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ABSTRACT

Trapped-ion systems represent one of the most promising platforms for quantum infor-
mation processing, offering long qubit coherence times and exceptional control over
qubit operations. A key ingredient for scalable quantum computation and quantum
simulation is the implementation of high-fidelity quantum gates, which enable control
of entanglement and superposition. In this work, experiments are performed with up
to 105 40Ca+ ions confined in planar Coulomb crystals, forming a versatile quantum
simulator capable of emulating transverse-field Ising models. To extend the accessible
class of spin Hamiltonians and to increase the flexibility of the system, light-shift gates are
implemented to realize ZZ-type entangling interactions. These gates allow for selective
two-qubit coupling between arbitrary pairs of ions within large crystals. The light-shift
gate is driven by a laser field far detuned from all electronic transitions, which suppresses
photon scattering and thus supports high-fidelity operation. This thesis presents the un-
derlying theoretical framework, simulations of the gate mechanism, detailed calibration
procedures, and experimental results demonstrating successful light-shift gate operation
with fidelities of up to 90 %.
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ZUSAMMENFASSUNG

Gefangene Ionen stellen eine der vielversprechendsten Plattformen für die Quanteninfor-
mationsverarbeitung dar, da sie lange Qubit-Kohärenzzeiten und eine außergewöhnliche
Kontrolle über Qubit-Operationen bieten. Ein wesentlicher Bestandteil für skalierbare
Quantenberechnungen und Quantensimulationen ist die Implementierung von hoch-
präzisen Quantengattern, die eine Steuerung von Verschränkung und Überlagerung er-
möglichen. In dieser Arbeit werden Experimente mit bis zu 105 40Ca+-Ionen durchgeführt,
welche planare Ionenkristalle bilden und einen vielseitigen Quantensimulator bilden,
der Ising-Modelle mit transversalem Feld simulieren kann. Um die zugängliche Klasse
von Spin-Hamilton-Operatoren zu erweitern und die Flexibilität des Systems zu erhöhen,
werden Lichtverschiebungsgatter implementiert, um ZZ-artige Verschränkungswechsel-
wirkungen zu realisieren. Diese Gatter ermöglichen eine selektive Zwei-Qubit-Kopplung
zwischen beliebigen Ionenpaaren innerhalb großer Kristalle. Das Lichtverschiebungs-
gatter wird durch ein Laserfeld angesteuert, das weit von allen elektronischen Übergän-
gen verstimmt ist, wodurch die Photonenstreuung unterdrückt wird und somit eine
hochpräzise Operation unterstützt wird. Diese Arbeit präsentiert den zugrunde liegen-
den theoretischen Rahmen, Simulationen des Gattermechanismus, detaillierte Kalib-
rierungsverfahren und experimentelle Ergebnisse, die den erfolgreichen Betrieb des
Lichtverschiebungsgatters mit einer Gattergüte von bis zu 90 % belegen.
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1
INTRODUCTION

One of the landmark achievements in modern science is the development of quantum
mechanics, a framework that fundamentally reshaped our understanding of the micro-
scopic world and gave rise to research fields such as atomic, nuclear, and particle physics,
as well as condensed matter physics and quantum chemistry. Its principles enabled
transformative technologies, including the laser [1–3] and semiconductor-based devices
for classical information processing, collectively known as the first quantum revolution.
These technologies, while rooted in quantum mechanics, do not involve direct control of
individual quantum systems or exploit uniquely quantum phenomena such as coherent
superposition and entanglement. Only in the past three decades have such capabilities
become experimentally accessible, driven by advances in atomic physics, laser technol-
ogy, materials science, and the theoretical framework of quantum information processing
[4]. These advancements mark a fundamental shift in the utilization of quantum systems
and is commonly referred to as the "second quantum revolution" [5].

The complexity of quantum many-body systems, which underlies phenomena such
as quantum magnetism and high-temperature superconductivity, has long been recog-
nized. While the exponential growth of the Hilbert space is not necessarily prohibitive
for analytical approaches, these systems are intrinsically intricate, often making exact
analytical or numerical simulations intractable. While various approximation methods
exist, they are typically limited in scalability or accuracy [6], or only applicable to states
with low amounts of entanglement. Exotic highly-entangled states often remain inacces-
sible to these approaches [7, 8]. Only in recent decades has it become possible to study
such systems directly in the laboratory through quantum simulation, as proposed by R.
Feynman in 1982 [9], where controllable quantum platforms emulate the dynamics of the
target system. To implement such simulations and perform quantum computations, it is
necessary to represent and manipulate information at the level of individual quantum
systems. This can be achieved using qubits, which form the fundamental units of quan-
tum information. Analogous to classical information processing, in which information is
encoded in binary bits taking the values 0 or 1, quantum information processing relies
on qubits. Qubits are defined by two orthogonal quantum states, typically denoted as
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|0〉 and |1〉. In contrast to classical bits, qubits can exist in arbitrary coherent superposi-
tions of these basis states. Moreover, when multiple qubits are involved, they can form
entangled states exhibiting correlations that cannot be explained within any classical
framework. Various physical systems can serve as qubits, provided they possess at least
two well-defined and addressable energy levels corresponding to the computational basis
states |0〉 and |1〉. In addition, viable qubit implementations must meet a series of criteria
[10], including reliable initialization and readout mechanisms, as well as long coherence
times. To exploit these properties, quantum gates are implemented to coherently manip-
ulate qubits in a controlled manner. These gates form the building blocks of quantum
algorithms, enabling both quantum computing, where information is processed in ways
beyond the reach of classical computers, and quantum simulation, where qubits emulate
complex physical systems. Quantum gates can be used to generate superposition states or
entangled states. Single-qubit gates change the state of individual qubits, while two-qubit
(or multi-qubit) gates produce entangling interactions, enabling the implementation of
quantum algorithms and the simulation of interacting quantum systems [11]. The ability
to realize physical qubits and to prepare them in coherent superposition or entangled
states has enabled a range of novel and potentially innovative applications.

Among various experimental platforms, trapped ions have emerged as an interesting
system for quantum simulation. The ability to encode spin-lattice systems in trapped-ion
crystals, combined with their long coherence times and the availability of advanced meth-
ods for state preparation, coherent control, and high-fidelity readout, establishes trapped
ions as a powerful and versatile platform for the study of quantum magnetism [12–17]. In
particular, analog and variational quantum simulation experiments have demonstrated
precise manipulation of large ion crystals, enabling the exploration of quantum many-
body physics with systems comprising tens to hundreds of particles [18–23]. Spin-1/2
particle ensembles, relevant to condensed matter magnetism and molecular excitation
transport [24], become especially challenging to simulate for higher-dimensional lat-
tices or in the presence of long-range interactions. Trapped-ion quantum simulators
can directly probe such regimes. Scaling requires precise control of large ion arrays,
achieved using Penning [25, 26] or Paul traps [21, 27]. Generating quantum correlations
and studying many-body physics requires entangling interactions. In their absence, each
qubit would evolve independently, and the simulator could only reproduce trivial, non-
interacting spin dynamics - well within classical computational reach. The complexity of
phenomena such as quantum magnetism, spin transport, and phase transitions arises
from interaction terms in the system Hamiltonian, whose faithful implementation on a
quantum simulator demands interaction terms between the individual spins.

In this work, we make use of a linear Paul trap, where we are able to confine up to
105 40Ca+, arranged into planar Coulomb crystals [23]. In the existing setup, global en-
tangling interactions are implemented using techniques similar to Mølmer–Sørensen
gates [28, 29], a well-established scheme in trapped-ion systems. They provide a powerful
resource for generating as an example collective XX, YY or XY couplings and thereby
permitting the study of transverse-field Ising models [14]. However, these gates do not
directly provide ZZ couplings, which are essential for simulating a broader class of spin
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Hamiltonians and implementing certain quantum information protocols. While global
entangling interactions are a powerful tool to generate collective XX and XY couplings, it
is also advantageous to additionally implement two-qubit gates to selectively entangle
arbitrary pairs of ions. In particular, such gates enable the preparation of nontrivial input
states tailored to the Hamiltonian under investigation, thereby expanding the range of
accessible quantum simulations and increasing the simulator’s versatility. In quantum
computing these gates can be used for universal gate sets and efficient circuit compilation.

To enable such selective interactions, we employ light-shift gates that realize controllable
two-qubit ZZ interactions. The basic concept was first suggested by Milburn, based on
the subsequent theoretical works [29–31] and later experimentally developed by Leibfried
et al. [32]. These gates are geometric phase gates, meaning that they act by imprinting
a phase without altering the motional state. The mechanism relies on state-dependent
optical dipole forces that coherently displace the ions’ shared motional state in phase
space. As the trajectory closes, the system acquires a geometric phase determined solely
by the enclosed area, independent of the initial motional state. When the force differs
for the two states of the ions, this phase becomes conditional, thereby implementing
an entangling gate between the selected qubits. To experimentally realize controllable
two-qubit interactions within our system, we combine tightly focused addressing beams
for single-qubit rotations with a global beam that mediates the entangling interaction,
coupling only to ions prepared in the computational subspace. We employ a laser operat-
ing at a wavelength of 532 nm. This choice offers two key advantages. First, high-power
laser systems at this wavelength are commercially available and therefore straightforward
to implement in the experimental setup. Second, 532 nm light is far detuned from any
electronic transition in 40Ca+, which suppresses photon scattering. The resulting scatter-
ing rate reduces to the order of 2.4×10−5 Hz for an intensity of 637 MWm−2 [33]. Photon
scattering is one of the dominant intrinsic error mechanisms in laser-driven entangling
gates, as it leads to decoherence of the motional and internal states of the ions. Reducing
the scattering rate is therefore essential for achieving high-fidelity operations. At 532 nm,
the large detuning ensures that scattering is no longer the limiting factor. Instead, the
ultimate fidelity of the gate is determined by other mechanisms, most prominently the
finite lifetime of the metastable D state. The feasibility of high-fidelity gates under such
conditions has been analyzed theoretically by Sawyer and Brown [33] and confirmed
experimentally by Clark et al. [34] for a pair of ions.

This work presents simulations, calibration procedures, and experimental results re-
lated to the implementation of the light-shift gate. Chapter 2 introduces the fundamental
principles of quantum information processing with trapped ions. Chapter 3 discusses
atom–light interactions, including AC Stark shifts, geometric phase gates, and scattering
processes. The experimental apparatus used for the measurements is described in Chap-
ter 4. Chapter 5 presents and analyzes the experimental implementation of the light-shift
gate. Moreover, prospective system upgrades aimed at achieving higher gate fidelities are
discussed in Chapter 6. Finally, Chapter 7 summarizes the key results and provides an
outlook on future developments.
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2
QUANTUM INFORMATION WITH

TRAPPED IONS

This chapter introduces the fundamental principles of using trapped ions as a platform for
quantum information processing. First, we present the qubit, the basic unit of quantum
information (Sec. 2.1). We then explain how individual ions encode qubits (Sec. 2.2),
focusing on the 40Ca+ ion, favored in experiments for its atomic structure and accessible
optical transitions. Subsequently, we describe the mechanism by which ions are confined
using Paul traps. Finally, we briefly explain how multiple trapped ions can be harnessed to
simulation interacting quantum spin models (Sec. 2.3). These systems provide a versatile
and highly controllable platform for exploring many-body quantum dynamics and serve
as a powerful tool in the broader context of quantum simulation.
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2.1 QUBITS
In classical computing, a bit serves as the fundamental unit of information, existing in one
of two distinct states, commonly denoted as 0 and 1. Similarly, in quantum computing, a
quantum bit, or qubit for short, is represented using two quantum states, |0〉 and |1〉 [4].
Unlike classical bits, qubits have the unique ability to exist in other states than |0〉 and |1〉
as well. In general, they form coherent superpositions of the two basis states |0〉 and |1〉:

|Ψ〉 =α |0〉+β |1〉 , (2.1)

where α,β ∈C are complex probability amplitudes satisfying the normalization condition
|α|2 +|β|2 = 1. This means, a qubit can be encoded in any arbitrary superposition state of
|0〉 and |1〉. However, upon measurement, the outcome is always binary, corresponding to
one of the two eigenstates of the chosen measurement basis (e.g., |0〉 or |1〉 in the compu-
tational basis), determined by the probabilities |α|2 and |β|2. In laboratory experiments,
qubits can be implemented using a variety of physical platforms. Prominent examples
include neutral atoms [35], trapped ions [36], superconducting circuits [37] and photons
[38]. In the latter case, the qubit is typically encoded in the polarization state of single
photons, where the basis states are formed by left-handed and right-handed polarization
states.

To visualize the state of a single qubit, the Bloch sphere is often used, as shown in Fig. 2.1.
For this, we can rewrite Eq. 2.1 as

|Ψ〉 = cos
θ

2
|0〉+e iϕ sin

θ

2
|1〉 , (2.2)

where θ and ϕ are polar coordinates.

𝜑

𝜃 |𝛹〉

x

y

|1〉

|0〉

Figure 2.1: Representation of qubit states on a Bloch sphere. The states |0〉 and |1〉 are located at the north and
south poles, respectively. Any pure qubit state |Ψ〉, as indicated by the red arrow, corresponds to a point on the
sphere’s surface and is fully specified by the polar and azimuthal angles θ and ϕ.

The fundamental advantage of quantum computation becomes increasingly evident as
the number of qubits in a system grows. For this, we assume a system of n qubits, which
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are represented in a computational basis where each basis takes the form |x1x2...xn〉,
respresenting a classical bit string with xi ∈ {0,1}. Consequently, the quantum state of
such a system is defined by 2n amplitudes, highlighting the exponential growth of compu-
tational resources compared to classical systems. Multi-qubit states |Ψ〉 can be described
by the tensor product of the individual single qubit states |Ψi 〉:

|Ψ〉 = |Ψ1〉⊗ |Ψ2〉⊗ ...⊗|Ψn〉 . (2.3)

2.2 TRAPPED IONS AS QUBITS
To achieve precise control over ions, it is necessary to confine them within a well-defined
region of space, using electromagnetic interactions. Due to the constraints imposed by
Maxwell’s equations, it is fundamentally impossible to generate a purely electrostatic
potential that confines charged particles in all three spatial dimensions. This is also known
as Earnshaw’s theorem. To overcome this limitation, a widely adopted approach involves
employing a combination of static (DC) and oscillating (RF) electric fields to create a
time-averaged restoring forces that gives rise to an anisotropic harmonic potential [32].
Traps that utilize this technique are known as Paul traps and were first developed by
Wolfgang Paul [39]. In the following, the specific ion species employed in this work - singly
ionized calcium (40Ca+) - will be introduced and discussed in detail.

2.2.1 CALCIUM ION
To trap ions as qubits, a number of prerequisites must be met. The trapped ion needs
to offer a range of accessible optical transitions, which allow for efficient laser cooling.
Additionally, it should exhibit long-lived electronic states for qubit encoding, together
with optical transitions that permit laser-based coherent manipulation. Group-2 atomic
ions are widely employed for this purpose, as their single valence electron gives rise to a
hydrogen-like energy level structure.

In our case, we use 40Ca+ ions - a system extensively studied and well-established in
Innsbruck’s quantum information research. This isotope has no nuclear spin, and there-
fore no hyperfine splitting, simplifying its energy level structure. Its transition frequencies
between its low-lying electronic states span from the near-ultraviolet to the near-infrared,
which makes it compatible with commercially available laser sources. The simplified
level-structure of 40Ca+ is shown in Fig. 2.2. The ions undergo two distinct cooling pro-
cesses to reach near the motional ground state: Doppler cooling and ground-state cooling
via electromagnetically induced transparency (EIT) cooling (for more information on
EIT cooling see Ref. [40, 41]), by using 397nm light via the dipole transition S1/2 ↔ P1/2.
Simultaneously, this transition is also used to read out the state of the ion via spatially
resolved fluorescence measurements. To prevent optical pumping to the metastable D3/2

state during cooling or detection, a 866nm repump laser is used. By applying an external
magnetic field, the Zeeman effect lifts the degeneracy of the electronic levels, causing a
splitting into m j sublevels, which range from −J to +J . These Zeeman-split states provide
the basis for encoding qubits. We typically use two different qubit encodings. The first is a
ground-state (GS) qubit formed by |1〉 = S1/2(m j =−1/2) and |0〉 = S1/2(m j =+1/2). The
second is an optical qubit formed by one of the S1/2(m j =±1/2) ground states and one of
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the D5/2(m j =−5/2, ....,+5/2). While the optical qubit is controlled with an ultranarrow
(≈1 Hz) laser at 729 nm, the GS qubit can be manipulated with an RF coil or a Raman
transition employing a laser with a wavelength of 395 nm.

854 nm

866 nm

72
9 

nm

732 nm397 nm

393 nm

3D5/2

3D3/2

4S1/2

4P3/2

4P1/2

mj =  -5/2
mj =  -3/2
mj =  -1/2
mj = +1/2
mj = +3/2
mj  = +5/2

mj = +1/2
mj =  -1/2

Figure 2.2: Reduced energy level diagram of 40Ca+. The ion is Doppler cooled and read out via the S1/2 ↔ P1/2
dipole transition with 397nm light. The optical qubit is encoded in the two Zeeman sublevels of the S1/2 ↔ D5/2
transition and controlled using 729nm light. To prevent optical pumping to the metastable states D3/2 and
D5/2, two repump lasers at 854nm and 866nm are used.

2.2.2 IDEAL LINEAR PAUL TRAP
Having identified the ion species, we now turn to the method of confinement. The
Coulomb interaction of charged particles with electromagnetic fields enables trapping in
a localized region for extended durations. Wolfgang Paul demonstrated in 1953 that RF
fields can be used for mass-selective ion confinement [39], leading to the development
of the Paul trap. In its linear configuration, ions are confined in two dimensions by a
high-frequency electric quadrupole field, where the trajectory stability is determined by
the charge-to-mass ratio Z e/m. By using four hyperbolic electrodes that span along the
z-axis (see Fig. 2.3), the ideal undisturbed quadrupole potential is given by

Φdyn(x, y, t ) =Φ0(t ) · (x2 − y2)

r 2
0

, (2.4)

where 2r0 is the distance between two opposite electrodes with the potential ±Φ0. Here,
the voltageΦ0 is characterized by an AC field V with frequencyΩ and a DC field U of the
form

Φ0(t ) =U +V cosΩt . (2.5)

Due to the periodic change of sign of the electric force, this gives rise to alternating
focusing and defocusing in both spatial directions. With a suitable frequency, this leads
to a stable ion trajectory following the strong-focusing concept known from accelerator
physics [39, 42]. In addition, we can apply a static potential to the end cap electrodes,
held at a potential of U0, to enable confinement in the axial direction. Close to the trap
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-Φ0

+Φ0

x

z

y

+Φ0

+Φ0

2r0
+Φ0

-Φ0

-Φ0

Figure 2.3: Ideal linear Paul trap. Radial confinement in the x− y is provided by opposing electrode pairs driven
with RF voltages (±Φ0), where the electrode spacing is 2r0.

center, the trapping potential can be approximated by

Φstat(x, y, z) = κU0

z2
0

(
z2 − (x2 + y2)

2

)
, (2.6)

where κ is a geometric factor and z0 defines the distance between trap center and the
end-cap. To characterize how the ions move in the trap, we set up the following differential
equation of motion

mr̈i +e∇⃗(Φdyn +Φstat) = 0 (2.7)

where i ∈ {x, y, z}. At first glance, we would expect the time-dependent part of the force
to disappear, when we average over time. However, in an inhomogeneous, periodic
field such as the quadrupole field, a small mean force remains, which always acts in
the direction of the decreasing field, in this case in the direction of the central axis. For
this reason, the ions remain stored in the radial direction under suitable conditions. By
applying transformation parameters (also called stability parameters)

ax = 8eU

mr 2
0Ω

2
− 4eκU0

mz2
0Ω

2
, ay =− 8eU

mr 2
0Ω

2
− 4eκU0

mz2
0Ω

2
, az = 8κeU0

mz2
0Ω

2
, (2.8)

qx =−qy = 4eV

mr 2
0Ω

2
, (2.9)

Ωt = 2ξ, (2.10)

we can define Mathieu’s differential equation of motion [43]

d 2ri

dξ2 + (ai −2qi ·cos2ξ) · ri = 0. (2.11)

From this equation, we get two types of solutions:
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• Stable trajectory: the ions oscillate with finite amplitude in the x and y directions
and cross the quadrupole field in the z direction without hitting the electrodes.

• Unstable trajectory: the oscillation amplitude in x- or y- direction grows exponen-
tially, such that the particles are removed from the electrodes.

A particle remains trapped when the Mathieu equation yields a non-divergent solution.
An analytical analysis gives the general Mathieu equation in the limit of a small enough
q-parameter [32]

ri (t ) = r0,i cos
(
ωi t +φ)(

1+ qi

2
cosΩt

)
, (2.12)

where ωi is given by

ωi = βiΩ

2
with βi =

√
ai +

q2
i

2
. (2.13)

The general Mathieu equation (2.12) is a combination of two superimposed motions:

• Secular motion: a slow oscillation with frequency ωi = βiΩ
2 and

• Micromotion: a fast oscillation at frequencyΩ and amplitude qi /2.

Micromotion experienced by an ion when its equlibrium position does not align with the
point of minimum potential, also known as the RF-zero line, is called excess micromotion.
As micromotion adversely affects the interaction between the ion and the laser field, it
is essential to minimize its amplitude in order to maintain high-fidelity quantum con-
trol. In the case of a linear chain, micromotion can be effectively minimized by aligning
the ion positions along the RF-null line. For multiple ions confined in the trap, at suffi-
ciently low temperatures, the ions form Coulomb crystals. Their equilibrium positions
are determined by the balance between the trap’s confining potential and the mutual
Coulomb repulsion. Depending on the trap anisotropy, these crystals can be one-, two-,
or three-dimensional. Small oscillations of ions around these equilibrium positions give
rise to collective vibrational modes, which can be described as a set of coupled harmonic
oscillators. When the ions are arranged in a linear chain, the RF-null line can still be
aligned to minimize micromotion. However, in higher-dimensional crystals, some ions
are necessarily displaced from the RF-null, inherently inducing excess micromotion. To
mitigate the resulting adverse effects, laser beams are typically applied along directions
that are perpendicular to the direction of micromotion, thereby minimizing the coupling
between the laser field and the micromotion-induced velocity of the ions [23]. To achieve
micromotion in just one direction, the ion crystal is precisely aligned to the orientation of
the electrodes.

2.3 SPIN MODELS
An important advantage of extending the system into two spatial dimensions is the ability
to explore two-dimensional spin models. These models provide a fundamental framework
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for studying interacting many-body quantum systems and offer a tractable setting for
both theoretical analysis and numerical simulation. In this work, we focus exclusively on
spin-1/2 particles, with basis states |↑〉 and |↓〉. Notable examples of such spin models
include the Ising model and the XY model, both of which capture essential features of
quantum magnetism and collective spin dynamics in lattice systems and are discussed
very briefly in the following. For more details and their experimental implementation,
see [44, 45].

• Ising model: One of the most fundamental spin-1/2 models is the Ising model,
originally introduced by E. Ising [46], which describes spin-spin interactions con-
strained to a single spatial axis. A widely studied variant is the transverse-field Ising
model, which incorporates quantum fluctuations by including an external field
perpendicular to the interaction axis. The Hamiltonian for N spins in this model is
given by:

HIsing =×
N∑
i , j

Ji j σ̂
i
x σ̂

j
x +B

∑
i
σ̂i

z , (2.14)

where σ̂i
x σ̂

j
x is a two-body spin-spin coupling operator. The first term represents

pairwise spin-spin interactions along the x-axis, characterized by the coupling
strength Ji j . The sign of the coupling strength determines the nature of the in-
teraction: positive Ji j favors parallel spin alignment (ferromagnetic coupling),
while negative Ji j favors anti-parallel alignment (antiferromagnetic coupling). The
second term corresponds to a transverse magnetic field applied along the z-axis,
characterized by a field strength B . This field counteracts the spin-spin coupling
in the x-direction and drives the spin system toward alignment along the z-axis,
thereby inducing spin polarization.

• XY model: In the regime of a strong transverse field B , where the field term in the
transverse-field Ising Hamiltonian dominates over the spin-spin interaction, the
system’s effective dynamics can be approximated by the XY model [47]. In this limit,
the Hamiltonian takes the form:

HXY =×
N∑
i , j

Ji j (σ̂i
x σ̂

j
x + σ̂i

y σ̂
j
y ). (2.15)

This Hamiltonian describes spin-exchange (or flip-flop) interactions in the x-y
plane, whereby an excitation can be coherently transferred between spins. Specif-
ically, an excitation in spin i can be annihilated while simultaneously creating
an excitation in spin j , and vice versa. As a result, the total number of spin exci-
tations—also referred to as the total magnetization—is conserved under the XY
dynamics, with additional spin flips being energetically suppressed.
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ATOM-LIGHT INTERACTION

Atom-light interactions play a central role in quantum information science, enabling
control over both the electronic and motional states of atomic systems. In this chapter,
we examine the foundational aspects of these interactions, with a focus on their relevance
to trapped-ion platforms. We begin by analyzing the interaction between laser light and a
two-level atomic system (Sec. 3.1), laying the groundwork for understanding coherent
control and optical transitions. We then extend this discussion to the case of off-resonant
light fields, introducing the AC Stark shift and its implications for qubit manipulation
(Sec. 3.2). Particular attention is given to group-II ions, such as 40Ca+, which are central
to our experimental work. Next, we explore spin-motion coupling (Sec. 3.3), an important
feature of trapped-ion systems that allows for the implementation of entangling quantum
gates. To that end, we introduce the quantum harmonic oscillator model and the concept
of coherent motional states in Sec. 3.4. These tools provide the theoretical framework
for describing ion motion under laser interaction. We then present two widely used
entangling gate schemes based on geometric phases: the Mølmer–Sørensen (MS) gate
and the light-shift (LS) gate, see Sec. 3.5. These gates are essential for realizing multi-
qubit quantum logic in ion traps. Finally, we address a common limitation of LS gates —
decoherence arising from spontaneous light scattering — which imposes fundamental
constraints on gate fidelity (Sec. 3.6).
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3.1 INTERACTION WITH A TWO-LEVEL SYSTEM
The two-level atom represents the simplest quantum system, yet it exhibits remarkably
rich physical behavior, characterized by a Hilbert space spanned by just two basis states.
In such a system, a qubit can be encoded provided that several criteria are met, including
sufficient lifetimes and coherence times, reliable state readout, and proper state initial-
ization. One prominent example are e.g. Zeeman sublevels of the ground or metastable
states. Due to the analogy with the mathematical description of spin states, the two-level
system can exist in a superposition of two distinct states, conventionally denoted as "up"
and "down".

In this section, we will discuss the interaction of an atom with a light field of the form
E = E0 cos(ωL t +ΦL) with frequency ωL and phaseΦL . We consider an atom with the two
eigenstates (

0
1

)
= |↓〉 = ∣∣g〉

and

(
1
0

)
= |↑〉 = |e〉 . (3.1)

These states correspond to the ground state and excited state, respectively and are sepa-
rated by the energy ×ω0. With this, we can write the Hamiltonian of the bare two-level
atom

Ha = ×ω0

2
σz , (3.2)

where σz describes the Pauli operator. By applying a light field for a duration t , popu-
lations between the two states

∣∣g〉
and |e〉 can be transferred via the interaction energy,

given by the following Hamiltonian

HL =×Ωσx cos
(
ωL t +φL

)
. (3.3)

In this framework, the Rabi frequency Ω quantifies the coupling strength between the
laser field and the atom by [48]

Ω= 〈e|d ·E0
∣∣g〉

× . (3.4)

Here, we defined the electric dipole operator d = er, where r represents the position of
the electron and e its elementary charge. In this formulation, we assume that the electric
dipole moment arises from a single electron only.

For investigating the dynamics of the system, it is convenient to transform the Hamilto-
nian H = Ha +HL into the interaction picture. This is achieved by applying the unitary
transformation U = exp(i Ha t/×). To obtain an analytic approximate solution, we use the
rotating wave approximation (RWA). The RWA simplifies the system dynamics by neglect-
ing rapidly oscillating terms in the interaction Hamiltonian, which average out over time
and have negligible net effect on the evolution. Physically, these counter-rotating terms
correspond to processes that simultaneously create or annihilate excitations in both the
atom and the field, which are highly non-resonant and thus contribute minimally to the
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dynamics. By applying the RWA, the effective Hamiltonian in the interaction picture
is reduced to terms oscillating slowly at the detuning frequency ∆ =ωL −ω0, enabling
a tractable and accurate description of coherent atom-light interactions under near-
resonant driving conditions. Using this approximation, we can write the full Hamiltonian
in the interaction picture

HI = ×Ω
2

[σx cos
(
∆t +φL

)+σy sin
(
∆t +φL

)
]. (3.5)

By defining the electronic raising and lowering operators

σ− = ∣∣g〉〈e| and σ+ = |e〉〈g
∣∣ , (3.6)

we can rewrite Eq. 3.5 as

HI = ×Ω
2

[
σ+e i (∆t+φL ) +σ−e i (∆t+φL )

]
. (3.7)

In the following, we will look into what happens, when the light field is resonant with
the atomic transition frequency and how we can use this for controlling the state of a
qubit. On resonance (∆= 0), the laser light induces coherent oscillations between the
populations of the two states

∣∣g〉
and |e〉, which are also known as Rabi oscillations. The

interaction Hamiltonian can be written as

HI ,∆=0 = e−
i HI t
× =

(
cos

(
Ωt
2

) −i e iφL sin
(
Ωt
2

)
−i e iφL sin

(
Ωt
2

)
cos

(
Ωt
2

) )
. (3.8)

In simpler terms, on the Bloch sphere this operation can be thought of as spinning the
qubit’s state vector around an axis that lies in the x y-plane. The direction of this axis
depends on the phase φ, while the amount of rotation is set by the angle θ = Ωt . By
shining resonant light on the qubit, we can perform a controlled single-qubit rotation,
allowing the qubit state to be moved to any desired point on the Bloch sphere. This
single-qubit rotation can be written as [4]

R(θ,φ) =
 cos

(
θ
2

)
−i e−iφ sin

(
θ
2

)
−i e iφ sin

(
θ
2

)
cos

(
θ
2

)  . (3.9)

For a phase of φ= 0 and φ=π/2, this corresponds to a rotation Rx (θ) and Ry (θ), respec-
tively. Applying Rx (π/2) to a state that is initially in the ground state

∣∣g〉
, this will rotate

the state into a superposition of
∣∣g〉

and |e〉. This operation is commonly referred to as
a π/2-pulse. Respectively, by applying Rx (π), the initial state

∣∣g〉
will be shifted to the

excited state |e〉, i.e. it is accordingly called a π-pulse.

3.2 AC STARK SHIFT
In the non-resonant case (∆ ̸= 0), the light field induces a shift of the atomic level structure,
also known as the AC Stark effect or Autler-Townes effect, discovered by S. Autler and
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C. Townes in 1955 [49]. This phenomenon arises when an oscillating electric field -
such as that of a laser - is detuned from resonance with an atomic transition, leading to
modifications in the absorption and emission spectra. In the following, we first analyze the
AC Stark shift within the framework of a two-level system before extending the discussion
to more complex atomic structures.

3.2.1 AC STARK SHIFT FOR A TWO-LEVEL SYSTEM
The corresponding Hamiltonian in the interaction picture is derived from Eqs. 3.2 and 3.3
and is given by

H AC
I =−×∆

2
σz + ×Ω

2
σx . (3.10)

To calculate how much the energy of a level is shifted, we can take a look at the eigenvalues
λ± =±×/2

p
Ω2 +∆2. The energy shift can then be calculated by∆E =λ±−λ±(Ω= 0). The

direction of the AC Stark shift is fundamentally determined by the sign of the detuning
∆ = ωL −ω0. For negative detuning (∆ < 0, red-detuned light), the photon energy is
lower than the atomic transition energy, causing a repulsive interaction that increases
the energy gap by shifting the excited state up and the ground state down. For positive
detuning (∆> 0, blue-detuned light), the photon energy exceeds the atomic transition
energy, leading to an attractive interaction that reduces the energy gap by shifting the
levels closer together. A summary is illustrated in Fig. 3.1. The total differential AC Stark
shift for a two-level system is given by

∆E AC =−Ω
2

2∆
. (3.11)

For large detunings (∆≫Ω), the fast-oscillating terms in the Hamiltonian average out to
zero [50]. Under this condition, the system dynamics can be described by the effective
Hamiltonian H AC

eff :

H AC
eff = ×∆EAC

2
σz . (3.12)

The differential AC Stark shift plays a crucial role in the implementation of LS gates, as it
enables state-dependent coupling by affecting the two qubit states differently. As shown
in Eq. 3.12, this shift can be exploited to realize σz gates.

3.2.2 AC STARK SHIFT FOR A REAL ATOM
For a real atom, the calculation of the AC Stark shift is more complex, since many more
electronic states are involved, which couple off-resonantly to the laser field. In this
context, we investigate the Stark shift arising from light of a specified wavelength, polar-
ization, and propagation direction for a realistic atomic system. This enables a precise
characterization of the differential Stark shift between qubit levels, which is crucial for
the implementation of quantum gates. The following discussion is based on the paper
from B. C. Sawyer and K. R. Brown [33].
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Figure 3.1: Energy level shifts induced by off-resonant coupling. For red-detuned light, the levels shift apart.
For blue-detuned light, the levels shift closer together.

The AC Stark shift arising from off-resonant coupling by a laser beam with an electric field
amplitude E0 for a state |i 〉 with another state |k〉 is given by (a detailed derivation of this
equation can be found in [51])

∆Ek =
(

E 2
0 ε̂

2
qµ

2
ki ,q

4×

)(
1

ωki −ωL
+ 1

ωki +ωL

)
. (3.13)

Here, ωL is the angular frequency of the laser and ωki = (ωk −ωi ) is the atomic transition
frequency between the states |i 〉 and |k〉. ε̂q denotes the projection of the electric laser
field on the quantization axis. The projection ε̂q is obtained by constructing the laser
polarization vector in the laboratory frame, defined by the laser’s propagation direction
(θ,φ), see Fig. 3.2. Here, θ describes the angle between the k-vector and the quantization
axis and φ the angle between the polarization direction and the plane spanned by the
quantization axis and the k-vector. The laser polarization vector is then expressed in the
spherical basis

e0 = (0,0,1), (3.14)

e+1 = 1p
2

(−1, i ,0), (3.15)

e−1 =−e∗+1. (3.16)

From this the projection follows as

ε̂q = e†
q ·e, (3.17)

where e is the normalized laser polarization vector.

µki ,q is the electric dipole operator given by

µ2
ki ,q = |〈k|µq |i 〉 |2 = 3πε0×c3

ω3
ki

A Jk Ji (2Jk +1)

(
Ji 1 Jk

mi q −mk

)2

, (3.18)
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quantization

 axis

𝜃

polarization axis

k

𝜙

Figure 3.2: Geometry of the quantization axis and polarization axis. An exemplary geometry of the quantization
axis and the k-vector of the laser is shown. The k-vector has an angle θ towards the quantization axis. φ describes
the angle between the polarization direction and the plane spanned by the quantization axis and the k-vector.

where the matrix elements can be calculated, using the Wigner-Eckart theorem, also
known as the 3 j -symbol. We can also relate the 3 j -symbol to Clebsch-Gordan coefficients
[52] via (

Ji 1 Jk

mi q −mk

)
= (−1)Ji−1+mk√

2Jk +1

〈
Ji mi ;1q

∣∣Jk mk
〉

. (3.19)

Hereby, J is the total angular momentum number and m the magnetic quantum number.
ε0 describes the permittivity of free space and × the reduced Planck constant. A Jk Ji is
defined by the spontaneous emission rate between an excited state |k〉 and the initial
state |i 〉. The Clebsch-Gordan coefficients and linewidths for all seven transitions in the
40Ca+ ion can be extracted from Fig. 3.3. It is evident that the AC Stark shift is primarily
dominated by the S ↔ P and P ↔ D transitions, due to the significantly stronger dipole
coupling associated with these transitions, compared to quadrupole couplings, as quanti-
fied by their larger Einstein coefficients.

We extend our discussion to group-2 atomic ions and assume that all intermediate states
|k〉 are sublevels of the P1/2 and P3/2 states. If we use the relation E 2

0 = 2I /(ε0c), we can
rewrite Eq. 3.13 as a function of intensity. By adding up all possible intermediate states,
we obtain the total energy shift:

∆E = ∑
k,q

{(
I ε̂2

qµ
2
ki ,q

2ε0×c

)(
1

ωki −ωL
+ 1

ωki +ωL

)}
. (3.20)



3.3 SPIN-MOTION COUPLING

3

19

2 2

10

-4

1 6 3 3 6 1

-4

10

-6-6

3 x1/3

x1/15

4S1/2 4S1/2

3D5/2 3D5/2

4P3/2 4P3/2

-1/2 +1/2

+5/2-5/2

-3/2 +3/2

393 nm
A = 21.49 MHz

854 nm
A = 1.35 MHz

3 1 1
5

4
3

2
1 1

2

3
4

5

-5/2 +5/2

-1/2 +1/2

-3/2 +3/2

729 nm
A = 0.14 Hz

x1/5

4S1/2

3D3/2

4P3/2

-1/2 +1/2

-3/2 +3/2

4S1/2

3D3/2

4P1/2

-1/2 +1/2

-1 1

-2 2

3 -2

1 1

-2 3

 866 nm
A = 1.44 MHz

397 nm
A = 20.97 MHz

x1/6

x1/3

6

-9

-1

4 -2
-3 3

2 -4

1

6 8

1

-6

-1

-8 -6

9

732 nm
A = 0.14 Hz

850 nm
A = 0.15 MHz

x1/5

x1/15

-3/2 +3/2

-1/2 +1/2

a) b)

c) d)

Figure 3.3: Clebsch-Gordan coefficients for 40Ca+. All seven transitions for the 40Ca+ ion are shown. For
simplicity, the Clebsch-Gordan coefficients are shown without taking the square root sign, so the values
correspond directly to |C |2. The constant factor for each transition is given alongside, and the linewidth for each
transition is also indicated.

3.3 SPIN-MOTION COUPLING
So far, we have limited our discussion on the atom-light interaction to the case, where
the atom is held fixed in space. Now, we want to examine the case, where the atom is
trapped in a harmonic potential. When an atom is confined in a harmonic potential and
illuminated by laser light, the motional states of the oscillator become coupled to the
electronic states of the two-level atom, with the oscillator behaving as a linear system and
the two-level atom providing the nonlinearity. The atom oscillates at a frequency ω in the
harmonic trap, where the position of the atom changes the phaseφL of the incoming light
field. This motion causes a Doppler shift, which effectively modulates the laser frequency.
Because of this, motional sideband transitions appear at ω0 ±ω, allowing the laser to
influence both the atom’s internal electronic state and its external motional degrees of
freedom at the same time.

For a more general investigation, we have to extend the Hamiltonian described in Sec. 3.1
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with the Hamiltonian for the motion in the harmonic potential

H = Ha +Hl +Hm (3.21)

= ×ω0

2
σz +×Ω(σ++σ−)cos

(
kx̂ −ωL t −φL

)+×ω
(

a†a + 1

2

)
, (3.22)

where k is the wave vector of the laser and x̂ denotes the position operator. a and a†

represent the creation and annihilation operators (see Eq. 3.31) of the harmonic oscillator
mode. Additionally, we define the Lamb-Dicke parameter, which describes the coupling
of light to the atom’s motion given by

η= k

√
×

2mνtrap
. (3.23)

Here, m represents the mass of the atom andνtrap is the frequency of the ion’s oscillation in
the trapping potential. A Lamb-Dicke parameter η< 1 indicates that the energy spacing
of the harmonic oscillator states exceeds the ion’s recoil energy, thereby suppressing
transitions that change the ion’s motional state. If the motional wave packet x0 is smaller
than the laser wavelength, we enter the Lamb-Dicke regime η2(2n̄+1) ≪ 1, where n̄ is the
vibrational quantum number. With this assumption, we can make the following Taylor
approximation:

e iη(ae−iωt+a†eiωt ) = 1+ iη
(
ae−iωt +a†e iωt

)
+O (η2) (3.24)

Using this, we can write the Hamiltonian in the interaction picture [32]

Hint = ×Ω
2

(
σ+e−i (∆t+φL )

[
1+ iη

(
ae−iωt +a†e iωt

)
+O (η2)

]
+h.c.

)
. (3.25)

By tuning the laser detuning to either ∆= 0 or ∆=±ω (see Fig. 3.4), we establish three
distinct scenarios that serve as the foundation for numerous quantum operations in
trapped-ion experiments.

• Carrier transition, ∆= 0: The laser is resonant with the atomic transition, altering
only the internal state of the atom. These transitions are of the form

∣∣g ,n
〉↔|e,n〉

with n = 0,1,2, .... This interaction can be represented by the Hamiltonian

Hcarrier = ×Ω
2

(
σ+e−iφL −σ−e iφL

)
. (3.26)

• Red sideband (RSB) transition, ∆ = −ω: The absorption of red-detuned laser
light drives transitions between the states

∣∣g ,n
〉 ↔ |e,n −1〉. The corresponding

Hamiltonian is given by

HRSB = i×Ω
2

(
σ+ae−iφL −σ−a†e iφL

)
, (3.27)

with Rabi frequencyΩn−1,n = ηpnΩ.
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• Blue sideband (BSB) transition, ∆=+ω: Similarly, the absorption of blue-detuned
laser light drives transitions between the states

∣∣g ,n
〉↔|e,n +1〉. The Hamiltonian

is then given by

HBSB = i×Ω
2

(
σ+ae−iφL −σ−a†e iφL

)
, (3.28)

with Rabi frequencyΩn,n+1 = η
p

n +1Ω. This dependence of the coupling strength
on the motional state enables measuring the vibrational state populations by driv-
ing the BSB transition and monitoring the time-dependent evolution of the ion’s
excited upper electronic state population.

n+2

n+1

n

|e〉

|g〉

BSB RSB

carrier

ℏω

Figure 3.4: Energy levels in a two-level trapped ion. The spin–motion states are arranged in a ladder-like
structure, where

∣∣g〉
and |e〉 denote the electronic states and n labels the motional states, spaced by integer

multiples of the motional energy ×ω. Carrier (car) transitions are shown with black arrows, while blue (BSB) and
red (RSB) arrows indicate the associated sideband transitions.

The interaction between the motional and electronic states allows the use of Coulomb
forces in an ion crystal to facilitate interactions between ions through the excitation and
de-excitation of their collective motion. This mechanism is fundamental to most multi-
qubit quantum gates in trapped-ion experiments. The latter requires a state-dependent
spin-motion coupling, which can be engineered by applying laser fields with carefully
tailored geometries and frequency components, enabling various driving schemes for the
electronic and motional states. The specific implementation depends on the chosen gate
mechanism and remains an active area of research in trapped-ion quantum information
processing.

3.4 THE HARMONIC OSCILLATOR AND COHERENT STATES
Depending on the driving schemes of the motional modes, various states of the har-
monic oscillator can be generated. Prominent examples are thermal, Fock or coherent
states. For the understanding of the experiments in this work, coherent states are of
great importance. This discussion follows the foundational work by R. Glauber [53]. We
begin by considering the classical harmonic oscillator: a particle of mass m confined
in a one-dimensional quadratic potential described by V (xc ) = mω2x2

c /2, where xc de-
notes the position coordinate and ω is the angular oscillation frequency. As with any
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harmonic system, the motion of the oscillator can be represented in phase space, where
the state of the system traces a certain trajectory, as shown in Fig. 3.5. This motion can be
expressed using the complex variable αc (t ) = |αc |e iωt , with αc = xc + i pc and momentum
coordinate pc . In the resonant case, the oscillator undergoes a clockwise rotation while its
amplitude increases (Fig. 3.5a)). When observed from the perspective of a rotating frame,
this motion is equivalent to a straight trajectory in phase space (Fig. 3.5b)). Conversely, in
the off-resonant case, the oscillator undergoes a clockwise rotation, accompanied by an
increase in amplitude. Notably, in contrast to the resonant scenario, the state reverts to
its initial position after a certain time (Fig. 3.5c)). In the rotating frame, this trajectory is
depicted as a closed trajectory in phase space (Fig. 3.5d)). The smaller the detuning is, the
closer the trajectory approaches an ideal circular shape.

p

x

p

x

pa) b)

c) d) p

x

x

off-resonant
case:

resonant
case:

reference frame rotating frame

ɸ

Figure 3.5: Classical harmonic oscillator dynamics in the reference and rotating frames. The upper row shows
the resonant case, while the lower row illustrates the off-resonant case. In each case, the left panels correspond
to the reference frame and the right panels to the rotating frame, which rotates with the eigenfrequencyω. In the
resonant case, the oscillator rotates clockwise with increasing amplitude, which appears as a straight trajectory
in the rotating frame (a)–b)). In contrast, under off-resonant driving, the oscillator also rotates clockwise and
grows in amplitude, but eventually returns to its initial state, resulting in a closed trajectory in the rotating frame
(c)–d)).

Transitioning to a quantum mechanical description, the classical variables xc and pc are
replaced by the corresponding quantum operators x̂ and p̂. Analogous to the classical
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case, the total energy of the system is expressed as the sum of kinetic and potential energy,
represented by the Hamiltonian

Hosc = p̂2

2m
+ 1

2
mω2x̂2. (3.29)

Using the creation and annihilation operators

a† =
√

mω

2×
(

x̂ − i

mω
p̂

)
, (3.30)

a =
√

mω

2×
(

x̂ + i

mω
p̂

)
, (3.31)

we can rewrite Eq. 3.29, yielding

Hosc =×ω
(

a†a + 1

2

)
=×

(
N̂ + 1

2

)
. (3.32)

The eigenstates |n〉 of the number operator N̂ = a†a are known as Fock states, and the
eigenvalues n ∈N indicate the number of phonons in the oscillator. The energy of a given
state |n〉 is increased or decreased by one phonon, respectively, by applying the creation
and annihilation operators:

a† |n〉 =p
n +1 |n +1〉 , (3.33)

a |n〉 =p
n |n −1〉 , with a |0〉 = 0. (3.34)

It has been demonstrated that all Fock states |n〉 can be obtained through the reiterated
employment of the creation operator on the ground state

|n〉 = 1p
n!

(a†)n |0〉 . (3.35)

A coherent state |α〉 represents the quantum mechanical counterpart most analogous
to a classically excited state of a harmonic oscillator. The following discussion outlines
the mechanism by which such a state can be generated through the application of a
time-dependent driving force.

Applying a time-dependent external force

F (t ) = A sin
(
ωd t +φd

)= A

2i

[
e i (ωd t+φd ) −e−i (ωd t+φd )

]
(3.36)

with amplitude A, drive frequency ωd , and phase φd to the quantum harmonic oscillator,
introduces an additional interaction energy described by Hint(t) = −x̂F (t). The total
Hamiltonian of the system becomes then H = Hosc +Hint(t ). As in the previous analysis,
the influence of this time-dependent perturbation can be isolated by transitioning to the
interaction picture, using the unitary transformation U = exp(−i Hosct/×). In this frame,
the interaction Hamiltonian takes the form:

Hint =
(
ae−i (δt+φd ) +a†e+i (δt+φd )

)
, (3.37)
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where δ=ω−ωd is the detuning between the oscillator frequency and the drive. When
the driving frequency is resonant with the natural frequency of the oscillator, i.e., ωd =
ω and terms oscillating at the sum frequency are neglected under the rotating wave
approximation, the interaction Hamiltonian simplifies to:

Hint = Ax0

2i

(
ae iφd +a†e−iφd

)
. (3.38)

By introducing a complex, dimensionless amplitude defined by

α= e−iφd Ax0t/(2×), (3.39)

the resulting unitary time evolution under the interaction Hamiltonian, U = exp(−i Hintt/×),
can be expressed in terms of the displacement operator:

D(α) = eαa†−α∗a . (3.40)

When applied to the ground state |0〉 of the harmonic oscillator, this operator generates a
coherent state:

|α〉 = D(α) |0〉 =∑
n

e−|α|
2/2 α

n

p
n!

|n〉 . (3.41)

This expression reveals that the probability of occupying the n-th Fock state follows a
Poisson distribution with mean phonon number n̄ = |α|2, as illustrated in Fig. 3.7. Thus, a
coherent state can be interpreted as a displaced version of the oscillator’s ground state in
phase space.

Furthermore, the sequential application of two displacement operators satisfies the
composition rule:

D(α)D(β) = D(α+β)e
1
2 (αβ∗−α∗β) = D(α+β)e i Im(αβ∗), (3.42)

demonstrating that displacements are additive up to a phase factor. This accumulated
phase corresponds to the area enclosed in phase space, as illustrated by the shaded region
in Fig. 3.6.
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Re(α)
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Figure 3.6: Displacement of the motional ground state. Phase space representation in a frame co-rotating at
frequency ω. The displacement of the motional ground state |0〉 creates a coherent state |α〉.
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Figure 3.7: Poissonian distributions in a coherent state. The Fock space representation is shown for mean
phonon numbers 2,4 and 6. The displacement amplitude scales with the mean phonon number as α=p

n̄. The
solid lines depict a Poissonian fit to the phonon number distribution.

3.5 GEOMETRIC PHASE GATES

One of the fundamental capabilities in the domain of quantum information processing
is the ability to entangle the internal states of two or more ions. By applying laser fields,
it is possible to coherently excite the motional modes of an ion. Furthermore, the laser
parameters can be tuned such that this excitation becomes conditional on the internal
spin state of the ion. Through this mechanism of conditional excitation and motional
coupling, an entangling gate operation can be implemented. In this section, we will
introduce the basic concept of geometric phase gates. Among the various approaches
developed, two prominent geometric-phase gates between two qubits are widely used
[54]: the LS gate [55–59] and the MS gate [28, 60], which are discussed in the following
sections.
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Geometric phase gates employ a spin-dependent force to collect spin-dependent phases
by driving closed-loop trajectories in motional phase space. Upon completion of these
closed paths, the spin and motion become disentangled, ensuring separability. However,
the system acquires a phase shift that depends solely on the geometry of the traversed
path in phase space. This path-dependent phase is referred to as the (Berry) geometric
phase [61].

The analysis presented herein follows the approach outlined in [62]. To investigate the
influence of an externally applied, time-dependent driving force on a quantized harmonic
oscillator, we begin by expressing the system’s Hamiltonian within the interaction pic-
ture. In this framework, the oscillator is subject to a classical driving force oscillating
at frequency ω, which couples to the oscillator’s position operator and introduces an
additional time-dependent interaction. The force is defined by

F (t ) = F0 cos
(
ωt −φ)

, (3.43)

where F0 and φ denote the amplitude and phase of the drive, respectively. The interaction
Hamiltonian is given by

Hforce =−zF (t ), (3.44)

where z is the position operator of the oscillator. Expressing z in terms of ladder operators,

z = z0(a +a†), z0 =
√

×
2mωz

(3.45)

with z0 the characteristic length of the oscillator’s ground state, the Hamiltonian becomes

Hforce =−z0F0(ae−iωz t +a†e+iωz t )cos
(
ωt −φ)

(3.46)

= z0F0

2
a†e iφ−iδt +h.c., (3.47)

where ωz denotes the harmonic oscillator frequency. We assume a near-resonant driv-
ing regime, defined by δ :=ω−ωz ≪ωz and accordingly neglect terms that are far off-
resonant. We now extend the analysis to a composite system consisting of multiple
spin degrees of freedom coupled to a single quantized motional mode through a spin-
dependent interaction

HSDF = iΩD

2
Λa†e iφ−iδt +h.c., (3.48)

where Λ represents a collective spin operator, defined as an appropriate linear combi-
nation of Pauli matrices acting on all spin degrees of freedom. ΩD denotes the coupling
Rabi frequency. To evaluate the geometric phase acquired by the system, we compute the
propagator associated with this Hamiltonian using the Magnus expansion formalism.

U (t ) = D(α(t )Λ)e−iΦ(t )Λ2
(3.49)

α(t ) = ΩD

δ
sin

(
δt

2

)
e iφ−iδt/2 (3.50)

Φ(t ) = Ω2
D

4δ2 (δt − sinδt ). (3.51)
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Here, D(·) denotes the displacement operator, defined by D(α) := exp
(
αa† −α∗a

)
, as

already introduced in Sec. 3.4. To elucidate the action of the propagator, it is instructive
to expand it in the eigenbasis of the collective spin operatorΛ

U =∑
k

D(α(t )λ)e−iΦ(t )λ2 |λ〉〈λ| . (3.52)

Let {λ} denote the set of eigenvalues of the collective spin operatorΛ. Within this eigenba-
sis, it becomes evident that the propagator induces displacements of the motional state
conditioned on the magnitude and phase of the corresponding spin eigenvalue. Further-
more, each spin eigenstate acquires a geometric phase of the formΦ(t )λ2. In general, if
the propagator is applied for an arbitrary time t , the spin and motion become entangled.
Consequently, measurement of the spin subsystem alone - effectively tracing over the
motion - results in a mixed state of the spin state due to this entanglement. However,
if the interaction duration is chosen to be τ = 2πK /δ, where K ∈ Z, the displacement
parameter satisfies α(τ) = 0, ensuring that spin and motion are disentangled at time τ

U (τ) =∑
λ

exp
(−iΦ(τ)λ2) |λ〉〈λ| . (3.53)

In this case, a spin-dependent geometric phase has been generated while maintaining sep-
arability between the spin and motional degrees of freedom. The applied spin-dependent
force drives different components of the spin state along distinct circular trajectories
in the motional phase space, as illustrated in Fig. 3.8. The resulting geometric phase Φ
acquired by each spin component is proportional to the area enclosed by its respective
trajectory [58]

Φ= Im

(∫
γ
α∗dα

)
= 1

×
∫

A
d zd p = A

× , (3.54)

where A denotes the enclosed area. This means the acquired phase depends solely on the
area A enclosed by the trajectory in phase space, and is independent of both the duration
required to complete the trajectory and the velocity at which it is traversed. More precisely,
the two-qubit phase is endowed with a dynamic phase component. The dynamic phase
is precisely twice the geometric phase with an opposite sign, resulting in a final two-
qubit phase that corresponds to the geometric phase [63]. When α= 0, corresponding to
δτ= 2πK , the system completes K full loops in phase space. Importantly, the resulting
propagator is to the first order independent of the initial motional state of the system.

3.5.1 MØLMER-SØRENSEN GATES
The MS gate, introduced in 1999 by Anders Sørensen and Klaus Mølmer [28], enables
robust and high-fidelity two-qubit operations by exploiting the collective motion of ions.
Unlike earlier gate schemes - such as the Cirac-Zoller gate [11] - which requires the ion’s
motion to be cooled to the ground state, the MS gate operates effectively even when the
ions are in a thermal state [28]. While motional heating still degrades gate performance,
the effect can be mitigated by increasing the detuning from the motional sideband. This
requires the ions to traverse more loops in phase space to accumulate the same entangling
phase, reducing the sensitivity of the gate to thermal excitations.



3

28 3 ATOM-LIGHT INTERACTION

p

z

|↓↑〉→ exp(iφ)|↓↑〉

|↑↓〉→ exp(iφ)|↑↓〉

|↑↑〉→ |↑↑〉, |↓↓〉→ |↓↓〉

A

Figure 3.8: Phase-space representation of the two-ion evolution under a geometric phase gate. The states |↑↑〉
and |↓↓〉 trace closed loops in phase space, each accumulating a geometric phase corresponding to the enclosed
area A/×

To implement the MS gate, two laser beam tones are detuned from the qubit transi-
tion frequency ω0 to off-resonantly drive the red and blue sidebands of the ions, see
Fig. 3.9. The detuning from the qubit transition is ∆r,b = ±(ω0 +δsb), where δsb is an
additional detuning from the sidebands. With suitable detunings from the sidebands
and Rabi frequencies of the beams, geometric phases are collected. We can write the
phases of the red and blue detuned light fields φr,b time-dependent φr =φr,0 −δsb t and
φb =φb,0 +δsb t . The phases of the bichromatic interaction become

φ+ = φr +φb −π
2

= φr,0 +φb,0 −π
2

(3.55)

and

φ− = φr −φb

2
= φr,0 −φb,0

2
−δsb t . (3.56)

With these definitions, the Hamiltonian of the bichromatic interaction can be written as

Hbic =
i×ηΩ

2
(cos

(
φ+

)
σx − sin

(
φ+

)
σy )(cos

(
φ−

)
(a† +a)+ i sin

(
φ−

)
(a† −a)), (3.57)

where η describes the Lamb-Dicke parameter, a† and a are the creation and annihilation
operators, respectively andΩ denotes the carrier Rabi frequency. When an off-resonant
bichromatic laser field is applied, the atomic wave function traces a circular path in phase
space and periodically returns to its initial state after an interaction time of t = 2π/δsb .
Upon completing this loop, it acquires the geometric phaseΦ as previously introduced.
A detailed derivation of the Hamiltonian of the interaction can be found in [64]. For our
purpose we forego this and rather only give the effective Hamiltonian for a gate acting on
two ions:

HMS(τ) = ×π
4

sign(δsb)σ(1)
x σ(2)

x . (3.58)
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|gg, n〉

|ee, n〉

|ge, n〉
|ge, n-1〉

|ge, n+1〉
|eg, n〉
|eg, n+1〉

|eg, n-1〉

∆

∆

ω
ω

Figure 3.9: Energy diagram for two ions interacting with a bichromatic laser field. The ions have a quantized
COM vibrational mode of frequency ω. The bichromatic laser field enables a resonant two-photon transition
between

∣∣g g ,n
〉

and |ee,n〉. There are four different paths, each of them going through an intermediate virtual
state separated by ∆ from one of the sidebands.

Note that the factor π/4 corresponds to a maximally entangling MS gate. While MS gates
are, in principle, highly effective, their implementation on optical transitions is challeng-
ing due to the stringent requirements on laser coherence. This issue is exacerbated in
systems with multiple qubit encodings, where a single global beam can induce unwanted
differential Stark shifts on other qubits. Furthermore, global-beam implementations are
power-intensive, posing difficulties when using narrow-linewidth lasers. Raman-driven
MS gates alleviate the sensitivity to laser coherence but require operation near resonance,
which increases the rate of spontaneous emission [65].

3.5.2 LIGHT-SHIFT GATES

An alternative approach to implement entangling gates is offered by LS gates. By combin-
ing the robustness of Raman-driven schemes with operation at very large detunings from
atomic resonances, LS gates can retain favorable coherence properties while strongly
suppressing spontanoues decay. With this, low photon scattering errors (2.4×10−5 for an
intensity of 637 MWm−2) can be reached, allowing for the implementation of high-fidelity
two-qubit gates [33]. In this scheme, two laser beams intersect to form a standing wave at
the positions of the ions. These beams are far detuned from any electronic transitions
of the ions, meaning they do not drive direct qubit transitions. Instead, the interaction
induces a shift (also called a light-shift) in the ions’ internal energy levels via the AC Stark
effect, as described above. Due to the fact that the upper |↑〉 and lower |↓〉 qubit states
couple predominantly to different dipole-allowed transitions (this holds for wavelengths
that are not magic wavelengths), the resulting Stark shift is state-dependent, i.e. we obtain
a differential AC Stark shift. It is given by ∆↓(r, t)−∆↑(r, t), which forms the basis for
implementing state-selective interactions in the LS gate. Here, ∆↓(r, t ) and ∆↑(r, t ) are the
different Stark shifts for the possible states |↓〉 and |↑〉, respectively.

To link the ion’s spin state with its motion, a small detuning δ between the two beams is
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ω+δ

ω-
δ

k

Figure 3.10: Moving standing wave. The laser beams are intersecting at an angle of 90◦ with linear polarizations
and are detuned from their transition frequency ω by ±δ. The k-vector is aligned with the out-of-plane modes.

introduced, equal to the mode frequency. This generates a moving standing wave and
leads to a force exciting the ion’s motion, see Fig. 3.10. This so-called optical dipole force
(ODF) couples the electronic state with the motion.

The Hamiltonian describing the LS gate is given by [62]

H =∑
j

1

2
(∆↓ |↓i 〉

〈↓ j
∣∣+∆↑e iδφ ∣∣↑ j

〉〈↑ j
∣∣)e−iωt e iφ0 e

i∆kz0
j e iηc (ac+a†

c ) +h.c., (3.59)

where we consider a system comprising two ions, with the LS beams aligned such that
they couple exclusively to the axial motional modes and uniformly illuminate both ions.
The parameter δφ represents the phase-shift between the force experienced by the |↑〉
and |↓〉 states. The frequency difference between the two LS beams is denoted by ω, and
the index j labels the ions. The parameter φ0 corresponds to the initial phase difference
between the LS beams, whose differential wave vector is given by ∆k, and z0

j denotes the

equilibrium position of the j -th ion. In this formulation, only the coupling of the COM (c)
axial motional mode is included. Additionally, we allow for spin-dependent AC Stark shift
magnitudes, denoted by ∆↑ and ∆↓, which act differently on the respective qubit states.

Expanding Eq. 3.59 within the Lamb-Dicke regime yields a simplified form of the in-
teraction Hamiltonian

H =∑
j

iηc

2
(∆↑

∣∣↑ j
〉〈↑ j

∣∣−∆↓
∣∣↓ j

〉〈↓ j
∣∣)e−iδt e iφ0 e

i∆kz0
j a†

c +h.c.. (3.60)

In this derivation, we assume specific beam polarizations that result in a phase shift
δφ = π. This can be achieved by realizing linear polarization at angles of ±45◦ to the
quantization axis along ẑ. Further, we consider the system to be near-resonant with the
COM motional mode of 2.22 MHz in our case.

The resulting Hamiltonian describes a spin-dependent force acting in the σz basis. This
means, for two ions we have a σzσz -type interaction. For each spin state, the effective
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Rabi frequencies determine both the amplitude and phase of the force, and are given by:

↑↑ : (1+e iφm )∆↑ (3.61)

↑↓ :∆↑−e iφm∆↓ (3.62)

↓↑ : e iφm∆↑−∆↓ (3.63)

↓↓ : −(1+e iφm )∆↓, (3.64)

whereφm =∆k·d is the LS beam phase difference between the ions (d is the ion separation
vector). For φm =π, the ODF is maximized, resulting in zero net force on ↑↑ or ↓↓, while
inducing a force of amplitude±(∆↑+∆↓) on ↑↓ and ↓↑. The ODF drives the two-qubit states
|↑↓〉 and |↓↑〉 along circular trajectories in phase space, rotating in the same directions
but positioned diametrically opposite to one another. This opposite displacement, as
shown in Fig. 3.8, arises from the sign reversal of the spin-dependent Stark shift in the
Hamiltonian for these states, as evident from Eqs. 3.61 and 3.64. To implement the ideal
phase gate, the phase difference between ↑↑ and ↓↓ must satisfy |Φ(↑↑)−Φ(↓↓)| = π/2.
This condition leads to the requirement [33]∣∣∣∣∣4πη2

c∆0,∆(x0,1)∆0,∆(x0,2)

δ2
k

∣∣∣∣∣= π

2
, (3.65)

where ∆0,∆(x0,1) and ∆0,∆(x0,2) denote the differential Stark shifts at the position of the
ions. Assuming a gate performed at fixed detuning that traces two loops in phase space
over a total duration τg , the appropriate detuning is given by δk = 4π/τg , which yields
the gate duration [33]

τg =
√

2π2

|η2
c∆0,∆(x0,1)∆0,∆(x0,2)| . (3.66)

3.5.3 PERFORMANCE EVALUATION OF GATES
To assess the performance of quantum gates, we consider the gate fidelity, a metric that
quantifies the accuracy of quantum operations. Specifically, it measures the closeness
between the actual quantum operation implemented and the ideal target operation it
is intended to realize. High gate fidelities indicate that the performed operation closely
approximates the desired unitary transformation, thereby reflecting the reliability of the
quantum gate under realistic physical conditions. Various techniques exist for charac-
terizing the gate performance, including gate set tomography [66], quantum process
tomography [67], and randomized benchmarking [68]. In this work, we employ two
methods, using both Bell state fidelity measurements and quantum state tomography,
which will be both discussed in the following.

BELL STATE FIDELITY MEASUREMENTS

A simplified approach for measuring gate fidelities is by applying the gate operation to a
single input state and assuming that its performance generalizes to other input states [69,
70]. Specifically, we consider the input state |↓↓〉, for which the ideal output of the gate
sequence is the Bell state

∣∣Φ+〉= 1p
2

(|↑↑〉+e iΦ |↓↓〉). Letting ρ denote the resulting density
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matrix after the gate sequence, the fidelity with respect to the target Bell stateΦ+ is given
by:

F = 〈
Φ+∣∣ρ ∣∣Φ+〉= 1

2
(ρ↑↑,↑↑+ρ↓↓,↓↓)+ 1

2

(
e iΦρ↑↑,↓↓+e−iΦρ↓↓,↑↑

)
. (3.67)

We define ρi j ,kl as the matrix element associated with the transition from |kl〉 to
∣∣i j

〉
.

The first term captures the populations of the |↓↓〉 and |↑↑〉 states, while the second
term accounts for the quantum coherences between them. Consequently, determining
the overall fidelity requires measuring both the state populations (first term) and the
coherences (second term). The coherences can be extracted by applying an analysis pulse.
This pulse consists of a π/2-pulse applied to the state with a variable phase φ, resulting to
oscillations in the parity P as a function of φ [62]

P (Φ) = p↑↑+p↓↓−p↓↑ (3.68)

∝ A sin
(
2φ+Φ)

. (3.69)

Accordingly, the measured amplitude A reflects the coherence term included in Eq. 3.67.
Thus, we can calculate the fidelity by measuring the population in the |↑↑〉 and |↓↓〉 states,
as well as the parity amplitude

F = p↑↑+p↓↓+ A

2
. (3.70)

The phaseΦ of the Bell state is disregarded, as the primary interest lies in the degree of
entanglement.

QUANTUM STATE TOMOGRAPHY

Another way to estimate the quality of the gate operation is by reconstructing the density
matrices of quantum states. The fidelity between a measured state ρ and the ideal target
state ρ′ is defined as

F (ρ,ρ′) =
(

tr

√√
ρ′ρ

√
ρ′

)2

. (3.71)

The following discussion closely follows the work of M. Bock [71].

A general single-qubit density matrix can be written as

ρ = 1

2

(
σI +

∑
i=x,y,z

riσi

)
. (3.72)

Here, ri = 〈σi 〉 = Tr(ρσi ) are the components of the Bloch vector, obtained from the
expectation values of the Pauli matrices σi . To determine these values experimentally,
we repeatedly prepare the same quantum state and perform projective measurements
in the σx ,σy and σz bases. These measurements correspond to six projectors Πk =
(|R〉〈R| , |L〉〈L| , |H〉〈H | , |V 〉〈V | , |D〉〈D| , |A〉〈A|), which are described as positive-operator



3.6 LIGHT SCATTERING

3

33

valued measures (POVM). For each projector Πk , we count detection events Nk and
normalize them by the total number of events for a given basis setting Nbasis. With this
we can define relative frequencies fk :

fk = Nk

Nbasis
= NΠk

NΠR/H/D +NΠL/V /A

. (3.73)

These relative frequencies are used to reconstruct the density matrix.

Rather than directly computing the density matrix from measured expectation values
(which can sometimes yield unphysical results), we use maximum-likelihood estimation
(MLE). MLE finds the physical density matrix ρest that fits the measured data best by a
maximizing likelihood functional L

ρest = argmaxL ( fk , pk (ρ)). (3.74)

The MLE algorithm that is employed in this work is based on an iterative approach
developed by Ježek et al. [72], where the likelihood functional is defined as

L ( fk , pk (ρ)) =∑
k

fk ln
(
pk

)−µTr(ρ). (3.75)

Here, pk = Tr(ρΠk ) are the probabilities predicted by the model, and µ is a Lagrange
multiplier enforcing Tr(ρ) = 1. For finding a solution according to Eq. 3.74, we need to find
the maximum from an extremum condition by varying L with respect to ρ and obtain a
set of nonlinear equations:

R(n) =
∑
k

fk

pk (ρ(n))
Πk , (3.76)

µ(n) =
√

Tr(R(n)ρ(n)R(n), (3.77)

ρ(n+1) =µ−2
(n)R(n)ρ(n)R(n). (3.78)

We can solve Eq. 3.78 iteratively using Matlab. Since the measured detection counts are
subject to statistical fluctuations (typically Poissonian), the reconstructed density matrix
and the resulting fidelity also carry uncertainties. To estimate these errors, we use Monte
Carlo simulations [73].

3.6 LIGHT SCATTERING
One main source of decoherence in LS gates, is photon scattering. In this discussion, we
once again focus on 40Ca+ ions. To calculate the strength of scattering, we examine the
differential scattering cross-section dσ/dΩ. The scattering cross-section describes the
rate at which energy is extracted from the incoming beam due to scattering into a unit
solid angle dΩ in a specific direction, divided by the rate at which energy in the incident
beam passes through a unit area perpendicular to its propagation.

Two distinct scattering processes can be distinguished: elastic and inelastic scattering, as
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illustrated in Fig. 3.11. In elastic scattering, the initial and final state are identical, whereas
in inelastic scattering, the final internal state differs from the initial one. In the following,
we will discuss both, inelastic and elastic photon scattering decoherence, based on the
paper from B. C. Sawyer and K. R. Brown [33].

en
er

gy

elastic scattering inelastic scattering

Figure 3.11: Elastic and inelastic scattering. On the left: elastic scattering is shown, where the kinetic energy
is conserved. On the right: inelastic scattering is shown. There, two processes can be differentiated: Stokes
scattering and Anti-Stokes scattering. In both cases the kinetic energy is not conserved.

3.6.1 INELASTIC (RAMAN) SCATTERING
In the case of inelastic scattering, the kinetic energy of the incident photon is not con-
served (see Fig. 3.11). We start by discussing the differential scattering cross-section for
inelastic scattering [74]

dσi→ f

dΩ
= ωL(ωL −ω f i )3

(4πε0)2×2c4

∣∣∣∣∣∑
k

(〈
f
∣∣ ε̂s · µ⃗ |k〉〈k| ε̂ · µ⃗ |i 〉

ωki −ωL
+

〈
f
∣∣ ε̂ · µ⃗ |k〉〈k| ε̂s · µ⃗ |i 〉

ωL +ωk f

)∣∣∣∣∣
2

, (3.79)

where |i 〉 is the initial state, |k〉 are the intermediate excited states (for 40Ca+ ions, these
are the P states), and

∣∣ f
〉

is the final state. The angular transition frequencies between the
states a and b are represented asωba =ωb −ωa . The electric dipole operator is given by µ⃗.
ε̂ and ε̂s denote the polarization of the laser and of the scattered photon, respectively. The
first term of Eq. 3.79 is often times referred to as "counter-rotating" term and the second
term as "rotating" term. The counter-rotating term describes off-resonant scattering
through the intermediate excited state |k〉, where the atom ultimately transitions to the
final state

∣∣ f
〉

after spontaneous emission of a photon. In contrast, the rotating term
couples the initial state |i 〉 to an intermediate state |k〉 via spontaneous emission of
a photon, eventually transitioning to the final state

∣∣ f
〉

via the gate laser photon. To
calculate the total scattering rate from state |i 〉 to

∣∣ f
〉

via all intermediate excited states
|k〉, we need to integrate Eq. 3.79 over dΩ and multiply by the incoming photon flux
I /(×ωL):

Γi→ f = 3πc2 I
2× (ωL −ω f i )3 ∑

s=0,±1

∣∣∣∣∣∑k (2Jk +1)

√
A Jk Ji A Jk J f

ω3
kiω

3
k f

( 〈 f |T 1
s |k〉〈k|ε̂·T⃗ |i 〉
ωki−ωL

+ 〈 f |ε̂·T⃗ |k〉〈k|T 1
s |i 〉

ωL+ωk f

)∣∣∣∣∣
2

, (3.80)
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where we assumed that all intermediate states are sublevels of P1/2 and P3/2. S1/2, D3/2

and D5/2 can be initial or final states. The matrix elements can be calculated via

〈a|T 1
q |b〉 = (−1)Ja−ma (−1)La+S+Jb+1

(
Ja 1 Jb

−ma q mb

)
. (3.81)

The photon can take the polarization states q =−1,0,+1. The electronic orbital angular
momentum of a state |a〉 is given by La . S describes the total electronic spin. In the case
of 40Ca+ ions, S is 1/2.

For a single ion, we can now define the total inelastic scattering rate, assuming we are in a
superposition of the qubit states |↑〉 and |↓〉. Furthermore, we assume equal populations
in the qubit states |↑〉 and |↓〉. The total inelastic scattering rate is then given by

Γin = 1

2

(∑
f ̸=↑
Γ↑→ f + ∑

f ̸=↓
Γ↓→ f

)
. (3.82)

3.6.2 ELASTIC (RAYLEIGH) SCATTERING
For elastic scattering, the kinetic energy and thus the wavelength of the incident light is
conserved. This means a photon is scattered by an ion without changing the ion’s internal
energy levels - i.e., it stays in the same electronic state, but the photon’s direction and
phase are randomized. When a photon is elastically scattered, the ion’s wavefunction
acquires a random phase shift.

To analyze the elastic scattering rate we start out again by looking at the scattering ampli-
tude from Eq. 3.79 and employ the result from H. Uys et al. [75]

Γel =
3πc2I

4×
∑

s=(0,±1)

(
χ↑→↑

s −χ↓→↓
s

)2
, (3.83)

where

χi→i
s =∑

k
(2Jk +1) · A Jk Ji

√√√√ ω3
L

ω3
ki

(
〈i |T 1

s |k〉〈k| ε̂ · T⃗ |i 〉
ωki −ωL

+ 〈i | ε̂ · T⃗ |k〉〈k|T 1
s |i 〉

ωL +ωki

)
. (3.84)

Again, we assumed equal populations of |↑〉 and |↓〉 states.
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4
EXPERIMENTAL SETUP

The experimental apparatus was designed to achieve quantum control over large ion
crystals composed of up to 100 40Ca+ ions. In order to obtain this level of control, a
number of prerequisites must be met: first, the generation of a highly controlled trapping
environment that effectively isolates the ions from external sources of noise, thereby
enabling long coherence times; and second, the ability to exert control over the ions’
quantum states through the application of tailored magnetic and laser fields. Together,
these capabilities facilitate the implementation of high-fidelity quantum gates. In this
chapter, an overview of the ion trap is presented (see Sec. 4.1). Furthermore, the process
of how the ions are prepared and manipulated is briefly explained in Sec. 4.2, followed by
a discussion of the LS gate laser setup in Sec. 4.3.
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4.1 ION TRAP SETUP
Ion confinement in this experiment is achieved using a modified linear Paul trap (see
Fig. 2.3, whose design deviates from the conventional configuration). Specifically, the trap
features a distinctive electrode arrangement in which the DC blades are split and repo-
sitioned vertically, forming a three-layer geometry, see Fig. 4.1. This architecture offers
significant experimental advantages: it provides large optical access in the micromotion-
free plane, which is required to send laser beams from various directions for efficient laser
cooling and quantum state manipulation. In particular, it allows for beam geometries
with k-vectors perpendicular to the ion crystal’s plane for coupling between the elec-
tronic state and the out-of-plane motional modes. The interaction with the latter is free
of micromotion and thus, the modes of choice to engineer spin-motion and spin-spin
coupling. Moreover, a high-NA objective (NA = 0.44) enables site-resolved imaging and
individual ion addressing with laser beams.

The RF electrode is positioned at a distance of 400µm from the center of the ion trap.
The DC electrodes are segmented, with the outermost segments functioning as endcap
electrodes that provide axial confinement of the ions. To mitigate the influence of RF
field components along the axial direction, which arise from discontinuities between
the DC electrode segments, additional grounded electrodes are incorporated between
the RF and DC electrodes. These ground electrodes serve to suppress spurious axial
RF fields, thereby minimizing excess micromotion of the trapped ions in that direction.
The trap is operated at an RF drive voltage of approximately 1 kV peak-to-peak and a
frequency Ωrf = 2π×43.22MHz. These parameters are selected to maintain a Mathieu
stability parameter q ≪ 1, ensuring a low micromotion amplitude. Under these trapping
conditions, the Coulomb crystals formed during the experiments described in this thesis
exhibit secular oscillation frequencies of approximately 2.22 MHz in the strongly confin-
ing direction and several hundred kilohertz in the two more weakly confining directions.
More details about the ion trap can be found in [23, 44, 45].

a)

c)

b)

Figure 4.2: Photographs of the ion trap. In a), a photograph of the trap assembly as viewed through the
front viewport is presented. Visible components include wirebonds connecting the trap electrodes to the DC
interposer boards, along with the laser ablation target. b) provides a closer view of the ion trap itself. The
trapped ion crystal, located at the center of the trap, is shown in c). Image credits: David Jordan, IQOQI.
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Figure 4.1: Renderings of the ion trap. a) CAD model of the trap chip viewed from the RF electrode side; the
opposite side hosts six DC electrodes in mirror symmetry. b) Zoom of the central trapping region. c) Laser
access in the horizontal (xz) plane: eight directions towards the trap center are available, including the axial
direction, where holes in the chip provide optical access. d) Schematic of the monolithic trap electrodes and
planar ion crystal. Ions are confined in the trap center in the (y z) plane. RF electrodes are shown in pink, DC
electrodes in yellow, and endcap electrodes in blue-green; the grey electrodes next to the RF rails are grounded.
This configuration enables optical access in the horizontal (xz) plane, perpendicular to micromotion (y), as
well as from ±45◦ relative to the crystal plane for spectroscopy beams. Figure adapted from [44].
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4.2 ION PREPARATION AND MANIPULATION
Precise manipulation of trapped ions requires a set of lasers, each serving a specific role
in the experimental sequence. As illustrated in Fig. 4.3, this includes beams for isotope-
selective photoionization, Doppler and EIT cooling, coherent qubit control, entangling
interactions via Raman and LS beams, and high-resolution imaging. A 729 nm laser is
employed to coherently drive qubit transitions, either in a global or individually addressed
manner. In the following, we briefly discuss the procedures for loading the ions into the
trap, cooling them, and reading out their quantum state.

Raman
LS 2

LS 1
Raman

photo-
ionization

729 nm
global magnetic field axis

EIT 𝜎

729 nm
in-plane modes

Doppler cooling,
EIT 𝜋

729 nm
single-ion addressed,

imaging

x

y

Figure 4.3: Laser beam and magnetic field geometry from the top. Multiple laser beams are required for
different functionalities. Photoionization beams are used to ionize neutral Ca atoms. Cooling of the ions is
achieved through Doppler and EIT cooling beams. Beams for entangling interactions, including both LS and
Raman beams, are sent to the ions under an angle of 45◦ to allow for k vectors parallel to the direction of the
729 nm beam. The LS 1 beam is aligned along the magnetic-field axis, while LS 2 is oriented perpendicular to
it. In addition, a 729 nm laser is employed to coherently drive the qubit transitions in an addressed or global
manner.

• Ion loading: To efficiently load ions in the trap, we use laser ablation. As we are
working with large Coulomb crystals of up to 100 ions, a fast process is needed
to load a large number of ions into the trap. To this end, a pulsed laser at 515 nm
ablates neutral atoms from a solid Ca target. Some of the ablated particles fly
through the trapping region, where they are ionized and captured by the trapping
potential. If the power of the ablation pulse is above a certain threshold, this
process directly ionizes the Ca atoms. However, it is desirable to work at lower
powers, such that predominantly neutral atoms are ablated, which are then ionized
in an isotope-selective way [76].

• Laser cooling:
Doppler cooling: Doppler cooling is implemented on the dipole-allowed S1/2 ↔
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P1/2 transition using a laser at 397 nm, red-detuned relative to the atomic reso-
nance. Due to the Doppler effect, ions moving towards the incoming laser beam
experience a frequency shift that brings the laser frequency closer to the resonance,
thereby increasing the likelihood of photon absorption. Following excitation, the
ion undergoes spontaneous emission, where the photon is emitted in a 4π angle,
i.e. in a random direction. As a result, there is a net momentum reduction along
the propagation axis. When averaged over many such absorption-emission cycles,
this leads to a net loss of kinetic energy, effectively cooling the ion ensemble. It is
worth noting that this principle works equivalently in all three spatial directions, as
the trap provides a restoring force along each axis of the trap. For this purpose, the
laser field simply needs adequate overlap with all spatial directions. Consequently,
a single beam is sufficient to Doppler-cool the ions.

EIT cooling: Electromagnetically-induced transparency (EIT) cooling is an effi-
cient cooling technique for cooling multiple modes near the ground state. The
technique works by carefully shaping the absorption spectrum of the cooling tran-
sition. By driving aΛ-type three-level system in a way that establishes a coherent
superposition of the two ground states, the ion is pumped into a "dark" state that
does not couple to the excited level. This quantum-interference effect, which sup-
presses carrier and BSB excitation, can be engineered such that the remaining
absorption is selectively enhanced on the RSB. In practice, EIT cooling is realized
by coupling the two Zeeman ground states of the S1/2 manifold to the P1/2 level,
typically using blue-detuned 397 nm light [77].

• State readout: Qubit states are detected using fluorescence from the 397 nm cooling
laser. A high-numerical-aperture (NA = 0.44) objective collects part of the scattered
light, which is then directed to an EMCCD camera. We can discriminate between
states via the electron shelving technique [78]: ions fluoresce when they can be
excited by the S1/2 ↔ P1/2 transition. If the ion is in the metastable D5/2 state, it
remains dark. This enables reliable distinction between the two qubit basis states.
In our system, this can be implemented directly on the optical qubit transition. For
the ground-state qubit, the same functionality is achieved via additional shelving
pulses with the global 729 nm beam.

4.3 LIGHT-SHIFT GATE SETUP
The LS gates are implemented using a single-mode fiber laser1 with a wavelength of
532 nm, delivering up to 50 W of optical power and a beam diameter of 0.88 mm. The
laser beam is split into two paths using polarizing beam splitters (PBSs). Each arm is
independently frequency-, phase- and amplitude-controlled using a single-pass acousto-
optical modulator (AOM)2, which enables the generation of the moving standing wave in
the optical domain. The AOMs employed in this setup operate with crystalline quartz, a
material chosen for its ability to withstand high optical and RF power levels, both typically
on the order of several watts. In general, the optical components have to withstand large

1IPG Laser, GLR-532-50-SF
2Gooch and Housego, I-M110-2C10B6-3-GH26
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optical powers, i.e. high-power polarization optics are required. This involves waveplates
with low-loss AR coatings and air gaps between the individual plates3, as well as PBS with
low-loss AR coatings and an epoxy-free optical contact bond between the two prisms,
thereby reducing absorption and scattering losses to a minimum4. A complete picture of
the LS gate setup is shown in Fig. 4.4. The laser light is coupled into two ten meter-long
optical fibers5, which guide the beams to the trapping region. Following fiber outcou-

Laser 532 nm

PBS
λ/2

towards ion trap λ/4
λ/2

AOM

beam block

Figure 4.4: Experimental setup of the 532 nm laser. The beam is splitted into two arms using polarizing beam
splitters (PBS). Each path is precisely frequency, amplitude and phase controlled with an individual single-pass
AOM, allowing to generate a moving standing wave. Further, the polarization of the laser light can be controlled
accurately with half and quarter waveplates. Finally, the two beams are then sent through optical fibers to the
ion trap.

pling, piezo-actuated mirror mounts are used to achieve precise alignment of the beams.
The beams are directed onto the crystal at an angle of 45◦ relative to the crystal plane,
resulting in a k-vector that is perpendicular to the crystal plane, as shown in Fig. 4.3 and
4.5. To generate a moving standing wave that selectively couples to the out-of-plane
motional modes of the ion crystal, a configuration is employed in which one node of the
standing wave intersects the ion crystal, as illustrated in Fig. 4.5. This geometry facilitates
alignment and ensures efficient coupling to the desired motional modes.

Linearly polarized light with vertical orientation is used to produce the moving standing
wave. This polarization is chosen to minimize differential Stark-shift fluctuations of the
ground-state qubit, which would otherwise reduce coherence, as discussed previously.
Furthermore, a vertical orientation is chosen to generate only an intensity gradient rather

3Bernhard Halle Nachfl. GmbH, RZQ 2.10L.0532 and RZQ 4.10L.0532
4Thorlabs, PBS12-532-HP
5Thorlabs, P3-488PM-FC-10
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than a polarization gradient. Specifically, the use of circularly polarized light would
induce differential AC Stark shifts between the Zeeman sublevels of the ground state,
resulting in an unwanted phase accumulation by the qubit. Furthermore, fluctuations
in laser intensity would translate into phase noise, thereby introducing decoherence.
To eliminate these effects and effectively store information in the ground state, linearly
polarized beams are exclusively employed, using Glan-laser polarizers6 to suppress the
orthogonal polarization component. The viewport used to guide the LS 1 beam onto the
ion trap exhibits a relatively high reflectivity (≈ 10%) for vertically polarized light. This
reflection imposes a limitation on the maximum usable laser power, as the reflected beam
is directed toward the imaging objective, where it can cause undesired effects.

ω+δ

ω-
δ

k

B

Figure 4.5: Moving standing wave configuration. The two beams have an angle of 90° relative to each other and
vertical polarization. The beams are aligned such that the k-vector of the moving standing wave is perpendicular
to the crystal. With this, we can couple to the out-of-plane modes. The magnetic field is pointing along one of
the LS beams.

To maintain a stable relative phase between the resulting beams, the optical setup is
designed for interferometric stability. Phase noise in an interferometer generally arises
from fluctuations in wavelength of the light source and is affected by the optical path
length difference between its arms. Minimizing this path length difference therefore helps
reduce phase instability. In the implemented configuration, the geometric arrangement
of the optical components limits the optical path length difference to less than 2 cm.

As already shown in Fig. 4.3, the LS beams are spatially overlapped with the Raman beams.
This configuration facilitates rough alignment of the LS beams onto the ion crystal. Fine
alignment is performed using piezo-actuated mirror mounts.

6Thorlabs, GLB10-405
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5
LIGHT-SHIFT GATES

This chapter presents an experimental investigation of the implementation of LS gates
in a 2D trapped-ion quantum simulator. The analysis begins with simulations (Sec. 5.1)
of two parameters governing the gate performance: the AC Stark shift and the photon
scattering rate. Subsequently, we extend these simulations to evaluate the gate duration
and associated errors. Sec. 5.2 focuses on the experimental characterization of AC Stark
shifts and compares the results with theoretical predictions from the simulations men-
tioned above. In Sec. 5.3, we turn to the characterization of the ODF for different initial
electronic states, providing insight into the displacement amplitude. Finally, Sec. 5.4
presents experimental demonstrations of the LS gate implementation in both a two-ion
crystal and a ten-ion crystal configuration.
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5.1 SIMULATIONS
To assess the performance of the experiment and the agreement of the results with the-
oretical predictions, it is interesting to perform simulations of the AC Stark shift and
scattering rate as well as the expected gate duration based on analytic equations from
an atomic physics model. The simulations were conducted following the methodology
outlined in the paper of Sawyer and Brown [33].

The simulation results presented in the following figures were obtained using param-
eters that closely match those of the experimental measurements. All calculations are
done for the optical qubit transition S1/2,m j =−1/2 ↔ D5/2,m j =−1/2, as this transition
exhibits minimal sensitivity to magnetic field fluctuations. Implementing the LS gates
requires two non co-propagating beams with a finite k-vector difference, which in our
setup addresses the out-of-plane mode whose k-vector is perpendicular to the crystal
plane. The geometry is shown in Fig. 5.1. All beams are assumed to be Gaussian beams
with a waist of 47.9(2)µm and an optical power of 325 mW, which is the arithmetic mean
of the power in the two LS beams. The geometry of the two laser beams is defined by the
two angles θ and φ, as shown in Fig. 5.1. The angle θ specifies the orientation between
the wave vector k and the magnetic field B, where θ = 0◦ corresponds to LS 1 and θ = 90◦
to LS 2. The polarization angle φ describes the orientation of the electric field relative
to the k–B plane and takes values φ ∈ {0,π} in this setup. When k is parallel to B (θ = 0◦),
the k–B plane is undefined, but a reference plane spanned by k and B is introduced for
consistency. The laser light is linearly polarized. Coupling between electronic states and
motion is throughout the measurements mediated by the COM motional mode in out-
of-plane direction with a mode frequency of approximately 2.222 MHz. With this mode
frequency and a wavelength of 532 nm, the Lamb-Dicke parameter is given by η= 0.089.
In a configuration where the two beams intersect at an angle of 90◦, the resulting k-vector
is given by k = 1p

2
· 2π
λ .

𝜃=90°

polarization axis

magnetic field axis
𝜙

LS 2

LS 1

k-B plane

Figure 5.1: Laser beam geomtry. The geometry of the two laser beams is characterized by the angles θ andφ. The
angle θ defines the orientation between the wave vector k and the magnetic field B, with θ = 0◦ corresponding
to LS 1 and θ = 90◦ to LS 2. The polarization angle φ is the angle between the electric field vector and the k–B
plane, taking values φ ∈ {0,π}.
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5.1.1 AC STARK SHIFT AND SCATTERING RATE
The differential AC Stark shift of the qubit states, induced by the gate laser beams, con-
stitutes the primary parameter governing the gate operation. This shift arises mainly
from electric dipole transitions between the S and P states, as well as the D and P states,
as discussed in Sec. 3.2 and illustrated in Fig. 3.3. The AC Stark shift is calculated using
Eq. 3.20, while the total scattering rate is obtained by summing the contributions from
inelastic and elastic processes, given by Eqs. 3.82 and 3.83, respectively:

Γscatt =
N∑

j=1
(Γel +Γin) , (5.1)

where N is the number of ions.

For the realization of high-fidelity gate operations, it is desirable to achieve a large differ-
ential AC Stark shift while maintaining a low photon scattering rate, thereby minimizing
gate errors. Consequently, operating at laser wavelengths far detuned from the dipole
transition is advantageous, provided that sufficiently high laser intensities are available
to produce a significant Stark shift. For systems with many levels and large detunings,
detailed atomic-structure calculations are worthwhile for identifying optimal laser wave-
lengths. The result of such a calculation is shown in Fig. 5.2, the simulated differential
AC Stark shift (blue curve) and the total scattering rate (green curve) for a single ion
interacting with a single laser beam is illustrated as a function of wavelength over the
range of 250 nm to 2000 nm. The AC Stark shift displays pronounced resonant features
near the dipole transitions at 397 nm, 393 nm and 854 nm. A magic wavelength is ob-
served at 928 nm, where the differential Stark shift between the qubit states vanishes.
This occurs because, at this wavelength, the absolute Stark shifts of the S1/2 and D5/2

states are equal. For wavelengths longer than this value, the Stark shift approaches a
plateau due to contributions from counter-rotating terms. The photon scattering rate
is large in the vicinity of the resonances and decreases monotonically with increasing
detuning. According to Eq. 3.11, the AC Stark shift for wavelengths close to the dipole
transitions exhibits an inverse linear dependence on the detuning of the resonant tran-
sition, following the relation ∆E ∝ 1/∆. In contrast, the scattering rate, as derived from
Eqs. 3.80 and 3.84, scales with the inverse square of the detuning, i.e., Γscatt ∝ 1/∆2; this
difference in scaling arises because the Stark shift is a coherent, virtual effect, whereas
scattering requires real excitations to the excited state. Therefore, for a fixed laser intensity,
increasing the detuning results in a linear reduction of the Stark shift but a more rapid,
quadratic suppression of the scattering rate. Consequently, significant Stark shifts can be
induced while minimizing incoherent scattering by employing high-intensity laser beams
that are far-detuned from resonance. Thus, a good point is between the red and blue
transition. The specific wavelength used in the experiment, 532 nm, is indicated by the
black vertical line. Notably, at this wavelength, the scattering rate approaches a minimum,
making it a favorable choice for gate implementation. Additionally, this wavelength is
advantageous from a practical perspective, as high-power laser sources at 532 nm are
commercially available and widely used in optical laboratories. At the chosen wavelength
of 532 nm, the simulations yield an AC Stark shift of 69.5 kHz and a total scattering rate
of 1.5×10−2 Hz. Considering the decay rate of the D5/2 level, which is 2π×0.1363Hz, it
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becomes evident that the dominant limitation on gate fidelity arises from spontaneous
decay of the metastable D state rather than from photon scattering. One might ask why
not operate closer to the atomic transitions to achieve a larger Stark shift, which would
result in faster gates at the cost of increased scattering. However, lasers significantly
detuned from 532 nm are considerably more expensive, less powerful, and less robust. In
big ion crystals the gate speed is ultimately limited by the coupling to nearby motional
modes. For practical gate speeds on the order of 150µs, the Stark shift achievable at
532 nm is sufficient.
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Figure 5.2: Simulation of AC Stark shift and the spontaneous scattering rate. The simulation considers a single
ion, located at the center of a single Gaussian beam with a power of 325 mW and a beam waist of 47.9(2)µm. The
chosen qubit transition is ∆m = 0. The resulting AC Stark shift is depicted in dark blue, while the spontaneous
scattering rate is shown in light blue. The operating wavelength of 532 nm used in the experimental setup is
indicated by a dashed black line
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5.1.2 GATE DURATION AND GATE ERRORS
With this understanding, we can now determine the gate duration, using Eq. 3.66. The
gate error due to photon scattering is the product of the scattering rate and the gate
duration τg and consequently calculated as [33]

ϵscatt = Γ(2)
scatt ·τg , (5.2)

where Γ(2)
scatt denotes the two-ion photon scattering rate given by Eq. 3.80 and 3.84

Γ(N )
scatt =

N∑
j=1

(Γel +Γin), (5.3)

where N is the number of ions. As mentioned above, apart from photon scattering due to
the gate laser the qubit lifetime, given by the lifetime of the D level is an additional error
source. Thus, the total decoherence rate is given by

Γ(N )
dec =

N∑
j=1

(
Γel +Γin + 1

2
AD

)
, (5.4)

where AD is the spontaneous decay rate of the D level and N is the number of ions. From
this, the fundamental error for two ions can be defined as [33]

ϵfund = Γ(2)
dec ·τg . (5.5)

In Fig. 5.3, the gate duration and gate errors are shown for a two-ion crystal (a)) and
for a 91-ion crystal (b)), respectively. It is important to note that, for a fixed wavelength,
the photon-scattering induced decoherence rate scales linearly with the laser intensity,
whereas the gate duration exhibits an inverse dependence on intensity. Consequently, in
regimes where decoherence due to D-state spontaneous decay is negligible, the intrinsic
two-qubit gate error becomes effectively independent of laser intensity. Although gate
speeds increase rapidly near the S–P and D–P resonant transitions, the associated pho-
ton scattering errors grow more rapidly, leading to minimum-error operating points that
are found at comparatively large detunings from these resonances. Furthermore, magic
wavelengths, where the differential Stark shift is zero, are also unsuitable due to divergent
gate times.

Based on Fig. 5.3a), one might initially consider a wavelength of 420 nm to be optimal,
as it corresponds to a relatively short gate duration and exhibits a local minimum in the
fundamental error. However, the motional mode structure, with the nearest mode located
30 kHz away from the COM mode, imposes experimental constraints on the accessible
gate durations. Since the gate duration scales approximately as the inverse of the detun-
ing, the achievable gate time is 1/∆≈ 33µs. The contributions from neighboring modes
can be adiabatically eliminated by extending the pulse duration. Consequently, the prac-
tical lower limit for the gate duration is on the order of 150µs. Taking this constraint into
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Figure 5.3: Gate duration simulation. In this simulation, the ions are assumed to be confined within a harmonic
potential characterized by a radial trapping frequency of 2.222 MHz. At the center of the potential, two laser
beams intersect to form a moving standing wave. Each beam has a power of 325 mW and a beam waist of
47.9(2)µm. The simulated gate duration is depicted in blue. The calculated fundamental error is shown in green
and the photon scattering error in light blue. In a), the gate duration and errors are simulated for a two-ion
crystal. The dashed lines in the plot show the experimental feasible gate durations and fundamental errors,
where we limited the gate duration to 150µs. In b), the gate duration and errors are simulated for a 91-ion
crystal.
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account, a wavelength of 532 nm emerges as a more suitable choice for experimental
implementation. At this wavelength, the simulation results indicate a gate duration of
142.6µs. In this context, this corresponds to the SD and DS states being coupled to
the motion, executing closed trajectories in phase space, and thereby acquiring the in-
tended geometric phase. The estimated photon scattering error is 8.4×10−6, while the
fundamental gate error is found to be 1.3×10−4. The results clearly indicate that the
fundamental gate error is dominated by spontaneous decay of the D level. However, this
error limit is extremely low, implying that high-fidelity gates are achievable; an error of
10−4 is comparable to the best gates demonstrated to date [34].

To compare the gate performance for larger ion crystals, the gate duration and corre-
sponding errors were simulated for a 91-ion crystal, as shown in Fig. 5.3b). For crystals
with more than two ions, the gate duration changes due to the modified Lamb–Dicke
parameter, which scales as

ηN = k∆p
N

√
×

2mνtrap
, (5.6)

where N is the number of ions, m the mass of the ion, k∆ = k1 −k2 the difference k-vector
between the two LS beams and νtrap the trap frequency. The remaining parameters re-
quired for evaluating the gate duration from Eq. 3.66 are held fixed. The simulation yields
a gate duration of 962.0µs at a wavelength of 532 nm, using the same input parameters as
in the two-ion case. The photon-scattering error is 5.6×10−5 and the fundamental error
8.8×10−4. Achieving the same gate duration of 142.6µs, as obtained for the two-ion crys-
tal, would require increasing the beam power to approximately 2.3 W. This demonstrates
that implementing the gate in larger ion crystals becomes increasingly power-intensive.

5.2 AC STARK SHIFTS
Following the theoretical discussion of the AC Stark shift, we now turn to the analysis of
the experimental results. The investigation begins with a measurement of the beam waist
of the LS beams. These are inferred from Stark shifts observed in a site-dependent 91-ion
crystal with known crystal size. Subsequently, AC Stark shifts are measured for a range
of optical transitions and between different Zeeman sublevels. In detail, we investigate
first transitions between the ground state S1/2 and the metastable D5/2 states; next, by
evaluating the Stark shift within the D5/2 manifold itself; and finally, by determining the
Stark shift of the ground state.

5.2.1 BEAM SIZE
To accurately compare the simulations with experimental data, we had to input the beam
size at the position of the ion crystal into the simulation. This is determined by measuring
the differential Stark shift induced by the LS beam on a large crystal. Large crystals have
the advantage of possessing a clearly resolved intensity profile. The beams are aligned
by centering the intensity maximum on the crystal. A 91-ion crystal is employed for this
purpose, as it represents a particularly stable configuration. The corresponding pulse
sequence for the AC Stark shift measurement is illustrated in Fig. 5.4a).
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To measure the Stark shift with a decent precision of approximately 30 Hz we employ
Ramsey-type spectroscopy, which utilizes the 729 nm laser for coherent manipulation
of the optical qubit (S to D) as well as the LS laser at 532 nm to induce the Stark shift.
Ramsey spectroscopy has the advantage that the Stark shift can be directly measured,
by illuminating the ion with the LS laser and simultaneously determining the shift via
729 nm Ramsey spectroscopy. However, this method is not very precise and requires
substantial calibration, as the laser frequency must be scanned over a wide range. A more
accurate approach is to use a Ramsey sequence, where the LS laser induces a phase shift
on a superposition state, which is created using the 729 nm laser [79]. By scanning the
Ramsey evolution time and fitting the resulting oscillation frequency, the Stark shift can be
measured very precisely with minimal calibration effort. The sequence works as follows:
it begins with a π/2 pulse with phase 0◦ on the 729 nm carrier transition, corresponding
to a rotation around the x-axis. This operation coherently transfers populations from the
ground state S1/2 into an equal superposition of S1/2 and D5/2∣∣ψ1

〉= 1p
2

(|S〉+ |D〉). (5.7)

During the following free-evolution period of duration T , the ion is exposed to the 532 nm
laser, which induces a differential AC Stark shift between the two qubit states. Since the
Stark shift for both qubit states are different, we define the accumulated phases during
the pulse of duration T as φS = T ·∆S and φD = T ·∆D . The resulting state can be written
as ∣∣ψ2

〉= 1p
2

(e−iφS |S〉+ i e−iφD |D〉). (5.8)

Here, the Stark-induced phase accumulation ∆φ encodes the differential frequency shift
that is to be measured. To mitigate the effects of laser or qubit coherence drift and
residual Stark shifts, a spin-echo π pulse with a phase of 90◦ is applied using the 729 nm
laser. This corresponds to a rotation about the y-axis of the Bloch sphere, inverting the
populations of S1/2 and D5/2. Although the spin-echo sequence is not strictly necessary for
measurements involving a single LS beam, it is included here to ensure robustness against
such slowly varying errors. Following a second interval of free evolution of duration T ,
a final π/2 pulse with a phase of 180◦, corresponding to a rotation around the −x-axis,
concludes the sequence. This pulse projects the accumulated phase φ onto a population
difference and yielding the state∣∣ψ3

〉= 1

2
e−iφS

[
(1−e−i∆φ) |S〉+ i (1+e−i∆φ) |D〉

]
. (5.9)

At last,
∣∣ψ3

〉
is projected by measuring the probability of finding the ion in the D state,

which is given by

PD = 1

2
[1+cos

(
∆φ

)
]. (5.10)
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State readout is performed via fluorescence detection at 397 nm using an EMCCD camera.
This technique is used throughout this thesis for various measurements with similar
arguments if compared to other methods.

LS(T) Twait𝜋/2729(0°) 𝜋729(90°) 𝜋/2729(180°)|↓〉
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Figure 5.4: Pulse sequence and corresponding Rabi fringes illustrating the differential Stark shift of the
SD transition.. In a), the pulse sequence is shown. A π/2 pulse creates a coherent superposition between
the S and D states. A LS laser pulse of duration T is applied, inducing a differential Stark shift. To suppress
the influence of slow laser frequency drifts, a spin-echo π-pulse is implemented using the qubit laser. After a
second free-evolution interval of duration T , a final π/2-pulse maps the accumulated phase onto a population
difference, enabling state readout. In b), the corresponding Rabi fringes for ions 0−5 are shown. A large crystal
of 91 ions was illuminated with LS 1 at an optical power of 340 mW. Solid lines represent sinusoidal fits to the
data, and the error bars indicate uncertainties estimated using the Jeffreys integral using a confidence interval
of 68 % [80].

The optical powers of the two LS beams were set to 310 mW for LS 1 and 340 mW for
LS 2, respectively. To determine the Stark shift of each ion, the excitation probability was
recorded as a function of time, revealing characteristic Rabi fringes. These oscillations
were measured separately for each ion and each LS beam. Figure 5.4b) shows representa-
tive Rabi fringes for ions 0–5 obtained with LS 1. The error bars in the plot are obtained
from Jeffrey’s integral [80], using a confidence interval of 68 %. By fitting the data with a
sinusoidal function (solid line), the Rabi frequencyΩwas extracted from the oscillation
period and used to calculate the corresponding Stark shift, ∆E = Ω/2π. By recording
the differential Stark shift experienced by each ion as a function of its position within
the crystal, the spatial intensity profile, and thus the beam size, can be extracted. The
resulting data is shown in Fig. 5.5.

The ion positions can serve as a precise spatial ruler, provided that the trap oscillation fre-
quencies have been accurately measured. With this, the beam profile can be determined
and the measured Stark shift distribution can be fitted with a 2D Gaussian function of the
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Figure 5.5: Beam size measurement. For a large 91-ion crystal, the AC Stark shift was measured individually for
each ion. By fitting the spatial Stark shift distribution with a 2D Gaussian profile, the beam waist of the applied
LS beam was extracted. The optical powers were 310 mW for LS 1 and 340 mW for LS 2, respectively. The qubit
transition used in this measurement was ∆m = 0. From the fits, the beam diameters were determined to be
96.0(2)µm for LS 1 and 95.7(6)µm for LS 2.

form:

I (x, y) = A ·exp

(
− (x −x0)2

2σ2
x

− (y − y0)2

2σ2
y

)
, (5.11)

where A denotes the peak Stark shift at the beam center, (x0, y0) represent the beam
center coordinates, andσx , σy are the standard deviations along the respective axes. Note
that the differential Stark shift is proportional to the local laser intensity (see Eq. 3.20). The
beam waists are defined as the radii at which the intensity falls to 1/e2 of the maximum.
These are related to the Gaussian standard deviations by ωx/y = p

2σx/y . To calculate
the beam diameters, it is assumed that the beam has a circular intensity profile, and its
propagation direction is perpendicular to the short principal axis (y-axis) of the ion crystal.
Under these conditions, the angle between the beam and the long principal axis (x-axis)
of the crystal can be determined by θ = arccos

(
σy /σx

)
, yielding θ = 45.5(2)◦, which is in

good agreement with the expected geometry. From this, the extracted beam diameters
are 96.0(2)µm for LS 1 and 95.7(6)µm for LS 2, respectively.

Based on the extracted beam diameters, we can now compare the experimentally mea-
sured peak Stark shift at the beam center with the simulated value. For LS 1 with a
power of 310 mW and a beam waist of 48.0(1)µm, the simulation predicts a Stark shift of
66.2 kHz. For LS 2 with a power of 340 mW and a beam waist of 47.9(3)µm, we obtain a
simulated Stark shift of 73.0 kHz. However, a significant discrepancy is observed between
the simulated and measured Stark shifts. While partial deviations may be attributed to
reflection losses at the vacuum viewport, these losses alone are insufficient to account
for the full deviation. Therefore, further investigation is required to identify additional
sources of error and to fully understand the origin of the observed discrepancy between
measurement and simulation.
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5.2.2 STARK SHIFT FOR DIFFERENT SD TRANSITIONS
Next, we examined the differential Stark shifts for various S1/2 ↔ D5/2 transitions. Even if
the absolute values do not match, comparing the relative differences between transitions
can reveal whether the model captures the underlying trends or if there are fundamental
discrepancies.

The Stark shifts were measured for three transitions originating from the S1/2,m j =−1/2
ground state:

• S1/2,m j =−1/2 ↔ D5/2,m j =−1/2 (∆m = 0),

• S1/2,m j =−1/2 ↔ D5/2,m j =−5/2 (∆m =−2), and

• S1/2,m j =−1/2 ↔ D5/2,m j =+3/2 (∆m =+2),

The pulse sequence used for these measurements is identical to that presented earlier in
Fig. 5.4a). The results are shown in Fig. 5.6. The error bars are estimated using Jeffrey’s
integral [80] with a confidence interval of 68 %. As previously noted, the absolute scale
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Figure 5.6: Differential Stark shifts for S to D transitions. Specifically, the Stark shifts were measured for
∆m =−2,0,+2 for a single ion with both beams. Here, the upper row shows the Stark shifts measured with the
LS 1 beam and the second row with the LS 2 beam, respectively. The error bars are estimated using Jeffrey’s
integral, using a confidence interval of 68 % [80].

of the Stark shifts did not agree with theoretical predictions. For this reason, we instead
considered the ratios of the measured Stark shifts for different transitions and compared
them with the corresponding simulated ratios. The results are summarized in Tab. 5.1.
As shown, the experimentally obtained Stark shift ratios are in good agreement with the
simulated values, indicating that the relative transition strengths and polarization effects
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are well captured by the model. This gives a hint that the discrepancy in absolute values
of the Stark shifts either stems from experimental imperfections or that there is a factor 2
missing in some of the definitions that are used in the simulation.

Ratio Simulation LS 1 Deviation LS 2 Deviation

∆m = 0/∆m =−2 0.930 0.936(3) 0.6(3) % 0.925(2) 0.5(2) %
∆m = 0/∆m =+2 0.976 0.975(3) 0.1(3) % 0.995(2) 2.0(2) %
∆m =−2/∆m =+2 1.049 1.042(3) 0.7(3) % 1.076(2) 2.6(2) %

Table 5.1: Comparison between simulated and measured ratios of AC Stark shifts for different transitions.
The table shows the ratios of Stark shifts between the transitions∆m =−2,0,+2 for a single ion. Both LS 1 and LS
2 beams were used in the measurement. The deviations indicate the relative difference between the measured
and simulated values.

5.2.3 DIFFERENTIAL STARK SHIFT IN THE D MANIFOLD
Next, we analyzed the AC Stark shift within the D5/2 manifold. In particular, the Stark
shifts associated with the transitions:

• D5/2,m j =−1/2 ↔ D5/2,m j =−5/2 (∆mD =−2) and

• D5/2,m j =−1/2 ↔ D5/2,m j =−3/2 (∆mD =−1)

were measured. Previously, the differential Stark shift of the S1/2 −D5/2 transition was
measured using a Ramsey sequence on the optical qubit. To determine the Stark shift
within the D5/2 manifold, it is necessary to first prepare a coherent superposition of the
relevant D5/2 states. Since we cannot directly drive the magnetic transitions between two
D levels, a sequence of 729 nm pulses has to be utilized for this. To this end, we employ
the following pulse sequence (see Fig. 5.7a)), exemplified for the ∆mD = −2 transition.
The sequence begins by applying a π/2 pulse on the S1/2,m j =−1/2 ↔ D5/2,m j =−1/2
transition using the 729 nm laser. The remaining population in the ground state is then
transferred to D5/2,m j =−5/2 via a π pulse on the corresponding transition, resulting in
a coherent superposition of the two D5/2 Zeeman sublevels. After application of the LS
pulse of duration T , the echo pulse, which consists of three π pulses (π pulse on −5/2
to transfer to the GS, then another π pulse for the spin-echo, with another π pulse, the
GS population is transferred back to −5/2) is applied. The system is then allowed to
evolve for an additional waiting time T , during which no LS pulse is applied. Finally, the
D5/2,m j =−5/2 population is transferred back to the ground state via a π pulse. The π/2
pulse applied to the D5/2,m j =−1/2 state serves solely to close the Ramsey sequence and
does not map the optical qubit onto the ground-state qubit.

The differential AC Stark shifts in the D5/2 manifold are shown in Fig. 5.7b). Since the
absolute Stark shifts deviated from theory, we compared measured Stark-shift ratios for
different transitions to simulated values, see Tab. 5.2. Due to a different power setting in
the LS beams, we repeated the measurement of the S1/2 ↔ D5/2 differential Stark shifts
to obtain accurate values. For the ∆m = 0 transition, we measured differential Stark
shifts of 19.92(3) kHz for LS 1 and 20.96(3) kHz for LS 2. For the ∆m =−2 transition, the
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Figure 5.7: Differential Stark shift in the D manifold. a) shows the pulse sequence. First, a superposition of
two Zeeman sublevels is generated via a π/2 and a π pulse. The Stark shift is induced by a LS pulse of duration
T . The sequence includes a spin-echo consisting of three π pulses. After a wait time T , the populations are
returned to the ground state, completing the Ramsey sequence. Boxes with a green frame indicate the ∆m = 0
transition, while light blue boxes correspond to the ∆m =−2 or ∆m =−1 transition. b) shows the measured
Stark shift for both beams for a single ion. Here, the Stark shift was measured for the transitions ∆mD =−1 (left
panel) and ∆mD =−2 (right panel).

corresponding differential Stark shifts were 21.34(5) kHz for LS 1 and 22.81(3) kHz for LS 2.

A significant discrepancy is observed between experimental measurements and the-
oretical predictions when comparing the ratio of the differential Stark shift within the
D manifold to the Stark shift between the S and D levels. In particular, ratios involving
the ∆mDD =−1 transition exhibit pronounced deviations of up to a factor of two. This
discrepancy warrants further investigation and may arise either from an error involving
the D5/2 states in the simulation or from measured Rabi fringes that are higher than
expected. Ratios that do not involve the ∆mDD = −1 transition also deviate from the
simulated values, although to a lesser extent. We tentatively attribute these remaining de-
viations to polarization imperfections, as the D5/2 manifold is intrinsically more sensitive
to polarization effects due to the fine structure of the D manifold and the corresponding
Clebsch–Gordan coefficients. Our working hypothesis is that the LS beams exhibit a small
deviation from ideal linear polarization. Introducing a slight ellipticity of approximately
4.9 % for LS 1 in the simulations reduces the discrepancy for transitions not involving
∆mDD = −1 to within 0.7 %. For LS 2, an ellipticity of roughly 13.3 % accounts for the
observed deviations for the same subset of transitions, yielding discrepancies of up to
0.04 %. To test this hypothesis experimentally, one would need to probe the sensitivity
of the D5/2 manifold to polarization imperfections by comparing transition frequencies
between Zeeman sublevels m ↔ m′ and their mirror counterparts −m ↔−m′. The LS
beams are nominally linearly polarized. Any residual ellipticity introduces a circular
component that breaks the mirror symmetry of the transitions, leading to small differen-
tial frequency shifts. By measuring and comparing these transitions, one could directly
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Ratio Simulation LS 1 Deviation LS 2 Deviation

∆mSD = 0/∆mDD =−2 13.286 14.6(1) 10.2(9) % 11.33(6) 14.7(5) %
∆mSD =−2/∆mDD =−2 14.286 15.7(1) 9.8(9) % 12.33(7) 13.7(5) %
∆mDD =−2/∆mDD =−1 3.000 1.50(4) 50(3) % 1.568(8) 47.7(6) %
∆mSD = 0/∆mDD =−1 39.858 21.9(5) 45(3) % 17.76(3) 55(1) %
∆mSD =−2/∆mDD =−1 42.858 23.5(5) 45(3) % 19.33(3) 55.0(1) %

Table 5.2: Comparison between simulated and measured ratios of AC Stark shifts in the D manifold. The table
shows ratios of Stark shifts between SD and DD transitions for a single ion. The measured Stark shifts in the D
manifold involves the transitions ∆mD =−2 and ∆mD =−1. The resulting ratios are subsequently compared
with the experimentally measured Stark shifts for the SD transitions as well as with theoretical predictions.

quantify these polarization imperfections. While such measurements were not performed
for the D5/2 manifold, Fig. 5.6 shows small differences in the AC Stark shifts of the S to D
transitions for ∆m =±2 of up to 1.1 kHz. These observations provide an initial indication
of residual polarization imperfections. To fully assess their impact, the measurements
should be repeated for the D5/2 manifold, where polarization effects are expected to be
more pronounced.

5.2.4 GROUND STATE STARK SHIFT
In future experiments involving LS gates, we aim to implement two-qubit gates on the
optical qubits using a global laser beam. To achieve this, selected ions are transferred from
the ground-state (GS) qubit manifold to an optical qubit using the individually addressed
729 nm laser. These optical qubits are then entangled via the global 532 nm laser. It is cru-
cial that the LS laser does not affect the remaining GS qubits, i.e., it must not induce any
unwanted differential Stark shift. Otherwise, the Stark shift of each GS qubit would have
to be precisely monitored and compensated, which introduces significant experimental
overhead and makes the system highly sensitive to polarization and intensity drifts of the
LS laser.

The pulse sequence used for this measurement is conceptually similar to that shown in
Fig. 5.4a). However, instead of employing the 729 nm laser to create the superposition, an
RF pulse is applied via a magnetic coil to coherently manipulate the GS Zeeman levels.
The result of this measurement is presented in Fig. 5.8. Due to the large detuning from the
fine structure of the P manifold and the use of linearly polarized light, the differential Stark
shift in the GS qubit cancels. By fitting the experimental data with a sinusoidal model
(not shown), we extracted an upper bound for the differential Stark shift of 0.7(4) Hz. This
result is consistent with theoretical predictions, confirming that the differential Stark shift
is essentially negligible.
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Figure 5.8: Ground state Stark shift. The differential Stark shift was measured for a single ion for both beams.
The ground state Stark shift for LS 1 is represented in blue, while the ground state Stark shift for LS 2 is depicted
in green, respectively. Error bars are estimated from Jeffrey’s interval, using a 68 % confidence interval.

5.3 CHARACTERIZATION OF THE OPTICAL DIPOLE FORCE
Having thoroughly characterized the AC Stark shifts for various electronic transitions,
we now turn to the implementation of the ODF, which we characterize by measuring
displacements of the motional mode. In contrast to the measurements presented previ-
ously, we now simultaneously apply both LS beams to generate a moving standing wave.
We investigate two regimes: an on-resonant displacement of the motional mode and an
off-resonant displacement leading to closed trajectories in phase space.

5.3.1 RESONANT DISPLACEMENT OF THE MOTIONAL MODE
We start by examining the resonant displacement of the motional mode. For this, the
frequency detuning between the two beams is set to match the COM mode frequency
of 2.222 MHz, enabling coupling to the motional mode. In the following, we refer to this
operation as the ODF pulse. To perform the measurement, the COM mode is ground-state
cooled using EIT cooling. An ODF pulse resonant to the motional mode is applied for a
duration τ, which displaces the ion’s motional wavefunction; if the ion is initially in the
motional ground state, this displacement corresponds to the creation of a coherent state,
as introduced in Sec. 3.4. To probe the motional state after the displacement, we apply
an analysis pulse using the 729 nm laser on the BSB. The excitation dynamics in time of
this BSB pulse is very sensitive to the motional state, thus a fit of this dynamics allows for
an estimation of the distribution of occupied motional Fock states (at least for motional
states in our parameter regime, i.e. coherent states with moderate displacements) [81].
The pulse sequence for this measurement is shown in Fig. 5.9. A key ingredient for the LS
gate are state-dependent dipole forces (due to state-dependent differential Stark shifts).
Thus, we characterize the strength of the ODF for various intial electronic states, among
them the qubit states S1/2,m j = −1/2, D5/2,m j = −1/2 and D5/2,m j = −5/2, the latter
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ODF BSB|↓〉

Figure 5.9: Pulse sequence for the resonant displacement of the motional mode. The ion is ground-state
cooled. An ODF pulse resonant to the motional mode is applied for a duration τ. With a BSB pulse, the motional
state after the displacement can be probed.

being a check for consistency.

We start with the displacement of the S1/2,m j = −1/2 state. For each step we apply
an ODF pulse with pulse lengths between 0µs and 200µs. This has shown to be sufficient
for a robust fit of the excitation dynamics. The resulting excitation dynamics for three
different ODF pulse lengths (0, 100 and 200µs) are shown in Fig. 5.10a). For an ODF pulse
length of 0µs, i.e. without the application of an ODF pulse, the ion is close to the motional
ground state with a high population in n̄ = 0. In this regime, one expects Rabi fringes
on the BSB with a large contrast, assuming negligible heating. The experimental data,
however, shows a slightly reduced contrast, which is consistent with the residual mean oc-
cupation number of n̄ ≈ 0.05 typically achieved with EIT cooling. For measurements with
applied ODF pulses, a rapid decay of the BSB contrast towards zero is observed, followed
by a revival at longer pulse durations. This behavior is characteristic of a coherent mo-
tional state. In contrast, for a thermal state, the contrast would decay to zero and remain
there without revival. As predicted by the Jaynes–Cummings model, the internal-state
population P↑(t ) exhibits characteristic quantum collapses and revivals as a function of
time [82]. These revivals are a purely quantum mechanical phenomenon, arising from
the discrete nature of the energy spectrum and the relatively narrow initial distribution
over motional Fock states [82, 83]. In this regime, the system interacts with quantized
motion, and the individual Rabi fringes associated with different motional states evolve
with slightly different frequencies. The resulting dephasing leads to an apparent collapse
of the population oscillations. At specific later times τrevival = 4π

p
n̄/Ω, the relative phases

of the individual components re-align, leading to a revival of coherent oscillations. In
contrast, if the motion were treated classically, i.e., a continuous distribution of motion
energy, the overlapping oscillations would produce a continuous interference pattern,
obscuring the distinct revival structure. The observed collapse and revival dynamics thus
serve as a hallmark of the underlying quantum nature of the ion–field interaction [81].

To quantify the distribution of occupied motional states, we perform a fit of the data
with the time-dependent excitation probability [81]

P↑(t ) =∑
n

Pn sin2
(
Ωn,n+1

2
t

)
, (5.12)

where the Rabi frequency between levels |↓,n〉 and |↑,n +1〉 is Ωn,n+1 = p
n +1 ·ηΩ. Ω

is the Rabi frequency of the carrier transition, which we measure to be 148.6(2) kHz
and take as a fixed parameter in the fit. η is the Lamb-Dicke parameter given as η =
2π/λ ·√×/(2mνmode) = 0.065, where λ= 729nm and νmode = 2π ·2.222MHz. The term
Pn represents the occupation probability of the n-phonon state in the initial motional
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distribution and is treated as an independent fitting parameter.

From the fit shown in Fig. 5.10a), the phonon number distribution Pn can be extracted.
Figure 5.10b) shows the related histograms of the distribution Pn . As expected without an
ODF pulse we mostly occupy the motional ground state with little occupation of higher
phonon states due to imperfect cooling. For a displaced motional ground state, the
distribution turns into a Poissonian distribution as expected from quantum theory for a
coherent state, as introduced in Sec. 3.4. A Poissonian fit of the form

P (n) = |〈n|α〉 |2 = e−n̄ n̄n

n!
, (5.13)

reveals the mean phonon number n̄, which is related to the displacement amplitude by

n̄ = 〈a†a〉 = |α|2. (5.14)

The extracted distribution is shown in Fig. 5.10b), where a Poissonian fit (green curve) is
overlaid. The good agreement with the fit confirms that the ion’s motional state closely
approximates a coherent state under the applied ODF. For the initial state we do not
expect a Poissonian distribution. In the ideal case, just the ground-state is occupied, i.e. a
single Fock state. Imperfect cooling can leave the state either in a thermal or non-thermal
state, which makes a proper fit challenging. Fig. 5.10b) employs a Poissonian fit as well as
a thermal fit of the form

P (n)therm = N ·
(

n̄

1+ n̄

)n

(5.15)

for the initial state. Here, N describes a normalization constant.

By using Eq. 5.14, we can now calculate the diplacement α from the phonon number
distribution shown in Fig. 5.10b) and plotted as a function of the ODF pulse length. The
extracted values are then compared to the theoretical prediction, given by

α= η532 ·∆ES1/2 ·τODF, (5.16)

where η532 = 0.126 is the Lamb-Dicke parameter for the ODF beam at 532 nm and mode
frequency 2.22 MHz. ∆ES1/2 is the Stark shift of the S1/2 level and τODF is the duration
of the applied ODF pulse. Since the absolute Stark shift of the S1/2 cannot be measured
directly, we measure the differential Stark shift for the ∆m = 0 transition. The observed
differential shifts were 15.47(2) kHz for LS 1 and 15.68(3) kHz for LS 2. From the simula-
tions, we get a relation ∆ESD,∆m=0 ×0.95 =∆ES1/2,m j =−1/2. With this, we get a Stark shift
of ∆ES1/2 = 14.80(2)kHz. In this analysis, the geometric mean of the Stark shifts induced
by the two individual LS beams was used to account for their combined effect. The
experimental results, along with the theoretical predictions from Eq. 5.16, are presented
in Fig. 5.10c). The experimentally extracted displacement values show good agreement
with the theoretical prediction. However, for short ODF pulse durations of approximately
up to 25µs, a slight deviation is observed, since we start in the motional ground-state
being a Fock state rather than a coherent state. At longer pulse durations, good agreement
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Figure 5.10: Displacement of the motional state S1/2,m j =−1/2. In a), three representative BSB analysis pulses
are shown: one without displacement and two following ODF pulses of 100µs and 200µs duration. The solid
lines represent fits acoording to Eq. 5.12, providing information on the motional mode population. b) shows
the reconstructed phonon number distribution extracted from a). A Poissonian fit (green curve) is overlaid. In
the beginning, where the motional ground state is not in a pure state, we fit a thermal distribution (blue curve)
additionally. Note the different scaling of the y-axis. c) shows the extracted displacement amplitude from b) as a
function of the ODF pulse length. The solid line illustrates the simulated displacement amplitude according to
Eq. 5.16. The dashed line represents a linear fit of the experimental data.
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between theory and experiment is observed, where the initial non-coherent part is gone.

Next, we turn to the second qubit state, namely D5/2,m j = −1/2. In this case, the op-
tical power in the ODF beams had to be significantly increased in order to observe a
measurable signal. This is in agreement with theory since the absolute Stark shift of the
D5/2,m j =−1/2 state is smaller by a factor of 19.02 compared to the S1/2,m j =−1/2 state,
leading to a proportionally reduced ODF strength. The measured differential Stark shifts
for the ∆m = 0 transition were 39.1(1) kHz for LS 1 and 28.73(8) kHz for LS 2, respectively.
Using the simulations from Sec. 3.2, the absolute Stark shift of the state D5/2,m j =−1/2
was estimated to be 1.67(6) kHz, calculated as the geometric mean of the two measured
differential shifts. To achieve a sufficient Stark shift for this measurement, the ODF beams
were operated at the maximum available power. However, due to imperfect alignment of
the LS 2 beam, its effective power at the ion position was lower than that of LS 1. Due to
the substantial discrepancy between the individual shifts from LS 1 and LS 2, the validity
of using a geometric mean in this case is uncertain and may not accurately reflect the
true single-beam contributions. Additionally, to compensate for the weaker coupling,
the ODF pulse duration was extended substantially, ranging from 0 ms to 20 ms. The
result is shown in Fig. 5.11a). The data was fitted again with Eq. 5.12. As can be seen
from the plot, the collapse and revival of the wavefunction is a lot weaker than in the
case for the S1/2,m j =−1/2 state. From Fig. 5.11a), we can again extract the phonon
distributions, which are shown in Fig. 5.11b). From the phonon number distribution
shown in Fig. 5.11b), the displacement amplitude α was extracted and compared with
the theoretical prediction, as presented in Fig. 5.11c). A significant deviation between
the experimental data and theoretical model is observed. While the data still exhibits
the expected linear behavior, the slope differs noticeably from the simulated prediction.
One possible explanation is the increased sensitivity of the D5/2 state to polarization
imperfections compared to the S1/2 state, suggesting that the polarization of the ODF
beams may not be perfectly linear, as already discussed in Subsec. 5.2.3. Additionally,
the observed imbalance in the differential Stark shifts from the two beams could likely
contribute to the discrepancy.

As a check for consistency, we perform another measurement with the ion initialized in
the D5/2,m j =−5/2 Zeeman sublevel. For the ∆m =−2 transition, the observed differen-
tial Stark shifts were 21.34(5) kHz for LS 1 and 22.80(3) kHz for LS 2. Using the simulations,
we get an absolute Stark shift of ∆ED5/2,m j =−5/2 = 2.24(3)kHz. The displacement of the
motional state is probed with ODF pulse lengths ranging from 0 ms to 2 ms. The result-
ing data is shown in Fig. 5.12. A significant deviation between the experimental data
and theoretical model is observed. Most likely, the simulations do not fully capture the
atomic-physics model of the D states, although this requires further investigation.

5.3.2 OFF-RESONANT DISPLACEMENT OF THE MOTIONAL MODE

In order to make further progress toward the implementation of the LS gate, which relies
on off-resonant excitation of a motional mode such that the motional state follows a closed
trajectory in phase space, we investigated this regime by detuning the LS beams from the
COM mode by δ= 2kHz. As discussed previously in Fig. 3.5d), such a detuning causes
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Figure 5.11: Displacement of the motional state D5/2,m j =−1/2. a) shows three representative BSB analysis
pulses: one without displacement and two with ODF pulse lengths of 10 ms and 20 ms, respectively. The solid
line represents fits according to Eq. 5.12. In b), the reconstructed phonon number distributions from a) are
shown. A Poissonian fit (green curve) is overlaid, as well as a thermal distribution (blue curve). Mind the
different scaling of the y-axis. c) shows the extracted displacement amplitude from b) as a function of the ODF
pulse length. The solid line shows the simulated displacement amplitude according to Eq. 5.16. The dashed line
represents a linear fit to the experimental data.
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Figure 5.12: Displacement of the motional state D5/2,m j =−5/2. a) shows three representative BSB analysis
pulses: one without displacement and two with ODF pulse lengths of 1 ms and 2 ms. The data is fitted with
Eq. 5.12, represented by the solid line. In b), the reconstructed phonon number distributions from a) are shown.
A Poissonian fit (green) and a thermal fit (blue), for the initial ground state, are overlaid. Note the y-axis scaling.
c) shows the extracted displacement amplitude from b) as a function of the ODF pulse length, where the solid
line shows a fit according to Eq. 5.16. The dahsed line represents a fit to the experimental data.
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the motional state to perform closed trajectories in phase space. For this experiment, we
again use the ∆m = 0 optical qubit transition and apply both LS beams simultaneously to
generate a moving standing wave. The experimental sequence consists of an initial π/2
pulse of the 729 nm laser to create a superposition of the two electronic states, followed by
an ODF pulse, and finally a second π/2 pulse of the 729 nm laser for state analysis. When
the ODF pulse is applied to a superposition state, the motional wave packets are displaced
in opposite directions for the two electronic components, thus creating entanglement
between motion and the internal qubit state. This displacement can be characterized as
[58, 84]

α(t ) = η ·∆s

2δ
e iδt/2 sin

(
δt

2

)
, (5.17)

where η is the Lamb-Dicke parameter, ∆s the differential Stark shift, and δ the detuning
from the COM mode. The resulting state after the displacement α and β can be described
by

|Ψ〉 = 1p
2

(e iφ |0〉 |α(t )〉+e−iφ |1〉 ∣∣−β(t )
〉

), (5.18)

where φ describes the accumulated qubit phase during the LS pulse. The resulting
excitation dynamics are shown in Fig. 5.13a) and b). We did this measurement for two
different powers, resulting in two different differential Stark shifts of 13.826(3) kHz for
Fig. 5.13a) and 23.212(3) kHz for Fig. 5.13b). If a finite displacement (|α(t )| ̸= 0) is present,
the two wave packet components remain partially separated, making the corresponding
motional states distinguishable and carrying which-path information that suppresses the
interference contrast [84]. In the absence of displacement (|α(t )| = 0), the wave packets
fully overlap upon recombination, resulting in maximal interference and thus in a revival
of the contrast. More specifically, this happens at the time t = 1/δ= 500µs. During this
evolution, the electronic superposition and the motion become periodically entangled
and disentangled as the wave packets separate and re-overlap, respectively. This leads to
a characteristic decay and revival of the observed excitation as the motional trajectories
complete successive loops. For Fig. 5.13a), the displacement was relatively small, such
that the wave packets remained partially overlapping, allowing residual oscillations to
be observed even at maximal separation. In the case for higher power, as shown in
Fig. 5.13b), the larger displacement allows the wave packets to separate more, minimizing
interference and resulting in a larger loss of contrast. The probability of measuring the
qubit in the excited state after the sequence can be fitted with

P = |〈Ψ|σy |Ψ〉 |2 = exp

(
−16|α(t )|2 sin2

(
θ

2

))
· sin2(2φ), (5.19)

where θ is the relative phase of the LS beams. The Lamb-Dicke parameter, the differential
Stark shift, the detuning and the phases φ and θ are fitted according to Eq. 5.19. From this,
the fit parameters are extracted and used to calculate the displacement by using Eq. 5.17
and represent it in the corresponding phase-space diagram, which demonstrates that the
trajectory forms a closed loop. This condition is crucial for the gate to operate purely on
the qubits and to remain robust against the initial motional state. In the context of LS
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gates, closing the phase-space trajectory ensures that the motional degrees of freedom are
fully disentangled from the qubits at the conclusion of the gate, leaving only the desired
spin-dependent phase. We also compare the measured displacement with theoretical
predictions, observing good agreement. A displacement of zero occurs at pulse length
scans of 0µs and 500µs, where the loop starts and ends, as expected. The maximum
displacement is reached at 250µs, the point at which the contrast exhibits its minimum.
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Figure 5.13: Splitting and recombination of a motional wave packet. The excitation dynamics are presented in
a) for a differential Stark shift of 13.826(3) kHz and in b) for a differential Stark shift of 23.212(3) kHz. The solid
lines represent fits to the data based on Eq. 5.19. The detuning of the LS beams was set to 2 kHz. The error bars
correspond to one standard deviation, estimated using Jeffreys’ integral with a 68 % confidence interval [80].
The extracted displacements are visualized in phase space and compared with theoretical predictions according
to Eq. 5.20.

To quantify the actual separation of the wave packets induced by the displacement,
we consider the distance between them, defined as

d = (|α|− |β|)x0 = (|α|− |β|)
√

×
2mνmode

, (5.20)

where m is the ion mass and νmode = 2.22MHz the radial mode frequency. This gives a
ground-state size of x0 = 7.55nm. For the data shown in Fig. 5.13a), the displacement



5

68 5 LIGHT-SHIFT GATES

amplitude is α= 0.42, corresponding to a separation of d = 6.34nm. In Fig. 5.13b), α=
0.73 yields d = 11.02nm. The interference contrast is higher for the smaller separation and
reduced for the larger separation. To achieve a full loss of excitation probability contrast, a
complete spatial separation of the wave packets is required with a displacement amplitude
of |α| ≥ 1.

5.4 LIGHT-SHIFT GATES
Having thoroughly characterized both the AC Stark shift and the ODF mode coupling —
two fundamental system characterizations — we now proceed to the implementation
and analysis of the gate itself. To this end, experimental measurements were first carried
out in a two-ion crystal to determine the basic gate properties, followed by an extension
of the study to a ten-ion crystal to investigate scalability.

5.4.1 LS GATE IMPLEMENTATION AND CALIBRATION

Prior to presenting the experimental results for the LS gate, we will first discuss the initial-
ization and calibration procedures. The gate implementation follows the pulse sequence
illustrated in Fig. 5.14. Initially, a global π/2 pulse is applied to generate a coherent super-

LS(T/2) LS(T/2)

𝜋/2(0°) 𝜋(90°) 𝜋/2(180°) 𝜋/2(ɸ)

𝜋/2(ɸ)𝜋/2(0°) 𝜋(90°) 𝜋/2(180°)

|↓〉

|↓〉

|↓↓〉+  |↑↑〉

Figure 5.14: Gate pulse sequence. A π/2 pulse creates a superposition between S1/2 and D5/2 states. An
off-resonant LS pulse of duration T is applied, completing the first loop in phase space. A subsequent spin-echo
pulse is applied, in order to eliminate unwanted single qubit Stark shifts. Then another LS pulse is applied,
closing the second loop in phase space. To read out the populations, an additional π/2 pulse is applied, which
maps the populations from the x-basis onto the z-basis. An additional π/2 pulse can be applied for measuring
the parity.

position between the S1/2 and D5/2 state. Since the amplitudes of the ODF differs for the
S1/2 and D5/2 states due to different absolute Stark shifts, this leads to the accumulation of
unwanted single-qubit phases during the gate operation. To compensate for these phases,
eliminate unwanted single-qubit Stark shifts and enhance gate robustness, the operation
is implemented in a two-loop configuration. For this, we split an off-resonant ODF pulse,
from now on called LS pulse, in two equal parts and apply an echo pulse between them,
where the spin-echo pulse inverts the qubit states between the loops, effectively canceling
the single-qubit contributions while preserving the desired entangling phase. Finally,
a π/2 pulse is used to map the state populations from the x-basis onto the z-basis. To
evaluate the gate performance, we apply an additional single-qubit rotation via a π/2
pulse while varying the phase φ to measure parity oscillations. This operation rotates the
measurement basis such that the relative phase between |↓↓〉 and |↑↑〉 is mapped onto
the populations of the measurement basis states and we can record the resulting parity
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signal, as already introduced in Sec. 3.5.3.

Before executing the full gate operation, a series of calibration steps are required to
ensure optimal performance. This is done by measuring the state populations following
the application of a gate sequence. Ideally, the gate sequence should be executed mul-
tiple times to amplify the effects of any errors, thereby enhancing the accuracy of the
calibration process.

1. To enable efficient population transfer between the S1/2 and D5/2 states, the qubit
transition frequency ωSD is calibrated prior to gate operations by doing Ramsey
spectroscopy with the 729 nm laser.

2. The ideal phase-space closure condition constrains the gate duration τg and the
detuning of the modes δ via δτg = 2πn, where n is an integer. In practice, pulse-
shaping transients, AOM delays and nonlinearities cause deviations from the ideal
relation. Therefore, we perform an iterative optimization: pick a nominal δ near the
COM mode, set τg near 2π/δ, and then iteratively fine-scan τg and δ to minimize
the undesired populations in the unwanted states p↑↓+p↓↑.

3. Similarly, the beam power is calibrated, as it determines the size of the phase-
space loop traced by the ions. Maximum entanglement is achieved when the loop
encloses the optimal geometric phase of π, which occurs at the correctly calibrated
power.

5.4.2 TWO-ION CRYSTAL
To start with the simplest case, the LS gate was tested on a two-ion crystal. This configura-
tion offers the advantage of manageable complexity: scaling to larger crystals becomes
very challenging, as numerous effects, such as additional motional modes, make it more
challenging to identify the correct gate parameters. The gate operation was performed
on the transition between the electronic states S1/2,m j =−1/2 and D5/2,m j =−1/2, due
to its reduced sensitivity to magnetic field fluctuations. To perform the LS gate, we first
calibrated the gate according to the steps outlined in Subsec. 5.4.1. With this, the detuning
from the COM mode was set to 5 kHz and the gate duration to 238µs per loop. At first
glance, one might wonder why the gate duration exceeds 200µs. This longer duration
arises from the pulse shaping of the LS beams, which is required to minimize excitation
of the spectator mode. As a consequence, the phase-space trajectory must be extended
slightly to ensure that it closes precisely at the origin, thereby completing the loop. The
beam power was calibrated to 72 % of the full available power to generate a maximally
entangling gate.

As already discussed in Sec. 3.5.3, we can evaluate the performance of the gate, and
therefore the gate fidelity, by measuring the populations of the |00〉 and |11〉 states and
parity oscillations. The result is shown in Fig. 5.15. On the left side, the parity oscillations
are shown and on the right side, the populations are shown. For the parity, a contrast of
98.9(6) % is obtained. For the populations in the |00〉 state, we achieve 48(1) % and for |11〉
52(1) %. The population in other states is 0.9 %. Based on these results, the gate fidelity
can be calculated using Eq. 3.70, yielding a value of 99.0(8) %.
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Figure 5.15: LS gate on a two-ion crystal. The transition∆m = 0 was used to perform the gate. The gate duration
was calibrated to 238µs per loop, and the detuning to 5 kHz. On the left side, a parity measurement can be seen.
The amplitude is 98.9%. On the right side, the population measurement is shown. Population in the |00〉 state is
47.6 % and in |11〉 51.6 %. The population in other states is 0.9 %.

DISCUSSION

The measured gate fidelity of 99.0(8) % is slightly below the limit set by the best reported
LS gates for two-ion crystals. Clark et al. demonstrated a state-of-the-art LS gate achieving
a fidelity of 99.94(3) % (infidelity of 6(3)×10−4) for a gate duration of 35µs [34]. While
our gate operates close to the maximally entangling regime, its fidelity falls short of
this benchmark, indicating the presence of residual technical imperfections. Based on
simulations of the gate duration and gate errors, a higher fidelity could be expected, as
the fundamental error arising from photon scattering and D-level decay (see Eq. 5.5) is
estimated to be 4.16×10−4, corresponding to a theoretical upper limit of 99.96 %. The
discrepancy between the measured and theoretical limits suggests that technical factors
currently dominate the error budget. One likely contributor is a slight population im-
balance between the |00〉 and |11〉 states, implying that the phase-space trajectory does
not perfectly accumulate the desired geometric phase. Residual motional excitation and
small calibration inaccuracies in the detuning or gate duration may also cause minor
qubit misrotations, further reducing the observed fidelity.

The observed technical imperfections likely originate from limitations in the current
experimental setup. In particular, laser intensity fluctuations are expected to play a signif-
icant role. In the present configuration, 10-meter-long optical fibers connect the laser
system to the ion trap. The extended fiber length introduces challenges for interferomet-
ric stability, which is critical for the performance of the LS gate. Optical fibers are highly
sensitive to environmental perturbations: temperature fluctuations along the fiber can
alter the refractive index and effective path length, while mechanical vibrations induce
rapid phase fluctuations. Longer fibers amplify these effects, resulting in larger deviations
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of the relative phase between the laser beams that drive the gate. Since the LS gate relies
on precise phase relationships to generate state-dependent forces and accumulate the
desired geometric phase, any phase drift directly reduces gate fidelity, often manifesting
as a reduction in parity contrast. In the future, the laser system will be moved closer to the
ion trap, which helps to reduce this effect. Another potential source of error originates
from the laser, specifically from fluctuations in its intensity. Intensity fluctuations on the
timescale of the gate alter the size of the phase-space loop and thus the accumulated
geometric phase, leading to a mismatch in the final population. To address this prob-
lem, active power stabilization can be implemented, which will be discussed in Ch. 6.
Implementing these improvements is expected to enhance LS gate fidelity to approach its
theoretical limit.

5.4.3 TEN-ION CRYSTAL
Subsequently, we investigated the performance of LS gates in a ten-ion crystal. This was
achieved using individually addressed 729 nm laser beams in conjunction with globally
applied 532 nm laser beams. The pulse sequence is analogous to that used for the two-
ion crystal (see Fig. 5.14); the key difference is that the 729 nm beams are applied in an
addressed rather than a global manner. Under this configuration, only the addressed
ions participate in the entangling interaction, while the non-addressed ions remain in
their ground state, as shown previously in Sec. 5.2.4. To illustrate the operation of the gate
in a multi-ion configuration, ions 4 and 6 were selected for entanglement, as shown in
Fig. 5.16. This choice was arbitrary, since any ion pair within the crystal can, in principle,
serve for this measurement.

1
2

3

4

5

6

7

8

9
10

Figure 5.16: Ten-ion crystal. The LS gate on a ten-ion crystal is achieved using addressed 729 nm beams and
global 532 nm beams. Only the addressed ions 4 and 6 get entangled, the remaining ions stay in the ground
state.

The gate was calibrated according to Subsec. 5.4.1, where we found a detuning of 305µs
per loop, a detuning from the COM mode of 3.32 kHz and the power to 100 % of the
full available power. To evaluate the performance of the quantum gate, the fidelity was
determined through two-qubit quantum state tomography using a maximum-likelihood
estimation approach, as outlined in Sec. 3.5.3. This procedure involved preparing the
target quantum state 1000 times and performing projective measurements in the eigen-
bases of the single-qubit Pauli operators σx ,σy and σz (i.e. the +X , −X , +Y , −Y , +Z and
−Z eigenstates). The reconstruction of the density matrix was carried out by iteratively
solving Eq. 3.78 and is shown in Fig. 5.17. From the resulting density matrix, the fidelity
was computed to be 79(1) %. The errorbars are obtained from Monte Carlo simulations,
as described in Sec. 3.5.3. The purity of the states, defined as Tr

(
ρ2

)
, was determined to

69(2) %.
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Real part Imaginary part

Figure 5.17: Two-qubit state tomography reconstruction via MLE. The density matrix was reconstructed by
solving Eq. 3.78. With this, a fidelity of 79(1) % was achieved. The error bars stem from Monte Carlo simulations.

DISCUSSION

The observed gate performance is highly reduced compared to the two-ion case, with a
measured fidelity significantly below unity and a state purity of 69(2) %. From simulations
we theoretically expect a fidelity of 99.73 %, where the fundamental error is 2.70×10−3.
This discrepancy probably arises from the increased susceptibility of larger ion crystals
to experimental imperfections. As the number of ions increases, the motional mode
spectrum becomes denser, making the gates more sensitive to frequency drifts and timing
errors. Moreover, spatial inhomogeneities and cross-talk between closely spaced ions
enhance the system’s sensitivity to laser intensity fluctuations and misalignment [85].
Furthermore, increasing the gate duration (in our case 305µs per loop) extends the
interaction time between the ions and the laser fields. As a result, laser intensity and
phase noise act over a longer period, leading to enhanced phase fluctuations in both
the qubit and motional states. In addition, magnetic-field noise and laser-frequency
drifts can induce dephasing of the qubit transition during the gate. Collectively, these
effects lead to greater sensitivity to noise and control errors. These noise sources can
decohere the intended pure state, transforming it into a mixed state. As a result, both the
fidelity, which measures the overlap with the ideal target state and the purity, quantifying
the coherence of the state, are reduced. To the best of our knowledge, no experimental
realization of a LS gate in extended ion crystals has been reported so far. Our results thus
constitute an important demonstration that this gate mechanism can be successfully
applied in larger ion systems. With the improvements outlined above, we are confident
that the gate fidelity already achieved can be further enhanced.
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6
SYSTEM ENHANCEMENTS

To enhance the fidelity of the LS gates, a number of improvements have been imple-
mented in the experimental setup. In the first instance, active stabilization of the laser
power was implemented in order to reduce intensity fluctuations, which are a primary
cause of gate errors (see Sec. 6.1). We prove the functionality of the stabilization by means
of relative intensity noise (RIN) measurements, showing a reduction of the noise level
at the relevant frequencies of at least 20 dBc/Hz. Additional enhancements include the
integration of new shorter optical fibers to enhance interferometric stability and fiber
couplers, designed for high-optical powers, as will be discussed in Sec. 6.2. The design of
the fiber couplers will be outlined, along with accompanying optical simulations.
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6.1 LASER POWER STABILIZATION
To further approach the theoretical performance limit of the LS gates, we implement laser-
power stabilization. To this end, we actively stabilize the laser intensity in the frequency
range between 10 Hz and 100 kHz, where intensity noise affects the performance of the
gate. The configuration of the power stabilization system is illustrated in Fig. 6.1. A single-
pass AOM1 is positioned directly subsequent to the laser head. The zeroth-order diffracted
beam is blocked with a beam block (BB), while the first-order diffracted beam is passed
through a beam sampler (BS), directing the reflected beam onto a photodiode (PD)2,
which provides a feedback signal to a custom-built proportional-integral (PI) controller.
The controller, in turn, regulates the RF power applied to the AOM, thereby stabilizing the
diffracted laser power. The diffracted beam is directed towards the LS setup, as shown
earlier in Fig. 4.4. The PI unit provides a low-noise bias voltage for the photodiode and
includes a transimpedance amplifier for current-to-voltage conversion. This is followed
by a low-noise analog PI controller that feeds back on a voltage-variable attenuator. The
attenuator limits the unit’s bandwidth to about 300 kHz.

Figure 6.1: Laser power stabilization. The laser power is stabilized with a single-pass AOM. The zeroth-order
beam is blocked with a beam block (BB), while the first-order diffracted beam passes through beam sampler
(BS), directing the reflected beam to a photodiode (PD) that generates a feedback signal for a custom-built
proportional-integral (PI) controller. The controller adjusts the RF drive (that is connected to the controller
via an amplifier) applied to the AOM, ensuring the laser power remains stable. The diffracted beam is directed
toward the LS setup, as shown earlier in Fig. 4.4.

6.1.1 FOUNDATIONS OF INTENSITY NOISE CHARACTERIZATION
The performance of the power stabilization is assessed through intensity noise char-
acterization. The intensity noise of a laser arises from a combination of fundamental
quantum noise and technical noise sources. Quantum noise originates from intrinsic
processes such as the spontaneous emission and the interplay between the gain dynamics
and resonator losses [86]. Technical noise sources include excess noise from the pump

1Gooch and Housego, I-M110-2C10B6-3-GH26
2Thorlabs, SM05PD2B
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source or noise from the resonant frequency-doubling stage, mechanical vibrations of
the resonator mirrors, and thermal fluctuations within the gain medium, among others
[87]. The overall intensity noise spectrum is not solely determined by these sources, but
also depends sensitively on the laser operating conditions.

The instantaneous optical power P (t) of a laser can be expressed as the sum of its root-
mean-square (RMS) value Prms and power fluctuations of δP (t ):

P (t ) = Prms +δP (t ). (6.1)

To quantify power fluctuations, we use the power spectral density (PSD). In signal pro-
cessing, the power spectrum Sxx ( f ) describes how a continuous-time signal’s power is
distributed across frequency components. By Fourier analysis, any signal can be repre-
sented as a superposition of frequency components over a continuous range, with some
of the power potentially concentrated at discrete frequencies. The PSD gives the statistical
average of this power as a function of frequency. The spectrum is discretized into evenly
spaced frequency bins, whose width depends on the sampling rate and total number
of samples, as given by the Nyquist–Shannon sampling theorem. This theorem states
that accurate reconstruction requires the sampling frequency to be at least twice the
highest signal frequency [88]. The corresponding Nyquist frequency f /2 marks the upper
limit of unambiguous representation; higher-frequency components fold back as aliases,
distorting the PSD. The lowest resolvable frequency is set by the total acquisition time:
fmin = 1/Tacq.

The PSD can be defined as a one-sided PSD of only positive frequencies or a two-sided
PSD of both positive and negative frequencies. To obtain the PSD, we compute the
Fourier transform of the autocorrelation function of δP (t ). Here, an additional factor of 2
is included to obtain the one-sided PSD:

Sxx ( f ) = 2
∫ +∞

−∞
〈δP (t )δP (t +τ)〉exp

(
i 2π f τ

)
dτ. (6.2)

Here, f denotes the noise frequency. In this convention, the units of Sxx ( f ) are V2/Hz,
although it is often reported in logarithmic scale (dBV2/Hz), computed as
10log10(Sxx ( f )/(1V2)).

A widely used deduced metric is the relative intensity noise (RIN), which quantifies
power fluctuations normalized to the averaged optical power, given by

RIN = 〈δP (t )2〉
P 2

rms
= PSD

P 2
rms

. (6.3)

The units are often reported in dBc/Hz, which is the noise power per hertz relative to
the power of a carrier signal. A single number giving a hint on intensity noise is the
integrated RIN, which is obtained by integrating the RIN spectrum over the frequency
range of interest:

Integrated RIN =
√∫ fmax

fmin

RIN( f )d f . (6.4)
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This quantity provides a measure of the RMS laser intensity fluctuations over the specified
frequency band.

6.1.2 RIN CHARACTERIZATION
We now proceed to the measurements, in which the RIN was characterized for three
different optical powers of the laser: 1 W, 4 W and 8 W, both for the free-running and
stabilized case. Since our previous measurements in Ch. 5 were performed at a laser out-
put power of 1 W, it is instructive to examine the RIN at this operating point. The higher
powers were included to investigate how the intensity noise scales with increasing optical
output, as higher optical powers will be required for future experiments involving larger
ion crystals. In order to measure low-noise levels of the RIN from DC to MHz frequencies,
fast, low-noise and high-resolution data acquisition of the analog photodiode signals is
required. To this end, we use a commercial intensity noise analyzer (Thorlabs, PNA1) with
a noise floor under −140 dBV2/Hz, a bandwidth from DC to 3 MHz and 18 Bit resolution.
We measure the RIN using two photodiodes. On the one hand we use the monitor output
of the PI unit, which is the buffered output voltage of the transimpedance amplifier. If
the PI controller is running, this measurement reflects the in-loop error signal. As an
independent cross-check, an external reference photodiode (Thorlabs, PDA10A1) is used.
This model already contains a transimpedance amplifier, i.e. it can be directly connected
to the noise analyzer. This measurement is useful to assess if the home-built photodiode
(hereafter referred to as the feedback PD3) and the amplifier circuit is properly working,
and is not introducing additional noise into the system. A setup of the measurement is
shown in Fig. 6.2.

PI controller

Feedback
PD

Reference
PD

PBSλ/2

BB

AOMLaser 532 nm

RF source

Amplifier

PNA1OUT
IN

Figure 6.2: Setup for the characterization of RIN. The laser power is stabilized using an AOM, connected to a
PI controller, as discussed before. Excess light is directed to a beam block using a half-wave plate and a PBS,
while the attenuated beam is sent to a second PBS, which divides the power such that each photodiode receives
a signal corresponding to 2 V. The reference photodiode is connected directly to the PNA1, whereas for the
feedback photodiode, the monitored signal is taken from the output of the PI controller.

The results are presented in Fig. 6.3. Apart from these measurements, background mea-
surements of the intensity noise analyzer and of both photodiodes were performed to
identify the noise level of the measurement system. Here, background refers to measure-
ments taken with no light incident on the photodiode. We begin with Fig. 6.3a), which

3Thorlabs, SM05PD2B



6.1 LASER POWER STABILIZATION

6

77

shows the RIN of the feedback PD. Note that all measurements were referenced to 2 V,
corresponding to the output voltage of the feedback PD. The black curve at the bottom
corresponds to the background of the PNA1, which is consistent with the manufacturer’s
specifications. The gray curve represents the background measurement of the feedback
PD together with its home-built amplifier. As expected, a low noise level is observed. At
higher frequencies around 3 MHz, a rise occurs due to the bandwidth limitation of the
transimpedance amplifier, which is anticipated. The upper curves depict the unstabilized
measurements: the 1 W unstabilized data in light green, 4 W in pink, and 8 W in teal. All
unstabilized measurements exhibit a high noise level at low frequencies between 10 Hz
and 100 kHz, which is highly problematic for gate operations. For higher optical powers,
a broadband peak around 700 Hz is observed, likely originating from the laser itself. The
sharp peaks in the spectra may result from electrical noise in the laboratory environment
or from intrinsic laser fluctuations, although this has not been definitively confirmed.
The RIN measurements with active stabilization are shown in green (1 W), red (4 W), and
light blue (8 W). As desired, a strong reduction of low-frequency noise is observed, with
levels decreasing by up to −63 dBc/Hz. At higher frequencies, the servo bump of the
PI unit appears around 300 kHz (determined by the bandwidth of the voltage-variable
attenuator), leading to an increased noise level of approximately −115 dBc/Hz. Note that
tuning the PI parameters could reduce the strength of this servo bump, but this would
come at the cost of higher noise at lower frequencies.

Fig. 6.3b) shows the respective curves for the reference photodiode. Note that the noise
level of the photodiode (gray curve) is higher than the PNA noise level. This is not unex-
pected since the PI unit was developed for the stabilization of the RF power for ion traps,
which requires extremely low noise levels at the ppm level. The reference photodiode,
however, is a standard product from Thorlabs with no particular focus on ultra-low noise.
However, apart from residual features from this increased noise level of the reference pho-
todiode, specifically in the range between 10 Hz and 1 kHz, the spectra of the laser noise
are pretty much similar to those from the in-loop error signal, i.e. proper functionality of
the stabilization system can be confirmed.

As noted above, another relevant quantity is the integrated RIN, shown in Fig. 6.3c) and
d) for the feedback and reference photodiodes, respectively. Each data point represents
the integral of the RIN spectrum from DC up to the corresponding frequency; thus, the
rightmost point of each curve corresponds to the total integrated RIN over the full spec-
trum. In the free-running case, strong low-frequency noise leads to a rapid increase of
the integrated RIN, whereas active power stabilization suppresses this increase up to
approximately 100 kHz. At this frequency, the integrated RIN is 0.025 % for 1 W, 0.024 %
for 4 W, and 0.024 % for 8 W, compared to values exceeding 0.26 % in the free-running case.
At higher frequencies, the integrated RIN increases due to the spectral power contained
in the servo bump. This effect is pronounced, resulting in an apparent increase by a
factor of roughly 34 when integrated over the full spectrum. This arises from the logarith-
mic scaling of the frequency axis, which can underestimate the contribution of narrow
peaks at high frequencies. Nevertheless, these high-frequency noise components are ef-
fectively averaged out for quantum gates with durations of several hundred microseconds.
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These results demonstrate that the implemented power stabilization allows for a sig-
nificant suppression of intensity noise on timescales relevant to the gate operation. Such
a reduction is beneficial, as intensity fluctuations during the gate duration can directly
degrade quantum gate fidelity. By minimizing these fluctuations, we expect a correspond-
ing improvement in gate performance and overall fidelity, enabling more reliable and
precise quantum operations, which will be investigated in upcoming experiments.
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Figure 6.3: RIN of the free-running and stabilized laser. In a) and b), the RIN is presented for the feedback and
reference photodiode, respectively. For each photodiode, the RIN was measured for three optical output powers
of the laser: 1 W, 4 W and 8 W, both for the free-running and the stabilized laser. Additionally, the background
noise of the intensity noise analyzer and that of the photodiode were recorded. Note that all measurements
were referenced to 2 V. In panel c) and d), the integrated RIN is depicted for both photodiodes corresponding to
all spectra shown in panel a) and b).
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6.2 FIBER COUPLERS AND FIBERS
Another improvement to the LS gate setup is the implementation of new fiber couplers
and fibers designed for high optical power. This section presents the design of the couplers
together with supporting optical simulations and discusses the selection of the new fibers.

6.2.1 FIBER COUPLERS
A big problem in the fiber-coupling of high-intensity lasers is dust and aerosols in the air
around the fiber facet, which can lead to localized absorption and permanent damage
when exposed to high-intensity light [89]. We reduce these effects through the the use of
custom-built, sealed fiber couplers that provide a dust-protected environment for the
focusing optics and fiber facets. The fiber incoupler and outcoupler are shown in Fig. 6.4a)
and b), respectively. Both couplers employ translation mounts with degrees of freedom in

Z translation

75mm air-spaced
doublet lens

fiber adapter 
plate

fiber adapter 
plate

pitch/yaw adapter

XY translationZ translation
XY translation

18.4 mm aspheric
lens

a) b)

window window

Figure 6.4: 3D rendering of the cross section of the fiber couplers. The light-green arrow denotes the propaga-
tion direction of the laser beam. a) shows the fiber incoupler, and b) depicts the fiber outcoupler. Both couplers
employ translation mounts with degrees of freedom in the XY-plane as well as along the Z-axis, enabling proper
alignment for efficient light coupling. The window is not shown in the 3D rendering. The incoupler incorporates
an aspheric lens with a focal length of 18.4 mm to adjust the incident beam to the appropriate size (12.2µm) for
coupling into the fiber. The outcoupler employs a 75 mm air-spaced doublet lens to expand the output beam to
a diameter of approximately 100µm at the position of the ions.

the XY-plane4 as well as along the Z-axis5, enabling proper alignment of the fiber facet
with respect to the focusing lens to achieve efficient fiber-coupling. The outcoupler has
the additional possibility for tilt operations6 of the fiber facet to simultaneously minimize
astigmatism and coma, since an abberation-free beam on the ion crystal is desired. Apart
from the translation stages, custom-built aluminum parts are manufactured to fit into
the cage system between the translation stages. In combination with a wedged window7

4Thorlabs, ST1XY-A/M
5Thorlabs, SM1ZA
6Thorlabs, KAD12F
7Thorlabs, WW11050-C10
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glued on the input/output and Kapton tape covering the remaining gaps, a mostly dust-
free environment can be ensured.

The incoupler employs a configuration in which a collimated beam is generated us-
ing a separate lens to focus the light. Although this approach is generally not optimal
due to the introduction of optical aberrations, these aberrations have a comparatively
minor impact on the coupling efficiency in this case. The fiber outcoupler operates as
follows: rather than producing a collimated beam and subsequently using a separate
lens to focus the light onto the ions, which can introduce aberrations from the additional
optical element, we generate a converging beam by positioning the lens close to its focal
length to the fiber facet. The outcoupler is then placed at the location where this con-
verging beam reaches its focal spot at the ions. Combined with a high-power air-spaced
doublet lens, designed to suppress spherical aberrations, and careful alignment of the
fiber facet relative to the lens, this approach produces a beam with minimal aberrations
at the position of the ion crystal. To determine suitable optical components and minimize
abberations, simulations were performed using Zemax OpticStudio. For the fiber incou-
pler, the primary objective was to focus the incoming beam to the appropriate spot size
of 12.2µm to match the mode field diameter of the fiber. Based on the simulation results,
for the incoupler, an aspheric lens with a focal length of 18.4 mm8 was selected. Note
that these results represent an optimization, and several constraints must be taken into
account. The model assumes ideal optical components with perfect surface quality and
coating performance. It further requires exact axial distances and perfectly concentric
alignment; in practice, even small tilts or lateral displacements can lead to significant
increases in aberrations. For the fiber outcoupler, the beam size at the ion position had
to match the crystal size of 100µm. With the simulations, a 75 mm air-spaced doublet
lens9 was selected. Fig. 6.5 shows the aberrations of the fiber outcoupler. All seven Seidel
coefficients are plotted for each optical surface, along with the cumulative contributions
in the focal plane at a wavelength of 532 nm. The simulations reveal that only spherical
aberrations are introduced by the lens surfaces. Since these occur with opposite signs,
they largely cancel, leaving only a minimal residual contribution of 33 nm. Furthermore,
the Airy disk was simulated as illustrated in Fig. 6.6b), representing the smallest achievable
focused spot size. The Airy disk for the fiber outcoupler has a diameter of 104.6µm. For
the incoupler, the Seidel coefficients showed a total contribution of 0.02 nm and an Airy
disk of 14.7µm. For both, the in- and out-coupler, the simulated spot lies well within the
Airy disk, thus confirming operation near the diffraction limit with minimal aberrations.

Before final assembly, all custom-built components were cleaned in an ultrasonic bath to
remove residual oil and dust from their surfaces. Finally, the fiber couplers were sealed
with Kapton tape to prevent contamination from entering the assemblies.

6.2.2 FIBERS
Special attention is given to managing the high optical power densities present in the
system, which pose a significant risk of damaging optical components, particularly the

8Thorlabs, C280TMD-A
9Thorlabs, ACA254-075-532
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Figure 6.5: Aberrations in the fiber outcoupler. Aberrations of the fiber outcoupler were analyzed in Zemax
OpticStudio. All seven Seidel coefficients are shown for each surface, along with their cumulative contribution in
the focal plane. The fiber outcoupler employs an air-spaced doublet lens. Each surface of the doublet introduces
spherical aberrations of opposite signs, which largely cancel, leaving only a small residual contribution.

facets of optical fibers. To mitigate this risk, high-power photonic crystal fibers (PCF)10

will be employed. These contain a regular pattern of microscopic air channels along its
length, enabling a unique guiding mechanism and tailorable optical properties. These
fibers exhibit several important advantages [90]. First, they support single-mode be-
haviour in conjunction with large mode areas. As an example: the PCF we use has a mode
field diameter of 12.2µm compared to a standard single-mode fiber for 532 nm with a
mode field diameter of 3.3µm. This results in smaller power densities on the facet and
in the fiber core, which reduces the likelihood for power-induced damage. In addition,
PCF employ an end-capped design, which reduces the optical intensity at the air-glass
interface, thereby lowering the risk of facet damage. Finally, the presence of an air-gapped
connector helps to minimize losses in the surrounding ceramic as well as in the glue. This
allows for transmission of powers of up to 20 W per fiber (3 m length), which is sufficient
even for big ion crystals.

Furthermore, we will significantly reduce the fiber length from its current length of 10 m
down to 3 m to improve the phase-stability of the interferometer on short time scales.
Such stability is important, since phase noise of the interferometer directly translates
into fluctuations of the standing-wave phase at the ions (apart from the fact that longer
fibers become problematic at these power levels due to the onset of stimulated Brillouin
scattering). This directly affects the final phase of the entangled state. As a result, the gate

10NKT Photonics, AEROGUIDE-15-PM
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Figure 6.6: Simulated spot sizes. The spot sizes of the fiber incoupler and outcoupler were simulated in Zemax
OpticStudio. a) shows the fiber incoupler, with an Airy disk diameter of 14.7µm. The Airy disk represents the
smallest achievable focused spot size for the given wavelength and aperture. The simulated spot lies well within
this limit, indicating operation close to the diffraction limit. b) shows the fiber outcoupler, where the Airy
disk diameter is 104.6µm. Here too, the simulated spot remains well within the Airy disk, confirming almost
diffraction-limited performance with minimal aberrations.

fidelity would be reduced if the phase stability were not maintained. Relocating the laser
system closer to the ion trap is expected to enhance the stability of the interferometer
and, consequently, improve the gate fidelity.
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7
SUMMARY AND OUTLOOK

The central achievement of this thesis has been the successful implementation of light-
shift gates within a two-dimensional trapped-ion quantum simulator, enabling two-qubit
entangling gates and in the future potentially global ZZ interactions. These gates provide
the capability to selectively entangle arbitrary pairs of ions, an essential prerequisite for
preparing tailored input states adapted to the Hamiltonian under investigation. This ad-
vancement broadens the scope of quantum simulations that can be realized and enhances
the overall versatility of the simulator and programmability. To realize this operation,
individually addressed 729 nm laser beams are used to transfer selected ions from the
ground-state qubit manifold to an optical qubit state. The entangling interaction is then
mediated by a global 532 nm laser, which is far detuned from any electronic transition
of the 40Ca+ ion. This large detuning suppresses photon scattering, allowing for the
implementation of high-fidelity entangling gates.

To assess the feasibility of the gate implementation, simulations of the AC Stark shift
and photon scattering rate were conducted. From this, the expected gate durations
and associated errors were estimated, providing a quantitative framework for evalua-
tion and enabling direct comparison between experimental observations and theoretical
predictions. On the experimental side, an optical setup for a laser at 532 nm has been
constructed to implement the light-shift gates. The beam is divided into two paths using
polarizing beam splitters. Each path is independently controlled in frequency, amplitude,
and phase via a dedicated acousto-optic modulator, enabling the generation of a moving
standing wave. Using this setup, we first measured the beam size and the AC Stark shift for
the optical qubit. There we found an offset between experiment and simulation of about
25 kHz. While partial deviations may be attributed to reflection losses at the vacuum
viewport, these losses alone are insufficient to account for the full deviation. Therefore,
further investigation is required. For the following measurements, we instead considered
the relative differences between transitions. This was characterized for the optical qubit,
where we found good agreement between experiment and simulation up to deviations
of 2.6 %. In case of the metastable qubit, larger deviations of about 15 % are observed.
We showed that these deviations can be partly attributed to polarization imperfections.
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Introducing a slight ellipticity in the simulations of 4.9 % for light-shift beam 1 and 13.3 %
for light-shift beam 2, we can reduce these deviations to within 0.7 %. However, for tran-
sitions, which employ the ∆mDD =−1 transition, we observed deviations by a factor of
two. It is likely that the atomic-physics model employed in the simulations does not fully
account for the D5/2 states, though further study is necessary to ascertain the extent of its
failure. Furthermore, measurements of the ground-state qubit manifold were performed.
As expected from the large detuning relative to the fine structure of the P orbital and the
use of linearly polarized light, was found to effectively cancel. This capability is required
for the subsequent implementation of the light-shift gates. In that protocol, a 729 nm
laser is used to transfer two selected qubits into the optical qubit manifold, while the
other ions remain in the ground-state. A global 532 nm beam is then applied to entangle
only the selected ions. It is therefore important that the 532 nm light does not induce
unwanted Stark shifts on the ground-state qubit manifold.

Another central parameter in the implementation of light-shift gates is the optical dipole
force, which allows for coupling between the ions’ internal states and their collective mo-
tion. To characterize this coupling, the effect of coherent displacements of the motional
state induced by a light-shift pulse for different electronic states was investigated. In these
experiments, the parameters of the optical dipole force were set to allow for resonant exci-
tation of the mode, which gives rise to a coherent displacement. From this, we extracted
phonon distributions for comparison with theoretical predictions. Measurements were
performed for three different initial states. For the S1/2,m j =−1/2 motional ground state,
the experimentally measured displacements closely matched the theoretical predictions,
with a deviation of 0.5 %. In contrast, for the D5/2,m j =−1/2 and D5/2,m j =−5/2 states,
deviations of a factor 1.6 were observed. As in the case for the AC Stark shifts, it is likely
that the atomic physics model used in the simulations is not fully capturing the D5/2 states,
although this needs further investigation. To further advance toward the implementation
of the light-shift gate, which relies on off-resonant excitation of a motional mode such that
the motional state follows a closed trajectory in phase space, we investigated this regime
by detuning the light-shift beams from the center-of-mass mode. By determining the
displacement amplitude from the decay and revival of the excitation-probability contrast,
we observed good agreement with theoretical predictions, with deviations of up to 4.6 %.
The consistency between experiment and theory in these measurements is crucial, as it
validates our understanding of the optical dipole force-mediated coupling mechanism
and confirms the control of motional displacements. These elements are prerequisites
for attaining light-shift gate operations.

Finally, the light-shift gate was implemented and characterized. In a two-ion crystal,
we achieved a gate fidelity of 99.0(8) %. Simulations predict a theoretical upper limit of
99.96 %, indicating that residual errors are primarily of technical origin. The dominant
error sources are most likely laser-intensity fluctuations, which lead to variations in the
AC Stark shift and thereby degrade the population contrast. Another relevant contribution
possibly is the interferometric instability introduced by the 10 m optical fibers connecting
the laser system to the trap, which can perturb the final phase of the entangled state. En-
vironmental perturbations along these fibers, such as temperature drifts and mechanical
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vibrations, lead to phase noise and reduced gate fidelity. As described below, some of
these issues will be addressed in a revised version of the setup. To investigate scalability,
the gate was implemented in a ten-ion crystal by addressing two central ions with the
729 nm beam while applying the light-shift beam globally. A fidelity of 78.6(10) % was
obtained, representing, to our knowledge, the first demonstration of a light-shift gate in a
ten-ion system in such a configuration. The reduced fidelity arises from the denser mo-
tional spectrum and increased susceptibility to off-resonant couplings, mode crosstalk,
and dephasing, compounded by technical noise sources such as intensity fluctuations
and polarization imperfections, some of them are more critical for larger ion numbers.

The thesis is concluded with a chapter describing a revised version of the setup to address
some of the issues limiting the gate fidelity. First, active laser intensity stabilization was
implemented using a single-pass acousto-optical modulator placed after the laser head. A
photodiode monitors the output intensity and provides feedback to a custom PI controller
that regulates the acousto-optical modulator’s radio-frequency drive. We demonstrated
noise suppression in a frequency range of 10 Hz to 50 kHz, relevant to the employed gate
durations of around 500µs. Within this band, the noise can be reduced between 8 dBc/Hz
and 63 dBc/Hz, representing a sufficient improvement. The effect of the improved sta-
bility will be tested on the ion crystals in future experiments. Furthermore, additional
improvements are anticipated from replacing the current 10 m optical fibers with shorter
3 m ones and by positioning the laser system closer to the ion trap, both of which will
enhance interferometric stability and further benefit the achievable gate fidelity. To cope
with higher powers, which are required for bigger ion crystals beyond 10 ions, the fiber
handling was improved in terms of employing high-power photonic crystal fibers as well
as home-built shielded fiber couplers.

With these technical upgrades in place, the next step will be to systematically evaluate
their impact on gate stability and performance. Under the improved experimental condi-
tions, featuring active laser power stabilization and reduced fiber lengths, the light-shift
gates will be re-characterized to quantify the achieved gains in fidelity and robustness.
These improvements will enable more systematic benchmarking of light-shift gates and
provide deeper insight into the remaining error sources and the ultimate fidelity limits
attainable in the current setup. Future studies will also explore the implementation of
higher optical powers to extend light-shift gate operations to larger ion crystals, investigat-
ing entangling gates between arbitrary ion pairs. On the simulation side, it is interesting
to use the global ZZ interaction in combination with the existing XX and XY interaction to
explore more complex spin models or to extend the toolbox of interaction models with
the goal of performing variational quantum simulation experiments.
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ACRONYMS

2D Two-Dimensional.

AOM Acousto-Optical Modula-
tor.

BB Beam Block.
BS Beam Sampler.
BSB Blue Sideband.

COM Center-of-Mass.

EIT Electromagnetically
Induced Transparency.

GS Ground-State.

LS Light-Shift.

MLE Maximum-Likelihood Es-
timation.

MS Mølmer-Sørensen.

NA Numerical Aperture.

ODF Optical Dipole Force.

PBS Polarizing Beam Splitter.
PCF Photonic Crystal Fiber.
PD Photodiode.
PI Proportional-Integral.
POVM Positive-Operator Valued

Measure.
PSD Power Spectral Density.

RF Radio-Frequency.
RIN Relative Intensity Noise.
RMS Root Mean Square.
RSB Red Sideband.
RWA Rotating Wave Approxi-

mation.
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