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I. INTRODUCTION

In quantum information processing tasks decoherence can
be overcome either by an active approach or by a passive
one. The former consists, in analogy with classical computa-
tion, of encoding information in a redundant fashion by
means of the so-called error-correcting codes. In this ap-
proach information is encoded in subspaces of the total Hil-
bert space of the system in such a way that “errors” induced
by the interaction with the environment can be detected and
corrected without gaining information about the actual state
of the system prior to corruption �1�.

The passive approach, on the other hand, is an error pre-
venting scheme, in which logical qubits are encoded within
decoherence-free subspaces �DFS’s�, which do not decohere
because of symmetry �2�. A simple example is provided by a
system of N spins collectively interacting with the same
reservoir, for which the interaction is mediated by the collec-

tive angular momentum raising and lowering operators Ŝ+

��i=1
N Ŝi

+ and Ŝ−��i=1
N Ŝi

−, where Ŝi
+ and Ŝi

− are the corre-
sponding raising and lowering operators, respectively, of the
ith particle. The collective operators have no support on the

eigenstates of the total squared angular momentum Ŝ2 corre-
sponding to zero eigenvalue. The evolution of these eigen-
states is therefore unitary because they simply do not couple
to the reservoir; and they can be used as a logical-qubit basis
for decoherence-free quantum computation �3,4�.

When the coupling to the environment is mediated by the

collective z-angular-momentum operator Ŝz��i=1
N Ŝi

z, the type
of noise is called collective dephasing. The interaction
Hamiltonian between the system and the bath is then propor-

tional to Ŝz � B̂, where B̂ is an arbitrary operator acting on
the Hilbert space associated to the bath. The action of this
type of bath is equivalent to that of randomly fluctuating
fields: a general qubit-state ����a �0�+b �1� transforms as
���→a �0�+bei� �1�, which leads to the loss of coherence of
the state for � is a random fluctuating phase. By using one
pair of physical qubits, whose members are labeled by the
subindexes i1 and i2, to encode logical qubit i, one can pro-
tect information from the detrimental action of decoherence.

In fact, the well-known �5,6� logical basis BLi
�	�0Li

�
��0i1

1i2
� ; �1Li

���1i1
0i2

�
 spans a DFS protected against col-
lective dephasing, which we call VDFS2i

. That is, the logical

state ��Li
��a �0Li

�+b �1Li
�=a �0i1

� �1i2
�+b �1i1

� �0i2
� evolves

as ��Li
�→a �0i1

�ei� �1i2
�+bei� �1i1

� �0i2
�=ei��a �0Li

�+b �1Li
��

and is thus invariant up to an irrelevant global phase factor.
Two pairs of physical qubits, whose members are labeled

by the subindexes i1 and i2, and j1 and j2, respectively, are in
turn needed to encode two logical qubits i and j. The direct
product subspace VDFS2i

� VDFS2 j
, spanned by the basis BLi

� BLj
, yields a DFS. However, one should note that this is

not the total protected subspace supported by all four qubits
if all four physical qubits experience the same phase fluctua-
tions. In this case the states �0i1

0i2
1 j1

1 j2
� and �1i1

1i2
0 j1

0 j2
�,

which are outside VDFS2i
� VDFS2 j

, are also protected against

collective dephasing for they have the same amount of exci-
tations as the states in VDFS2i

� VDFS2 j
. In general, any coher-

ent superposition of states with the same amount of excita-
tions is immune against collective dephasing. Thus, the total
protected subspace, which we call VDFS4ij

, is that spanned

by BLi
� BLj

together with the states �0i1
0i2

1 j1
1 j2

� and
�1i1

1i2
0 j1

0 j2
�. If pairs i and j are further apart than the typical

noise correlation length—but with both qubits from each pair
still subject to the same fluctuations—VDFS2i

� VDFS2 j
is the

only protected subspace.
On the experimental side, the demonstration of immunity

of a DFS of two photons to collective noise was accom-
plished in �7� and realizations of DFS’s for nuclear magnetic
resonance �NMR� systems were carried out in �8�. The dem-
onstration of a collective-dephasing-free quantum memory
of one logical qubit composed of a pair of trapped 9Be+ ions
was first achieved in �9� and coherent oscillations between
two logical states, encoded into the two Bell states ��±�
= 1

�2
��01�± �10��, by inducing a gradient of the magnetic field

applied to both ions, were reported in �10,11�. Finally, en-
tanglement lifetimes of more than 7 s �11� and robust en-
tanglement lasting for more than 20 s �12� were attained us-
ing ground state hyperfine levels of 9Be+ ions and ground
state Zeeman sublevels of 40Ca+ ions, respectively. These
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experiments demonstrated that for trapped ions collective
dephasing is the major source of qubit decoherence. We
therefore focus on this type of noise throughout the rest of
the paper. Nevertheless, apart from the proof-of-principle ex-
periments mentioned above, demonstrating the robustness of
these subspaces, experimentally accessible implementations
of DFS-encoded gates are still sparse; and in spite of the rich
�but abstract� body of work on DFS’s, a universal set of gates
between two encoded logical qubits is yet to be demon-
strated.

Proposals for ion trap quantum computing with DFS’s
exist, and they are essentially divided into two families that
complement each other. In the first paradigm �6� gates be-
tween two logical qubits are implemented �6,13� by bringing
together two pairs of ions �each pair encoding a logical qu-
bit�, initially stored in memory regions, to an interaction re-
gion where a simultaneous interaction among all four ions
takes place according to the Sørensen-Mølmer �SM� gate de-
scribed in �14,15�. Individual laser addressing is not neces-
sary for this scheme, but a reliable ion-shuttling technique is
an essential requirement. In addition, even though this
scheme maps VDFS4ij

into itself, it does not preserve the state

inside the DFS throughout the gate evolution �4�. The second
paradigm �16,17� works in the individual laser addressing
regime and relaxes the need of ion shuttling. In this ap-
proach, ions are trapped in a crystal-like effective potential
created by arrays of multiconnected linear Paul traps. Each
ion is associated to a neighbor to form a pair that encodes
one logical qubit �17�. By inducing a �̂z-dependent force �see
�18–20�, and references therein� on two ions, each from dif-
ferent pairs, it is in principle possible to implement a �geo-
metric phase� �̂z gate between the logical qubits encoded
into both pairs. Particular advantages of these �̂z gates are
that they can be considerably fast and robust. It has been
conjectured �19–21� though, that these �̂z gates are very in-
efficient with magnetic-field-insensitive �or “clock”� states,
which possess such remarkable coherence properties �11,22�.
However, it would be very advantageous to combine clock
states with DFS’s as this would lead to very long coherence
times and minimize the overhead due to quantum error cor-
rection.

In our present paper we assess different possible interac-
tions involving only two physical qubits at a time that gen-
erate universal quantum gates on DFS-encoded qubits, and
describe feasible experimental demonstrations of each of
them with trapped ions. The work is conceptually divided
into two parts. The first one �Sec. II� is devoted to the general
formal classification of all two-body dynamics able to gen-
erate universal quantum gates inside the DFS without the
system’s state ever leaving it. The aim here is not to establish
the set of formal conditions for a given Hamiltonian to gen-
erate universal DFS quantum computation, as in �3,4�; but
rather to explicitly construct the allowed Hamiltonians in a
simple way in terms of the Pauli operators associated to each
physical qubit. This is to serve as a simple “classification
table” for experimentalists to rapidly check whether the type
of interactions present in their given system qualifies as a
candidate for generating universal DFS quantum computa-
tion or not. In particular, we introduce the most general two-

body Hamiltonian that generates universal quantum compu-
tation while guaranteeing the evolution to take place entirely
inside VDFS2i

� VDFS2 j
. Furthermore, we show that the only

possible interaction between two logical qubits, which obeys
the previous assumptions, is of the type �̂z � �̂z. For the cases
where leakage out of VDFS2i

� VDFS2 j
into VDFS4ij

is allowed,

we consider the encoding recoupling scheme originally in-
troduced in �25� for NMR systems. There, a maximally en-
tangling gate is implemented on the DFS through a sequence
of transformations that momentarily takes the composite
state out of VDFS2i

� VDFS2 j
but never out of VDFS4ij

.

The second part �Sec. III� describes the technical details
of the implementation on trapped ions of the ideas presented
in Sec. II. Our implementations work in the individual laser
addressing regime and require no ion shuttling. We show that
for the realization of local and conditional gates inside
VDFS2i

� VDFS2 j
, the SM gate and the �̂z gate, respectively,

can be used. For the realization of the encoded recoupling
scheme in turn, an alternative two-physical-qubit gate is re-
quired. The latter is based on bichromatic Raman fields and
applies to all states in general, regardless of their magnetic
properties, including clock states connected via dipole Ra-
man transitions. Furthermore, this gate does not require the
ions to be in their motional ground state, provided that they
always remain in the Lamb-Dicke regime. Therefore, it is a
potentially useful alternative to the SM gate and the �̂z gate
also outside the context of DFS’s. Our conclusions are finally
summarized in Sec. IV.

II. GENERAL HAMILTONIANS FOR UNIVERSAL
QUANTUM COMPUTATION IN THE DFS

A. Local operations: The logical SU„2… Lie algebra

We want to find a complete set of orthogonal operators
mapping VDFS2i

�for any i� onto itself. We define then logical

identity and Pauli operators, �̂Li

0 � ÎLi
, �̂Li

1 � �̂Li

x , �̂Li

2 � �̂Li

y , and
�̂Li

3 � �̂Li

z of the ith logical qubit, as

�̂Li

0 � �i�̂i1
0

� �̂i2
0 − �1 − �i��̂i1

3
� �̂i2

3 + 0̂Li
,

�̂Li

1 � �i�̂i1
1

� �̂i2
1 + �1 − �i��̂i1

2
� �̂i2

2 + 0̂Li
,

�̂Li

2 � �i�̂i1
2

� �̂i2
1 − �1 − �i��̂i

1
� �̂i2

2 + 0̂Li
,

�̂Li

3 � �i�̂i1
3

� �̂i2
0 − �1 − �i��̂i1

0
� �̂i2

3 + 0̂Li
, �1�

where �̂in
p is the identity �p=0� or Pauli �1� p�3� operator

associated to the nth �n=1 or 2� physical qubit of the ith pair,
and with �i, �i, �i, and �i any real numbers such that 0

��i, �i, �i, and �i�1. The operator 0̂Li
represents the logical

null operator, which is defined as any operator without sup-
port on VDFS2i

. The operators in Eq. �1� map VDFS2i
onto

itself and their action on BLi
is exactly equivalent to that of

the usual identity and Pauli physical operators on the com-
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putational basis. It can be seen that Eq. �1� is the most gen-
eral way to construct them from the operators that act on the
physical qubits. For example, if we added the term �̂i1

1
� �̂i2

3

to the definition of �̂Li

3 in Eq. �1� we would exit VDFS2i
; terms

as �̂i1
1

� �̂i2
1 would not take us out of the DFS but act like �̂Li

1

instead; and so on. Combinations as �̂i1
1

� �̂i2
1 − �̂i1

2
� �̂i2

2 or
�̂i1

1
� �̂i2

3 − i�̂i1
2

� �̂i2
0 are allowed though, since they have no

support on VDFS2i
and can therefore be grouped inside 0̂Li

. In

general there are sixteen possible products between �̂i1
0 , �̂i1

1 ,
�̂i1

2 , and �̂i1
3 , and �̂i2

0 , �̂i2
1 , �̂i2

2 , and �̂i2
3 . Each of these products,

or combinations of them, apart from those already consid-
ered in Eq. �1�, either takes the state out of VDFS2i

, does not

have the desired action, or has no support on VDFS2i
and is

therefore absorbed inside the definition of 0̂Li
. The most gen-

eral expression for the logical null operator is given by

0̂Li
� 	i��̂i1

0
� �̂i2

1 − i�̂i1
3

� �̂i2
2 � + 
i��̂i1

1
� �̂i2

0 − i�̂i1
2

� �̂i2
3 �

+ �i��̂i1
1

� �̂i2
3 − i�̂i1

2
� �̂i2

0 � + �i��̂i1
3

� �̂i2
1 − i�̂i1

0
� �̂i2

2 �

+ �i��̂i1
0

� �̂i2
0 + �̂i1

3
� �̂i2

3 � + 
i��̂i1
1

� �̂i2
1 − �̂i1

2
� �̂i2

2 �

+ �i��̂i1
1

� �̂i2
2 + �̂i1

2
� �̂i2

1 � + �i��̂i1
3

� �̂i2
0 + �̂i1

0
� �̂i2

3 � ,

�2�

with 	i, 
i, �i, �i, �i, 
i, �i, and �i any complex numbers.
The operators in Eq. �1� are orthonormal: Tr��̂Li

p �̂Li

q �
=�pq, with p and q=0,1 ,2 or 3, and form therefore a com-
plete orthonormal basis of the space of the complex opera-
tors acting on the two-dimensional subspace VDFS2i

. They

also satisfy, inside of VDFS2i
, the desired SU�2� usual com-

mutation relations: ��̂Li

p , �̂Li

q �=2i�pqr�̂Li

r , for p , q and r=1, 2,
or 3; and ��̂Li

0 , �̂Li

p �=0, for p=0, 1, 2, or 3. As an example to
show this, we calculate explicitly the commutator ��̂Li

1 , �̂Li

2 �
and obtain

��̂Li

1 ,�̂Li

2 � = 2i�1 − �i − �i + 2�k�k��̂i1
3

� �̂i2
0

− 2i��k + �i − 2�i�i��̂i1
0

� �̂i2
3 . �3�

Doing the identification �i��1−�i−�i+2�i�i and since 0
��i�1 and 0��i�1 we see that 0��i��1, which leads us
to

��̂Li

1 ,�̂Li

2 � = 2i��k��̂i1
3

� �̂i2
0 − �1 − �i���̂i1

0
� �̂i2

3 � . �4�

This is, inside of VDFS2i
, exactly equivalent to 2i�̂Li

3 . Note

that the logical operator obtained here and the fourth opera-
tor in Eq. �1� are actually not strictly equal, since �i and �i�
are not necessarily the same number. Their difference, how-
ever, only shows when applied to states outside VDFS2i

, their

action on this subspace is exactly the same. All the other
SU�2� fundamental commutation relations are straightfor-
wardly obtained in the same way. We see thus that the logical
Pauli operators defined in Eq. �1� are the most general rep-

resentation of the SU�2� Lie algebra on VDFS2i
constructed

from the physical-qubit operators.

We also notice that the logical operators X̄i�
1
2 ��̂i1

1
� �̂i2

1

+ �̂i1
2

� �̂i2
2 �, Ȳi�

1
2 ��̂i1

2
� �̂i2

1 − �̂i1
1

� �̂i2
2 � and Z̄i�

1
2 ��̂i1

3 − �̂i2
3 �

used in �13� are a particular case of Eq. �1�, corresponding to
�i=�i=�i=1/2. These operators generate the SU�2� group
on the whole Hilbert space, but they have the same action as
those defined in Eq. �1� on VDFS2i

. The advantage of the

logical operators in Eq. �1� is that they give the experimen-
talist more freedom of choice, as any choice of �i, �i, �i, and
�i works just as well in VDFS2i

. As a matter of fact, we exploit

this freedom below to simplify the procedure for obtaining
DFS-encoded gates for trapped ions.

The situation is now completely equivalent to that of a
physical qubit, with the logical states in BLi

and logical op-
erators in Eq. �1� playing the role of the physical ones. The
important thing to keep in mind though is that these logical
operators allow us to operate on the logical states in the same
way as their physical counterparts without ever exiting
VDFS2i

. With this at hand we can now write down the Hamil-

tonian that generates the most general unitary operation on
the ith logical qubit; it reads

ĤLi
� Bi

0�̂Li

0 + Bi
1�̂Li

1 + Bi
2�̂Li

2 + Bi
3�̂Li

3 , �5�

with Bi
0, Bi

1, Bi
2, and Bi

3 any real numbers �times arbitrary
units of energy� that play the role of a “logical magnetic
field.” Notice that we are explicitly including the logical
identity in Hamiltonian �5�, even though it only introduces
an irrelevant global phase factor. This is because we want to
account, in the most general way, for the possibility of ap-
pearance of terms proportional to �̂i1

3
� �̂i2

3 , which are not
irrelevant for an implementation on physical qubits.

B. Computation in VDFS2i
‹VDFS2j

: The two-physical-qubit

interaction Hamiltonian

We proceed now with the interaction Hamiltonian be-

tween logical qubits i and j, ĤLiLj
. Under the action of this

Hamiltonian there can be no transfer of excitations between
both qubit pairs, so that each logical qubit evolves inside its
own encoded subspace. The only allowed interactions are
then those ones composed of combinations of products of
logical Pauli operators of both logical qubits. Nevertheless,
the remarkable observation is that �̂Li

3 and �̂Lj

3 are the only
logical operators that do not involve interactions between the
physical qubits from the same pair. Any product of two logi-
cal Pauli operators from both logical qubits other than �̂Li

3

� �̂Lj

3 will necessarily contain products of more than two

physical-qubit �nonidentity� operators. We see, therefore, that
there exists only one type of two-body interaction able to
generate nontrivial two logical qubit operations on the DFS
and at the same time preserving the composite state always
inside VDFS2i

� VDFS2 j
. It is given by
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ĤLiLj
� �̂Li

3
� �̂Lj

3 . �6�

This interaction between both logical qubits reduces to a
simple Ising interaction between one physical qubit from
pair i and one from j when the nonsymmetric choice �i and
� j equal to 0, or 1, is taken. Also, the fact that the operators
in the z direction play such a preferential role is not surpris-
ing, since, for collective dephasing, it is the total z angular
momentum that mediates the coupling of the qubits to the
environment; and our protected subspace is precisely that of
null total z angular momentum.

The aim of Hamiltonians �5� and �6�, together with ex-
pressions �1� for the single logical-qubit operators, is to pro-
vide a tool for the immediate classification of the allowed
two-body dynamics for the implementation of DFS universal
quantum computation. Any system whose Hamiltonian can-
not be expressed as given by Eqs. �5� and �6�, together with
�1�, is automatically excluded as a candidate for such com-
putation, except, of course, for the possible appearance of
any combination of physical-qubit operators that can be ex-
pressed as in Eq. �2�.

C. Computation in VDFS4ij
: The encoded recoupling scheme

An alternative technique to entangle logical qubits is the
encoded recoupling scheme, which was originally developed
for NMR systems in �25�. In this scheme, a �̂3 � �̂3 interac-
tion is effectively simulated by a sequence of �̂+ � �̂−-type
interactions between different physical qubits from both
pairs. This provokes an actual transfer of excitations between
both pairs, so that the logical qubits momentarily exit
VDFS2i

� VDFS2 j
and “lose their encoded logical identity.” But

the total amount of excitations remains the same, so that the
whole evolution takes place inside VDFS4ij

. The technique is

based on the identity

e−i��̂i1
+

��̂j1
− +H.c.��/4e−i��̂i1

+
��̂i2

− +H.c.��/2��̂i2
+

� �̂ j1
− + H.c.�

�ei��̂i1
+

��̂i2
− +H.c.��/2ei��̂i1

+
��̂j1

− +H.c.��/4

=
1

2
�̂i2

3
� ��̂ j1

3 − �̂i1
3 � . �7�

When applying this fivefold sequence of transformations to
states in VDFS2i

� VDFS2 j
, the product �̂i2

3
� �̂i1

3 on the right-

hand side can be ignored, since it is proportional to the logi-
cal identity operator, and introduces thus nothing but a global
phase factor. This leaves us with 1

2 �̂i2
3

� �̂ j1
3 , which is equiva-

lent to − 1
2 �̂Li

3
� �̂Lj

3 �− 1
2ĤLiLj

�with the nonsymmetric choice
�i=0 and � j =1 in Eq. �1��.

Also here only interactions between two physical qubits at
a time are required, but the technique has the drawbacks that
it requires more pulses and can be used only when pairs i and
j experience the same phase fluctuations. Nevertheless, it
constitutes an alternative to spin-dependent forces, especially
when Ising-type interactions are not readily available, as ap-
pears to be the case with clock states connected via dipole
Raman transitions.

III. IMPLEMENTATION ON TRAPPED IONS

We consider next N pairs of ions confined in a linear Paul
trap, or in an arrangement of multiconnected linear Paul
traps, where individual laser addressing is available. The col-
lective vibrational mode along the axial direction z, of fre-
quency �, might be the center-of-mass or stretch mode. The
ith logical qubit is encoded into a pair i of neighboring ions
i1 and i2. We assume each ion in �n=1 or 2� to have a mass
M and an equilibrium position z0in

. The ions may either pos-

sess three energy levels in a � configuration: two long-lived
ground-state levels, and an excited electronic state; or two
energy levels, one of which is a metastable state, and the
other the ground state. In both cases, we label the physical
qubit states as �↑in

���0in
� and �↓in

���1in
�, and their internal

transition frequency �0. For three-level ions the physical qu-
bit states are encoded in the two long-lived ground-state lev-
els; �0 is typically in the microwave region, and the qubit
states are typically connected by a dipole Raman transition
through the excited electronic state, driven by two laser
beams A and B, of frequencies �A and �B and wave vectors
along the z direction kAz

and kBz
. For two-level ions, in turn,

the metastable state encodes �↑in
���0in

�, the ground state
�↓in

���1in
�, and they are connected by a weak quadrupole

optical transition directly driven by a single laser L, of fre-
quency �L and wave vector along the z direction kLz

.

A. Single-logical-qubit gates: �̂L
3

We show first how to implement Hamiltonian �5� for the
case Bi

0=Bi
1=Bi

2=0. In this case it suffices to induce an ac
Stark shift on only one of the members of the pair, for ex-
ample, ion in, which can be done by the application of off-
resonant fields � detuned from the carrier transition. The in-
teraction Hamiltonian in the interaction picture with respect
to the unperturbed Hamiltonian without the laser field, and in
the rotating wave approximation �RWA�, with the condition

�0����, then reads Ĥin
=��in

�̂in
+ ei��t+�in

�+H.c. Here �in
is

the effective Rabi frequency coupling �↑in
� with �↓in

� and �in
is the spin phase, the field’s effective optical phase at posi-
tion z0in

.

From now on we will always work in the dispersive re-

gime ��in
� ��, in which perturbative calculations with

�in

� as
a perturbation parameter are valid. In fact, a time-dependent
second-order perturbative calculation, yields an effective
time-independent Hamiltonian given by

Ĥin
= �

��in
�2

�
�̂in

3 . �8�

Since, according to Eq. �1�, �̂Li

3 coincides with �̂i1
3 for the

nonsymmetric choice �i=1 and with −�̂i2
3 for �i=0, it is

Ĥin
= Bi

3�̂Li

3 , �9�

with Bi
3� ±�

��in
�2

� , the “+” �“−”� sign corresponding to n=1
�n=2�; implementing thus the desired logical Hamiltonian.

It is important to notice that in the above derivation, as
well as in the rest of the paper, the resolved-sideband limit
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��in
� �� is assumed. In this regime, by tuning the laser fre-

quency, it is always possible to select the stationary terms of
the Hamiltonian and to neglect—in the RWA—all other
terms rotating at the different vibrational modes’ frequencies.
This was exploited here to neglect terms involving any vi-
brational mode frequency by setting �L �or �A−�B� close to
�0, and is exploited in the next subsections to select the
desired vibrational mode by setting it close to resonance with
a sideband transition to such a mode.

B. Single-logical-qubit gates: �̂L
�

We now concentrate on the implementation of Hamil-

tonian Ĥi1i2
=Ci�̂Li

�i, where Ci is a constant and �̂Li

�i, defined as

�̂Li

�i �cos��i��̂Li

1 +sin��i��̂Li

2 �e−i�i�̂Li

+ +ei�i�̂Li

− , is the opera-
tor contained in the equatorial plane of the logical Bloch
sphere with azimuth angle �i. This is equivalent to Hamil-
tonian �5� with Bi

0=Bi
3=0, Bi

1�Ci cos��i�, and Bi
2

�Ci sin��i�. For any fixed value of �i the ability to imple-
ment such Hamiltonian, together with Hamiltonian �9�, suf-
fices to generate any SU�2� operation on the ith logical qubit.

In this case it is possible to use the SM gate �14,19�,
driven by one field detuned by � from the red sideband, plus
another one detuned by −� from the blue one. Here we show
nonetheless that only one of these fields suffices as long as
one remains in VDFS2i

� VDFS2 j
. We extend the ideas of Ref.

�27� and consider a laser field irradiating simultaneously
both ions of the ith pair. When the laser frequency or laser
frequency difference is close to resonance with a sideband
transition, a coupling between the internal qubit states and
the relevant vibrational mode is possible. We choose the first
red sideband transition for definiteness, but the blue one
would work just as well. That is, we set �A−�B=�0−�−�
and �kz�kBz

−kAz
�0 �noncopropagating beams is a further

requirement for Raman couplings�, or �L=�0−�−�. All
other vibrational modes can be neglected under the RWA
because we are in the resolved-sideband limit and they give
no stationary contribution. The Lamb-Dicke parameter is
defined as ����kz

z�

�2N
� 1

�2N
�kz

� �

M� , or ���kLz

z�

�2N

� 1
�2N

kLz
� �

M� , where z� is the root-mean-square width of the
motional ground-state wave packet. We assume next that the
system is in the Lamb-Dicke limit �LDL� ��

2�n�+1/2��1,
with n� the mean phonon population, meaning that the wave
packet is very localized as compared to the fields’ wave-
lengths 2��kz

−1 or 2�kLz

−1. In this case the interaction Hamil-

tonian in the RWA is given by Ĥi1i2
=���i1

�̂i1
+ �ei�t

+ i��â��ei��t+�i1
�+�i2

�̂i2
+ �ei�t− i��â��ei��t+�i2

�+H.c.�, where â�

is the annihilation operator of one phonon. Notice that here,
in spite of being in the resolved sideband limit, we have not
neglected the fast oscillating term proportional to ei�t, since
for very low values of �� the contribution of the latter might
be comparable to that of the stationary term proportional to
��.

Taking both Rabi frequencies equal, �i1
=�i2

��i, yields
the time-independent effective Hamiltonian:

Ĥi1i2
= �

��i�2

� + �
��̂i1

z + �̂i2
z � + �

��i���2

�
�Î + ��̂i1

z + �̂i2
z ��n̂� + 1/2�

− ��̂i1
+

� �̂i2
− ei��i1

−�i2
� + H.c.�� , �10�

with n̂�� â�
†â�. The identity operator Î can be omitted as it

only generates an irrelevant global phase factor; and so can
the terms proportional to �̂i1

z + �̂i2
z , for they are equivalent to

0̂Li
�taking 	i=�i=�i=
i=�i=
i=�i=0 in Eq. �2��. We thus

see that in VDFS2i
Hamiltonian �10� is equivalent to

Ĥi1i2
= − �

��i���2

�
��̂i1

+
� �̂i2

− ei�i + H.c.�

= − �
��i���2

2�
	cos��i���̂i1

1
� �̂i2

1 + �̂i1
2

� �̂i2
2 �

+ sin��i���̂i1
2

� �̂i2
1 − �̂i1

1
� �̂i2

2 �
 , �11�

with �i��i1
−�i2

. A direct exchange of quanta between both
ions through a virtual excitation of the vibrational mode. It is
in turn immediate to express Eq. �11� as the desired Hamil-
tonian

Ĥi1i2
= Ci�̂Li

�i, �12�

with Ci�−�
��i���2

� , and where �i=�i=1/2 have been taken in
Eq. �1�.

C. Two logical-qubit gates

A �̂3 � �̂3-type interaction between physical qubits from
different pairs is required to realize Hamiltonian �6�. How-
ever, interaction schemes such as the one described in the
previous subsection that use the vibrational mode as a virtual
mediator always involve products as �̂± � �̂±. So a �̂3 � �̂3

effective interaction, with no explicit dependence on â� or
â�

†, appears only as a fourth-order contribution, negligible as
compared to the contributions from previous orders. There-
fore, it is very inefficient to realize a nonlocal gate between
two logical qubits using only two-body interactions, with no
explicit dependence on the vibrational operators, under the
requirement that the states involved in the operation stay in
the encoded subspace VDFS2i

� VDFS2 j
. If, on the other hand,

the vibrational mode is allowed to be actually populated,
instead of just being used as a virtual mediator, optical forces
that exert a state-dependent force onto the ions can be used
to generate effectively such an interaction �18�.

As the implementation of these optical forces is described
elsewhere �18–20,23,24�, we show here how to implement
the alternative encoded recoupling scheme. This requires
�̂+ � �̂−-type interactions between different physical qubits
from both pairs to realize the sequence of transformations in
Eq. �7�. Such a sequence of pulses momentarily takes the
states out of VDFS2i

� VDFS2 j
but never out of VDFS4ij

. This

implies that the bichromatic gate described in the previous
subsection cannot be used here, since the two terms propor-
tional to �̂i1

z + �̂i2
z eliminated from Hamiltonian �10� because

of being proportional to 0̂Li
do have a finite support on
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VDFS4ij
. Hamiltonian �10� is not equivalent to Eq. �11� outside

VDFS2i
� VDFS2 j

.

The first term in Eq. �10� is only a Stark shift that contains
no interaction between both physical qubits. From the formal
point of view one could simply leave it in the evolution and
then undo its action at the end by just applying local pulses.
An experimentally accessible approach to compensate for it
is, either to perform an effective qubit frequency renormal-
ization �19�, or to use compensation-laser techniques �26�.
We therefore disregard it, which leaves us with

Ĥi1i2
= �

��i���2

�
�Î + ��̂i1

z + �̂i2
z ��n̂� + 1/2�

− ��̂i1
+

� �̂i2
− ei�i + H.c.�� , �13�

still containing the second term proportional to n̂�+1/2. This
term entangles the internal and motional degrees of freedom,
so that unless the system is previously cooled to, and kept in,
its motional ground state n�=0, it makes the action of the
gate explicitly dependent on the vibrational state. In order to
circumvent this we notice that adding Hamiltonian �13� to
itself, with the replacements �↔−� and �i↔�i+�, yields
exactly twice Hamiltonian �11� without an explicit depen-
dence on the vibrational operators, even when applied to any
two ions from different pairs and for states outside VDFS2i

� VDFS2 j
.

Now, the latter is exactly the effective Hamiltonian of the
system when, simultaneously with the field so far consid-
ered, a second field is applied on both ions. Since the two
ions can now be any ions from any pair we drop the subin-
dex i. The second field �herein labeled with a “�”� must

have the same base Rabi frequency �̃=� and Lamb-Dicke
parameter �̃�=�� as the first one; must be exactly � radians
out of phase with it, �̃=�+�; and must be −� detuned from
the same sideband transition: �L̃=�0−�+�.

This bichromatic scheme differs from the SM gate in an
important way: the latter is based on Raman beams detuned
from opposite sidebands rather than the same sideband, as
proposed here. The SM gate can operate in both the disper-
sive regime ��kn

� ��, in which the vibrational degree of
freedom is also only used as a virtual mediator, and the
“fast” regime of small �—more naturally described as a
�̂�-dependent force—in which the motional degree of free-
dom is actually populated during the gate evolution. Never-
theless, in both regimes the SM-gate Hamiltonian includes
terms as �̂+ � �̂+ and �̂− � �̂−, which are undesired in this
context for, even though they do not have support on
VDFS2i

� VDFS2 j
, they take some states out of VDFS4ij

. The SM

gate is therefore not useful for the implementation of the
encoded recoupling scheme.

Since the encoded recoupling scheme involves several
pulses, the duration of the procedure must be compared to
realistic entanglement lifetimes. For instance, taking the ex-
perimental values at the Innsbruck experiment �12�: �=2�
�100 kHz, ��=0.0165, and �=2��16.5 kHz �10�����,
the time required to realize, for instance, the pulse
e−i��̂+

��̂−+H.c.��/2 is ���� /2�����2=3 ms, which is four or-

ders of magnitude smaller than the 20 s robust entanglement
reported there. We also note that in the case of Raman tran-
sitions the effective Lamb-Dicke parameter �� is typically
larger, yielding a considerable speedup.

In addition, we have numerically simulated the pulse se-
quence �7� to generate a logical �-phase gate. The model
used for the simulation is that of the usual Jaynes-Cummings
Hamiltonian only under the optical RWA, and where the
terms in its Taylor expansion of order higher than 2 in the
Lamb-Dicke parameter where neglected. Two � /2 pulses on
the logical qubits were inserted just before and after the
phase gate to turn it into a logical controlled-NOT �CNOT�
gate that, written in terms of the physical-qubit states, has the
following truth table:

�0i1
1i2

,0 j1
1 j2

� → �0i1
1i2

,0 j1
1 j2

� ,

�0i1
1i2

,1 j1
0 j2

� → �0i1
1i2

,1 j1
0 j2

� ,

�1i1
0i2

,0 j1
1 j2

� → �1i1
0i2

,1 j1
0 j2

� ,

�1i1
0i2

,1 j1
0 j2

� → �1i1
0i2

,0 j1
1 j2

� . �14�

Figure 1 shows the numerically calculated evolution of se-
lected populations during the CNOT operation. The total re-
quired pulse area is 5� and thus the total required time for a
CNOT is approximately 15 ms. For all four test cases fidelities
exceeding 90% are calculated. We used the values from
above for the laser settings. The motional mode frequency
was chosen to be 2��1.2 MHz, a typical value in the Inns-
bruck experiments. Decoherence effects such as magnetic
field fluctuations and laser frequency fluctuations are not
considered because the evolution takes place predominantly
in the DFS. The assumed addressing error of 5% on adjacent
ions reduces the fidelities by about 3% and off-resonant ex-
citations produce a 3% error. Other decoherence sources, like
intensity fluctuations, motional heating, etc., are expected to
contribute not significantly. The errors due to off-resonant
excitations can be greatly reduced by pulse shaping, i.e.,
switching laser pulses adiabatically as compared to the Rabi
frequencies. Addressing errors can be reduced considerably
with composite pulse sequences such that they appear only in
second order. Thus we estimate that the total infidelities of
the proposed scheme is potentially well below 1% even with
present technology, so that the gate fulfills the requirements
set in �28� for fault-tolerant quantum computation. We note,
however, that for useful quantum computation, higher gate
fidelities than estimated here reduce the overhead dramati-
cally.

D. Phase sensitivity

Let us briefly discuss the sensitivity of the protocol to
fluctuations of the optical phase of the driving fields due to
relative path instabilities, which can be a serious limiting
factor for the fidelity of the gates �15,19�. For the implemen-
tation of single-qubit operations in the DFS �Hamiltonians
�9� and �12�� on qubits using optical transitions this will not
represent a major problem, since copropagating laser beams
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can be used and thus relative phase fluctuations can be made
quite small. A very similar situation arises for Raman-driven
qubits as each pair of noncopropagating laser beams acts
simultaneously on neighboring ions and can be viewed as
one effective field, with phase fluctuations between both ions
small as in the above case. We thus conclude that path length
differences can be efficiently controlled in the single logical
qubit case.

We now turn to the two-logical-qubit gates. In contrast to
single-qubit operations, here each bichromatic beam acts si-
multaneously on two ions that are not necessarily neighbors.

Nevertheless, even for ion spacings of up to 1 mm the beams
take essentially the same path and thus, e.g., relative fluctua-
tions of the air’s refraction index are not significant. Further-
more, since the fivefold pulse sequence �7� yields a �-phase
gate, which does not depend on the spin phase, interferomet-
ric stability is required only throughout the pulse sequence.
Therefore long-term interferometric stability is not neces-
sary.

IV. CONCLUSION

We considered the different interactions involving only
two physical qubits at a time that generate universal quantum
gates on collective-dephasing-free-encoded qubits, and de-
scribed feasible experimental demonstrations of each of them
with trapped ions using existing technology. A general for-
mal classification of all two-body dynamics able to generate
such gates without the system’s state ever leaving the en-
coded subspace was provided in terms of the Pauli operators
associated to each physical qubit, together with the explicit
presentation of the allowed Hamiltonians. The implementa-
tion of these Hamiltonians operates in the individual laser
addressing regime and requires no ion shuttling, so that it
complements the collective-ion-addressing-based proposals.
Also, no ground-state cooling is needed, provided that the
ions always remain in the Lamb-Dicke regime. In addition, it
makes use of a two-ion gate based on bichromatic Raman
fields that can be applied to clock states connected via dipole
Raman transitions. Finally, even though this gate is particu-
larly well suited for implementing universal quantum com-
puting in DFS’s, it constitutes by itself a potentially useful
alternative to other entangling gates outside the context of
DFS’s.
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