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Doppler cooling of a Coulomb crystal
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We study theoretically Doppler laser cooling of a cluster of two-level atoms confined in a linear ion trap.
Using several consecutive steps of averaging we derive, from the full quantum-mechanical master equation, an
equation for the total mechanical energy of a one-dimensional crystal, defined on a coarse-grained energy scale
whose grid size is smaller than the linewidth of the electronic transition. This equation describes the cooling
dynamics for an arbitrary number of ions in the quantum regime. We discuss the validity of the ergodic
assumptior(i.e., that the phase-space distribution is only a function of eneFggm our equation we derive
the semiclassical limii.e., when the mechanical motion can be treated classjcatlgt the Lamb-Dicke limit
(i.e., when the size of the mechanical wave function is much smaller than the laser wavel&/efind a
Fokker-Planck equation for the total mechanical energy of the system, whose solution is in agreement with
previous analytical calculations that were based on different assumptions and valid only in their specific
regimes. Finally, in the classical limit we derive an analytic expression for the average coupling, by light
scattering, between motional states at different energies.
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I. INTRODUCTION monic trap focuses on the regime>v.
The theory is well developed for single trapped particles

The development of laser cooling and trapping technique#n specific regimes: in the semiclassical limv,wg,
in recent decades has allowed for many spectacular expefivhen the mechanical motion can be treated classically, and
mental achievemen{d]. Hand in hand with the experimen- in the Lamb-Dicke limitv> wg, when the size of the mo-
tal work, the theory of laser cooling has been widely devel-tional wave function is much smaller than the laser wave-
oped, providing a precise description of many experimentalength[3]. In the semiclassical case, the standard procedure
situationg 2,3]. Yet the great majority of the theoretical stud- consists in writing the equations for the system dynamics in
ies have dealt with the interaction of laser light with singlethe Wigner representation, adiabatically eliminating the ex-
particles(which are the same as many non-interacting parcited electronic state, and then expandingzinup to the
ticles). The treatment of a many-body system coupled tosecond order. In this way a Fokker-Planck equation in the
light is considerably more complex, due to the large numbeposition and the velocity of the ion is derivé@]. In the
of degrees of freedom that results from the interaction amongamb-Dicke limit, corresponding to an expansiond/v
the constituents of the system. up to the first order, the cooling dynamics are described by a

In this work we investigate laser cooling of a many-body set of rate equations projected on the electronic ground state
system, taking as a representative—and experimentallgnd on the eigenstates of the motion, which can be analyti-
relevant—example a Coulomb cluster, i.e., a crystallizectally handled 3,8]. Both treatments yield in the limiy> v
structure of ions which are trapped in a Paul or Penning traghe same final distribution of cooled atoms in energy space,
[4-7]. We develop a model for the dynamical behavior ofand the same dependence of the final temperature on the
the crystal’'s mechanical energy. In this system the physicatooling parameters. Our approach shows how they are spe-
processes in play are the trapping potential that confines theial cases of the same equation that we derive for the me-
ions, their mutual Coulomb interaction, and their interactionchanical energy of the crystal.
with the laser light. For sufficiently small kinetic energy the  The presence of many mutually interacting particles com-
motion of the ions is properly described by the collectiveplicates the treatment considerably, because the mechanical
excitations of the cluster, the so-called normal modes of th¢familtonian, having an increased number of degrees of free-
crystal, due to the interplay of trapping potential and Cou-dom, often does not allow for a simple and transparent solu-
lomb repulsion. The problem is then characterized by thre&on. An immediately visible effect arises in the spectrum of
main frequency scaleg) the oscillation frequencies of these the mechanical energy, where the increased number of de-
modes, which are determined by the trap frequenend the  grees of freedom is in general connected with the appearance
number of particleN (for ions of equal mass and chajgéi) of quasidegeneracies and with a dense distribution of the
the recoil frequencywr characterizing the exchange of me- energy leveld10]. The situation is facilitated again if one
chanical energy between radiation and atomeg  restricts the treatment to the Lamb-Dicke regirié,12 but
=272h/m\?, with m the mass of the ions and the wave-  in the more general case we want to discuss different steps of
length of the light coupling quasiresonantly to the electronicsimplification can be made as will be shown.
transition, andiii) the linewidth of the electronic transition, The treatment in this paper focuses on Doppler cooling of
v, which characterizes the rate at which photons are scatn N-body one-dimensional Coulomb crystal, in particular,
tered by the atoms. Doppler cooling of particles in a har-on the type of linear ion chain obtained in linear Paul traps
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[7,13]. Here, the many-body mechanical Hamiltonian can be N g 1 N e2/ame

; ; ; A/ — o 20 2o 92y 0 0
approximated by a set of harmonic oscillator modes, all hav-v= >, 5 (UguXj + Upy Y|+ Up,Z)) + 5 > =,
ing different frequencies,, . .. ,vy, Where each mode cor- =1 FF1R=TR] rj—ry
responds to a collective excitation of the crystal. Since for @

Doppler cooling the rate of photon scattering, and thus the . . . L '
cooling dynamics, is determined by, we define an energy Wherer;=(x;.y;,z) is the position of ior) andugy , Uoy , Uo,
grid of width AE<%y and study the cooling dynamics depenc_JI on the trap parameters and on the mass g)fhhen.
among the energy shells defined by the grid. From this start™t sufficiently low temperaturesathe ions crystallize around
ing point, with a procedure of successive averaging we dethe classical equilibrium position$” which are solutions of

rive a rate equation for the population at each motional enthe set of equation&V/&ﬂ|;go>=o [4]. Sufficiently below the

ergy on the grid. Fro”? thi§ result, the sgmiclassical limit iscrystallization temperature the motion of the ions around
'r:eckokverglj bykexpar1tQ|ngf 'n’?h/”' Int_part;cular, W% get .g. these equilibrium points is harmonic to good approximation.
Okker-rlanck equation lor the motional energy describing, s jimit, the total mechanical potential can be described

cooling Of_N lons, whose solution agrees with those of Stan'by its Taylor series truncated at the second order in the ex-
dard semiclassical treatmenf9,12,14,15%. In the Lamb- . o0 | Paul ith cviindrical
Dicke regime, starting from the full master equation, we dis-Pansion aroundr;™. In a Paul trap with cylindrical geom-

cuss the conditions under which a compact equation foftry and very steep potential in the radialdndy) direction
cooling can be found. Finally, we derive an explicit form of the ions crystallize along the trag)(axis. In this regime the

the rate equation in the limig=> v by evaluating an analytic amplitude of the radial oscillations is much smaller than the
expression for the average coupling by light scattering beaxial ones. Here, we assume the radial degrees of freedom to
tween motional states at different energies. be frozen out such that the motion is one dimensional along

Although we restrict the investigation to a one- the7 axis, and we take the axial potential to be electrostatic,

dimensional Coulomb crystal, the theory can be directly exys is the case in a linear Paul tri8]. Then the truncated
tended to three dimensions, and the results are applicable {gechanical potential has the form

clusters in both Paul and Penning traps. In general, the idea

behind our treatment is that—in incoherent processes—if the 1 N

rate determining the dynamics of interest of the system can V(Qy, ... 0N = 2 E Vika;0x 2
be singled out, the contribution of processes occurring on Jk=1
faster time scales is often well represented by the averagen orey/.
value on the slower time scale, characterizing the incoherergxpIiCit #
process.

« IS a real, symmetric, and non-negative mafthe
orm of its elements can be found, for example, in

i ) i
This work is organized as follows. In Sec. Il the model [16].)’. vyh||e 4= ZJ(O) are the displacements from- the
quilibrium positionsz:~’. Given m, the mass of each ion,

from which our derivation starts is introduced and discussedt i

In Sec. Ill we discuss and apply a series of approximationsthe secular equation for the harmonic motion of the crystal

from which we obtain an equation for the cluster’s mechani-has the form
cal energy describing cooling of the crystal. In Sec. IV we
study the equation in the Lamb-Dicke and semiclassical lim- E Vijbj“:mvibi“ with a=1,... N, (3
its, and we compare our results with those obtained in the ]

same limits with other treatments. In Sec. V we derive an

explicit functional form of the rate equation in the limyt wheire Va ahr.ehthe elgenv?lijes ad ttr?e asso<|:|ated elgen-
> . Finally, we draw our conclusions. vectors, which are compiete and orthonormal.

In the coordinates|,,= =;b{"q; the motion is described by
the Lagrangian folN independent harmonic oscillators of
Il. MODEL frequencyv, . Given the canonical momentup],=q/, con-

In this section we introduce the model that we studylugate tod,, the motion is quantized by associating a
throughout the paper. We first discuss the mechanical progitantum-mechanical oscillator with each mode. Denoting by
erties of a one-dimensional Coulomb crystal, then the interd, and a, the annihilation and creation operators for the
action of laser light with the internal electronic transition of modea, respectively, the coordinates are now written as
each ion, and finally the mechanical action of the light on the

i i [
collective mechanical degrees of freedom of the crystal. inE (b~ 1) T (aa+a£), (4)

A. Mechanical properties

and the Hamiltonian for the mechanical motion has the form
The mechanical potential on an ion cloud in a Paul trap is
the sum of the potential exerted by the trap on each ion and
of the Coulomb repulsion among the ions. Sufficiently far
away from the trap electrodes, the potential of a Paul trap can
be considered harmonic and the total potentialNdons of ~ The energy eigenstates of each madare the number states
chargee has the form In,) with eigenvalues (energiep €na=ﬁ(na+%)va.

1
Hiem 2 fiv,| 2,2, 5. B
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60 — B. Interaction with light

We consider that laser light with frequeney and wave

vectorE=(kX,ky,kZ) drives some ions of the crystal, cou-
pling to their internal two-level transition with electronic
ground stateg), excited statge), and resonance frequency
wg. In the rotating wave approximation and in the frame
rotating with the laser frequency, the total Hamiltonian has
the form

D(E)

40!

20+
H=HatHmpect Har - (7)

HereH is the Hamiltionian for the internal degrees of free-
dom, defined as

0 10 20 30 40 50
E/hv

FIG. 1. Number of stateB (E) as a function of the total energy N

E/A v evaluated for three ions on a griE =4 v/5 (dots joined by H.= —ﬁéz le)i(el, (8)

the gray ling; smoothed functiorg(E)AE of Eq. (6) with N=3 =1

(black line. The frequencies of the modes are,=v, v,

=1.732, andr3=2.4083. where §=w, — wy is the detuning of the laser from the

atomic resonance arjdabels the ionsH . is the mechani-

In the following we use staté)=|n;,n ny) to de- cal Hamiltonian defined in Eq5), andH,, describes the
17720 e HIN interaction between laser and atoms,

scribe the eigenstates of the motion of the crystal corre-
sponding to the eigenvalu€§=2a€na.

In summaryN trapped ions crystallized in one dimension Ha =%, z) [gre*ikzzw g;eikzzj], (9)
can be described by harmonic oscillators with frequencies m 2
vy, . ..,vy. These frequencies are solutions of Eg). and,

what is important, they are incommensurate. Therefore thwhereQ(zj) is the Rabi frequency at the positiap, af,
spectrum of mechanical energies of the system does not e¥ndo; are the raising and lowering dipole operators, respec-
hibit the discreteness and equispacing property of the singlgvely, for the internal state of thgth ion, and{j} is the set of
harmonic oscillator spectrum, but shows a dense distributioriven ions. Assuming that the light intensity does not vary
of levels, and at sufficiently high energies and laet  rapidly in the vicinity of (%), we can approximaté)(z;)
assumes a quasicontinuum character. In this limit we cagﬂ(zgo))zﬂj The operatore 7 in Eq. (9) represents

. . . . l . N
define the density of states of the systagtE), which is @ e mechanical effect of the light interaction, i.e., a shift in
smooth function of the energy and is defined on a grid ofy,omentum space by one photon recoil which goes along

energiesAE, such that the number of statB¢E) contained it the excitation. Using Eq4), its explicit form is
in the interval /(E)=[E—AE/2,E+ AE/2] is much larger

than 1, andD(E)=g(E)AE. For N modes(ions) g(E) can
be evaluated by solving the following integral:

N
exp(—ikzz]-)zexp( —ik,Z V=i > nj‘“(aLJraa)),
a=1
(10)

E =
9(E) (hvy)(hvy)- - - (fivy) where 7{" is the Lamb-Dicke parameter for modeand ion

d (E E En_1 j, defined ag17]
Xd_EfO dElJ’O dEsz dEN h
EN ﬂfzkz(bfl)f\/m. (12)

(N Do) ()’ ©
For some ions we can ha& =0, which means that not all
ions of the chain are driven. This condition can be achieved
i.e., by taking the derivative of the ratio between the volumeeither when the ions are sufficiently spaced to allow for their
in phase space of energyE and the volume occupied by a individual addressin§18], or by introducing a different type
single state, {v,)(Av,)---(Avy). In Fig. 1 we plot the of ion into the crystal, such as an isotope of the trapped
number of states as a function of the total mechanical energglement[19] or a different speciefl7,20 whose transition
for a chain of three ions, taking a griE=%v,/5, and com-  frequency is not resonant with the laser. In this case, some
pare the exact value with the smoothed functigiiit) AE, differences in the mechanical behavior arise, which, how-
with g(E) given by Eq.(6). ever, are not relevant for the results that we derive below.
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C. Master equation ionsj, shifted in momentum space by the recoil of the spon-

We describe the dynamics of the driven crystal througH@n€ously emitted photon,
the master equation for the density matpixof the N-ion
SyStem: - ! ik cos6z; = ~—ik cos6z;
pj—f 1d(c050)/\/(c050)e ipe i, (14
d i B
GiP=—7HpI+L(p), (12
with M(cos#) being the dipole pattern of the spontaneous

whereH has been defined in E(7), andL is the Liouvillian  decay, and<=|l2|.
describing the incoherent evolution of the system due to cou-
pling of the ion’s electronic transition to the modes of the

electromagnetic field: D. Low saturation limit

N In the limit of low saturation )<y, the excited states
_7 ~ -4 - |e); can be eliminated from Ed12) in second order pertur-
Lp) 2 ,Zl (207 pjoj —oj oy p=pojop] (13 bation theory[21]. Thereby we obtain a closed equation for
_ _ _ the internal ground statlg)=1II;_,|g);, which we project
Here v is the decay rate of the internal excited std®s,  on the basis of mechanical sta{e& The equations describ-
and p; is the density matrix describing the feeding for theing the evolution of this system afé0]

(nle™zilk)(k|e™"™ll) (1] e[ k)(k| e~ T<Zi| m)
G Eih—o-Tyiz PIM = G e sriyz (P

2
Q;

d i
ar(Mlelm)=— & (&= Em{nlolm) +1 3 7 3

0? 1 _ _ _ _
+7% 7‘2 f d(cos6) M cose)(n|e' «s#i|k)(k|e™*zi|r)(s e™i]j)(jle ™ 5% |m)(r|p|s)
] ,J.rSs -1
1 1
M (Gt e tiyI[(E—Elh—o—i7i2] | [(Ex—E—&+ETh—i Y| (E—Elhi—o+iI2])"

(19

Here, the coefficients describing the coupling among theeraging, we derive an equation for Doppler cooling of an ion
populations(n|p|n) and the coherencé®s|p|m) are propor- crystal. This equation will be ergodic, in the sense that it
tional to the Franck-Condon coefficients, which have thedescribes the dynamics of the system in terms of the popu-
form lation P(E) at the crystal’s mechanical energy

In the Doppler cooling limifwhich impliesy> v, for all

N ) . .
SikZ [\ — —in%(a +al) a=1,... N,ands=0(y)] we define a grid of energieSE
(Ile”*4[n) £1<Ia|e a2 ng) such that in an intervalF(E)=[E—AE/2E+AE/2] the
N a2
_ _77# ra!
-1 exp( 2 ) Vira Hll—n.])!

X (i) lanalL el (), (16

wherer ,=min(l,,,n,), andL‘r"f"“‘(x) is a generalized La-

guerre polynomial. They represent the probability amplitude
of a transition from the initial motional state) to the final
motional statdl) by absorption or emission of a photon.

E E E,

Ill. AN ERGODIC EQUATION FOR LASER

COOLING .
OF THE CRYSTAL FIG. 2. Coarse-grained energy space for the case of two modes
of frequencyr;,v,. The points are the states with eneigy= &,

In the following, starting from the full quantum- +&,,. The broad lines represent two energy sheHéE) and
mechanical equatiofiL5) and using consecutive steps of av- AE’).
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number of stateB (E)>1, and the Lorentzian describing the , ,
resonant response of the atom varies infinitesimally on eack, =2 X' where X' =
interval. The resulting shells of energies can be visualized as* k K :
shown in Fig. 2 for the case of a two-ion crystal, where each

axis represents the energy of one mode, and each point is a

state [n)=|n,,n,). Here, the states with total energ},  where nowE, is one energy value on the grid, at{E,)

17

K:EEFEY |

e F(E) fall into the shell of widthAE along the lineE =[Ex—AE/2E+AE/2] is the energy interval centered at
=hv(N1+3)+hav,y(ny+3). Eyx with width AE. Using these definitions we rewrite the
We can now decompose the sums over the motional statesjuations for the populations in E(L5) and sum over all

appearing in Eq(15) as follows: states that lie within the same energy shE|E,):

d 07 1 _
— > (n|p|n)y=— — " |(n|e™zZ|k)|?(n|p|n 18
U S LSS nlekafkykle (ol 19
T 4 6§ (Ex—ED/hi—o6—iyl2 7% 17Fn
Qf 1
+y —f d(cos6)N(cosh) >,
T 4 -1 Ex E,
x - " [(nlek ook 2[(Kle 0l olr) 20
[(Ex—E})/h— 812+ v?l4 nkr
, , <n|eikcosezj|k><k|e—ikzzj|r><sleikzzj|j><j|e—ikcosezj|n>
t2 X e BT T E e —5=Tam P19 (21)
£t s T [(E,—Eo— Ey+ E)/A +iyIL(E,— EQlfi— 6—1712]

j#korr#s

where we have separated the terms involving the populati@8sand (20), from the ones that involve the coherencds)

and(21). We now compare the terfi8), the loss rate of the population, with the coupling to the coherendd®jnLine (18)

is proportional to the sum of moduli squared of Franck-Condon coefficients; thus it is the sum of positive terms. The sum in
line (19) adds up coefficients with alternating signs, as can be verified fron{16y. For D(E)>1 we can therefore safely
assume that

S 33 ekl Pnlpn=| 5 S (nlebao(ke ) ilplm). 22

it nk,1#n

This is equivalent to a random phase approximation. On the basis of this consideration the coupling between populations and
coherences i119) may be neglected in comparison to the loss rate described by the téi®).idnalogously, we can neglect
the terms in(21) in comparison with(20), and we obtain the following set of rate equations:

d Q0?2 1 .
! — ! ! ik,z; k)|2
dt; (nlplmy=-v-, % ;k [(Ek—En)/h—5]2+y2/4; <n|p|n>; [(n[e"]k)]

02 Jl 1
+y— d(cos@)N(cosh
Y 4 {JZ} -1 ( M )EKE.Er [(Ek—Er)/ﬁ—6]2+ y2/4

2, (23

XE’ <r|P|I’>E, |<k|e_ikzzi|r>|22’ |<n|eikcosozj|k>
r R =
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where all Rabi frequencies have been set eddak (2. This  ion) recoil energywg and on the energy per ion of the initial
simplifies the discussion in the next subsection, but the morstate, but not on the details of the quantum staje
general case of differer2; can be treated with the same  Guided by this result, we will now make the approxima-
methods under conditions that will be discussed below.  tion that in the limit of Doppler cooling;y>v;, and for
sufficiently large density of stateB,(E)>1, the oscillations

A. Ergodic hypothesis of the Franck-Condon coefficients with the vibrational num-
. . . bers play a negligible role, whereas the average properties
e P et A0, SouRes 1 1 termine e cooing dynaics. i formite his assunp
ergy with the crystal. The probability amplitude for the ra- ion by first introducing an average Franck-Condon coupling
diative event to occur is weighted by a Lorentzian distribu-
tion, which below saturation has width, and which is a
function of the difference between the mechanical energies 1
of the crystal before and after the scattering. The mechanic@d™(E,, ,E,)= ——————— > >, > |(k|e " |n)|?,
effect of light on the motion of the crystal is described by the ND(E)D(E) =1 7 %
operator(10), and the probability for the crystal initially in (26)
state|n) to be scattered into sta&) by the absorption or
emission of a laser photon is given by the modulus square o
of the Franck-Condon coefficient, E{.6). When we regard gnd then writing
the modulus squared of E¢L6) as a distribution over the
states|k) after an absorption or emission event, given the
initial state|n), then the average motional energy transferred
to the ion cluster and its variance are calculatedsag Ap-
pendix A

between shells of enerdy,, andE,,

N

1 ) A
N2 2 (ke ™ In)?~D(E)QU(E, B0, (27

thereby neglecting the dependence of the left-hand side
_ ik COSOZ: 112 (LHS) on the details of the stat@). We will discuss this
<gk_5“>k_; (&—El(nle I[k)|*=wg cos' 6, assumption and possible alternd::?ves in the next section. It
(24) will be one of the important results later to determine an
explicit expression forQM(E, ,E,) in Eq. (26). Further-
) 2&, ) more, in Eq.(27) all ions of the crystal are assumed to be
(&= &) )=hwgcos 0N T (hor cog 0)%, (25 griven. In the next section we will discuss the case in which
only a subset is driven.
where wg=7%k?/2m is the recoil energy. Thus, the first and  Applying Eq. (27) to Eg. (23), in the limit in which all
second moments of this distribution depend on tsiegle ions are driven, we obtain

d !
m; (n|p[n)

02 D(E ) QK (E, ,Ey) ,
=—N772 (BIQ(En B > (nlp|n)

B [(Ex—Ep)/h— 812+ y214

D(E) Q™ (Ey ,E;)D(E,) QS (E, ,Ey)
[(Ex—ENI%— 812+ 214

0?1 ,
+Nny 1d(cose)/\f(coséP)EZE > (r|p|r). (28
_ oE =

In order to obtain the second term on the RHS of E28) from the second term on the RHS of BE@3) we have made a
further approximation. First we write

; |<k|e"kzzilr>|2|<n|eikC"Sazilk>lz=2j |<k|e‘ikzzjlr>|22I |(n[e o> [k) |25y (29

and then we sef;;— 1/N. This corresponds to the assumption that, in the regime we are considering, the mechanical effect of
the process of absorption emission of a photon by one ion is equivalent to absorption by one ion and emission by another
ion, weighted by the probability for the two ions to be the same.

By defining the population densitig¥(E,t) of the energy shells through
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AEP(E,,0=2" (nlpln), (30)

such thatf/gdEP(E,t)=1, and by usind®(E)=g(E)AE, we finally arrive at a rate equation as a function of the motional
energy:

d N 9(E1)QYI(E,Ey)
at BT yTNfodEl[(El—E)/h—8]2+y2/4P(E’t)
Q% 1 = = g(E)QIes)(E, ,E)g(E;) Q¥ (E,,Ey)
+yTNf_ld(cosa)N(cosa)fodElfodEzg Q[(El_(E;/ﬁfé];fyzli 2L P(Ept), (3D

where we have replaced the sums over the energy by intd&equation(32) implies Eq.(27) and is an even stronger as-
grals, valid when the average enerdy(t))>AE. The two  sumption. It corresponds to assuming that the system be-
parts of the rate equatiof81) show how, after the various havesergodically, i.e., that the populations of the states in an
steps of averaging, the total population of a shell with energyenergy shell equalize faster than the average quantities of the
E changes in time: Population is lost by excitation to shellssystem evolve in time. It leads to the same rate equafin

with energyE; and subsequent emission into any shell, ancbut it is a more natural assumption in the last stages of the
population originally atE, is excited to a shell aE; and  evolution, when the system tends asymptotically to the
then scattered into a shell at enelgy steady state.

It should be noted that the restriction to a one-dimensional |n general, Eq(31) describes the dynamics of cooling to
crystal enters into the number of modes and into the geomthe extent that assumptid@7) is valid, i.e., when the aver-
etry of the laser beams, as well as into the pattern of theige coupling between an eigenstate of the mechanical energy
emitted radiation. However, the application of the “randomand the states of an energy shell is a smooth function of their
phase approximation(22) and of assumptiori27), which  respective energies. This is true when the average coupling
are at the basis of our derivation, is in no way restricted byof each state of one energy shell to the states of another
the dimensionality of the problem. Actually, an extension toenergy shell is of the same order of magnitude. Outside the
three dimensions would endorse the two approximations.amb-Dicke regime, given the oscillatory behavior of the
since the number of modes increases, and with it the densitgranck-Condon coefficients, this holds if each state couples
of states in the spectrum of the motional energies. Thereforeappreciably to more than one state of the other energy shell,
an equation for the total motional energy of the crystal of the.e., for D(E)>1 and y sufficiently large. In the Lamb-
form of Eq. (31) can be derived in three dimensions using Dicke regime analogous considerations can be applied, and
the same considerations applied here for the one-dimensiongey will be discussed in detail in the next section.
case. The ergodic regime can also be justified by the existence
of a physical process whose main effect is to thermalize the
states within one energy shell and which acts on a shorter
time scale than the energy-changing processes. This assump-
1. Ergodic assumption tion is at the basis of treatments in the kinetic theory of

Since the distribution of the total mechanical energy oveiduantum gasei22], where the interatomic collisions lead to
the system is sufficient for describing the cooling processthermalization, and the gas can be considered in a thermal
assumptior(Z?)’ |eading to Eq(31), S|mp||f|es the descrip_ quaSieqUilibriUm distribution on the time scale in which it is
tion of the laser cooling dynamics of the crystal significantly cooled. The assumption of rapid thermalization is also cen-
by dramatically reducing the dimensionality of the problem.tral to an earlier study of laser cooling of Coulomb clusters
Equation(31) could also have been obtained by assumind12]: There the effect of mode-mode couplit@nharmonic-

that the population of all states in the same energy shell i§Y) was proposed as a possible agent, which does not explic-
equal, ity appear in the equations but justifies conditi(#Y). Di-

rect evidence of this effect has been found in numerical
nlplny=p(E,), 32 studies |r_1[17] for the case of exact degeneracy between the
(nlp|m=Pp(Ex) (32 frequencies of the modes.

B. Discussion

thus definingp(E) as the population of a state at eneigy
such thafcf. Eq. (30)] 2. Laser intensity distribution over the crystal

In deriving Eg.(31) we have assumed that all ions are
P(E)=p(E)g(E). (33)  uniformly driven. We discuss now the case in which only a
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subsetj} of ions in the crystal is illuminated. For simplicity, same order of magnitude. In that case, the ergodic assump-
let us assume in Eq23) that O;=Q for | e{j}, and Q, tion Eq.(27) can be expressed as

=0 otherwise. Due to the geometry of the crystal, the cou-

pling of each ion to a mode is a function of the mode and of 1 ,

the ion’s position in the crystdlsee Eq.(11)]. Some posi- " > > [(kle *|n)|2~D(E)QW(E, ,Ey), (34)

tions in the chain are more strongly coupled to a certain set up ok

of modes, and some positions are even decoupled from cer-

tain modeq17]. Then, the ergodic assumption is valid pro- whereM is the number of driven ionsM <N). Taking into
vided a suitable set of ions is driven, such that the couplingiccount this more general case, the rate equé&Btbnhas the

of each mode of collective motion to the radiation is of theform

QZ 0 (ky)
f dE 9(E1) QY7 (E,E,) P(E 1)

d
S P(Et)=—y—M
TR I P =y P TR

g(E)Q&cs9(E, ,E)g(E;)Q¥)(E,,Ey)
[(E{—Ey)/h— 812+ v?l4

QZ 1 o0 o
+77MJ d(cosa)/\/(cose)j dElf dE, P(E,,t). (35
-1 0 0

Finally, note that the number of driven iord, appears in Eq€31) and(35) as an overall scaling factor, making the optical
pumping rate of the crystéll times that of a single ion. In fact, it has been shown earlier that below saturation the ions behave
as independent scatterers, and their contributions to cooling simply aptDyiy].

IV. THE SEMICLASSICAL LIMIT AND THE LAMB-DICKE LIMIT

In this section, starting from Eq31) or Eqg. (35 we derive the limit where the motion can be treated classidakyni-
classical limi}, and obtain a Fokker-Planck equation for the energy which is analytically solvable. We compare our result with
the well-known treatments ¢B] and[12] and find full agreement with their theoretical predictions. In the second part of this
section, starting from Eq15) we consider the Lamb-Dicke limit, and discuss the conditions under which an equation for the
motional energy of the type of E¢31) can be derived for describing cooling Nfions.

For clarity in the derivation, we rewrite E¢31) as

d B 1
9(E) ;P(E.)=—g(E)p(E.D) fo dEfE?(Ey)L(Es—E)+g(E) f_1d<cosew<cosa>

x J dE J dEfE ) (E) fe? (Eo)L(E1~Ep)p(Ez ). (36)
0 0

Here,p(E) is the population of a state of energydefined in " (koS8 e
Eq. (32), andL(E,—E) is the Lorentzian distribution, fo dE'fg "™7(E") =1, (39)
L(E,—E) MO%y 37) - (K cosf)
— = ’ r_ cos 1 —
1 A[(Es—E)h— 872+ 72 deE (E'—E) g (E")=hwgcoS 0, (40)

while f&(E") is defined through o
£ f dE'(E'—E)*f &S (E') = (hwgcod 6)2
0

g(E"QW(E,E"=fY(E"). (39)

2E
+# wg COF 0
From this definition, using Eq$27) and(24),(25), it can be
verified thatf ) (E’) satisfies the relations (41)
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The analogous relations follow fcfr(EkZ)(E’) when 6 is re-
placed by6,, wherek,=k cosé,.

Equations(40) and (41) are equivalent to Eqg24) and
(25) in the approximation of a smooth energy scale.

A. Derivation of a Fokker-Planck equation for the energy

PHYSICAL REVIEW A4 063407

f(E’) varies on the scalkwg [see Eqs(40) and(41)], the
variation of the populatiop(E) on the energy scalkwg is
small, i.e.,

<p(E,t). (42)

d
hog EP(E,I)

We first consider the limit in which the recoil frequency is We now expand Eq(36) aroundE up to first order in the

much smaller than the linewidtlyg<<+y. In this limit, while

d
Gi9(EIP(E,D)= —2wrcoF GoL'(0)g(E)p(E,t) + wg

parameterwg/y and, using Eqs(39)—(41), we obtain

(a+cog 6)L(0)

E E
- Zﬁcos’- 60L’(O)}g(E)p’(E,t) + wRN(cH— cog 6,)L(0)g(E)p”(E,t). (43

Here,
L'(0) [ Ly )} 4MOyo (44)
=|— X — ———
dx" o (4874 92)?
and
a= J d(cos@)cos ON(cosh). (45)
We rescale the time as
7= wg(coF O+ a)L(0)t (46)
and define
cogd, L'(0
o (0) 47

" (co€ byt a) LO)

Note that with definition(44) C<0 for red detuningsé
<0 (0w <wgp). Equation(43) can now be written as

d C
d—Tg(E)p(E,r)= - N[Ng(E)p(E,THEg(E)p’(E,T)]

1
+NIN9(B)p'(E,n+EQ(E)P"(E,7)].

(48)

d J 2
d_TP(E'T): - E[A(E)P(E,T)H > E[B(E)P(EJ)],
(49)
where
C
A(E)=1+ NE'
B 2
B(E)—NE.

Equation (49) can be easily solved. In the following, we
calculate the steady state solution and the time evolution of
the system, and compare the result with the existing treat-
ments evaluated in the limit of one ioNE1).

1. Steady state

The steady state distributiddy(E) satisfies the equation
(d/d7)Po(E)=0. Thus, it is a solution of the differential
equation

d
SELB(E)Po(E)]=2A(E)Po(E) (50

(where the integration constant has been set to 0 for a con-
vergent solutionand has the form

Po(E)=FEN"!expCE), (51)

with normalization constark. For red detunings@<0) and
if the wave vector of the cooling laser has a component along

Using the energy dependence of the smoothed density dhe motional axis (cog,#0) the integral of Eq(51) over the

statesg(E) as given in Eq.(6), and Eq.(33), we get a
Fokker-Planck equation of the form

energies converges. Then, the value Fofis found from
JodEPy(E)=1, yielding
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e du 1
N (52 - n(CUTD, (58

F dr

Using these results, the steady state energy has the form which has the solution

U(t):uoexp(2‘"RCOS,2\10OL ©, +é, (59

<E>_deEEP(E)_ N a+co§00( y +2|5|)
5 ETICT Y acog g, (21T v )

®3 whereNUq=(E(0)) is the initial energy. Fot—« we re-

Equation (53) contains the dependence of the coolingCOVer from Eqy(59) the sfceady state_solutic(ﬁl). The rate at
limit on the angled, between the cooling laser beam and theWhich the steady state is reached is
direction of the motion. The final energy is minimal for
cosfy=1, i.e., when the laser propagates parallel to the trap
axis, and it diverges for ca%=0, when the laser is orthogo- I oo™
nal to the trap axis and there is thus no laser cooling. N N (48°+y%)?

The minimum of the final energy vs detuning is reached (60)
for 6= —1v/2, as in the case of one idisee, for example,
[3]). Inserting into Eq.(53) N=1, a=1/3 (which corre- where we have used E@4). Thus the cooling rate increases
sponds to spatially isotropic spontaneous emigsiamd linearly with increasing number of driven iohs. Itis largest
cosf,=1, we find the same result as Javanainen and Sterif all ions are driven, as expected. _ .
holm in their semiclassical expansion for one [8it Hence, Since the results derived so far agree precisely with those
the final energy folN ions isN times the steady state energy found earlier in specific cases, the gene_ral procedure that led
achieved by Doppler cooling of one ion. This general resultUs from the quantum-mechanical equations to the rate equa-

has also been found earlier in special cases, such as a Cdifn for the energy can be considered the common basis that
lomb cluster in the Lamb-Dicke reginfd2], and a two-ion underlies and unifies these earlier treatments. Furthermore,

2wr O bo|L"(0)] _ M 8ug cog 6,0%y| 8|

crystal treated in Ref23] by extending the method ¢8]. we have shown that the final energy of ldfion crystal isN
times that of a single motional mode, while the cooling rate
2. Time evolution is M/N times that for the one-dimensional motion of a single

. ._ion, M being the number of ions driven by the laser.
The steady state solution suggests use of the following A fina| remark should be made on the assumptions lead-
ansatz for solving Eq(49): ing to Eq.(49). In deriving the Fokker-Planck equation we
have assumed ergodicity and E42), i.e., thatp(E) varies
negligibly on the recoil energy scale. The latter condition
. (54 corresponds to the second order expansiofi of Ref. [9].
In that work the derivation of a Fokker-Planck equation was
whereU(t) is a positive function of time anB(t) is a nor- based on the limit of overdamped oscillatior®> v, in order

malization factor, such that at any instantthe relation tp adiabatically el_iminate the excited state from th_e equa-
JodEF(t)P(E,t)=1 is satisfied, i.e., tions. Our derivation, however, does not necessarily imply

this limit. Only in the case oN=1 ion, which is not the
main focus of our study, must we hawE>7%v in order to
fulfill the condition of a large density of stateB,(E)>1,

(59 and thus for this special case the overdamped oscillator limit

P(E,t)= F(t)EN—lexp( 0]

F(t)

= —N .
F(NU(®) is a requirement for the validity of Eq449).
This ansatz corresponds to assuming that the distribution _ )
P(E.t) is always thermal with average energy B. Lamb-Dicke regime
When the atomic motion is well localized with respect to
(E())=NU(1). (56) the laser wavelengtiLamb-Dicke regimg the Franck-

Condon coefficients in Eq16) can be approximated by their
Substituting Eq(54) into Eq.(49) and using Eq(46) we get  first order expansion in the parame{¢k-x)?). For a single
a differential equation folJ: ion excited below saturation, the dynamics are described by
a rate equation for the populations of the states with vibra-
tional numbem, which can be analytically solvel8,8]. In
d_U i(E_ ) _ E(C+ i) (E_ N) (57) this form, sincen is proportional to the mechanical energy of
dr U\u N u/\u ' the ion, the equation for cooling is an equation for the en-
ergy. For many ions, a set of rate equations can also be
Since this equation must be satisfied for all valuegpfve  derived which describe cooling of each mode and which are
find decoupled, since a simultaneous change of the energy of two
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or more modes by scattering of a photon is of higher order in Let us consider Eq415) in the Lamb-Dicke regimg24].

the Lamb-Dicke parametgand thus takes place on a longer Here the reduction of this set of equations to the rate equa-

time scalg [10,17. tions (23) is possible without assumptiof®2), since the
Yet we show in this section that under some conditions wd€ms (19) and (21) are negligible, either because they are

. . . rapidly oscillating or because their coupling to the popula-
can derive a single equation for the total energy of mam{io?]s é of highergorder in the Lamb-Dickg pgrame{lm]?lr?

ions. Given the analytical simplicity of the model, this ex- st order in the parametasg/v,, with =1, ... N, the
ample is also instructive in order to see the limits of validity modulus squared of the Franck-Condon coefficient has the
of the ergodic equation. form

N N
(el =TT 5, 1, 1= 3, wf2ng+1)

N N

52 p2
20 AL o [P (gt D)6 nyeat n*ngbic, 0, -1) (62)

Thus, given the initial state of motiojm)=|n,, ... ,ny), scattering of a photon involves three possible transitidnshe
so-called carrier transition, of zero order in the Lamb-Dicke parameter, with final|kdatén); (ii) the red-sideband transi-
tions, whergdk)=[ny, ...,ng—1,... ny); and(iii) the blue-sideband transitions, whékg=|n;, ... ng+1,... ny). The
casedii) and(iii) are of second order in the paramenfr.

When we substitute Eq61) into Eq. (23), we obtain

d N
a<n|p|n>= —(n|p|nywg cog 00;1 [(ng+1)L(vp)lvgtngl(—vp)lvg]

N
—<n|p|n>wRﬁ§1 a(2ng+1)L(0)/ vy

N
+B§‘,l (n+1,]p|n+ 1ﬁ>$(nﬁ+ 1)[co€ oL (= v) +aL(0)]
= B

N

WR
+ﬁ21 <n—1,3|p|n—1,,,>V—ﬁnﬂ[cos2 OoL(vp)+aL(0)], (62)
|
where have usedljn-m:wR/vB, and the vectod, is de- 1 E
fined in the N-dimensional Hilbert space throughl),, <nﬁ>:Nﬁ_VB- (63

=68, pfor a=1,... N.

Equation(62) is linear in the vibrational numbers; of  Application of Eq.(63) to Eq.(62) yields an equation for the
the single modes, which are weighted by the factorggtal mechanical energy which can be solved analytically. In
wrL(vg)/vg. Only when these weights are of approximately o treatment above, in the case where we find a Fokker-
equal magnitude can a hypothesis similaf2@) be applied,  pjanck equation, conditiof63) is also fulfilled, but there it is
which allows summation over states of equal energy. This i, consequence of the average coupling among energy shells

true whenw,<y for all modesS because in this limit the ¢ {5 |ight scattering, rather than an extra assumption.
Lorentzian atomic-resonance curve varies very slowly over

all red (blue) sidebands of the modes. Then, by expanding
the terms in Eq(62) at the second order in the parameter
v/, we obtain a Fokker-Planck equation of the same form The Fokker-Planck equatidd9) has been derived in two
as Eq.(49). In that sense, the condition,<y can be con- different ways: in the semiclassical case by starting from the
sidered a requirement for deriving an ergodic equation in thergodic equation31), and in the Lamb-Dicke regime by
Lamb-Dicke regime. starting from Eq.(23). Both derivations rely on the limiy
Alternatively, in[12] a single equation for the total mo- >v,wg, wWhile in the Lamb-Dicke regime there is the addi-
tional energy in the Lamb-Dicke regime was justified by as-tional constraint thatvg<v.
suming that all modes thermalize on a faster time scale and Let us now summarize the solutions of E49). The form
thus imposing of the solution is the same as the one obtained for cooling of

C. Discussion
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one ion, where here the numbbl of ions appears in the erties for cooling are defined. The griE has been chosen
steady state energ$3) as a scaling factor, and the cooling according to the conditioh y>AE, and an equation for the
rate (60) scales as the ratib/N whereM is the number of energy has been derived for the situation that the number of
driven ions. This result supports the conclusion drawn instates at energly is D(E)>1. Thus,AE represents a limited
[12], that the cluster is cooled like a single ion. It is instruc- resolution which allows us to average over many quantum
tive, in this regard, to compare two particular cases that exstates. We now discuss the limkE>#%vy. This case is
hibit analogies: The axial motion of two ions in a trap with expected to correspond to the classical limit, since the reso-
collective modes at frequencies,v,, and the motion of a lution is such that all details of the quantum spectrum are
single ion in a two-dimensional harmonic oscillator potentialaveraged out. We will derive the classical limit starting from
with the same frequencies, and v, on the two axes. Ne- the average Franck-Condon coefficieQS)(E,E’) in Eq.
glecting for the moment the different masses, the mechanic&6), from which we obtain an explicit form for the ergodic
Hamiltonians of the two systems are equivalent. The laserequation(31).

ion interaction terms are also equivalent, provided that one Let us consider the sum in E6). Using the property of

of the two ions in the chain is driven, and that the Lamb-the trace, we can write

Dicke parameter for each mode of the chain is the same as

the Lamb-Dicke parameter for each axis of the trap of the Y ks ikz:

single ion. This latter condition can be fulfiled by choosing, N 213 ; En: (kle~"7[n)(n|e™4[k)

in the single ion case, the proper angle of propagation of the

laser in the two-dimensional plane. Therefore, we expect our

_ i ! ,'k . k .
treatment to be equally applicable to both cases and to yield N 21: zk: En: Tr{|k)(k|e™™4[n)(n[e™4}
similar results.

The only difference between the two cases arises in the =C(Ey,E,), (64)

spontaneous emission: in the two-dimensional one-ion case,

the photon is scattered at a random angle in the plane and titeus definingC(E,E’)=Q™®(E,E")D(E)D(E’). The sum-
ratio between the projections of the recoil energy on eactination over the states belonging to the shell of en&ggan
axis can vary. In contrast, in the two-ion case, the scatteringe reexpressed as

angle is the same for both modes, hence the average energy

transfer to the two modes has a fixed ratio in any scattering , _ e

event. This difference appears as a geometrical factor in the ; k) (k| = ff(Ek)dE5(E Hmef); [k)(kl. (69
dynamical equations, as well as in the expression for the final

energy(53) [15]. From that consideration we expect that theand Eq.(64) acquires the form

generalization of our treatment to a three-dimensional Cou-

lomb crystal will change the one-dimensional results only by 1

numerical factors representing the different geometry of the C(Ex.En)= N 2,: Tr( L(Ek)dEfﬂE )dE’

problem. "

0 ikz; 'O —ikz;
V. EVALUATION OF THE SEMICLASSICAL ERGODIC X 5(E Hme‘)e 16 Hme‘)e ]] ’

EQUATION (66)
So far we have assumed a grid of energy, which de-
fines the coarse graining on which the relevant system progdsing the Fourier transform of thé function, we get

dES(E—H f f drel(E-Hmed7/h
ff(Ek) ( med = HEY 27Tﬁ 7

1 (= sSIn(AE7/A) . -
:Z ) d7¥e'(Ekameeﬂh’ (67)

such that Eq(66) can be rewritten as

eE TN (7,7, (69)

C(EE)=y E f

sm(AET/ﬁ) JEn /ﬁfw o SOAETT) o

T/
where we have defined
A(r, )= Tr{e—iﬁmecrlheikzje—iﬁmecr'/he—ikzj}_ (69)
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By using coherent stat¢a ) to calculate the trace, using Eq4) and(10), and the properties of coherent stdt2$], Eq. (69)
takes the form

d?a v
B - UB '
2N eXF{—I 7(7“1’7’ )

ac=TL |

exn:_|aﬁ|2e—iv57'(l_e—ivﬁr)]

xexp{—[|agl?+ nf2+inf(afe s — ap)l(1—e 67} (70
In Eq. (68), the integrand is the product & (7,7') and the window function sinf/x of width 72/AE. According to Eq/(70),

Aj(7,7") depends om, 7" only throughe'”s™ and €' vg7 and thusr is scaled by the mode frequencies.

Derivation of the classical limit

We now consider the limiE,AE>% v for all 8. This corresponds to the situatigng)>1, e.g., before the cooling limit
is reached, and in general to the regim® v4. In this limit we can expand the exponentials in E¢0) in the parameter
vl AE. Up to first order, Eq(68) is equivalent to

2 N 2 © ;
C(E,E’)%(A—E) 11 fd %p LJ' d SIn(AET/ﬁ)ei[E/ﬁVB(ICVB|2+1/2)]T:|

T

h) g=1 a2N 27 ) —e AE7/h
% ifx dT/S'n(AET /ﬁ)ei{E’/ﬁ,—VB[\aB|2+1/2—2nﬂ|m(aB)—7;ﬂZ]}f’ . (72)
27 ) AE7' I

This result can be interpreted physically, considering thiatthe Fourier conjugate of the energys and has the dimension
of a time. Thus, Eq(69 can be seen as the overlap between the gtateand the statda’), which corresponds to a
displacement of«a), followed by free evolution for a time, then by a displacement back, and finally by free evolution for a
time 7'. Integral(68) sums over all intervals of times 7', for all trajectories in the neighborhood of the energy sheli 7
andE’ at 7', weighted by the time window of resolutioffAE. For 7= 7' =0 the overlap is maximum, since the state is
unchanged. Although the overlap shows a certain periodicity, e.gN#ot and, 7" multiples of 2=/v, A(r,7)=A(0,0), for
AE>fv these recurrence times fall out of the window function interval. Therefore the only appreciable contribution to the
integral comes fromr, 7' ~0. In other words, the classical limit corresponds to large energy uncertainty, such that only the
short time evolution of the wave packet contributes appreciably to the integral, since only in this limit are the trajectories phase
coherent.

Equation(71) can now be rewritten as an integral in the classical phase space using the definition of coherent states

apg=1Pg vaﬁ'qﬁ N7 (72)

whereaﬁ ,Eﬁ are real numbers. Integrating overr’ yields

da.---dawdp: - - -dp. N h2 _ _
C(E,E')zf dElf dEzf L. p”a(El—E Zp—B—V(ql,...,qN)
F(E) FE") h f=12m
(P=fik? S Pp = =
xa(Ez—T—ﬂzzﬁ—vml,...,qN> . (73

Integrating in phase spadsee Appendix B and using the The functionfg(E’) is real, and thus well defined, in the

relationfg(E’)=C(E,E')/[D(E")AE], we obtain interval of energies [E+Awr— J4hwgE,E+Lwg
+4hwgE], and it is normalized with respect &' . In Fig.
rE = F e 21N-312 3 we plot Eq.(74) for N=1,10,100. ForN=1 it has the
fo(E')= T(N)/Vah wgE 1_<ﬂ> 1 well-known form of the classical momentum distribution of
V4h wgE a harmonic oscillator at a given energByIn fact in this case

1
\/;F( N-= f) '=E+hwg+ikp/m, i.e., the probability for the oscillator
(74  to have final energ\e’ after the scattering is equal to the
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0.05 - . - - - . , in both cases we have found a Fokker-Planck equation de-
scribing cooling of a Coulomb crystal &f ions. The general
solution agrees with the results of previous treatments, which

0.04 | . ; >
were developed in perturbation theory for these limiting
caseq 3,8,9,13. As observed if12], the dynamics of cool-

0.03 ing of a Coulomb crystal can be scaled to that of a single ion.

In the semiclassical limit we have derived the explicit
form of the rate equation for the mechanical energy, by cal-

0.02 + . . .
culating from the full quantum-mechanical expression the
classical probability of scattering between motional states at

0.01 | different energies. An explicit form of the equation can also
be derived in the quantum limit for the case &1 ions.

o This derivation will be presented in future waolR5].

6 Our results, with marginal changes, can be applied to a
Coulomb crystal in three dimensions. In that case, the dimen-
FIG. 3. Plot ofg(E)Q™(E,E’) as in Eq.(75) as a function of  sjonality enters into the number of modes, which for a crystal
E for N=1,10,100.E,E’ are in units of the recoil energywg and  of N jons is 3N, and into the spatial distribution of the scat-
E=2ﬁw3. 'I_'he dashed line indicates the location of the center ofiared photons, thus affecting the coefficients of the energy
the distribution B’ =E+fwg. rate equation. From the comparison between the cooling
N ) problem for a one-dimensional crystal and for one ion in
probability that the oscillator, at ener@ has momentunp  more dimensions, we expect the final energy in three dimen-
when the scattering event occurs. For higNethe distribu-  gjons to differ from the one-dimensional result only by a

0

Finally, note that, from the definition ofg(E’) in Eq. To conclude, we would like to remark on the generality of
(74) and from EQq.(38), the treatment. Other incoherent processes in physical sys-
® ) tems can be studied in an analogous way, provided that the
Q™(E,E") rate determining the dynamics of interest can be singled out,

and that on the corresponding energy scale the spectrum of

N
hvy- - vnl'(N) energy levels is characterized by a quasicontinuum.

ﬁr(ml—%)mﬁwREE')Nl
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VI. CONCLUSIONS

We have studied Doppler cooling of a Coulomb crystal. APPENDIX A: DERIVATION OF MOMENTS

Starting from the full master equation, in the low saturation 1. One ion
regime and by consecutlve steps of averaging, we have de- Let us consider a one-dimensional harmonic oscillator of
rived a rate equation for the total energy of the crystal, reTrequency v and number state |n). Considering
ducing dramatically the number of degrees of freedom anﬁj<n|exp@kx)|k>|2 as a distribution over the final statde of
thf:JS con5|derablyd5|:cnpl|(1;y|ng the complexity ofdthe prObleméfnergyEk given the initial statdn) with energyE,, the
The equation is defined on a coarse-grained energy sc § e ’
with grid AE such that E< -y, wherey is the linewidth of ffst and the second moments of the distribution are
the electronic transition resonant with laser light. Its deriva- oy
tion is based on the quasicontinuum characteristic of the (&—E=hv>Y (k—=n)|(n[e™@D[K)[2, (A1)
spectrum of motional energi&son AE, and on the assump- .
tion that the coupling between states belonging to different
energy shells is a smooth function Bf

Starting from the general form of the equation, we have (E—E )2)k=h21/22 (k—n)?/(n|€ n(a*+a)|k>|z_ (A2)
studied the semiclassical limit and the Lamb-Dicke limit, and " K
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Using the propertya’alk)=k|k) and the closure relation of where the subscrift refers to the driven ion. Analogously,
the stateg|n)}, we can contract the sum oviein Egs.(A1l)  the second moment has the form
and(A2), using

km|<n|e‘”(""T+a)|k)|2=(n|e‘i”(aT+a)(aTa)mei”(aT+"")|n>. 21212 N
(A3) (<(5k—6n>2>k>j=(2—) v 2, ve(2n,+1)(b")2+h%wh.

mv —1
ExpressionA3) can be further simplified by using the com- (A7)
mutation properties of the bosonic operators, and we obtain
(& Eh=tiwg, (A4) Averaging Eq.(A7) over the ions of the chain, we find
(&= &) =2h wgén+h 20k, (A5)
2__ 1 ﬁwR
where we have Useé (UR/V. <(gk_gn)2>k:N 2 (<(gk_gn)2>k)j:2 N gn+ﬁ2w2R'
2. Nions (A8)

Let us now take am-ion chain. Using the definitions of

Sec. I, the first moment of the distribution is
APPENDIX B: EVALUATION OF THE SEMICLASSICAL

) TRACE
(&&= Ek: (& En(kle™]n)|?

N \/T 2
:hazl va<k T bj) =hog, (AB)

a

Expression73) can be rewritten as

_ fik— — —dp,---dpy
F:j dElj dEzf dp1d| Ex—E1—fiwg— —Pps fd%"'dQN—
F(E) FE') m hN
.y
_ B _v(qa. q.
X 3| E; B; T V(ql,...,qN)). (B1)
We define
— _ _dp,---dp, Nop2 —
l(E,po:qur--qu%cS(E—E 5o V(A1 ) | (B2)
h p=1 M

and move to the coordinateg; whereV is a diagonal quadratic form. By introducing the set of rescaled varia@jes
= \/mvBZIZqﬁ, Pg=+V1/2mpg, integral (B2) is the measure of the surface of a unitary hypersphereNr-2 dimensions.
Integrating, we obtain

ZN(E—EIZm)N_m 77_N—1/2

I(E,py)= . B3
)= o T(N-112 (83)
Substituting now this expression into E@1) and integrating oveﬁl, we get
1 m 1 E,—hwg—E;)?\N 732
F=f dE | dE,7v /El—( 2_hurEa)
re TIN=12) Jmeny 2K 2amiNug- - - vy 4 wg
EY Y
[ qe —f dEyfe, (E), (B4)
fF(E) 1ﬁNv1--~vNF(N) FE") ? El( 2

where

063407-15
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T'(N) 1

fe(E")=

PHYSICAL REVIEW /64 063407

(E/ _ﬁwR_ E)Z N—3/2

JaT(N=1/2) ahwgE) o

It can be easily verified that EB5) satisfies the relation@8) and (39)—(41).
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