities. These so-called mixed states are described by density
matrices ρ [11]. For the qubit states |Ψi〉 with probabilities pi, the density matrix
is defined as

ρ =
∑
i

pi |Ψi〉 〈Ψi| . (2.7)

This representation is useful when dealing with composite systems or to describe
decoherence of a system.

Similar to the single-qubit gates described in section 2.2, we can define quantum
gates that act on multiple qubits simultaneously. One example for a gate acting
on two qubits is the controlled-NOT-gate (CNOT), which, depending on the state
of a control qubit, flips the state of a target qubit. In the matrix representation it
can be written as

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.8)

Combining the CNOT-gate and single-qubit operations, one can implement any
arbitrary unitary operations. This is referred to as a universal set of quantum
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gates and is a requirement for universal quantum computing as introduced by the
DiVincenzo criteria.

If the multi-qubit state is not a product state of the individual qubit states, the
state is entangled. Entanglement is the key property that distinguishes quantum
systems from classical systems. For two qubits, the possible entangled states are
described by the Bell states

|Φ±〉 = 1√
2

(|00〉 ± eiφ |11〉), (2.9)

|Ψ±〉 = 1√
2

(|01〉 ± eiφ |10〉), (2.10)

where we used the notation |ij〉 = |i〉1 ⊗ |j〉2. These states are of fundamental
interest for quantum communication protocols, as they can be used for secure key
distribution methods that detect attempts of eavesdropping [12]. Entangled states
can be created by using entangling gates, i.e. unitary operations that create an
entangled state from a separable input state.

In this thesis we use different sets of quantum gates to create the Bell state
|Φ+〉. However, due to imperfections in our gate operations, the measured state,
represented by the density matrix ρ, may differ from the desired Bell state. We
can quantify the similarity between ρ and |Φ+〉 by using the fidelity

F = 〈Φ+| ρ |Φ+〉 . (2.11)

The fidelity represents the probability of finding the system in the desired state.
The infidelity, defined as 1 − F , represents the deviation from the target state
and is used to quantify the error rate of the entangling gate operation under
the assumption that the observed error is not coming from state preparation or
measurement errors. In section 5.3.3 we present an efficient way to measure the
fidelity. We use this as a figure of merit to judge the performance of our entangling
gate operations implemented in chapter 5.

2.4 Linear Paul Trap for a quantum processor
Ions have proven to be a viable candidate for quantum information processing,
as their electronic structure offers the possibility to encode a qubit and ion-light
interactions can be used to implement quantum logic gates. Since ions are charged
particles, they can be trapped using Coulomb interactions. As a consequence of
Maxwell’s equations, it is not possible to create a confining potential in all three
dimensions solely by using electrostatic fields. A common method to circumvent
this restriction is using a combination of static and dynamic, time-varying electric
fields. Ion traps that use this method are called Paul traps.
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A schematic representation of a linear Paul trap is presented in figure 2.2. It
consists of four parallel rod electrodes that create a time-varying, radio-frequency,
potential in the radial xy-plane. Two additional endcap electrodes create a static
confining potential in the axial z-direction. The radio-frequency potential is de-
scribed by [13]

Φrf(r, t) = Vrf
(x2 − y2) cos(Ωrft)

2r2
0

, (2.12)

where Vrf denotes the voltage applied to the electrodes, and Ωrf the frequency
of the rf-drive. The factor r0 describes a characteristic distance from the trap
center to the electrodes and also includes the shape of the trap electrodes. The
radial potential creates a periodically varying confinement in one radial direction
and anti-confinement in the other. Similarly, applying a static voltage Udc to the
endcaps creates the potential

Φdc(r) = Udc
(2z2 − x2 − y2)

z2
0

, (2.13)

with z0 denoting a geometric factor that depends on the electrode shape and
their separation. The static potential creates a constant axial confinement and
radial anti-confinement. The total potential is the sum of the static and dynamic
potential, i.e. Φ = Φrf + Φdc.

Figure 2.2: Schematic electrode layout of a three-dimensional linear Paul trap. It
consists of four electrodes in the xy-plane and two electrodes along the z-axis. Con-
finement in the radial plane (left) is created by applying a radio-frequency voltage
to two rod electrodes. In the axial direction (right), confinement is generated via
electrostatic fields created by the two endcap electrodes.

The ion’s motion in the trap is determined by the total potential. For an ion
with charge e and mass m, the equations of motion are given by
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m
∂2r

∂t2
= −e∇Φ. (2.14)

This equation takes the form of the Mathieu equations [14]. For a given m and e
one can find parameters Ωrf , Vrf , Udc that yield stable solutions of r. For a stable
solution of eq. 2.14 one finds that the ion’s motion can be decomposed into a
harmonic part, and a fast driven motion with frequency Ωrf , called micromotion.
In the secular approximation the micromotion can be neglected and the motion is
determined by the pseudopotential Ψ, i.e. the harmonic potential

eΨ = 1
2
∑

i=x,y,z
mω2

i r
2
i , (2.15)

with ωi denoting the frequency of the ion’s harmonic motion. Usual trap frequen-
cies ωi are on the order of 1 MHz, resulting in a wave packet size of the ground
state on the order of 10 nm. In trapped ion quantum computation the motional
degree of freedom is used to create an entangling gate operation as will be dis-
cussed in chapter 3. In this thesis we are mainly concerned about the motion along
the z-axis. The frequency of the harmonic motion along the z-axis can be found
by solving equation 2.14 for the static potential and is given by

ωz =
√

2eUdc

mz2
0
. (2.16)

In the experiment we are able to tune the motional frequency ωz by varying Udc.
When trapping two or more ions, the motion of the ions is coupled due to their

Coulomb interaction. This leads to the appearance of additional motional modes
in the axial and radial direction since the ions’ motion is coupled through the
Coulomb repulsion. In the case of two ions with equal mass, the two normal axial
motional modes are the center of mass (COM) mode at frequency ωz and the
breathing mode at frequency

√
3ωz [15].

Besides the additional motional modes, the Coulomb potential created by one
ion shifts the equilibrium position of the other ion within the potential, and vice
versa. In order to maximise the efficiency of the light-shift gate discussed in
section 3.3.1, the equilibrium distance between the ions needs to be controlled
precisely. Considering two ions with identical mass, the axial equilibrium position
is symmetric around the potential minimum, with the distance between the ions
[16]

∆z =
(

e2

2πε0mω2
z

)1/3

. (2.17)

Since ωz ∝
√
Udc, we can tune the endcap voltages to adjust the ion spacing ∆z.

In section 5.3.1 we demonstrate the effect of ∆z on the coupling between the
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individual motional modes and a light field. From equation 2.17 one can see that
trap frequencies on the order of 1 MHz result in an inter-ion spacing of 4 µm-5 µm,
whereas typical ion-light interaction wavelengths are on the order of 400-1000 nm.
This allows one to individually address single ions and thus realise a universal
quantum computer.

One of the largest challenges for ion trap quantum computers to date is being
able to increase the number of qubits without loss of performance. Current ion
trapping teams are able to operate 10-50 qubits [17]. Noisy intermediate-scale
quantum technology requires 50-100 qubits to surpass the performance of classical
computers and more than 1000 qubits are required to perform fault-tolerant quan-
tum computation. Increasing the number of ions makes the ion string heavier,
thus more laser power is required to manipulate the ion string. The number of
motional modes increases linearly with the number of ions, which leads to inter-
ference effects that worsen the quality of qubit operations. This problem can be
overcome by separating a large ion string into multiple smaller ion strings confined
in separated trapping registers [10]. One way to create separate trapping registers
is by segmenting the electrodes of the Paul trap.

In our experiment we use a two-dimensional surface trap architecture with seg-
mented electrodes. A schematic layout is presented in figure 2.3. In a surface
trap the confining potentials are created by a two-dimensional array of electrodes.
Similar to the three-dimensional case, one uses static and dynamic potentials to
create a confining pseudopotential. By using individually controllable segmented
electrodes, one gains more degrees of freedom for shaping the electric potential in
each register. For example, this allows shuttling the ions between registers [18],
rotating the ions within one register [19] and splitting an ion crystal [20].

Figure 2.3: Schematic illustration of a two-dimensional surface trap. Similar to
a three-dimensional trap, static (dc) and rf voltages are applied to a flat array
of electrodes to create a confining pseudopotential. In a segmented surface trap
electrodes are divided into individually controllable segments, which grants more
degrees of freedom for shaping the electric potential.
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3 Ion-Light Interactions
Coherent, electromagnetic fields can be used to control an ion’s electronic as well as
its motional states. In this chapter, we describe the interaction between a trapped
ion and a coherent electromagnetic field, created by a laser. In section 3.1 we model
the ion as a two-level system and demonstrate the effect of light on the electronic
and motional states. We expand this model to a three-level system in section
3.2 and present its interaction with two laser fields in the far detuned regime.
From this we derive Raman interactions that reduce the three-level system to an
effective two-level system. Finally, section 3.3 describes entangling gate operations
mediated by Raman interactions.

3.1 Two-level Atom
Here, we will introduce the interaction between a trapped ion and an electro-
magnetic field, by considering an ion that consists only of the excited state |e〉
and ground state |g〉. The states are separated by the energy ~ω. The trapped
ion’s motion can be described by a harmonic oscillator with frequency ωz. The
Hamiltonian of the ion is then

H0 = ~ω
2 σz + ~ωza

†a, (3.1)

where a and a† denote the annihilation and creation operators of the harmonic
oscillator mode. By shining a single-mode laser onto the ion, we introduce an
interaction between the laser field and the ion. The laser field at time t and a
given position r is described by a monochromatic plane wave

EL(r, t) = εE0

2
(
ei(kL·r−ωLt+φL) + e−i(kL·r−ωLt+φL)

)
, (3.2)

where ε denotes the polarization, E0 the field amplitude, kL the wavevector, φL
the laser phase and ωL the laser frequency. A schematic of the two-level ion-light
interaction is shown in figure 3.1.

The coupling strength between the ion and the laser field is found by first defining
the dipole operator d = er [21]. The Rabi frequency Ω = E0 〈e|d · ε |g〉 /~ then
describes the coupling strength between the ion and the electromagnetic field [21].
From this, one finds the Hamiltonian describing the ion-light interaction

HI = −~Ω
2 (σ− + σ+)

(
ei(kLr−ωLt+φL) + e−i(kLr−ωLt+φL)

)
. (3.3)

Here, σ− = |g〉 〈e| and σ+ = |e〉 〈g| denote the electronic lowering and raising
operators.
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Δ

ωL
ω

|g〉⊗|n〉

|e〉⊗|n〉

|g〉⊗|n-1〉

|e〉⊗|n-1〉

|g〉⊗|n+1〉

|e〉⊗|n+1〉
ωz

Figure 3.1: Two-level atom interacting with a laser field. The ground state |g〉 and
excited state |e〉 are separated by the energy ~ω. The laser field with frequency
ωL is detuned by ∆ = ωL − ω from the electronic transition. The shaded lines
represent the structure of the harmonic oscillator with frequency ωz and mode
occupation number n.

For analysing the dynamics of the system it is useful to transform the
full Hamiltonian H = H0 + HI into the interaction picture by using the
unitary transformation U = exp(iH0t/~), which transforms the Hamiltonian
H → H̃ = UHU †+i~U̇U †. For simplicity, we neglect the ion’s motion for now and
continue with the electric dipole approximation exp(ikL · r) ≈ 1, which is valid
if the wavelength is much larger than the size of the ion [21]. It should be noted
that the coupling to the ion’s motion is important for cooling of the ion as well as
the implementation of entangling gates discussed in chapter 5. Switching into the
interaction picture, we find the interaction Hamiltonian

H̃ = UHU † + i~U̇U †

= −~Ω
2

(
σ−e

i(−(ωL+ω)t+φL) + σ−e
−i(−(ωL−ω)t+φL)

+ σ+e
−i((ωL−ω)t+φL) + σ+e

i((ωL+ω)t+φL)
)

= −~Ω
2
(
σ+e

i(−∆t+φL) + σ−e
−i(−∆t+φL)

)
.

(3.4)

This Hamiltonian includes one term oscillating at the frequency of the detuning
∆ = ωL−ω0 and a faster oscillation with frequency ωL+ω0. If 2ωL �

√
Ω2 + ∆2 we

can use the rotating wave approximation (RWA) and neglect the fast oscillating
terms [14]. Next, we describe the evolution of the states. We can write the
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quantum state of the two-level atom in the interaction picture as

|ψ̃(t)〉 = ce(t) |ẽ〉+ cg(t) |g̃〉 , (3.5)
where ce(t) and cg(t) are now time-dependent probability amplitudes. Here, |ẽ〉
and |g̃〉 represent the excited state and the ground state in the interaction pic-
ture. Solving the Schrödinger equation in the interaction picture yields for the
coefficients (

ċe(t)
ċg(t)

)
= −iΩ2

(
0 ei(−∆t−φL)

e−i(−∆t−φL) 0

)(
ce(t)
cg(t)

)
. (3.6)

Note that on resonance, i.e. ∆ = 0, this equation becomes time-independent.
Equation 3.6 can be solved by means of a Laplace transform [14], yielding the
propagator

U(t) =


e−i

∆t
2

cos
(

Ω′t
2

)
+

i∆ sin
(

Ω′t
2

)
Ω′

 −i Ω
Ω′ e
−i(φL+ ∆t

2 ) sin
(

Ω′t
2

)

−i Ω
Ω′ e

i(φL+ ∆t
2 ) sin

(
Ω′t
2

)
ei

∆t
2

cos
(

Ω′t
2

)
−

i∆ sin
(

Ω′t
2

)
Ω′



 , (3.7)

where we defined Ω′ =
√

∆2 + Ω2. For a resonant laser field, i.e. ∆ = 0, equation
3.7 is equivalent to the rotation matrix R(θ, φ) described in equation 2.5. There-
fore, one can use resonant laser interactions to induce single-qubit rotations on the
Bloch sphere to control the qubit state. We use this in section 5.2 to realise and
describe single-qubit operations and implement Ramsey and spin-echo sequences.

Applying equation 3.7 to the initial state |g〉 yields the probability pe(t) to find
the ion in the excited state

pe(t) = | 〈e|U(t) |g〉 |2 = Ω2

Ω′2 sin2
(

Ω′t
2

)
. (3.8)

If ∆ 6= 0, the qubit state acquires an additional phase proportional to ∆t and the
trajectory on the Bloch sphere deviates from the resonant case. As can be seen in
figure 3.2, this deviation grows with the magnitude of the detuning. In addition
to the acquired phase, if ∆ 6= 0, we find pe(t) < 1, making it impossible to fully
transfer population from |g〉 to |e〉. Therefore, it is important to use resonant laser
fields when trying to realise population transfer.

From equation 3.8 we see that the ion is periodically oscillating around the Bloch
sphere as long as it is interacting with the laser. These periodic rotations are called
Rabi oscillations [21] and are shown in figure 3.2 for different ∆. It can be seen
that larger detunings lead to faster oscillations, but reduce the population one can
observe in the state |e〉.
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Figure 3.2: State evolution of a two level system interacting with resonant and
off-resonant laser fields. Left image shows the effect of the propagator U(t = π/Ω)
on an initial state |g〉 (green arrow) for different ∆. Red, blue and black arrows
indicate the state after evolution time π/Ω. Right image shows Rabi oscillations
given in equation 3.8. Note that pe represents the projection of the state vector
onto the z-axis.

Ramsey and spin-echo sequences
In an experiment we are able to control the laser parameters Ω, ∆, φL and the time
t it interacts with the ion. We can therefore tailor the propagator U(t,Ω,∆, φL)
from equation 3.7, allowing us to control the ion’s state on the Bloch sphere.
With control over the ion’s state, we are able to perform Ramsey and spin-echo
experiments [21]. These are interferometric sequences that allow us to measure
the phase evolution of a superposition relative to the laser phase.

The Ramsey sequence consists of two laser pulses with duration π/(2Ω) sepa-
rated by a wait time τR. First, the ion is prepared in the state |g〉 and subsequently
rotated into a superposition (|g〉+ |e〉)/

√
2 via a resonant pulse U(π/(2Ω),Ω, 0, 0).

The lasers are then turned off for a wait time τR. During this time the states ac-
quire a phase Φ ∝ ∆τR relative to each other. The second pulse U(π/(2Ω),Ω, 0, φ)
transfers the superposition to the excited state, if φ = Φ. Depending on the phase
φ the probability to transfer the ion to the excited state is

pe(φ,Φ) = cos2
(
φ− Φ

2

)
(3.9)

For φ 6= Φ however, the second pulse may lead the ion into a different superposition,
or even revert it to its ground state. Thus by varying φ we are able to traverse
different trajectories on the Bloch sphere and observe oscillations of pe depending
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on φ. The state evolution during a Ramsey experiment is visualised in figure
3.3(a).

(a) (b)

Figure 3.3: Visualisation of (a) Ramsey and (b) spin-echo sequences on the
Bloch sphere. Starting from the ground state (green arrow) the propagator
U(π/(2Ω),Ω, 0, 0) is applied (red line) to rotate the state into the equatorial plane.
During a free evolution, indicated by the blue line, the state acquires a phase Φ.
In (a) the free evolution ends after a time τR and a pulse U(π/(2Ω),Ω, 0,Φ + π)
is applied, transferring the state back to |g〉. In (b) the free time evolution ends
after a time τR/2 a pulse U(π/Ω,Ω, 0, 0) (cyan line) is applied that exchanges the
populations. After another free evolution period τR/2, a pulse U(π/(2Ω),Ω, 0, 0)
rotates the state back to its initial position (green line).

In the experiments presented in section 5.2.2, we use Ramsey sequences to quan-
tify the performance of our setup by applying the sequences multiple times and
measure the contrast of equation 3.9. Imperfections in the setup such as magnetic
field noise modulate the detuning ∆ in time, leading to fluctuations of the acquired
phase Φ. This effect is called dephasing and causes decoherence, which manifests
itself in a loss of contrast of equation 3.9. Dephasing can also be caused by noise
in the laser phase φ. As this effect increases with the wait time, we define the
coherence time as the time τR for which the contrast of max(pe(φ,Φ)) drops to the
1/e level. This determines the maximum sequence length, for which we are able
to reliably perform qubit operations.

The spin-echo sequence is similar to the Ramsey sequence and can be used to
partially compensate for dephasing taking place on time-scales long relative to the
sequence length. The sequence, visualised in figure 3.3, starts by creating an equal
superposition, followed by a period with no interaction in which one state acquires
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the phase Φ. After a time τR/2 a pulse U(π/Ω,Ω, 0, 0) is applied, which transfers
the populations between the states (|g〉 + eiΦ |e〉)/

√
2 → (|e〉 + eiΦ |g〉)/

√
2. Dur-

ing the remaining wait time τR/2 the population in |e〉 again acquires the phase
Φ, thus the phase difference between |e〉 and |g〉 is compensated. A final pulse
U(π/(2Ω),Ω,∆, 0) then transfers the population back to |g〉. Thus if the fluctua-
tions of Φ are slow compared to τR, the spin-echo sequence is able to compensate
for them.

Stark Shifts
In a real ion there are multiple excited electronic states that arise, for example, due
to the spin-orbit coupling and the Zeeman effect. Therefore, it is also important to
consider the effects of off-resonant coupling to these states. Although from equa-
tion 3.8 we can see that population transfer with far off-resonant light is unlikely,
the ion-light coupling shifts the energy levels of the ion’s electronic states. The
effect becomes more apparent if we transform the Hamiltonian from equation 3.4
into a frame rotating with ∆/2. We do this by applying a unitary transformation
as done in equation 3.4 with the operator U = exp(i∆t/2). This gives us

H̃ ′ = −~∆
2 σz −

~Ω
2
(
σ+e

i(φL−∆t/2) + σ−e
−(iφL+∆t/2)

)
. (3.10)

The eigenstates of this Hamiltonian are superpositions of the ion’s initial ground
and excited state, called dressed states. The energies of the dressed states are
given by the eigenvalues E± of equation 3.10, namely

E± = ±~
2
√

∆2 + Ω2 ≈ ±~|∆|
2 ± ~Ω2

4|∆| , (3.11)

where we expanded the energy under the assumption |∆| � |Ω|. From equation
3.11 we can see that the energy levels of the ground and excited state are shifted
by ±~Ω2/4|∆|. This shift is called the light-shift or ac-Stark Shift [21]. In section
3.3.1 we describe how one can generate a spatially-varying light-shift using two
laser beams. This gives rise to a force that can be used to entangle two ions.

Motional degrees of freedom
In addition to controlling the electronic state of an ion, one can use the ion-light
interaction to control the motional states of an ion. We describe the motional states
as a harmonic oscillator in the Fock basis |n〉, where n represents the number
of phonons in the motional mode. The coupling of light to the ion’s motion is
described with the help of the Lamb-Dicke parameter

η = kLz0 = kL

√
~

2mωz
, (3.12)
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which relates the laser wavelength to the size of the ground state wave packet z0 of
the harmonic oscillator potential. If the spatial extent of the motional wavefunction
is much smaller than the laser wavelength, we enter the Lamb-Dicke regime, i.e.
kLz0

√
〈n|(a+ a†)2|n〉 � 1. We can then expand the motional exponent from

equation 3.3 to first order

eikLz = eiη(a+a†) ≈ 1 + iη
(
a+ a†

)
, (3.13)

where we used z = z0(a + a†) for the position operator. Inserting the expanded
exponential into equation 3.3 and applying the RWA after switching into the in-
teraction picture, we find

H̃ = −~Ω
2
[
σ+e

iφ
(
e−i∆t + iη

(
ae−i(∆+ω)t + a†e−i(∆−ω)t

))
+ h.c.

]
(3.14)

From this Hamiltonian we find three resonant transitions. For ∆ = 0 we find the
carrier transition described by

H̃C = −~Ω
2
(
σ+e

iφ + σ−e
−iφ).

)
(3.15)

This transition only changes the electronic state of the ion and does not influence
the motional state. For ∆ = −ωz we find Hamiltonian for the red sideband

H̃RSB = −i~ηΩ
2

(
aσ+e

iφ − a†σ−e−iφ
)
, (3.16)

which drives transitions between the states |g, n〉 ↔ |e, n− 1〉. Similarly, for
∆ = ωz we find the Hamiltonian for the blue sideband transition

H̃BSB = −i~ηΩ
2

(
a†σ+e

iφ − aσ−e−iφ
)
. (3.17)

This Hamiltonian generates transitions between the levels |g, n〉 ↔ |e, n+ 1〉. In
the Lamb-Dicke Regime the coupling strength to the blue and red sideband scales
with Ωn,n+1 = η

√
n+ 1Ω and Ωn,n−1 = η

√
nΩ, respectively. For n = 0 the ion is in

its motional ground state, in which case the red sideband cannot be excited, since
no more phonons can be removed from the motional mode. The motional ground
state can be reached by means of sideband cooling [14]. However, in the experiment
it is often difficult to reach the motional ground state with every experimental
trial. Reasons for this include imperfect cooling parameters, limited cooling times
to reduce the experimental duration and motional heating [22]. Instead of the
ground state, the ion’s state is described by a Boltzmann distribution centred
around the mean phonon number n̄. In our experiment, we use sideband cooling
to reach mean phonon numbers on the order of 10−2.
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3.2 Three-level atom and Raman interactions
In 40Ca+ the 4S1/2-level consists of two ground states that are not connected via
an electric dipole transition since they have the same parity. In principle, one
could drive the magnetic dipole transition between these two ground states using
microwaves. However, optical light fields offer advantages over microwaves. Due
to their shorter wavelength, optical photons can be focused more tightly, allowing
for single-ion addressing which offers better scalability. Optical photons also carry
a larger momentum than microwaves, thus they couple stronger to the motion of
the ions. This is crucial for the entangling gates presented in section 3.3. Raman
transitions use a third, excited level to couple the two ground states with optical
photons.

Δ1 Δ2

|g1〉

|e〉

|g2〉ω12

Ω1
Ω2

Figure 3.4: Level structure of a three level system used for Raman transitions.
The two ground states |g1〉 and |g2〉 are coupled to the excited state |e〉 via far-
off-resonant laser fields. The lasers are detuned by ∆1 and ∆2 with respect to the
resonance frequency of the corresponding transition. Setting ν = ∆2 − ∆1 = 0
corresponds to the lasers being detuned by ω12 relative to each other. This allows
coherent population transfer between |g1〉 and |g2〉 without populating |e〉.

The basic principle of Raman transitions is shown in figure 3.4. The required
system consists of an excited state |e〉 and two ground states |g1〉 and |g2〉 separated
by the energy ~ω12. The two ground states |g1〉 and |g2〉 are coupled to the excited
state |e〉 via the laser fields E1 and E2. Each field is characterised by its frequency
ωi, its detuning ∆i from the excited state |gi〉, wavevector ki, phase φi, Rabi
frequency Ωi and polarisation εi. Furthermore, we assume that the two ground
states are not connected via a dipole transition. Analogous to equation 3.4, in the
interaction picture described with the unitary U = exp(−ω1 |g1〉 〈g1| −ω2 |g2〉 〈g2|)
we find the Hamiltonian

H̃ = −~
2
(
Ω1e

i(k1·r−∆1t+φ1) |e〉 〈g1|+ Ω2e
i(k2·r−∆2t+φ2) |e〉 〈g2|+ h.c.

)
(3.18)

As shown in equation 3.8, for large detunings ∆i � Ωi it is unlikely to transfer the
ion to the excited state. Thus one can neglect occupation of the excited state and
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find an effective Hamiltonian describing the dynamics of the two ground states
only. This allows us to simplify the dynamics by eliminating the excited state
evolution. One way to do this is to use the James-Jerke approximation, which
uses time-averaged dynamics to find an effective Hamiltonian [23]. Assuming that
the two detunings are similar |∆1 −∆2| � |∆1|, |∆2| we find

H̃eff = ~Ω2
1

4∆1
(|g1〉 〈g1| − |e〉 〈e|) + ~Ω2

2
4∆2

(|g2〉 〈g2| − |e〉 〈e|)

+ ~Ω1Ω2

4∆
(
|g1〉 〈g2| ei(δk·r−νt+φ) + |g2〉 〈g1| e−i(δk·r−νt+φ)

)
(3.19)

with φ = φ2 − φ1, δk = k2 − k1, ∆−1 = (∆−1
1 + ∆−1

2 )/2 and ν = ∆2 −∆1. The
first two terms in equation 3.19 describe constant light-shifts experienced by the
respective states. Since they only represent a constant energy shift, but do not
change the ion’s population, they can be included in the detunings ∆i to further
simplify the Hamiltonian. The third term describes coherent coupling between the
two ground state via the two laser fields. It is equivalent to equation 3.4 with the
substitutions ∆ → ν, φL → φ, σ+ → |g1〉 〈g2|, σ− → |g2〉 〈g1| and Ω → ΩR, with
ΩR denoting the Raman Rabi frequency

ΩR = Ω1Ω2

2∆ . (3.20)

This shows that the dynamics of the three-level system can be effectively described
as a two-level system consisting of the states |g1〉 and |g2〉. Coherent transfer of
population is possible if ν ≈ 0, corresponding to the electric fields being detuned
by ω12 with respect to each other. The difference wavevector δk can be chosen by
setting the laser beam geometry. In a collinear beam configuration, i.e. δk = 0, the
motion of the ion is unaffected by the lasers, whereas in an orthogonal configuration
the δk can be chosen to be parallel to the axial motional mode, thus allowing
control of the ion’s axial motion.

Raman transitions in this work are implemented between the Zeeman sublevels
of the state 4S1/2-manifold for 40Ca+. Here, the sublevels of the 4P1/2- and 4P3/2-
manifolds act as intermediate, excited states. In the following we will use the
notation |4S1/2,mj = −1/2〉 = |↓〉 and |4S1/2,mj = 1/2〉 = |↑〉. One has to account
for all sublevels of the excited state manifolds to find the correct Raman Rabi
frequency. By summing over the transition elements of all the intermediate states
|e〉, we find

ΩR =
∑

J∈{ 1
2 ,

3
2}

∑
e

〈↓|E2ε2 · d |e〉 〈e|E1ε1 · d |↑〉
2∆J

, (3.21)

where J represents the total angular momentum quantum number of the corre-
sponding 4P1/2- or 4P3/2-manifold with Zeeman sublevels |e〉 and ∆J the detuning

18



from the respective manifold. Equation 3.21 shows that due to the structure of the
excited states, one has to choose the correct polarisations to satisfy the selection
rules and obtain Raman coupling between the ground states. Here, it is conve-
nient to describe the polarisation vector ε of the light field in the basis {σ+, π, σ−},
where σ+ and σ− components drive transitions with change in magnetic quantum
number ∆mj = ±1 and the π component transitions with ∆m = 0. In this basis,
it is important to consider the direction of the wavevector k and the magnetic
field B. For k ‖ B, σ+ and σ− correspond to right- and left-handed circularly
polarised light. A linearly polarised beam along B can be described as a super-
position of right- and left-handed circularly polarised light, therefore it consists of
equal amounts of σ+ and σ−. We denote this polarisation as σ± = {1, 0, 1}. For
k ⊥ B we find two important cases for linearly polarised beams. If ε ‖ B, the
beam is π-polarised. For ε ⊥ B, the beam is again σ±-polarised.

If both beams are either only σ± or only π polarised, the Raman coupling
between the ground states vanishes and the beam pair only induces a light-shift
on the states. Similar to equation 3.21, the total light-shift on the |↑〉 state induced
by the Raman beam pair is given by

Ω↑ =
∑

J∈{ 1
2 ,

3
2}

∑
e

〈↑|E2ε2 · d |e〉 〈e|E1ε1 · d |↑〉
2∆J

, (3.22)

and analogously for the |↓〉 state. Setting the beam pair’s polarisations to
σ± = {1, 0, 1} and σ∓ = {1, 0,−1} results in opposite signs for Ω↑ and Ω↓, thus
creating a spin-dependent light-shift. This is used to create the entangling gate
operation described in section 3.3.1. In section 4.2.3 we describe how we set the
beams to the necessary polarisation.

3.3 Two-Qubit operations
So far we have only discussed ion-light interactions that allow us to control the
state of single qubits independently. In this section we present two methods on
how Raman beams can be used to entangle two ions. For the first method, we
follow the approach from ref. [24, 25] to show how a spin-dependent light-shift can
be used to implement a two-qubit gate in the (σz ⊗ σz) basis. The second method
uses a bichromatic modulation of one of the beams to create a (σx⊗σx)-interaction
similar to the commonly used Mølmer-Sørensen gate introduced in ref. [26].

3.3.1 The light-shift gate

Creating a spin-dependent force can be realised by using spatially varying single-
qubit light-shifts induced by a pair of orthogonal Raman beams as seen in figure
3.5(a). Instead of coupling the two ground states, choosing the polarisations of the
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Raman beam pair to be σ± and σ∓ only induces a light-shift on each state according
to equation 3.22. The superposition of the two beams creates a standing wave
pattern with periodically varying polarisations along the difference wavevector
δk. The frequency difference between the Raman beams will be set close to the
axial COM mode frequency ωz. Analogous to equation 3.4 the Hamiltonian in the
interaction picture reads

H̃ =
∑
s=↑,↓
−~Ω1,s

2 |e〉 〈s| ei(k1·r−∆1,st+φ1)− ~Ω2,s

2 |e〉 〈s| ei(k2·r−∆2,st+φ2) +h.c., (3.23)

where Ω1,s denotes the coupling of the first beam to the spin state |s〉 and analo-
gously for Ω2,s. It should be noted that the detunings ∆1,s and ∆2,s both represent
the detuning with respect to the frequency of the |s〉 ↔ |e〉-transition. Applying
the James-Jerke approximation to equation 3.23 yields time-dependent and time-
independent light-shifts with no coupling between the states |g1〉 and |g2〉. Again,
the time-independent Stark-Shifts can be absorbed into the detuning and we find
for the ground states

H̃ =
∑
s=↑,↓
−~Ω1,sΩ2,s

4∆ |s〉 〈s| ei(δk·r−νt+φ) + h.c., (3.24)

with ∆−1 = (∆−1
1,s + ∆−1

2,s)/2 and ν = ∆2,s−∆1,s. This interaction does not change
the population of the ion, but instead only induces a phase shift on the state |s〉,
which oscillates with the detuning ν and depends on the light-shift amplitude. The
phase term exp(iδk ·r) describes a spatially varying light-shift, visualised in figure
3.5(b), that gives rise to a force. For beam polarisations σ± and σ∓ the light-shifts
on the states |↓〉 and |↑〉 have opposite sign, thus creating a spin-dependent force.

When using two beams, the Lamb-Dicke factor depends on the geometry of
the beams relative to the axis of the motional mode. In our experiment the
wavelength difference between the two beams (≈ 10−15 m) is much smaller than
their absolute wavelength (≈ 10−7 m), thus we can assume |k1| = |k2| and find
|δk| = 2|k1| sin(ϕ/2), where ϕ denotes the angle between the two beams. Consid-
ering only the axial COM mode, we find the product δk · r = η(a + a†) with the
Lamb-Dicke factor

η = δk · r = 2|k1|z0 sin
(
ϕ

2

)
cos (ϑ), (3.25)

where ϑ denotes the angle between δk and the axial trap direction. In this work
we use an orthogonal beam pair with its difference wavevector aligned along the
z-axis, resulting in ϕ = π/2 and ϑ = 0.
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Figure 3.5: Creating a spin-dependent force with two Raman beams. (a) Two
beams with linear polarisations σ± and σ∓ create a standing wave pattern with
periodically varying polarisations along δk ‖ z. (b) This results in a spatially
varying light-shift that generates a spin-dependent force with opposite sign for the
states |↓〉 and |↑〉.

Next we expand equation 3.24 in the Lamb-Dicke regime to
exp(iδk · r) ≈ 1 + iη(a + a†) and include the time-dependent exponents of
the motional operators by switching into the interaction picture with respect to
the motional states. We find

H̃ =
∑
s=↑,↓
−~Ωs

2 |s〉 〈s|
[
2 cos (νt− φ) + iη

(
aei(−(ν+ωz)t+φ) + a†ei((−ν+ωz)t+φ)

− ae−i(−(ν−ωz)t+φ) − a†e−i(−(ν+ωz)t+φ)
)]
, (3.26)

where we defined Ωs = Ω1,sΩ2,s/(2∆). Here, the first term describes a time-
dependent light-shift that leads to a single-qubit phase. However, the error caused
by this is negligible if Ω� ν and can be further suppressed by using pulse-shaping
[25]. Therefore, we can eliminate this term. The terms ∝ η generate a harmonic
driving force on the ion’s motional state. Setting ν = ωz + δg ≈ ωz, allows us to
eliminate the rotating terms with δg + ωz under the RWA, resulting in

H̃ =
∑
s=↑,↓

~Ωs

2 iη |s〉 〈s|
(
aei(δgt+φ) − a†e−i(δgt+φ)

)
. (3.27)

By integrating this Hamiltonian and applying the Magnus expansion [27] we find
the propagator

U(t) =
∑
s=↑,↓

D(αs) |s〉 〈s|
 e−iΦ, (3.28)
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with

αs = −Ωsη

δg
eiφe−iδgt/2 sin

(
δgt

2

)
, (3.29)

Φ = η2

4δ2
g

(δgt− sin(δgt))
 ∑
s=↑,↓

Ωs |s〉 〈s|

2

. (3.30)

and D(αs) = exp(αsa† − α∗sa) denoting the displacement operator [28].
We can separate the effects of this propagator into a motional part and an in-

ternal, electronic part. Applying D(αs) causes a displacement in motional phase
space proportional to Ωs. Since Ωs depends on the ion’s electronic state, the dis-
placement αs is spin-dependent. With this we are able to create a spin-dependent
force on the motional state. As discussed in section 3.2, we can choose the beam
polarisations to obtain Ω↓ = −Ω↑, which creates opposite displacement for |↓〉 and
|↑〉. If δg 6= 0, the ion’s motion is periodically excited and deexcited with period
sin(δgt/2). This behaviour can be visualised as loops in motional phase space as
seen in figure 3.6. Due to the interaction, the initial state |s〉 ⊗ |0〉 is excited to
a coherent state eiΦ(t) |s〉 ⊗ |αs(t)〉, leading to spin-motion entanglement. After
tg = 2π/δg, the ion returns to its initial motional state, disentangling spin and
motion. The resulting state eiΦ(tg) |s〉 ⊗ |0〉 will have acquired the phase Φ(tg).
The phase Φ depends on area enclosed by the loop and is therefore called the
geometric phase.

〈a+a†〉

〈i(a-a†)〉|↓⟩ ⨂|0⟩

〈a+a†〉

〈i(a-a†)〉

Φ

ei    |↓⟩ ⨂|0⟩

〈a+a†〉

〈i(a-a†)〉

t=0 t=tg/2 t=tg

ei   |↓⟩ ⨂|α⟩

Φ/2

Φ
2 Φ

Figure 3.6: Displacing the ion in phase space. At t = 0 the ion is prepared in
the state |↓〉 ⊗ |0〉, located at the origin of motional phase-space. By applying
equation 3.28 the ion is displaced along a circular trajectory, which entangles spin
and motion by creating the state eiΦ(t) |↓〉 ⊗ |α〉. After a time tg = 2π/δg, the ion
returns to its motional ground state, closing the loop in phase space and having
acquired the phase Φ.

By changing the beam power and polarisation we are able to tune the magnitude
and sign of Ωs and are therefore able to control Φ. If Ω↑ = Ω↓, the operator
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∑Ωs |s〉 〈s| from equation 3.30 would be the identity and have no effect on the
ion’s electronic state, as it only imprints a global phase. As described in equation
3.22, by changing the beam polarisations we are able to tune Ω↑ and Ω↓. Thus we
are able to modify the elements of ∑Ωs |s〉 〈s|, allowing us to control the geometric
phase that each state acquires. Setting the Raman beam polarisations to σ±

and σ∓ leads to Ω↑ = −Ω↓, hence ∑Ωs |s〉 〈s| becomes the σz operator. This
configuration will be used for two ions to create a state-dependent force that is
used to entangle the ions.

Up to now, we have only considered the effect of the light-shift force on a single
ion. The interaction from equation 3.27 can be readily extended to two ions.
Each ion’s electronic states are described by |s〉j, where j denotes the ion number.
Although there are two axial motional modes for two ions, we only consider the
axial center of mass mode, since ν can be detuned sufficiently far from the breathing
mode. From this we find the Hamiltonian

H̃ =
∑
j=1,2

i~η
2
(
Ω↑ |↑〉j 〈↑|+ Ω↓ |↓〉j 〈↓|

)
aei(δgt+φ+φz,j) + h.c., (3.31)

where we introduced the phase term φz,j that describes the phase of the light-shift
force the ions experience relative to each other. For simplicity, we can set φz,1 = 0
and φz,2 = φz, where φz = δk∆z is determined by the ion’s equilibrium spacing
∆z. We can tune this phase by adjusting the ion spacing relative to the standing
wave pattern created by the Raman beams. As described in equation 2.17, the
spacing between two ions depends only on the motional frequency, and can thus
be varied by changing the static voltage applied to the electrodes.

By integrating equation 3.31, one finds the propagator similar to equation 3.28,
with the σz operator from equation 3.30 being expanded to the case of two ions.
The diagonal elements of this operator are

|↑↑〉 → Ω↑(1 + eiφz) (3.32)
|↑↓〉 → Ω↑ + Ω↓eiφz (3.33)
|↓↑〉 → Ω↓ + Ω↑eiφz (3.34)
|↓↓〉 → Ω↓(1 + eiφz). (3.35)

They describe the light-shift force experienced by the different states and therefore
determine the acquired phase of each state.

After applying the gate interaction for a time tg, the loops in phase space are
closed and states will have acquired the geometric phases

Φeven = η2tg
4δg

(
Ω↑ + eiφzΩ↑

)2
, (3.36)

Φodd = η2tg
4δg

(
Ω↑ + eiφzΩ↓

)2
, (3.37)
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where Φeven denotes the phase acquired by |↑↑〉 and |↓↓〉, and Φodd the phase
acquired by |↑↓〉 and |↑↓〉. The phase difference between the states |↑↑〉 and |↑↓〉
is then

Φ = Φodd − Φeven = η2tg
4δg

[(
Ω↑ + eiφzΩ↓

)2
−
(
Ω↑ + eiφzΩ↑

)2
]
. (3.38)

For a given gate time, the laser power can be chosen to obtain Φ = π/2, yielding
the propagator for the phase gate

Uphase = diag(1, i, i, 1). (3.39)

As this operator acts in the (σz ⊗ σz)-basis, it does not change the pop-
ulation of the ion’s electronic state. However, it can be embedded in a
Ramsey or spin-echo sequence to entangle two ions. Applying the sequence
G = R(2)

x (π/2)UphaseR
(2)
x (π/2) on the initial state |↓↓〉 creates the Bell state |Φ+〉,

with R(2)
x (π/2) = Rx(π/2)⊗ Rx(π/2). This sequence can also be expanded to in-

corporate a spin-echo sequence, as will be demonstrated in section 5.3.4. Although
an additional π-pulse is needed for the spin-echo sequence, it has the advantage of
cancelling single-qubit phases acquired during the Ramsey sequence.

From equations 3.32-3.35 we see that the force on each state is determined by
φz. As φz = δk∆z depends on the distance ∆z between the ions, we are able to
create a state-selective force by varying the ion spacing. For φz = π there is no net
force acting on the motion of the states |↑↑〉 and |↓↓〉. Therefore, during the gate
sequence G, only the motion of the states |↓↑〉 and |↑↓〉 is excited and they acquire
a geometric phase. This is desired, since it maximises the phase difference Φ from
equation 3.38 for any given beam power, hence making the gate more efficient. In
section 5.3.1 we demonstrate how the spacing can be set to obtain φz = π.

3.3.2 Raman Mølmer-Sørensen gate

A different method to implement an entangling gate is to use Raman interactions
to create a (σx⊗σx) interaction. This is equivalent to the commonly used Mølmer-
Sørensen (MS) gate first described in ref. [26].

Similar to the geometric phase gate, the Raman (σx ⊗ σx) interaction uses two
orthogonal laser beams interacting with a three-level system as seen in figure 3.7.
Similar to the Raman interactions discussed in section 3.2, one beam with wavevec-
tor k1 and phase φ1 couples to the |g1〉 ↔ |e〉 transition with strength Ω1 and
detuning ∆1. A second beam with k2 ⊥ k1 is detuned by ∆2 from the |g2〉 ↔ |e〉
transition, with coupling strength Ω2. Note that this couples the two ground states
via Raman interactions and creates an effective two-level system as described in
section 3.2. For ∆2 = ∆1 the frequency difference between the two beams matches
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the frequency difference between the states |g1〉 and |g2〉, creating resonant in-
teractions between the two ground states. As shown in figure 3.7, the second
beam consists of two spectral components detuned by ∆b = ∆1 + ωz + δg and
∆r = ∆1 − ωz − δg from the |g2〉 ↔ |e〉 transition. The two components couple to
the blue and red sidebands with coupling strength Ω2,b and Ω2,r, respectively.

Figure 3.7: Level and laser diagram used for the Raman MS gate. One laser
couples with strength Ω1 to the |g1〉 − |e〉 transition, from which it is detuned by
∆1. The states |g2〉 and |e〉 are coupled via a second laser, which is modulated
with a bichromatic field. The two components Ω2,b and Ω2,r are detuned from the
|g2〉 − |e〉 transition by ∆1 + ωz + δg and ∆1 − ωz − δg respectively.

Each component of the bichromatic field generates an interaction as described in
equation 3.19, with the substitution Ω2 → Ω2,i and for φ→ φi i = r, b. Summing
the interactions and applying the Lamb-Dicke approximation, we find

H̃eff = ~Ω1Ω2,r

4∆ |g1〉 〈g2|
[
ei(ωz+δg)t + iη

(
aeiδgt + a†ei(2ωz+δg)t

)]
eiφr

+ ~Ω1Ω2,b

4∆ |g1〉 〈g2|
[
e−i(ωz+δg)t + iη

(
ae−i(2ωz+δg)t + a†e−iδgt

)]
eiφb + h.c. .

(3.40)

Here, φr and φb describe the phase of the first beam relative to the red and blue
detuned component, respectively. For δg,Ωi � ωz we can use the RWA and
eliminate the carrier term and the fast sideband terms with 2ωz + δg as done
for equation 3.27. By equalising the Rabi frequency of the two components, i.e.
Ωsb = Ω2,r = Ω2,b we find

H̃ = ~Ω1Ω2,sbη

4∆ σφ
(
aei(δgt−φm) + a†e−i(δgt−φm)

)
, (3.41)
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where φm = (φb − φr)/2 and σφ = ieiφs |g1〉 〈g2| − ie−iφs |g2〉 〈g1| with
φs = (φb +φr)/2. For simplicity, we will continue with the assumption φs = −π/2,
resulting in the operator σφ becoming the σx operator with eigenstates |+〉 and
|−〉.

Since equation 3.41 is equivalent to equation 3.27, we can integrate it using a
Magnus expansion, yielding the propagator

U(t) =
[
D(α) |+〉 〈+|+D(−α) |−〉 〈−|

]
e−iΦ, (3.42)

with

α = −ηΩMS

δg
eiφme−iδgt/2 sin

(
δgt

2

)
, (3.43)

Φ = −η
2Ω2

MS
4δ2
g

(δgt− sin(δgt))σ2
x, (3.44)

where we defined ΩMS = Ω1Ω2,sb/(2∆). Applying this propagator to a single ion in
the ground state creates a coherent motional state by driving loops in phase-space.
Contrary to the light-shift gate, when applied to either |g1〉 or |g2〉, this interaction
also changes the population of the ion’s electronic states, since the Hamiltonian
acts in the σx basis.

Generalising equation 3.41 to the case of two ions is straightforward and yields
the MS gate interaction commonly used in trapped ion experiments. Defining the
operators σx,1 = σx ⊗ 1 and σx,2 = 1⊗ σx, we find

H̃MS =
∑
j=1,2

~ηΩMS

2 σx,j
(
aei(δgt−φm) + a†e−i(δgt−φm)

)
. (3.45)

Integrating equation 3.45, one finds the propagator similar to equation 3.42, with
the σx operator from equation 3.44 being expanded to the case of two ions, i.e.
σ2
x → (σx,1 + σx,2)2 ∝ (1 + σx,1σx,2). From this, one can see that this operator acts

in the (σx⊗σx) basis. For a closed phase-space loop and Φ = π/2, this interaction
yields the operator

UMS = 1√
2


1 0 0 −i
0 1 −i 1
0 −i 1 0
−i 0 0 1

 . (3.46)

Applying this to two ions in the state |↓↓〉 creates the state |↑↑〉− i |↓↓〉. In section
5.4 we demonstrate entanglement of two 40Ca+ ions using this interaction.

We now want to discuss the similarities and differences between the phase gate
Hamiltonian from equation 3.27 and equation 3.41. Both interactions drive loops
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in motional phase-space with period 2π/δg and thus periodically create and anni-
hilate a coherent motional state. The main difference consists of the phase gate
Hamiltonian acting in the (σz ⊗ σz)-basis of the electronic states, whereas the
MS-Hamiltonian acts in the (σx ⊗ σx)-basis. Hence, for two ions, contrary to the
phase gate, the MS gate interaction does not require additional π/2 rotations to
create an entangled state. The phase gate operation bears the advantage that it
is independent of the qubit frequency, which makes it more suitable when working
with ions with different transition frequencies. This property makes the light-shift
gate suitable for entangling ions of two different atomic species with high fidelity
[29].

3.4 Trapped 40Ca+ ions as qubits
Qubit operations in this work have been performed on trapped 40Ca+ ions. The
level scheme of 40Ca+ is shown in figure 3.8. The relevant levels in this thesis
are the 4S1/2 ground state, the 4P1/2 and the 4P3/2 excited states as well as the
metastable 3D3/2 and 3D5/2 excited states. Due to their non-existent nuclear spin
I = 0, 40Ca+ ions exhibit no hyperfine structure.

The trapping process starts with the emission of neutral 40Ca atoms from an
oven. The neutral 40Ca atoms are then ionised at the trap centre with light from
a 422 nm and a 375 nm laser. This two-step photoionisation process is isotope
selective. The ions are then Doppler-cooled using 397 nm light, red detuned by
≈ 20 MHz from the 4S1/2 ↔ 4P1/2 transition. This transition is used for Doppler
cooling due to its lifetime of τ ≈ 7 ns [30]. Since there is a 6 % [31] chance for the
state to decay into the D3/2 state, an 866 nm beam is kept on to transfer the ions
back into the 4P1/2 state and maintain the cooling cycle.

Before performing quantum logic operations, the ion is initialised in the state
|4S1/2,mj = −1/2〉 via optical pumping. This is done by first transferring the
ion to the |3D5/2,mj = −5/2〉 state and subsequently to the |3P3/2,mj = −3/2〉,
which eventually decays to the |4S1/2,mj = −1/2〉 state. Afterwards, sideband
cooling is used to initialise the ion in its motional ground state. For this, the ion
is first excited to the 3D5/2 on the red sideband and subsequently excited to the
4P3/2 level, as this state decays faster to the ground state than the metastable
3D5/2 level.

The state of the ion is read out using a fluorescence measurement consisting
of continuously illuminating the ion with light resonant with the 4S1/2 ↔ 4P1/2
transition. Fluorescence is observed if the ion is in the state 4S1/2, whereas no
fluorescence is observed if the ion is in the state 3D5/2. Using a fluorescent mea-
surement, readout fidelities of 99.991 % have been demonstrated [32].

Performing quantum logic operations requires one to first choose the computa-
tional basis. For 40Ca+ there are two commonly used computational bases. The

27



Figure 3.8: Level Scheme of 40Ca+. The ground state qubit is encoded in the
two Zeeman sublevels of the 4S1/2 manifold. Doppler cooling and readout are
performed on the 4S1/2 ↔ 4P1/2 transition, while the 866 nm laser is continuously
kept on for repumping. Optical pumping and sideband cooling is performed on
the 4S1/2 ↔ 3D5/2 transition. Upon being excited to the 3D5/2 states, the ion is
excited to the state 4P3/2 and subsequently decays to the state |4S1/2,mj = −1/2〉.

first is the optical qubit, where the two qubit states are encoded in the 4S1/2 and
the 3D5/2 manifold. The metastable 3D5/2-level is suitable for quantum compu-
tations due to its lifetime of τ = 1.168 s [33] compared to the duration of qubit
operations on the order of 10 µs. To date, quantum operations on the 40Ca+ opti-
cal qubit have been performed with fidelities of up to 99.995 % [34] for single-qubit
and 99.6 % [35] for two-qubit operations.

In this work we focus on operations on the ground state qubit, defined by the two
Zeeman sublevels |4S1/2,mj = 1/2〉 = |↑〉 and |4S1/2,mj = −1/2〉 = |↓〉. Contrary
to the optical qubit, the ground state qubit in principle offers unlimited qubit
lifetime, though the coherence time is often limited by magnetic field fluctuations.
The linear Zeeman effect splits the two ground states by 2.802 41 MHz/G [36].
The magnetic field strength of B = 3.66 G used in our setup generates a qubit
splitting of ≈ 10 MHz, which is smaller than the natural linewidth Γ = 22 MHz of
the 4s1/2 ↔ 4P1/2 transition. This makes it impossible to discriminate the state
via a simple fluorescence measurement. We circumvent this by electron shelving,
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i.e. transferring the |↑〉 state to the 3D5/2 level via a resonant laser pulse. By using
Raman interactions, single-qubit and two-qubit fidelities of 99.995 % and 99.1 %
have been achieved with 40Ca+ ions [37].
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4 Experimental Setup & Characterization
4.1 Trap setup and Control
The ion trap used for this thesis is a segmented linear surface trap contained in
a cryogenic setup that was designed to build a platform for scalable quantum
computation. A detailed description of the trap setup can be found in ref. [38],
this thesis only summarises fundamental components of the setup.

The trap, shown in figure 4.1, consists of 27 individually controllable electrode
pairs, a central rf electrode pair and a split central electrode. The two central
electrodes are separated by a slit. Individual electrodes are separated by trenches
etched to a depth of ≈ 40 µm. Multiple electrode pairs are used to create a
harmonic trapping potential 100 µm above the surface, at a desired location along
the slit.
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Figure 4.1: Schematic of the segmented surface trap used in this work. Ions are
trapped via potentials created by the static electrode pairs (DC1-DC6), a central
rf electrode pair (rf), and a split static center electrode (cDC). The ion (blue dot)
is trapped 100 µm above the slit.

The trap setup is contained in a liquid Helium flow cryostat. Inside the cryostat,
the trap is surrounded by an outer heat shield and an inner heat shield made out
of copper. The inner heat shield is connected to the cryostat’s coldfinger. The
coldfinger is cooled down to 15 K, such that the inner heat shield reaches 35 K. The
cryogenic environment reduces collision rates with background gas and the average
collision energy, thus increasing the ion’s lifetime inside the trap. Moreover, the
cryogenic environment reduces the heating rates on the ion’s motional modes,
which also lowers the gate error due to motional heating.

The magnetic field defining the quantisation axis is created by a pair of
Helmholtz coils with the magnetic field vector being at a 45° angle with respect
to the axial trap direction, which is labelled as z-axis in figure 4.1. Environmen-
tal influences such as the Earth’s magnetic field as well as noise in the Helmholtz
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coil’s current create magnetic field noise that modulate the qubit frequency in time
and eventually lead to decoherence. Therefore, we monitor magnetic field noise
with two sensors placed along the quantisation axis. Three pairs of cable loops
surrounding the trap table are oriented along all three spatial dimensions to ac-
tively compensate magnetic field fluctuations by modulating the current through
the coils.

Eight viewports in the vacuum chamber grant optical access to the trap and are
used to guide lasers to the trap. A detailed description of the Raman beam layout
is discussed in section 4.2.3. Additionally, a 0.23 NA in-vacuum lens is used to
collect fluorescence light. The fluorescence light is then guided through a viewport
to either a photomultiplier tube (PMT) or an electron-multiplying charge-coupled
device (EMCCD) camera. In this work, we mainly use the PMT for state readout.
The camera is used when aligning the beams with the ions as done in section 5.2.3.

The diverse electronic components to run the experiments are controlled by a
multitude of hardware and software elements. The control software TrICS pro-
vides a graphical user interface to edit experimental control parameters such as
rf frequencies created by direct digital synthesis (DDS) boards, rf powers to drive
acousto-optic modulators (AOM) and voltages for the trap electrodes. The in-
structions set by the control software are sent to the bus system and the PulseBox
[39]. The PulseBox is a field-programmable gate array with multiple, built-in DDS
boards. It is the main experimental control hardware and controls the timing of
electrical pulses during a sequence, thus controlling the ion-light interactions. The
built-in DDS boards allow temporal shaping of the output amplitude and phase-
coherent frequency switching. The PulseBox controls the transistor-transistor logic
(TTL) pulses that are used to time the laser intensity stabilisation and control
electronic rf switches. The bus system controls components that are not switched
during an experimental sequence. These include, for example, the power and fre-
quency of DDS sources for the AOMs that do not require phase-coherent switching.

4.2 Raman Beam Setup
For the implementation of the Raman interactions discussed in section 3.2, we
create a set of individually controlled beams derived from a single laser source.
The Raman beam setup is divided into three parts that can be seen in figure
4.2: the laser source, the AOM setup and the focusing stage. Due to its size, the
laser source does not fit on the same optical table as the vacuum chamber and
is therefore mounted on a separate optical table. Light from the laser source is
sent to the AOM setup, which is mounted on the same optical table as the ion
trap, underneath the focusing optics. The AOM setup is used to separate the laser
source into three individually controlled beams. These are then guided to the trap
to focus them onto the ions.
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Figure 4.2: Schematic overview of the Raman beam setup. The laser source is
mounted on a separate optical table. Via an optical fibre light from the laser
source is guided to the trap table, where the AOM setup and the vacuum chamber
are mounted. The AOM setup is mounted beneath the vacuum chamber and is
used to separate the laser source into three individually controllable beams. The
beams are subsequently guided to the vacuum chamber containing the ion trap,
where they are focused onto the ions.

4.2.1 Laser source

The laser used to perform operations on the ground state qubit is a continu-
ous wave, frequency-doubled, tunable Ti:Sapphire (Ti:Sa) laser1. A schematic
setup of the laser source setup is shown in figure 4.3. The light used to pump
the Ti:Sapphire is generated by a diode pumped Nd:YAG that is subsequently
frequency-doubled to 532 nm2. The Ti:Sa is frequency-stabilised via an internal
ring resonator. An etalon inside the Ti:Sa’s ring resonator allows tuning of out-
going light’s wavelength. The outgoing light is frequency-doubled with a lithium
triborate (LBO) crystal and frequency-stabilised via a ring resonator. After fre-
quency doubling, the laser provides ≈ 1.2 W of optical power in the 400 nm region.

The output light of the laser passes a λ/2-waveplate and a Glan-Laser polariser3

that allow tuning the power of the transmitted light by rotating the polarisation.
As the laser’s output beam is elliptical, we use a Galilean beam expander made
of two cylindrical lenses with focal lengths f1 = −9.7 mm and f2 = 6.35 mm to
expand the beam in the horizontal direction. Afterwards, the light is coupled
into a photonic crystal fibre4 suitable for the operation with high power beams.
Coupling the light into the fibre is done via an aspheric singlet fibre collimator5,
as we found these to be suitable for fibre coupling at high powers. When using
cemented monochromatic doublets for fibre coupling, we noticed a significant drop
in coupling efficiency at high powers. The coupling efficiency would drop from
≈ 60 % at powers < 500 mW to ≈ 30 % for powers > 500 mW.

1M Squared SolsTiS + ECD-X
2Lighthouse Photonics Sprout-G18W
3Thorlabs GL10-A
4NKT Photonics aeroGUIDE-5-PM
5Schäfter+Kirchhoff 60FC-SF-4-A11-01
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Figure 4.3: Schematic of the laser source. The 532 nm light of a frequency-doubled
Nd:YAG pumps the Ti:Sapphire, whose output is subsequently frequency-doubled
to 398 nm light via an LBO crystal. The output frequency of the Ti:Sa and the
LBO are frequency-stabilised via a ring resonator. A λ/2-waveplate is used in
combination with a Glan-Laser polariser (GL) to tune the power of the transmitted
light. Two cylindrical lenses (L1) and (L2) expand the beam in the horizontal
direction. Before fiber coupling, the polarisation is rotated to match the slow/fast
axis of the fiber.

When performing coherent Raman operations it is important to minimise the
photon scattering rate to avoid decoherence [25]. As the scattering rate scales with
Γ ∝ ∆−2 and the Raman Rabi frequency with ΩR ∝ |∆|−1, one can minimise the
ratio Γ/ΩR by increasing the laser detuning with respect to the 4S1/2 ↔ 4P1/2
transition. The ratio Γ/ΩR is shown in figure 4.4. Throughout this thesis, we
operate the laser at 398.0 nm, 2.4 THz red detuned from the 40Ca+ 4S1/2 ↔ 4P1/2
transition. We found this to be a suitable compromise between low scattering rates
and sufficient ion-light coupling given the available optical power.
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Figure 4.4: Ratio of the total scattering rate Γ to the Raman Rabi frequency ΩR
for different wavelengths. The wavelength of the laser source is set to 398.0 nm
(dashed line).
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4.2.2 AOM Setup and control

For the implementation of the single- and two-qubit operations discussed in section
3.2 we require Raman beams with different frequencies, from different directions
and with different polarisations. A collinear beam pair (δk = 0), consisting of the
beams Rπ and R⊥ with orthogonal polarisations, is used to implement motion-
insensitive single-qubit operations. The third beam R‖ ⊥ Rπ, R⊥ is used in com-
bination with either the R⊥ or Rπ beam to address the ion’s motion for sideband
transitions or entangling gate operations. The laser source is divided into the three
beams on the AOM setup shown in figure 4.5. Each beam is individually controlled
via a separate AOM6.

AOM

GL

PBS PBS

PBS

λ/2

λ/2

AOM
AOM

λ/2 λ/2

λ/2 λ/2

λ/2

λ/2

λ/2Source R𝜋+R⟂

R∥

R𝜋 R⟂
R∥

Figure 4.5: Schematic of the AOM switching board. The fibre output is sent
through a λ/2-waveplate and a Glan-laser polariser (GL) to clean the polarisation.
The beam is then split into three different branches using polarising beam splitters
(PBS). Each beam passes a separately controlled AOM used for switching and
frequency shifting. The Rπ and R⊥ beam are combined on a PBS and coupled
into the same fibre. The R‖ beam is coupled into a separate fibre.

First, the output of the fibre is collimated with an air-gapped triplet lens sys-
tem7, as we noticed cemented doublet collimators do not withstand optical powers
above ≈ 200 mW at our operating wavelength. After collimation, the beam’s polar-
isation is rotated with a λ/2-waveplate8, to maximise the transmission through the
following Glan-Laser polariser. The Glan-Laser polariser cleans the polarisation
by only transmitting light with a linear polarisation parallel to the table’s surface.
The beam is then split into three separate paths using polarising beamsplitters9

6Brimrose QZF-80-40-397
7Thorlabs TC06APC-405
8Lens Optics W2Z15-397
9Thorlabs PBS12-405-HP
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(PBS). We set the beam intensity in each branch by setting the polarisation before
each PBS with a λ/2-waveplate.

In each branch there is a separately controlled AOM to control the amplitude
and frequency of the beams. Since the AOM’s diffraction efficiency is sensitive
to the polarisation of the incoming beam, we place a λ/2-waveplate before each
AOM. For each AOM, we only keep the first-order diffracted beam and block the
other orders using a pinhole. After passing their respective AOM, the Rπ and
R⊥ beam are recombined on a PBS and coupled into the same optical fibre. The
light of the diffracted R‖ beam is coupled into a separate fibre. The fibres are
then guided to the vacuum chamber to focus the light onto the ions. Before fibre
coupling we use another λ/2-waveplate to align the beam’s polarisation to the fast
or slow axis of the fibre.

The radio frequency for each AOM is controlled individually via a series of
electronic elements shown in figure 4.6. The rf chain of the R‖ beam can be
separated into two configurations: The first configuration consists of a single DDS
source that generates a monochromatic rf signal. It is used to perform local qubit
operations in section 5.2 and 5.4 or the light-shift gate in section 5.3. The second
configuration is used for bichromatic modulation of the laser beam, which is used
to drive the Raman MS gate described in section 5.4.2. It consists of two separate
DDS sources that are operated at different frequencies. The signals of the two
DDS sources are combined in a passive power combiner. A radio frequency switch
that is controlled via the PulseBox’s TTL pulses allows switching between the two
configurations.

We noticed that the diffraction angle of the AOMs and therefore the amount
of light coupled into the fibres depends on its temperature. In an experimental
sequence, this leads to a change in optical power at the ion, as the AOM heats
up due to the applied rf. Feeding the AOM with the ”idle” signal keeps it at a
constant temperature, therefore reducing transient thermal effects when switch-
ing the AOMs during a sequence. Following the switch that selects between the
monochromatic and bichromatic configuration, an additional switch allows us to
forward either the “idle” signal or the selected configuration to the rf amplifier.
The “idle” signal is at 115 MHz and is fed to the AOM when the beam is not used.
The 115 MHz frequency changes the diffraction angle of the AOM enough that no
light leaks through the fibre when it is applied.

The rf chain of the Rπ beam is identical to the R‖ chain, though without the
bichromatic profile. The rf signal for the R⊥ beam’s AOM is generated by a
PulseBox DDS source that allows for coherent phase control relative to the other
DDS. This signal is then amplified with an rf amplifier and fed to the AOM.
The output signal of each rf amplifier can be regulated by a voltage-controlled
attenuator. This is used in combination with a proportional–integral–derivative
(PID) controller to stabilise the beam intensity.

35



red blue carr idle

Switch

AOM
amp

PID

TTL

M

PulseBox

R⟂

R𝜋

R∥

Switch

Switch

DDS

DDS AOM
amp

PID

AOM
amp

PID

Figure 4.6: Radio frequency chains to control the AOMs. The signal for the R⊥
beam (blue rectangle) is generated by a PulseBox DDS board (DDS) and amplified
(amp) before it is fed to the AOM. A controller (PID) feeds back on the rf am-
plifier’s built-in voltage controlled attenuator to stabilise the beam intensity. The
PulseBox TTL pulses are used to control electronic switches during sequences. For
the R‖ beam (red rectangle) either a monochromatic (carr) or bichromatic signal,
is applied to the AOM. The bichromatic signal is generated by combining two
DDS signals (red) and (blue) in a combiner (M). An ”idle” signal (idle) is applied
to the AOM to keep it at a constant temperature when it is not turned on. The
Rπ rf chain (green rectangle) is identical to the Rπ rf chain, though without the
bichromatic configuration.

4.2.3 Beam geometry at the trap setup

The output light of the two fibres coming from the AOM setup is guided and
focused onto the ions, through the slit of the trap chip. A schematic of the geometry
and beam path at the trap is shown in figure 4.7.

The Rπ and R⊥ form the collinear beam pair. They arrive in the same fibre
and are entering the vacuum chamber from a direction orthogonal to the magnetic
field. These two beams are polarised orthogonal with respect to each other. The
fibre output is collimated to a beam with ≈ 25 mm diameter. After collimation,
≈ 1 % of the light is picked off via a beam sampler10 and focused onto a photodiode
to monitor and control the beam intensity.

Depending on the gate mechanism we require different beam polarisations:

• For the light-shift gate performed in section 5.3 the R⊥ and Rπ beam are
polarised orthogonal and parallel to the magnetic field, respectively. This
results in a σ± polarisation for the R⊥ beam and a π polarisation for the

10Thorlabs BSF10-A
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Figure 4.7: Paths of Raman beams to the vacuum chamber. The R⊥ and Rπ are
guided to the trap via the same fibre, with their polarisation set orthogonal and
parallel to the magnetic field (B) via a λ/2-waveplate. The R‖ beam travels along
the magnetic field axis. With a Glan-Laser polariser (GL) we set the polarisation
parallel to the wavevector of the R⊥ and Rπ beam. A f = 250 mm lens (L) guides
the beams through the slit of the trap and focuses them onto the ions. In this
configuration, the differential wave vector vanishes for the parallel beam pair but
is aligned with the trap’s z-axis for the orthogonal beam pair. In each path light is
picked off via a beam sampler (BS) and sent onto a photodiode (PD) for monitoring
and intensity stabilisation. The dashed lines are a guide to a view normal to the
trap chip surface.

Rπ beam. In this configuration the R⊥ and R‖ beam do not couple the two
ground states with each other.

• When performing the Raman MS gate in section 5.4, we use the λ/2-
waveplate to rotate the R⊥ beam’s polarisation to π. With this configuration
we can couple the two ground states with the R⊥ and Rπ beam. Thus we
can use this beam pair to implement single-qubit operations and perform the
Raman MS gate.

Therefore, after the beam sampler, we use a λ/2-waveplate to rotate the polarisa-
tion. This allows us to adjust the polarisation depending on the gate mechanism
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we are using. The beam is guided onto the ions using a motorised mirror mount11

and focused with a f = 250 mm lens.
The R‖ beam enters the vacuum chamber parallel to the magnetic field axis. The

fibre output is collimated to a beam with ≈ 25 mm diameter and subsequently
passes through a Glan-Laser polariser. This ensures that only light polarised
parallel to the table’s surface is transmitted. As it travels along the magnetic
field with its polarisation orthogonal to the σ± = {1, 0, 1} polarised R⊥ beam,
we denote its polarisation as σ∓ = {1, 0,−1}. The polarised light is then picked
off via a beam sampler and focused onto a photodiode for intensity stabilisation.
After the pick-off, the beam is focused onto the ions using a f = 250 mm lens.
In this configuration the difference wave vector of the orthogonal beam pair, i.e.
the R⊥ and R‖ beam, lies along the axial direction of the trap. This allows us to
address the ions’ axial motional modes, which is required for the entangling gates
and operations on the motional sidebands. Since the difference wave vector does
not overlap with the radial direction, this configuration is also insensitive to the
radial motion.

The intensity stabilisation is implemented by measuring the power on the pho-
todiode and feeding back on the rf power of the AOM. Via the photodiode, we
measure the optical power as a voltage. The target voltage, and thus the desired
beam intensity, can be set via the experiment computer. We feed the photodiode
voltage and setpoint to an analogue sample-and-hold PID controller which creates
the control signal. At the beginning of each sequence, we turn on the beams for
3 ms and measure their intensity on the photodiode. During this sampling time,
the PID controller creates the control signal and feeds it to the rf amplifier’s built-
in voltage-controlled attenuator. This changes the rf power fed to the AOM, thus
controlling the optical power. The beams are then turned off and a TTL pulse
switches the PID controller to hold the last value of the control signal throughout
the sequence, until a new value is sampled.

11Newport Motorized Mirror Mount 8821
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5 Qubit operations
In this chapter, we present single- and two-qubit operations on the ground state
qubit of 40Ca+ ions using Raman interactions. In section 5.2.1 we show Raman
spectroscopy on two ions to determine the frequencies of the carrier transition and
the motional sidebands of the axial motion. Next, in section 5.2.2 we use Ramsey
and spin-echo measurements to determine the coherence time of our setup. In
section 5.2.3 we discuss the stability and benchmark the performance of our setup.

In section 5.3 and 5.4 we generate entanglement between two ions using the
geometric phase gate and the Raman MS gate. We discuss how we calibrate the
gate interactions to create an entangling gate. Finally, we evaluate the fidelity for
each method.

5.1 State preparation and readout
Before performing coherent qubit operations, we need to initialize the ions. First,
the ions are optically pumped for ≈ 800 µs to the state |↓〉. This is done by
transferring the state population from |↑〉 to the state |3D5/2,mj = −5/2〉 using the
729 nm laser. The ions are simultaneously excited to the state |4P3/2,mj = −3/2〉
using the 854 nm laser. From this state the ions decay with 96 % probability to the
4S1/2-manifold. In 4 % of the cases the ions decay to the 3D3/2-manifold, in which
case they are transferred to the 4P3/2-manifold with an 866 nm laser resonant with
the 3D3/2 ↔ 4P3/2 transition. Due to the dipole selection rules, starting from the
state |4P3/2,mj = −3/2〉 the only accessible state through spontaneous decay to
the 4S1/2-manifold is the state |↓〉.

We quantify the residual population in the undesired state |↑〉 after optical
pumping, by shelving it to the 3D5/2 level via a resonant π-pulse with the 729 nm
laser. The ions are then illuminated with 397 nm light for fluorescence detection. If
the ions were previously in the state |↑〉, we observe no fluorescence. By averaging
over 6200 shots we find the state preparation error εp = 2.6(6)× 10−3. Note that
this value only represents an upper bound of the state preparation error, as it also
includes errors due to imperfect shelving of the state |↑〉 to the 3D5/2 level.

After optical pumping, we do 5 cycles of sideband cooling with the 729 nm laser,
each consisting of cooling the axial centre of mass mode for ≈ 1 ms and the axial
breathing mode for ≈ 500 µs. As the ions decay faster to the ground state from
the 4P3/2-manifold than the 3D5/2-manifold, we simultaneously illuminate the ions
with the 854 nm laser to transfer them to the |4P3/2,mj = −3/2〉 state. The cycle
is completed with another stage of optical pumping to ensure that the ions are in
the state |↓〉. After repeating this cycle for 5 times, we achieve a residual mean
phonon number n̄ ≈ 0.05(2).

For measuring the ion’s final state, we apply a π-pulse with the 729 nm beam
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to shelve the population from |↓〉 to the 3D5/2 level. Afterwards, the ions are
continuously illuminated with 397 nm light red detuned from the 4S1/2 ↔ 4P1/2
transition. During this time, we measure the fluorescence light on the PMT and
determine the state via the photon count rate histograms. If the ion was in the
state |↓〉, the shelving pulse transfers it to the 3D5/2 level. In this state the ion
appears dark, i.e. no fluorescence is observed. If the ion is not shelved we observe
fluorescence light, which increases the photon count rate. For two ions the photon
count rate is doubled if both ions emit fluorescence light. For a readout time of
5 ms the photon count rate histograms for two dark ions, one dark ion and zero
dark ions are well separated and the threshold for each case can be set manually.

We determine the shelving error εr by comparing the unsuccessful shelving events
with the successful shelving events. We define the shelving as successful if the ions
appear dark after shelving. By averaging over 3150 shots, we find the ratio between
unsuccessful shelving pulses and successful shelving pulses to be εr = 9(2)× 10−3.
We suspect that this is caused by laser intensity noise and state preparation and
measurement errors.

5.2 Single-qubit Raman operations
5.2.1 Raman spectroscopy

An essential ingredient for quantum information processing is being able to coher-
ently transfer populations between the |↓〉 and |↑〉 state. For this we first need to
determine the frequency difference between the two ground states. This is done by
performing spectroscopy on two ions with the R‖ and the R⊥ beams of the orthog-
onal beam pair, as in this configuration we are also able to observe the sidebands
of the axial motion. By keeping the R⊥ beam’s frequency constant, and varying
the frequency of the R‖ beam, we are able to tune the resulting beat note’s fre-
quency that the ions experience. If the beat frequency matches the ions’ transition
frequencies, we are able to transfer the population between states. As the ions are
initialised in |↓↓〉, we would observe this as a peak of the excitation defined as
p↑↑+ (p↓↑+ p↑↓)/2, where p↑↑ and p↓↑+ p↑↓ denote the likelihood of measuring the
ions in the state |↑↑〉 and |↓↑〉 or |↑↓〉, respectively.

The results of the Raman spectroscopy on two ions is shown in figure 5.1. We
identify three clear peaks in the spectrum. In ascending order of the frequency,
these correspond to the carrier transition and blue sideband transitions of the axial
COM mode and breathing mode respectively. Note that we only consider the blue
sidebands, as the ions are cooled close to their motional ground states in which
case the red sidebands cannot be observed.

We determine the transition frequencies by fitting a Lorentzian lineshape to our
data. It should be noted that a complete description of the spectrum would re-
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Figure 5.1: Raman spectroscopy on two ions with the R⊥ and R‖ beam with (a)
10 µs and (b) 30 µs probe time. In ascending order of the frequency the dips show
the carrier transition, the blue sideband transition of the axial COM mode and
the blue sideband transition of the axial breathing mode. Solid blue lines show
Lorentzian fits to determine the frequencies of the dips.

quire a fit to equation 3.8. A Lorentzian fit finds the centre frequency equally
well due to the symmetry of the lineshape but has the advantage that it requires
fewer free parameters, thus making the fit more robust. At δc = 10.267(2) MHz
we observe the carrier transition between |↓↓〉 and |↑↑〉. With a ground state
splitting of 2.802 41 MHz/G this corresponds to a magnetic field of 3.6636(7) G.
The blue sideband of the COM mode is visible at δcom = 11.3321(5) MHz and
the one of the breathing mode is visible at 12.1116(7) MHz. The errors repre-
sent the uncertainties determined by the fit. From this, we are able to extract
ωz = δcom − δc = 2π × 1.065(2) MHz.

In order to observe Rabi oscillations and transfer the state population, we ap-
ply Raman pulses with the beat frequency resonant with the carrier transition.
The results are shown in figure 5.2. We observe Rabi oscillations as predicted in
equation 3.8. At 10 µs the population is completely transferred from the |↓↓〉 to
the |↑↑〉 state, as indicated by the excitation reaching 1. We find the Rabi fre-
quency Ω = 2π × 49.55(7) kHz by fitting equation 3.8 with ∆ = 0 to the data via
a least-squares fit.

5.2.2 Ramsey & spin-echo coherence measurements

As our ions are not a perfectly isolated system but are subject to environmental
noise such as magnetic field noise or relative laser phase fluctuation, the timescale
on which we can reliably perform gate operations is limited by decoherence induced
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Figure 5.2: Rabi oscillations on the carrier transition of the ground state
qubit. Solid lines shows a fit to eq. 3.8 to determine the Rabi frequency
Ω = 2π × 49.55(7) kHz.

by the environment. We use Ramsey and spin-echo sequences introduced in section
3.3 to quantify the coherence time of our ground state qubit.

We perform Ramsey and spin-echo measurements with the R⊥ and R‖ beam
pair on two ions, as this beam pair is also used to entangle two ions. First,
we apply a carrier π/2-pulse that transfers the |↓↓〉 state to a superposition
(|↓↓〉 + |↑↓〉 + |↓↑〉 + |↑↑〉)/2. The lasers are then turned off for a wait time τR,
during which the qubit state acquires a phase Φ ∝ τR. After the wait time we
apply a second carrier π/2-pulse with varying phase φ. Ideally, this results in full
contrast oscillations of the excitation as a function of φ as described in equation
3.9. However, through decoherence the contrast is lowered.

For our setup, we expect magnetic field noise and relative laser phase noise
to be the dominant sources of decoherence. The former is expected due to the
ground state’s relatively high magnetic field sensitivity compared to the optical
qubit. The latter is expected, as we are performing the Ramsey experiment with
two orthogonal beams. Thus, noise in the optical path of either beam will lead to
noise in the relative laser phase.

We insert a carrier π-pulse at a time τR/2 after the first Ramsey π/2-pulse to
create a spin-echo sequence. The second Ramsey π/2-pulse is applied at a time
τR/2 after the π-pulse. The π-pulse transfers the populations from |↓↓〉 to |↑↑〉 and
from |↑↓〉 to |↓↑〉, and vice versa. This cancels the acquired phase if the magnetic
field does not change in the second half. However, if the magnetic field noise is
fast compared to tR/2, the acquired phase is different in each half and will not
be compensated. Unlike slow magnetic field fluctuations, phase noise cannot be
cancelled by using a spin-echo sequence.

Figure 5.3 shows the results for Ramsey and spin-echo measurements for wait
times τR = 0 ms and τR = 5 ms. As expected, the excitation shows oscillations
depending on the phase of the final π/2-pulse. For a wait time τR = 0 ms the

42



0 2 4 6 8 10 12
0.0

0.5

1.0
Ex

cit
at

io
n

R = 0 ms

0 2 4 6 8 10 12
Analysis phase (rad)

0.0

0.5

1.0

Ex
cit

at
io

n

R = 5 ms

Figure 5.3: Ramsey (blue) and spin-echo (red) measurements on two ions. Solid
lines show sinusoidal fits to determine the contrast.

contrast of the oscillations is close to unity for both sequences. Moreover, the two
curves are out of phase by ≈ π, which is expected as for the Ramsey sequence the
state is rotated for 2π, whereas for the spin-echo sequence the state is rotated by π.
For a wait time τR = 5 ms we observe that the contrast has dropped significantly
to 0.30(2) and 0.72(2) for the Ramsey and spin-echo sequence, respectively.

We now determine the coherence time τc for the Ramsey and spin-echo method.
For this, we evaluate the contrast of the oscillations for different wait times τR
by fitting the data to sinusoidal oscillation and extracting the contrast C. The
results are shown in figure 5.4. The figure demonstrates that the decay in contrast
is slower for the spin-echo sequence than for the Ramsey sequence. Moreover, we
notice that the shape of the decay curve is similar to a Gaussian function. By
fitting a Gaussian curve C = A exp(τ 2

R/τ
2
c ) to our data we find the coherence

times τc,Ramsey = 4.66(7) ms and τc,echo = 9.7(1) ms for the Ramsey and spin-echo
sequence, respectively. The initial contrast A accounts for state preparation and
measurement (SPAM) errors.

We compare the Ramsey and spin-echo measurements with measurements pre-
viously performed on the ground state qubit with the 729 nm laser to determine
the cause of decoherence. With the 729 nm laser, a decay constant of τc,729 ≈ 80 ms
has been measured in a spin-echo experiment. Since this is significantly larger than
τc,echo = 9.7(1) ms, we suspect that the dominant source of decoherence is caused
by instabilities of the relative phase between the Raman beam pair. We suspect
that the phase instabilities are caused by noise in the beams’ optical paths, which
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could be caused by mechanical vibrations of the optical setup.
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Figure 5.4: Coherence time of two ions measured with the R⊥ and R‖ beam. The
Gaussian fits yield coherence times τc,Ramsey = 4.66(7) ms and τc,echo = 9.7(1) ms
for the Ramsey and spin-echo sequence respectively.

5.2.3 Error analysis

The pulse duration necessary to carry out single- and two-qubit operations depends
on the Rabi frequency. Since the Rabi frequency depends on the beam intensity
at the ion, variations in intensity will change the pulse duration required for qubit
operations. If these changes occur during an experimental trial, subsequent gate
pulses result in either over- or under-rotation of the qubit state, leading to errors
in the gate sequence. Thus short-term intensity stability on the timescale of an
experimental trial is important to mitigate this error. Rabi frequency drifts that
are slow compared to experimental trials might not affect the quality of a single
experimental trial, but require time-consuming re-calibration of the gate duration.
Moreover, when performing identical single-qubit gates on two ions simultaneously,
we require identical Rabi frequencies for the two ions. This can be achieved by illu-
minating the ions equally. We use Rabi oscillations to analyse the effects of beam
alignment on the short-term intensity fluctuations and the long-term stability of
the Rabi frequency. By comparing Rabi oscillations on two ions simultaneously,
we determine their Rabi frequencies and align the beams to equalise them.

Effects of beam alignment
Since the spatial intensity distribution of the focused Raman beam is not described
by a plane wave, but a Gaussian beam profile, the electric field experienced by the
ion depends on the ion’s position relative to the beam. Changes in beam position
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relative to the ion, caused by slow thermal drifts or vibrations of the trap setup
relative to the optics, lead to changes in the Rabi frequency. At the beam focus,
the radial intensity distribution follows a Gaussian curve, with its maximum at
the centre. As the minimum intensity gradient is at the beam centre, centring the
beam around the ion reduces the sensitivity to beam pointing noise.

We centre the beam on a single ion by maximising the Rabi frequency. First, the
ion is initialised the state |↓〉. Next, we induce Rabi oscillations and set the pulse
duration to a point where the populations of the states |↓〉 and |↑〉 are equalised.
At this point the populations are the most sensitive to changes in Rabi frequency.
We steer the mirror to maximise population in the |↑〉 state, as this indicates an
increase of the Rabi frequency. We perform this method on higher-order fringes
of the Rabi oscillation to increase the sensitivity to beam alignment.
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Figure 5.5: Rabi oscillations driven by a with non-optimised (top) and optimised
(bottom) beam alignment. Beam alignment is optimised by centring the beam on
the ion, which maximises the Rabi frequency. The solid line shows a fit to a Rabi
oscillation with decay according to equation 5.1. We find Ω = 2π × 14.52(1) kHz
and α = 14(1) for the non-optimised alignment and Ω = 2π × 65.74(1) kHz and
α = 257(43) for the optimised alignment.

A comparison of Rabi flops with non-optimised and optimised beam pointing is
shown in figure 5.512. We usually find the beams in the non-optimised alignment

12We notice that in both cases p↓ < 1 even if no pulse is applied. This is not expected since the
ion is initialised in the |↓〉 state. In this case the laser frequency of the shelving pulse drifted
off-resonance. Hence, the state |↓〉 is not fully transferred to the 3D5/2 level, which reduces
the accuracy to measure the ion’s state as |↓〉.
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after a couple of days of not realigning them. Optimising the beam alignment
by maximising the Rabi frequency increases the Rabi frequency by a factor of 4.5
compared to the original alignment. For the non-optimised alignment we observe
a decay in contrast after 8 periods, whereas for the optimised case, even after 19
periods, we do not observe any significant decay. We fit our data to the model

p↓ = a+ b cos(Ωt)e−tΩ/(2πα)

2 , (5.1)

to determine the Rabi frequency Ω and the relative decay constant α. The factors
a and b include the readout error due to the off-resonant shelving pulse. The model
recovers resonant Rabi oscillations from equation 3.8 for parameters α = ∞ and
a = b = 1. For the non-optimised beam alignment we find Ω = 2π × 14.52(1) kHz
and α = 14(1). For the optimised beam alignment we find Ω = 2π × 65.74(1) kHz
and α = 257(43). The relative decay constant α can be seen as a measure of
stability, as it expresses how many Rabi oscillations can be performed before the
contrast drops to 1/e. Comparing the two cases, we find that centering the beam
on the ion by maximising the Rabi frequency increases α by a factor of 18(3).

Long-term stability
We measure the long-term stability of the Rabi frequency by monitoring the popu-
lation after a Rabi oscillation. The population is most sensitive to Rabi frequency
fluctuations when p↓ = p↑ = 0.5, at Ωt = (2n+ 1)π/2, with n denoting a positive
integer. Since the sensitivity increases with n, we choose to monitor the popula-
tions at Ωt = 18.5π. The data is recorded over 70 min with 200 shots per data
point. The results shown in figure 5.6 exhibit a periodic modulation of the excita-
tion probability with a period of T = 33.3(1) min. This modulation is synchronous
with the temperature drifts in the laboratory caused by the air-conditioning cycle.
We suspect that the change in temperature leads to polarisation drifts through
the optical fibre that carries the R⊥ beam, leading to drifts in the Rabi frequency.
We fit Rabi oscillations from equation 3.8 with ∆ = 0 and time-dependent Rabi
frequency

Ω(t) = Ω0(1 + εΩ cos(2πt/T )), (5.2)
with Ω0 denoting the Rabi frequency at the start of the measurement, T the
oscillation period and εΩ the relative amplitude of the fluctuation. From this we
extract that the Rabi frequency oscillates around the ideal value with an amplitude
of εΩ = 5.72(6)× 10−3. If the duration of the π-pulse was calibrated at a maximum
of the Rabi frequency to obtain p↑ = 1, after 8.32(2) min the same pulse duration
would over- or under-rotate the state by 1.005 72(6) Ωt. For a π-pulse, this would
cause an error that is on the same order of magnitude as the SPAM error.

46



0 10 20 30 40 50 60
Time (min)

0.2

0.4

0.6

0.8

p

Figure 5.6: Long term stability measurement of p↓ after a Rabi oscillation with
the pulse duration initially set to Ωt = 18.5π. Each data point consists of 200
repetitions. The solid red line models the Rabi oscillations with a time dependent
Rabi frequency described in equation 5.2 with period T = 33.28(1) min and relative
amplitude εΩ = 5.72(6)× 10−3.

Unequal illumination
When performing local operations on two qubits simultaneously, it is crucial that
they are illuminated equally by the laser, such that their Rabi frequencies are
identical. If the two ions have different Rabi frequencies, performing simultaneous
Rabi oscillations would result in one ion’s state being over- or under-rotated with
respect to the other ion, therefore lowering the fidelity of the global qubit rotation.

In order to determine the ions’ respective Rabi frequency, we drive Rabi oscil-
lations and monitor the state evolution. Since the PMT detection does not allow
us to detect the state of each ion individually, we perform this measurement with
the EMCCD camera. Figure 5.7 shows the two ion Rabi oscillations. Here, the
Rabi oscillations are driven by the collinear beam pair. For unequally illuminated
ions, the phase difference between the two Rabi oscillations is already visible af-
ter a 2π-pulse. By fitting the data to equation 3.8 we find the Rabi frequencies
Ωu

1 = 2π × 46.93(5) kHz and Ωu
2 = 2π × 50.01(5) kHz for the first and the second

ion respectively. This leads to a significant error in the populations, as after a 2π
oscillations of the first ion, only 96.2 % of the second ion would be reverted to the
initial state.

We balance the illumination of the two ions by equalising the Rabi frequency
of the two ions by adjusting the beam alignment. This is done by tuning the
horizontal axis of the motorised mirror mount. The state evolution of the two ions
with balanced illumination is shown in figure 5.7. By fitting eq. 3.8 to the data
we find the Rabi frequencies Ωe

1 = 2π× 49.83(6) kHz and Ωe
2 = 2π× 49.48(6) kHz.
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Figure 5.7: Simultaneous Rabi oscillations of two unequally (top) and equally (bot-
tom) illuminated ions. Unequal Rabi frequencies caused by unequally illuminated
ions leads to a phase difference between the two ions’ state evolution. By prop-
erly aligning the beam on the two ions, their Rabi frequencies are approximately
equalised. The dashed lines show fits to determine the Rabi frequencies.

5.3 Light-shift gate
In this section we present the implementation of the light-shift gate discussed in
section 3.3.1. We demonstrate how we set the ion spacing for an efficient gate
performance. We perform the gate within a Ramsey and spin-echo sequence to
entangle two ions and determine the gate performance.

5.3.1 Calibrating the ion spacing

The first step in setting up the light-shift gate is setting the ion spacing to optimise
the gate efficiency as discussed in section 3.3.1. This lowers the required beam
power for any given gate time. In order to maximise the gate efficiency, the relative
phase φz of the light-shift that the ions experience has to be either 2π or π, such
that only the states |↓↓〉 and |↑↑〉 or |↓↑〉 and |↑↓〉 experience a force. As described
in equation 3.31, this phase is determined by the ions’ position relative to the
standing wave pattern created by the R⊥ and R‖ beam. Thus, the spacing ∆z
should be set to either exactly a multiple integer or half-integer of the standing
wave pattern’s wavelength λsw, i.e. ∆z = 2nλsw or ∆z = (n + 1/2)λsw, with
positive integer n.

For the spacing ∆z = (n+1/2)λsw, we find φz = (2n+1)π. In this configuration,
performing the gate on the axial COM mode does not create a net force on the
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states |↑↑〉 and |↓↓〉, but only the states |↑↓〉 and |↓↑〉 as can be seen in equations
3.32-3.35. Hence, the motion is only excited if the ions are in the state |↑↓〉 or |↓↑〉.
Therefore, only these states will acquire a geometric phase. If the spacing is not
exactly a half-integer multiple of λsw, and π/2 < φz < 3π/2, the gate operation
also creates a force on the states |↑↑〉 and |↓↓〉, albeit with a weaker amplitude. As
the force is weaker, the area enclosed in the motional loop is smaller for the states
|↑↑〉 and |↓↓〉, thus they acquire a geometric phase Φeven < Φodd. We obtain the
propagator Uphase = diag(1, i, i, 1) from equation 3.39, if Φ = Φodd − Φeven = π/2.
For a given gate duration, Φ is determined by the light-shift amplitude and can
be set via the beam power. Therefore, if the spacing is not exactly half-integer
multiple, the total qubit state acquires an additional global phase, which increases
the required beam power to obtain Uphase.

Since the distance between the ions depends on the axial trap frequency, we can
change it by adjusting the axial confinement by changing the static voltages on the
trap electrodes. In this thesis we set the ion spacing to a half-integer value of the
standing wave pattern, although one could in principle use integer spacing. Similar
to the Lamb-Dicke factor from equation 3.25, the standing wave pattern experi-
enced by the ion is proportional to the beams’ difference wavevector projected
onto the axial trap direction. Hence, by determining the Lamb-Dicke parameter,
we are able to extract the beam geometry. Comparing the ideal Lamb-Dicke factor
ηideal for a beam pair at a 90° angle with the measured Lamb-Dicke factor, we find
ξ = ηmeasured/ηideal = 0.987(3). This could be explained by the beams being at a
90°− 1.5(3)° angle. From this we determine the wavelength of the standing wave
pattern the ions experience by λsw = λ/(

√
2ξ), where λ = 398.0 nm is the laser’s

wavelength. We set the frequency of the axial COM mode to ωz = 2π×1.093 MHz.
According to equation 2.17 this leads to an ion spacing ∆z = 5.270 µm ≈ 18.5λsw.
With our setup we are able to control the inter-ion distance with a precision on
the order of ≈ 100 pm.

We calibrate the ion spacing by setting the frequency difference between the R⊥
and R‖ beam to be resonant either with the COM mode or the breathing mode.
With the spacing set to a half-integer multiple of the standing wave pattern, we
expect to observe only excitation of the axial breathing mode. Applying a pulse
with this beam pair then creates a coherent motional state of the corresponding
mode with an amplitude proportional to the light-shift force. However, it does
not change the population of the ions’ electronic states. We read out the motional
excitation by probing the |4S1/2,mj = −1/2〉 ↔ |3D5/2,mj = −1/2〉 transition
with a π-pulse on the respective red sideband. If there is motional excitation in
the respective mode, the electron is shelved to the |3D5/2〉 state and we observe
no fluorescence. We vary the ion spacing through the axial confinement until we
find a minimum of the COM mode excitation.

The results for the ion spacing calibration measurement are shown in figure
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5.8. With pdd and pdb denoting the likelihood of measuring both ions and one ion
dark, respectively, we define the shelved population as 1 − pdd − 0.5pdb. When
resonantly exciting the axial COM mode with the Raman beam pair, we mostly
observe < 10 % of the population being shelved to the |3D5/2〉 state, even after
2 ms. Though for the breathing mode we observe shelving to the |3D5/2〉 state
with ≈ 40 % after 30 µs of exciting the mode with the Raman beam pair. We
continue our measurements with ωz = 1.093 MHz, as we are not able to reduce the
excitation of the COM mode with different settings of ωz. We suspect that this is
caused by the unequal illumination of the ions.
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Figure 5.8: Motional excitation of the axial centre of mass mode (top) and the
stretch mode (bottom) for two ions after application of the light-shift gate. If the
respective motional mode is excited, the electronic state is shelved to the state
|3D5/2,mj = −1/2〉 via a π-pulse on the red sideband. The ion spacing is set to
18.5λsw.

5.3.2 Setting up the gate

After calibrating the ion spacing, we calibrate the laser power and detuning for the
entangling gate operation. For this, we apply the gate sequence shown in figure
5.9(a). In this sequence, the π/2-pulses are performed with the collinear beam
pair, whereas the gate pulse g(t) is performed with the R⊥ and R‖ beam. We
calibrate the gate as follows:

1. The π/2-pulses are calibrated by driving Rabi oscillations and determining
the Rabi frequency via a fit as done in section 5.2. After calibrating the
π/2 pulses, the powers and the detuning of the R⊥ and Rπ beam are held
constant.
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2. We choose the desired gate time tg = 2π/δg and set the frequency of the R‖
beam relative to the R⊥ beam to ωz + δg. The power of the R‖ beam is set
approximately to the expected value given by equation 3.38.

3. We execute the gate sequence for different lengths of the gate pulse, and tune
tg to the value where p↑↓ + p↓↑ minimised, as this indicates that the loops in
phase space are closed.

4. We then adjust the power of the R‖ beam to a value, where p↑↑ and p↓↓ are
equalised.

5. If there is residual excitation of the states |↓↑〉 or |↑↓〉, we minimise it by
setting the phase of the second π/2-pulse. This is done to compensate for
single-qubit phases acquired during the sequence. Though we found that
this last step is not necessary when the gate is performed within a spin-
echo sequence as done in section 5.3.4, since single-qubit phases are already
compensated within an echo sequence.

π/2

π/2

π/2

π/2
g(t)

|↓⟩

|↓⟩

π/2

π/2

|↓↓⟩+|↑↑⟩

(b)(a)

Figure 5.9: Entangling gate with the phase gate embedded in a Ramsey sequence.
The sequence (a) starts by applying a π/2-pulse on both ions simultaneously,
followed by the phase gate interaction g(t). For t = tg the second π/2-pulse
rotates the ions into the Bell state Φ+. After the Bell state is created, applying
another π/2-pulse and scanning its phase results in parity oscillation that are used
to determine the state fidelity. In (b) the state evolution for different durations t
of the gate pulse g(t) is shown. Solid lines show solutions of equation 3.31 for an
ideal 45 µs gate. Dips in p↓↑+p↑↓ indicate that the loops in phase space are closed.

The resulting population dynamics for a calibrated 45 µs phase gate are shown
in figure 5.9(b) together with the theoretical prediction from equation 3.31. For
the theoretical prediction we assume an ideal gate such that the geometric phase
Φ = π/2 for t = tg. We see that after creating an entangled state at 45 µs, the ions
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are repeatedly disentangled and entangled. At 2tg the population is almost fully
transferred to the |↓↓〉 state, which shows that the ions are disentangled. At this
point, the second loop in phase space is closed.

5.3.3 Assessing the gate performance

With the gate parameters calibrated, we are now able to assess the performance of
the entangling operation. There are multiple ways to characterise the gate, such as
gate set tomography [40], process tomography [41] or randomised benchmarking
[42]. However, these methods typically require addressed single-qubit operations,
which are currently not implemented in our setup. Thus, we use a less rigorous
approach of applying the gate operation onto one input state and assume that the
result would be the same for different input states. For the input state |↓↓〉, the
applied gate sequence is expected to create the Bell state Φ+. Assuming that after
the sequence we find the state described by the density matrix ρ, the fidelity with
respect to the Bell state Φ+ is given by

F = 〈Φ+| ρ |Φ+〉 = 1
2 (ρ↑↑,↑↑ + ρ↓↓,↓↓) + 1

2
(
eiΦρ↑↑,↓↓ + e−iΦρ↓↓,↑↑

)
, (5.3)

where ρij,kl denotes the matrix element to the corresponding state |ij〉 〈kl| for
i, j, k, l =↑, ↓. The first term describes the populations in the states |↓↓〉 and |↑↑〉.
The second term describes the coherences. Determining the fidelity then reduces
to measuring the population given by the first term, and the coherences given by
the second term. We can determine the coherences by applying an analysis pulse
as shown in figure 5.9(a). It consists of an additional π/2-pulse that is applied to
the Bell state with a variable phase φ. This results oscillations of the parity P
depending on φ, described by [25]

P (φ) = p↑↑ + p↓↓ − p↑↓ − p↓↑ ∝ A sin(2φ+ Φ), (5.4)
where the amplitude A corresponds to the coherences term in equation 5.3. From
this we find the fidelity by averaging the population and the parity amplitude
F = (p↑↑ + p↓↓ +A)/2. Note that we neglect Φ as we are mainly concerned about
the degree of entanglement instead of the exact phase of the Bell state.

We determine the fidelity for the 45 µs gate shown in figure 5.9(b) by measuring
the populations and the parity. By measuring the population over 2100 repetitions,
we find p↑↑ + p↓↓ = 0.98(2). The parity scan is shown in figure 5.10. The parity
is determined via equation 5.4. From the fit parameters, we find A = 0.92(2) and
Φ = 0.57(1)π. Therefore we find the total fidelity of creating the entangled state
F = 0.95(3).
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Figure 5.10: Parity scan of a Bell state. The solid line shows a fit from equation
5.4 and yields the amplitude A = 0.92(2) and Φ = 0.57(1)π.

5.3.4 Gate implementation within a spin-echo sequence

Another method to create entanglement with the geometric phase gate is to split
the gate pulse into two halves and apply an echo pulse after the first gate pulse.
This allows for a more robust gate as the effects of unequal Ω↑ and Ω↓, as well as
single-qubit light-shifts, will be cancelled with the echo pulse.

We set up the two loop gate similarly to the one loop gate discussed in section
5.3.2. Though we lower the power in the R‖ beam such that the populations
p↓↓ = p↑↑ are equalised where the second motional loops closes at 2tg. The gate is
then split into two equal halves and a π-pulse is inserted after the first gate pulse.
We scan t to find the point where p↑↓+p↓↑ is minimised, then optimise the power in
the R‖ beam to equalise p↓↓ and p↑↑. The gate embedded in a spin-echo sequence
is shown in figure 5.11. Here, it can be seen that the gate evolution looks almost
identical to the gate without the echo pulse. The dip of p↓↑+p↑↓ around the 100 µs
mark indicate that at this point the two loops in phase space are closed. However,
at this point the beam power is too high, leading to an imbalanced population
between p↓↓ and p↑↑. This generally lowers the contrast of the parity oscillation
but does not affect the infidelity of the populations.

After setting up one gate, we characterise the gate performance by applying
multiple gates within the spin-echo sequence as shown in figure 5.12. Applying
multiple gates and monitoring the resulting fidelity after a certain number of gates
offers a way to quantify the error per gate more precisely. The reason is that
SPAM errors in our experiment are on the same order of magnitude as the gate
infidelity, thus limiting the fidelity we are able to observe when performing single
gates. When applying multiple gates, the two-qubit gate error accumulates and
leads to a decay in Bell state fidelity depending on the number of applied gates.
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Figure 5.11: Population evolution for a phase gate embedded in a spin-echo se-
quence. The minimum of p↓↑ + p↑↓ at t ≈ 100 µs indicates that the two loops in
phase space are closed.

Since the number of single-qubit operations is constant, they only lead to an offset
in the decay curve. It should be noted, when determining the fidelity from the
decay curve the extracted fidelity only represents the quality of the light-shift gate,
whereas from applying a single gate we extracted the fidelity of the entangling
operation which also includes the single-qubit operations.
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Figure 5.12: Pulse sequence for an entangling gate using the phase gate. The gate
pulse g(t) is split into two equal parts and embedded in the arms of a spin-echo
sequence. When doing multiple gates to amplify the gate error, g(t/2) is repeated
N times in each arm. After the second π/2 pulse a Bell state Φ± is created. By
applying an additional π/2-pulse with varying phase we obtain parity oscillations.

With the single gate calibrated we now apply N gates in each arm of the spin-
echo sequence. We are only interested in the performance when applying an odd
number of gates, as a sequence of ideal even number of gates disentangles the
qubits. The parity oscillations after 1 and 7 gates for a 125 µs gate are shown
in figure 5.13. By fitting equation 5.4 we find the contrasts A1 = 0.97(1) and
A7 = 0.87(3) and phases Φ1 = 5.38(2) rad and Φ7 = 2.44(4) rad for 1 and 7 gates,
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respectively. In the ideal case, we would expect a π phase difference, since the
phase of the Bell state is flipped after every two gates. The deviation from the
expected value might be a consequence of the gate’s imperfection.
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Figure 5.13: Parity scan of the Bell state generated by a single and multiple ap-
plications of a 125 µs gate. The solid lines show fits to equation 5.4 to determine
the amplitude of the parity oscillation.

We now quantify the error per gate by observing the decay of multiple applied
gates. As the gate fidelity is found by averaging the amplitude of the parity
oscillation and the population fidelity, we record these for each number of gates.
In figure 5.14 we show the decay curves for a 125 µs and a 205 µs gate. For the
population fidelity decay curve we notice two outliers that deviate significantly
from the expected behaviour at 3 gates of the 125 µs and at 7 gates of the 205 µs
gate. It should be noted that due to the drift of the Rabi frequency discussed in
section 5.2.3 we usually recalibrate the gate between datapoints. Thus, we suspect
that the outliers are caused by imperfect re-calibration.

We estimate the single gate fidelity by extrapolating the decay curves. Due to
decoherence, we expect the parity to converge to 0 if the total sequence time is
much longer than the coherence time. Similarly, we expect the population fidelity
to converge to 0.5, as the populations will be uniformly distributed across the four
states due to decoherence. We fit our data to the functions

Fparity(N) = εSPAMF
N and (5.5)

Fpopulations(N) = εSPAM(FN + 0.5), (5.6)

for the parity and the populations decay curve, respectively. Here, εSPAM accounts
for the errors in state preparation and readout as well as the local qubit operations.
We find the values F125 = 0.994(1) and F205 = 0.992(1) for the short and long gate
respectively.
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Figure 5.14: Gate decay curve for multiple applied light-shift gates. In (a) the
decay of population fidelity is shown, (b) shows the decay of total fidelity. Blue
and red data show the decay for a 125 µs and 205 µs gates respectively. The solid
lines show exponential decay fits (eq. 5.6) to extrapolate the fidelity of a single
gate.

We now compare the measured gate fidelity with a theoretical expectation. We
analyse our gate infidelity by using analytical error models described in reference
[25]. As the analytical model does not cover spin-decoherence as a function of
the decoherence time, we determine the error due to spin-decoherence by simulat-
ing equation 3.31 using the Python library QuTiP [43]. The spin-decoherence is
simulated by using the collapse operator Γ(σz ⊗ σz) with Γ = 1√2τc,echo.

Since our infidelity is on the order of 1 %, we only discuss the dominant errors
with contributions > 0.01 %. These include spin-decoherence, motional dephasing,
motional heating and off-resonant carrier coupling. The effects of motional heating
and dephasing are estimated by using the heating rate ˙̄n = 13 s−1 and motional
coherence time τmotion = 80 ms that were previously measured on this apparatus.
The results are shown in table 1. It can be seen that spin-decoherence is the lead-
ing source of error. However, the expected infidelity due to spin-decoherence is
significantly larger than the measured error. This might possibly be explained by
the method used for simulating the error, as using the σz⊗σz collapse operator as-
sumes an exponential decay of the coherence. Though as we have shown in section
5.2.2, the observed decay follows a Gaussian curve. Since initial the gradient of the
exponential decay curve is steeper than the gradient of the Gaussian curve, this
could overestimate the infidelity. Determining the spin-decoherence error more
precisely would require more thorough simulations that are beyond the scope of
this thesis.
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Error source tg = 125 µs tg = 205 µs
Spin-decoherence 1.66 % 2.44 %
Motional dephasing 0.11 % 0.18 %
Motional heating 0.04 % 0.07 %
Off-resonant carrier coupling 0.01 % 0.005 %
Total error 1.82 % 2.70 %
Measured infidelity 0.6(1) % 0.8(1) %

Table 1: Infidelity estimates for the 125 µs and 205 µs light-shift gates. Spin-
decoherence is determined by numerical simulations of equation 3.31 with coher-
ence time τecho = 9.7 ms. Contributions from motional dephasing, motional heating
and off-resonant carrier coupling are determined via analytical models from ref.
[44].

5.4 Raman Mølmer-Sørensen gate
5.4.1 Setting up the gate

When switching from the light-shift gate to the Raman MS gate, we first need to
make physical changes to our setup. The polarisation of the R⊥ beam is rotated
by 90° from σ± to π via a λ/2-waveplate. In this configuration, we are able
to perform local operations and entangling gate operations with the R⊥ and R‖
beams, hence we do not use the Rπ beam. Performing single-qubit operations is
done with the monochromat configuration of the R‖ beam. The frequency fR‖ of
the monochromat is set such that the frequency difference between the R‖ and
R⊥ beam matches the carrier transition frequency of the ground state. With this
set, we are able to drive coherent Rabi oscillations of the two ions. These will be
used to perform the analysis pulse that induces parity oscillations as discussed in
section 5.3.3.

After setting up the frequency and power for the single-qubit operation, we set
up the gate as follows:

1. We set the rf frequencies and powers of the two components of the bichromatic
configuration that are fed to the R‖ beam’s AOM. For obtaining the Raman
(σx ⊗ σx)-interaction, the frequencies of red and blue components of the
bichromat have to be chosen symmetric around the carrier transition. First,
we choose a desired gate time tg. The rf frequency of the blue component is
then chosen as fR‖ + ωz + 2π/tg and the red component as fR‖ − ωz − 2π/tg.
This will create the gate interaction on the axial COM mode.

2. Next, we equalise the beam powers such that the red and blue component
have equal optical powers. The rf power of the two components is calibrated

57



by feeding them to the R‖ beam’s AOM and monitoring the optical power
that reaches the trap on a photodiode. We first turn off the blue component
and set the rf power of the red component to obtain the desired optical power
Po. The red component is then turned off and we turn on the blue component
and set its rf power such that the optical power at the photodiode matches
Po.

3. When the frequencies and powers of the beams are set, we further optimise
the sequence parameters by optimising the gate interaction on two ions. We
do this by preparing the ions in |↓↓〉 and applying the bichromatic gate
pulse. The gate pulse is implemented by simultaneously illuminating the
ions with the R⊥ beam and the R‖ beam with the bichromatic configuration.
By varying the duration of the gate pulse we find the time at which the
second motional loops close. This is expected after t = 2tg and is indicated
when p↓↑+p↑↓ is minimised. After this, we choose the power of the R⊥ beam
such that p↑↑ is maximised at 2tg.

4. In order to balance out unequal Rabi frequencies of the blue and red com-
ponent of the bichromat, one can now scan the frequency R⊥ beam in the
range of a few 1 kHz to maximise p↑↑ even further.

We usually repeat this process to find the optimal parameters. After the optimi-
sation, we expect to observe an entangled state when applying the gate pulse for
tg, indicated by p↑↑ = p↓↓ = 0.5.

5.4.2 Results

The results for a 59 µs MS gate are shown in figure 5.15. The evolution of the
population is similar to the light-shift gate presented in section 3.3.1. We observe
that the motional loops are closed at t = 59 µs and t = 120 µs, as indicated by the
minima of p↓↑+p↑↓. Equal populations in p↓↓ and p↑↑ indicate the generation of an
entangled state. This entangled state is again disentangled after the second loop.

As explained in section 5.3.3 we induce parity oscillations by an analysis pulse
to determine the fidelity of the gate. The results are shown in figure 5.15. From
a fit to equation 5.4 we find the amplitude A = 0.999(6) and phase Φ = 3.14(4).
Together with the population fidelity p↓↓+p↑↑ = 0.986(4) we find the overall fidelity
F = 0.993(3).

As done in section 5.3.4, we now apply multiple gates to monitor the gate decay
and extrapolate the fidelity of a single gate. The population and fidelity decay for
a different number of gates are shown in figure 5.16. We extrapolate the single-
gate population fidelity and parity by fitting our data to equation 5.6. We find
F = 0.996(1).
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Figure 5.15: Population dynamics of the Raman MS gate. Left: Population dy-
namics for different lengths of the gate pulse. At t = 59 µs the loops in phase space
are closed and the ions are in the entangled state |↑↑〉 + |↓↓〉. Applying the gate
pulse for longer times disentangles the state until the ions are completely trans-
ferred to the state |↑↑〉 at t = 120 µs. Right: Scanning the phase of a π/2-pulse
applied to the Bell state created at t = 59 µs leads to parity oscillations. The
solid line represents a fit to equation 5.4 with amplitude A = 99.9(6) and phase
Φ = 3.14(4).

We estimate the expected gate error as done in section 5.3.4. The total expected
error is 0.81 %. As in section 5.3.4, the largest contribution is caused by spin-
decoherence with an estimated error of 0.72 %. This is again significantly larger
than the measured infidelity 1− F = 0.4(1) % and might be explained by the fact
that the simulation assumes an exponential decay, as discussed in section 5.3.4.
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Figure 5.16: Gate decay curve for multiple applied Raman MS gates. Solid lines
are fits of equation 5.6 to the Bell state and population fidelity. By averaging the
extrapolated population fidelity and parity we find the total fidelity F = 0.996(1).
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6 Conclusion and Outlook
In the course of this thesis we have created a setup to implement coherent Raman
interactions on the ground state of 40Ca+ ions. These interactions were used to
implement quantum logic gates on the ground state qubit of 40Ca+. We have
demonstrated local qubit operations on a single ion and two ions. Moreover, we
have presented two methods to entangle two ions in their ground state.

We used the setup for local qubit operations on 40Ca+ ions. First, we have per-
formed spectroscopy on the ground state carrier transition and the blue sidebands
of the axial motional modes. With Rabi oscillations, we have shown that we can
coherently transfer the state populations between the two ground states. By em-
ploying Ramsey and spin-echo sequences we were able to determine the coherence
time of our system. Next, we investigated the effect of beam alignment on the
quality of Rabi oscillations. We found that centring the beam on the ion enhances
the Rabi decay time constant. Finally, we have shown Rabi oscillations of two ions
with a relative Rabi frequency difference of less than 1 %.

We entangled two 40Ca+ ions by using the light-shift gate embedded in Ramsey
and spin-echo sequences. For a single gate embedded in a Ramsey sequence we
observed a Bell state fidelity of 95(3) %. By performing a two-loop light-shift gate
within a spin-echo sequence we were able to increase the single gate fidelity above
99 %. As this is on the same order of magnitude as our SPAM errors, we applied
multiple subsequent gates to amplify the gate error without increasing the SPAM
error. From the gate decay curve we extrapolated a single gate fidelity of 99.4(1) %
for a 125 µs gate.

Finally, we created a Mølmer-Sørensen type interaction by modulating one Ra-
man beam with a bichromatic electromagnetic field. With this we were able to
entangle two ions in their ground state. We applied multiple subsequent gates
to obtain a gate decay curve. From this we determined a single gate fidelity of
99.6(1) %.

The currently largest contribution limiting our setup’s performance is spin-
decoherence. We suspect that this is mainly caused by phase instabilities between
beam paths of the orthogonal beam pair. We suspect that we could reduce this
effect by reducing the mechanical vibrations of the optical setup or by reducing
the length of the beam paths by re-arranging the optical setup at the trap in a
more compact way. A different approach would be to implement active phase
stabilisation via a feedback loop.

For future experiments, we are currently working on implementing single-qubit
and two-qubit operations for a qubit encoded in the ground state of 88Sr+ ions. As
a next step, we want to use the light-shift gate to create entanglement of a mixed-
species 88Sr+-40Ca+ ion crystal. The setup presented in this thesis could also be
used to implement the σz ⊗ σz light-shift gate on the optical qubit as suggested in

60



ref. [45]. Both methods would expand the current toolbox of our experiment and
enable experiments for mixed-species quantum logic experiments.
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