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Abstract. For a single trapped ion, second-order time correlations of fluor-
escence photons are measured in a self-homodyne configuration by beating
the fluorescence with itself. At the nanosecond timescale, the correlations are
governed by electronic excitation and decay of the ion and anti-bunching in
the resonance fluorescence is observed and quantitatively reproduced. On the
other hand, at the microsecond timescale the motion of the ion determines the
correlations: secular motional modes, their amplitude and relative coherence are
measured. Besides precisely monitoring the trap frequencies, our observations
also quantify the temporal stability of the trapping potential.
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1. Introduction

Trapped ions are well known and widely used for precision experiments, such as for example,
for time and frequency standard applications where they appear to be ideal candidates (see [1]
and references therein): a single trapped ion can indeed be laser cooled and well prepared in
the ground state of the respective trapping potential such that any residual perturbation due
to the ion’s motion can be minimized. With such control and the ability to produce almost
arbitrary quantum states of motion [2], throughout the last decade, single trapped ions and
strings of ions have become ideal objects for the new field of quantum information processing
where individual ions serve as the memory for quantum information and allow one to perform
quantum information processing experiments. In addition, single ions have been increasingly
used for fundamental investigations in quantum optics, for example, as single [3] or two-photon
sources [4, 5], for basic investigations of resonance fluorescence and even for quantum feedback
experiments [6], where the motion of an ion can be influenced via back-action of a single
emitted photon on the radiating dipole. For all of these applications, it is important to monitor
a single ion’s residual motion as fast as possible and thus to precisely control both the trapping
parameters and the ion’s motional state.

Fluorescence photons emitted by a single atom carry information about both the states of
the valence electron and the motional states of the center of mass of the atom, i.e. the internal and
external degrees of freedom of the atomic wavefunction [2]. The internal dynamics is known
to be characterized by the temporal distribution of the emitted fluorescence photons, usually
analyzed by the second-order correlation function

g(2)(t, t + T) =
〈: I (t)I (t + T) :〉

|〈I (t)〉|2
, (1)

where I (t) denotes the intensity operator at timet and T is the delay between any two
considered photons4. The quantum nature of the radiation emitted by a single atom is revealed
in the correlation function by so-called anti-bunching, i.e.g(2)

= 0 at T = 0. Clearly, the
Cauchy–Schwarz inequality, i.e. the physical law of classical fields, is violated [7]. In fact,
resonance fluorescence exhibits sub-Poissonian emission statistics [8] for time intervals T
smaller than the lifetime of the excited state of the atom. On the other hand, when fluorescence
photons are correlated at time intervalsT much greater than the lifetime of the considered
electronic transition, theg(2)-function is constant and equal to one: the distribution of photon
emissions then exhibits Poissonian statistics. However, for a single trapped ion, a sinusoidal
modulation of theg(2)-function was observed in this regime [9]. This was attributed to the
trap’s radiofrequency driven motion (micro-motion) while contributions from oscillations in
the pseudo-potential of the trap (secular motion) were not observed. These oscillations appear
on a longer timescale and were reported in other experiments [10, 11] performed outside the
Lamb–Dicke regime [2] where motional sidebands are dominant in the fluorescence spectrum.

In the Lamb–Dicke regime, the conventional approach to characterizing single-ion
motional states relies on spectroscopic analysis of motional sidebands. A detailed description of
the existing protocols to reconstruct the motional density matrix or the Wigner function can be
found in [2] and references therein. A diagnostic test for quantum effects of motion for a single
trapped ion was recently proposed [12], using second-order correlations of the emitted photons.
However, to our best knowledge the latter has not been implemented yet.

4 Operators inside colons are time and normally ordered.
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Figure 1. (a) Geometry of the trap with its principal axes (xt , yt , zt ) determined
by the secular motion in three directions. The angles between these axes and
the laser propagation direction are (60◦, 60◦ and 45◦), respectively. (b) Relevant
atomic levels of the138Ba+ ion. (c) Experimental set-up: the average distance
between the trap and the mirror is set toL ≈ 25 cm. Lens L2 has a numerical
aperture 0.4 and collects the fluorescence photons. Single photons are detected
by the photomultipliers PMT1 and PMT2, time tagging of the individual photon
counts is obtained via the TAG with≈ 100 ps time resolution. The mirror is
mounted on a piezo-translation stage (PZT) to adjust the phase of the homodyne
signal.

Below, we demonstrate that the residual motion of a single trapped ion in the Lamb–Dicke
regime can be characterized without performing demanding sideband spectroscopy. In a self-
homodyne configuration, we show that the second-order correlation function allows one to
characterize the secular motion of a trapped ion. In particular, we report photon correlations
which are modulated at long time intervalsT by a beating between the two radial modes of
motion of the ion in the trap. The amplitude of the beat signal is controlled by the amplitude
of the corresponding secular motional modes. This allows us to deduce the mean occupation
number of the ion motional states,n ≈ 17, in agreement with independent measurements
performed previously [6]. Furthermore, the beat signal quantifies the dephasing time between
the radial modes at the Doppler limit, as 1.64 ms for our trap. Moreover, the short-time anti-
bunching of the emitted fluorescence is also quantified in our experiments. Our measurements
in fact reveal in a single record the dynamics of both internal and external degrees of freedom
of the ion’s wavefunction, ranging from nanosecond to millisecond timescales.

2. Experimental set-up

The experimental set-up and a partial energy level diagram for the138Ba+ ion are shown in
figure 1. The spherical Paul trap is driven with a radio frequency of 20 MHz applied to the
ring electrode while the endcaps are grounded. This results in trap frequencies of about 1, 1.2
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and 2 MHz for the two radial (xt and yt) and axial (zt) modes of motion, respectively. The
non-degeneracy in the radial modes arises from a small asymmetry of the quadrupole potential
in the azimuthal plane. A narrow band (20–50 kHz) tunable diode laser at 493 nm (green) drives
the S1/2–P1/2 transition which is used for laser cooling and the observation of the resonance
fluorescence. Another narrow band laser at 650 nm (red) pumps the ion back to the cooling
cycle via the D3/2–P1/2 transition. The lasers have frequencies close to the respective resonances
and intensities below saturation.

In the following, we study the green part (i.e. atλ = 493nm) of the resonance fluorescence.
A fraction ε = 1.5% of that is collimated by a 0.4 numerical aperture lens with small wave
front aberrations (less thanλ/5) (L2 in figure1) and sent to a retro-reflecting mirror situated
L ≈ 25 cm away from the ion. Upon reflection the fluorescence is then focused back onto the
ion with high spatial precision using piezo-mechanical mounts for the mirror. Along the mirror–
detector axis, green fluorescence photons can thus take two indistinguishable paths before
impinging on the photo-detectors: either they are emitted directly towards the detectors or they
are emitted towards the mirror and then detected after reflection. The distance between the
ion and the mirror sets the time delay,τ = 2× L/c ≈ 1.5 ns, between these paths. This leads
to a single photon interference of the green fluorescence asL is varied, with a visibility as
high as 72% for very weak laser excitation [13]. The analysis presented in the following was
obtained for slightly higher excitation, thus the visibility reduces to 38%. With this interference
setup, we accurately measure the variations of the ion–mirror distance,L, because any residual
motion modifiesL and thus the level of (the interfering) fluorescence we detect. Using a mean
photo-current as set-point, the average value ofL is fixed (on a timescale of seconds) in our
experiments such that the ion is located at the slope of the standing wave pattern that results
from the interfering fluorescence paths. Thus, on average and for long timescales the mirror
position is controlled with a precision of 10 nm, limited by the noise in the servo loop stabilizing
the piezo-mechanical positioning. On the other hand, the faster motion of the ion (timescale
of ≈ 1µs) is revealed by the modulation it induces on the mean photocurrent.

3. Theoretical model

To obtain quantitative results, we investigate the second-order correlation function for the green
fluorescence photons (λ = 493 nm), as given by the experimental set-up.

We denote the mirror–detector axis asz (see figure1). The mirror is placed atz = 0, the
center of the trap is atz = L and we write the position of the ion relative to the center of
the trap,̂zm ∝ (am + a†

m), with am anda†
m the bosonic operators associated with the motion of

the ion. The trap axis is slightly tilted with respect toz; zm can in fact correspond to the
projection ofxt, yt andzt alongz (xt, yt andzt denote the coordinates of the ion in the basis of
the trapping potential, see figure1). Along thez-axis, the field operator for green fluorescence
then reads

Ez(t) =

√
ε0G sin(kG(L + ẑm))σ−(t) + Ein(t), (2)

where 0G is the spontaneous emission rate of the P1/2–S1/2 transition andkG denotes the
correspondingk-vector at 493 nm [6]. In equation (2), σ−

= |S1/2〉〈P1/2| is the lowering Pauli
operator, associated with the creation of a photon, andEin represents the input state of the mirror
mode for a measurement at timet [14]. In the following, we consider a white noise input and
then introduce〈Ein(t ′)Ein(t)〉 = N̄δ(t ′

− t), with the mean number̄N of input counts. Moreover,
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when writing equation (2) we have implicitly assumed that our experiments are carried out in
the Markovian limit (non-Markovian behavior is observed for time delays that are comparable
to the internal timescales of the ion and is reported in [15]). The time delay induced by the
mirror, τ , is in fact smaller than the internal dynamics of the system, given by the lifetime of
the P1/2 state,τ � 1/0G, and the timescales associated with ion–laser interactions,τ � 1/�,
1/|1L |, with the Rabi frequency� and the detuning1L , respectively. Along thez-axis, the
second-order correlation function is defined by

g(2)
z (t, t + T) ∝ 〈E†

z(t)E†
z(t + T)Ez(t + T)Ez(t)〉. (3)

For our experimental setup, the mean occupation number of motional states at the Doppler
limit, n ∼ 〈a†

mam〉, was previously deduced to ben ≈ 17 [6]. In the following measurements, we
apply similar laser-cooling yielding the same average quantum numbern ≈ 17, i.e.η

√
n ≈ 0.3.

η = 2πa0/λ ∼ 0.07 is the Lamb–Dicke parameter,a0 denotes the rms size of the trap ground
state. In this Lamb–Dicke regime, the secular motional sidebands have intensities reduced by the
effective Lamb–Dicke parameter, relative to the elastic component of the fluorescence. We can
thus expand exponentials, e.g. eikĜzm ≡ 1 + iη(am + a†

m) + o(η2). For the ion placed at the slope of
the mirror standing wave, i.e.kGL = π/4 [π ], equation (2) becomes

Ez(t) =

√
ε0Ĝcmσ−(t) + Ein(t), (4)

with

ĉm =
1

√
2

(
1 +η(am + a†

m) −
η2

2
(am + a†

m)2

)
. (5)

From equations (2)–(5) the deduced normalized second-order correlation function is

g(2)
z (t, t + T) ∼= (1 + 2η〈am + a†

m〉)g(2)(t, t + T) + 2
N̄

Ī
, (6)

whereg(2)(t, t + T) denotes the usual normalizedg(2)-function for a single ion at rest. In order to
accurately reproduce the exact shape of the measured correlations,g(2) is evaluated considering
the eight relevant electronic levels for the ion internal states [16]. In equation (6), I is the mean
fluorescence intensity, the last term in fact corresponds to accidental correlations (contributions
negligible with respect toN

I
are not shown for clarity). The second term, proportional to

〈am + a†
m〉, shows that theg(2)-function is modulated by the motion of the ion.

As previously mentioned, every mode of motion contributes toẑm. The second term
in equation (6) in fact sums contributions induced by the two radial and the axial modes,
as well as the residual micro-motion, such that theg(2)-function should in principle show a
beating between all motional frequencies. The amplitude of the beat signal is controlled by the
projection of the axial and radial axes alongz, but also by the corresponding amplitudes of
motion along these directions. Hence,g(2)

z quantifies the mean occupation number of the ion’s
motional states. Furthermore, as for any beat signal, the relative phase coherence between the
motional modes is also revealed. Finally, for our continuous laser excitation, equation (6) is
evaluated at steady state, i.e. fort → ∞, such thatg(2)

z (t, t + T) → g(2)
z (T).

4. Data acquisition

In the experiment presented here, the mirror position with respect to the ion is fixed such that
the emitted fluorescence level always stays at the slope of the single-photon interference fringe.
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Figure 2. Second-order correlation function for time intervalsT up to 20µs: the
experimental data are shown as (red) dots. The theoretical prediction for the same
experimental parameters and forn = 17 andV = 38% is presented as a black
solid line. The modulation of theg(2)-function reveals the two frequencies of the
motional sidebands along the radial directions. Inset: photon antibunching for
short timesT up to 50 ns. Experimental data are displayed with a time resolution
of 1 ns.

The photons detected by the two photomultipliers are time tagged according to their arrival
time in an auto correlator (TAG in figure1). Second-order time correlations among these events
are then calculated. Unlike methods where merely time intervals betweensuccessivelydetected
photons are correlated, the time tag method has no statistical influence on the count rate (pile-
up effect) and needs no systematic corrections [17]. Finally, accidental correlations, e.g. the last
term in equation (6), are subtracted and the second-order correlation function is normalized.

5. Experimental results

In figure 2, we present the measured second-order photon correlation function. The overlap
of the direct fluorescence with its image created by the mirror reflection is not perfect: we
measure a single-photon interference visibility,V ≈ 38%. Hence, a mixture of interacting
and non-interacting correlations is observed. These have respective weights governed by
the interference contrast, yielding a measured correlation function,g(2)

meas(T) = V g(2)
z (T) +

(1− V)g(2)

ni (T), where the last part describes the non-interfering term. It induces three
delayed correlation functions, centered atT = 0 andT = ±τ respectively, such thatg(2)

ni (T) =

(2g(2)(T) + g(2)(T + τ) + g(2)(|T − τ |)/4 (details can be found in [4, 15]). In figure 2, we only
correct the correlation function for accidental correlations. Let us now discuss the coherent part
of the interaction between directly emitted and reflected fluorescence photons, i.e. the signal
described by equation (6).
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Apart from the usual photon anti-bunching, for time intervalsT greater than 1/(2π0G),
we resolve the previously mentioned modulation in theg(2)-function. It clearly shows slow
and fast frequency components, atω−/2π = 164(1) kHz andω+/2π = 2.242(2) MHz. Faster
oscillations at the trap drive frequency (≈ 20 MHz) are not resolved. From that we conclude
that micro-motion is negligible in our experiments. In fact, we operate in the most stable trap
region by applying suitable voltages to compensation electrodes: the ion is thereby positioned
at the minimum of the trapping potential which suppresses micro-motion. On the other hand,
secular modes of motion can all contribute to the beat of the correlation function.

For our geometry (see figure1), the axial and radial modes have angles of approximately
45◦ and 60◦ with respect to the laser axis. Therefore, laser cooling is more efficient along
the axial directionzt than along the radial ones. Hence, we expect that the modulation of the
correlation function is essentially governed by the beating between the radial modes of motion.
The Fourier transform of the correlation function, shown in figure3, confirms this geometric
argument. It exhibits two main lines, atfx = ωx/2π = 1.034(1) MHz and fy = ωy/2π =

1.198(1) MHz, which correspond to the motional frequencies along thext and yt directions
respectively. On the other hand, other frequency components, e.g. the one corresponding to the
motion alongzt, are suppressed by two orders of magnitude. From the amplitude of the modula-
tion in the correlation function, we now deduce the mean occupation number for motional states
at the Doppler limit. In equation (6), we only consider contributions of the radial modes of
motion which have the same projection alongz. In figure2, the result of our model is presented
for n = 17 andV = 38%. The very good agreement with the experimental observations then
confirms previous measurements of the mean occupation of motional states at the Doppler limit
for our experimental set-up [6]. Please also note that the theoretical prediction shown in figure2
is obtained with the above stated frequencies,ωx andωy, for the radial modes of motion.

We moreover observe a de-phasing between the radial modes of motion of the ion. The
amplitude of the beat signal presented in figure2 diminishes exponentially with a time constant
of 1.64 ms. This reveals that the phase of each radial mode diffuses due to laser cooling. Such
observation is confirmed by independent measurements of radial sidebands [18, 19]. On the
other hand, we also observe that the central frequencies of the two radial modes do not drift
within our experimental precision. More precisely, up toT ≈ 500µs, we do not resolve a
difference between the frequencies used in our model and the ones of the radial modes deduced
from the correlation function: figure3 demonstrates good agreement between the data and
the theoretical predictions forT ≈ 160µs. Our analysis in fact yields an upper limit for the
frequency drift of the trap potential, about 2 kHz for the 30 min measurement time. Note that
measurements performed with the same trap show similar drifts of the radial frequencies, on the
order of 600 Hz per 30 min [18].

6. Summary and conclusion

In summary, we have shown that second-order correlations performed in a self-homodyne
configuration can reveal both internal and external dynamics of a single trapped-ion. At short
time intervals between photon emissions (nanoseconds), the ion internal dynamics governs
the correlation function while for longer time intervals (microseconds), the motion of the ion
modulates the correlation function. This allows one to deduce the remaining amplitude of
motion at the Doppler limit. Furthermore the ion probes its surrounding potential such that
theg(2)-function can also be used to characterize the stability of the trap potential.
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Figure 3. Top: second-order correlation function forT ≈ 160µs. Data (red
points) and theoretical predictions still coincide thus revealing high trap stability
(experimental data are displayed with 1 ns time resolution). Middle: spectrum of
the correlation function showing the axial and radial sidebands, at the frequencies
fx = 1.034(1) MHz, fy = 1.198(1) MHz and fz = 2.298(2) MHz, as well as the
remaining micro-motion sideband at the trap drive frequencyfmm. Other visible
frequency components correspond to sum/difference of the secular frequencies.
Bottom: zoom of the spectrum highlighting the two radial sidebands.
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To conclude, let us raise one possible implication of these experimental observations in
the context of single ions trapped in a high finesse resonator. In such systems, due to the large
stimulated emission of photons in the cavity mode, additional cooling of the motion of the ion
should occur [20]–[22]. An experimental observation of the latter appears accessible from the
second-order time correlations of the cavity output photons. Usually, photons in the cavity mode
exhibit a long lifetime and the cavity acts as a low-pass filter. Hence, individual motional modes
of the ion cannot be directly observed, however, if the radial motional modes have non vanishing
projections along the cavity axis a slow beating in the correlation function should be observed.
As in our experiments, the amplitude of the beat signal allows one to quantify the amplitude of
the motion of the ion, i.e. the efficiency of cooling.
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