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We show that scalable multipartite entanglement among light fields may be generated by optical parametric
oscillators �OPOs�. The tripartite entanglement existent among the three bright beams produced by a single
OPO—pump, signal, and idler—is scalable to a system of many OPOs by pumping them in cascade with the
same optical field. This latter serves as an entanglement distributor. The special case of two OPOs is studied,
as it is shown that the resulting five bright beams share genuine multipartite entanglement. In addition, the
structure of entanglement distribution among the fields can be manipulated to some degree by tuning the
incident pump power. The scalability to many fields is straightforward, allowing an alternative implementation
of a multipartite quantum information network with continuous variables.
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I. INTRODUCTION

Entanglement is the primary resource in the field of quan-
tum information. Its strikingly singular properties, which
permeated the early debates on the fundamentals of quantum
mechanics �1�, are nowadays employed to take computation
technology and communication security beyond the classical
limit �2,3�. Some applications have been successfully dem-
onstrated in systems composed of up to four parties �4,5�, but
their unrestricted use in quantum computation and networks
relies on the ability to entangle numerous physical systems
�6�.

Multipartite entanglement brings a new level of complex-
ity, and therefore novel possibilities, such as stronger viola-
tion of Bell-type inequalities �7�. The geometry of entangle-
ment distribution among parties can be manipulated to
perform one-way quantum computation �8,9� or to guarantee
that confidential information is correctly addressed and
safely transmitted �10,11�. When it comes to continuous-
variable �CV� entanglement �12�, the quadratures of light
fields—equivalent to the intensity and phase in the case of
bright beams—offer the possibility to implement such ideas.

The usual way to produce multipartite CV entangled light
beams relies on the interference of at least one quantum field,
presenting quadrature squeezing, with any desired number of
vacuum fields using beam splitters �4,13�. This has been re-
alized for up to four squeezed beams by employing optical
parametric amplifiers �14�. However, the requirement for in-
terference limits this type of scheme to fields with the same
optical frequency.

We present an alternative scalable way to directly gener-
ate CV multipartite entangled beams without the need for
interference �15,16�. Our scheme utilizes as a basic resource
the tripartite entanglement existent between the three
fields—signal, idler, and pump—produced by an optical
parametric oscillator �OPO� operating above threshold �17�.
Various OPOs are used in a chain configuration, such that the
pump beam reflected by the first one, already entangled to
the first pair of down-converted twin beams, pumps a second

OPO, entangling both pairs of twins, and so on. The pump
beam then acts as a sequential entanglement distributor. Fur-
thermore, we show that the entanglement structure can be
manipulated by tuning the pump power. We study the sim-
plest case of two OPOs to show that the resulting five light
beams present genuine pentapartite entanglement.

This paper is organized as follows. We begin in Sec. II
with the method we use to characterize multipartite entangle-
ment, the positivity of the partially transposed �PPT� density
matrix �18,19�. We proceed in Secs. III and IV with a brief
review of the equations describing the quantum properties of
the light beams generated by a single OPO. By using this
result, it is straightforward to derive the set of equations for
the pentapartite system. In Sec. V, we present our results by
applying the PPT criterion to the composite system of two
OPOs, thus demonstrating the existence of genuine pentapar-
tite entanglement among the light beams, and analyze the
structure of entanglement distribution. Concluding remarks
are presented in Sec. VI.

II. MULTIPARTITE ENTANGLEMENT OF GAUSSIAN
STATES

Gaussian states are completely characterized by their sec-
ond order moments, organized in the covariance matrix V
= �x�Tx��, where

x� = �p̂1, q̂1, p̂2, q̂2, . . . , p̂N, q̂N� �1�

is the vector of the amplitude �p̂j =exp�−i� j�âj +exp�i� j�âj
†�

and phase (q̂j =−i�exp�−i� j�âj −exp�i� j�âj
†�) quadrature op-

erators, chosen relative to a phase � j, and N is the number of

field modes. The operators âj and âj
† are the usual annihila-

tion and creation operators for mode j. The canonical com-
mutation relations can be written in the compact form
�x� ,x�T�=2i�, where
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� = �
j=1

N

�, � = � 0 1

− 1 0
� . �2�

A typical unitary physical transformation acting on the Hil-
bert space of the system, such as the ones associated with
beam splitters and one- or two-mode squeezers, preserves the
Gaussian character of the state. The corresponding transfor-
mation S acting on the covariance matrix pertains to the real
symplectic group S�Sp�2N ,R�, which preserves the com-
mutation relations S�ST=� �20�.

In order to represent a physical state, the covariance ma-
trix must respect the Robertson-Schrödinger uncertainty
principle �21�,

V + i� � 0. �3�

This condition, which is invariant under symplectic transfor-
mations, implies a constraint to the symplectic eigenvalues
of the covariance matrix

�k � 1, k � 1,2, . . . ,N . �4�

The symplectic eigenvalues can be computed as the square
roots of the ordinary eigenvalues of −��V�2. They are invari-
ant under local operations and classical communication
�LOCC� �22�. If the covariance matrix corresponds to a pure
state, then one necessarily has �k=1, ∀k.

The existence of entanglement among the field modes
may be unveiled by applying separability tests to all possible
partitions, and its structure, also by the reduced subsystems.
If all partitions of a pure state are inseparable, the system is
said to present genuine N-partite entanglement. One power-
ful testing method relies on the positivity of the partially
transposed �PPT� density matrix �18�. This map is positive
regarding all separable states, but may be negative to en-
tangled states. It is equivalent, in phase space, to a local
inversion of time for the transposed subsystems �19�. Re-
garding the covariance matrix, the PT operation takes q̂j in
−q̂j for the desired subset of modes. The failure of the result-

ing PT covariance matrix Ṽ to comply with the uncertainty
principle �3� is a sufficient condition for the existence of
entanglement between the transposed subset and the remain-
ing subset �19�.

Therefore, Eq. �3� must be satisfied by all the possible
transpositions of covariance matrices representing com-
pletely separable states. Equivalently, the symplectic eigen-

values �̃ of Ṽ must fulfill Eq. �4� in this case. The PPT
criterion is both necessary and sufficient for pure or mixed
states split in partitions 1� �N−1� �19,23�. Other partitions
from systems with N�2 may possess bound entanglement, a
nondistillable form of entanglement which is not revealed by
partial transposition �23�. Nevertheless, it is always suffi-
cient.

It is worth mentioning that the smallest symplectic eigen-
value �̃min of the PT covariance matrix is useful not only to
witness the entanglement but also to quantify it. In fact, the
entanglement measure given by the logarithmic negativity
�24� can be written as a decreasing function of �̃min, for all

�M +N�-mode bisymmetric Gaussian states �22�. Thus, a
larger violation of Eq. �4� implies a larger amount of en-
tanglement.

III. DESCRIPTION OF THE OPO

The optical parametric oscillator consists of a nonlinear
��2� crystal disposed inside an optical cavity, in this manner
coupling three modes of the electromagnetic field. It is
driven by an incident laser, the pump beam, at frequency �0.
Following the usual terminology, the fields generated by
down-conversion are called “signal” and “idler,” with fre-
quencies �1 and �2 respecting, by energy conservation, �0
=�1+�2. Above the oscillation threshold, signal and idler
are bright light beams known to possess strong quantum cor-
relations in both intensity �25� and phase �26�, therefore
called “twin beams.”

The covariance matrix of a single OPO can be found in
many references �27,28�. The standard treatment begins with
the master equation for the density operator, which is then
converted to a Fokker-Planck equation for a quasiprobability
distribution �in the present case, the Wigner function�, and
finally to a set of Langevin equations for its complex argu-
ments representing the classical field amplitudes � j�t�. The
labels j� 	0,1 ,2
 correspond to pump, signal and idler, re-
spectively. The set of Langevin equations describing the
quantum fluctuations 	� j of the intracavity fields � j�t� are



d

dt
	�0 = − �0�1 − i�0�	�0 + �2�0	�0

in

−
p

p0
��1 + i��e−i
�ei�2	�1 + ei�1	�2� , �5�



d

dt
	�1 = − ��1 − i��	�1 + �2�	v1 +

��1 − i��
p0

ei
�pe−i�2	�0

+ p0ei�0	�2
�� , �6�



d

dt
	�2 = − ��1 − i��	�2 + �2�	v2 +

��1 − i��
p0

ei
�pe−i�1	�0

+ p0ei�0	�1
�� , �7�

where a linearization procedure has been applied, � j�t�� �̄ j

+	� j�t�, such that terms involving the product of fluctuations
have been ignored. The mean complex amplitude �̄ j
= pj exp�i� j� reproduces the classical result for the mean in-
tracavity field amplitude pj and phase � j �28� �in the above
equations, 
=�1+�2−�0�. The latter is defined with respect
to the incoming pump beam �0

in, chosen real. The coefficient
� j is related to the coupling mirror transmission for the field
j, Tj =2� j�1. Only intracavity losses originating from mir-
ror transmissions are considered in our analysis �although the
effects of spurious losses are briefly discussed in the final
results�. The detuning between the OPO cavity and the field
�̄ j is given by � j, where �1=�2��, and the cavity roundtrip
time is 
. We assume equal mirror transmissions for signal
and idler beams, i.e., �1=�2��, resulting in the equality of
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their mean amplitudes p1= p2� p. The terms 	v j are the
vacuum fluctuations associated to these couplings. For the
intracavity pump mode, they are due to the quantum fluctua-
tions of the input pump laser beam 	v0�	�0

in; however,
since we consider it as shot-noise limited, its fluctuations
obey the same statistics as the vacuum.

To obtain from Eqs. �5�–�7� equations for the quadratures,
we write

	� j�t� =
ei�j

2
�	pj�t� + i	qj�t�� , �8�

where the phase references for the definition of the quadra-
tures were chosen as the respective mean field phases. We
further simplify the problem by assuming exact triple reso-
nance �0=�=0 since detunings have the main effect of
weakly coupling amplitude and phase quadratures, but do not
change the overall physical behavior of the system �28�. The
solution is readily obtained in frequency domain by consid-

ering the combined quadratures p�= �p1� p2� /�2 and q�

= �q1�q2� /�2, for which the evolution equations decouple
�27�. The output quadratures are finally determined using the
input-output relations

	ps
out��� = − 	vps

��� + �2�	ps��� , �9�

where s� 	0, + ,−
. A similar relation holds for the phase
quadrature. The solution is

	p+
out = �p	p0

in + �2��p − 1�	vp+
, �10�

	q+
out = �q	q0

in + �2��q − 1�	vq+
, �11�

	p0
out = �p	p0

in − �p	vp+
, �12�

	q0
out = �q	q0

in − �q	vq+
, �13�

	p−
out = −

i��

1 + i��
	vp−

, �14�

	q−
out = − i

1 − i��

��
	vq−

, �15�

where

�p = 2i��� +
2�2�2

�0 + 2i���
, �16�

�q = 2� + �p, �17�

�p,q =
2�2����0�

�0 + 2i���
��p,q�−1, �18�

�p,q = − 1 +
2�0

�0 + 2i���
�1 − �2�0�3/2��p,q� . �19�

The parameter ��=� /	� is the analysis frequency relative
to the OPOs cavity bandwidth for the twin beams, and �

= p / p0. The expressions for 	p1,2 and 	q1,2 are directly ob-
tained from the appropriate linear combinations of the above
equations. The covariance matrix is calculated as V= �x�Tx��,
with x� = �	p1 ,	q1 ,	p2 ,	q2 ,	p0 ,	q0� �the superscript “out”
has been dropped for the sake of notational simplicity�.

The main characteristics of this three-beam system were
shown to be the following. The twin beams are entangled
due to strong intensity correlation and phase anticorrelation
�25,26�. Because of pump depletion which always occurs
above threshold, the twin beams are able to influence back
the pump field, occasioning entanglement between the sum
of twins and the reflected pump field. As a consequence, the
OPO directly produces tripartite entangled light fields
�17,29�.

IV. TRIPARTITE ENTANGLEMENT

The three beams generated by a single OPO form a pure
quantum system, and hence can be described by a symplectic
transformation acting on the three-mode vacuum field, VS
=SOPO1SOPO

T , where 1 is the 6�6 identity matrix. In order to
provide an intuitive picture of the tripartite entanglement,
Fig. 1 illustrates that the above-threshold optical parametric
oscillator can be thought of as a device which realizes the
symplectic transformation

SOPO = R12
�/4ZR0+

�/4Z0+, �20�

where

Ri�j�

 =


cos 
 0 sin 
 0

0 cos 
 0 sin 


− sin 
 0 cos 
 0

0 − sin 
 0 cos 

� , �21�

FIG. 1. �Color online� Elementary symplectic transformations
bringing a three-mode vacuum state into the fields produced by an
OPO: pump �0�, signal �1�, and idler �2�. A beam-splitter transfor-
mation is represented by BS and a single-mode squeezer by Z. The
circles and ellipses represent the fields’ quadrature noise powers in
phase space. The existence of tripartite entanglement among the
beams 0, 1, and 2 is clearly seen as arising from the interference of
squeezed beams in this equivalent scheme.
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Zi�j� = diag�eri�,e−ri�,erj�,e−rj�� , �22�

are the matrices describing the beam splitter and the squeezer
transformations, respectively. The subscripts i� , j�
� 	0,1 ,2 , + ,−
 indicate the subspace to which the transfor-
mation is applied; absence of subscript means that it acts on
the complete system. The squeezing parameter r is such that
the same amplitude and phase noise power occur in both
modes. In addition, the OPO displaces the fields in phase
space by large amounts � j; however, these operations affect
only the classical mean amplitudes, and are therefore ignored
in the treatment of the fields’ quantum properties.

The existence of entanglement and its structure �i.e., the
way it is distributed among the fields� is revealed by the PPT
criterion. We employ Eqs. �10�–�15� to construct VS. The
partial transposition operation may then be applied to either

the pump beam, resulting in the PT covariance matrix ṼS
�0�, or

to one of the twin beams, yielding ṼS
�1�= ṼS

�2� �a tilde indicates
partial transposition with respect to the field mode labeled by
the superscript�. For this type of partition, at maximum one
symplectic eigenvalue �̃k

�j� from each PT matrix may assume
a value smaller than 1 �30�, in this case demonstrating en-
tanglement by violation of Eq. �4�. Therefore, we always
consider the smallest symplectic eigenvalue �̃�j� to witness
entanglement.

We employ in our numerical results the typical experi-
mental values �0=0.05 and �=0.01 for the OPO cavity mir-
rors transmissions, analysis frequency ��=0.5 �relative to
cavity bandwidth� and pump power �=1.5 �relative to
threshold�. The entanglement between pump and twins is
quantified by �̃�0�=0.43�1. In the same manner, each twin
beam is found to be strongly entangled to the remaining two
beams, since �̃�1�= �̃�2�=0.20. These two eigenvalues are very
small close to threshold ���1� and remain smaller than one
even for high pump power. On the other hand, �̃�0� reaches
one at threshold, having its minimum �maximum entangle-
ment� around the chosen value of �=1.5 �17�. This is physi-
cally explained by the fact that very close to threshold all
quantum correlations reside between the twin beams; on the
other hand, at �=1.5 the three output fields exhibit similar
output mean power, usually the best situation for the equal
sharing of correlations. Finally, all three symplectic eigenval-
ues are very small ��̃→0� for null analysis frequency and
approach unity as �� increases, since pump-signal-idler
quantum correlations are well known to reach their maxima
at lower frequencies. These results are enough to character-
ize the tripartite entanglement as genuine �31�, but the struc-
ture of entanglement is further revealed by the reduced co-
variance matrices.

Tracing out the pump beam, we find that the PT reduced

matrix Ṽ12 �signal and idler� still possesses a small symplec-
tic eigenvalue �̃12=0.28�1. Thus, signal �idler� is strongly
entangled to the remaining two beams, as shown before, be-
cause it is actually highly entangled to idler �signal�. On the
other hand, the PT reduced matrix for the bipartite pump and

idler or pump and signal systems, Ṽ01= Ṽ02 possesses a sym-
plectic eigenvalue close to 1, �̃01= �̃02=0.89, suggesting a
reduced degree of entanglement between pump and a single

twin. In fact, for a broad range of experimental parameters,
the system presents �̃0j �1, but, contrarily to the other sym-
plectic eigenvalues, it tends to one as the analysis frequency
�� is set close to zero. This result is again understood in
terms of the increasing correlations between twins as �
→0, such that �̃12→0, implying perfect entanglement be-
tween twins beams and no entanglement with pump in this
limit.

It follows from this discussion that the pump beam is
more entangled to the signal and idler composite subsystem
than to either signal or idler alone �i.e., �̃�0���̃01�. One con-
cludes that the tripartite entanglement in the OPO is not just
a consequence of three pairs of bipartite entangled sub-
systems, since there is a finite amount of entanglement re-
coverable only in the complete three-beam system. Figure 2
pictorially represents the distribution of entanglement among
the pump, signal, and idler beams for a single OPO.

V. SCALABLE CV ENTANGLEMENT

We now consider a second OPO �designated “OPO B”�
pumped by the beam reflected from the single OPO of last
section �“OPO A”�, in a chain configuration �Fig. 3�. The
pump power reflected by the first OPO �P0

out A� is a decreas-
ing function of the incident pump power �Pin�, since a larger
fraction of its energy is down-converted for increasing input
power. Therefore, the second OPO must have a lower thresh-
old power �Pth

B � than the first �Pth
A � in order to operate above

its oscillation threshold. This could be accomplished either
by choosing appropriate mirror transmissions or nonlinearity
strength �2, since Pth��0�2 /�2. It turns out that the ratio

FIG. 2. �Color online� Tripartite entanglement structure for
pump, signal, and idler �circle, up-triangle, and down-triangle, re-
spectively�. The numbers represent the smallest symplectic eigen-
values of the PT matrix connecting the indicated subsystems. On
the left side, entanglement between each pair of beams tracing out
the third is presented. The overall structure of entanglement among
the three beams is illustrated on the right, with pump entangled to
the signal and idler highly entangled system.

FIG. 3. �Color online� Sketch of the system considered. Two
OPOs are pumped in a cascaded configuration, generating scalable
entanglement among five beams. Pump beam distributes the
entanglement.
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between the thresholds is the most relevant factor for the
entanglement between the two pairs of twins, as we
will show later. Therefore, as �A� Pin / Pth

A increases,
�B� P0

out A / Pth
B decreases, following the relation �B= ���A

−2�2Pth
A / Pth

B .
The pentapartite system is composed of the two pairs of

twin beams generated by the two OPOs �denoted by 1A, 2A,
1B, and 2B�, and the pump beam reflected by the second OPO
�denoted by 0�. We define the covariance matrix VC
= �x�C

Tx�C� for the composite system, with

x�C = �	p1
A,	q1

A,	p2
A,	q2

A,	p1
B,	q1

B,	p2
B,	q2

B,	p0,	q0� .

�23�

The twin fields produced by the OPO A respect exactly the
same solutions of Eqs. �10�–�15�, such that 		ps

A ,	qs
A


= 		ps ,	qs
. The solution for the OPO B is found in a
straightforward way. As the subtraction of twin quadratures
does not depend on the input pump, 	p−

B and 	q−
B are also

given by Eqs. �14� and �15�. As for the sum and reflected
pump subspaces, the same solutions of Eqs. �10�–�13� apply
for 	ps

B and 	qs
B using as input pump instead the reflected

pump from the OPO A, i.e., by the substitutions 		p0
in ,	q0

in

→ 		p0

A ,	q0
A
. In this manner, quantum correlations from the

pump beam reflected from the OPO A are transferred to the
twin beams produced by the OPO B.

In order to demonstrate genuine pentapartite entangle-
ment, it is sufficient to show that all possible bipartitions of
the system are entangled, since the complete system is pure.
We use the numerical values �0

B=0.04 and �B=0.0075 for the
cavity mirrors of OPO B �the parameters for OPO A are the
same used in the last section�, and Pth

B / Pth
A =0.45. We begin

by studying the system behavior as a function of the incident
pump power at the fixed analysis frequency ��=0.1 �relative
to the cavity bandwidth of OPO A�.

First of all, we investigate how each field is entangled to
the remaining ones �partitions of the form 1�4�. The set of
the smallest symplectic eigenvalues �̃�j� resulting from the

partial transposition Ṽ�j� with respect to each one of the five
beams presents the following properties. The first result is
that each of the four down-converted beams is highly
entangled to the remaining four beams
�̃�1A� , �̃�2A� , �̃�1B� , �̃�2B��1. This was to be expected, since
strong entanglement is actually present inside each pair of
twin beams. The interesting result regards the pump beam,
for which �̃�0��1 �Fig. 4, full squares� attests that its strong
entanglement to the two pairs of twins remains.

In the same manner, we consider partitions of the type 2
�3. Figure 4 summarizes the results. Entanglement between
each pair of twins and the remaining three beams is attested
by the smallest symplectic eigenvalues obtained by transpos-
ing either subspace A or B, �̃�A��1 �full circles� or �̃�B��1
�open circles�. One sees that �̃�0�→ �̃�A� when �B→1, and
similarly �̃�0�→ �̃�B� when �A→1, as expected for the limit
case when just one OPO oscillates. We note that the value of
�̃�A� at ��=0 is the same as previously obtained by transpos-
ing the reflected pump beam from a single OPO �denoted as
�̃�0� in last section�: the twins from OPO A are as entangled

to the remaining subsystem of three beams as they were to
the single OPO reflected pump in Sec. IV, indicating that the
original entanglement between twins A and reflected pump A
is redistributed to the three new beams. This intuitive picture
is not strictly valid anymore for higher analysis frequencies,
for which the original entanglement can decrease slightly.
Finally, we have observed that the symplectic eigenvalues
slightly decrease for lower values of ��. In addition, their
behaviors do not depend significantly on the other experi-
mental parameters, implying a robust pentapartite entangle-
ment.

These results suffice to prove the existence of pentapartite
entanglement in the system. It is not necessary to test parti-
tions of the kind “signal A and pump related to the remaining
three beams,” since we know signal A is highly entangled to
idler A and, as a consequence, to the system of remaining
beams. The symmetry included in the system by the exis-
tence of two pairs of highly entangled beams reduces the
number of effective partitions which need to be tested. The
important results for now are the entanglement between
pump and the remaining four beams, and between each pair
of twins and the three remaining beams.

The entanglement structure is again better revealed by the
reduced covariance matrices. The results are sketched in Fig.
5. We trace out pump subspace to obtain the reduced cova-
riance matrix VAB for both pairs of twins, and apply the PT
operation on one pair of twins. In Fig. 4, the smallest sym-
plectic eigenvalue �̃AB

�A��1 �open triangles� attests the en-
tanglement between the two pairs of twins for �A�1.65.
Therefore, the pump beam reflected by the first OPO can
effectively entangle both OPOs outputs. The eigenvalue

FIG. 4. �Color online� Smallest symplectic eigenvalues obtained
by applying the PT operation to various partitions of the total co-
variance matrix. The superscripts indicate the transposed sub-
systems, while subscripts, when present, indicate which reduced
system is being considered. A value below one proves the entangle-
ment between the subset of transposed subsystems and the remain-
ing ones.
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tends to one from below ��̃AB
�A�→1� as �A→1; for increasing

pump power, it changes from �̃AB
�A��1 to �̃AB

�A�=1, modifying
the entanglement structure.

The next reduced subsystem VB0 excludes the twins A to
probe the entanglement present between pump and the twins
B. The partial transposition of the pump field, resulting in
�̃B0

�0��1 �open squares�, shows that they are always en-
tangled. Its value increases �weaker entanglement� as the
threshold of OPO B is approached ��B→1�, which is to be
expected for a single OPO �Sec. IV�.

Finally, the reduced covariance matrix VA0 of pump and
twins A is transposed relative to pump in order to probe their

entanglement. It turns out that ṼA0 fulfills the uncertainty
principle for lower input pump powers ��A�1.6�, since
�̃A0

�0�=1 �full triangles�, meaning that pump is not entangled to
the twins A alone in this region. In view of the previous
results, this indicates that the entanglement between twins A
and the pump beam prior to interaction with OPO B is
strongly converted into entanglement between the pairs of
twins. At the same time, the scalability is warranted by the
entanglement appearing between twins B and the final re-
flected pump. On the other hand, for �A�1.6 the pump re-
mains entangled to twins A �as for a single OPO�, but fails to
transfer these correlations to the two pairs of twins, which
remain only indirectly connected to each other by the en-
tanglement they share with the pump beam.

Thus, as the incident pump power is varied, an alteration
in the entanglement structure takes place, switching between
�̃AB

�A��1 and �̃A0
�0��1. One may choose appropriate parameters

�analysis frequency �� and OPO B’s threshold power� in
order to have one or both of the entanglement types: between
pump and twins A or between the two pairs of twins. Figure
6 depicts this behavior at the fixed input pump power �A

=1.1. The region without pattern corresponds to �̃AB
�A��1 and

the patterned region to �̃A0
�0��1. Stronger entanglement

�darker tones� between the pair of twins is found for small
values of �� and Pth

B / Pth
A , while the pump and twins A get

more entangled as the OPOs become similar �Pth
B � Pth

A �. A
small coexistence region, although presenting weak en-
tanglement �1��̃AB

�A�� �̃A0
�0��0.90, seen at �A�1.63 in Fig.

4�, is depicted by the black area. We also note that it is
possible to adjust the ratio between the OPOs threshold pow-
ers either by selecting adequate crystals or cavity mirrors,
since these results are not much sensitive to the exact choice
of mirror transmissions.

As a last remark, we mention that the inclusion of small
spurious losses ��0.05�0 ,�� does not change the qualitative
behavior of the system. The presented symplectic eigenval-
ues become larger, indicating a loss of quantum correlations
among the beams. Intracavity losses in the twins modes have
an important quantitative effect in this direction, specially
concerning the entanglement between the pairs of twins.
Spurious losses in the pump mode have the main conse-
quence of decreasing the available power for pumping the
OPO B, effectively reducing the horizontal axis range of Fig.
4 �without altering its qualitative features�. The most affected
symplectic eigenvalue in this case is again related to the
entanglement between the pairs of twins. In both cases, a
limited region in �A then appears in which neither the re-
duced subsystems of pairs of twins nor twins A and pump are
entangled. Nevertheless, full inseparability is still attested.

VI. CONCLUSION

The entanglement existent among the three fields pro-
duced by an above-threshold optical parametric oscillator al-
lows the implementation of a scalable network of multipar-
tite entangled light beams, by successively employing the
pump beam reflected by one OPO to pump a subsequent one.
The pump beam acts as an entanglement distributor among
otherwise independent OPOs.

Moreover, the internal structure of the final pentapartite
entangled state can be manipulated to some extent by tuning
the incident pump power. The analysis of the reduced cova-
riance matrices considering two cascaded OPOs reveals situ-
ations where the pump beam is either entangled to each pair
of twins considered alone or both pairs are entangled to each
other. In any of these cases the system is scalable, since each
beam is always entangled to the remaining four beams.

FIG. 5. �Color online� Entanglement distribution among the five
beams: twins A �open triangles�, twins B �full triangles�, and re-
flected pump �circle�. The full arrows connect subgroups which
violate the PPT criterion, while the dashed ones point out that the
entanglement structure changes with ��, �, and Pth

B / Pth
A .

FIG. 6. �Color online� Contour plot for the smallest symplectic
eigenvalue considering the reduced subsystems: pump and twins A
�patterned region� and twins A and twins B �region without pattern�.
The structure of pentapartite entanglement changes according to ��
and Pth

B . The small black region correspond to a situation where

both �̃AB
�A� and �̃A0

�0� are below 1, although with a weak entanglement.
It has been used input pump power �A=1.1.
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The major limitation concerning the maximum number of
beams which can be entangled comes from the drop in pump
power as more OPOs are added to the multipartite system.
However, by choosing high-quality optics �low spurious
losses� and periodically poled crystals which allow a very
low oscillation threshold, the number of entangled beams
could be increased.

One special feature, the involvement of nonlinearities,
distinguishes this system from other CV multipartite state
generation based on interference, since this scheme entangles
various spectral regions and, therefore, allows quantum in-

formation to be conveyed among different parts of the spec-
trum. Multicolor quantum networks offer the possibility to
communicate quantum hardwares with otherwise incompat-
ible working frequencies.
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