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Abstract
Quantum systems and their utility for quantum information processing rely critically on our
ability to isolate them from the environment while simultaneously admitting control fields to drive
coherent evolution. These two requirements are intrinsically at odds and much effort has been
devoted to reconcile the two. In state-of-the-art quantum information processors environmental
shielding is now often so effective that the main contributors to noise are introduced via the
control fields themselves. In this work, we apply a technique from optimal control to mitigate
experimental imperfections in the coherent control of quantum systems, specifically calcium-40
ions in a linear Paul trap. To this end, we enable control over additional degrees of freedom in the
radio frequency pulse-generation and integrate this functionality into the existing experimental
control software using the ARTIQ and Sinara ecosystem. Among several competing modulation
techniques, we opt for a balanced Gaussian amplitude modulation scheme for the two-qubit
entangling gate based on the Mølmer-Sørensen interaction, which has previously been shown to
reduce the unwanted effects of mode crowding in the literature. The choice of this technique
was informed by the characterization of the control electronics and a numerical simulation was
implemented to aid the parameter selection for experimental calibration scans. A calibration
technique was introduced to enable the time-efficient calibration of all 120 pairs in a 16-ion
chain, leading to a mean state preparation fidelity of 98.48+0.48

−0.47 %, thus surpassing the previous
entangling gate implementation’s 97.90+0.52

−0.47 %.

Zusammenfassung
Der Nutzen von Quantensystemen für die Quanteninformationsverarbeitung hängt entscheidend
von der Fähigkeit ab, sie von der Umgebung zu isolieren und gleichzeitig externe Kontrollfelder
zuzulassen, welche eine kohärente Manipulation des Zustands ermöglichen. Diese beiden An-
forderungen stehen sich jedoch diametral gegenüber und es benötigt erheblichen Aufwand sie
miteinander in Einklang zu bringen. In hochmodernen Quanteninformationsprozessoren ist die
Abschirmung des Quantensystems von der Umgebung mittlerweile so effektiv, dass die Kon-
trollfelder selbst einen der größten Beiträge zum Rauschen liefern. In dieser Arbeit wenden wir
eine Technik der optimalen Steuerung an, um experimentelle Imperfektionen der kohärenten
Kontrolle von Calcium-40-Ionen in einer linearen Paulfalle zu reduzieren. Die Kontrolle zusätzli-
cher Freiheitsgrade bei der Erzeugung von Radiofrequenzpulsen wird dafür ermöglicht und diese
Funktionalität in die bestehende, experimentelle Kontrollsoftware unter Verwendung des ARTIQ-
und Sinara-Ökosystems integriert. Für das zwei-Qubit-Verschränkungsgatter basierend auf der
Mølmer-Sørensen-Wechselwirkung entschieden wir uns unter zahlreichen Modulationstechniken
für eine ausgeglichene Gauß-Amplitudenmodulation. Im Experiment konnte diese Technik bereits
zeigen, dass sie die unerwünschten Auswirkungen der Modenverdichtung nachweislich reduziert.
Die Wahl dieser Technik wurde durch die Charakterisierung der Radiofrequenz-Hardware begrün-
det und zudem wurde eine numerische Simulation implementiert, um die Parameterauswahl für
experimentelle Kalibrierungsscans zu unterstützen. Die zeitsparende Kalibrierung aller 120 Paa-
re in einer 16 Ionen Kette wird durch die Einführung einer Kalibrierungstechnik ermöglicht, mit
deren Hilfe eine mittlere Zustandspräparationsgüte von 98.48+0.48

−0.47 % erreicht wurde. Das erzielte
Ergebnis stellt somit eine Verbesserung gegenüber dem Wert von 97.90+0.52

−0.47 % der vorherigen
Gatterimplementierung dar.
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1. Introduction

Mounting inconsistencies between empirical observations and the predictions of classical physics
emerged at the turn of the 20th century, hinting at the incomplete nature of the prevailing
theory at the time. Noteworthy examples include the prediction of an ultraviolet catastrophe
for black-body radiation and the inability to describe the stability of atoms. These discrepancies
could only be reconciled with the advent of quantum physics in the first half of the 20th century,
which offered a mathematical way to accurately describe and model problems at the atomic scale.
Beyond advancing humanity’s collective understanding of nature to new regimes, the theory also
laid the groundwork for various technological innovations to come.

In the so called first quantum revolution, these newfound insights were used to construct entirely
new types of devices, marking the beginning of the information or silicon age. The name comes
from the transistor, a semiconductor device made out of pure1 silicon that acts as an electronic
switch, with modern computer chips containing billions of them. Enabled by the invention of the
laser, photolithography played a key role in the continuous miniaturization of transistors over
the last few decades, leading to a significant increase in computational capabilities [2]. However
the rate of progress is slowing, as it becomes ever more difficult (and expensive) to create smaller
transistors. This necessitates research into new production methods in addition to the exploration
of different computational models.

Rather than building devices based on insights gained from quantum mechanics, the emphasis
of the second quantum revolution is on the direct manipulation of single quantum systems, with
the focus in this thesis being on quantum computers as a new computational paradigm [3]. The
underlying idea is to create an engineered quantum system and harness its quantum properties
like entanglement in such a way that its capabilities significantly surpass those achievable on
a completely classical system. For example the Shor Algorithm promises a superpolynomial
speedup in finding the prime factors of an integer when compared to the best known classical
algorithm [4]. For this to work however, the quantum system needs to be well isolated from
its surrounding environment such that it retains its desirable properties, while at the same time
being amenable to control by external fields for the manipulation of its state. Significant effort has
been devoted to bringing those two opposing requirements together to realize quantum computers
capable of solving relevant problems.

Given that information is a physical entity as described in the similar titled reference [5], quantum
information can be encoded into several different physical systems. One of the first quantum
computing platforms was realized in 1998 using Nuclear Magnetic Resonance techniques [6] with
other platforms soon following suit. Among the most promising and matured platforms to date
are superconducting circuits [7], neutral atoms [8], and trapped-ions [9, 10]. The latter one is
used in this thesis to encode a quantum mechanical two-level system or quantum bit (qubit) into
two electronic states of 40Ca+. Multiple ions are trapped in a linear string by means of time-

1Silicon wafers always contain trace impurities, but the requirement for advanced semiconductors is a purity of
12 Nines (12N), meaning that at most one out of a trillion atoms is non-silicon [1].
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1. Introduction

varying electric fields created with a Paul trap and their quantum state is manipulated with laser
beams. Incidentally, these control fields are also one of the main contributors to errors because
the shielding of the quantum system from the environment is sufficiently high in state-of-the-art
quantum information processors.

This becomes particularly evident in our experimental platform where all ions are confined within
a single trapping potential. In this system, one of the key limitations for two-qubit entangling
gates based on the Mølmer Sørensen interaction is radial mode crowding, which leads to residual
spin-motion entanglement. This issue becomes more pronounced in larger ion chains and limits
scaling efforts in our system. Hence the focus of this thesis is on the implementation of an optimal
control technique as a way to realize quantum gates exceeding the performance of the current
implementation. This directly addresses one of the main outstanding challenges in quantum
computing, namely scaling up the number of qubits while at the same time reducing errors
induced by the control field, with the latter being of primary concern here.

The outline of this thesis is as follows: Chapter 2 presents the framework of control theory and
its adaption to quantum information processing. In addition the relevant light-matter interaction
responsible for the qubit state manipulation is presented, followed by a brief introduction of the
ion trap quantum computing platform. The setup relevant for the execution of the two-qubit
entangling gates is then outlined in Chap. 3, focusing on the radio frequency signal generation
as well as the optical setup. Chapter 4 then presents the optimal control method of balanced
frequency-robust entangling gates pursued in this thesis. It was chosen based on an analysis of
the main error sources in the setup and a characterization of the capabilities and limitations of
the radio frequency signal generation in Chap. 5. Experimental results for both a 2- and 16-ion
chain are shown in Chap. 6. The thesis concludes in Chap. 7 with a summary and discussion of
the obtained results as well as an outlook towards possible future improvements.
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2. Theoretical framework

This chapter will summarize the theoretical foundation needed for this thesis by starting with a
brief introduction to control theory in Sec. 2.1, which offers an abstract way of describing control
problems. These concepts will then be mapped to quantum information processing in Sec. 2.2
and the chapter concludes in Sec. 2.3 with a focus on trapped-ion quantum computing as one
particular platform for quantum information processing.

2.1. Control theory
In this section the basic terminology of control theory relevant to this thesis is introduced,
starting with the definition of control systems and which components they consist of, followed
by a comparison of open- and closed-loop control systems, and concluding with the problem of
optimal control.

A control system is “an arrangement of physical components connected or related in such a
manner as to command, direct, or regulate itself or another system” [11]. Given this definition, it
is not surprising that control systems encompass a broad range of devices in reality, ranging from
simple light switches for controlling a ceiling light, to thermostats for setting and regulating the
room temperature all the way to complex control systems that are able to autonomously land a
rocket on a drone ship.

All these mentioned control systems can be described by control theory under a unified framework
and terminology, which is based on the components that are schematically shown in Fig. 2.1 and
described following Ref. 12. Common to all control systems is the plant or process, which is the
system over which one wants to exert control in a precise and reproducible manner. The plant
is mathematically modelled in this thesis using first order ordinary differential equations of the
form

ṡ(t) = a(s(t), u(t), t), (2.1)

where the state vector s(t) = (s1(t), s2(t), . . . , sn(t)) consists of n state variables si(t) describing
the state of the plant at time t ∈ [ti, tf ] between the initial t0 and final time tf . In Fig. 2.1,
the state of the plant s(t) is referred to as actual output, which can be manipulated using m
external control inputs uj(t), where the control vector containing all control inputs is defined as
u(t) = (u1(t), u2(t), . . . , um(t)).

The aim of control theory is to find a suitable control vector u(t) such that the actual output
matches the desired output of the plant. In particular, given a system state s(t), the controller
computes a control signal that implements the necessary control inputs using one or multiple
actuators to physically alter the state of the plant. If the control signal is computed correctly,
this should move the actual closer to the desired output of the plant. A distinction has to be
made between open- and closed-loop control systems, which differ in how the actual output is
returned back to the controller.

3



2. Theoretical framework

Figure 2.1.: Schematic overview of control loops. The goal is to physically alter the actual output of
a plant by using actuators, which are fed a control signal that is calculated by a controller taking into
account the desired and actual output. For open-loop control systems, only the initial state of the plant
is considered whereas for closed-loop control systems the actual output for all times is fed back to the
controller.

If the actual output s(t) for t > t0 is fed back to the controller and is taken into account for
computing the desired input control values, then one refers to the control system as closed-loop
control system. Note that for this one has to measure the actual output with a sensor, which
given its physical implementation alters the actual to a measured output and this systematic
error needs to be taken into account. Closed-loop control systems possess the ability to find
suitable control vectors u(t) for arbitrary state vectors s(t). This allows these control systems
to respond to externally induced changes to the plant and further minimize the time required
to achieve the desired state. One disadvantage of closed-loop control systems is their potential
instability, as the measured output is used for computing the control input and this can result in
unstable behavior when the system design is not carefully chosen.

Open-loop control systems either assume a particular state for the initial time s(t0) or measure
the actual output only for t0 with a sensor and compute the control input values given this
assumed or measured state. As a consequence, an accurate model of the behaviour of the plant
is needed for open-loop control systems in order to account for possible external perturbations
occurring at times t > t0. Since no feedback signal is used in the open loop controller, the ability
of the model to reliably predict the behaviour of the plant has to be checked in a separate fashion.
Given that open-loop control is evidently simpler in terms of implementation, it is preferable to
use for systems whose behavior is thoroughly understood. What remains to be discussed is how
the controller computes the control signal, which in turn corresponds to the control input signals
manipulating the plant, and if there is an optimal solution for this problem.

Optimal control theory addresses this problem and aims to find a suitable control vector u(t) by
simultaneously adhering to system constraints and/or performance measures. System constraints
in this context refer to admissible values for the state vector s(t) and the control vector u(t). For
the example of an automatic rocket landing, the velocities the rocket can reasonable withstand can
be bounded from above as values higher than a threshold velocity would lead to the destruction of
the rocket. The same holds for the control input values, where the limiting factor is that certain
control input values cannot be realized given the set of available actuators. With this it becomes
apparent that the formulation of an optimal control problem is an interplay between recognizing
the boundaries of physically realized systems and incorporating those boundaries into a model
that accurately predicts the system behaviour.

After modelling the physical system using differential equations and incorporating possible system
constraints, there can often exist multiple solutions in terms of control input values for reaching a
desired state given an actual state of the system. These solutions can differ in various aspects, for
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2. Theoretical framework

example in the time it takes to reach the desired state given an initial state, and minimum-time
problems aim to find the shortest time to achieve this. Furthermore in terminal control problems,
the difference between the actually realized state of the plant at time tf is compared to the desired
state. In minimal control-effort problems a cost is assigned to required control input values in
terms of how the duration of the assumed control input is related to energy expenditure (for
example fuel or power consumption) or what impact changes of control input values have on the
energy expenditure. Those performance criteria can be mathematically formulated by using a
cost function J of the general form

J = h(s(tf ), tf ) +
∫ tf

t0
g(s(t),u(t), t) dt, (2.2)

where h and g are scalar functions and the result for given control input values u(t) and states
s(t) is a number. The goal of optimal control theory is to find control input values u(t) that
minimize the cost function globally by simultaneously adhering to the physical constraints of the
system that should be modelled. Precisely these constraints are the reason why the existence of
a solution is not guaranteed, as possible solutions may simply be unfeasible to achieve in a given
system. In the next section we will map those concepts to quantum information processing.

2.2. Quantum optimal control theory
In this section, the concepts of control theory introduced in the previous section will be embedded
into the context of quantum information processing. The necessary formalism to model the quan-
tum system of interest is introduced in Sec. 2.2.1, followed by an overview of how the quantum
state can be manipulated with light in Sec. 2.2.2. The section concludes with a brief discussion
about physical constraints and the performance measures used in this thesis in Sec. 2.2.3.

2.2.1. Quantum information processing
We will first introduce classical information processing and then proceed to quantum information
processing in order to illustrate their difference. The treatment in this section draws from Ref. 13.
The fundamental unit of information in classical computing is called binary digit or short bit,
and it can only take one of two states 0 and 1 as the name suggests, without any intermediate
states. This representation of information is advantageous when one considers that information
is encoded in noisy physical signals. For example a single bit can be encoded into voltage
signals, where a clear separation between a low and high voltage signal ensures the accurate
differentiation between the two states even in the presence of noise. The quantum analog to
the bit as the fundamental unit of information is called quantum bit or short qubit. One key
difference to the bit is that the state of the qubit, which is represented by a quantum state vector
|ψ⟩, can not only assume the orthogonal basis states |0⟩ and |1⟩, but also any superposition of
them in the form

|ψ⟩ = α |0⟩ + β |1⟩ , (2.3)

with coefficients α, β ∈ C. A measurement of the state vector |ψ⟩ projects it with probability
p0 = |⟨0|ψ⟩|2 = |α|2 into the state |0⟩ and with probability p1 = |⟨1|ψ⟩|2 = |β|2 into the state |1⟩.
For a normalized state vector |⟨ψ|ψ⟩|2 = 1 the condition p0 +p1 = 1 holds, such that the quantum
state can be described by a unit vector in a complex vector space called Hilbert space H. The
size of the Hilbert space is two-dimensional for a single qubit and in general is of finite-dimension
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2. Theoretical framework

for the quantum information processing purposes used in this thesis. In addition to the states
|0⟩ and |1⟩, four other orthonormal basis states | ± i⟩ and |±⟩ can be defined as follows:

| ± i⟩ = 1√
2

(|0⟩ ± i |1⟩) |±⟩ = 1√
2

(|0⟩ ± |1⟩) (2.4)

It is useful to describe the state vector |ψ⟩ of a single qubit in spherical coordinates and visualize
it on the Bloch sphere as follows

|ψ⟩ = eiχ
(
cos θ

2 |0⟩ + eiφ sin θ
2 |1⟩

)
, (2.5)

where the angle θ and the phase φ uniquely define pure states lying on the surface of the Bloch
sphere with radius 1. State vectors that posses equal values of (θ, φ) but differ in their global
phase χ will yield the same measurement result. They are thus indistinguishable from each
other with respect to their physical properties and hence the global phase can be omitted for
practical purposes. The time evolution of the system for pure quantum states is described by the
Schrödinger equation

iℏ
d
dt |ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ (2.6)

where ℏ is the reduced Planck constant and Ĥ(t) the time-dependent Hamilton operator.

A quantum state can not only be described by a state vector |ψ⟩ but also by a density matrix
ρ using the density matrix formalism. Both descriptions are mathematically equivalent for pure
states tr(ρ2) = 1 but the latter one is more convenient when describing for example ensembles of
pure quantum states {pi, |ψi⟩} called mixed states

ρ ≡
∑

n

pn|ψn⟩⟨ψn|, (2.7)

where pn is the probability to find the system in the pure state |ψn⟩, with the index n denoting all
possible or considered states. The density matrix is a hermitian, positive semi-definite operator
with tr(ρ) = 1 and it is describing a pure state if tr(ρ2) = 1 and a mixed state if tr(ρ2) < 1. It
can be shown that every density matrix for qubits can be expressed in term of its Bloch vector
r = (rx, ry, rz)⊤ representation

ρ = 12 + r · σ

2 = 1
2

(
1 + rz rx − iry

rx + iry 1 − rz

)
(2.8)

by using the two-dimensional identity matrix 12 and the trace-less Pauli matrices σ = (σx, σy, σz)
defined as

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.9)

With that an arbitrary single qubit state can be represented on the Bloch sphere by either using
Eq. 2.5 for a pure state lying on the surface of the Bloch sphere with radius 1, or Eq. 2.8 for
a mixed state that will lie within the sphere. The maximally mixed state ρ = 12/2 would be
located at the center of the Bloch sphere with r = 0. In Fig. 2.2 the state vector |ψ⟩ is shown
together with its polar (cosφ sin θ, sinφ sin θ, cos θ) as well as Cartesian r coordinates.

6



2. Theoretical framework

Figure 2.2.: Bloch sphere representation of the state of a single qubit for pure and mixed states. Points
on the surface of the Bloch sphere correspond to pure states, whereas points inside correspond to mixed
states. The maximally mixed state is located in the center of the sphere.

Similar to how the Schrödinger equation 2.6 governs the time evolution for state vectors, the
time evolution for the density matrix formalism is described by the von Neumann equation

dρ
dt = − i

ℏ

[
Ĥ(t), ρ

]
(2.10)

where [·, ·] is the commutator following the relation
[
â, b̂
]

= âb̂− b̂â with â, b̂ being operators.

Depending on the situation we can identify either the Schrödinger equation 2.6 or the von Neu-
mann equation 2.10 as the first-order differential equation underlying the optimal control problem
in Eq. 2.1. What is left is to find an expression for the Hamiltonian Ĥ modelling the system
of interest and to identify free parameters of the system that can be controlled by a suitable
controller in order to induce the desired changes in the quantum state.

2.2.2. Light-matter interaction
After having introduced the general notation for quantum information processing in the previous
section, this section will focus on the mathematical treatment of how to manipulate quantum me-
chanical two-level systems confined in a harmonic potential. Control over the system is achieved
by changing the available parameters of an applied electric field. The aim of this section is
to derive the Hamiltonian function governing this light-matter interaction and to identify suit-
able and experimentally accessible parameters of the electric field to achieve the desired state
manipulation.

The system we want to model can be described by a total system Hamiltonian Ĥsys consisting
of a time-independent part Ĥ0 and a time-dependent part Ĥlm that models the light-matter
interaction, as follows:

Ĥsys = Ĥel + Ĥmot︸ ︷︷ ︸
Ĥ0

+Ĥlm(t). (2.11)

7



2. Theoretical framework

The first term Ĥel models a quantum mechanical two-level system with a ground state |g⟩ and
an excited state |e⟩, separated by an energy difference of ℏωeg. This system can be regarded as a
qubit, allowing the computational basis states |0⟩ := |g⟩ and |1⟩ := |e⟩ to be encoded into those
two energy levels. When considering N identical two-level systems indexed by j = 1, 2, . . . , N ;
the energy levels of system j are are eigenstates of the σ̂z,j = |1⟩j ⟨1|j − |0⟩j ⟨0|j operator, which
is acting solely on system j. Thus it is natural to express the Hamiltonian as

Ĥel =
N∑

j=1

ℏωeg
2 σ̂z,j . (2.12)

The second term Ĥmot concerns the trapping potential, which in first order can be approximated
as a quadratic potential in three dimensions and modelled as three separate, one-dimensional
harmonic oscillators. When trapping N two-level systems in this potential, there exist in each
direction N motional eigenfrequencies ωk of the coupled system, which for three dimensions yields
for the mode index k the values k = 1, 2, . . . , 3N . These eigenfrequencies ωk can be numerically
calculated following Ref. 14 and the Hamiltonian then takes on the form

Ĥmot =
3N∑
k=1

ℏωk

(
â†

kâk + 1
2

)
=

3N∑
k=1

ℏωk

(
n̂k + 1

2

)
. (2.13)

Here, â†
k(âk) is the motional creation (annihilation) operator and n̂k = â†

kâk is the number
operator of mode k that has the number of phonons in the harmonic oscillator of mode k as its
eigenvalue. The joint system, consisting of N two-level systems confined in a harmonic potential,
is assumed to be static and this time-independent part of the system Hamiltonian Ĥsys is denoted
as Ĥ0.

The third term Ĥlm(t) models the interaction of an electric field with the joint system Ĥ0 and can
be regarded as a perturbation to an otherwise known system. As such it is more convenient to
describe the time evolution in the interaction picture, where the state in the interaction picture
|ψI(t)⟩ takes on the form |ψI(t)⟩ = Û0(t)|ψ(t= 0)⟩ with Û0(t) = exp(−iĤ0t/ℏ). The time evolution
can then be obtained with the equation

iℏ
d
dt |ψI(t)⟩ = Ĥint(t)|ψI(t)⟩ = Û †

0(t)Ĥlm(t)Û0(t)|ψI(t)⟩ (2.14)

where Ĥint(t) is the Hamiltonian in the interaction representation. In the case of a vanishing
electric field (Ĥlm = 0), there is no time evolution of the state in the interaction picture and in
the presence of an electric field, the time evolution is driven by the light-matter interaction part
of the Hamiltonian Ĥlm.

We will now examine two different cases. In the first case described in Sec. 2.2.2, the coupling
of a monochromatic light field to a single qubit leads to a manipulation of the internal quantum
state and hence realizes a single qubit gate. In the second case described in Sec. 2.2.2, a bichro-
matic light field simultaneously illuminates two qubits and entanglement is created by means of
the Mølmer Sørensen interaction. Note that in this chapter qubits are treated as an abstract
concept for quantum mechanical two-level systems and one possible physical realization of qubits
is outlined in Sec. 2.3.

8



2. Theoretical framework

Monochromatic light field

In this section the Hamiltonian governing the manipulation of the quantum state of a single
qubit trapped in a harmonic potential is derived. Given that the two-level system is confined in
a harmonic potential, the relative orientation kx between the position x of the two-level system
with respect to the wave vector k of the incident light field has to be considered. We model the
monochromatic light field here as a plane wave and it is given as a function of position x and
time t by

E(x, t) = E0 cos(ωLt+ kx + φL), (2.15)

where the electric field is described by its frequency ωL, phase φL, wave vector k as well as the
field amplitude E0. The light-matter Hamiltonian then takes on the form

Ĥlm = ℏΩ cos(ωLt+ kx + φL)σ̂x (2.16)

with the Rabi frequency Ω being proportional to the electric field strength E0 and accounting
for the coupling strength between the two energy states due to the light-matter interaction [15].
Changing into the interaction picture with respect to Ĥ0 results in

Ĥint = ℏΩei(Ĥel+Ĥmot)t/ℏ cos
(
ωLt+

∑
k

ηk(âk + â†
k) + φL

)
e−i(Ĥel+Ĥmot)t/ℏ, (2.17)

where the term kx was rewritten using the Lamb-Dicke (LD) parameter ηk and the index of the
motional mode k to kx = ∑

k ηk(âk + â†
k). Here, ηk relates the size x0 of the ground state of the

harmonic oscillator to the wavelength of the laser light |k| = 2π/λ with the relation

ηk = kerx0 cos θr = 2π
λ

√
ℏ

2mωk
cos θr, (2.18)

where er is the unit vector in direction r ∈ {x, y, z} corresponding to the direction of the
motional mode k. The angle between this axis r and the k-vector of the laser beam is denoted
as θr and the mass of the two-level system confined in the trapping potential as m. The further
simplification of Eq. 2.17 involves a rotating wave approximation, where sum frequency terms of
the form ωL + ωeg are dropped as they average out over the considered timescale, resulting in

Ĥint = ℏΩ
2

{
e−i(∆t−φL)σ̂+ exp

[
i
∑

k

ηk

(
âke

iωkt + â†
ke

iωkt
)]

+ h.c.
}
, (2.19)

where the electronic raising and lowering operators σ̂± = (σ̂x ± iσ̂y)/2 have been introduced and
the cosine term was rewritten using cos(x) = (eix + e−ix)/2. The detuning of the laser frequency
ωL from the bare transition frequency ωeg is defined as ∆ = ωL − ωeg and h.c. is short for the
hermitian conjugate. There are only 3 motional modes to consider here (one in each direction)
because only a single two-level system is considered. For simplicity only the highest frequency
motional mode ωtr and hence one LD parameter ηk=tr is considered in the following calculations.
A detailed derivation of Eq. 2.19 can be found in Ref. 16.

An important regime to consider is the LD regime, where the extent of the ground state wave
function is much smaller then the wavelength of the incident electric field. In this regime the
condition η2

k(2n̄k + 1) ≪ 1 holds for all motional modes k, with n̄k the mean phonon number of
mode k. This necessitates cooling of the system to achieve a low phonon number n̄ in conjunction

9



2. Theoretical framework

with the LD parameter satisfying η ≪ 1, called the LD limit. In the LD regime the exponential
function in Eq. 2.19 is expanded up to first order yielding for the interaction Hamiltonian

exp
[
iη
(
âe−iωtrt + â†eiωtrt

)]
= 1+ iη(âe−iωtrt + â†eiωtrt) + O(η2) (2.20)

⇒ Ĥint ≈ ℏΩ
2
{
e−i(∆t−φL)σ̂+

[
1+ iη

(
âe−iωtrt + â†eiωtrt

)]
+ h.c

}
, (2.21)

with higher order terms indicated by O(η2). There are now two different regimes of interest
based on the relationship between the trapping frequency ωtr and the Rabi frequency Ω.

In the unresolved sideband regime with ωtr ≪ Γ(Ω), the spacing of the sidebands is much
smaller than the absorption width of the transition, hence the sidebands cannot be individually
addressed by an electric field. The focus in this section is on the resolved sideband regime with
ωtr ≫ Γ(Ω), where the motional sidebands are resolved and can be individually addressed. An
additional rotating wave approximation can then be applied to Eq. 2.21, where terms oscillating
with the trapping frequency ωtr can be dropped as they average out over the course of the
induced dynamics. From this three distinct cases can be identified, depending on the choice of
the detuning ∆.

1. Carrier transition (∆ = 0):
When the frequency of the electric field is resonant with the transition frequency ωeg, a carrier
transition |0, n⟩ ↔ |1, n⟩ is driven, where the phonon number stays constant as the raising and
lowering operators â† and â drop out. The resulting Hamiltonian for the carrier transition takes
on the form

ĤCAR = ℏΩn,n

2
(
σ̂+e

iφL + σ̂−e
−iφL

)
, (2.22)

with the modified Rabi frequency Ωn,n ≈ Ω(1 − η2n), where higher order terms in the expansion
of the exponential function in Eq. 2.20 were taken into account. The choice of ∆ = 0 enables the
implementation of resonant, single qubit operations as the time evolution assumes the form

R̂(θ, φL) = e−iĤCARt/ℏ =
(

cos( θ
2) −ie−iφL sin( θ

2)
−ieiφL sin( θ

2) cos( θ
2)

)
(2.23)

= exp
(

−iθ2(σ̂x cosφL + σ̂y sinφL)
)
. (2.24)

Visualized on the Bloch sphere, this single qubit operation rotates the state it acts upon and the
rotation is characterized by the two variables φL and θ. Specifically, the rotation axis lies in the
equatorial plane of the Bloch sphere spanned by the x and y axis and is set by the phase of the
electric field φL. Meanwhile, the rotation angle θ = (1 − η2n)

∫ t
0 Ω(t′) dt′ for a time-dependent

Rabi frequency corresponds to the pulse area of the applied electric field. The expression simplifies
to θ = Ωn,n · t when assuming a time-independent Rabi frequency Ω over time t.

2. Sideband transitions (∆ = ±ωtr):
Compared to the carrier transition where the phonon number stays constant ∆n = 0, in side-
band transitions the phonon number is changed by ∆n= ± 1 depending on the driven sideband
transition. Note that transitions with higher order changes in the phonon number |∆n| > 1 are
strongly suppressed in the LD regime by a factor of η|∆n| and thus are not considered further.
The blue sideband (BSB) transition is driven when the frequency of the electric field ωL is pos-
itively detuned by the trap frequency ωtr, so ωL = ωeg + ωtr, leading to transitions of the form
|0, n⟩ ↔ |1, n+ 1⟩. For the red sideband (RSB) transition however a negative detuning is used,

10



2. Theoretical framework

so ωL = ωeg − ωtr, with transitions |0, n⟩ ↔ |1, n− 1⟩ if n > 0. Note that for n = 0, the system
is already in the motional ground state and hence no red sideband transition to a lower energy
state can be driven. The resulting Hamiltonians then take on the form

ĤBSB = iηℏ
Ωn,n+1

2
(
σ̂+â

†eiφL − σ̂−âe
−iφL

)
(2.25)

ĤRSB = iηℏ
Ωn,n−1

2
(
σ̂+âe

iφL − σ̂−â
†e−iφL

)
(2.26)

with the Rabi frequency Ωn,n+1 = η
√
n+ 1Ω for the BSB and Ωn,n−1 = η

√
nΩ for the RSB.

Starting in the state |0, n⟩ with n > 0, Rabi oscillations can be driven to the state |1, n′ =n⟩
(CAR), |1, n′ =n+ 1⟩ (BSB) or |1, n′ =n− 1⟩ (RSB) and the state after time t takes on the form

|ψ(t)⟩ = R(θ, φL)|0, n⟩ = cos θ
2 |0, n⟩ + eiφL sin θ

2 |1, n′⟩, (2.27)

with the pulse area θ = Ωn,n′ · t depending on the driven transition. The coupling strengths Ωn,n′

for these three transitions are summarized in Fig. 2.3a, with examples of resonant operations
illustrated in Fig. 2.3b through their state trajectory on the Bloch sphere. Furthermore, the
excited state population p1(t) from Eq. 2.27 is shown in blue (∆ = 0) in Fig. 2.4. The time it
takes to transfer 100% of the population to the excited state |1, n′⟩ is referred to as “π-time” in
this thesis because the rotation angle is equal to θ = π. It is an important reference time for the
calibration and execution of quantum gates.

Figure 2.3.: a, A two-level system coupled with a harmonic oscillator exhibits carrier transitions (black) as
well as blue and red sideband transitions, with their respective coupling strengths indicated for operation
within the LD regime. b, Three examples of resonant operations with initial state |1⟩ and ∆ = 0,
implementing either a π-pulse with varying phase (square and triangle indicate the final state) or a π/2-
pulse (circle). Resonant operations can be driven on the carrier, blue, or red sideband if operating in the
LD regime.

3. Off-resonant transitions (|∆| ≫ 0 and |∆ ± ωtr| ≫ 0):

The electric field can not only be resonant (∆ = 0) with respect to the carrier and the two sideband
transitions, but it can also be detuned from those transitions and hence be off-resonant. The
excitation probability for both the resonant and off-resonant case is given by

p1(t) =
( Ω

Ωeff

)2
sin2

(Ωeff · t
2

)
, (2.28)

with the effective Rabi frequency Ωeff =
√

Ω2 + ∆2 [17]. For resonant transitions with ∆ = 0,
the effective Rabi frequency becomes equal to the Rabi frequency Ωeff = Ω and the excitation
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2. Theoretical framework

probability reduces to p1 = sin2(θ/2), consistent with Eq. 2.27. Note that for larger values of the
detuning ∆, the amplitude of the excited state probability decreases in tandem with an increase
of the frequency, as shown in Fig. 2.4.

Figure 2.4.: a, Rabi oscillations for different choices of detuning ∆, where the excited state population
p1(t) is plotted for an arbitrary Rabi frequency Ω. Larger values of the detuning lead to an increase in
the effective Rabi frequency and a decrease in the amplitude of the oscillations. b, Bloch sphere picture
showing how the choice of the detuning ∆ affects the Bloch sphere trajectory, with black points showing
the initial state and coloured shapes the respective final state. For large values of the detuning ∆, no
population is exchanged but an overall phase is accumulated which realizes a phase gate.

In the case of a far off-resonant transition from the carrier |∆| ≫ 0 or the two sideband transitions1

|∆ ± ωtr| ≫ 0, there is no population transfer from the ground to the excited state. In addition,
the AC-Stark effect causes a shift in the transition frequency ∆AC compared to the case of a
vanishing electric field with Ω = 0, which can be expressed as

∆AC = − Ω2

2∆ . (2.29)

Following the approach outlined in Ref. 18 and Ref. 19, an effective Hamiltonian for the case of
a large detuning ∆ can be derived, yielding the expression

Ĥeff = 1
ℏ∆ [σ̂−, σ̂+] = ℏ∆AC

4 σ̂z, (2.30)

where only the time average over a period T ≫ 2π/∆ has been considered. From this it becomes
apparent that this operation induces a phase shift between the states |0⟩ and |1⟩ and acts as a
phase gate. In the experiment, rather than physically changing the phase by applying an off-
resonant laser pulse, virtual phase gates are employed that work by changing the applied phase
to all subsequent pulses on the software level [20]. An undesired phase shift from off-resonant
transitions can nevertheless occur in the experiment and methods for compensating this shift are
discussed in Sec. 2.3.3.

1When operating in the LD regime within the two-level atom approximation, these three are the only relevant
transitions that need to be considered. In a physical atom more levels need to be considered.

12



2. Theoretical framework

Bichromatic light field

The previous section introduced the Hamiltonian function describing the interaction of a single
two-level system or qubit with a monochromatic electric field, which led to the possibility of
resonant single-qubit gates by adjusting the pulse area θ as well as the axis of rotation by
changing the phase φL of the electric field. In this section, a bichromatic light field is used to
address a pair of qubits and subsequently create entanglement between them. The following
section introduces this Mølmer Sørensen (MS) gate [21] and describes, which parameters of the
light field can be changed.

More specifically, multiple qubits (N ≥ 2) are confined in a single trapping potential and an
electric field simultaneously illuminates two out of the N qubits, denoted here with indices j1
and j2. The Hamiltonian describing this system takes on the form

Ĥsys = Ĥ0 + Ĥj1
int + Ĥj2

int (2.31)

where the time-independent part Ĥ0 is the same as in Eq. 2.12 and Eq. 2.13, accounting for N
qubits with M = 3N motional modes. The time-dependent part consists of two terms Ĥν

int, with
each term modelling the interaction of the laser beam with a single qubit indexed by ν ∈ {j1, j2}.
Instead of applying a single frequency tone, here the electric field is bichromatic with the frequen-
cies ωeg ± (ωtr + δ), where the plus sign indicates the blue detuned frequency component ωb and
the minus sign the red detuned frequency component ωr. Both frequency tones are detuned by
δ from the highest motional frequency ωtr and similar to the previous section only this mode is
considered. For simplicity, the entire detuning from the transition frequency or carrier frequency
ωeg is denoted as δc = ωtr + δ. The bichromatic field is then a sum of the two contributions

Eb/r(x, t) = E0 cos
[
(ωeg ± (ωtr + δ)) t+ kx + φb/r

]
. (2.32)

where the phase for the blue (red) detuned frequency is denoted as φb (φr) and the electric field
amplitude E0 is assumed to be the same for both frequency components. The resulting electric
field can then be written as

E(t) = Eb(t) + Er(t) = 2E0 cos [ωegt+ kx + φs] · cos [(ωtr + δ)t+ φm] (2.33)

which corresponds to an amplitude modulated wave with carrier ωeg and modulation frequency
ωtr +δ [22] and is shown in Fig. 2.5a. Here two phases have been introduced called the spin-phase
φs and the motional phase φm with their respective definitions

φs = φb + φr

2 and φm = φb − φr

2 . (2.34)

Similarly to the derivation of the monochromatic Hamiltonian, the starting point for the bichro-
matic Hamiltonian is the interaction Hamiltonian in Eq. 2.21, assuming the system is in the
LD regime. Accounting for an additional electric field and using the definitions of the spin and
motional phase results in the transformation

e−i(∆t−φL) → e−i(δct−φb) + ei(δct+φr) → eiφs

(
e−i(δct−φm) + ei(δct−φm)

)
(2.35)

that can be applied to Eq. 2.21. Assuming equal electric field amplitudes at both ions and hence
equal Rabi frequencies Ωj1 = Ωj2 = Ω as well as equal LD parameters yields

Ĥν
int ≈ ℏΩ

2
{
eiφs

(
e−i(δct−φm) + ei(δct−φm)

)
σ+
[
1 + iη

(
âe−iωtrt + â†eiωtrt

)]
+ h.c

}
(2.36)
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Figure 2.5.: a, Time evolution of the bichromatic electric field, consisting of the frequency tones ωeg ±δc,
that is used for the MS gate, with respective parameters shown. b, Relevant energy levels of the joint
system consisting of two qubits trapped in a harmonic potential. The transition paths induced by the
bichromatic field used in the MS gate couple the ground with the excited state via intermediate states. For
an ideal MS gate, destructive interference of intermediate-state amplitudes leaves no remaining population
in these states after the gate time τ .

for the qubit with index ν. Summing up the contributions of both qubits Ĥj1
intand Ĥj2

int and using
the relation cos(x) = (eix + e−ix)/2 yields for the time-dependent part of the Hamiltonian

Ĥint = 2ℏΩ cos (δct− φm) Ŝ−φs (2.37)

− ℏηΩŜπ
2 −φs

(
â†ei[(ωtr−δc)t+φm] + âe−i[(ωtr−δc)t+φm]

)
(2.38)

− ℏηΩŜπ
2 −φs

(
â†ei[(ωtr+δc)t−φm] + âe−i[(ωtr+δc)t−φm]

)
, (2.39)

where Ŝφ = ∑
ν cos(φ)σ̂ν

x +sin(φ)σ̂ν
y is a rotation in the x-y-plane acting simultaneously on qubits

j1 and j2 [23]. The first term ∝ Ŝ−φs describes off-resonant coupling to the carrier transitions
without changing the phonon number, which is undesired for the entangling operation but can
be reduced by choosing a Rabi frequency that is much smaller than the detuning from the
carrier transition Ω ≪ δc. This term coined “direct coupling” also vanishes in the case that the
two conditions outlined in Eq. 2.50 are fulfilled, requiring precise control over the duration and
intensity of the laser beam [24]. In the following derivation of the Hamiltonian, this off-resonant
carrier coupling term will be omitted. Another rotating wave approximation can be carried out
by dropping the two terms in the last line with frequencies ωtr + δc = 2ωtr + δ, when the laser
detuning is placed sufficiently close to the motional mode frequency such that |δc − ωtr| ≪ δc

holds [24]. For the choices φs = −π/2 and φm = 0, corresponding to φb = φr = −π/2, the
Hamiltonian describing the interaction of a bichromatic electric field with two qubits confined in
a single trapping potential assumes the form

ĤBIC = ℏηΩŜx

(
âe−iδt + â†eiδt

)
, (2.40)

with the substitution Ŝx = −Ŝπ = (σ̂j1
x + σ̂j2

x ). In the derivation we implicitly assumed the
use of amplitude pulse shaping at the beginning and end of the pulse in the experiment. If a
simple square pulse would be realized instead, than the interaction basis Ŝx would be dependent
on whether the gate operation starts at the minimum or maximum intensity of the amplitude
modulated laser beam. This effect vanishes when amplitude pulse shaping is used [22, 25].

Having derived the relevant Hamiltonian for the Mølmer Sørensen gate interaction, the next
step is to investigate the time evolution and how a bichromatic electric field can create spin-spin

14



2. Theoretical framework

interaction between a pair of qubits. The relevant energy levels for creating the spin-spin inter-
action are shown in Fig. 2.5b, where the states |00⟩ and |11⟩ are coupled via intermediate states
accompanied by a change in phonon number. The Hamiltonian in Eq. 2.40 is time-dependent
and for times t1>t2 the commutator relation [ĤBIC(t2), ĤBIC(t1)] is nonzero. The time evolution
operator is then obtained with the Magnus expansion given by

Û(t) = exp
(

− i

ℏ

∫ t

0
dt1 ĤBIC(t1) − 1

2ℏ2

∫ t

0
dt2

∫ t1

0
dt1

[
ĤBIC(t2), ĤBIC(t1)

]
+ . . .

)
. (2.41)

Considering only the first two terms of the expansion, since higher order terms of the Magnus
expansion for ĤBIC vanish, leads to the propagator

Û(t) = D̂
(
α(t)Ŝx

)
eiΦ(t)Ŝ2

x , (2.42)

where the displacement operator D̂(α(t)Ŝx) = exp[(α(t)â† − α∗(t)â)Ŝx] has been introduced.
Note that both the phase space trajectory α(t) and the entangling phase Φ(t) will be introduced
in the following paragraphs.

The aim in this thesis is to create maximally entangled states with high-fidelity, which is achieved
for α(τ) = 0 and Φ(τ) = ±π/2 at the end of the gate time t = τ , resulting in the MS gate

MS(Φ = π/2) |00⟩ = ei π
2 Ŝ2

x |00⟩ = 1√
2

(|00⟩ + i |11⟩). (2.43)

Even though the Bloch sphere picture generalizes to arbitrary multi-qubit states, already its
visualization for two qubits would have to be drawn in 4 dimensions. One helpful way to inves-
tigate the time evolution of the two-qubit state during the gate operation is in phase space. The
horizontal axis of phase space corresponds to the real part of the phase-space trajectory Re(α(t))
and the vertical axis to the imaginary part Im(α(t)). Note that the phase space is drawn in the
interaction picture and thus in a rotating frame of reference with respect to the actual physical
system. The state of the two-qubit system at the start of the entangling gate t = 0 is assumed
to be located at the center of phase space and it evolves along a phase space trajectory α(t) that
can be derived from the first order Magnus expansion and is equal to

α(t) = iηΩ
∫ t

0
e−iδt′ dt′ (2.44)

= η
Ω
δ

(1 − e−iδt). (2.45)

Given that |00⟩ = 1
2(|++⟩ + |−−⟩ + |+−⟩ + |−+⟩), it becomes apparent that the displacement

D̂(α(t)Ŝx) of the two-qubit state in phase space is state-dependent. Its amplitude is given by
ηΩ/δ(1 − e−iδt)Ŝx |. . .⟩, with |. . .⟩ the state it acts on. As the LD factor for the COM mode has
the same sign for every ion that couples to it, only the states |++⟩ and |−−⟩ are displaced in
phase space by the spin-dependent force exerted by the MS gate. The states |−+⟩ and |+−⟩
are not displaced in phase space, as Ŝx |+−⟩ = Ŝx |−+⟩ = 0. This is indicated in Fig. 2.6b.
Furthermore a displacement from the center of phase space α ̸= 0 corresponds to entanglement
between the internal degree of freedom of the two-level system (spin in the case of atoms) and
the motional modes. At the end of the gate time t = τ the aim is to achieve α(τ) = 0 in order
to have no residual entanglement between qubit and motional modes. From Eq. 2.45 it follows
that the condition τm̃ = 2πm̃/|δ| needs to be fulfilled for the gate time τm̃, with m̃ ∈ N. For a
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constant Rabi frequency Ω during the gate time this corresponds to a closed circle in phase space
which starts and ends at the origin.

Although the position in phase space returns back to the origin in the ideal case, the state has
accumulated a phase during the evolution called geometric phase. This phase of the entangling
gate Φ can be derived from the second order term in the Magnus expansion in Eq. 2.42 and takes
on the form

Φ(t) = i

2

∫ t

0

(dα(t′)
dt′ α∗(t′) − α(t′)dα∗(t′)

dt′
)

dt′ (2.46)

=
(
η

Ω
δ

)2
[δt− sin(δt)] , (2.47)

and corresponds to the enclosed area in phase space after time t. For the condition t = 2πm̃/|δ|,
when no residual spin-motion entanglement is present, it follows for the entangling phase that

Φ(τm̃) =
(
η

Ω
δ

)2
2πm̃ sign(δ). (2.48)

The only free parameter than can be changed is the Rabi frequency, as the detuning and gate
time τ are in a fixed relation to guarantee a closed phase space trajectory. Maximally entan-
gled states with Φ = ±π/2 are achieved for the choice Ω = |δ|/(2

√
m̃η), with the sign of the

entangling phase depending on whether the detuning δ is positive or negative with respect to ωtr.
Summarized, an ideal gate operation can be obtained by the following choice of parameters for a
single mode:

t = 2πm̃
|δ|

⇒ α(τ) = 0 (2.49)

Ω = |δ|
2
√
m̃η

⇒ Φ(τ) = sign(δ) · π2 . (2.50)

An example of ideally chosen parameters is shown in Fig. 2.6a through the time evolution of
the state population. Starting out in |00⟩, the MS gate is realized for a gate time of τ = 300 µs
resulting in the state (|00⟩ + i |11⟩)/

√
2. At the same time the intermediate state population is

minimal because the two paths coupling the states |00⟩ with |11⟩ via the intermediate states,
where the phonon number is changed, interfere destructively for symmetric detuning around the
carrier frequency ωeg. The transition paths are shown in Fig. 2.5b. If the MS gate is applied for
a total time duration of t = 2τ , the populations of the states |00⟩ and |11⟩ are swapped compared
to t = 0, with the populations returning to their initial state for t = 4τ .

In Fig. 2.6b, the phase space trajectory for this one considered mode with frequency ωtr is shown.
In particular, the effect of the MS gate on particular states is shown, with the states |++⟩ and
|−−⟩ traversing the phase space in a circular trajectory under the assumption of a constant Rabi
frequency during the whole gate duration. The enclosed area of this phase space trajectory is
then equal to the acquired entangling phase at the end of the gate at t = τ .

Up until now only the highest frequency motional mode ωtr has been considered. We will now
extend the Hamiltonian as well as the time evolution to include multiple motional modes ωk. For
the Hamiltonian, one obtains

ĤBIC = ℏΩ
∑

k

Ŝx,k

(
âke

−iδkt + â†
ke

iδkt
)
, (2.51)

16



2. Theoretical framework

Figure 2.6.: a, Time evolution of the state populations for an MS gate with a gate time of τ = 300 µs.
b, Phase space trajectory α showing the circular trajectory for a single mode. The phase space picture
shows the off-resonantly driven harmonic oscillator in the interaction picture rotating with the laser fre-
quency to be stationary. Note that the eigenstates of the Ŝx operator only provide the state-dependent
amplitude for the phase space picture and are not affected by the time evolution shown on the left.

with δk = δc − ωk being the detuning of the laser frequency from the motional mode ωk. The
subscript k on the operators âk and â†

k indicate that they only act on mode k and the LD
parameters have been absorbed by the spin operator Ŝx,k = (ηj1

k σ̂
j1
x + ηj2

x σ̂
j2
x ). The propagator

can be written as the product over motional modes

Û(t) =
∏
k

Ûk(t) =
∏
k

D̂
(
αk(t)Ŝx,k

)
e−iBk(t)Ŝ2

x,k (2.52)

with the phase space trajectory αk and the entangling phase Φ(t) given by the expressions

αk(t) = iΩ
∫ t

0
e−iδkt′ dt′ (2.53)

Φ(t) = i

2
∑

k

ηj1
k η

j2
k

[∫ t

0

(dαk(t)
dt′ α∗

k(t′) − αk(t′)dα∗
k(t′)
dt′

)
dt′
]

︸ ︷︷ ︸
Bk(t)

(2.54)

Instead of having a single, circular2 phase space trajectory describing the time evolution of one
mode, now up to 3N trajectories corresponding to the number of considered modes needs to be
taken into account. The conditions for creating a maximally entangled state are given by

αk(τ) = 0 ∀k (2.55)

Φ(τ) = ±π

2 (2.56)

where the first condition guarantees that no entanglement between spin and motion is present
at the end of the gate, hence that there is no displacement error. The second condition pertains
to the acquired entangling phase and it can either be positive or negative, depending on the
desired operator. Similar to the single mode case, two parameters can be adjusted to achieve
those conditions, namely the detuning δc and the Rabi frequency Ω.

2The phase space trajectory assumes a circular trajectory for constant Rabi frequency Ω and detuning δk during
the gate time.
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2.2.3. Physical constraints and performance measure
After having discussed how single- and two-qubit gates can be implemented using electric fields,
we now turn to the question about which physical constraints exist and how one quantifies the
quality of the gate.

Two main physical constraints are imposed by limitations in the choice of the Rabi frequency and
the detuning. The maximum achievable Rabi frequency is limited by the maximum power that
the source of the electric field can provide and this upper bound is experimentally determined.
For a time-dependent Rabi frequency, there are additional physical constraints coming from the
control electronics that can lead to discrepancies between simulation and experimental results.
These constraints are discussed in more detail in Chap. 5. Furthermore the value of the detuning
δc, which in this thesis is always chosen to be constant during the gate time, is in principle only
limited by the range of frequencies the RF generation hardware can provide. In practice however,
it is sufficient to consider only the frequency range of the motional modes around the considered
carrier transition.

The quality of the MS gate is assessed using the state preparation fidelity F , which quantifies
the ability of the gate to prepare the desired maximally entangled state |ϕ⟩ by comparing it to
the actually achieved state |ψ⟩. For two pure states |ψ⟩ and |ϕ⟩, the state preparation fidelity is
given by the overlap between those two states

F(|ϕ⟩, |ψ⟩) = |⟨ϕ|ψ⟩|2 (2.57)

with the bounds 0 ≤ F ≤ 1. It can be generalized to mixed states ρ and σ as follows:

F(ρ, σ) =
(

tr
√√

ρσ
√
ρ

)2
. (2.58)

For numerical simulations that compute and return the full density matrix of the system at each
time step, referred to as Hamiltonian simulation in Sec. 4.1, this expression can be directly used to
calculate the fidelity. If the numerical simulation does not explicitly calculate the density matrix
of the system but rather uses the phase space picture to simulate the time evolution, called phase
space simulation, a state preparation fidelity can be calculated following Ref. 26. Required for
this are both the phase space trajectory αk(τ) and the acquired entangling phase Φ(τ) at the end
of the gate in conjunction with the experimentally measured mean phonon number n̄k of mode
k. The average gate fidelity is then independent of the initial state and can be calculated using

F̄ ≈ 1
10 [4 + 2(Γj1 + Γj2) sin(2Φ) + Γ+ + Γ−] , (2.59)

where an equal amplitude of the electric field on both qubits was assumed. The individual terms
are given by

Γj1(j2) = exp
[
−2
∑

k

∣∣∣ηj1(j2)
k α

j1(j2)
k

∣∣∣2 coth
(

ωk

2ωk,max
ln(1 + 1/n̄k)

)]
, (2.60)

Γ± = exp
[
−2
∑

k

∣∣∣ηj1
k α

j1
k ± ηj2

k α
j2
k

∣∣∣2 coth
(

ωk

2ωk,max
ln(1 + 1/n̄k)

)]
(2.61)

with ωk,max being the highest frequency mode in the direction of mode k3.
3This is only true when considering radial modes, for axial modes one would need to take the lowest frequency

mode instead of the highest.
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The state preparation fidelity for experimental results F is obtained with population scans and
parity oscillations [27]. The density matrix of a system of N qubits, where 2 out of N qubits
have been addressed with an MS gate, has in the ideal case only 4 nonzero entries that need to
be measured. On the diagonal of the 2N × 2N density matrix are the populations of particular
states and only the entries corresponding to |00⟩ as well as |11⟩ for the considered qubits should
be nonzero for an ideal gate operation. These entries can be obtained by applying a single MS
gate on the target qubits and measuring the population p of |00⟩ + |11⟩ after tracing out qubits
that have not been addressed by the gate operation, thus the population can be inferred with
P = p00+p11. The off-diagonal entries in a density matrix refer to the coherence between different
states and in this particular case the coherence between the states |00⟩ and |11⟩ can be obtained
with so called parity oscillations. Similar to before, a single MS gate is applied to the target
qubits followed by a resonant single-qubit operation R(θ = 0.5, φL = φ) applied to both qubits
individually. This π/2 pulse with varying phase φ corresponds to a local rotation and changes
the parity of the entangled state given by P = p00 + p11 − p10 − p01 periodically with the angle
φ. Assuming one prepares the state |ψ⟩ = MS(−π/2)|00⟩ = (|00⟩ + i|11⟩)/

√
2, for a phase of

φ = 3π/4 this state remains unaltered and corresponds to a parity of P = +1. For φ = π/4
the state |Φ⟩ = (|01⟩ + |10⟩)/

√
2 is prepared with a parity of P = −1. The amplitude of those

parity oscillations P(φ) = C · cos(Nφ+ φ0), with φ0 a phase offset, directly corresponds to the
coherence C and hence to the sum of the off-diagonal elements of the density matrix relating the
states |00⟩ and |11⟩. The state preparation fidelity can then be calculated as the average of the
population P and the coherence C as F = (P + C)/2.
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2.3. Ion trap quantum computing platform
The previous section outlined the necessary concepts for quantum information processing, without
focusing on a specific physical implementation. In this section, the ion trap quantum computing
platform is introduced as the platform that is used in this thesis, starting with the description
of how ions are trapped using electric fields in Sec. 2.3.1. The focus then shifts to the 40Ca+

ion in Sec. 2.3.2, in particular to the electronic states in which the qubit is encoded and to the
relevant control fields for the manipulation of the qubit states. The chapter concludes with an
explanation of the AC-Stark shift and how to compensate it experimentally in Sec. 2.3.3.

2.3.1. Linear Paul trap and motional modes
In the derivation of the Hamiltonian functions for the single and two-qubit gates in Sec. 2.2.2,
it was assumed that the trapping potential is harmonic. This potential can be generated with a
linear Paul trap that consists of two endcaps and a set of four blades as shown in Fig. 2.7.

The generation of a harmonic potential using only a static voltage UDC implies that the restoring
force is linearly dependent on the distance from the center Fr = −UDCαrr, with positions in an
orthogonal basis r = x, y, z and corresponding geometric factors αr. This force is produced by
a parabolic potential F = −∇Φ of the form

Φ(x, y, z) = UDC
2 (αxx

2 + αyy
2 + αzz

2). (2.62)

From this equation it becomes apparent that in order to fulfill the Laplace equation ∇2Φ = 0, at
least one of the coefficients αr would need to be negative due to the condition αx +αy +αz = 0.
Hence when using a time-independent trapping potential, an ion would only be confined in at
most two spatial directions and anti-confined in the third direction, resulting in a loss of the ion
from the trapping region. One possible way to avoid this problem is to use time-varying electric
fields to confine the ions in the x-y-plane (radial direction) in addition to confining the ions in
the z-direction (axial) by means of the static potential of Eq. 2.62. One approach to create the
electric fields in the radial direction is to apply time-dependent radio frequency voltages to two
out of the four blades that are opposite of each other, and supplying a constant voltage with a
battery to the other two blades. The resulting dynamically created potential assumes the form

Φrad(x, y, z, t) = 1
2 (Ur + Urf cos(ωrft)) (βxx

2 + βyy
2 + βzz

2) (2.63)

where the applied radio frequency field is described by its frequency ωrf and amplitude Urf . The
geometric factors are denoted as βr and Ur is a static offset voltage on two blades that generate
the potential, again for r ∈ {x, y, z}. In the case of a linear Paul trap from Fig. 2.7, the geometric
factors obey the relation

αx + αy = −αz < 0 and βx = −βy, βz = 0. (2.64)

Note, that in order to achieve these geometric factors it is necessary to symmetrically position
infinitely long hyperbolic blades in the z-direction around the point x = y = 0, which creates a
harmonic potential in the whole trapping region enclosed by the hyperbolic blades. However in
reality blades of finite dimensions are used, which create a harmonic trapping potential only in
the vicinity of the trap center in the x-y direction. The geometric factors αr and βr account for
this deviation of the potential generated by the hyperbolic blades from the actually used ones.
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Figure 2.7.: Illustration of a linear Paul trap. Confinement of the ions (blue dots) in the axial or z-
direction is ensured by two endcaps with an applied direct-current (DC) voltage. Confinement in the
radial or x- and y-plane is achieved by applying a RF signal to two opposing radial blades, with the other
two blades held at a DC bias voltage to lift the degeneracy of the radial modes. Radial addressing of the
ions is depicted by the red Gaussian laser beam.

This potential confines a single ion with charge Q and mass m, which can be seen by deriving the
equations of motion by solving Mathieu differential equations. We first introduce the stability
parameters

ax = ay = − 8QUDC
mR2

axω
2
rf

= −1
2az, qx = qy = 4QUrf

mR2
radω

2
rf

= −1
2qz (2.65)

where Rax = R2
0 + z2 is the distance from the ion to the blade (tip). For stability parameters

that obey the relation 0 ≤ ai ≤ qi ≤ 1 the trajectory of the ions can be approximated as

ri(t) ≈ r0
i cos(ωit+ ϕi) ·

(
1 + qi

2 cos(ωrft)
)

(2.66)

and the motion can be split into two distinct parts. The first part is called secular motion and
describes the trajectory of the ion with amplitude r0

i and the secular frequencies ωi given by

ωx = ωy =

√
(qxωrf)2

8 − ωz

4 ωz =
√

2αzUDCQ

mR2
ax

. (2.67)

Here, the degenerate secular frequencies in the radial direction ωx and ωy correspond to the
highest frequency mode ωtr and are called Center-Of-Mass (COM) modes, with the COM mode
in the axial direction ωz corresponding to the lowest frequency mode. It’s called COM mode
because the ions’ motion can be described solely by the motion of their center of mass, which for
a single ion simply corresponds to the motion of the ion itself. Note that in experimental settings
it is undesirable to have equal radial COM mode frequencies ωx = ωy, as this leads to problems
in cooling. Instead of having two blades held at ground potential, a bias voltage is applied that
lifts the degeneracy of the radial COM mode frequencies ωx and ωy. The second part of the
motion in Eq. 2.66 is called micromotion and effectively modulates the secular harmonic motion
with the frequency ωrf . For more details the reader is referred to the references [15, 28, 29].

When trapping N ions in a single harmonic trapping potential, there are 2N radial mode fre-
quencies and N axial mode frequencies to consider. For N = 1 this corresponds again to the

21



2. Theoretical framework

radial COM mode frequencies ωx and ωy and the axial COM mode frequency ωz. For N > 1
the ions form a coupled harmonic oscillator, with forces between ions mediated by the Coulomb
force. If the ions are sufficiently cooled such that they form a crystal structure, distinct motional
frequencies in addition to the COM mode frequencies arise. For the implementation of high-
fidelity quantum gates, such as the MS gate outlined in Sec. 2.2.2, it is necessary to account for
those frequencies as their presence modifies the gate dynamics.

The motional mode frequencies for a highly anisotropic potential with ωx ≫ ωz and ωy ≫ ωz

(resulting in a linear string of ions) can be numerically calculated following Ref. 14, which is
based on Ref. 30 and Ref. 31. First the equilibrium positions of the ions are calculated using
the three COM mode frequencies and the mass m of the ions as input parameters. From these
positions the motional mode frequencies can be obtained and with them also the LD factors
following Eq. 2.18.

2.3.2. 40Ca+ as a qubit
The previous section discussed linear Paul traps as a means to trap ions without focusing on
a particular ion species. This section introduces the 40Ca+ ion as a possible choice for an ion
species commonly found in ion trap quantum computers.

The calcium 40 atom has two valence electrons and it can be ionized via a two-stage photo-
ionization process described in Ref. 32. First, laser light with 423 nm is used to excite specifically
the 40Ca isotope of calcium, which reduces the probability of unwanted excitation of background
atoms. Then 375 nm laser light is used to excite the 40Ca atom further to the continuum, ionizing
the atom in the process.

The resulting 40Ca+ ion has several desirable properties that make it a suitable candidate for
quantum information processing. As an alkaline earth metal in group II of the periodic table, a
positively charged 40Ca atom has a single valence electron and possesses a hydrogen-like electronic
level structure, with relevant levels for quantum computing shown in Fig. 2.8. These levels are
the ground state 42S1/2, the short-lived 42P3/2 and 42P1/2 states with lifetimes of τ ∼ 7 ns [33]
and the metastable states 32D3/2 and 32D5/2, with the latter having a lifetime of τ ≈ 1.168(7) s
before decaying to the ground state [34]. Here the notation q2s+1lj is used, where q is the principal
quantum number, s the spin, l the angular momentum and j = l+s the total angular momentum
quantum number.

Applying an external magnetic field lifts the degeneracy of the Zeeman states with quantum
number mj , where only the relevant levels are shown in Fig. 2.8. The qubit is then encoded in
the two Zeeman sub-levels |0⟩ = |42S1/2,mj = − 1/2⟩ and |1⟩ = |32D5/2,mj = − 1/2⟩, that are
connected via an electric quadrupole transition at 729 nm. This transition is preferred among all
possible transitions, as it is the least sensitive to magnetic field fluctuations.

After loading the ion(s) into the linear Paul trap, they need to be prepared to their mo-
tional ground state in order to be able to operate in the LD regime necessary for the quan-
tum operations discussed in Sec. 2.2.2. As a first step Doppler cooling [35] is performed on
the 42S1/2 ↔ 42P1/2 transition using 397 nm laser light. Simultaneously a repumping laser with
a wavelength of 866 nm is applied as population can also be trapped in the undesired 32D3/2
state. After Doppler cooling, sideband cooling is carried out with the 729 nm laser on the
|42S1/2,mj = −1/2⟩ ↔ |32D5/2,mj = −5/2⟩ transition. The lifetime of the metastable 32D5/2
state is reduced by using a quench laser with 854 nm, which transfers population to the short-

22



2. Theoretical framework

Figure 2.8.: Reduced level scheme of 40Ca+ showing only the energy levels relevant for this thesis.
Arrows depict transitions between states and the corresponding transition wavelengths are indicated. All
transitions are accessible with laser light in the experiment except for the transition at 393 nm, which is
shown here for completeness. The optical qubit is encoded in two Zeeman sub-levels of the 42S1/2 ground
and 32D5/2 metastable state manifold, with the particular states marked in yellow.

lived 42P3/2 state in order to increase the cooling rate. Optical pumping is used directly after
sideband cooling as population can also decay from 42P3/2 to |42S1/2,mj = +1/2⟩ via the 32D3/2
state and would remain unaffected by sideband cooling. Optical pumping transfers this undesired
population first with the qubit laser with 729 nm to the |42D5/2,mj = 1/2⟩ state and then with
the repumping laser with 854 nm laser light to the 32P3/2 state. From there, the population
can decay into the desired ground state Zeeman-level with mj = −1/2, which also initializes the
qubit state to |0⟩. Note that for both sideband cooling and optical pumping a repumping laser
with 866 nm pumps undesired population out of the 42D3/2 state and that sideband cooling has
a smaller cooling bandwidth than Doppler cooling. As the spacing of motional frequencies is
larger than the cooling bandwidth, multiply cycles of sideband cooling with varying frequency
are necessary to sufficiently cool all radial modes. Thus the sequence “optical pumping followed
by sideband cooling” has to be carried out multiple times. For more details see Ref. 36.

The state of the qubit is then manipulated with the qubit laser with 729 nm, where the parameters
of the single-qubit resonant operations described in Sec. 2.2.2 are realized by varying the laser
beam parameters incident on the ion. The pulse area of the laser pulse as the integral of power
and length of the laser pulse determines the rotation angle θ, and the axis of rotation φ is set
by varying the phase of the laser. For two-qubit entangling gates described in Sec. 2.2.2, two
time-independent frequency tones are applied to the ions in order to set the detuning of the laser
from the COM mode in the frequency spectrum. Combined with a possibly time-dependent laser
power, which determines the Rabi frequency of the individual ions, the entangling gate can be
realized. More details are provided in Sec. 3.2.

Readout of the quantum state is carried out after qubit manipulation by means of fluores-
cence detection [15, 37]. The detection laser with 397 nm continuously scatters photons on the
|42S1/2⟩ ↔ |42P1/2⟩ transition when the ion is in the |0⟩ state. These photons are detected with a
charged-coupled-device (CCD) camera to obtain the quantum state of all ions that are trapped.
If the ion is in state |1⟩, then no photons are scattered and the ion remains dark. Additionally
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the repumping laser with 866 nm transfers the population from the 32D3/2 state.

With these mentioned steps, a complete sequence for quantum computing can be carried out.
This is shown and summarized in Fig. 2.9, where the laser wavelengths used in each step are
shown. Note that the ablation loading and photo-ionization steps only have to be carried out for
initial loading and when ions are lost.

Figure 2.9.: Sequence for a typical quantum computation with the respective laser wavelengths indicated
on top, with the first two steps only necessary when less than the required number of ions is in the trap.
Depending on the number of modes to cool, the cycle of optical pumping followed by sideband cooling is
repeated multiple times.

2.3.3. AC-stark shift compensation
As outlined in Sec. 2.2.2 for a single two-level atom confined in a harmonic potential, a laser beam
induces an AC-Stark shift that changes the atomic transition frequency by ∆AC = −Ω2/(2∆)
when being far-detuned from the carrier or the sideband transitions. For a bichromatic laser beam
that is symmetrically detuned around the carrier transition, the induced Stark shift cancels out
provided that the laser intensities are equal for the red and blue detuned frequency components.
Thus the AC-Stark shift does not introduce an additional phase between the states |0⟩ and |1⟩
in an ideal two-level atom.

When using the 40Ca+ ion in experiments however, the two-level approximation is no longer
valid because in addition to the qubit transition between the states |0⟩ = |42S1/2,mj= −1/2⟩
and |1⟩ = |32D5/2,mj= − 1/2⟩, the coupling to additional Zeeman sublevels in the S1/2 − D5/2
manifold introduces an AC-Stark shift that is not cancelled by symmetrically detuning the red and
blue frequency components of the MS gate. Moreover, the dipole-allowed transitions S1/2 ↔ P1/2,
S1/2 ↔ P3/2, and D5/2 ↔ P3/2 also contribute to a shift in the atomic transition frequency of the
qubit transition [38]. If no measure is adopted to correct for this shift, then an additional phase
is accumulated during the gate operation amounting to

Λ(t) ≡
∫ t

0
ωcl(t′) dt′, (2.68)

with the time-dependent center line detuning defined as ωcl(t) = ωeg(t) − (ωr +ωb)/2. Instead of
having a spin phase of φ = −π

2 that leads to the desired rotation axis of Ŝ2
π,m = Ŝ2

x,k for all modes
k in Eq. 2.52, a time-dependent rotation axis will be applied during the gate operation. This leads
to different path lengths of the four paths involved in the MS gate operation, shown in Fig. 2.5b,
and consequently the two-photon resonance condition ωb + ωr = 2ωeg(t) is violated. Compared
to the case ωcl(t) = 0, this results in a reduction of the gate fidelity due to displacement errors
coming from unclosed modes at the end of gate time. Assuming a constant center line detuning
as shown in Fig. 2.10a, the red and blue frequency components of the bichromatic laser beam
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are asymmetrically positioned around the carrier transition and this shift can be compensated
by different methods, two of which are outlined below.

The first method aims to account for this asymmetry by shifting both frequency tones by an
asymmetric detuning ωr,b → ωr,b + Λ(τ) = ωr,b + ωcl · τ that is equal to the induced AC-Stark
shift, with the last equality holding true for a constant center line detuning ωcl(t) = ωcl as
shown in Fig. 2.10b. This restores the symmetry of the frequency tones if a rectangular pulse
shape is used for the MS gate. However in the experiment, amplitude pulse shaping techniques
are employed to reduce the off-resonant carrier excitation [22] by using a Blackman window for
the slopes at the beginning and end of the pulse [39] for 10 µs each. This shaping time only
constitutes a small fraction of a typical 300 µs gate time but introduces an additional phase due
to the time-dependent AC-Stark shift during shaping that needs to be accounted for in subsequent
gate operations [40]. This problem becomes even more pronounced when employing amplitude
modulation techniques, as the time dependence of the AC-Stark shift extends over the complete
gate time and leads to a fidelity reduction. Additionally, in ion chains with more than two ions,
different ion pairs have to be addressed with different laser powers which leads to an undesirable
calibration overhead of O(N2) parameters to ensure ideal operation of the gate.

Figure 2.10.: Compensation of the AC-Stark shift, with dashed lines indicating light fields shown with
their respective Rabi frequencies. a, AC-Stark shift of the carrier/qubit transition ωeg caused by the
bichromatic light field of an MS gate. This is because the 40Ca+ ion is not a two level atom and it results
in incorrect frequencies for the bichromatic light field. b, Center line detuning corrects for this shift by
updating all frequencies in the software to account for the shifted carrier transition. c, Adding a third
off-resonant frequency tone and calibrating its amplitude leads to an additional Stark-shift that shifts the
carrier transition back.

Considering these points, a second approach is preferred that physically compensates for the
induced AC-Stark shift by introducing a third frequency tone as outlined in Ref. 38 for 40Ca+

and was first proposed for cold atoms in Ref. 41. As depicted in Fig. 2.10c, this third tone
introduces an AC-Stark shift of opposite sign that cancels the AC-Stark shift originating from
the bichromatic light field for appropriately chosen values of the detuning δ3 and the power Ω3.
The detuning is chosen such that it is not resonant with any motional sideband frequencies and
stays the same for each addressed ion pair. For the power Ω3 it is important to consider that
the setup for the coherent 729 nm laser, described in Sec. 3.2, adjusts the power of the third tone
always relative to that of the bichromatic frequency tones Ω and applies it to the same laser
beam. The constant power ratio Ω3/Ω ensures the cancellation of the AC-Stark shift even for
amplitude modulated MS gates and reduces the calibration to one ion pair, as the relative power
ratio naturally accounts for the varying power required for different ion pairs. This approach also
has the advantage that it is more robust against optical power fluctuations, as all three tones are
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applied onto the same laser beam and the relative power accounts for possible fluctuations. The
downside is that part of the power of the bichromatic frequency tones is diverted to the third
tone and less power remains available for the MS gate.

Considering all these factors, the second approach offers more desirable properties and this ap-
proach is therefore used in the experiment. After having discussed the ion trap quantum com-
puting platform in this section, the next chapter will give an overview over the relevant electronic
and optical hardware necessary for the implementation of coherent operations using the 729 nm
laser.
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The preceding Chap. 2 provided a brief theoretical basis for the ion trap quantum computing
platform. This chapter will build upon this foundation and focus on the specific experimental
setup that is required for the implementation of high-fidelity, addressed quantum operations.

All the experiments in this thesis have been carried out on the AQTION setup, which is short
for “Advanced Quantum Computation with Trapped IONs”. The goal in building this setup
was to transition away from the typical laboratory environment with optical tables towards
a compact and readily scalable setup, which was accomplished by fitting a fully operational
quantum computer inside two 19” server racks. Instead of covering every aspect of the setup,
this chapter focuses on the required hard- and software to coherently and reproducible manipulate
the quantum state of ions. This necessitates the phase-coherent generation of radio frequency
(RF) signals and the required control electronics and software is discussed in Sec. 3.1. These
RF signals are then used to modulate a laser beam via acousto-optical modulators (AOMs) and
deflectors (AODs), and the function of each optical element is outlined in Sec. 3.2. For details
about the complete setup, reference [42] gives a comprehensive description of the initial setup
along with characterization results and additional details regarding the setup can be found in the
thesis [36].

3.1. Radio frequency generation and control
The focus in this section is on the hard- and software for the generation of RF signals in the
AQTION setup. These signals need to fulfill certain requirements as they serve as the input signals
for the AOMs and AODs, which control the amplitude, frequency, and phase of the laser beam
incident on the ions. Gate operations on the trapped-ion architecture are typically performed
on microsecond timescale, which requires the timing resolution of the individual pulses to be
below 10 ns such that pulse length errors do not exceed 1% [42]. Ideally, the timing resolution
is on the order of single nanoseconds or below. Failure to meet the timing requirement results
in pulse area fluctuations that lead, as an example, to errors in the entangling phase of the MS
gate. Another important requirement is the phase coherence of all generated RF signals, that
are directly manipulating the laser beam needed for coherent operations. Phase coherence needs
to be maintained for times much longer than typical sequence lengths on the order of 100 ms.

The control system that is used in this thesis is the Advanced Real-Time Infrastructure for
Quantum physics (ARTIQ) that is tailored to meet the requirements of experiments in quantum
physics. ARTIQ is a control software that provides a link between the time-critical and phase-
coherent RF signal generation and the experimental control or host PC. This distinction is
necessary as the latter cannot guarantee time-critical code execution because of communication
latency and it also handles other tasks related to the successful operation of the experiment.

As shown in Fig. 3.1, the ARTIQ control software provides a high-level Python code interface,
which differentiates between normal Python code that runs on the host PC and special kernel
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functions marked with the @kernel decorator for time-critical code. These kernel functions
are compiled to so called ARTIQ kernels and are sent via Ethernet to the Sinara 1124 Carrier
“Kasli” hardware module [43] at the beginning of the code execution on the host PC. The “Kasli”
module is equipped with the Artix-7 100T field programmable gate array (FPGA), that features
Central Processing Units (CPUs) for communication with the host PC and scheduling of the
pulse sequence.

If part of the Python code calls a kernel function, then the kernel CPU on the FPGA processes
the respective ARTIQ kernel while utilizing the Real Time Input/Ouput (RTIO) system. This
converts the ARTIQ kernel to a set of timestamps and instructions for each manipulated output
channel on the daughter cards of the “Kasli”. The important point for fulfilling the nanosecond
timing requirement is that the timestamps of the individual instructions are aligned to an absolute
wall clock that is independent of the non-deterministic timing of the normal Python code. The
wall clock is generated from an external signal generator with a frequency of 10 MHz and is
upconverted to 125 MHz. This set of instructions is then sent from the kernel CPU to the
Scalable Event Dispatcher (SED), which is a first-in-first-out (FIFO) buffer that dispatches the
instructions further to the real-time gateware. As specialized firmware on the FPGA, the gateware
sends these instructions to the respective daughter cards, where they are further processed and
converted to analog electric signals before being emitted at the respective output channel.

Figure 3.1.: Overview of the ARTIQ and Sinara hardware ecosystem. The ARTIQ control software
links the asynchronous operation of the host PC with the RF signal generation using the Sinara hardware
ecosystem, that guarantees nanosecond timing resolution of the emitted pulses. The “Kasli” module
communicates with the host PC and relays instructions to different core devices used in the experiment,
each with different signal generation capabilities. Relevant for the qubit manipulation are the Phaser
AWG and Urukul DDS modules.

With currently more than 10 different core devices available, the Sinara hardware ecosystem offers
a variety of devices, each of which providing different capabilities in terms of electronic signal
processing/generation. Digital output signals for the experiment are provided by the Sinara 2128
Transistor-transistor-logic (TTL) card, that features eight channels per card and is used among
other things to trigger the camera acquisition [44]. For quantum error correction applications,
the Sinara 6302 Grabber module provides fast readout of the camera pixels to enable mid-circuit
measurements [45]. The main focus in this thesis however is on the Urukul and Phaser modules,
as they allow for the control of the 729 nm laser that is used for qubit manipulation.

In particular, the Sinara 4410 DDS “Urukul” offers 4 channels with dedicated direct-digital
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synthesis (DDS) chips [46]. The DDS technique can create an analog output signal derived from
a stable reference clock, whose frequency and phase can be digitally changed in time [47]. Urukul
uses the AD9910 DDS that allows the frequency to be set in ∼0.25 Hz steps in the frequency range
of 1 to 400 MHz via a 32-bit frequency tuning word (FTW) that is accessible in the Python code.
Additionally, the phase is adjusted with the 16-bit phase offset word (POW) and the amplitude
of the emitted analog signal is scaled with a 14-bit amplitude scale factor (ASF) [48].

The capabilities of an Arbitrary Waveform Generator (AWG) can be utilized with the Sinara
4624 AWG “Phaser” device [49]. For this, the Phaser device features a dedicated XILINX Artix-
7 XC7A100T FPGA chip for signal processing tasks that allows to individually place 5 frequency
tones within ±10 MHz around a common carrier frequency in the range 0 MHz to 250 MHz. Each
tone is set with a 32-bit FTW, 16-bit POW and 15-bit ASF and thus Phaser offers similar capa-
bilities in terms of parameter setting to Urukul. A more detailed description of the capabilities
of Phaser is given in Ref. 50. The advantage of Phaser compared to Urukul is in the flexibil-
ity and speed regarding parameter changes due to the integrated FPGA, with more details and
experimental results provided in Chap. 5. After having outlined the RF generation, the next
section will focus on how to transfer these RF signals into coherent laser operations for qubit
manipulation.

3.2. Coherent operations with 729 nm laser
This chapter will explain the link between the RF signal generation and the creation of coherent
single- and two-qubit gates using the 729 nm laser in the experiment. The resulting laser-ion
interaction Hamiltonian should in the ideal case implement Eq. 2.22 for resonant single-qubit
operations and Eq. 2.51 for the MS two-qubit operation. Note that this chapter uses frequencies
f instead of angular frequencies ω = 2πf , because this is the convention adopted by ARTIQ and
the experimental control software.

In the AQTION setup, all coherent operations are driven by a Toptica 729 nm laser with a
linewidth of ≈ 1 Hz when stabilized to a reference cavity. We denote its frequency as fL. As
shown in Fig. 3.2, the laser beam parameters such as frequency, amplitude, phase, and beam
direction are then modified by four acousto-optical devices before the laser beam is incident on
the ion chain. The function of each of those four optical elements and what parameter of the
laser beam is changed will now be discussed in detail.

The first optical element the laser beam passes through is a double-pass (DP) AOM controlled
by a single RF output channel from the Phaser AWG module. The RF frequency input to the
DP AOM fDP is chosen such that the sum

fL + 2 · fDP + fFAOM = fL + 2 · fDP + fc (3.1)

is resonant with a desired carrier transition, which in the AQTION setup is chosen to be the
|42S1/2,mj = − 1/2⟩ ↔ |32D5/2,mj = − 1/2⟩ transition in 40Ca+ with a transition frequency of
feg = ωeg/(2π). The RF frequency applied to the second optical element, a fibre-coupled AOM
(FAOM), is denoted as fFAOM and its center frequency is fc = 146.85 MHz. This corresponds
to the frequency of the RF input signal that results in the highest transmitted light intensity in
the first diffraction order of the FAOM output. Note that the laser frequency fL drifts over time
because, among other things, the length of the reference cavity changes and these changes are
corrected for by fDP. Control over the amplitude of the laser beam occurs also at the DP AOM,
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Figure 3.2.: Addressing setup for the 729 nm laser and the respective function of the individual optical
elements. Below each element the diffraction order is displayed that is fed into the next element or to the
ions (corresponds to the sign of the frequencies except for the DP, where twice the first order has been
used).

with the DP AOM acting as a light switch that blocks the laser beam from reaching the ions if no
RF signal is supplied. For a nonzero RF signal the amplitude of the RF signal translates roughly
linearly to the amplitude of the transmitted laser beam via acousto-optic transduction when
operating in the frequency region of interest. The Phaser was chosen to supply this RF signal
as it provides more capabilities regarding pulse shaping than the Urukul DDS module. This is
important for reducing the off-resonant carrier excitation by shaping the pulse form of the MS
gate as well as for the implementation of amplitude modulated MS gates, which is discussed in
Chap. 4. Note that for single-qubit gates the phase and with it the rotation axis of a resonant
operation is adjusted with the Phaser.

The second element after the DP AOM is the FAOM, which receives its RF signal from up to
three channels of the Urukul board. For resonant single-qubit gates, only a single frequency
tone equal to the center frequency of the FAOM fFAOM = fc is applied. For MS gates, two
frequency tones from two separate Urukul channels are supplied to create the bichromatic light
field with frequencies fc ±δc/(2π). For both cases, the AC-Stark shift compensation using a third
frequency tone is always enabled during the full qubit manipulation sequence. This third tone
is also generated with the FAOM and has the frequency fc + δ3. In contrast to the DP AOM,
where the power of the RF signal can be set to zero, a constant power is supplied to the FAOM
at all times. Given that the third tone is always on during the qubit manipulation with the same
power, this means that the power of the single tone needs to match the power of the bichromatic
frequency tones such that the total power going into the FAOM stays constant. This is done in
order to minimize thermal effects on the FOAM that are induced by supplying varying RF input
power to the FAOM. Furthermore, the phase for all applied RF signals to the FAOM is the same,
which sets the desired motional phase φm = 0. The value of the spin phase φs, that determines
the rotation axis of the MS gate, is set by the AODs to account for differences in cable lengths
that supply the RF signal to the optical elements.

Note that for the implementation of phase modulated entangling gates in the AQTION setup,
the phase difference between the two bichromatic tones would have to be changed on the FAOM.
This ensures that the interaction basis Ŝπ/2−φs

remains constant and only the motional phase φm
is changed. However, this would necessitate the use of the Phaser instead of the Urukul module
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for supplying the RF signals to the FAOM. The reason for this is that the reduced parameter
update rate of Urukul would prohibit the implementation of phase modulation schemes that rely
on multiple phase changes during a single MS gate.

The only remaining task is the addressing of up to two ions simultaneously with the laser beam,
which is carried out by a dedicated AOD addressing unit composed of two crossed AODs that
are each supplied by up to two channels of the Urukul. The setup is shown in Ref. 42 and has
the advantage, that by using the +1st diffraction order for the first AOD and the -1st diffraction
order for the second AOD, no net frequency shift is introduced to the laser beam when the
RF frequencies to the AODs fAOD,1 = fAOD,2 are the same. The addressing unit allows for
the horizontal displacement of the laser beam (along the ion chain) by changing the frequency
on both AODs by the same amount, with the frequency that needs to be set determined by
calibration. This approach ensures pairwise all-to-all connectivity, as simultaneous application
of two frequency tones on both AODs enables the addressing of an arbitrary pair of ions. When
the whole ion chain is displaced with respect to the horizontal plane of the addressing unit, a
vertical displacement of the laser beam can be introduced by changing the frequency on both
AODs in opposite directions. This opposite change of frequencies introduces a frequency shift
of the laser beam that is compensated by shifting the DP AOM frequency fDP. As mentioned
in the preceding paragraph, the rotation axis of the MS gate can be adjusted by changing the
phases of the RF signals going into each of the two AODs.

To summarize, the frequency of the laser beam incident on the ions is adjusted to

fL+2fDP+fFAOM+fAOD,1−fAOD,2 =
{
feg for resonant single qubit gates
feg ± fsidebands for MS two-qubit gates

(3.2)

depending on the type of gate. Note that the third tone has been excluded from this equation, as
it is always on during the qubit manipulation and its frequency and amplitude remain constant.
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amplitude modulation

After having introduced the necessary theoretical concepts as well as the experimental setup,
the following chapter will introduce an optimal control technique with the aim of improving
the currently used gate implementation. In the following Sec. 4.1, the current limitations of
the AQTION setup regarding entangling gates are discussed alongside possible solutions for
addressing them. Frequency-robust entangling gates using amplitude modulation from Ref. 51
are then introduced in Sec. 4.2 as a means to reduce residual mode coupling, one of the largest
contributors to gate errors in the current setup. The amplitude modulated entangling gate
utilizing the Mølmer Sørensen interaction promises to be more robust against motional mode
frequency changes compared to unmodulatd entangling gates. Furthermore the technique offers
a way to scale the setup beyond 16 ions, which is currently limited among other things by the
entangling gate performance. The technique was chosen based on the RF generation capabilities
discussed in Chap. 5. It consists of two parts, with the numerical optimization part introduced
in Sec. 4.3. The results will in turn aid the parameter choice for an experimental calibration
procedure that is outlined in Sec. 4.4.

4.1. Limitations of current setup
In this section, the limitations of the current AQTION setup with respect to the MS gate fi-
delity are outlined and analyzed by constructing a rudimentary error budget based on numerical
simulations. The simulations consider both the imperfection of the MS gate itself as well as
environmentally induced errors. This will allow the identification of possible improvements to
the setup and/or the gate execution and will show why the introduction of amplitude modulation
to MS gates could reduce a major source of error.

The first part of the numerical simulation is called phase space simulation and is based on Eq. 2.52
with a constant Rabi frequency1 over the whole gate time from t = 0 to t = τ . The required
inputs for this simulation are the number of ions, which is nions = 16 for the AQTION setup,
the two radial fCOM, x = 3095.36 kHz, fCOM, y = 3177.00 kHz, and the axial fCOM, z = 383.20 kHz
COM mode frequencies. Note that the two radial COM mode frequencies are measured in the
experiment but the axial COM mode frequency shown here is not. Instead, an effective axial
COM mode frequency is used for calculating the radial mode spectrum and it is computed by
numerically minimizing the difference between the measured and calculated spectra. The reason

1The underlying code for these numerical simulations is based on a Gaussian waveform for the Rabi frequency. By
choosing a large width of the Gaussian waveform, a constant Rabi frequency with negligible time dependence
can be realized. The simulation with the Gaussian waveform was written for the frequency-robust entangling
gate that will be introduced in Sec. 4.2. The results obtained from it for a constant Rabi frequency have
been successfully cross-checked with the results of a simulation that was explicitly written for a constant Rabi
frequency, thus offering an additional validation step.
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for this discrepancy is that the calculation of the motional mode frequencies neglects, among other
things, the coupling of the radial to the axial mode frequencies. For reference, the measured axial
COM mode frequency is fCOM, z, meas = 369.2 kHz and is only used in simulations if one would
be interested in the axial mode spectrum.

From these three frequencies fCOM, x, fCOM, y and fCOM, z and the number of ions nions the radial
mode spectrum alongside the LD factors can be calculated following Ref. 14. The axial mode
spectrum is not of interest in the following considerations as the AQTION setup employs radial
addressing for the qubit manipulation step and the excitation of axial modes is negligible. The
calculated blue sideband radial mode spectrum is shown in Fig. 4.1a, with the detuning of the
laser beam by δ = 1/τ = 3.33 kHz from the radial-y COM mode indicated in grey. Clearly visible
in this spectrum is the mode crowding towards the radial COM mode frequencies.

Figure 4.1.: a, Radial mode spectrum for 16 ions in the AQTION setup, where only the BSBs are shown.
b, LD factors for ion index j and radial y-mode with index k, with the absolute value of the LD factor
encoded in the colours. The white curves include the sign of the LD factors to show the dependence of
the LD factor for each mode k on the ion index j. c, Phase space simulation for the outer ion pair 1-16 to
indicate the displacement error at time t = τ . The position of the phase space trajectory at time t = τ is
indicated by coloured dots in the respective colour of the mode up to k = 4, all other endpoints are shown
in black.

Figure 4.1b shows the absolute values of the LD factors for the radial-y modes for a given ion
index j and mode index k, with the LD factors for the radial-x modes only slightly deviating from
these values due to different mode frequencies. The white curves include the sign of the LD factor
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to visualize the coupling of certain modes to different ions, with solid (dotted) lines indicating a
negative (positive) value. The COM mode with mode index k = 1 for example couples equally
to all ions, whereas the rocking mode k = 2 couples stronger to the outer ions 1-16 compared to
the center ions 8-9, with the LD factors changing sign between ions 8 and 9.

In Fig. 4.1c the phase space trajectory of an MS gate with δ = 3.33 kHz and a gate time of
τ = 300 µs is shown. For a constant Rabi frequency during the gate time the COM mode
completes one whole circle and is decoupled, starting and ending at the origin of phase space.
This is however not true for the other modes, whose trajectory still starts at the origin of phase
space but does not return to it after a time t = τ because the detuning δk is different and
the relation δk = 1/τ is violated. A consequence of this is that the phase space trajectory of
modes with mode index k > 1 take less time for a single revolution and hence complete multiple
revolutions during the gate time. The displacement of those modes leads to residual spin-motion
entanglement, which results in a decrease in the gate fidelity. Ensuring that all loops close
simultaneously once the gate concludes would require a gate time τ in excess of the observed
coherence time. The reason for this is that one would need to take the least common multiple of
loop closing times τk = 1/δk, making the approach of scaling the gate time infeasible.

Instead, the gate time τ = 300 µs was chosen based on numerical simulations, with the results of
phase space simulation illustrated in Fig. 4.2. For each gate time in the range 150 µs to 500 µs,
the detuning was set to δ = 1/τ such that the phase space trajectory of the radial-y COM mode
makes a single revolution and concludes its trajectory at the origin of phase space. In a second
step the Rabi frequency was adjusted such that the MS gate implements the desired entangling
phase of Φ = −π/2, hence there is no rotation angle error in the phase space simulation and
solely the effect of displacement errors is investigated. In Fig. 4.2a only the radial-y COM
and rocking mode have been considered for two ion pairs to illustrate the importance of the
coupling of different modes to ions. The average gate fidelity F̄ for the inner ion pair 8-9 stays
constantly above 99.999 % for all gate times because the coupling of the rocking mode to this
pair is negligible. This is in contrast to the outer ion pair 1-16, where the coupling of the rocking
mode is strongest among all ions and an oscillatory behaviour in the gate fidelity arises. Peaks
in the fidelity indicate that the phase space trajectory of the rocking mode is closed, which in
the case of 301.8 µs takes seven revolutions in phase space.

When taking into account the five highest frequency modes as shown in Fig. 4.2b, including the
radial-x COM mode frequency as the fourth highest, additional structure in the fidelity on top of
the oscillatory behavior arises. This leads to oscillations in the fidelity that do not exceed 99.9 %
fidelity anymore for gate times below 300 µs as both the rocking mode and the third highest
mode do not decouple at the same gate times anymore. This is even further amplified when
considering all 32 radial modes, shown in Fig. 4.2c with a different scale of the the y-axis. The
corresponding phase space picture for pair 1-16 and all 32 radial modes is shown in Fig. 4.1c,
where the displacement of the individual modes is visible. Based on phase space simulation,
one may be inclined to choose a gate time close to 300 µs in order to guarantee the decoupling
of the rocking mode at 301.8 µs after 7 revolutions as well as the third highest frequency mode
at 300.3 µs after 18 revolutions. For this gate time the average gate fidelity of all 120 ion pairs
is 99.43(20) %, with pair 8-9 having the maximum and pair 1-16 the minimum fidelity with
99.73 % and 98.6 % respectively. Other possibilities where the rocking and the third highest
mode decouple at roughly the same gate time would be 388 µs and 475 µs. Note that the phase
space simulation ignores several relevant error sources, including off-resonant carrier excitation,
amplitude pulse shaping, and system-environment interactions.
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Figure 4.2.: Fidelity derived from phase space simulation. For each gate time τ , the detuning was chosen
such that the radial-y COM mode decouples after the gate time. Additionally the Rabi frequency is
adjusted to implement the desired entangling phase. In a, only the radial-y COM and rocking mode are
considered and the fidelity is shown for the outer 1-16 and the inner ion pair 8-9. These pairs cover the
minimum (1-16) as well as the maximum (8-9) fidelity of all 120 pairs in a 16-ion chain because of their
LD factors. Additional structure in the fidelity can be observed in b, that includes the five highest modes.
All 32 radial modes are considered in c, where the y-axis has a different scale compared to the left column
of figures.

The latter factor is investigated in the second simulation method. One assumption up until
now was that the Hamiltonian modelling the system is a closed quantum system and it can
be described with a unitary time evolution. Based on this assumption, the displacement error
originating from residual coupling of radial modes could be simulated with phase space simulation.
In experimental settings however, the quantum system is embedded into a larger environment
called total system that is considered as a closed system. Our system of interest, which is simply
a subsystem of the larger total system, interacts with the environment in a non-deterministic
and uncontrolled way. Given that solving the full dynamics of the total system is unfeasible,
one usually resorts to so called master equations, that try to obtain the time evolution of the
system from the total system. When assuming that the interaction with the environment is a
stochastic Markov process, then the time evolution of the density matrix can be obtained with
the Lindblad master equation, also called Gorini-Kossakowski-Sudarshan-Lindblad equation [52],
which is given by

ρ̇(t) = − i

ℏ
[Ĥ(t), ρ(t)] +

∑
ξ

∑
k

[
L̂ξ,kρ(t)L̂†

ξ,k − 1
2
{

L̂ξ,kL̂†
ξ,k, ρ(t)

}]
. (4.1)

If only the first term on the right side is considered, the equation can be identified as the Von
Neumann equation that governs the time evolution of a closed quantum system. By including
the second part, the interaction of the system with the environment is accounted for with so
called collapse operators L̂ξ,k = √

γξ,k ĉξ,k. Here, γξ,k is the rate of the interaction and ĉξ,k the
operator acting on mode k through which the coupling occurs. In this section we are interested
in three different interactions with the environment (indicated by the index ξ) and their effect
on the fidelity of the MS gate, namely the heating rate, optical, and motional decoherence.
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The Hamiltonian simulation is based on the Lindblad master equation and the time evolution of
the system is obtained with the QuTiP function mesolve [53]. This function returns the density
matrix of the system for each specified time and returns a unitary time evolution if no collapse
operator is specified. The fidelity can be obtained directly using the state preparation fidelity F
from Eq. 2.58 by comparing the computed density matrix with the desired target density matrix
for a maximally entangled state. Note that for this simulation only the radial-y COM mode is
considered.

Typical noise sources in the experiment, like magnetic field fluctuations, vary on length scales
larger than the spatial extent of the ion chain. As a consequence of this, the overlap of errors in-
duced by these noise sources with motional modes is largest for the radial-y COM mode, to which
all ions couple with equal strength. In the case of motional heating, which is mainly caused by
stray electric fields, the radial-y COM mode exhibits the highest heating rate among all modes.
A typical heating rate for the radial-y COM mode (k=1) measured with sideband thermome-
try [54] is γξh,1 = ∆n̄/∆t = 3.6 phonons/s, with ξh indicating motional heating. The collapse
operators that describes this interaction are L̂ξh,1 ∈ [√γξh

â1,
√
γξh

â†
1]. For the optical T2 and

motional Tmot
2 coherence time typical values at the AQTION experiment are T2 = Tmot

2 = 50 ms.
For the motional coherence (ξmot) there is a collapse operator for each mode separately given by
L̂ξmot,k = (2/Tmot

2 )1/2â†
kâk, whereas for the optical coherence (ξopt) the single collapse operator

is given by L̂ξopt =
√

2/T2Ĵz with the collective spin operator Ĵz = ∑
j σ̂z,j/2.

The result of the Hamiltonian simulation is visible in Fig. 4.3 separated into heating rate (a)
and the combined effect of the optical and motional coherence (b). Given that the rate in all
three cases is constant in time, the decay in fidelity is exponential, but in the considered time
scale it can be modelled as a linear dependence. For a gate time of τ = 300 µs, the infidelity
induced by the heating rate is 0.05 % and hence makes up the smallest contribution of the three
considered effects. The effect of the optical and motional coherence times on the gate fidelity is
shown in Fig. 4.3b. For coherence times T2 = Tmot

2 there is a ≈ 1 % drop in the fidelity, with
0.41 % coming from the motional coherence and 0.6 % from the optical coherence.

Figure 4.3.: Results from Hamiltonian simulation. a, The heating rate of the COM mode contributes
0.05 % to the gate infidelity for a gate time of τ = 300 µs. b, The combined effect of the optical and
motional coherence results in a ≈ 1 % contribution to the gate infidelity, with the additional values shown
corresponding to the Linear trap setup in Innsbruck with 150 ms and 400 ms has been measured in com-
parable experiments.
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The combined influence of coherent and dissipative effects on the fidelity, modelled through phase
space and Hamiltonian simulation respectively, is shown in Fig. 4.4 for ion pairs 1 -16 and 8 -9.
These results are obtained by simply multiplying the fidelities of both simulations at each time
step, as the environmental influence sets an upper limit on the achievable fidelity of a perfectly
executed MS gate. From this it becomes apparent that a gate time of 300 µs is the optimal
choice given the system parameters. Regarding the contribution of the optical coherence on the
gate fidelity, an ongoing hardware upgrade aims to decrease it by changing the magnetic field
generation from coils to permanent magnets. For example coherence times of 150 ms can already
result in a reduction of the gate infidelity from ≈ 1 % to ≈ 0.35 % and those coherence times are
achieved on the Linear trap setup in Innsbruck. A coherence time of 400 ms - which has been
measured in comparable experiments - would reduce the error coming from coherence times even
further to ≈ 0.1 %.

Figure 4.4.: a, Combined results obtained from phase space and Hamiltonian simulation shows that a
gate time of 300 µs yields the highest fidelity. b, Error budget obtained from the simulation for a gate
time of τ = 300 µs, showing the average infidelity over all 120 ion pairs.

Regarding the residual coupling of radial modes, the average fidelity over all 120 pairs in a 16-
ion chain is 0.57 %, ranging from 0.27 % for pair 8-9 to 1.4 % for pair 1-16. This errors cannot
be further reduced by changing either the detuning or gate time. One possible solution is to
modulate the laser beam parameters during the gate time in order to achieve decoupling of more
motional modes and hence increase the fidelity. This approach is outlined in the next section.

4.2. Theoretical motivation
In the previous section the main error sources for the MS gate in the current AQTION setup
have been outlined, and the residual coupling of radial modes was identified as one of the largest
contributors to the observed gate infidelity. The MS gate that is currently used in the setup
uses a constant detuning δc from the carrier transition ωeg, phase φm/φs and Rabi frequency Ω
during the gate time τ , apart from pulse shaping at the beginning and end of the gate time. One
possibility to improve the fidelity of the MS gate is to modulate the available parameters to reduce
the displacement error coming from spectator modes. Various modulation schemes exist in the
literature such as phase modulation [55], frequency modulation [56], amplitude modulation [57]
and combinations of them with modulation either continuously or time-discrete. In this thesis
the focus is on the amplitude modulation scheme outlined in Ref. 51 and the gate is referred to
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as ms_am gate. The choice of this particular method was guided by the technical limitations of
the RF generation, which is discussed in Chap. 5.

The amplitude modulation scheme outlined in Ref. 51 uses a continuous waveform that is in-
corporated in the time evolution by replacing the time-independent Rabi frequency Ω with a
truncated Gaussian function of the form

Ω = Ω(0 ≤ t ≤ τ) = Ω0e
−(t−τ/2)2/2σ2

, (4.2)

which is zero outside the specified times. This waveform is parameterized by the gate time τ ,
the peak Rabi frequency Ω0, and the width σ that corresponds to the standard deviation of the
Gaussian function. The detuning of the bichromatic laser beam frequencies from the carrier δc

is chosen to be constant during the gate time and it is placed inside the mode spectrum at a
(numerically) pre-determined frequency, with details of how to obtain it described later in this
section. These parameters that describe the gate operation are depicted in Fig. 4.5.

Figure 4.5.: Parameterization of the ms_am gate. a, The Rabi frequency Ω(t) is a truncated Gaussian
waveform for times 0 ≤ t ≤ τ , with zero amplitude otherwise. b, The detuning δc of the bichromatic laser
beam from the carrier transition is constant during the gate time and chosen according to the condition
imposed on the cost function in Eq. 4.11.

For the MS gate, the phase space trajectory αk(t) for each mode k traces out circles with the
radius proportional to ∝ Ω/δk, becoming smaller for modes farther away from the bichromatic
laser beam frequency. In the case of amplitude modulation, the phase space trajectory for mode
k is given by

αk(t) = iΩ0

∫ t

0
e− (t′−τ/2)2

2σ2 e−iδkt′ dt′ (4.3)

= iΩ0σ

√
π

2 exp
[
σ2

2 κ
2 − τ2

8σ2

]
·
[
Erf

(
t√
2σ

− σ√
2
κ

)
− Erf (−κ)

]
(4.4)

with κ = τ

2σ2 − iδk, (4.5)

with the error function Erf(z) = 2/
√
π
∫ z

0 exp(−u2) du for the complex argument z ∈ C. The
radius is now time-dependent and the normal MS gate behaviour with constant radius is recovered
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for widths σ ≫ τ . The entangling phase Φ is given by

Φ(t) = i

2
∑

k

ηj1
k η

j2
k

Bk(t)︷ ︸︸ ︷[∫ t

0

(dαk(t′)
dt′ α∗

k(t′) − αk(t′)dα∗
k(t′)
dt′

)
dt′
]

(4.6)

=
∑

k

ηj1
k η

j2
k

∫ t

0
Im
(dαk(t′)

dt′ α∗
k(t′)

)
dt′, (4.7)

where the relations Erf∗(z) = Erf(z∗), exp∗(z) = exp(z∗), z1z
∗
2 + z2z

∗
1 = 2 Im(z1z

∗
2) and the

derivative of the phase space trajectory

dαk(t′)
dt′ = iΩ0e

− (t′−τ/2)2

2σ2 e−iδkt′
, (4.8)

have been used to obtain the simplified expression in Eq. 4.7. The ms_am gate has four distinct
features that make it a suitable candidate for the AQTION setup.

First, the displacement error induced by the ms_am gate is exponentially suppressed with the
distance of the mode frequency from the bichromatic frequencies δk. For Gaussian waveforms
whose width is small compared to the gate time σ2 ≪ τ2, the limits of integration in the phase
space trajectory αk can be extended to yield

αk(τ) = iΩ0

∫ ∞

−∞
e− (t′−τ/2)2

2σ2 e−iδkt′ dt′ (4.9)

|αk(τ)|2 ≈ 2πΩ2
0σ

2e−δ2
kσ2/2, (4.10)

which shows the exponential suppression of the displacement error by δ2
k when sufficiently far

detuned from the closest motional mode. Second, instead of detuning the bichromatic frequencies
by δ = 1/τ from the COM mode frequency to ensure the decoupling of the COM mode phase
space trajectory at the conclusion of the gate, the ms_am gate places the bichromatic laser beam
inside the mode spectrum. The so called balance point detuning δc is determined by numerically
minimizing the cost function

dΦ(τ)
dδc

=
∑

k

ηj1
k η

j2
k

dBk(τ)
dδc

= 0, (4.11)

which makes the ms_am gate first order insensitive to rotation angle errors induced by motional
mode frequency changes. At the same time the balance point detuning minimizes the second
order contribution |d2Φ/dδ2

c |. The neighboring modes that are closest to δc are defined as target
modes for a given ion pair (j1, j2) and those terms usually2 contribute the most to the cost
function as they assume their largest value for δk = 0. Without loss of generality, assume a
solution is found between the target modes k = 1 and k = 2. Then the sign of the terms dB1/dδc

and dB2/dδc is equal, but the sign of the product of LD factors ηj1
1 η

j2
1 and ηj1

2 η
j2
2 can be different.

At the balance point detuning, the contribution of the target modes to the entangling phase is
of opposite sign and hence compensated in first order for mode frequency changes that shift the
detuning of each mode by an equal amount. This is a justified assumption as the target modes
are in most cases only tens of kHz apart.

2Exceptions can occur when the product of LD factors of non-target modes is larger than those of the target
modes.
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4. Frequency-robust entangling gate using amplitude modulation

For large ion chains with N> 10 ions, the effect of mode crowding towards the COM mode
frequency becomes more pronounced. Since the contribution of motional modes k to the rotation
angle is proportional to Φ ∝ 1/δk, this leads to the case that several modes contribute significantly
to the rotation angle. Furthermore, because of Φ ∝ ηj1

k η
j2
k , modes that are farther away from the

bichromatic frequencies but posses a larger product of LD parameters than the target modes,
could contribute more to the entangling phase than the target modes. These two effects are taken
into account in the cost function by summing over all motional modes. The minimization of this
cost function as well as its properties are described in more detail in the following Sec. 4.3.

Third, the ms_am gate is described by a small set of parameters for a given mode spectrum and
ion number, with the gate time τ and width σ of the Gaussian waveform kept the same for all
ion pairs. The ms_am gate for individual ion pairs is then described by just the detuning δc and
the peak Rabi frequency Ω0, which simplifies the implementation in hardware. Additionally,
this speeds up the numerical optimization compared to other modulation methods as only a
single numerical integral has to be evaluated. Fourth, frequency-robust entangling gates are less
sensitive to deviations of the waveform compared to other modulation methods. This makes
them suitable for experimental use, where several factors like the AOM diffraction efficiency can
alter the waveform. Figure 4.6a shows the time evolution for an ms_am gate in comparison to
a standard MS gate. The maximum excitation of the intermediate states |01⟩ + |10⟩, where the
phonon number is changed, is smaller in the ms_am gate, illustrating the robustness against mode
frequency changes. The time-dependent radii of the phase space trajectory for the ms_am gate is
shown in Fig. 4.6b.

Figure 4.6.: a, Illustrative time evolution of the ms_am gate for two modes f1 = 2230 kHz and
f2 = 2140 kHz. For comparison, the dashed lines show the time evolution of a standard MS gate for a
single decoupled mode f1. Both gates realize a maximally entangled state at the gate time of 300 µs in
this example. b, Phase space trajectory of the ms_am gate showing the time-dependent radii for modes
k= 1 and k= 2.

4.3. Numerical optimization
This section describes how the numerical optimization of the cost function in Eq. 4.11 was
implemented in the Python programming language and discusses properties of the cost function
and the phase space trajectory using a 2-ion chain from the AQTION setup as an example.
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4. Frequency-robust entangling gate using amplitude modulation

The numerical optimization is implemented in a class called GaussianOptimization and takes as
input the number of ions nions = 2, the radial COM mode frequencies fCOM, x = 3097.6 kHz and
fCOM, y = 3177.0 kHz as well as the effective axial COM mode frequency fCOM, z = 846.0 kHz.
When the class is initialized it computes the mode spectrum, which is shown as dashed lines in
Fig. 4.7, in addition to the LD factors.

The method optimize then computes the numerically optimized solutions for a specified ion
pair. For a 2-ion chain the only possible pair has the indices j1-j2 = 1-2, which in zero-based
numbering that is used in Python corresponds to 0-1. Additional required inputs are the gate
time τ = 300 µs and the width of the Gaussian waveform σ = 50 µs. With these inputs the
pseudocode of the algorithm is the following:

Pseudocode for numerical optimization
0. for ion pair j1-j2 in ion_pairs:
1. compute dΦ(τ)/dδc for nδc detuning values in [ωmin, ωmax]
2. ↪→ numerically find roots of dΦ(τ)/dδc with bounds computed in 1. → {δc}
3. for root in computed_roots:
4. ↪→ find peak Rabi frequency Ω0 → Ω0
5. ↪→ calculate fidelity F̄ → F̄
6. ↪→ save all obtained solutions to json file
7. ↪→ order solutions (δc,Ω0, F̄) by specified criterion for each ion pair

The first step is to evaluate the cost function for nδc values of the detuning between the lowest
ωmin = ω4 and the highest ωmax = ω1 mode frequency. This is done by numerically evaluating
the integral in Eq. 4.11 and then calculating the difference quotient to obtain the derivative with
respect to δc. The result for a 2-ion chain is shown in Fig. 4.7a, where nδc = 1000 results in a
spacing between successive points of the cost function evaluation in the simulation of 197 Hz. As
can be seen in the figure marked by white dots, seven roots of the cost function corresponding
to a balance point detuning δc exist. In a second step each of those roots3 is then numerically
determined by using a root finding algorithm that returns a set of balance point detunings {δc}.
Each of those detunings is determined by searching within a specified region of detunings, with
the lower and higher bounds given by subsequent points of the cost-function where the sign
changes. Starting point for the root finding algorithm is the intersection of the line connecting
those two points with dΦ(τ)/dδc = 0.

For each of those roots in {δc}, the peak Rabi frequency Ω0 is obtained by noting that Eq. 4.7
can be written as a quadratic equation Φ(τ) = Ω2

0 · ξ, with ξ = ∑
k η

j1
k η

j2
k Bk(τ,Ω0 = 1) a constant

that does not depend on Ω0. Simply solving this equation for an entangling phase that gives a
maximally entangled state Φ(τ) = |π/2| yields for the peak Rabi frequency Ω0 =

√
π/(2ξ), with

the sign of the entangling phase of the gate given by sign(ξ).

In the next step, having obtained the balance-point detuning δc and the peak Rabi frequency
Ω0 that completely parameterize the ms_am gate, the fidelity is calculated with the average gate
fidelity F̄ given in Eq. 2.59. For this M + 1 parameters are needed, with M parameters given by
the phase space trajectory at the gate time αk(τ) for each mode k and the additional parameter
being the realized entangling phase Φ(τ) = ±π/2 that is obtained to 10−16 precision. Note that
although multiple solutions exist for each ion pair that are robust to first-order to mode frequency

3One can also specify in the code that only a subset of roots shall be further examined.
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Figure 4.7.: a, Cost-function for the two ion case. The term from each of the four modes is marked in
the respective colour and the seven balance-point detunings are marked in white. b, For each detuning
between the four modes, the peak Rabi frequency required for creating maximally entangled states as
well as the fidelity was calculated. The grey area marks gates that satisfy Ω0/(2π) < 400 kHz as well as
F > 99 %, which only one out of the seven solutions with δc = 3.080 kHz fulfils.

changes, those solutions do not necessarily implement a high-fidelity ms_am gate, as can be seen
in Fig. 4.7b, where the peak Rabi frequency as well as the fidelity was calculated for multiple
points. The gray areas indicate gates that simultaneously satisfy Ω0/(2π) < 400 kHz as well as
F > 99 %. Only one out of the seven solutions with δc = 3.080 kHz satisfies these criteria and
the corresponding phase space trajectory is shown in Fig. 4.8a. By choosing a different detuning
that is not a balance-point detuning, gates that satisfy these criteria can be realized but do not
offer the same robustness as gates situated at a balance-point detuning.

Figure 4.8.: Phase space trajectories of two out of the seven solutions for a 2-ion chain. Black points
mark the phase space trajectory at the gate time α(τ). In a all modes decouple, whereas in b mode k = 3
does not. The infidelity is 21.2 % higher due to the displacement error mainly coming from this mode.

Every obtained solution is then saved to a json file where they can be further analyzed. In
particular, for each ion pair the solutions are ordered by the fidelity and further criteria like
distance to the nearest mode can be applied. Figure 4.8 shows the phase space trajectories for
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4. Frequency-robust entangling gate using amplitude modulation

two solutions in the 2 ion case, with all modes decoupled in a but mode k = 3 being displaced
at t = τ in b, resulting in a drop of the obtained gate fidelity by 21.2 %.

4.4. Experimental calibration procedure
The experimental calibration procedure is aided by the results of the numerical simulation and
aims to include experimental imperfections that affect the gate operation but are not part of the
numerical simulation. There are two parameters for each ion pair that need to be calibrated to
realize an ms_am gate in the experiment, namely the balance point detuning δc and the peak Rabi
frequency Ω0.

First, the balance point detuning δc is obtained by scanning the detuning of the bichromatic laser
beam with respect to the carrier frequency between the target modes. For this scan the peak
Rabi frequency is chosen based on numerical simulation results that give a rough estimate for the
Rabi frequency that can be expected in the experiment. The minimum of the population of the
|11⟩ state in the vicinity of the solution from numerical simulation then corresponds to δc. This
is shown in Fig. 4.9a for a 2-ion chain with mode frequencies f1 = 2.23 MHz and f2 = 2.14 MHz.
The state populations have been obtained by means of Hamiltonian simulation with the Rabi
frequency chosen to be Ω0/(2π) = 170 kHz in this particular example. Second, the actual peak
Rabi frequency Ω0 in the experiment is then obtained by scanning the power of the DP-AOM,
which corresponds to a scan of the peak Rabi frequency. Using the balance-point detuning from
the previous calibration step, the crossing point of the |00⟩ and |11⟩ population acts as a proxy
for the entangling phase that indicates maximally entangled state. In Fig. 4.9b a simulation of
such a power scan is shown.

Figure 4.9.: Hamiltonian simulation for experimentally carried out calibration scans. a, Detuning scan
to determine the balance-point detuning δc situated at the minimum of the |11⟩ population in the center
of the scan. b, Power scan to calibrate the entangling phase by adjusting the power such that the states
|11⟩ and |00⟩ have the same population, hence a maximally entangled state is created.
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ecosystem

The realization of high-fidelity MS gates requires RF generators capable of synthesizing complex
waveforms by controlling any combination of amplitude, phase, and frequency. Most suited for
this purpose are dedicated Arbitrary Waveform Generator (AWG) devices, whose integration
into the existing control software is however challenging given their standalone nature. For this
reason, the Sinara “AWG” Phaser hardware module is used, which provides capabilities similar
to an AWG and is already integrated into the existing software environment.

In the previous chapter the ms_am gate was introduced as an amplitude modulated variant of
the MS gate with the prospect of reducing the gate error coming from residual coupling of radial
modes in the current AQTION setup. This method was chosen based on an investigation into the
technical capabilities and limitations of Phaser presented in this chapter. In particular, Sec. 5.1
extends the information about the Sinara Phaser module given in Sec. 3.1 by discussing the
relevant signal processing pipeline. Then, in Sec. 5.2 the RF generation capabilities of Phaser are
tested by measuring the light intensity of the laser beam after a DP-AOM, which is controlled
by RF signals generated by the Phaser module. Here, the focus is on the behaviour of the light
intensity when changing the amplitude and/or the phase as well as on achievable parameter
update times.

5.1. RF generation capabilities
This section provides a more comprehensive overview of the Sinara Phaser module by extending
the information provided in Sec. 3.1. A simplified signal processing pipeline for one of the two
output channels of the Phaser module is shown in Fig. 5.1 to illustrate which parameters are
accessible and how they affect the analog RF output signal. The output signal contains up
to five tones, whose frequency, phase, and amplitude can be independently set by Numerically
Controlled Oscillators (NCOs) on the Kasli RTIO gateware. In the following discussions, only
a single frequency tone per Phaser output channel is considered as this is sufficient for most of
the MS modulation schemes that are feasible for the AQTION setup. For this single tone, a 32
bit FTW (kasli_freq) ensures a frequency resolution of ∼ 2.9 mHz in the range of ±12.5 MHz
around the carrier frequency, whereas a 16 bit POW (kasli_phase) provides phase control with
a resolution of ∼ 15 µrad. The amplitude of each oscillator is set via a 15 bit ASF (kasli_amp).
The NCOs generate digital in-phase and quadrature components (I/Q) for each oscillator with
25 Mega samples per second (MS/s) and the signal for each oscillator is summed up to obtain a
single digital I/Q signal with 25 MS/s.

The digital I/Q signal is then sent via a FastLink connection to the FPGA gateware on the Phaser
module, where it is interpolated from 25 MS/s to 500 MS/s using digital filters. These filters
additionally remove undesired frequency components, with the amplitude of the signal varying
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less than 10−3 in the passband frequency range [−10, 10] MHz. Frequencies in the stopband
outside the range [−15, 15] MHz are being attenuated by a minimum of 75 dB. The resulting
signal is then mixed with an NCO operating at 500 MS/s to implement a Digital Up-Converter
(DUC). The DUC additionally allows to shift the frequency for all tones to a desired RF window
with a 32 bit FTW (duc_frequency) and also the phase can be adjusted with a 16 bit POW
(duc_phase). On the Digital to Analog Converter (DAC) “DAC34H84” the resulting signal is
then interpolated from 500 MS/s to 1 GS/s, with a passband of ±200 MHz that wraps around at
±250 MHz (e.g. 251 MHz corresponds to −249 MHz again), before it is converted to an analog
I/Q signal.

This analog signal is then sent through an Anti-Aliasing (AA) filter with a specified cut-off
frequency of 340 MHz, which was measured to be closer to 200 MHz due to a filter design error
[58]. In the Phaser baseband version that is used in the AQTION setup, the signal is then passed
through a variable attenuator (analog_attenuation) with a maximum attenuation of 31.5 dB,
whose value is set to 0 dB in all considered examples. The analog signal is then emitted at the
frontend of the Phaser module at a Micro-miniature coaxial (MMCX) output port. An overview
of all discussed parameters and where they are physically changed is shown in Fig. 5.1. In the
next section the capabilities of Phaser in terms of parameter update times as well as the behaviour
of the RF output signal when changing the amplitude and/or phase are discussed.

Figure 5.1.: Relevant signal processing pipeline for the Phaser module, with the physical location of each
processing step indicated at the bottom. The grey font indicates parameters, that are modified by the
software implementation of a standard as well as an ms_am gate. The figure is taken from Ref. 59 and
adapted to show only the relevant parts, with the measured passband frequency range of the AA filter
taken from Ref. 58.

5.2. Phaser device characteristics
The Phaser hardware module enables in principle the simultaneous modulation of phase, fre-
quency, and amplitude. In practice however, the signal processing pipeline outlined in the previ-
ous Sec. 5.1 imposes constraints to the parameter update time as well as to parameter changes.
A DP-AOM unit was used to investigate how changes in the phase and amplitude are imprinted
on the laser beam intensity with a photodiode (PD) to determine which modulation technique
to pursue in the AQTION setup. For these tests the quench laser with a wavelength of 866 nm
was used instead of the qubit laser with a wavelength of 729 nm, but the main results should
still apply to the qubit laser wavelength. The kasli_freq = 197.25 MHz was set such that the
qubit transition |0⟩ = |42S1/2,mj = − 1/2⟩ ↔ |1⟩ = |32D5/2,mj = − 1/2⟩ would be driven in
an experiment. Frequency modulation is intentionally excluded from all considerations in this
thesis as it would additionally require the implementation and calibration of phase tracking in
the control software.
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First, discrete changes in the RF amplitude and their influence on the laser beam intensity were
investigated. For this, a 5 µs rectangular RF pulse was sent to a DP-AOM whose kasli_amp
was varied between 30 % and 100 % of the maximum value, while the frequency and phase of
the RF pulse remained constant. The corresponding PD signal is depicted in Fig. 5.2a, with the
numbers indicating the kasli_amp for the respective colored trace. For large amplitude values of
the rectangular signal (80 % and above), one can observe the sinc-like overshoot behaviour of the
digital interpolation filter arising from the near brick-wall frequency response of the filter [60].
This overshoot can be observed on both edges of the pulse.

Figure 5.2.: a, Rectangular signal of 5 µs length for different kasli_amp ASFs, with t = 0 µs indicating
the beginning of the rising slope. b, Peak PD signal intensity (without overshoots) of the signals in a.
Fitted is a function of the form a sin(bx)4 + c to illustrate the dependence of the light intensity on the
amplitude that is specified in the RF generation.

In addition to an observed overshoot of the PD signal amplitude, oscillations in the rising and
falling edges of the rectangular pulse can be observed for the largest two values of the kasli_amp
of 99 % and 100 %. This is the result of overflow occurring in the signal processing pipeline for
changes in the amplitude that are close to 100 %. Both behaviours can be minimized by choosing
smaller changes in the amplitude. Furthermore, the transient response of the AOMs can be seen
by noting the slope of the signal for t ∈ [0, 5] µs, especially for larger amplitudes. Note that this
is a feature of the AOMs rather than a feature that is introduced by the RF generation of Phaser.

In Fig. 5.2b, the peak PD signal is shown as a function of the chosen kasli_amp. It was extracted
from the PD signal for the time interval t ∈ [1 µs, 4 µs] to exclude the overshooting behaviour for
certain amplitudes. The error bars correspond to the standard deviation in these time intervals.
For a DP-AOM, the expected relationship between the peak PD signal Ap and the kasli_amp
Ak is given by

Ap(Ak) = a · sin(bAk)4 + c, (5.1)

with amplitude a, frequency b, and offset of the PD signal due to background illumination c. A
fit to the data points clearly shows this expected dependence of the peak PD signal.

Second, to investigate the feasibility of phase modulation, a constant kasli_amp = 95 % is set,
while the kasli_phase is repeatedly varied between 0 rad and the interval [0.04, 1]π rad. The
PD signal for both signs of the phase change 0 → kasli_phase and kasli_phase → 0 is shown
in Fig. 5.3a. Although the amplitude is not changed in these measurements, there is a visible
change in the PD signal arising from the digital signal processing pipeline of the Phaser module.
The minimum PD signal was obtained for 30 subsequent changes in the phase and grouped by
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the sign of the phase change to quantify this effect. From this, the reduction of the PD signal
relative to the constant PD signal for kasli_amp = 95 % was calculated. Additionally, the offset
of the PD signal due to background illumination visible in Fig. 5.2 is taken into account. The
mean and standard deviation over 15 phase changes is shown in Fig. 5.3b, with the error bars
being smaller than the extent of the individual squares and circles representing the data points.
Changes in the phase that are larger than 0.4π rad results in at least 80 % reduction of the PD
signal. For smaller changes there is less reduction of the PD signal, with the minimum observed
reduction being equal to 20 % for a phase change of 0.04π rad = 7.2◦.

Figure 5.3.: a, For a constant kasli_amp = 95 % set on a single channel of the Phaser module, both
positive and negative changes in the phase result in a reduction of the PD signal. b, The reduction of
the PD signal relative to the PD signal for kasli_amp = 95 % is calculated for different values of the
kasli_phase for a total of 15 phase changes. The offset of the PD signal is thereby taken into account
and was taken from Fig. 5.2.

One has to keep in mind that phase modulation would be carried out on a single channel of the
FAOM instead of the DP-AOM, which means that the reduction in laser intensity in the experi-
ment would be smaller than the ones shown in Fig. 5.3. Regardless of this, even a reduction of
20 % in the PD signal would result in a controlled and desired modulation of the phase accompa-
nied by an uncontrolled modulation of the amplitude. As the modulation of the amplitude would
only affect one of the two frequency tones required for the creation of the bichromatic laser beam,
this results in a time-dependent imbalance of the power among the two tones. This imbalance
introduces a time-dependent AC-Stark shift, which for modulation sequences requiring multiple
phase changes during the gate operation will inevitably lead to a drop in the gate fidelity when
uncorrected.

Third, the capabilities of Phaser regarding parameter update times were investigated, as this time
determines the maximum number of segments one can realize for a given modulation scheme.
Continuous functions of frequency, phase, and amplitude in time are approximated by updating
them in discrete time steps, because a single channel of Phaser is limited to 5 tones with unique
values for those parameters. Therefore smaller update times are more favourable to more closely
approximate the desired waveform. The time it takes for a single parameter update of the
amplitude or the phase can be as low as ≈ 1 µs before an underflow error occurs. For lower times,
an RTIO event of the parameter change would be placed in the past relative to the wall clock.
This would break the guarantee of the time-critical code execution and hence the program is
interrupted. More details about the ARTIQ RTIO concepts are provided in Ref. 61. This lower
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time was obtained in a minimal working example, where the kasli_amp ASFs or kasli_phase
POWs are continuously varied between two values. This means that only the task of switching
between those values for a single Phaser channel was realized in the program instead of having
a full experimental control software running. Hence the time can be regarded as a lower limit
to what one can expect in the experiment. The lower limit for simultaneously changing both
the phase and the amplitude was measured to be ≈ 2 µs, regardless of the magnitude of change.
However, one can further reduce these times by utilizing the Direct Memory Access (DMA)
feature of ARTIQ.

This features allows the recording of RTIO events that implement a desired waveform and storing
them on the FPGAs Synchronous Dynamic Random-Access Memory (SDRAM) on the Sinara
Kasli module. Instead of having to compute the RTIO events when a kernel function is called,
the saved RTIO events are simply fetched from the SDRAM and played back by the FPGA core
on the Kasli module. Using this method, the change of either the phase or amplitude can be
reduced to 275 ns before an underflow error occurs. Given that a typical MS gate takes 300 µs,
this would correspond to more than a 1000 individual parameter updates.

An example of a Gaussian waveform with a parameter update time of 275 ns is depicted in
Fig. 5.4a, where both the RF signal as well as the resulting PD signal after the DP-AOM are
shown. The chosen parameters, a gate time of τ = 200 µs and a width of the Gaussian waveform
of σ = 25 µs, are both reflected in the RF signal. Note that the time is relative to the peak of the
RF signal and the RF signal outside ±100 µs is set to zero. In these regions, the resolution of the
Analog-to-Digital Converter of the oscilloscope as well as background noise are visible. Given
the parameter update time, more than 700 updates of the amplitude are performed within the
gate time, enough to approximate the Gaussian waveform to a sufficient degree for experimental
purposes.

Figure 5.4.: a, RF signal of a Gaussian waveform realized on the Phaser with a parameter update time
of 275 ns and a Gaussian width of σ = 25 µs (blue) with the corresponding PD signal (orange). The width
of the PD signal is smaller compared to the RF signal due to the ∼ sin4 dependence of the light intensity
on the amplitude of the RF signal following Eq. 5.1 and experimentally shown in Fig. 5.2b. Oscillations
of the PD are shown in the inset. b, FFT of the RF signal, showing the carrier at f = 197.25 MHz. c,
FFT of the PD signal, showing only the envelope of the signal. The main frequency components are below
100 kHz, indicating the spectrally compact Gaussian waveform. Additional peaks arise due to aliasing
from Phaser and the impact is discussed in Chap. 7.

Figure 5.4b shows the Fast Fourier transform (FFT) of the RF signal, with the main peak located
at a frequency of f = 197.25 MHz, which is expected given the chosen RF parameters. In Fig. 5.4c,
the FFT of the PD signal only shows the information present in the envelope of the signal, as
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the carrier frequency of the laser beam on the order of THz is outside the bandwidth of the PD.
The main frequency components are below 100 kHz, indicating the spectrally compact Fourier
Transform of a Gaussian waveform. Additional peaks are located at f = 1/320 ns = 3.125 MHz
and at 3.6 MHz, coming from aliasing in the Phaser gateware when the signal is resampled from
275 ns to 320 ns. This effect is discussed in more detail in the outlook in Sec. 7.

The conclusion of this chapter is, that an amplitude-modulated MS scheme may be the most
promising optimal control technique given the technical capabilities of Phaser, as phase changes
lead to undesired changes of the amplitude of the signal. Furthermore, by using the built-
in DMA feature the update times for single parameter changes can be expected to be on the
order of 300 ns when embedded into the experimental control software. This time should be
fast enough to approximate continuous changes of parameters, as shown for the example of a
Gaussian waveform.
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The following chapter presents experimental results from the AQTION machine obtained between
October 2024 and January 2025. Numerical “phase space” simulations following Chap. 4 aid the
parameter choice for the implemented ms_am gate and are shown alongside experimental findings.
The chapter is divided into two parts, beginning with the results for a 2-ion chain in Sec. 6.1. Here,
the dependence of the Rabi frequency Ω on the Phaser kasli_amp is determined, which allows
the generation of a Gaussian waveform in Rabi frequency Ω. Using these results, the performance
of the gate is measured by using the state preparation fidelity of a maximally entangled state as
an estimate for the gate fidelity. We investigate the state preparation fidelity as a function of
the number of gates and examine its robustness against motional mode frequency drifts. In the
second part of the chapter, the ion chain is extended to 16 ions, leading to an increase in the
number of ion pair combinations j1−j2 from 1 to 120. Hence the main focus of Sec. 6.2 lies on
a calibration technique that allows the time-efficient calibration of all 120 individual gates. We
then compare the ms_am gate to the standard MS gate for all 120 pairs using the state preparation
fidelity of maximally entangled states as a measure.

6.1. Experimental results for a 2-ion chain
In this section, the ms_am gate is tested on a 2-ion chain with radial COM mode frequencies
fCOM, x = 3097.6 kHz and fCOM, y = 3177.0 kHz as well as an effective axial COM mode frequency
fCOM, z = 846.0 kHz. The numerical optimization results for the ms_am gate, as described in
Sec. 4.3, are shown in Fig. 4.7 for a gate time of 300 µs and a Gaussian width of σ = 50 µs. In total,
seven balance-point detunings have been found numerically, with only one solution satisfying
both conditions Ω0/(2π)> 400 kHz and F̄ > 99 % at the same time. This particular solution has
a balance-point detuning of δc = 3.080 kHz, with the bichromatic frequency components located
between target modes k= 2 and k= 3. The simulated peak Rabi frequency for achieving a
maximally entangled state is Ω0/(2π) = 165.28 kHz.

As outlined in Sec. 4.2, amplitude modulation is carried out by varying the carrier Rabi fre-
quency Ω of the addressed ion pair. In the experiment however, the Phaser kasli_amp ASF and
thus the RF output amplitude is varied. This necessitates a mapping from the kasli_amp Ak

to the Rabi frequency Ω. As the output of Phaser is connected to a DP-AOM, the expected
dependence is of the form1 Ω(Ak) = a sin(bAk)2, with amplitude a and angular frequency b. This
relationship is shown in Fig. 6.1, where a single ion was resonantly addressed to obtain the carrier
Rabi frequency Ω defining the entangling gate operation. The data shown here is obtained by
addressing ion j= 1 and the results similarly apply also to ion j= 2, given that the variation
in laser intensity incident on the ions is smaller than the typical experimental drift. Note that
throughout the measurement, the amplitude of the RF signals which are supplied to the FAOM

1For a single AOM the dependence of the intensity I on the input amplitude Ak is I ∼ sin(Ak)2 and for a
DP-AOM I ∼ sin(Ak)4. With the relation I ∼ Ω2 one arrives at the mentioned dependence.
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and the addressed AODs remained constant at their typical operational value. In order to realize
a Gaussian waveform in Rabi frequency, the kasli_amp is calculated using the inverse relation
Ak(Ω(t)) = arcsin

(√
Ω(t)/a

)
/b, with Ω(t) the time-dependent Rabi frequency following a Gaus-

sian function from Eq. 4.2. The non-linearity of the DP-AOM causes a reduction of the pulse
area on the laser beam compared to the RF signal, which is shown for a Gaussian waveform in
Fig. 5.4 for the intensity (∼ sin4) instead of the Rabi frequency (∼ sin2) that is investigated here.
By using the mapping, the desired waveform is implemented in Rabi frequency instead of in the
RF signal, which increases the pulse area while simultaneously reducing the required power to
implement an ms_am gate. This ensures that the DP-AOM operates in the linear regime visi-
ble in Fig. 6.1 and that the implemented waveform also more accurately reproduces the desired
Gaussian waveform in Rabi frequency underlying numerical simulations.

Figure 6.1.: Rabi frequency Ω as a function of the Phaser kasli_amp for addressing a single ion in a
2-ion chain. The fit shows the expected dependence due to the DP-AOM Ω(Ak) = a · sin(bAk)2 and is
shown in red with parameters a and b. A Gaussian waveform in Rabi frequency Ω(t) can be realized by
solving the function for Ak(Ω(t)).

With this mapping established, the next step is to measure the state preparation fidelity of the
maximally entangled state (|00⟩ + i |11⟩)/

√
2 when starting in |00⟩. The first measurement is

shown in Fig. 6.2a and is a detuning scan for the standard MS gate around the ideal detuning
of δ = 1/304 µs relative to the radial-y COM mode. Here, the population of the odd states
|01⟩+ |10⟩, where the phonon number is changed2, is suppressed in a ≈ 1 kHz wide region around
the ideal detuning. For the ms_am gate, the same scan was carried out but this time the detuning
was varied in between the target modes around the balance-point detuning of δ = −97.1 kHz. The
required peak Rabi frequency Ω0 for this scan was chosen such that an ms_am gate is implemented
at the balance-point detuning, with the results shown in Fig. 6.2b. The region where the odd
state population is suppressed is ≈ 20 kHz wide for the ms_am gate and thus larger compared to
the standard MS gate when using a gate time of 300 µs for both implementations.

A robustness scan was carried out in a second step, as the detuning scan only gives an indication
about the displacement error induced by the gate operation, but not on the state preparation
fidelity F . The idea here is to investigate the robustness of the state preparation fidelity against
motional mode frequency changes, but instead of changing the applied trapping frequencies for
each scan point the detuning is shifted to mimic this effect. The power of the respective gate

2The odd state population also includes the effect of resonant carrier excitation. This contribution is however
much smaller given that the population of odd states is significantly reduced at the ideal detuning.
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Figure 6.2.: Detuning scan for the standard MS gate shown in a and for the ms_am gate in b, with
different scales on the x-axis. The ideal detuning was chosen based on experimental measurements for the
MS gate (δ = 1/304 µs) and for the ms_am gate based on numerical simulations (δ = −97.1 kHz).

was calibrated at the ideal detuning (for the MS gate δ = 1/304 µs and for the ms_am gate
δ = −97.1 kHz) and the state preparation fidelity is obtained for a different detuning using this
calibrated power. The result for the standard MS gate can be seen in Fig. 6.3a, showing a
≈ 800 Hz wide region where the condition F > 90 % holds. The discrepancy between the ideal
detuning and the maximum fidelity obtained by the simulation may be explained by the fact that
the simulation doesn’t take amplitude shaping into account. For the ms_am gate in Fig. 6.3b, this
region is ≈ 20 kHz wide, reinforcing the results obtained from the detuning scan showing a larger
region where the population of odd states is suppressed compared to the standard MS gate.

Figure 6.3.: a, Robustness scan for the standard MS gate at a detuning δ = 1/304 µs. b, Robustness
scan for the ms_am gate around the ideally chosen detuning δ = −97.109 kHz between the center target
modes, indicating a broad region with F > 90 %. The region where high-fidelity gates are obtained is
larger compared to the standard MS gate.

However, the motional mode frequencies usually vary by only ±250 Hz around the ideal detuning
in continuous operation, minimizing the potential advantage of the ms_am gate. The relevant
region for the ms_am gate is shown by the inset in Fig. 6.3b, where no dependence of the state
preparation fidelity is visible compared the same region for the standard MS gate. In both cases,
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the red curve shows the average gate fidelity F̄ estimated by phase space simulation, which is
in agreement with the measured data towards the left of the ideal detuning, but deviates more
strongly towards the right of it. Measurements were obtained left first, right afterwards with
a calibration of the required power for the entangling gate before each scan point at the ideal
detuning. However no other calibration scripts were run, possible resulting in an accumulation
of parameter drifts increasing in severity towards the right.

Next, the state preparation fidelity for both the standard MS and the ms_am gate is obtained
for different numbers of consecutive gates ng. Prior to each measurement point, the power
of ng consecutive gates is calibrated with a power scan, with the detuning held constant for
all measurements. From these measurements, an error rate ε can be extracted by fitting the
function F(ng) = (1 − ε)ng , which is shown in Fig. 6.4a for the MS gate and in Fig. 6.4b for
the ms_am gate. Given that the state preparation and measurement (SPAM) error was measured
separately to be well below the resolution of this measurement, a single-parameter fidelity decay
model was chosen that does not include SPAM errors. The result for the standard MS gate is
εMS = 0.73(10) % and for the ms_am gate εms_am = 0.31(3) %.

Figure 6.4.: Measured error rates ε for entangling gates with a gate time of τ = 300 µs. a, Error rate for
the standard MS gate with a detuning of δ = 1/304 µs relative to the radial-y COM mode. b, Error rate
for the ms_am gate with a detuning of δ = −97.1 kHz and a Gaussian width of σ = 50 µs.

During the system migration to the Sinara hardware ecosystem, a calibration error was introduced
by assuming that the gate time for the standard MS gate should stay at the previously optimal
τ = 300 µs. Although the detuning was optimized for this gate time, we will see in the following
section with 16 ions that the gate performance can be increased by choosing a longer gate time
while keeping the detuning the same. Consequently, the results in this section only imply that
the ms_am gate worked and performed at least as well as the standard MS gate.

6.2. Experimental results for a 16-ion chain
In this chapter the ion chain is extended from 2 to 16 ions, which is the typical ion number used
in the AQTION setup. Not only does the number of radial modes grow from 4 to 32, but also the
number of distinct pairs that need to be calibrated expands from a single pair to 120 pairs in the
16-ion chain. This section is thus mainly devoted to an experimental calibration procedure that
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achieves the calibration of all 120 pairs in a time-efficient manner, with the procedure described
in the first part of this section. The second part then presents experimental results comparing the
standard MS gate with the ms_am gate with regard to their state preparation fidelity of maximally
entangled states.

The experimental parameters of the individual ms_am gates are based on the numerical simu-
lation outlined in Sec. 4.3. For this whole section the input parameters of the simulation are
the number of ions nions = 16, both radial COM mode frequencies fCOM, x = 3095.36 kHz and
fCOM, y = 3177.00 kHz in addition to the effective axial COM mode frequency fCOM, z = 383.20 kHz.
The gate time τ = 300 µs was chosen such that a direct comparison with the standard MS gate is
possible, whereas the width σ = 59 µs balances the power requirements in the experiment with the
number of numerically obtained high-fidelity solutions exceeding F̄ > 99 %. Given the symmetry
of the LD factors with respect to the ion indices j1 and j2, only 64 out of the 120 pairs need to
be simulated, as the ion pair j1 − j2 yields the same set of solutions as pair (17 − j2) − (17 − j1).
The obtained results need to be filtered further, as for each ion pair there exist multiple viable
balance-point detunings leading to a high-fidelity ms_am gate implementation.

Out of 6909 obtained solutions3, 120 possible combinations (that is one per unique ion pair)
have been obtained by considering for a given ion pair only solutions with a fidelity F̄ > 99 %
and choosing the solution with the lowest peak Rabi frequency Ω0. All 120 solutions and their
properties can be seen in Fig. 6.5, broken down in the rows of the figure by peak Rabi frequency
Ω0/(2π), balance-point detuning δc/(2π) and gate fidelity F̄ .

In Fig. 6.5a and b the distribution of required peak Rabi frequencies Ω0/(2π) for all 120 addressed
ion pairs is shown. The minimum (maximum) Rabi frequency is required for pair(s) 4 -13 (2 -10
and 7 -15) with Ω0/(2π) = 163 kHz (432 kHz), with the mean over all pairs being 305 kHz. In
general, ion pair combinations that address an ion at the outer edge of the chain require higher
Rabi frequencies as the LD factor is usually lower for these ions for the given target modes used
in the gate operation. The balance-point detuning δc/(2π) is shown in Fig. 6.5c and d, with the
radial-x and -y motional mode frequencies illustrated at the top of c to indicate the respective
target modes of the gate operation.

Note that solutions shown here realize an ms_am gate with both entangling phases Φ = ±π/2,
with the sign depending on the balance-point detuning and target modes. This is in contrast to
the standard MS gate, where the bichromatic laser beam frequency is always positioned outside
the mode spectrum ensuring the same entangling phase for all ion pairs. Having both signs
of the entangling phase is however undesired in operation and adds unnecessary complexity to
quantum circuit designs, hence it was decided that only positive entangling phases should be
realized experimentally. This is done by correcting solutions with a negative entangling phase
using the relation

MS(+π/2) = (Rz(π) ⊗ 12)MS(−π/2)(Rz(π) ⊗ 12) (6.1)

by applying virtual z-rotations Rz(π) = σz on one of the two addressed ions. One could also
restrict the solutions from numerical simulation to negative entangling phases, which comes
with the disadvantage that the mean Rabi frequency would increase from 305 kHz to 345 kHz.
Constraining the solutions to have only positive entangling phases would, for a width of σ = 59 µs,
not give a solution with F̄ > 99 % for all ion pairs. The simulated fidelity F̄ is shown in Fig. 6.5e

3The numerical simulation for 64 out of 120 pairs yields 3699 solutions. As the solutions for ion pair j1 − j2 are
the same as for pair (17 − j2) − (17 − j1) due to the symmetry of the LD factors (equals 3210 solutions for 56
of the 64 simulated pairs), the actual number of solutions is calculated to 489 + 2 · 3210 = 6909.
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Figure 6.5.: Selected result for each ion pair from numerical simulation, with results around the symmetry
axis being the same for ion indices j1 and j2 and (17 − j2) − (17 − j1). a and b show the peak Rabi
frequency Ω0/(2π), c and d the balance-point detuning δc/(2π), with the radial-x and -y mode frequencies
shown in c for reference. The average gate fidelity F̄ is shown in e and f, with the minimum and maximum
value of the respective quantity reflected in the colorbar of each row. For six ion pairs that are emphasized
with black rectangles, the values shown here have been changed compared to the results obtained from
numerical simulation, with the changes discussed in the main text.
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and f, with a mean of 99.8(2) %. The majority of solutions are above 99.9 %, with notable outliers
being ion pairs 1 -2 and 2 -11 (by symmetry also 15 -16 and 6 -16) with an average gate fidelity of
99 %. The lower simulated fidelity for certain ion pairs arises from the fixed combination of gate
time and width of the Gaussian waveform given the experimental mode spectrum. Simulation
results suggest that relaxing this constraint would result in higher simulated fidelities without
having to extend the gate time significantly. No clear dependence of the fidelity on the ion pair
has been found.

After having identified a set {Ω0, δc} for each ion pair, the next step is to devise a calibration
method based on experimental detuning and power scans following Sec. 4.4. The naive approach
would be to regularly carry out 240 separate scans using the numerical solution as a starting
point. However this would take in excess of 40 min (with a single scan lasting for more than 10 s),
making this approach infeasible for a target calibration interval of 30 min or less. Instead we can
leverage the demonstrated robustness of the ms_am gate against motional mode frequency changes
shown in Fig. 6.3b. It was found that simply using the numerically pre-determined balance-point
detuning results in high-fidelity gate operations for all but six ion pairs, which are emphasized
with black rectangles in the right column of Fig. 6.5. For ion pairs 1 -2 and 13 -14, odd state
population was found to be unacceptable high at the expected balance-point detuning, which most
probable comes from sum-frequency terms of the bichromatic frequencies with the compensation
tone frequency resonantly exciting either the carrier transition or motional sideband transitions.
In this case the detuning was adjusted from δc/(2π) = 2.849 711 MHz to 2.858 000 MHz and the
required Rabi frequency as well as fidelity have been calculated for this new value in Fig. 6.5.
The same reason applies to ion pairs 1 -5 and 10 -14, where the detuning was changed by 10 kHz
from δc/(2π) = 2.845 282 MHz to 2.835 282 MHz. Furthermore, the fidelity for ion pairs 3 -6 and
9 -12 was below expectation, with the underlying reason still unknown. This problem was simply
circumvented by choosing another one of the available balance-point detunings, which increased
the required Rabi frequency from 225 kHz to 380 kHz but yielded the expected result.

Given that scanning the power of 120 ion pairs would still be too time-consuming during normal
operation, efforts were made to reduce the calibration to a single power scan. The idea here is to
first obtain the required power (or more specifically the required Phaser kasli_amp that in turn
determines the power) for all 120 pairs with pair-specific power scans once. Pair-specific in this
context refers to the scan range of the power scan, as the required power for different ion pairs
varies by roughly 40 % of the kasli_amp. This is in contrast to the standard MS gate, where the
power for all pairs is confined to the range kasli_amp ∈ [42.6, 46.0] %, owing to the fact that the
main contribution always comes from the radial-y COM mode. The results of this power scan for
the ms_am gate are depicted in Fig. 6.6a, where the peak kasli_amp Ac is shown as a function
of the simulated peak Rabi frequency Ω0/(2π). A linear fit shows that the simulation gives a
reasonable estimate for the expected power, with the absolute value of the residuals for each
ion pair shown in Fig. 6.6b. However, the simulation does not account for various experimental
factors, like different Rabi frequencies on the two target ions or optical crosstalk on non-target
ions, which are reflected in the power scans. Nonetheless the estimate coming from simulation can
be used to narrow down the scan region of the power scan even further, which was conservatively
chosen to obtain the results shown in Fig. 6.6.
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Figure 6.6.: a, Power calibration results for all 120 ion pairs using the balance-point detunings from the
numerical simulation in Fig. 6.5. No error bar is shown as these results are used for calibration and the red
line shows a linear fit between numerical simulation and experimental calibration data. b, Residuals for
each ion pair, indicating unaccounted for experimental factors leading to deviations from the simulation.

The calibrated amplitude for each ion pair is then saved in a matrix Aref(j1, j2) and the ion pair
1 -5 was chosen to act as a reference pair. Instead of scanning 120 pairs, only the power for this
pair is calibrated, with the resulting kasli_amp AC(1, 5) used to update the amplitude of all
other ion pairs with

AC(j1, j2) = AC(1, 5) · Aref(j1, j2)
Aref(1, 5) . (6.2)

For the standard MS gate, the same calibration procedure is used with the reference pair being
1 -2. The resulting state preparation fidelity F , averaged over 5 runs per ion pair, is shown in
Fig. 6.7a for the standard MS gate and in Fig. 6.7b for the ms_am gate, where the mean over
8 runs was calculated. Both subplots share a common colorbar scale, with the minimum and
maximum state preparation fidelity indicated in each respective colorbar for the corresponding
gate implementation. A histogram is shown in Fig. 6.7c along with the mean value over all ion
pairs to facilitate comparison between the two methods. As the distributions is asymmetric, the
uncertainty is calculated using the 68 % quantile centered around the median value. As a result,
the mean state preparation fidelity for the standard MS gate is 97.90+0.52

−0.47 % and for the ms_am
gate 98.48+0.48

−0.47 %.

The ≈ 0.6 % difference between them is consistent with simulation results from Fig. 4.4, although
the absolute values deviate from the simulation. The main reasons for this discrepancy include
the calibration procedure itself and the errors introduced during state preparation (0.3 %), single
qubit gates required for the parity scans (0.36 %), and measurement (0.3 %), with error prob-
abilities in brackets from Ref. 62. However, these are separately measured error probabilities
and further investigations are required to quantify the exact contribution of each factor to the
observed state preparation fidelity.

Note that in total 4 out of 1560 scans have been discarded for this analysis (1/600 for the MS
gate and 3/960 for the ms_am gate), as in these scans the population of non-addressed ions
exceeded 10 %. This behaviour is most likely explained by the generation of higher diffraction
orders when applying two frequency tones to the addressing unit. While the first diffraction
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orders create optical beam spots with no frequency shift and their spatial position aligned to the
ions, the mixing with higher order diffraction terms leads to off-resonant spots that are displaced
from the ion positions. For certain combinations of addressing frequencies, the frequency of
those spots is resonant with a carrier transition. Due to the fact that entangling operations are
driven with far more power than resonant single-qubit operations would require, multiple ions
are excited, resulting in the described behaviour. A strong indication for this explanation is that
this behaviour could be turned on and off by changing the addressing frequencies by ≈ 10 kHz.
As such, it is justified to discard those scans as the result does not reflect the performance of the
gate.

Figure 6.7.: Comparison of state preparation fidelities for each ion pair in a for the standard MS gate and
in b for the ms_am gate. Shown is the mean over 5 and 8 runs respectively. The scale of the colorbar is the
same for both subfigures, with the minimum and maximum value indicated. c, Histogram for comparing
the two gate implementations, with the dotted lines indicating the mean over all ion pairs. Errors are
calculated by using the 68 % quantile centered around the median of the data.
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The aim of this work was to implement high-fidelity MS gate operations for optical qubits in
40Ca+ and this was accomplished via amplitude modulation as an example of an optimal control
solution to this problem. To this end, the necessary theoretical background was introduced in
Chap. 2 such that the underlying control problem can be formulated both in the abstract language
of control theory as well as in the setting of trapped-ion quantum information processors. This
was followed in Chap. 3 by a brief description of the components of the AQTION setup relevant
to two-qubit gates. In particular, the hard- and software necessary for generating RF signals was
described, as AOMs controlled by these RF signals enable the execution of coherent operations
on the qubit register.

The results from numerical simulations for a 16-ion chain were presented in Chap. 4 to identify the
main error sources affecting the entangling gate operation in the setup. The main contribution to
the gate infidelity, aside from the motional/optical coherence with respectively 0.41 %/0.60 %, was
identified to be the residual spin-motional coupling of radial modes with an average contribution
to the gate infidelity of 0.57 % per ion pair. In its current form, the numerical simulation assumes
a rectangular pulse shape for simplicity. A natural extension of this work would be to incorporate
the Blackman window for the rising and falling edges of the standard MS gate, as this would
align the simulation with the waveform used in the experiment. Moreover, the current model only
accounts for the radial-y COM mode in the evaluation of the motional coherence and the heating
rate. Modifying the simulation to include multiple motional modes and incorporating additional
effects such as off-resonant carrier excitation could provide a more accurate estimation of the
dominant error mechanisms limiting the fidelity achieved in the experiment. This will become
especially important after a planned hardware upgrade, where the magnetic field generation is
changed from coils to permanent magnets, in turn reducing the decoherence induced by magnetic
field fluctuations. However, the ≈ 1 s lifetime of the metastable state in 40Ca+ sets an upper limit
to the achievable coherence time and hence to the gate performance. This influence can only be
reduced by either reducing the gate time relative to a given coherence time or by extending the
coherence time by either changing to a ground state qubit in 40Ca+, or by using a different qubit
isotope/species like 43Ca+ or 137Ba+.

Based on these simulations, frequency-robust entangling gates using amplitude modulation were
introduced as one possible optimal control method to reduce the infidelity coming from residual
mode coupling. An advantage of this scheme is that the RF pulse, which follows a Gaussian
waveform in Rabi frequency, can be described by a small set of parameters, simplifying both
the implementation in hardware as well as the numerical simulation. This numerical simulation
of the gate dynamics was then described, supporting experimental calibration procedures to
calibrate the required power and the detuning. The characterization of the ARTIQ and Sinara
ecosystem was presented in Chap. 5 and guided the selection for the chosen optimal control
method. First, the RF generation capabilities of the Phaser hardware module were outlined,
followed by experimental tests using a DP-AOM unit. Overshooting behaviour and oscillations
in the rising and falling slope were observed for rectangular signals, but are minimized/removed
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when smaller amplitude target values were used. Additionally it was shown that one can achieve
amplitude parameter updates every 275 ns by using the built-in DMA feature of Sinara, which
is short enough to sufficiently approximate continuous functions like the Gaussian waveform
required for the chosen optimal control technique in this thesis. Furthermore, it was found that
phase changes cause at least a 20 % reduction in laser beam intensity even though it should remain
constant. Expanding the characterization of these reductions to varying RF output amplitudes
could offer additional insights into the feasibility of phase modulation sequences. Further research
directions would involve the characterization of frequency changes and their impact on the laser
beam intensity, possibly opening up frequency modulation schemes for testing.

Experimental results from the AQTION setup were covered in Chap. 6 and divided into data
for a 2- and 16-ion chain. First, the mapping between the output amplitude of Phaser and the
corresponding Rabi frequency was obtained in order to realize a Gaussian waveform in Rabi
frequency that is required for the optimal control technique. The robustness against motional
mode frequency drifts was then investigated, showing for the standard MS gate a ≈ 800 Hz wide
region around the ideal detuning where the fidelity exceeded 90 %. The ms_am gate extends the
region significantly to 20 kHz, with the improvement in fidelity being smaller but still present for
typical motional mode frequency changes of ±250 Hz. Furthermore, an effective error rate was
obtained from the decay in state preparation fidelity over different numbers of consecutive gates.
The measured error rates were εMS = 0.73(10) % for the standard MS gate and εms_am = 0.31(3) %
for the ms_am gate. Different shaping parameters introduced by the system migration to the
Sinara ecosystem resulted in a calibration error related to the ideal gate time and limited the
performance of the standard MS gate. This issue was rectified for the 16-ion chain, enabling a
fair comparison of both gate implementations.

For the 16-ion chain, which is the usual number of ions in the AQTION setup, a calibration
method was introduced that enables the time-efficient calibration of all 120 ion pairs. Taking
the detuning from numerical simulation, the required power for all 120 pairs was measured once.
Then based on the required power of a reference pair, the power of all other 119 pairs is updated.
Using this technique, the mean fidelity over all 120 pairs was determined to 97.90+0.52

−0.47 % for
the standard MS gate and to 98.48+0.48

−0.47 % for the ms_am gate, showing an improvement when
using the modulation scheme with the difference in fidelity between implementations aligning
with simulation results.

While our results are promising, opportunities for improvement persist in several areas. For
example, in all experiments a sample period of 500 ns was used instead of a multiple of the Phaser
frame time of 320 ns. As illustrated in Fig. 5.4, this leads to aliasing from resampling to the Phaser
frame time that could possibly deteriorate the gate performance when the carrier transition
is unintentionally excited by this frequency component. Despite the simulation suggesting a
negligible difference in fidelity between ion pairs, the observed lower fidelity in some pairs remains
unexplained. One potential explanation for this discrepancy could be a mismatch between the
balance-point detuning from simulation and the experiment, arising from an incomplete model
of the underlying system. Dedicated detuning scans for all ion pairs could reveal further insights
into this matter and narrow down the possible cause of the discrepancy.

Improvements to the calibration technique itself can be realized by revising how the required
power for all pairs is obtained in the beginning. Repeated power scans may induce thermal
effects in the optical devices, which in turn can result in instabilities and a subsequent decrease
in the power that is incident on the ions. Obtaining the required power of a pair relative to
the reference pair would have the potential benefit of accounting for this shift in power. There
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may also be merit in accounting for a non-linear scaling similar to Ref. 36, which has already
been shown to improve the performance in a different calibration technique. While out of the
scope of this work, it would also be beneficial to investigate how different amplitude shapes
influence the gate behaviour. From a theoretical standpoint, using a Slepian window instead
of a Gaussian waveform should result in lower power requirements for the gate implementation.
This is because as the eigenfunction of the discrete Fourier transform, this function provably
maximizes the energy contained in the main lobe [63], but it remains to be seen if this translates
to an experimental setting.

It was stated in the introduction of this thesis that one of the outstanding challenges in quantum
computing is scaling up the number of qubits while at the same time reducing errors induced by
the control field. While this thesis presented results showing improvements in the fidelity for a
given ion number, it remains to be seen how well the ms_am gate performs for larger ion numbers
in the experiment. This is insofar an interesting question as one of the main limitations in having
higher ion numbers confined in the same trapping potential is that the fidelity of the entangling
gate operation drops significantly due to mode crowding. As there is no proof that every ion pair
has a solution for a high-fidelity ms_am gate, it could be necessary to lift the requirement of all
pairs having the same gate time and width.
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In this thesis, the state preparation fidelity of maximally entangled states was used as an estimate
for the gate fidelity following [27, 64]. As described in Sec. 2.2.3, the state preparation fidelity F
is given by the average of the population P = p00 + p11 and the coherence C as F = (P +C)/2.
The coherence in turn is given by the amplitude of parity oscillations

P(φ, {C,φ0}) = C cos(NPφ+ φ0), (A.1)

with NP = 2 the number of qubits in the maximally entangled state (not the number of ions in the
chain N !), the phase φ and a phase offset φ0. The parity oscillation measurements in this thesis
consist of np = 30 equidistant phases φ = {φi | i= 1, . . . , np}, for which the mean population over
ns = 100 measurements is returned. One scan thus consists of 3000 individual measurements and
the parity is then given for each phase by P(φi) = p00(φi) + p11(φi) − p10(φi) − p01(φi). Instead
of directly using the parity P(φi) ∈ [−1, 1], we will use the probability p(φi) ∈ [0, 1] of measuring
a positive parity. We are interested in obtaining estimates for the coherence C and the phase
offset φ0 with

p(φ, {C,φ0}) = 1
2 [1 + C cos(NP · φ+ φ0)] , (A.2)

utilizing three different evaluation methods in this thesis. The first two approaches rely on a
least-square fitting routine, where estimates for the most-likely coherence Cf and phase offset φf

0
are obtained by minimizing the function

Cf , φf
0 = arg min

C, φ0

np∑
i=1

[p(φi, {C, φ0}) − p(φi)]2

∆p(φi)2 . (A.3)

Here, wi = 1/∆p(φi)2 is the weight assigned to each data point. In the first unweighted fit method,
all data points are treated with equal weight by setting wi = ∆p(φi)2 = 1. One shortcoming of
this method is that it doesn’t take into account the finite amount of measurements (ns = 100)
and the obtained value of the probability p(φi) for determining the errors or variance of the fit
parameters. Given that p(φi) can be identified as a binomial distribution with two outcomes
(either positive parity has been observed or not), the variance of the mean is given by

∆p(φi) = max


√
p(φi)(1 − p(φi))

ns
,

1
ns + 2

 . (A.4)

The first part is referred to as quantum projection noise [65] and is equivalent to the “Wald“
binomial proportion confidence interval using a normal approximation [66]. One disadvantage of
using this confidence interval is that the variance would vanish for probabilities 0 and 1. As such
the definition is expanded by Laplace‘s “Rule of Succession“, which sets a lower bound to the
variance depending on the number of measurements ns [67].
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The third method uses Bayesian interference and aims to maximize the posterior probability
P (model|data), such that the probability of the model p(φ, {C,φ0}) describing the data from the
experiment p(φ) is highest. For this Bayes’ theorem is used

P (model|data) = P (data|model)P (model)
P (data) , (A.5)

with the prior probability P (model) indicating the knowledge about the most likely model before
any data from the experiment is taken into account. We opted for a flat prior with P (model) = 1,
however choosing a “noninformed” prior is a challenging task [68]. The prior is then updated by
the likelihood P (data|model) of the experimental data describing the model and is given by

P [φ | p(φ, {C, φ0})] =
np∏
i=1

P [φi |p(φi, {C,φ0})] (A.6)

=
np∏
i=1

β [p(φi, {C,φ0}), p(φi), np] . (A.7)

Given that the data follows a binomial distribution, the probability mass function is given by

β [p := p(φi, {C, φ0}), p(φi), np] =
(

np

p(φi)

)
pp(φi)(1 − p)np−p(φi), (A.8)

and returns the likelihood that a certain coherence and phase offset are describing the obtained
probability p(φi). Both the coherence 0<C < 1 and the phase offset 0 ≤φ0< 2π are inherently
bounded and this is considered by evaluating Eq. A.7 within this bounds1. For computational
purposes, the logarithm of the likelihood is considered, which transforms the product into a sum.
The normalization factor P (data) in Eq. A.5 is called marginal likelihood and ensures that the
grid containing the likelihood for combinations of the coherence and phase offset is normalized
to one. The probability distribution function for the coherence trφ0(P [φ | p(φ, {C, φ0})] and the
phase offset trC(P [φ | p(φ, {C, φ0})] is obtained by tracing out the respective other parameter,
which simply means summing up along different axes in the program. From those functions, the
mean Cf and the standard deviation (δCf )2 (similar for φf

0 and (δφf
0)2) is given by

Cf =
∫ 1

0
dC C trφ0(P [φ | p(φ, {C, φ0})] , (A.9)

(δCf )2 =
∫ 1

0
dC (C − Cf )2 trφ0(P [φ | p(φ, {C, φ0})] . (A.10)

All presented results in Chap. 6 show the state preparation fidelity obtained via the Bayesian
fitting method. The rest of this chapter will show the same results but with all three fitting
methods and we will discuss, why the Bayesian method was chosen in the main text. First,
the error rate is shown for all fit methods in Fig. A.1a for the MS gate and in b for the ms_am
gate, with the corresponding Fig. 6.4 in the main text. From this it becomes apparent that the
weighted fit indicates the lowest error rate, while the unweighted and Bayesian fit methods yield
similar results in both their estimate as well as their uncertainty.

1Evaluating the complete parameter space numerically would be too time consuming. We instead obtain estimates
for the coherence and phase offset from the unweighted fit and consider only a region around this estimates in
the evaluation of the likelihood.
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Figure A.1.: Measured error rates ε for entangling gates with a gate time of τ = 300 µs, showing the
result for all three fit methods. a, Error rate for the standard MS gate with a detuning of δ = 1/304 µs
relative to the radial-y COM mode. b, Error rate for the ms_am gate with a detuning of δ = −97.1 kHz
and a Gaussian width of σ = 50 µs.

Next, the state preparation fidelity for all 120 pairs of a 16-ion chain is shown in Fig. A.2a for
the MS gate (averaged over 5 runs) and in b for the ms_am gate (averaged over 8 runs). For both
gate implementations, the weighted fit returns a ≈ 1.2 % higher mean state preparation fidelity
compared to the other two methods. The reason for this is that probabilities close to either zero
or one have a higher weight, which in some cases leads to a nonphysical coherence above one and
in general increases the obtained state preparation fidelities. Both the unweighted as well as the
Bayesian fit lead to similar results, with the uncertainty being smaller in the Bayesian method.

Figure A.2.: Comparison of state preparation fidelities for each ion pair in a for the standard MS gate
and in b for the ms_am gate for all three fit methods. Shown is the mean over 5 and 8 runs respectively.
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Last, a correlation analysis using the Pearson correlation coefficient ρ was carried out between
results from the different fit methods. For two random variables x and y it is given by the
expression

ρ(x, y) = Cov(x, y)
σxσy

, (A.11)

where Cov(x, y) is the covariance and σx and σy the standard deviation of the respective random
variable [69]. The result of the correlation analysis is shown in Fig. A.3a for the MS gate and
in b for the ms_am gate, showing a strong linear correlation of ρ > 0.88 between all obtained
results. One the one hand this shows that the obtained results for the state preparation fidelity
are consistent between fitting methods for the same underlying data, on the other hand these
results suggest that the choice of a particular fit method should be chosen by careful consideration
beyond numerical results.

Figure A.3.: Correlation coefficient ρ for the MS gate in a and for the ms_am gate in b, showing a strong
correlation with ρ > 0.88 between different fitting methods.

The Bayesian fit method was chosen for the main text because it conservatively estimates the
state preparation fidelity, while taking the inherent bounds for the coherence and phase offset
into account. Given that the results are similar to the unweighted fit, the unweighted fit method
would be however preferable as a quick analysis tool as it takes significantly less time to obtain the
results. Furthermore, the weighted fit is based on the quantum projection noise and a heuristic
lower error bound given by Laplace’s “Rule of Succession“. One could instead use the “Wilson
Score Interval“ to obtain error estimates for the individual parameters, which doesn’t rely on the
normal approximation and would more accurately reflect the true error bounds [66].
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