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Abstract

Over the last decade, quantum experiments have grown considerably in complexity. In
order to not divert focus from research itself, as many subroutines of the experiments
as possible have to be automated. In the given quantum experiment, optical qubits
are encoded in trapped 40Ca+ ions. Within the scope of this thesis, the frequency
of the laser system driving the qubit transitions is stabilized to the transitions of the
trapped ions. This is achieved by periodically performing spectroscopy on the trapped
ions, followed by frequentist as well as Bayesian data analysis approaches. In order to
automate these tasks, a corresponding computer program is integrated into the exper-
iment control system. Furthermore, a remote control interface is developed, allowing
the remote submission of quantum algorithms written in the established quantum de-
scription languages Cirq developed by Google LLC, and OpenPulse developed by the
International Business Machines Corporation (IBM).
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Kurzfassung

Im Laufe des letzten Jahrzehntes nahm die Komplexität von Quantenexperimenten er-
heblich zu. Das Automatisieren so vieler Subroutinen dieser Experimente wie möglich
kann verhindern, dass aufgrund dieses Trends das Hauptaugenmerk von der Forschung
selbst weg gelenkt wird. Im vorliegenden Quantenexperiment werden optische Qubits
verwendet, welche auf gefangenen 40Ca+ Ionen kodiert sind. Im Rahmen dieser Arbeit,
wird die Frequenz des Qubit-Übergänge treibenden Lasersystems auf die Übergänge
der gefangenen Ionen stabilisiert. Dies wird durch periodische Spektroskopie an den
gefangenen Ionen, gefolgt von frequentistischen sowie Bayes'schen Datenanalysean-
sätzen, erreicht. Durch die Integration eines entsprechenden Computerprogramms in
das Kontrollsystem des Experimentes, werden diese Arbeitsschritte automatisiert. Des
Weiteren, wird ein Fernzugri� implementiert, welcher das Einsenden von Quantenalgo-
rithmen ermöglicht. Für die Spezi�kation der Quantenalgorithmen werden die bereits
etablierten Quantenbeschreibungssprachen Cirq und OpenPulse verwendet, welche re-
spektive von Google LLC und der International Business Machines Corporation (IBM)
entwickelt werden.
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Chapter 1

Introduction

Since their invention, reaching back to 1941 when the �rst functional digital computer
Zuse Z3 has been created [1], computers have been a revolutionizing tool. Science
and technology have expanded, as computers allow numerical simulations of complex
phenomena, like e.g. the collision of galaxies [2]. The everyday life is revolutionized
by computers, considering inventions like self-driving cars [3]. Furthermore, computers
simplify the storage of and access to scienti�c knowledge, as well as have revolutionized
international communication and collaboration since the advent of the internet in the
1960s [4].

The computational power of processors has increased almost exponentially with
time since 1980, leading to the formulation of Moore's law [5]. However, it is expected
that this development will slow down in the near future, mainly due to design and
power limitations of processors [6]. In order to maintain such an exponential growth,
and to satisfy the demand for increasingly more powerful processors, new approaches
to perform computations are therefore necessary [7]. A revolutionizing idea, is the
introduction of quantum computers. Classical computers are restricted to perform
their computations in a binary language using bits. A quantum computer is based
on quantum bits (qubits), with which the complexity of quantum mechanical states
can be exploited as a basis for computations [8]. This leads to algorithms that can
perform certain tasks signi�cantly faster on a quantum computer than on classical
computer [9, 10].

Quantum computers rely on exotic quantum states, and are thus vulnerable to noisy
environments [11]. Furthermore, the preparation, manipulation and read-out of infor-
mation stored in quantum mechanical states is subject to noise, limiting the practical
usability of a quantum computer [8, 12]. As the performance of a classical computer
is limited by the amount of its working memory, the complexity of the algorithms that
can be executed on a quantum computer is limited by the amount of physical qubits
that are available to perform calculations on.

Current quantum computers form a group called Noisy Intermediate-Scale Quan-
tum (NISQ) computers [13]. For most NISQ computers, the precise and simultaneous
control of many experimental parameters is required to perform complex calculations
and to achieve a desired level of accuracy and reliability [14]. This leads to many
subroutines that increase the complexity of the experiment. The automation of said
subroutines can help to achieve a more accurate control over the experimental param-
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CHAPTER 1. INTRODUCTION

eters, which in turn increases the overall performance of the experiment.
The NISQ computer on which the work of this thesis is performed on is a trapped

ion quantum computer [15] that will be elaborated on in chapter 2. Qubits are encoded
in the 42S1/2 to 32D5/2 transitions of trapped calcium ions. Quantum gate operations
can be performed using a laser system operating at a wavelength of 729 nm [15]. The
frequency of this laser system has to be precisely tuned and stabilized to the qubit
transition frequency in order to facilitate quantum gate operations. Within the scope
of this thesis, methods are presented to automatically stabilize the frequency of said
laser system using the atomic transition frequency of the qubit transition itself as
a reference. These methods utilize spectroscopy experiments and data analysis with
di�erent mathematical approaches, the details of which will be explained and compared
in the chapters 3 and 4. The automated, continuous re-calibration of the laser system
is the basis for quantum gate operations. Furthermore, less time and e�ort is lost
with respect to performing the corresponding spectroscopy and re-calibration tasks
manually, and the reproducibility of the experimental data is increased. Last but not
least, the integration of automation routines is a step towards a reliable 24/7 operation
of the system, facilitating e.g. long measurements. The achieved stability via said
automated re-calibration is investigated in chapter 5.

In chapter 6 quantum algorithm description languages are introduced, simplifying
the user interface of the experiment control system as well as the communication be-
tween its components. The introduction of such languages leads to the implementation
of an interface, that allows the submission of quantum algorithms from remote loca-
tions, facilitating the communication and cooperation with collaborators across the
world. The languages chosen for this interface are the already established quantum
description languages Cirq and OpenPulse, which are developed by Google LLC and
the International Business Machines Corporation (IBM) respectively. The interface
itself is not speci�c to a single programming language.
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Chapter 2

Theoretical Framework

In this chapter an introduction over the theoretical foundation of the ion trap ex-
periment is given, starting with the notations and experimental setup in section 2.1.
Section 2.2 discusses the major di�erences between classical and quantum computers
and introduces how quantum bits (qubits) can be implemented within the experimental
setup. With regard to performing quantum gate operations, the interaction between
light and trapped ions is discussed in more detail in section 2.3, motivating how resonant
light pulses can be used to implement unitary quantum gate operations. Discussing
the e�ect of a non-resonant light �eld interacting with atoms, section 2.4 elaborates
on the theoretical framework to perform Rabi spectroscopy. Section 2.5 concludes this
chapter with introducing the Ramsey sequence providing the theoretical foundation of
Ramsey spectroscopy.

2.1 Trapped 40Ca+ Ions

Atoms consist of negatively charged electrons as well as positively charged protons,
where the latter, together with neutrally charged neutrons, form the core or nucleus
of an atom. An atomic ion is an atom that carries charge. Negatively charged ions
i.e. atoms with more electrons than protons are called anions, whereas positively
charged ions are called cations. The number of protons in an atom dictates its species.
Variations on the number of neutrons are called isotopes. The standard notation for
atoms is AZX, where X is the abbreviation of the element, Z the atomic number which
is equal to the number of protons, and A the mass number being the sum of Z and
the number of neutrons. As every element has its distinct atomic number, one often
drops the subscript Z in this notation. By adding a superscript after X, the charge
of the atom is expressed. For singly charged calcium cations of its most abundant
natural isotope this gives the notation 40

20Ca
+, or equivalently 40Ca+ when dropping the

subscript Z.
With applying light pulses an atom can be excited, changing which orbitals are

occupied by its electrons. The atom then has the probability to decay back to the
electronic ground state, being the least energetic state available. A change of elec-
tronic states is also called transition. The probability to drive such a transition with
a light pulse is maximized, when the energy of the light �eld matches the energy
di�erence between the states. When decaying from an excited state to an energeti-
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2.1. TRAPPED 40CA+ IONS CHAPTER 2. THEO. FRAMEWORK

Figure 2.1.1: Level scheme of 40Ca+ including all required laser systems. The electronic
states are shown as thick black lines with their energy increasing from bottom to
top. The transitions driven by the required laser systems as well as their respective
wavelength are represented by arrows. Decay channels are represented by wavy arrows.

cally lower lying state, the atom emits a photon of the corresponding transition fre-
quency. The di�erent electronic states are labeled using the term symbol, given by
n2S+1LJ , where n ∈ N is the principal quantum number, L ∈ {L < n |L ∈ N0} is the
total orbital momentum quantum number being labeled with S, P, D, F, etc. (con-
tinuing alphabetically), S ∈ {S ≤ L |S ∈ N0} is the total spin quantum number and
J ∈ {|L− S|+ i | i ∈ N0 ∧ (|L− S|+ i) < (L+ S)} is the total angular momentum
quantum number. A level scheme of 40Ca+ including all laser systems required for the
quantum computer experiment is shown in �gure 2.1.1. Electronic states are depicted
as thick lines and are sorted by increasing energy from bottom to top. Quantum gate
operations are performed using the 42S1/2 to 32D5/2 transition, which can be driven
using a laser system operating at a wavelength of 729 nm. The latter state has a com-
paratively long lifetime in the order of ∼ 1 s [16], whereas the 42P3/2 state has a lifetime
of about ∼ 7 ns [17]. Thus, the 32D5/2 to 42P3/2 transition is used to reset the system
to the 42S1/2 state after an experiment is completed.

In the experimental setup, a linear Paul trap [18], schematically depicted in �g-
ure 2.1.2, is used to trap multiple 40Ca+ ions [19]. The trap consists of four blades as
well as two end-cap electrodes. Radial con�nement is achieved by applying an oscillat-
ing voltage to one pair of opposing blades while the other two blades are grounded. Ap-
plying a DC voltage to the end-caps leads to axial con�nement between the electrodes.
The trap is placed inside a vacuum chamber. Neutral calcium atoms are evaporated
from an oven and then ionized in the center of the trap via two laser beams at a wave-
length of 375 nm and 423 nm respectively, performing a two-step photo-ionization of
the atoms [20]. After Doppler cooling [21], the trapped ions form a linear ion crystal in
the center of the trapping region. The detection of the trapped ions is based on imaging
their �uorescence, by applying a light pulse with a wavelength of 397 nm to the trap-
ping region that is driving the 42S1/2 to 42P1/2 transition. The same laser system and
transition used for imaging are also used for Doppler cooling. Due to the level struc-
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(a) (b)

Figure 2.1.2: Front and side view of a linear Paul trap. The trap consists of two
opposing end-cap electrodes as well as four blades. (a) The front view shows a DC
voltage applied to the two end-cap electrodes, leading to a con�nement along the z-
axis. (b) Radial con�nement, perpendicular to the z-axis is achieved by applying an
oscillating voltage to two of the four blades, while setting the others to ground.

Figure 2.1.3: EMCCD camera picture of 16 trapped ions of the linear Paul trap's central
region. As described in section 2.1, trapped 40Ca+ ions emit �uorescence photons that
are recorded by an EMCCD camera. The 16 40Ca+ ions in this picture are Doppler
cooled and form a linear ion crystal.

ture of 40Ca+, the 42P1/2 state can spontaneously decay into the 32D3/2 state, having
a lifetime in the order of ∼ 1 s [16]. This would decrease the rate in which �uorescence
photons are scattered, making Doppler cooling as well as imaging the photons onto
an electron multiplying (EM)CCD camera impossible. Therefore, an additional laser
beam is added, to pump out this dark state. At a wavelength of 866 nm, the additional
laser beam transfers the populations from the 32D3/2 state back to the 42P1/2 state.
With the latter state having a lifetime of ∼ 7 ns [22], the scattering rate of photons
is high enough for an EMCCD camera to detect �uorescence. The resulting imaged
�uorescence of 16 trapped ions can be seen in �gure 2.1.3.

2.2 Ion Trap Quantum Computing

The main di�erence between a classical computer and a quantum computer is the fact
that a classical one works with bits, whereas a quantum computer works with quantum
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2.2. ION TRAP QUANTUM COMP. CHAPTER 2. THEO. FRAMEWORK

Figure 2.2.1: Bloch sphere. A qubit |ψ〉 can be represented by a point on the Bloch
sphere. The poles of the Bloch sphere represent the orthogonal basis states |0〉 and |1〉.
Given the angles ϕ and θ, any qubit can be mapped onto the Bloch sphere.

bits (qubits). A classical bit can either represent the value zero or one, leading to a
binary language in which a classical computer performs its calculations. A �tting
analogy is a light switch that turns a light bulb on or o�. A qubit on the other hand
is represented by the quantum mechanical state of a two-level system

|ψ〉 = α |0〉+ β |1〉 (2.2.1)

where the states |0〉 and |1〉 are orthogonal basis states spanning a two-dimensional
Hilbert space, and α, β ∈ C with |α|2 + |β|2 = 1. As the overall phase can be set
arbitrarily when de�ning the qubit, equation (2.2.1) can also be written as

|ψ〉 = cos (θ/2) |0〉+ eiϕsin (θ/2) |1〉 . (2.2.2)

In this form, a qubit can be represented as a point on the Bloch sphere (�gure 2.2.1).
Continuing the analogy of a bit being a switch that turns a light bulb on and o�, a
qubit is a switch that is capable of dimming a light bulb, as well as changing its color
in a continuous way.

Another important di�erence between classical bits and qubits is the operations
that can be applied to them. The only operations that can be performed on single
classical bits, are the identity, which corresponds to leaving them at the state they
are prepared in, or performing a bit-�ip, where the values zero and one are exchanged
with one another. Operations on single qubits however are fundamentally di�erent, as
they consist of unitary operations, which correspond to arbitrary rotations of the state
on the Bloch sphere. Furthermore, qubits can be entangled with one another, linking
their states such that operations on one qubit a�ect the state of the other. Exploiting
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these di�erences, some problems can be solved in less time on a quantum computer,
by applying quantum algorithms such as Grover's [10] or Shor's algorithm [9, 23].

Qubits can be realized in a variety of di�erent physical architectures. In the given
ion trap quantum computer, the qubit is de�ned by selecting two electronic states of
a trapped ion. A magnetic �eld at the position of the trapped ions, leads to a shift in
the energy of magnetically sensitive states [24, 25]. This shift from the unperturbed
center frequency is called Zeeman e�ect which is a result of the magnetic moment µ
of the electrons interacting with the applied magnetic �eld. In �rst order perturbation
theory, the frequency shift ∆νZ resulting from the Zeeman e�ect can be calculated
as [26]

∆νZ (mj, gj) = mjgj
µB ·B

~
with mj being the projection of the corresponding atom's total angular momentum J
along the unit vector ej of the applied magnetic �eld B = B ·ej, gj the Landé g-factor
of the corresponding state, µB the Bohr magneton, and ~ the reduced Planck constant.
For the state 42S1/2 of 40Ca+, the g-factor has been measured as gS = 2.00225664 (9)
[27]. The g-factor gD of the 32D5/2 state can be calculated as gD = 1.2 , using [28]

gj = 1 +
j (j + 1) + s (s+ 1)− l (l + 1)

2j (j + 1)

where j = 5/2 is the total angular momentum quantum number, s = 1/2 the spin
quantum number, and l = 2 the orbital momentum quantum number of the state. The
shift ∆νZ is dependent on the total angular momentum of the corresponding state and
therefore leads to the Zeeman splitting of all states with a j 6= 0, resulting in 2 · j + 1
Zeeman sub-levels of the respective state. In the case of the 42S1/2 and 32D5/2 states,
all resulting Zeeman sub-levels are depicted in �gure 2.2.2. The shown transitions
are labeled with the notation (mj (S) , mj (D)), with mj (S) and mj (D) corresponding
to the projection mj of the 42S1/2 and the 32D5/2 state's total angular momentum
respectively. The qubit is then de�ned as the (−1/2, −1/2) transition between the
corresponding Zeeman sub-levels of a trapped 40Ca+ ion's 42S1/2 to 32D5/2 transition.
This choice has been made, as the transitions (−1/2, −1/2) and (+1/2, +1/2) have the
lowest sensitivity to the magnetic �eld strength of all transitions shown in �gure 2.2.2,
and 42S1/2 (mj (S) = −1/2) is the ground state of the ion. Using the de�nition in
equation (2.2.1), the state 42S1/2 (mj (S) = −1/2) thereby corresponds to the state |0〉
and 32D5/2 (mj (D) = −1/2) to the state |1〉.

Measuring the values α and β of a qubit is achieved using a technique called electron
shelving [29]. If a qubit as described above is in the ground state 42S1/2, the atom can be
excited to the higher lying 42P1/2 state via shining resonant light onto the ion, using
a laser system that operates at a wavelength of 397 nm. The atom will then decay
back to the ground state, closing the cyclic transition and spontaneously emitting a
�uorescence photon that can be detected. If the state of the atom is projected into the
32D5/2 state, applying a 397 nm wavelength light pulse does not excite the atom, and
therefore no �uorescence will occur. Repeating the whole experiment nexp � 1 times,
one can determine a superposition between |0〉 and |1〉, by measuring the number of
excited states n|1〉 ≤ nexp and calculating a mean excitation pm = n|1〉/nexp.
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Figure 2.2.2: Zeeman sub-levels in 40Ca+. A magnetic �eld strength B 6= 0 at the
position of the ions leads to a Zeeman splitting. This detuning from the unperturbed
center frequency (dashed lines) depends on the magnetic �eld strength, as well as the
projections mj (S) and mj (D) of the total angular momentum quantum number of
the respective state. Indicated in red and blue are the optical transitions between the
Zeeman sub-levels, that can be addressed with a laser system operating at a wavelength
of 729 nm. For the sake of simplicity, transitions that have a coupling strength to said
light �led that leads to too low photon scattering rates to be imaged by the EMCCD
camera are omitted, as these transitions are not relevant within the scope of this thesis.

2.3 Light-Atom Interaction

Quantum gate operations can be realized by driving the qubit transition in a controlled
way [19]. This can be achieved using a Titanium-Sapphire laser system operating at
a wavelength of 729 nm. An acousto-optic modulator (AOM) that is installed in a
double pass setup in the light path of said laser system precisely tunes the light �eld
to the transition frequencies. Following the treatment of reference [30], the interaction
between a traveling wave of a single mode laser and a harmonically trapped 40Ca+

ion is discussed. We assume an e�ective two-level system, with the laser operating
at a frequency close to the transition frequency. As the ion is trapped in a harmonic
potential, its potential energy is quantized and can be described using the creation and
annihilation operators a† and a, resulting in the Hamiltonian [30]

H0 = ~ω
(
a†a+

1

2

)
+

1

2
~νσz

with the reduced Planck constant ~, the trap frequency ω, the transition frequency ν,
and the Pauli spin matrix σz. With the ladder operators σ±, the interaction between
the ion and the light �eld is given by [30]

H1 =
1

2
~Ω
(
eiη(a+a†)σ+e−iνLt + e−iη(a+a†)σ−eiνLt

)
8
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with Ω being the coupling constant, νL the frequency of the light, t the duration of the
interaction, and η the Lamb-Dicke parameter being given by [30]

η = k

√
~

2mω

where k is the wave number of the traveling wave, and m the mass of the ion. This
leads to a total Hamiltonian

H = H0 +H1

which can be written in the interaction picture [31], usingHI = U †HU with U = eiH0t/~,
resulting in [30]

HI =
1

2
~Ω
(
eiη(â+â†)σ+e−i∆t + e−iη(â+â†)σ−ei∆t

)
(2.3.1)

with â = aeiωt and the detuning ∆ = νL−ν. Thereby, the rotating wave approximation
(RWA) has been used, neglecting fast oscillating terms with exp (±i (νL + ν) t), which
is valid for small detunings, as in this case the neglected terms correspond to fast
oscillations that average out to zero over the time scales of interest [14]. In the Lamb-
Dicke regime, being de�ned by η2 (2n+ 1)� 1, with n being the vibrational quantum
number, equation (2.3.1) can be simpli�ed further. For resonant carrier transitions,
that do not change the vibrational state of the ion, the interaction Hamiltonian can be
reduced to [30]

HI =
1

2
~Ωn,n

(
σ+ + σ−

)
(2.3.2)

with Ωn,n = Ω (1− η2n). Red side-band transitions, reducing the vibrational quantum
number by one are described by [30]

HI =
1

2
i~Ωn−1,n

(
âσ+ − â†σ−

)
(2.3.3)

with Ωn−1,n = Ωη
√
n, and blue side-band transitions increasing the vibrational quan-

tum number by one are described by [30]

HI =
1

2
i~Ωn+1,n

(
â†σ+ − âσ−

)
(2.3.4)

with Ωn+1,n = Ωη
√
n+ 1. The Hamiltonian given by equation (2.3.3) corresponds to

the Jaynes-Cummings (JC) Hamiltonian [32], whereas the one given by equation (2.3.4)
is referred to as anti-JC Hamiltonian. The coupling constant Ω is also known as Rabi
frequency and for the given case of a quadrupole-allowed transition, can be estimated
by [30]

Ω ≈ kE0

2~
ea2

0 (2.3.5)

where k is the wave number, E0 the electric �eld amplitude, e the elementary charge
and a0 the Bohr radius.

As stated above, side-band transitions change the vibrational quantum number.
Depending on the number of ions loaded in the trap, the number of available modes of
motion changes. In three dimensions, N trapped ions lead to 3 · N modes of motion,

9
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all of which are featuring red and blue side-band transitions. If for example two ions
are loaded in the given linear Paul trap, there are two modes of motion in either
of the three spacial dimensions. If the ions move collectively, either along the axial
z-axis de�ned by the trap architecture, or one of the two radial dimensions x or y,
the center of mass oscillates. This is called the center of mass, or common mode in
axial or radial direction respectively. An oscillation along the axial direction that does
not change the center of mass is called stretch mode. The equivalent to the axial
stretch mode in the radial directions is called rocking mode. As the laser beam used
for the spectroscopic experiments of this thesis propagates (except for a narrow angle)
along the ion crystal's axis, to irradiate all trapped ions at once, the radial side-band
transitions are suppressed with respect to the axial ones.

Side-band transitions play a vital part in the implementation of entangling op-
erations between di�erent physical qubits as is described in reference [33]. The red
side-band transitions can be used to perform side-band cooling, which is explained in
detail in reference [30].

Unitary operations U can be expressed as combinations between the Pauli matrices

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

as is shown in reference [34]. Any unitary operation can be interpreted as arbitrary
rotation of the qubit on the Bloch sphere, as [34]

U = eiΦ ·
(
cos

(
θ

2

)
· σ0 − i · sin

(
θ

2

)
· (nxσx + nyσy + nzσz)

)
(2.3.6)

with Φ representing a global phase that is accumulated by applying the operation, and
the unit vector

n =

 nx
ny
nz


de�ning the rotation axis. When shining a resonant light pulse onto an ion, the resulting
n is perpendicular to the z-axis of the Bloch sphere, leading to the operation [34]

Uϕ (θ) = exp

(
−i · θ

2
· (σx · cos (ϕ) + σy · sin (ϕ))

)
(2.3.7)

with ϕ depending on the phase of the light �eld and θ = Ω·t depending on the duration
of the light pulse t and the coupling strength Ω as approximated in equation (2.3.5).
A bit-�ip of a qubit corresponds to applying the operator U0 (π) to it, which is imple-
mented by shining a resonant light pulse of duration τπ = π/Ω onto the ion. Such a
pulse is referred to as π-pulse, with τπ also being called the π-time as the corresponding
rotation angle θ is given by Ω · τπ = π.

2.4 Rabi Spectroscopy

In the discussion on unitary operations, the detuning ∆ = νL − ν between the laser
frequency νL and the transition frequency ν is assumed to be zero. This assumption

10
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has to be lifted as a detuning of zero cannot feasibly be produced under real world
conditions. However, for typical experiments one can still assume ∆� ω, with ω being
the trap frequency.

Investigating the interaction of a detuned light �eld and a trapped ion by solving
the corresponding time-dependent Schrödinger equation i~∂tΨ = HΨ, the interaction
Hamiltonian given by equation (2.3.1) is used as a starting point. Necessary assump-
tions to simplify the calculations are:

� the assumption of the Lamb-Dicke regime η2 (2n+ 1)� 1

� a su�ciently low laser intensity leading to Ω� ω

� neglecting the motion of the ion and thus neglecting the modulation of the laser
frequency with the trap frequency in the rest frame of the ion

� assuming an e�ective two level system neglecting the in�uence of other levels

� restricting the investigation to carrier transitions.

With these assumptions in mind, the ansatz Ψ = cΨ1 +dΨ2 can be inserted in the time
dependent Schrödinger equation, leading to the set of coupled di�erential equations [30]

i

(
ċ

ḋ

)
=

Ω

2
·
(

0 ei∆t

e−i∆t 0

)(
c
d

)
. (2.4.1)

Introducing the coe�cients c̃ = c · exp (−i∆t/2) and d̃ = d · exp (i∆t/2), a coordinate
transformation is used to simplify equation (2.4.1) to

i

(
˙̃c
˙̃d

)
=

1

2

(
∆ Ω
Ω −∆

)(
c̃

d̃

)
(2.4.2)

which can be solved by calculating the corresponding eigenvalues λ1,2 = ±iΩ̃/2 and
eigenvectors

vλ1 = A

(
−Ω

Ω̃ + ∆

)
, vλ2 = B

(
Ω̃ + ∆

Ω

)
(2.4.3)

where Ω̃ =
√

Ω2 + ∆2 is the e�ective Rabi frequency. This gives the solution(
c̃

d̃

)
= vλ1e

λ1t + vλ2e
λ2t (2.4.4)

that can further be simpli�ed to(
c̃

d̃

)
=

(
A1

A2

)
· cos

(
Ω̃t

2

)
+

(
B1

B2

)
· sin

(
Ω̃t

2

)
(2.4.5)

where the coe�cients A1,2 and B1,2 can be determined by the initial conditions of
the system. For a system that is initially in the ground state Ψ1, the probability
amplitudes p1,2 are given by [35]

p1 = |c̃|2 =

∣∣∣∣ΩΩ̃
∣∣∣∣2 · sin2

(
Ω̃t

2

)
(2.4.6)
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(a) (b)

Figure 2.4.1: Excitation probability p1 for a light pulse as described with equa-
tion (2.4.6). (a) A variation of the light pulse duration leads to Rabi oscillations
with excitation probability maxima at multiples of the π-time. (b) Equation (2.4.6)
shows a global maximum for a π-time pulse duration and zero detuning between the
laser frequency and transition frequency.

p2 =
∣∣∣d̃∣∣∣2 = 1− p1 (2.4.7)

which leads to Rabi oscillations [36] as shown in �gure 2.4.1a. As visualized in �g-
ure 2.4.1b, the excitation probability p1 reaches its maximum if the laser frequency
is equal to the transition frequency (∆ = 0), and the light pulse duration is equal to
multiples of the π-time.

2.5 Ramsey Spectroscopy

A sequence of quantum gate operations that is of major signi�cance is the so called
Ramsey sequence, named after N. F. Ramsey [37]. The Ramsey sequence consists of
two π/2-pulses Uϕ (π/2) with a waiting time τ between them. Assuming resonant light
pulses, starting with a qubit in the ground state |ψ〉 = |0〉, two π/2-pulses with no
phase o�set between them result in

Uϕ

(π
2

)
Uϕ

(π
2

)
|ψ〉 = Uϕ (π) |0〉 = |1〉 .

In the non-resonant case1 (∆ 6= 0) the probability to excite an ion from the ground
state 42S1/2 (mj (S) = −1/2) to the excited state 32D5/2 (mj (D) = −1/2), by applying

1using the same assumptions as listed in section 2.4

12
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Figure 2.5.1: Excitation probability after a Ramsey sequence. The simulated Ramsey
sequence is performed with a Rabi frequency of Ω = 2π · 10 kHz and a waiting time of
τ ∈ {0, 300} µs.

a Ramsey sequence to it is given by [26]2

pRamsey (∆) =
4Ω2

Ω̃2
· sin2

(
1

2
Ω̃τπ/2

)
·
[
cos

(
1

2
Ω̃τπ/2

)
· cos

(
1

2
∆τ +

1

2
ϕ

)
−∆

Ω̃
· sin

(
1

2
Ω̃τπ/2

)
· sin

(
1

2
∆τ +

1

2
ϕ

)]2 (2.5.1)

with the e�ective Rabi frequency Ω̃ =
√

Ω2 + ∆2, and the π/2-time τπ/2 = 0.5 · τπ,
resulting in the spectrum shown in �gure 2.5.1. Setting the waiting time between the
π/2-pulses as well as the phase o�set between them to zero is equivalent to applying a
π-pulse, and therefore leads to an equivalent situation as discussed in section 2.4.

Assuming a detuning ∆ close to resonance (∆� Ω) as well as the �rst π/2-
pulse U0 (π/2) having a phase of zero, the Ramsey sequence is investigated on the
Bloch sphere as shown in �gure 2.5.2. The �rst light pulse brings the qubit from the
ground state |0〉 to the equatorial x-y-plane (see �gure 2.5.2a). During the waiting
time τ , the state of the qubit can be interpreted as rotating around z-axis of the Bloch
sphere (see �gure 2.5.2b), where the rotation angle ϕ is given by [26]

ϕ = ∆ · τ . (2.5.2)

In order to excite the qubit from the equatorial plane to the excited state |1〉, the
second π/2-pulse Uϕ (π/2) has to have a phase o�set of ϕ with respect to the �rst
pulse (see �gure 2.5.2c).

2Note that the de�nition of the phase ϕ in equation (2.5.1) di�ers by a factor of two with respect
to reference [26].
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(a) (b) (c)

Figure 2.5.2: The Ramsey sequence visualized on a Bloch sphere with the laser fre-
quency being close to the transition frequency (∆� Ω). (a) The �rst π/2-pulse brings
the qubit from its initial state |0〉 to the x-y-plane. (b) During the waiting time τ ,
the population performs a rotation around the z-axis, with the rotation angle ϕ being
given by equation (2.5.2). (c) With a phase o�set of ϕ with respect to the �rst pulse,
the second π/2-pulse brings the qubit to its excited state |1〉.

Investigating the Ramsey sequence further, it has to be noted that the waiting
time τ cannot be increased in�nitely as several noise processes lead to an evolution
of the state after the �rst π/2-pulse that di�ers from the discussion above. Due to
amplitude damping, a state |ψ〉 = α |0〉+ β · eiϕ |1〉 can with some probability decay to
the ground state |0〉. This process is related to the operator Uϕ (π/2), as well as to a
relaxation time T1. Intuitively, amplitude damping is limiting the waiting time as the
excited state |1〉 has a �nite lifetime. Another important noise process is called phase
damping, where partial information about the phase ϕ is lost [11]. Phase damping can
occur as a result of perturbation and is related to the operator Sz (ϕ) and the phase
coherence time T2 [11]. As in the experimental setup T2 � T1 is given, phase damping
dominates, and the resulting excitation probability pRamsey,T2 exponentially approaches
a value of pRamsey,T2 → 0.5 for τ →∞ [38], which can be modeled as

pRamsey,T2 (∆) =
1

2
+

(
pRamsey (∆)− 1

2

)
· e−

τ
T2 . (2.5.3)
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Chapter 3

Frequency Stabilization

With the equations (2.4.6) and (2.5.3) in mind, in order to perform a U0 (π) operation,
a resonant π-pulse is required. Thus, the used laser system has to be accurately tuned
to the corresponding transition frequencies, as well as frequency stable with respect to
them over the measurement time. Therefore, section 3.1 discusses how a laser system
can be stabilized, with the aid of a stable reference frequency, focusing on how to use
atomic clock experiments as a source of reference. Furthermore, section 3.1 introduces
the Allan deviation [39] to quantify the stability of a frequency source.

Section 3.2 discusses how Rabi spectroscopy can be implemented in the experi-
mental setup in order to stabilize the frequency of the laser system driving the qubit
transition. Section 3.3 concludes this chapter, discussing the implementation of Ram-
sey spectroscopy to frequency stabilize a laser system, motivating the major pitfalls
that are encountered using this approach. A way to circumvent these pitfalls will be
presented in the next chapter.

3.1 Stable References

Frequency stabilization of lasers is in general achieved utilizing a stable reference fre-
quency to which the laser system can be stabilized to. Sources for such a reference
frequency can be e.g. high-�nesse cavities, or atomic clock transitions. In a previous
master's thesis by Roman Stricker [40], the installed laser system has been stabilized
to an optical high-�nesse cavity using the Pound-Drever-Hall technique [41]. The re-
sulting spectral line width has been measured as 3.4 (4) Hz at 4 s averaging time [40].
Frequency instabilities have been measured to be below 1Hz at averaging times be-
tween 1 s and 100 s [40]. Over the course of multiple minutes however, the cavity is
unstable. In a similar system, a long term drift of 0.37Hz/s has been measured over
a period of one month [42]. Furthermore, the magnetic �eld strength at the position
of the trapped ions is not constant, introducing undesired Zeeman shifts on the qubit
transition.1 As the laser system has to be stable with respect to the qubit transition,
these shifts have to be accounted for. One goal of this thesis is to improve upon the

1The residual magnetic �eld strength thereby most likely stems from irregularities in the current
of the magnetic �eld coils generating the desired Zeeman shifts, or from magnetic �elds generated by
e.g. neighboring experiments or electronics inside the laboratory.
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already installed frequency stabilization, using precision spectroscopy to measure and
correct these drifts and o�sets in an automated manner.

Atomic transitions can be used as a stable reference frequency source for a laser
system. For this, the transition frequency is compared to the laser frequency. The laser
system is then stabilized by keeping the detuning between these frequencies constant.
The transition frequency ν can be converted to a time interval τ = 1/ν between ticks of
an atomic clock. The stability of an atomic clock, and thereby also the stability of the
laser system stabilized by the clock, can be characterized with the Allan deviation [39].
Following the treatment of reference [43], the Allan deviation can be motivated by
assuming that the clock under test is compared to a reference clock which is assumed
to be perfectly stable. At each tick of the reference clock, separated by a time inter-
val τ , the time di�erence xk between the two clocks is measured. The index k thereby
indicates the k-th tick of the reference clock. The average frequency of the clock under
test can then be estimated as [43]

yk =
xk − xk−1

τ
.

The frequency di�erence between consecutive comparisons is given by [43]

yk+1 − yk =
xk+1 − 2xk + xk−1

τ
(3.1.1)

which is an estimator for the stability of the clock under test. Assuming that the root-
mean-square (RMS) of equation (3.1.1) has a well-de�ned value i.e. equation (3.1.1)
does not systematically depend on the index k, the two-sample Allan variance σ2

y is
the normalized mean square value of yk+1 − yk, estimated over all possible values of k,
and given by [43]

σ2
y (τ) =

1

2 (N − 2) τ 2

N−1∑
k=2

(xk+1 − 2xk + xk+1)2 (3.1.2)

with N being the number of comparisons. The square root of σ2
y gives the Allan

deviation σy which can then be used as a measure of frequency stability. In order to
familiarize with the achievable stability in trapped ion experiments, Allan deviations
of e.g. 5 · 10−15/

√
τ (s) [44] or 1.4 · 10−16/

√
τ (s) [45] have been demonstrated.

In the given experimental setup, precision spectroscopy can be performed on all
42S1/2 to 32D5/2 Zeeman sub-level transitions introduced in section 2.2, using the laser
system driving the qubit transition [26]. In order to stabilize the laser frequency, the
transitions (−1/2, −1/2) and (−1/2, −5/2) are chosen, as the �rst is the qubit tran-
sition and the second has a stronger sensitivity to the magnetic �eld.2 The frequency
of the chosen transitions is given by

νi = νcenter + ∆νZ(mj

(
D(i)
)
, gD)−∆νZ(mj

(
S(i)
)
, gS) (3.1.3)

2In theory any pair of transitions depicted in �gure 2.2.2 can be selected for the discussion in
this section, provided they show di�erent magnetic sensitivities. The choice of (−1/2, −1/2) and
(−1/2, −5/2) is a pragmatic one as the experimental setup has to be calibrated for the (−1/2, −1/2)
transition to perform quantum gate operations.
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CHAPTER 3. FREQUENCY STABILIZATION 3.2. RABI SPECTROSCOPY

where i ∈ {1, 2} is used as an abbreviated label for the transitions (−1/2, −1/2)
and (−1/2, −5/2), νcenter is the unperturbed 42S1/2 to 32D5/2 center frequency, and
∆νZ is the Zeeman shift corresponding to the respective projection mj

(
L(i)
)
of the

total angular momentum of the corresponding transition's state L ∈ {S, D}. As the
transitions have a di�erent sensitivity to magnetic �eld, the system of equations(

ν1

ν2

)
= νcenter −

µB ·B
~
·
(
gS ·

(
mj

(
S(1)
)

mj

(
S(2)
) )− gD · ( mj

(
D(1)

)
mj

(
D(2)

) )) (3.1.4)

can be solved for νcenter and the magnetic �eld strength B. Intuitively, the center
frequency νcenter changes if the transition frequencies ν1 and ν2 are changed equally over
time, and the magnetic �eld strength B changes if ν1 and ν2 are changed with respect
to one another. This way, the drifts and o�sets between the transition frequencies and
laser frequency can be measured and thus also compensated for independently. After
accumulating some measurement results for νcenter and B, a linear regression can be
performed, yielding an estimate of the current drift rates ν̇center and Ḃ. The current
values for νcenter and B can then be extrapolated from the previous measurements using

νcenter (t) = νcenter (t0) + (t− t0) · ν̇center (3.1.5)

and
B (t) = B (t0) + (t− t0) · Ḃ (3.1.6)

with t being the current time, and t0 the time of the latest measurement. This way,
the current value of every 42S1/2 to 32D5/2 Zeeman sub-level transition frequency can
be estimated using equation (3.1.4). As the light �eld can be accurately tuned to
the desired transition frequency, it is possible to cancel out the undesired drifts and
o�sets. In order to automate all tasks mentioned above, a computer program has
been written that performs them periodically and thereby continuously re-calibrates
the laser frequency.

3.2 Rabi Spectroscopy

As introduced in section 2.4, when ground state ions interact with single light pulses of
a given duration, the excitation probability is maximized, if the laser frequency is equal
to a transition frequency and the pulse duration corresponds to the π-time. Therefore,
the idea of Rabi spectroscopy [46], as it is implemented in the experimental setup,
is to sample the excitation spectrum in order to determine this maximum. Once the
resonances assigned to the transitions (−1/2, −1/2) and (−1/2, −5/2) are measured,
frequency stabilization as described in section 3.1 can be performed.

In order to assign and measure these resonances, prior knowledge on the transition
frequencies is required. Therefore, a mean excitation spectrum over a broad frequency
range is measured, which can be found in �gure 3.2.1. The shown spectrum is taken
from two trapped 40Ca+ ions, sweeping the input frequency of the double-pass AOM
from 223MHz to 247MHz in steps of 1 kHz.3 Every mean excitation data point is
thereby the result of one hundred experiments, with every experiment consisting of

3The actual detuning of the light �eld frequency is twice the input frequency to the AOM.
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Figure 3.2.1: Spectrum of the 42S1/2 to 32D5/2 transition as discussed in section 3.2.
The labels COM and STR are used for the ion crystal's axial common and stretch
modes respectively. Side-band transitions are marked with the same color as their
corresponding carrier transition.
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Figure 3.2.2: Mean excitation of the (−1/2, −1/2) transition, as described in sec-
tion 3.2. The blue line labeled Rabi Fit corresponds to a least squares �t with equa-
tion (2.4.6) as model function. The corresponding �t parameters are listed inside the
blue box. The variables δLorentz and FWHM correspond to the location of the maximum
and the full width half maximum of the shown Lorentzian Fit (red line and box).

Doppler cooling [21], followed by a light pulse with a pulse duration of 100 µs, conclud-
ing with state detection via electron shelving [29]. All transitions shown in �gure 2.2.2
are assigned to resonances in �gure 3.2.1, including their axial side-bands4, su�ciently
reducing the uncertainty of their detuning with respect to the laser frequency to a few
Kilohertz.

Performing such an initial measurement is time consuming, as the data shown in
�gure 3.2.1 consists of more than 2.4 · 104 data points, and the generation of a single
data point takes about one second. However, a broad spectrum as the shown one
is only required, if the available prior knowledge on the transition frequencies is not
su�cient to assume ∆� ω, as required by the discussion of section 2.4. Once a broad
spectrum has been measured, the laser system can be continuously re-calibrated to the
transition frequencies as discussed in section 3.1.

With the uncertainty of the detuning reduced to a few Kilohertz, it is possible to
sample the spectrum around a single transition frequency. Measuring the spectrum
around the (−1/2, −1/2) transition frequency using 14 data points that are equally
spaced over an approximately 4 kHz wide frequency range using a pulse duration of
about 3.5ms, leads to a graph as shown in �gure 3.2.2. The number of measured
data points is thereby a trade-o� between the measurement time and having enough
resolution to con�dently analyze the data. A least squares �t of the data estimates
the detuning between the transition frequency and the laser frequency. The excitation

4As the laser beam is propagating along the trap axis (except for a narrow angle), the radial
side-bands are suppressed and cannot be assigned to maxima with the given signal-to-noise ratio.
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probability after a single pulse can be modeled with equation (2.4.6). However, a
simpli�ed model function like e.g. a Lorentzian function yields similar results, as can be
seen by comparing the �ts shown in �gure 3.2.2. The detuning δ = 472.15095 (2) MHz
determined by the �t using equation (2.4.6) is thereby within one standard deviation of
the detuning δLorentz = 472.15098 (3) MHz determined by the Lorentzian �t. Therefore,
the Lorentzian �t is chosen over the other when automating Rabi spectroscopy in order
to keep the number of parameters of the computer program low.

Concerning the choice of the pulse duration, there are a few things to keep in mind.
First of all, equation (2.4.6) can be interpreted as a Fourier transformation of the
rectangular light pulse in the time domain [14]. Therefore, the spread of the resulting
spectrum and the pulse duration are inversely proportional. Secondly, an unfortunate
choice of the pulse duration can lead to a splitting of the main peak, as for a pulse
duration τ0 with e.g. τπ < τ0 < 3 · τπ, the resulting rotation angle on the Bloch sphere
is between 180◦ and 540◦. This e�ect can be accounted for, however unnecessarily
complicates the data analysis. By either reducing the Rabi frequency and therefore
increasing the π-time such that τπ ≥ τ0, or by increasing the pulse duration drastically
such that T2 � τ0 the splitting can be avoided. The latter solution thereby exploits
the fact, that due to the relaxation time T1 and the phase coherence time T2 the
Rabi oscillations exponentially approach a excitation probability of 0.5, similarly to
the Ramsey excitation given by equation (2.5.3).

3.3 Ramsey Spectroscopy

Ramsey spectroscopy [37] as described in section 2.5 can be implemented similarly to
how the Rabi spectroscopy is implemented in section 3.2. For a phase o�set of ϕ = 0
between the π/2-pulses of the Ramsey sequence, the excitation probability as given with
equation (2.5.1) shows a maximum at zero detuning. Therefore, the mean excitation
spectrum can again be sampled and the resulting Ramsey fringes (see �gure 3.3.1a)
can be analyzed with a least squares �tting algorithm. As shown in �gure 3.3.1b, the
number of Ramsey fringes is proportional to the waiting time of the Ramsey sequence
and the location of the maxima is dependent on the phase o�set between the π/2-
pulses. If the waiting time is chosen too large with respect to the sampled frequency
range, the central fringes are ambiguous requiring additional prior knowledge on the
transition frequency to thoroughly analyze the data.

Another possibility to implement Ramsey spectroscopy is given, if ∆ � Ω can be
assumed. In this regime, it is su�cient to measure two mean excitation data points,
with the measurements using a phase o�set of ϕ = ±90◦ between the π/2-pulses
respectively. As shown in �gure 3.3.2, if the detuning between the laser frequency
and the central Ramsey fringe maximum is zero, the mean excitation data points have
a value of 0.5. If there is a non-zero detuning between laser frequency and Ramsey
fringe maximum, the data points show a corresponding imbalance. As the central
fringes are ambiguous for longer waiting times, the idea is to incrementally increase
the knowledge of the transition frequency by incrementally increasing the waiting time
and re-calibrating the laser system after each measurement. An implicit assumption of
this scheme is that the laser frequency does not change by more than half the frequency
range of a Ramsey fringe between measurements. If this assumption is not ful�lled, the
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(a) (b)

Figure 3.3.1: The excitation probability after a Ramsey sequence against the detuning
between the applied π/2-pulses and the qubit transition frequency, as described in
section 3.3. (a) The overall pro�le shows, that the Ramsey sequence leads to several
local maxima. These maxima are called Ramsey fringes. (b) A close-up with di�erent
values for the phase ϕ and waiting time τ of the Ramsey sequence shows, that the
number of the fringes is proportional to τ , while the location of their maxima depends
on ϕ.

Figure 3.3.2: The excitation probability with a Ramsey sequence versus the detuning
between the used laser system and the predicted transition frequency. Measuring two
mean excitation data points with a phase o�set of ϕ = −90◦ (triangle pointing down)
and ϕ = 90◦ (triangle pointing up) respectively, the detuning ∆ between the predicted
and the true transition frequency can be deduced. If ∆ = 0 (red) the data points are
balanced, while ∆ 6= 0 (blue and black) leads to a corresponding imbalance.
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data analysis wrongfully assumes to measure the detuning from the central Ramsey
fringe. This error in the data analysis is called fringe hopping, which leads to errors in
the estimated detuning. Furthermore, it is clear that the choice of the waiting time is
a trade-o� between robustness with respect to fringe hopping and a better resolution.
Therefore, the waiting time depends on the prior knowledge of the transition frequency
and has to be chosen accordingly for each measurement. An algorithm that prevents
fringe hopping and automatically calculates the optimal waiting time will be presented
in the next chapter.
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Chapter 4

Bayesian Inference

There are two main philosophies on how to statistically interpret measured data: Fre-
quentism and Bayesianism [47]. Algorithms based on either one of them often yield
similar results. However, depending on the given problem, one of the two approaches
can lead to a more straight forward solution than the other.

Within section 4.1, the frequentist least squares method is discussed. In section 4.2,
the Bayesian philosophy as well as practical Bayesian inference of Ramsey experiments
is introduced. The chapter concludes with comparing the least squares method and
Bayesian inference with each other, highlighting their advantages and disadvantages by
using examples based on the experiment at hand, where the results of either approach
di�er. Furthermore, this shows how Bayesian inference produces a direct solution to
fringe hopping and �nding the optimal waiting time in Ramsey experiments.

4.1 Frequentism

Frequentist analysis links the occurrence frequency of a given event with its probability:
The more frequent an event has been observed, the higher is its probability. In 1805
A. M. Legendre developed the method of least squares with this ansatz [48], followed
with mathematical derivations and proofs by R. Adrain in 1808 [49], C. F. Gauss in
1809 [50], and P.-S. Laplace in 1810 [51].

In the following, the least squares method is motivated analogously to the proof
by C. F. Gauss. Assume that after some experiment, N ∈ N data points have been
measured. The underlying physical phenomenon creating the data is described by the
function ỹ (x). For a parameter xi, the probability to measure a value yi is assumed to
be given by a Gaussian distribution

PGauss (yi; ỹ (xi) , σ) =
1√

2πσ2
· exp

(
−(yi − ỹ (xi))

2

2σ2

)
(4.1.1)

where σ ∈ R+ is the standard deviation. Given a model function y (θ, x), where θ is a
parameter vector that represents a set of parameters di�erent from x, the goal is now to
�nd the most probable parameter vector θ′, such that y (θ′, x) best approximates ỹ(x),
given the available data points (xi, yi). This best approximation and therefore θ′ can
be found, when the distance ε between y (θ, x) and ỹ′ (x) is minimal. One possibility
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to de�ne ε is utilizing the squared di�erences between the data points and the model
function

ε =
N∑
i=1

(yi − y (θ, xi))
2 . (4.1.2)

Minimizing equation (4.1.2) yields the most probable parameter vector θ′.
The name least squares method is a result of this minimization as well, as the sum

of the squared di�erences is minimized. Squaring the di�erences also leads to ε being
di�erentiable, provided y (θ, x) is di�erentiable. Therefore, ε can in many practical
cases be minimized by solving dε/dθ|θ=θ′ = 0, if θ is one dimensional, or by solving
∇ε (θ) |θ=θ′ = 0 in the multi dimensional case, with ∇ε (θ) being the gradient vector of
ε, and 0 the zero vector.

4.2 Bayesianism

The main di�erence between Bayesianism and frequentism is the interpretation of prob-
abilities. While a frequentist links probabilities to the occurrence frequency of an event,
a Bayesianist refers to the probability as their knowledge about the underlying phe-
nomenon creating these events. This di�erence leads to conclusions and methods that
agree in many cases, but yield considerably di�erent results in others [47]. The foun-
dation of Bayesianism is a theorem, �rst formulated by T. Bayes and published in
1763 [52], two years after his death. A decade later, P.-S. Laplace independently comes
up with Bayes' theorem and uses it as an axiom in 1774 [53]. In the following decades,
P.-S. Laplace developed the theory around Bayes' theorem into its modern form:

The probability p of a hypothesis A given some evidence B is called the conditional
probability p (A|B). Bayes' theorem is represented by the equation [54]

p (A|B) =
p (A) · p (B|A)

p (B)
(4.2.1)

where p (A) and p (B) are the probability of the hypothesis and evidence respectively.
In the case of a discrete set of available hypotheses Ai with i ∈ N, equation (4.2.1) can
be extended to

p (A|B) =
p (A) · p (B|A)∑
i p (Ai) p (B|Ai)

(4.2.2)

utilizing the law of total probability [55]

p (B) =
∑
i

p (Ai) p (B|Ai) .

For a continuous parameter space η of available hypotheses, equation (4.2.1) can simi-
larly be extended to

p (A|B) =
p (A) · p (B|A)∫

η
p (A′) p (B|A′) dA′

. (4.2.3)

Bayes' theorem can be explained with the help of the following simple scenario.
A cat catches mice and brings them into the house. The cat's owner is interested
in the probability that the cat has caught a mouse given that it is entering. In this
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Figure 4.2.1: Conditional probability. This graph shows how the (conditional) proba-
bilities of a scenario with two binary variables A ∈ {a, ¬a} and B ∈ {b, ¬b} link all
possible states as described in section 4.2.

scenario there are two binary variables of interest. One of them states if the cat has
caught a mouse a, or not ¬a, and the other one if it enters the house b, or not ¬b.
The combination of these parameters can be labeled with the logical symbol ∧, e.g.
the cat is entering the house and has caught a mouse can be labeled as b ∧ a. The
conditional probability the owner of the cat is interested in is then given by p (a|b).
All possible states as well as the probabilities linking them are depicted by the graph
shown in �gure 4.2.1. The probability that the cat enters the house and has caught a
mouse p (b ∧ a), can now be calculated from either side of the graph, as

p (b) · p (a|b) = p (b ∧ a) = p (a) · p (b|a) ,

directly leading to equation (4.2.1). Furthermore, every two branches from a node
towards the central nodes of the graph have to sum up to one, i.e. p (a) + p (¬a) = 1,
or p (a|b) + p (¬a|b) = 1, due to the law of total probability. Therefore,

p (b) = p (b ∧ a) + p (b ∧ ¬a) =
∑

A∈{a,¬a}

p (A) · p (b|A)

which can be extended to produce the equations (4.2.2) and (4.2.3). Coming back to the
example, the cat's owner can now utilize equation (4.2.2) to calculate the conditional
probability p (a|b), assuming that knowledge about the probabilities p (a), p (b), and
p (b|a) is available.

Bayesian Parameter Estimation

The crucial part in understanding how Bayes' theorem can be applied to infer unknown
parameters, is to properly identify each term. The term p (A|B) can be identi�ed as
posterior distribution, which describes with what probability a hypothesis A is the true
parameter, given the measured evidence B. The term p (A) is the prior knowledge,
or prior distribution of said parameters. The likelihood function p (B|A), gives the
probability to observe the outcome B given the probability distribution A. Finally, the
last term p (B) is called marginal probability and is required to normalize the result,
as can be seen in equations (4.2.2) and (4.2.3) respectively.
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For spectroscopic estimation, as discussed in sections 3.2 and 3.3, the goal is to �nd
the most probable detuning ∆′ between the light �eld and the transition frequency. For
the sake of simplicity, we will limit the range within which spectroscopy is performed to
a prede�ned frequency range [ν −∆max, ν + ∆max] around the last estimate ν of said
transition frequency, with ∆max > 0.1 Each detuning ∆ ∈ [−∆max, ∆max] is therefore
parameterizing a hypothesis A (∆) for an algorithm analyzing the data from a Ramsey
experiment. In order to facilitate a numerical treatment, the available hypotheses are
chosen as a discrete sample of the whole range [−∆max, ∆max], with N ∈ N elements
and a constant step size. Before performing the �rst experiment, there is no prior
knowledge available about which ∆ is the most probable. Therefore, the initial prior
distribution p0 (∆) is chosen as a step function

p0 (∆) =

{
1
N

, ∆ ∈ [−∆max, ∆max]

0 , otherwise
, (4.2.4)

treating all ∆ within the frequency range as equally probable. Every Ramsey exper-
iment results in a single bit of information B ∈ {|0〉 , |1〉}. If an excited state |1〉 is
measured, p (|1〉 |∆) is given by equation (2.5.3). If the outcome is the ground state |0〉,
the likelihood function is given by p (|0〉 |∆) = 1−p (|1〉 |∆). Therefore, the conditional
probability p (B|∆) is given by

p (B|∆) =

{
pRamsey, T2 (∆) , B = |1〉
1− pRamsey, T2 (∆) , B = |0〉

. (4.2.5)

Finally, the posterior distribution p (∆|B) is given by Bayes' theorem with equa-
tion (4.2.2).

Having trapped a single ion, and performing one Ramsey experiment per cycle, a
single cycle of the algorithm consists of four basic steps. These steps are now discussed
in more detail, providing a better understanding about the algorithm as a whole:

Step 1:

Perform a Ramsey experiment and measure the resulting state B ∈ {|0〉 , |1〉}. If
an excited state is measured (B = |1〉) the likelihood function (i.e. the likelihood of
observing a bright ion in a Ramsey experiment) is given by equation (2.5.3). When
written out, this yields

p (|1〉 |∆) = 1
2

+
{

4Ω2

Ω̃2
· sin2

(
1
2
Ω̃τπ/2

)
·
[
cos
(

1
2
Ω̃τπ/2

)
· cos

(
1
2
∆τ + 1

2
ϕ
)

−∆

Ω̃
· sin

(
1
2
Ω̃τπ/2

)
· sin

(
1
2
∆τ + 1

2
ϕ
)]2

− 1
2

}
· e−

τ
T2 .

If a ground state is measured (B = |0〉), the likelihood function is given by

p (|0〉 |∆) = 1− p (|1〉 |∆) .

1Furthermore, ∆max is chosen such that the assumptions of the sections 2.4 and 2.5 are met.
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Step 2:

Calculate the posterior distribution p (∆|B) for the observed outcome B with Bayes'
theorem:

p (∆|B) =
p (∆) · p (B|∆)

p (B)
.

Figure 4.2.2 depicts how the knowledge about the most probable detuning ∆′ increases
in this step. In the �rst cycle of the depicted example (see �gure 4.2.2a) an excited
state is measured. The step function chosen as initial prior distribution p0 (∆) and
the likelihood function p (|1〉 |∆) as speci�ed above yield the shown posterior distribu-
tion p (∆| |1〉).

Step 3:

The updated posterior distribution p (∆|B) encompasses our knowledge about the most
probable detuning ∆′, given the observed outcome B. In the upcoming cycle of the
algorithm, we want to improve upon this knowledge. Therefore, we use the posterior
distribution of the current cycle as the prior distribution p (∆) of the next cycle, via
setting p (∆)← p (∆|B).

Step 4:

Restart with Step 1 and repeat until the posterior distribution shows the most probable
detuning ∆′ with a probability density above a desired threshold. Figure 4.2.2 shows
a step-by-step example of four update cycles. For the sake of simplicity, it is assumed
that all Ramsey experiments resulted in excited state measurements (B = |1〉).

For i ∈ N cycles of the algorithm, the i-th posterior distribution is given by equa-
tion (4.2.1) as

pi (∆|B0, ..., Bi) =
pi−1 (∆) · p (Bi|∆)

p (Bi)
(4.2.6)

where pi−1 (∆) is equal to the initial prior distribution p0 (∆) for i = 1, or to the
posterior distribution pi−1 (∆|E0, ..., Ei−1) of the previous cycle otherwise. Therefore,
after performing i cycles and detecting n|0〉 ∈

{
n|0〉 ≤ i |n|0〉 ∈ N0

}
ground states |0〉,

the i-th posterior distribution can iteratively be calculated using equation (4.2.6):

pi (∆|B0, ..., Bi) = p0 (∆) ·
(
p (|0〉 |∆)

p (|0〉)

)n|0〉

·
(
p (|1〉 |∆)

p (|1〉)

)i−n|0〉

. (4.2.7)

Finally, the most probable detuning ∆′ given the results of the experiments can be
estimated by the �nal posterior distribution.

In the case of having nions ∈ N trapped ions available, a single Ramsey sequence
performed with the so called global laser beam that is used to illuminate the ions
simultaneously yields nions bits of information. As these measurements are independent
of each other, each bit can be interpreted as a separate experiment, as well as a separate
cycle in the algorithm described above.
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(a) (b)

(c) (d)

Figure 4.2.2: Simulation of four cycles of the Bayesian Ramsey parameter estimation
algorithm discussed in section 4.2. (a) After performing a Ramsey experiment and
measuring an excited state (B = |1〉), the initial prior distribution (red) and likelihood
function (grey, dashed) are multiplied and normalized to yield the posterior distribution
(blue). (b)-(d) Additional experiments yielding B = |1〉 increase the knowledge of the
most probable detuning ∆′, and narrow it down to ∆′ = 1.6 (8) kHz.

In order to show that this algorithm is able to estimate the detuning between
the light �eld and a transition frequency, four ions are loaded in the trap. With
the help of Rabi spectroscopy, the global laser beam is deliberately detuned from the
(−1/2, −1/2) transition frequency by ∆ = 2 kHz. The algorithm is now meant to
infer this detuning. Therefore, ten Ramsey experiments are conducted with a π-time
of τπ = 19.6 µs, a waiting time of τ = 70.2 µs, a coherence time of T2 = 40ms, and a
phase of ϕ = 90◦ between the π/2-pulses, using said global laser beam. The resulting
posterior distribution after the corresponding 40 cycles of the algorithm described above
can be found in �gure 4.2.3.

The shown posterior distribution features several maxima with one of them located
at a detuning of about 2 kHz. The appearance of the other maxima results from the
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Figure 4.2.3: Initial prior distribution, likelihood function, and �nal posterior distri-
bution after 40 Ramsey experiments, as described in section 4.2. All 40 experiments
have been conducted with the same parameters, leading to multiple candidates for a
most probable detuning between light �eld and (−1/2, −1/2) transition frequency.

ambiguity of Ramsey fringes as elaborated on in section 3.3. Therefore, as the inferred
most probable detuning is ambiguous, the algorithm has to be re�ned to produce unique
results that can be used for automated frequency stabilization.

Adaptive Bayesian Ramsey Spectroscopy Algorithm

In order to eliminate all but one maximum in the �nal posterior distribution, the
experimental parameters have to be adapted to the corresponding prior distribution
after a few cycles of the algorithm described above. Therefore, an adaptive algorithm
is required that chooses optimal parameters for upcoming experiments after evaluating
data. In every cycle of this adaptive algorithm, the most informative experiment with
respect to the available prior knowledge will be selected. With nions trapped ions
available, it is convenient to adapt the parameters after every nexp ≥ nions Ramsey
experiments, leading to the following steps:

1. Calculate the optimal parameters for upcoming experiments.

2. Perform nexp Ramsey experiments and measure the resulting states B1, ..., Bnexp .

3. Calculate p
(
∆|B1, ..., Bnexp

)
from equation (4.2.7).

4. Set p (∆)← p
(
∆|B1, ..., Bnexp

)
.
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5. Restart with 1.

The two parameters of a Ramsey experiment that can be tuned without requiring a
re-calibration of the system, are the waiting time τ between the pulses, and the phase
o�set ϕ of the second pulse. As described in section 3.3 and visualized in �gure 3.3.1b,
a reduction of τ stretches the Ramsey fringes and reduces their number, while the
phase of the fringes is dictated by ϕ. The likelihood function given by equation (4.2.5)
behaves correspondingly. Therefore, the parameters τ and ϕ have to be chosen such,
that a single measurement outcome decreases the variance of the posterior distribution,
without introducing multiple maxima. Figure 4.2.4 illustrates the update of a prior
distribution with a single maximum by a single excited state measurement for several
choices of τ and ϕ.

With fewer fringes, the chance to generate a posterior distribution with multiple
peaks is lower. Therefore, we choose the strategy to initialize the algorithm with
the lowest possible waiting time τmin and increase τ with every cycle. The optimal
values for the i-th cycle's waiting time τi and phase o�set ϕi (see �gure 4.2.4a) can
be calculated from equation (4.2.5): For the sake of simplicity, we assume a Gaussian
prior distribution

p (∆) =
1√

2πσ2
· exp

(
−∆2

2σ2

)
(4.2.8)

that is centered around ∆ = 0, where σ2 is the prior distribution's variance. Assuming
∆ � Ω as well as τπ/2 � τi � T2, the likelihood function p (|1〉 |∆) for a measured
excited state |1〉 can be approximated by [26]

p (|1〉 |∆) ≈ 1

2
(1 + cos (∆τi + ϕi)) . (4.2.9)

The resulting posterior distribution p (∆| |1〉) is calculated from equation (4.2.1), yield-
ing

p (∆| |1〉) ∝ 1

2
√

2πσ2
· (1 + cos (∆τi + ϕi)) · exp

(
−∆2

2σ2

)
(4.2.10)

when neglecting the normalization. Therefore, the variance σ̃2 of the posterior distri-
bution is given by

σ̃2 =

∫ ∞
−∞

∆2p (∆| |1〉) d∆−
(∫ ∞
−∞

∆p (∆| |1〉) d∆

)2

∝ σ2

2

(
1 +

(
1− σ2τ 2

i

)
· cos (ϕi) · e−

σ2τ2i
2 − σ2τ 2

i

2
· sin2 (ϕi) · e−σ

2τ2i

)
.

As shown in �gure 4.2.4b, if ϕi is chosen such that the minimum of a Ramsey fringe is
located at the detuning of the prior distribution's maximum, a measured excited state
can lead to two maxima in the resulting posterior distribution. In order to avoid this
case in the given example, ϕi = π/2 is chosen, placing the turning point of the Ramsey
fringe at the location of the prior distribution's maximum and yielding

σ̃2 ∝ σ2

2

(
1− σ2τ 2

i

2
· e−σ2τ2i

)
. (4.2.11)
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(a) (b)

(c) (d)

Figure 4.2.4: Numerical simulation of a Bayesian update using a Gaussian prior distri-
bution with a sinusoidal likelihood function, leading to di�erent posterior distributions
depending on the period and phase of the likelihood function. (a) If the phase and
period are chosen such that the turning point of the likelihood function is at the lo-
cation of the prior distribution's maximum and the majority (in this example chosen
to be two standard deviations) of the prior distribution �ts into one oscillation of the
likelihood function, the resulting posterior distribution shows a Gaussian-like shape
with a reduced FWHM. (b) If the period is chosen as in case (a) and the phase of
the likelihood function such that a minimum is located at the position of the prior
distribution's maximum, the resulting posterior distribution shows two Gaussian-like
peaks. (c) If the likelihood function has a much larger period with respect to the prior
distribution's width, the posterior distribution shows a Gaussian-like shape. However,
the FWHM of the posterior distribution is not signi�cantly smaller than the FWHM of
the prior distribution. (d) A likelihood function that has a much smaller period with
respect to the width of the prior distribution leads to multiple peaks in the posterior
distribution.
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Figure 4.2.5: State diagram of an adaptive algorithm inferring a detuning between
transition frequency and light �eld using Ramsey experiments, parameter optimization,
and Bayesian data analysis. The initial parameters (grey) of the algorithm are the
number of cycles nmax after which the algorithm terminates, the number of Ramsey
experiments conducted per cycle nexp, the number of ions nions, the π-time τπ, the phase
coherence time T2, the maximum detuning ∆max, and the number of steps N within
the interval [−∆max, ∆max]. The initial prior distribution p0 (∆) is set according to
equation (4.2.4). During each cycle i (blue), Ramsey experiments are performed with
the most informative waiting time τi and phase ϕi, as described in section 4.2. The i-th
posterior distribution pi (∆|Bi) is then calculated from Bayes' theorem. After the �nal
cycle (red), the most probable detuning ∆′ between the laser system and the transition
frequency is inferred from the �nal posterior distribution.

The i-th cycle's optimal waiting time τ ′i = 1/σ minimizes the posterior distribution's
variance given by equation (4.2.11). If the waiting time is chosen too small (τi � τ ′i),
less information can be gained from the experiment, resulting in the algorithm converg-
ing slower (see �gure 4.2.4c). If the waiting time is chosen too large (τi � τ ′i), multiple
maxima are generated (see �gure 4.2.4d).

Lastly, if such an adaptive algorithm is to be used in the context of frequency
stabilization as discussed in section 3.1, a condition for termination has to be de�ned.
In a straight forward approach, the maximal number of cycles nmax is de�ned, after
which the algorithm aborts and estimates the most probable detuning from the �nal
posterior distribution. A state diagram describing said adaptive algorithm can be found
in �gure 4.2.5.

Using the adaptive algorithm shown in �gure 4.2.5, the experiment discussed above
(see �gure 4.2.3) can be continued. Choosing the initial parameters listed in table 4.1,
the goal is to infer a known detuning of 2 kHz between the laser and (−1/2, −1/2) tran-
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sition frequency. The experimental results, as well as the automatically chosen exper-
imental parameters of each cycle are listed in table 4.2. The corresponding prior and
posterior distributions are illustrated in �gure 4.2.6.

After the �rst cycle (see �gure 4.2.6a), multiple maxima appear in the posterior
distribution. The adaptive choice of the waiting time and phase eliminates all but one
maximum in the second cycle (see �gure 4.2.6b). In the third and fourth cycle the wait-
ing time is further increased leading to a more precise estimation of the �xed detuning
of 2 kHz between light �eld and transition frequency. A more thorough discussion on
the resolution and stability that is achievable with the implemented algorithm follows
in the next chapter.

Table 4.1: Parameters used by the adaptive Bayesian Ramsey spectroscopy algorithm
to deduce a 2 kHz detuning between light �eld and (−1/2, −1/2) transition frequency.
The parameters, algorithm, and experiment are discussed in section 4.2.

nmax nexp nions τπ T2 ∆max N

4 40 4 19.6 µs 40 µs 10 kHz 1000

Table 4.2: Experimental parameters and results of four update cycles of the adaptive
Bayesian Ramsey algorithm. The waiting time τi and the phase o�set ϕi of the i-th
cycle are calculated from the prior distribution displayed in the corresponding �gure.
The number of measured ground states n|0〉 and excited states n|1〉 are used to calculate
the posterior distribution shown in the respective �gure utilizing equation (4.2.7).

τi in µs ϕi n|0〉 n|1〉 �gure

70.2 90.0◦ 37 3 4.2.6a
70.2 211.7◦ 24 16 4.2.6b
187.2 144.8◦ 17 23 4.2.6c
707.8 157.8◦ 10 30 4.2.6d
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(a) (b)

(c) (d)

Figure 4.2.6: Four experimental update cycles of the adaptive Bayesian Ramsey spec-
troscopy algorithm, deducing a detuning of ∆ = 2 kHz between the laser system and
the (−1/2, −1/2) transition frequency of four trapped ions. Each sub-�gure shows the
prior distribution pi (∆), excited state probability pi (|1〉 |∆), and posterior distribu-
tion pi (∆|Bi) of the i-th cycle, with Bi being the measurement results of said cycle,
against the detuning ∆. (a) After the �rst cycle, the posterior distribution shows mul-
tiple maxima, as discussed in section 4.2. (b) The adaptive choice of the second cycle's
experimental parameters yields a single maximum. (c)-(d) The resolution is increased
by increasing the Ramsey time while tuning the phase accordingly, leading to a more
precise measurement of the detuning.
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4.3 Bayesianism vs. Least Squares Minimization

The least squares method is one of the most common methods to analyze statistical
data. One of the main assumptions of the least squares method is that the statistical
uncertainty of the data follows a Gaussian distribution as given with equation (4.1.1).
In the given experimental setup, each individual state measurement either yields |0〉 or
|1〉. By repeating the experiment nexp ∈ N times, a mean excitation pm is calculated
from pm = n|1〉/nexp, where n|1〉 ∈

{
n|1〉 ≤ nexp |n|1〉 ∈ N0

}
is the number of measured

excited states |1〉. Therefore, the distribution that governs pm is given by the binomial
distribution

PBinomial (k; n, p) =

(
n
k

)
pk (1− p)n−k

where n ∈ N is the number of samples, k ∈ N0 the random variable, p ∈ [0, 1] the
probability of success, and (

n
k

)
=

n!

k! (n− k)!

the binomial coe�cient. In the given context, the probability to measure n|1〉 excited
states |1〉, when performing nexp measurements of a qubit that is with a probability
of pm0 in the excited state, is given by

PBinomial

(
n|1〉; nexp, pm0

)
.

In the case of large samples nexp →∞, the binomial distribution can be approximated
by a Gaussian distribution [56], as

PBinomial

(
n|1〉; nexp, pm0

) nexp→∞
−−−−−−−−−−−→ PGauss

(
n|1〉; nexp · pm0 ,

√
nexp · pm0 · (1− pm0)

)
,

leading to the least squares method's assumption to be ful�lled only in this case.
Figure 4.3.1 shows simulated data with a probability of pm0 = 0.04·t+0.1, where t ∈

[0, 10]. Every displayed mean excitation data point is a result of nexp = 5 measurements
drawn from a binomial distribution. The data is analyzed by both an unweighted least
squares algorithm, yielding an estimated excitation probability of 0.07 (2) · t− 0.1 (1),
and an algorithm based on Bayesian inference taking the binomial distribution into
account, yielding an estimate of 0.05 (1) · t+ 0.06 (5). The Bayesian algorithm's results
are within one standard deviation of pm0 and show uncertainties that are by a factor
of two smaller than the ones of the least squares algorithm's results.

Another disadvantage of a straight forward least squares algorithm using minimiza-
tion techniques like the Levenberg-Marquardt algorithm [57, 58] is its dependence on
the initial parameters. If the initial parameters are not close enough to the true pa-
rameters, the algorithm might converge to a local minimum of equation (4.1.2). In this
case, the algorithm does not yield an accurate estimate for the true parameters. For a
least squares algorithm this problem can be solved by a using a tailored minimization
algorithm or a more precise determination of the initial parameters. The presented
Bayesian algorithm on the other hand explores the whole parameter space for which
the prior distribution is not zero, making it less a�ected by an imprecise choice of initial
parameters.
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Figure 4.3.1: Comparison between Bayesian and least squares linear function �tting
routines, as described in section 4.3. The data points (black) are randomly distributed
around pm0 (dashed) by the binomial distribution as a result of nexp = 5 measurements
per point. A least squares �t (blue) assuming Gaussian noise as well as a Bayesian �t
(red) assuming binomial noise are then used to infer pm0 from the data points. The
shaded area indicates the 1σ credible interval of the respective �t.

A strong dependence on precise initial parameters can make it challenging to analyze
complex data as generated by Ramsey experiments. In order to show how the presented
Bayesian and least squares algorithms cope with imprecise initial parameters, Ramsey
experiments are performed on the (−1/2, −1/2) transition of two trapped ions with
a waiting time τ = 70.2 µs, a phase o�set ϕ = 0 between the π/2-pulses, and a π-
time of τπ = 30.9 µs. The resulting Ramsey spectrum is shown in �gure 4.3.2 and
spans over a frequency range of about ∼ 400 kHz with every mean excitation data
point being the result of nexp = 100 Ramsey experiments. The data is then �tted
by a least squares algorithm using a Levenberg-Marquardt minimization algorithm,
as well as by an algorithm using Bayesian inference as described in section 4.2. For
the least squares algorithm, an initial guess for the center of the spectrum has to be
chosen. In �gure 4.3.2, this initial guess is 44.2 kHz detuned from the (−1/2, −1/2)
transition frequency. Similarly, the Bayesian algorithm's prior distribution is initialized
with a Gaussian distribution that is centered at the same initial guess, has a standard
deviation of 100 kHz, and is cut-o� at the maximal detuning that is covered by the
data. One hundred �ts are then performed with di�erent, normally distributed, initial
guesses. The Gaussian distribution of the initial guesses is centered at the true value.
In �gure 4.3.3 the di�erences between true value and the corresponding �t results are
plotted against the di�erence between the true value and the corresponding initial
guess. As can be seen, the �t results for of the Bayesian algorithm do not show
any remarkable dependence on the initial guesses. For any used initial parameter,
the di�erence between the �t result and the true value is below 0.2 kHz, being one

36



CHAPTER 4. BAYESIAN INFERENCE 4.3. BAYES. VS. LEAST SQ.

(a) (b)

Figure 4.3.2: Ramsey spectrum with corresponding (a) Bayesian and (b) least squares
�ts. The mean excitation data points (black) resulting from the Ramsey experiments
described in section 4.3 are plotted against the corresponding detuning between the
light �eld and the (−1/2, −1/2) transition frequency. The spectrum is �tted using
an algorithm based on Bayesian inference (red) as well as a least squares algorithm
utilizing a Levenberg-Marquardt minimization algorithm (blue). The initial guess for
the center of the spectrum is chosen as 44.2 kHz for both algorithms.

order of magnitude lower than the di�erence between two neighboring data points of
the spectrum. The least squares algorithm's results show a linear dependence on the
initial guesses. The step-like substructure is an indication of the algorithm converging
to local minima, resulting in fringe hopping as indicated in �gure 4.3.2. In order
to correctly estimate the (−1/2, −1/2) transition frequency in the given example, the
initial parameters of the used least squares algorithm have to be less than 6 kHz detuned
from the true value, which corresponds to half the period of the Ramsey fringes.

Concluding this chapter, a least squares algorithm implies normally distributed data
points, and depending on the chosen minimization algorithm is vulnerable to imprecise
initial parameters, leading e.g. to fringe hopping as described above. The major
advantages of least squares algorithms are that they are typically computationally faster
than their Bayesian equivalent. Furthermore, least squares algorithms are already
included in most data analysis tools, making them well suited for quick data analysis
within the framework of choice. When using least squares algorithms however, one has
to be aware of their limits and assumptions.

Bayesian algorithms on the other hand are able to handle non-Gaussian distributed
data and can directly incorporate complex models like the Ramsey excitation probabil-
ity as given with equation (2.5.3). Furthermore, Bayesian algorithms are typically less
prone to converging to local minima, as long as the speci�ed model and prior distribu-
tion are describing the data su�ciently well. Using a Bayesian algorithm is a straight
forward solution for the problems described above. Tailoring a least squares algorithm
to solve these problems is not only involved, but also restricts the algorithm to this
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Figure 4.3.3: Dependence of Bayesian and least squares �t results on initial parameters.
As described in section 4.3, the di�erence between true and estimated values is plotted
against the di�erence between true value and corresponding initial guess used by a
least squares algorithm (blue) and a Bayesian algorithm (red). The corresponding
standard deviations from the respective �tting algorithms are too small to be displayed
as errorbars.

purpose only. Implementing a Bayesian framework on the other hand, also opens the
door for other Bayesian parameter estimation routines, which can be used to automate
other aspects of the given quantum computer experiment, like measurements of the
Rabi frequency or optimization tasks for quantum gate operations.
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Chapter 5

Experimental Results

The experiments that are conducted within this thesis revolve around automating
frequency stabilizing tasks as introduced in section 3.1. Thus, a computer program
is written that periodically performs spectroscopic measurements on the trapped ions,
analyzes the results and calculates the drifts and o�sets between selected transition
frequencies of the ions and the applied light �eld in order to stabilize the latter to said
transitions.

Two spectroscopic techniques have been implemented for this computer program.
In the initialization mode, Rabi spectroscopy is performed and the resulting data is an-
alyzed using a least squares �tting algorithm, as discussed in the sections 3.2 and 4.1.
The second mode is optimized for accuracy and speed, using the adaptive Bayesian
Ramsey spectroscopy algorithm discussed in section 4.2. The initialization require-
ments and measurement uncertainties are discussed within this chapter.

Over the course of more than six months, the drifts and o�sets between the Zeeman
sub-level transitions introduced in section 2.2 and the light �eld generated by a laser
system operating at a wavelength of 729 nm have been measured and compensated.
Concluding this chapter, the short and long term behavior of these drifts and o�sets is
analyzed.

5.1 Rabi Spectroscopy

In its initialization mode, the computer program performs Rabi spectroscopy on two of
the Zeeman sub-level transitions shown in �gure 2.2.2. As discussed in chapter 3, the
default transitions to perform spectroscopy on are (−1/2, −1/2) and (−1/2, −5/2).
The spectroscopic measurements result in mean excitation data points as shown in �g-
ure 3.2.2, that are then analyzed using a least squares algorithm utilizing the Levenberg-
Marquardt minimization algorithm and a Lorentzian model function. The �t results
are then used to solve the system of equations (3.1.4) for actual values of the center
frequency and magnetic �eld strength, which enables the compensation of drifts and
o�sets as discussed in section 3.1.

The main principles of Rabi spectroscopy are already discussed in section 3.2. In
practice, the main use case for the Rabi spectroscopy mode is to infer the transition
frequencies to an accuracy that is su�cient to initialize the adaptive Bayesian Ramsey
spectroscopy algorithm discussed in section 4.2. Therefore, the initialization has to
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cope with limited prior knowledge on the transition frequencies, preferably reducing
the uncertainty of all transition frequencies to a few Kilohertz.

Initialization

As described in section 3.2, approximate knowledge of the transition frequencies is
required when performing Rabi spectroscopy on a single transition, in order to ensure
that said transition frequencies are well within the corresponding sampled frequency
ranges. Therefore, when initializing the Rabi spectroscopy mode, it is advisable to
measure a broad spectrum as shown in �gure 3.2.1 and to assign the local maxima to
the corresponding transitions.

If the latest measurement of the transition frequencies is a few days old, the latest
estimated value of the drift between the transition frequencies and the laser system
can be used to estimate the required frequency range that has to be sampled. Giving a
short example, if the latest spectroscopic data is two days old and the latest estimate
of the drift is 0.4Hz/s, the transition frequencies are detuned by approximately 69 kHz,
assuming the drift is constant. Therefore, sampling a frequency range of approximately
200 kHz with a step size of 1 kHz should be su�cient to relocate the corresponding
transition frequency.

With approximate knowledge of the transition frequencies available, Rabi spec-
troscopy can be performed on single transitions as described in section 3.2, resulting
in narrow spectra as shown in �gure 3.2.2.

Uncertainty Estimation

In �gure 3.2.1 a mean excitation spectrum over a 48MHz frequency range in steps of
2 kHz, taken from two trapped 40Ca+ ions, can be found. The data shown in �gure 3.2.1
has been measured, while the frequency of the corresponding laser system has been
stabilized using Rabi spectroscopy as described in chapter 3. Every ten minutes, Rabi
spectroscopy is performed on the two trapped ions. Drifts and o�sets are compensated
for correspondingly.

By analyzing the data shown in �gure 3.2.1, the uncertainty of this continuous
calibration can be estimated. The frequencies of the maxima that are identi�ed as the
(−1/2, −1/2) and (−1/2, −5/2) transitions respectively, are thereby used to calculate
the other transition frequencies. The di�erences between the measured and calculated
frequencies are shown in �gure 5.1.1.

As the step size of the data in �gure 3.2.1 is 2 kHz and the di�erence of the measured
and calculated carrier transition frequencies is on that order as well, the uncertainty of
the Rabi spectroscopy mode's calibration can be assumed to be in the same order of
magnitude or less. This shows that it is possible to reduce the uncertainty of the carrier
transition frequencies to a few Kilohertz, which is su�cient to prepare the system for
the adaptive Bayesian Ramsey spectroscopy algorithm.
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Figure 5.1.1: Di�erences between measured and calculated carrier transition frequen-
cies. The data of the spectrum shown in �gure 3.2.1 is analyzed, using the frequen-
cies of the maxima identi�ed as (−1/2, −1/2) and (−1/2, −5/2) transition and equa-
tion (3.1.4), to calculate the other transition frequencies.

5.2 Adaptive Bayesian Ramsey Spectroscopy

The adaptive Bayesian Ramsey spectroscopy mode uses the algorithm introduced in
section 4.2 to continuously calibrate the experiment, while being both faster and more
accurate than the Rabi spectroscopy mode. The price to be paid for this, is a more
complex initialization procedure, that requires prior knowledge of the transition fre-
quencies to an accuracy on the order of a few Kilohertz, as well as prior knowledge of
additional experimental parameters like e.g. the Rabi frequency.

A proof of principle experiment, showing that the adaptive Bayesian Ramsey spec-
troscopy algorithm can be used to deduce the detuning between transition frequency
and light �eld is discussed in section 4.2, and its results are illustrated in �gure 4.2.6.
Thereby, the algorithm is shown to correctly deduce a detuning of 2 kHz. The discus-
sion of this section focuses on the algorithm's capability to stabilize the laser frequency
over multiple hours.

Initialization

As can be seen in �gure 4.2.5 showing the state diagram describing this mode's algo-
rithm, there are a few parameters to consider in the initialization:

� the number of ions

� the desired number of cycles after which the algorithm terminates

� the number of experiments that should be conducted per cycle
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� the frequency range within which the respective transition frequency is expected
to be

� the number of samples that are drawn from the frequency range which is based
on the available prior knowledge of the transition frequency and the desired res-
olution

� the phase coherence time T2

� and the π/2-time τπ/2

The number of ions loaded in the trap is known from �uorescence measurements as
shown in �gure 2.1.3. The number of experiments per cycle follows from the number of
ions as discussed in section 4.2 and indicates how many bits of information are gathered
before the data is analyzed and the experimental parameters are adapted in the next
cycle. Depending on the number of experiments per cycle, the number of cycles has to
be speci�ed, to ensure that the algorithm converges.

The frequency range has to be chosen large enough to include the transition fre-
quency. With increasing the number of samples that are drawn from the frequency
range, the computational time required for Bayesian parameter estimation increases.
Therefore, the choice of the frequency range and number of samples is a trade-o� be-
tween available knowledge and computational time. Furthermore, due to limitations
in the control hardware, the minimal waiting time between π/2-pulses can be up to a
few tens of microseconds. This leads to a reduced robustness against fringe hopping
for large frequency ranges on the order of tens of Kilohertz.

The phase coherence time T2 has to be measured by performing Ramsey experiments
with increasing waiting times. In contrast to the other parameters, T2 is constant
over days and therefore does not have to be re-calibrated often. Furthermore, as the
used waiting times are typically at least one order of magnitude smaller than T2, only
approximate knowledge on T2 is required.

The π/2-time τπ/2 has to be measured by performing Rabi oscillations, followed by
sinusoidal least squares �ts of the data. This measurement requires knowledge of the
transition frequencies. Therefore, an initial stabilization of the light �eld frequency by
the Rabi spectroscopy mode is required.

Uncertainty Estimation

In order to estimate how well the adaptive Bayesian Ramsey spectroscopy algorithm
is able to stabilize the frequency of a laser system to a transition frequency, Ram-
sey experiments are performed while simultaneously stabilizing the light �eld's fre-
quency with the algorithm. The Ramsey experiments thereby periodically probe the
(−1/2, −1/2) and (−1/2, −5/2) transition frequencies for over ∼ 5.5 h, using a wait-
ing time of τ = 0.5ms, and a phase o�set ϕ = 90◦ between the π/2-pulses. The idea
is that if the light �eld frequency is perfectly stabilized to the respective transition
frequency, a mean excitation of 0.5 is measured when accumulating the data of one
hundred successive Ramsey experiments. Furthermore, any deviation from this value
of 0.5 can be translated to an imperfect frequency tracking.
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(a) (b)

Figure 5.2.1: Di�erence between the expected and measured (−1/2, −1/2) (blue) and
(−1/2, −5/2) (red) transition frequencies. (a) The shown data is a result from cal-
culating mean excitation values after accumulating one hundred successive Ramsey
experiments. (b) A histogram of the data shown in (a).

One hundred Ramsey experiments are performed every second, alternating between
the transitions (−1/2, −1/2) and (−1/2, −5/2) after every 104 experiments. The re-
sults of the measured detunings are shown in �gure 5.2.1. Every two minutes, these
experiments are interrupted by the adaptive Bayesian Ramsey spectroscopy algorithm,
that is initialized with the parameters shown in table 5.1. As discussed in section 3.1,
the light �eld frequency is stabilized by estimating the o�sets and drift rates of the
center frequency νcenter and magnetic �eld strength B, using a linear least squares �t of
spectroscopic measurements. A look-back time tLB de�nes which data is recent enough
to perform the linear �ts estimating these parameters. The chosen look-back time
for the center frequency is tLB, ν = 2 h and for the magnetic �eld tLB, B = 1 h. The
reasoning for the choice of these look-back times follows in the next section.

Table 5.1: Initial parameters of the adaptive Bayesian Ramsey spectroscopy algorithm.
A description of each parameter can be found in section 4.2.

Parameter (−1/2, −1/2) (−1/2, −5/2)

ncycles 10 10
nexp 20 20
nions 2 2
τπ 49.5 µs 76 µs
T2 4ms 4ms

∆max 5 kHz 5 kHz
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Figure 5.2.1 shows a mean detuning of ∆−1/2 = (32± 36) Hz for the (−1/2, −1/2)
transition and ∆−5/2 = (18± 41) Hz for (−1/2, −5/2). A signi�cant contribution of
the uncertainties is a variation of the estimated drift rates of the center frequency ν̇center
and magnetic �eld strength Ḃ on time scales comparable to the look-back times tLB, ν
and tLB, B. As shown in �gure 5.2.2, the corresponding measurements of νcenter and
B show a linear trend, however deviate up to ±20Hz and ±0.2mGs from a linear �t
respectively. Converting the latter value into a frequency using equation (3.1.4), leads
to a detuning of about ±11Hz for the (−1/2, −1/2) transition, as well as ±56Hz for
the (−1/2, −5/2) transition. These deviations lead to estimation errors of the o�sets
and drift rates, partially explaining the o�sets and standard deviations of ∆−1/2 and
∆−5/2.

As indicated in �gure 5.2.2 a higher order polynomial �t (e.g. third order as de-
picted) could reduce these residuals to below ±10Hz for the center frequency and to
about ±0.1mGs for the magnetic �eld strength. Therefore, one can argue that more
complex models of νcenter (t) and B (t) are possible future extensions of this work. How-
ever, when increasing the complexity of the model, interpreting and monitoring the �t
parameters becomes signi�cantly more challenging. Thus, further investigation on the
sources of the respective variations is necessary before extending the model to higher
orders.

In order to quantify the achieved stability of the light �eld with respect to the
(−1/2, −1/2) and (−1/2, −5/2) transition frequencies, the Allan deviation can be cal-
culated from the data shown in �gure 5.2.1 as discussed in section 3.1. As the data is
split in intervals of one hundred measurements and the introduced Allan deviation re-
quires constant time steps between data points, the detuning values of the �rst interval
are used for the calculation of the Allan deviation with short averaging times < 100 s,
and mean detuning values of the intervals are used for longer averaging times. The re-
sulting Allan deviation is shown in �gure 5.2.3 and is to be interpreted with respect to
the (−1/2, −1/2) and (−1/2, −5/2) transition frequencies 411 042 153 376 142 (39) Hz
and 411 042 012 176 088 (196) Hz respectively. The transition frequencies are calculated
using equation (3.1.3) with the center frequency νcenter = 411 042 129 776 401.7 (1.1) Hz
[59] and the mean magnetic �eld B = 4.20351 (7) Gs during the experiment.

Summarizing the results, it is possible to stabilize the frequency of a laser system
using the adaptive Bayesian Ramsey spectroscopy algorithm, such that the di�erence
between said frequency and the corresponding transition frequency is on the order
of a few tens of Hertz. This leads to minimal Allan deviations (see �gure 5.2.3) of
1.2 (2) · 10−14 with an averaging time of 100 s for the (−1/2, −1/2) transition and
7 (1) · 10−15 with an averaging time of 96 s for the (−1/2, −5/2) transition.1 The
increasing Allan deviations for larger averaging times are a result of the center frequency
and magnetic �eld strength deviating from a linear trend as shown in �gure 5.2.2. The
choice of the look-back times tLB, ν and tLB, B such as the approximation of the center
frequency and magnetic �eld strength varying linearly within the corresponding look-
back times are thereby crucial parameters and assumptions.

1The corresponding minimal Allan deviations with respect to the (−1/2, −1/2) and (−1/2, −5/2)
transition frequencies are 4.9 (8) Hz and 2.9 (4) Hz.
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(a)

(b)

(c)

(d)

Figure 5.2.2: Measured center frequency νcenter and magnetic �eld strength B during
the experiments resulting in the data shown in �gure 5.2.1. (a) The di�erences of
the measured values and the �rst measurement of the center frequency (black) are
plotted against the time since said �rst measurement. A linear regression (red) is
used to determine estimates for the drift and o�set that are compensated. A third
order polynomial �t (blue) is given for comparison. (b) The linear regression (red)
as well as the polynomial �t are subtracted from the values to visualize how much
the measured values deviate from a linear trend. (c) Similar to (a) the di�erences of
the measured magnetic �eld strength values and the mean magnetic �eld strength B =
4.20351 (7) Gs (black) are plotted against time and �tted (red and blue). (d) Equivalent
to (b).
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Figure 5.2.3: Allan deviation of the stabilized laser system with respect to the
(−1/2, −1/2) (blue) and (−1/2, −5/2) (red) transition frequencies. The data points
with averaging times below 100 s are calculated from the �rst interval of the corre-
sponding transition's detuning in �gure 5.2.1. The data points with larger averaging
times are calculated from the mean detuning of each interval.

5.3 Variation of Drifts

The choice of the look-back times tLB, ν and tLB, B is a crucial factor for the uncertainty
of the frequency stabilization. Within this section, limits for the time span over which
the drifts ν̇center and Ḃ of the center frequency νcenter and the magnetic �eld B are
constant are worked out by analyzing data of νcenter and B, as tLB, ν and tLB, B depend
on the variation of ν̇center and Ḃ. First, short-term variations on the order of hours are
discussed, �nding the limits of the look-back times. Long-term variations in the order
of months are discussed afterwards.

Short-Term Variations

Figure 5.3.1 shows measured values for νcenter and B during a calibration with the
adaptive Bayesian Ramsey spectroscopy mode, performing spectroscopic measurements
every 2.5 minutes. Within the displayed period of ∼ 4.5 hours, νcenter is detuned by
about 400Hz and shows a linear trend. In order to characterize this linear trend
with respect to a look-back time tLB, ν of one hour, the data is split into overlapping
intervals with each interval spanning over one hour. Consecutively, a linear �t is
performed within each interval. The mean deviation of each interval's data points
from the corresponding linear �t is displayed in �gure 5.3.2, and �uctuates between
5.5Hz and 21.5Hz. The deviations from the linear trend can be a result of residual
temperature �uctuations, and vibrations. Therefore, depending on the desired accuracy
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(a)

(b)

Figure 5.3.1: Short-term variations of the center frequency νcenter and magnetic �eld
strength B over the course of several hours. (a) The detuning between the �rst mea-
surement of νcenter at time t = 0 and the subsequent ones is plotted against the time t.
The data shows a linear trend except for deviations in the order of a few tens of Hertz.
(b) The di�erence between the measured magnetic �eld strength B (t) at a given time
t and the mean value B of B within the given interval is plotted against t. Variations
of Ḃ happen drastically and on time scales below an hour.

Figure 5.3.2: Mean deviation from a linear trend within one hour intervals against the
starting time of each interval.
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and the time between spectroscopic updates, limiting tLB, ν to be in the order of one
hour is reasonable.

As shown in �gure 5.3.1b, the measured magnetic �eld strength values do not show
a linear trend over the course of the observed time scales, but �uctuate around a mean
value of B = 4.1769 (8) Gs. Using equation (3.1.4), the maximal measured deviation
from B of about 1.5Gs translates to a −4.2 kHz Zeeman shift of the (−1/2, −5/2)
transition frequency, which is two orders of magnitude larger than the deviations of
the center frequency from its linear trend. Possible reasons for the variations of the
magnetic �eld strength at the position of the ions are �uctuations in the current of the
magnetic �eld coils generating the desired Zeeman splitting of the 42S1/2 and 32D5/2

states, magnetic �elds generated by neighboring experiments, or magnetic �elds gen-
erated by other electronics within the laboratory. As the look-back time tLB, B has to
be well below the time scales of these �uctuations, it can be necessary to limit tLB, B
to be in the order of ten minutes, depending on the present conditions.

Long-Term Variations

Measuring νcenter and B over the course of about 200 days, results in the graphs depicted
in �gure 5.3.3, showing similar features to the short-term variations discussed above.
Again, a linear trend of νcenter is observable, leading to a constant drift of ν̇center =
−19.485(5)mHz/s . The outliers in �gure 5.3.3a can be associated with days where
work has been performed on the laser system or the experimental setup. The measured
constant drift of −19.485(5)mHz/s is about one order of magnitude lower than the
previously mentioned drift of 370mHz/s [42] that has been measured on a similar
system.

Figure 5.3.3b shows that B is �uctuating on long time scales and does not show
any obvious regularities or trends. As discussed above, these �uctuations can have
di�erent reasons, magnitudes and time scales, and are therefore not feasibly predictable.
However, the o�sets and drifts can be compensated for within the typical time scales
of an experiment in the order of hours, as shown in section 5.2.
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(a)

(b)

Figure 5.3.3: Long-term variations of the center frequency νcenter and magnetic �eld
strength B over the course of six months. (a) The detuning between the measured
values for νcenter and the laser system operating at a wavelength of 729 nm is plotted
against the corresponding date of measurement. A linear trend is observable, with
outliers being coincident with days where work has been performed on the experimental
setup. (b) The measured values of B plotted against the corresponding measurement
date do not show any obvious trends or regularities.

49



5.3. VARIATION OF DRIFTS CHAPTER 5. EXP. RESULTS

50



Chapter 6

Simpli�ed Quantum Computer

Control

Executing quantum algorithms on a quantum computer, requires some level of automa-
tion to focus on the quantum algorithm, instead of e.g. continuous re-calibration of
the system. Furthermore, it is necessary to have a quantum programming language
available. Such a language needs to translate high-level operations into laser pulses
with individual frequencies, phases, durations and intensities. Here, a quantum com-
puter control framework is presented, in which sub-routines of the quantum computer
experiment can be automated, and standardized pulse description languages can be
de�ned. The software design of this framework has to be modular to be agile with
respect to future requirements, and to allow for automation of the individual modules.

The experiment control framework is given by the Quantum Control Program
(QCP). The QCP is a computer program written in the Python programming language
that controls all the hardware required for the given experiment. It is noteworthy that
the program, automating the continuous re-calibration of the laser system operating
at a wavelength of 729 nm, is included in the QCP, can however also be used inde-
pendently with reasonably little e�ort. Two quantum algorithm description languages
are discussed, both being implemented in the QCP, evaluating their advantages and
disadvantages for specifying and executing quantum algorithms. Last but not least the
QCP's feature of allowing remote control of the quantum computer is discussed with
the example of the Bernstein-Vazirani algorithm [60] which has been executed on the
quantum computer from a remote location [61].

6.1 Quantum Control Program

The Quantum Control Program (QCP) is a modular program, designed mostly by
Philipp Schindler and Michael Meth. The contributions of this thesis to the QCP
are the implementation of the frequency stabilizing program as discussed before, as
well as the integration of two quantum algorithm description languages that will be
discussed below. The QCP is written in the programming language Python1, and
controls all hardware required for the given quantum computer experiment. The main

1version 3.7. as of writing this thesis
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Figure 6.1.1: Experiment control system. The Quantum Control Program (QCP)
controls the MActION system, which in turn sends electrical signals to the individual
parts of the experiment. The ion �uorescence data taken by the PMT and the EMCCD
camera is interpreted by the QCP.

parts of the experimental control system consist of the ion trap quantum computer,
with all associated laser systems as elaborated on in chapter 2, a control hardware
called MActION system [62], generating the electrical pulses to trigger and tune the
individual parts of the experiment, and a computer running the QCP, controlling the
MActION system and interpreting the ion �uorescence data that is returned by the
EMCCD camera or the photo multiplier tube (PMT). A schematic depiction of this
setup can be found in �gure 6.1.1. The MActION system, being programmed in the
C/C++ programming language, is a controller that is developed by the Institut für
Quantenelektronik of the ETH Zürich and generates phase coherent RF signals via
direct digital synthesis (DDS), as well as digital outputs via transistor-transistor logic
(TTL). A camera as well as a PMT return the results of �uorescence measurements to
the computer running the QCP.

The modular software design of the QCP makes it possible to exchange every hard-
and software part of this setup or to extend it with new modules with comparably
little e�ort. A screenshot of the QCP's graphical user interface (GUI) can be found in
�gure 6.1.2. This modular design also makes it possible to write automation modules.
One of these automation modules is the frequency stabilizing program, being a central
part of this thesis. From within the QCP, such as from its GUI, it is possible to set the
initial parameters of the frequency stabilizing program, and to observe the measured
spectroscopic updates and derived drifts. It is also possible to tune the look-back
times tLB, ν and tLB, B, such as the time between spectroscopic updates, as well as to
manually remove outliers of the measured center frequency or magnetic �eld strength
values. Other automation modules include:

� Doppler cooling

� Rabi frequency measurements

� Ion temperature measurements

� Complex quantum state generation and subsequent experiments.
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Figure 6.1.2: Screenshot of the QCP's GUI. The desired information can be displayed,
while experimental parameters like i.e. the frequency of a used laser can be set. Further-
more, experiments can be conducted by starting user-de�ned sequences or by measuring
mean excitations while scanning a parameter over a desired range.

Most of these modules have in common, that from the perspective of a user, only few
button clicks are required to tune and scan parameters. For example as shown in
�gure 6.1.3, when submitting a parameter scan of the duration of a light pulse with
a given frequency and intensity, the measured mean excitation that is plotted by the
QCP's GUI represents Rabi oscillations of the trapped ions, which can then be analyzed
by a tool of choice.
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(a)

(b)

Figure 6.1.3: Screenshots of the QCP's GUI performing Rabi oscillations. (a) The
desired parameters can be set via the nummerical input �elds on the left. A parameter
can be scanned using the �Edit Scan� and �Submit Scan� buttons. (b) The measurement
results of the submitted parameter scan are then plotted as mean excitation against
the parameter value. In the given case, Rabi oscillations are shown with the scanned
parameter being the light pulse duration in microseconds.

6.2 Quantum Programming Languages

As a classical computer is used to control the experimental parameters and to interpret
the results, it is necessary to describe quantum algorithms as well as their results in
a classical programming language, to perform them on the given quantum computer
experiment. Furthermore, it is desired that an end-user does not have to care about
the particular architecture of a quantum computer or the actual implementation of
the quantum algorithm. Such a level of abstraction can only be achieved, if all layers
between the actual quantum part of the quantum computer and the quantum algorithm
are identi�ed. In �gure 6.2.1, these layers are depicted as introduced in reference [63].
In order to identify the terms introduced by the authors of reference [63]:

� The quantum chip corresponds to the qubits encoded in optical transitions of the
ions inside a linear ion crystal of the experimental setup.

� The quantum-classical interface is given by the lasers controlling the state of the
qubits, and the camera and PMT measuring it after an experiment.

� The quantum execution (QEX) block corresponds to the generation of phase
coherent pulses.
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Figure 6.2.1: Layers of a quantum computer. Inspired by �gure 3 of reference [63],
the layers between the de�nition of a quantum algorithm (top) and the physical im-
plementation on a corresponding quantum chip (bottom) are displayed. A detailed
description of these layers can be found in section 6.2.

� The quantum error correction (QEC) block is not relevant for the current sys-
tem, however theoretically takes methods into account to protect the encoded
information from the environment.

� The quantum instruction set architecture (QISA) describes the set of quantum
gate operations that can be performed on the qubits.

� The layer above the QISA is the interface to the software describing the quan-
tum algorithm, by converting the speci�ed quantum gates into the ones that are
exposed by the QISA.

� The two uppermost layers show the quantum algorithm that should be executed,
as well as its description written in a given programming language.

There are many paradigms and languages in which quantum algorithms can be de-
scribed, like e.g. natural languages including formulas and mathematics. For a com-
puter however, natural languages are typically challenging to interpret, making the cre-
ation of a corresponding compiler infeasible. Therefore, it is desired to �nd a language
for which either such a compiler already exists or can be created, without increas-
ing the complexity of the quantum algorithm's description. In other words, both the
end-user and the computer have to be able to read the language and understand the
algorithm with reasonably little e�ort. Within the scope of this thesis, two quantum
algorithm description languages have been implemented and tested. Both languages,
the JavaScript Object Notation (JSON) based OpenPulse [64] developed by the Inter-
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national Business Machines Corporation (IBM), as well as the Python based Cirq [65]
developed by Google LLC are going to be elaborated on below.

OpenPulse

OpenPulse is a quantum algorithm description language developed by IBM. The JSON
format, a textual description of data as speci�ed by reference [66], is the basis of Open-
Pulse. Typically JSON objects are used to send data between processes or computers
and are often found in web-development, as the original idea of a JSON object is to be
the main communication format of the (web-)programming language JavaScript.

A JSON object is encased with curly brackets and contains so called key-value
pairs, where the key is used to label the data that is stored in the value. The key
and value are thereby separated by a colon, where the �rst entry is always the key.
Key-value pairs are separated from each other by commas. The key has to be a string,
indicated with double quotes, whereas the value can be of a di�erent data type, like i.e.
a number, or a list, the latter being encased with rectangular brackets. Furthermore,
it is possible to nest JSON objects, i.e. using a JSON object as a value. An exemplary
JSON object showing all aforementioned features can be found in listing 6.1.

OpenPulse uses the JSON format to de�ne sequences of quantum gates, as well
as their parameters. The compiler then sequentially reads the JSON objects that are
submitted and translates them into the corresponding set of quantum gates exposed by
the Quantum Instruction Set Architecture (QISA) as described above. An OpenPulse
description of a Ramsey sequence on two qubits can be found in listing 6.2. Thereby, the
header gives information about the experiment, in this case the name of the sequence,
and the instructions key labels the sequence of quantum gates, stored as a list of JSON
objects. The items of this list are sequentially interpreted by the compiler, and in this
case executed one after the other. Each of these quantum gate objects, has a name the
compiler can interpret and translate to quantum gates that are exposed by the QISA.
The qubits list then indicates on which qubits the operation has to be performed on,
and the params key speci�es the parameters for the corresponding operation. In the
case shown in listing 6.2, the instruction

4 {"name":"X", "qubits":[1,2], "params":[0.5]},

Listing 6.1: Example of the JSON format. A JSON object is encased with curly
brackets. The object's data is stored as key-value pairs. Nesting JSON objects is
possible.

1 {

2 "key_1":123.456,

3 "key_2":"value_2",

4 "key_3":["value_3 .1", "value_3 .2"],

5 "key_4":{

6 "key_5":"value_5"

7 }

8 }
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corresponds to a 90◦ rotation around the x-axis of the Bloch sphere of the qubits labeled
one and two, i.e. a π/2-pulse. The second instruction

5 {"name":"wait", "qubits":[], "params":[100]},

corresponds to a waiting time of τ = 100 µs, and the third one

6 {"name":"X", "qubits":[1,2], "params":[0.5]}

to a π/2-pulse again. As a remark, the example shown in listing 6.2 is a simpli�ed
OpenPulse sequence to explain its principle. For a thorough explanation of the whole
OpenPulse protocol, the reader is referred to [64].

The advantages and disadvantages of OpenPulse are inherently linked to the un-
derlying JSON format. On the one hand such textual data formats lead to a straight
forward implementation of an interpreter, by reading and executing the speci�ed in-
structions one after the other. Furthermore, the JSON format is well suited for commu-
nication between processors, as it has been developed with that intention. Therefore,
an OpenPulse �le can be sent from the QCP to the MActION system and be interpreted
by the latter, directly translating the instructions to RF signals.

Two major disadvantages of OpenPulse arise when thoroughly investigating its
speci�cations. As OpenPulse is developed with having quantum computers using su-
perconducting qubits in mind, the rigorous de�nition does not �t an ion trap quantum
computer architecture properly without adaptions. On the one hand, as JSON is a
description language and not a programming language, OpenPulse lacks some func-
tionality like i.e. scanning parameters in a straight forward manner, or de�ning global
parameters to make a quantum algorithm more readable. On the other hand, some
functionalities and parameters are exposed by OpenPulse that are cumbersome to im-
plement like e.g. the fact that OpenPulse requires the quantum computer to expose a
coupling map, de�ning which qubits can interact with each other, where in the given
architecture all qubits can be coupled with one another arbitrarily. Both these prob-
lems lead to a rather complex description of the desired quantum algorithm, where an
end-user has to have a thorough understanding of the actual implementation of the
corresponding quantum gates.

Listing 6.2: An OpenPulse Ramsey sequence. The header gives information of the
algorithm, while the instructions sequentially specify the quantum gates that have to
be performed.

1 {

2 "header": {"name":"Ramsey Sequence"},

3 "instructions": [

4 {"name":"X", "qubits":[1,2], "params":[0.5]},

5 {"name":"wait", "qubits":[], "params":[100]},

6 {"name":"X", "qubits":[1,2], "params":[0.5]}

7 ]

8 }
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Cirq

The quantum algorithm programming language Cirq, developed by Google LLC, is
based on the Python programming language, which is the same language in which the
QCP is written in. Cirq is a Python library that de�nes quantum gates in an object
oriented way. The user speci�es the desired number of qubits such as their architecture,
followed by the quantum gates that are needed for the quantum algorithm. Then a
circuit object is generated and �lled up with the gates corresponding to the desired
sequence. An example for a Ramsey sequence written in Cirq can be found in listing 6.3.
Similarly to the OpenPulse example shown in listing 6.2, the π/2-pulses

7 pi_half = cirq.X(qubits)**0.5

are speci�ed as 90◦ rotations around the x-axis of the Bloch sphere of the given qubits,
and

8 wait = cirq.WaitGate(cirq.Duration(micros=100))

de�nes a τ = 100 µs wait gate. After appending all gates of the quantum algorithm to
the circuit object, it is possible to either display the circuit graphically, or to send the
object to an interpreter that executes or simulates it.

Having Python as the basis for Cirq leads to many advantages such as a compar-
atively high readability of the algorithm, and the possibility to de�ne speci�c objects
in order to reuse them, as is done in listing 6.3 with the π/2-pulses. Furthermore,
it is possible to create loops, �lling the circuit object in an automated manner with
e.g. the same gates but di�erent parameters, e�ectively allowing a user to perform a
scan over some parameter. The created circuit object can then natively be interpreted
by the QCP as both are written in Python, or parsed into a text based language like
OpenPulse. A disadvantage of Cirq is, that it is still in development phase resulting in
unstable syntax.
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Listing 6.3: Example of a Cirq Ramsey sequence. The shown Python code snippet
imports the cirq library and de�nes the qubits and quantum gates. The circuit object
is then �lled with the respective quantum gates and can be sent to a compiler to be
executed.

1 import cirq

2

3 # define the qubits

4 qubits = [cirq.LineQubit(i) for i in range(2)]

5

6 # define all necessary gates

7 pi_half = cirq.X(qubits)**0.5

8 wait = cirq.WaitGate(cirq.Duration(micros=100))

9

10 # append the gates to a circuit object

11 circuit = cirq.Circuit ()

12 circuit.append(pi_half)

13 circuit.append(wait)

14 circuit.append(pi_half)

15

16 # the circuit object can then be sent to a compiler
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PInT and PySeq

Comparing OpenPulse and Cirq, the former has a rigorous de�nition that does not
perfectly �t ion trap quantum computer architectures and the latter is still in its
development phase. Combining the best of both worlds, it has been decided to use a
Python based quantum programming language as interface between the end-user and
the QCP, as well as a JSON based description language for the communication between
the QCP and the MActION system, with the latter interpreting the JSON objects and
executing them.

Using a JSON based language for the internal communication has the advantage
that the JSON objects can directly be translated into RF signals generating laser
pulses. The disadvantage of OpenPulse's rigorous de�nition not matching the given
architecture is circumvented by creating a custom description language that shares the
basic principles and concepts with OpenPulse. This language is called Pulse Instruction
Text (PInT) and is intended to simplify the internal communication between the QCP
and the MActION system. An exemplary PInT object can be found in listing 6.4.

The PInT uses the nesting features of JSON one level deeper than OpenPulse, by
describing the parameters more explicitly. Furthermore, �ags are added that can be
used to interpret the parameters. Both these features make the text longer, however
more readable from the perspective of a programmer debugging the communication
between the QCP and the MActION system. Thus, PInT can be seen as a simpli�ed
version of OpenPulse that has been adapted to ion trap experiments.

The parameters and �ags that are available depend on the desired quantum gate.
For a unitary rotation on the Bloch sphere, the duration of the corresponding light
pulse, the phase and the qubits that are addressed can be speci�ed. Moreover, it is
possible to address the two qubits with di�erent phases and to vary the frequency of
the light pulses. The latter is done by modifying so called carrier objects that are
speci�ed on the MActION system and referenced by the carrier_idx parameter. In
contrast to OpenPulse, where the whole protocol includes answers for requests, PInT
is only used to send instructions to the MActION system. The results are analyzed by
the QCP without any further programming overhead.

Increasing the readability for an end-user, a Python based programming language is
chosen as user interface. Avoiding the interface to break when Cirq is updated to newer
versions, the custom language Python-Sequence (PySeq) is created. PySeq thereby
uses similar syntax and principles as Cirq and is therefore not discussed in more detail.
An example for a Ramsey sequence de�ned via PySeq can be found in listing 6.5. A
parsing between the two languages of Cirq and PySeq is straight forward, allowing an
end-user to use either Cirq or PySeq to submit a quantum algorithm to the QCP and
receiving its results in the desired format. Furthermore, a parser between OpenPulse
and PySeq has been developed, allowing for some support of OpenPulse as quantum
algorithm description language as well. All in all, the implementation of PInT and
PySeq pro�ts from the advantages of OpenPulse and Cirq, while circumventing some
of their disadvantages, having a high readability when de�ning quantum algorithms,
while maintaining a straight forward way to implement an interpreter that executes
the quantum gates the quantum algorithm consists of.
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Listing 6.4: A PInT Ramsey sequence. The PInT is based on OpenPulse, however uses
a more explicit description of the parameters, while removing overhead by reducing the
overall protocol.

1 {

2 "header": {"name":"Ramsey Sequence"},

3 "instructions": [

4 {"name":"U",

5 "parameters":{

6 "carrier_idx":1,

7 "duration":0.5,

8 "qubits":[1,2],

9 "phase":0.0,

10 "addr_phases":[]

11 },

12 "flags":{

13 "is_global":false ,

14 "is_time_pi":true

15 }

16 },

17 {"name":"wait",

18 "parameters":{

19 "duration":100,

20 },

21 "flags":{

22 "is_global":true ,

23 "is_time_pi":false

24 }

25 },

26 {"name":"U",

27 "parameters":{

28 "carrier_idx":1,

29 "duration":0.5,

30 "qubits":[1,2],

31 "phase":0.0,

32 "addr_phases":[]

33 },

34 "flags":{

35 "is_global":false ,

36 "is_time_pi":true

37 }

38 },

39 ]

40 }

61



6.2. Q. PROG. LANGUAGES CHAPTER 6. Q.C. CONTROL

Listing 6.5: Example of a PySeq Ramsey sequence. The shown Python code snippet
is the PySeq equivalent of the Cirq code shown in listing 6.3.

1 import pyseq

2

3 # define the qubits

4 qubits = range(2)

5

6 # define all necessary gates

7 pi_half = ResonantOp(phi=0, theta=0.5)

8 wait = WaitOp(100)

9

10 # append the gates to a list

11 seq_list = []

12 seq_list.append(pi_half)

13 seq_list.append(wait)

14 seq_list.append(pi_half)

15 qseq = QSequence(seq_list)

16

17 # the sequence can then be sent to a compiler

18 rs = RunSequence ([qseq])
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6.3 Remote Access

Representational State Transfer (REST) application programming interfaces (APIs)
are a standardized way for web services to allow users the access and manipulation
of data, and therefore build the backbone of the internet. As quantum algorithms
can be submitted to the QCP using the description languages described in section 6.2,
a REST-API is implemented, allowing the submission of quantum algorithms from
remote locations [61]. This has the major bene�ts of simplifying cooperations with
collaborators all over the world, as well as the ability to o�er the computation of
quantum algorithms on the given quantum computer as a service. Without going
into detail, a web service that implements a REST-API o�ers a standardized interface
to submit commands and receive responses. Within the implemented interface it is
possible to submit quantum algorithms to the QCP using the quantum algorithm
description language Cirq. In order to ensure security, i.e. preventing unauthorized
access to the QCP, the OAuth2.0 protocol [67, 68] is used. Within this protocol, the
web service implementing the QCP's REST-API redirects a user to a server, where the
user has to log in with their account and grant the application access to some personal
data like i.e. their email address. An access token is then sent to the application with
which the user information can be accessed by the application. In the case of the
QCP's web service, a user has to submit a valid access token together with the desired
quantum algorithm. If the web service can access the required personal data of the user,
and the user is allowed to run quantum algorithms, as speci�ed by the QCP's private
database, the submission is accepted and the quantum algorithm is executed. Using
this protocol as authentication has the major advantage of outsourcing most security
related issues to large companies like i.e. Google LLC, while still having control over
which accounts are granted or denied access to the quantum computer.

The proof of principle experiment referred to by reference [61], is the remote ex-
ecution of the Bernstein-Vazirani quantum algorithm [60], utilizing the implemented
REST-API. The quantum algorithm is implemented in Cirq according to the descrip-
tion in section 6.2 and is equivalent to the circuit speci�ed in reference [69]. Code snip-
pets describing the submission of the quantum algorithm can be found in listing 6.6.
First, the circuit has to be speci�ed and parsed into a JSON format, to simplify the
actual submission of the circuit. Then the user has to send the circuit together with
a valid OAuth2.0 access token to the Uniform Resource Locator (URL) of the QCP's
web service, using the REST-API request put. As an answer of this request, the user
obtains a JSON object containing information on the submitted quantum algorithm,
such as its ID or its status. The status of the submission thereby tells the user if the
processes is waiting to be executed (i.e. if it is queued), has been aborted, has failed, or
if it has �nished successfully. With subsequent put requests, this status can be queried,
and as soon as there is information available, the user obtains said information with
the corresponding JSON object.
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Listing 6.6: Code snippets describing the remote submission of quantum algorithms.
The shown code gives an overview of the remote access protocol, omitting some details
using ellipses (...) instead. A description of the protocol can be found in section 6.3

1 import cirq

2 import json

3 from requests import put

4

5 # define the Bernstein -Vazirani circuit as described in

6 # previous examples

7 circuit = cirq.Circuit ()

8 circuit.append ([...])

9

10 # parse the circuit to a JSON format

11 circuit_json = json.dumps (...)

12

13 # send the circuit to the web service

14 access_token = "insert -oauth2.0-access -token -here"

15 data = put('http ://URL -of -web -service ',

16 data={'access_token ':access_token ,

17 'data':circuit_json ,

18 ...}).json()

19

20 # query the status to receive the result

21 while data['status '] is "queued":

22 data = put('http ://URL -of -web -service ',

23 data={'access_token ':access_token ,

24 'id':data['id']}).json()

25

26 # print the result

27 print(data)
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Summary and Outlook

Within this thesis, a program has been implemented that stabilizes the frequency of
the laser system used for qubit operations in an automated manner. The program
compensates for drifts and o�sets resulting from changes to the length of the cavity
the laser is stabilized to, as well as from variations of the magnetic �eld at the position
of the trapped ions. The program can be used in either of two modes. The initial
mode uses Rabi spectroscopy with a subsequent least squares algorithm analyzing the
data. The second mode, being optimized for a continuous re-calibration of the system,
and for increased accuracy and stability, utilizes Ramsey spectroscopy as well as an
adaptive Bayesian algorithm for the subsequent data analysis.

It is shown that by using said program in its initial mode the uncertainty of a tran-
sition frequency can be reduced to a few Kilohertz. The resulting uncertainty is shown
to be small enough to initialize the adaptive Bayesian Ramsey spectroscopy mode,
which can then be used to tune the laser system more precisely. The main advantages
of the Rabi spectroscopy mode are its ability to cope with limited knowledge, as well
as its straight forward initialization. The main disadvantage is the time it takes for
the Rabi spectroscopy mode to gather enough data required for a con�dent analysis,
reducing the duty cycle of the quantum computer experiment.

The adaptive Bayesian Ramsey spectroscopy mode of the frequency stabilizing pro-
gram uses Bayesian inference to analyze the results of Ramsey experiments as well as to
adaptively calculate the parameters for the most informative experiments. This simul-
taneously increases the accuracy of the spectroscopic results while reducing the number
of measurements required for the data analysis. Spectroscopic updates conducted by
the frequency stabilizing program in its adaptive Bayesian Ramsey spectroscopy mode
thereby take a few seconds to be completed, allowing the system to be continuously
re-calibrated without leading to a signi�cant reduction of the quantum computer ex-
periment's duty cycle. The uncertainty resulting from a frequency stabilization by the
adaptive Bayesian Ramsey spectroscopy mode is estimated to be in the order of a few
tens of Hertz. The stability of the laser system calibrated by the adaptive Bayesian
Ramsey spectroscopy algorithm reaches a minimal Allan deviation of 7·10−15 for an av-
eraging time of 96 s. This corresponds to an Allan deviation of 2.9 (4) Hz with respect
to the (−1/2, −5/2) transition frequency. A crucial factor for the stability is given by
the linear regression predicting the current values of the center frequency νcenter and
the magnetic �eld strength B, neglecting short-term variations of the corresponding
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drifts ν̇center and Ḃ. Tuneable look-back times tLB, ν and tLB, B have been introduced to
counter this problem. The choice of the look-back times depends on the given condi-
tions in the laboratory, with the center frequency typically showing linear trends over
the time scale of hours and the magnetic �eld strength �uctuating irregularly on these
timescales. A possible future extension of this work is given by further investigating
these deviations from a linear trend in order to utilize higher order model functions
that predict the current values of νcenter and B.

In order to implement the adaptive Bayesian Ramsey spectroscopy mode of the
frequency stabilizing program, a Bayesian framework, as well as quantum algorithm
description languages have been implemented. The latter being intended to allow a
straight forward description of the Ramsey experiments, which is necessary to facilitate
a low-key communication between the available soft- and hardware, while maintaining
human readability. With the introduction of quantum algorithm description languages
however, the opportunity has been taken to generate an interface using already es-
tablished quantum programming languages with Google's Cirq and IBM's OpenPulse.
Furthermore, allowing for remote access using these languages, while ensuring secu-
rity by adhering to the OAuth2.0 protocol, the communication and cooperation with
collaborators around the world has been simpli�ed. A possible improvement of this
interface can be achieved by including other quantum programming languages like i.e.
pyAQASM which is developed by Atos SE [70].

The Bayesian framework is implemented in a modular way such that it can be used
to optimize and automate other subroutines of the quantum computer experiment.
As hinted at in section 5.2, to initialize the adaptive Bayesian Ramsey spectroscopy
mode, the π/2-time τπ/2 as well as the phase coherence time T2 have to be measured.
Both these measurements can be automated using Bayesian inference to analyze the
results of the corresponding Rabi or Ramsey experiments and to adaptively calculate
the parameters for the most informative next experiment. Furthermore, experiments
to �nd the optimal parameters of high �delity Mølmer-Sørensen gates [71], or other
quantum gates can be automated using a Bayesian framework. Both an automated
Bayesian τπ/2 measurement, as well as an automated Bayesian tune-up of high �delity
Mølmer-Sørensen gates are currently being worked on, as integrating such Bayesian
automation schemes helps to increase the performance while reducing the time spent
for the corresponding sub-routines.
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Disclaimer

This thesis and all related work results from a cooperation between the Universität
Innsbruck and the Alpine Quantum Technologies GmbH (AQT). Parts of the programs
used in this thesis have been developed and written while the author has been employed
by AQT. Both partners of this cooperation are allowed to use, modify and pro�t from
the programs and applications created within the scope of this work.
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