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Quantum computers have the potential to perform certain
computational tasks more efficiently than their classical counter-
parts. The Cirac—Zoller proposal' for a scalable quantum com-
puter is based on a string of trapped ions whose electronic states
represent the quantum bits of information (or qubits). In this
scheme, quantum logical gates involving any subset of ions are
realized by coupling the ions through their collective quantized
motion. The main experimental step towards realizing the
scheme is to implement the controlled-NOT (CNOT) gate oper-
ation between two individual ions. The CNOT quantum logical
gate corresponds to the XOR gate operation of classical logic that
flips the state of a target bit conditioned on the state of a control
bit. Here we implement a CNOT quantum gate according to the
Cirac-Zoller proposal'. In our experiment, two “°Ca™ ions are
held in a linear Paul trap and are individually addressed using
focused laser beams?; the qubits® are represented by superposi-
tions of two long-lived electronic states. Our work relies on

recently developed precise control of atomic phases* and the
application of composite pulse sequences adapted from nuclear
magnetic resonance techniques™®.

Any implementation of a quantum computer (QC) has to fulfil a
number of essential criteria (summarized in ref. 7). These criteria
include: a scalable physical system with well characterized qubits,
the ability to initialize the state of the qubits, long relevant
coherence times (much longer than the gate operation time), a
qubit-specific measurement capability and a ‘universal’ set of
quantum gates. A QC can be built using single qubit operations
(‘rotations’) and two-qubit CNOT gates because any computation
can be decomposed into a sequence of these basic gate operations®’.
So far, quantum algorithms have been implemented only with
nuclear magnetic resonance (NMR) and ion trap systems. Recently,
using NMR techniques, complex quantum algorithms such as
Shor’s factorizing algorithm' employing seven qubits have been
demonstrated''. In NMR systems qubits are encoded in mixed states
and ensemble measurements reveal the computational output.
Thus, NMR implementations of a QC are not scalable in principle,
although they provide an ideal system for testing procedures and
algorithms.

In contrast, trapped ions allow one to prepare and manipulate
pure states such that quantum computation is scalable. In addition,
cooled, trapped ions exhibit unique features which make them
ideally suited for implementations of a QC'". In particular, their
quantum state of motion can be controlled to the zero point of the
trapping potential'>', they provide a long time for manipulations
of the qubits"” encoded in long-lived internal states’, and their
quantum state can be detected with efficiencies close to 100%
(ref. 15). During the past years two and four ions have been
entangled'®'”, a single-ion CNOT gate'® has been realized, and
recently the Deutsch—Jozsa algorithm' has been implemented on
a single-ion quantum processor. While the entangling operations
demonstrated in ref. 17 can be used as a logic gate, a two-ion gate
using individual addressing has not been demonstrated. This may
serve as a key element for the further development and future
perspectives towards general purpose quantum computing with
trapped ions.

To implement a QC, Cirac and Zoller proposed a string of ions in
a linear trap to serve as a quantum memory where the qubit
information is carried by two internal states of each ion. Compu-
tational operations are carried out by addressing the ions individu-
ally with a laser beam. Single-qubit rotations are performed using
coherent excitation by a single laser pulse driving transitions
between the qubit states. For a two-qubit CNOT operation, Cirac
and Zoller proposed to use the common vibration of an ion string to
convey the information for a conditional operation (this vibrational
mode is called the ‘bus-mode’). This can be achieved with a
sequence of three steps after the ion string has been prepared in
the ground state (n = 0) of the bus-mode. First, the quantum
information of the control ion is mapped onto this vibrational
mode, that is, the entire string of ions is moving and thus the target
ion participates in this common motion. Second, and conditional
upon the motional state, the target ion’s qubit is inverted. Finally,
the state of the bus-mode is mapped back onto the control ion.
Mathematically, this amounts to performing the operation

Table 1 Pulse sequence for the Cirac-Zoller CNOT quantum gate operation

lon 1 lon 2 lon 2 lon 2 lon 1
R (,0) R(m/2,0) Rf(w,0) Ry (w//2,7/2) R (,0) Ry (/2 7/2) Ry(m/2,7) Ry (m,m)
Mapping Ramsey Composite single ion phase gate Ramsey ' Mapping ™~

R;(6,#), R (8,¢) denote transitions on the carrier and the blue sideband, respectively, for the jth ion. § denotes the angle of the rotation, defined by the Rabi frequency and the pulse length; ¢ denotes
the axis of the rotation, given by the phase between the exciting radiation and the atomic polarization.
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Figure 1 State evolution of both qubits under the CNOT operation. For this, the pulse
sequence (a) (see also Table 1) is truncated as a function of time and the D 5/, state
probability is measured (b—e). The solid lines indicate the theoretically expected
behaviour. They do not represent a fit. Input parameters for the calculations are the
independently measured Rabi frequencies on the carrier and sideband transitions and the
addressing error. The initial state preparation is indicated by the shaded area and drawn in

all figures for negative time values. The actual Cirac—Zoller CNOT gate pulse sequence
starts at t = 0. After mapping the first ion’s state (control qubit) with a «r-pulse of length
95 ps to the bus-mode, the single-ion CNOT sequence (consisting of six concatenated
pulses) is applied to the second ion (target qubit) for a total time of 380 ws. Finally, the
control qubit is reset to its original value with the concluding #-pulse applied to the first
ion for 95 ps.

Population
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Figure 2 Joint probabilities for the ions prepared in |DD). The data points represent the
probability for the ion string to be in the state indicated on the right-hand side. Shaded
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areas represent the preparation period. The measurement procedure is the same as in
Fig. 1.
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Table 2 Error budget

Error source Magnitude Contribution
Laser frequency noise (phase coherence) ~100Hz (FWHM) 10%
Laser intensity fluctuations ~3% peak to peak ~1%
Laser detuning error ~200Hz ~2%
Residual thermal excitation (Mpus < 0.02 2%
<n>olher <6 0.4%
Addressing error 5% in Rabi frequency (at 3%
neighbouring ion)
Off-resonant excitations for t gate = 600 pus 4%
Total contribution of error sources ~20%

The errors accounted for in our experimental apparatus are specified. Laser frequency and
intensity noise occurs as a result of imperfect laser stabilization. Slow drift of the laser locking
cavity gives rise to detuning errors. Residual thermal excitation of the bus-mode results from non-
optimal sideband cooling. The finite width of the focused laser beam at the position of the ion
string produces residual excitation at the site of the non-addressed ion. The intense laser light
applied on the blue sideband transitions produces off-resonant carrier excitations. The contri-
butions to the loss of fidelity are calculated from the magnitude of errors occurring from each
source. As can be seen from the table, the imperfect locking of our laser is responsible for the
majority of the error budget. The individual errors are considered to be independent, the total error
results from calculating the success probability given by II;(1 — &), where the &; are given by the
individual errors below.

lep)ler) — ler)le De,) with ) 5 € {0, 1} describing the logical state
of the two qubits in question and & denoting addition modulo 2.
Thus, the CNOT gate operation is described by the unitary
operation:

[00) [01) [10) [11)
[00) 1 0 0 0
[o1) 0 1 0 0 1)
[10) 0 0 0 1
[11) 0 0 1 0

where the input and output states of the two qubits |e1)|e,) = |e1&,)
are encoded by the electronic states of the ions.

For the experimental implementation we load two *°Ca™ ions
into a linear Paul trap. We encode a qubit in a superposition of the
Si/2 ground state and metastable D5/, state (lifetime 7 =~ 1s)"
according to S, ;, — [0) and D5, — [1). The qubits are manipulated
on the S/, to D5, quadrupole transition near 729 nm, using a
narrowband Ti:sapphire laser (bandwidth <100 Hz, relative inten-
sity noise <0.02, ,, s.) which is tightly focused onto individual ions
in the string. An electro-optical beam deflector switches the beam
between the ions. We measure the qubit by an electron shelving
technique'>". For details on the individual state manipulation and
detection see the Methods. We start the experimental cycle by
Doppler cooling® for 2 ms. Using sympathetic sideband cooling®
for 8ms we prepare the bus-mode (breathing mode at
wp, = 2w X 2.1MHz) in |n = 0), achieving about 99% ground state
occupation. The ions’ electronic qubit states are initialized by
optical pumping".

Qubit manipulations required for the CNOT operation are
realized by applying laser pulses with well-defined phases on the
‘carrier’ or the ‘blue sideband’ of the electronic quadrupole tran-
sition as described in the Methods and listed in Table 1. Note
throughout the following that we always perform sideband pulses
on the blue sideband. For the gate sequence, first a w-pulse applied
to the blue sideband of the first ion (that is, the control qubit) maps
its internal state to a corresponding state of the bus-mode. The
phonon-number, #n, of the bus-mode also forms a qubit where
[n=0) (Jn=1)) represents the logical state [1) (]0))"°. With the
quantum information of the control qubit in the vibrational mode,
we address the second ion (that is, the target qubit) and perform a
single-ion CNOT gate operation between this ion and the bus-
mode. The second ion’s internal state is flipped if no vibration is
present in the bus-mode, that is, if the bus-qubit is |1). This
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Figure 3 Cirac-Zoller CNOT gate operation. a, Experimentally observed truth table of the
Cirac—Zoller CNOT operation derived from joint-probability measurements as in Fig. 2.
Ideally, the table should reproduce the squared moduli of the entries of the unitary
operation given in equation (1). Experimentally, we find that the currently available fidelity
of the gate operation is limited to about 70-80%; detailed values of measured
probabilities are listed below:

[SS) |SD) [DS) |DD)
[SS)  /0.74(3) 0.13(3) 0.05(3) 0.08(3)
1Dy | 0.15(3) 0.71(5) 0.06(1) 0.08(2)
IDS) | 0.012) 0.08(3) 0.14(4) 0.77(3)
10Dy \ 0.033) 0.02(1) 0.72(6) 0.22(4)

b, Cirac—Zoller gate operation with a superposition 1/+/2(|S) + |D))|S) as input results
in an entangled output state 1/J§(|SS> +¢/@|DDY). We analyse the entanglement by
applying w/2-pulses with phase ¢ to both ions after the gate operation and by measuring
the parity'” P = Pss + Ppp — (Psp + Pps) as a function of the phase ¢ (P; denotes the
probability to find the ions in the states |}, i, j = Sor D). The quantum nature of the gate
operation is proved by observing oscillations with cos(2¢), whereas a non-entangled state
would yield a variation with cos(¢) only. From the observed visibility of 0.54(3) and the
observed populations Pss = 0.42(3) and Ppp = 0.45(3) prior to the analysing pulses we
calculate'” a fidelity of £ = 0.71(3).

operation consists of a pair of Ramsey pulses enclosing a composite
phase gate'"; for details see the Methods. Finally, a w-pulse on the
blue sideband applied to the first ion restores the controlling qubit
and the bus-mode to their original states. The pulse sequence
applied to ions 1 and 2 is sketched in Fig. la. The composite
pulse sequence replaces the 27-rotation on an auxiliary transition as
originally proposed by Cirac and Zoller'.

The two ions are prepared in their respective eigenstates, that is,
in either the |g;) = |S) = |0) or |&;) = |D) = |1) states using single
qubit rotations. In order to trace the state of both qubits under the
CNOT operation, we truncate the CNOT pulse sequence at a certain
time and measure the probability of finding the ions in the D5/,
state. In Fig. 1b—e we display this probability as a function of time
for all four initial settings |&1)|e,) = |e182) = |SS), |SD), IDS), |DD).
As shown in Fig. 1, the state evolution of ion 2 follows trajectories
depending on the initially prepared qubit states of ion 1. The data
agree well with the calculated ideal evolution (given by the solid
lines in Fig. 1, no fit parameters). The outcome of the gate operation
is inferred from the measured state after the final pulse and it proves
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that the second ion’s internal state is flipped when the first ion was
prepared in the |D) state (see Fig. 1d, e), whereas it remains in
its original state if the first ion was prepared in the |S) state (see
Fig. 1b, ¢).

In a second experiment, we measured independently for each
time step the joint probability of finding the ions in either the |SS),
ISD), |DS) or |DD) state. Such a joint-probability measurement is
displayed in Fig. 2 for the case of the ions starting in the |DD)
state. From these measurements we derived the truth table graphi-
cally shown in Fig. 3a. The fidelity of transferring the initially
prepared eigenstates into the final target states is optimally 80%;
the fidelity of creating an entangled state is F = 0.71(3), as shown in
Fig. 3b.

The performance of this CNOT gate operation is currently
limited by a number of technical shortcomings which are listed in
Table 2. The observed fidelity is well understood from these
limitations. It is to be expected that technical improvements such
as reduction of laser frequency noise and improved control of the
addressing beam will allow us to further increase the fidelity to more
than 90% in the near future. Still higher fidelities will require more
complex composite pulse techniques® and/or quantum control
techniques® which take full account of the experimental imperfec-
tions, for example the residual thermal excitation and inaccuracies
in the pulse shaping. Eventually, and in order to overcome deco-
herence for longer pulse sequences, the qubits will have to be
encoded in hyperfine states of ions less susceptible to environmental
influences, such as **Ca* ions.

These results demonstrate the feasibility and the flexibility of ion
trap QC technology. This will provide the basis for experiments
using operations between few qubits, as are needed, for example, for
the preparation of Bell and GHZ states” with ions, for implement-
ing error correction protocols*, and for applications with quantum
repeaters™. d

Methods

Level scheme and state manipulation

Quantum information is encoded in trapped Ca™ ions employing the electronic
[S1/2,my = —1/2) and |Ds)5, m; = —1/2) levels of a narrow quadrupole transition’ near
729 nm. The ions are prepared in the ground state of the trap’s harmonic oscillator
potential by laser cooling". Manipulation of the internal qubit state is performed by
exciting the ion on the |Sl/2) — |D5/2> resonance (‘carrier’) transition while the vibrational
degrees of freedom are manipulated on the ‘blue detuned sideband’, that is, on a transition
which changes both the electronic and motional degrees of freedom'.

In order to switch between carrier (R) and sideband (R ™) rotations we shift the laser
frequency with an acousto-optical modulator’. The phase of the light field is controlled
via the phase of the radio frequency driving the acousto-optical modulator with an
accuracy of 0.06 rad. Additional phase shifts due to light shifts arise because we have to
drive sideband transitions (which couple much more weakly than carrier transitions) with
high laser intensity. We cancel the unwanted light shifts with an additional off-resonant
laser field inducing a light shift of equal strength but opposite sign*.

Phase gate and CNOT gate operations which change the electronic state of a single ion
conditional upon the state of motion have been implemented previously using composite
pulse techniques'. For an implementation of the single-ion CNOT gate operation we use a
combination of a pair of Ramsey pulses and a phase gate operation. The computational
subspace for this operation consists of the states |S,0), |D,0), |S,1), |D,1), that is the
electronic states of the ion (|S), |D)) and the phonon state (|n = 0),|n = 1)). The matrix
describing the phase gate operation is given by:

|S;n=1) |D,n=1) [S,n=0) |D,n=0)

1S,n=1) -1 0 0 0
|D,n=1) 0 -1 0 0 2)
IS,n=0) 0 0 -1 0
|D,n=0) 0 0 0 1

With a 27-rotation on the blue sideband the [S,0) and |D,1) state amplitudes acquire a
phase factor of —1. The state | D,0) is not affected by this operation and its phase does not
change. However, transitions starting from the |S,1) state would yield a rotation of 212
because the sideband Rabi frequency depends on the phonon number. This shortcoming
can be circumvented by using a combination of four pulses on the target ion possessing
different rotation angles (that is, lengths of Rabi pulses) about different rotation axes (that
is, phases of the exciting radiation), see Table 1. Together with two carrier 7/2-pulses
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(Ramsey pulses) before and after this sequence, this completes the single-ion CNOT gate
operation.

Individual ion addressing and read-out

For detection of the internal quantum states, we excite the Sy, to Py, dipole
transition’ near 397 nm and monitor the fluorescence with an intensified charge-
coupled device (CCD) camera separately for each ion. Fluorescence indicates that the
ion was in the S/, state; no fluorescence reveals that it was in the D5, state. By
repeating the experimental cycle 100 times we find the average state populations.
Fluorescence is collected with the CCD camera for 23 ms (data of Fig. 1) and 10 ms (all
other data). The fluorescence intensity is integrated over an area of approximately
3pum X 3 pm around the ions by binning the corresponding pixels of the enlarged image
on the CCD camera. Thus, state detection of each qubit is performed with an efficiency
of about 98% with the residual error of about 2% resulting from spurious fluorescence
light of the adjacent ion (cross-talk) or in the case of the 23 ms collection time, from
spontaneous decay.

Individual state manipulation of the ions is performed with a tightly focused laser
beam near 729 nm. The inter-ion distance is 5.3 pm and the gaussian beam width
(full-width at half-maximum, FWHM, at the focus) is 2.5 pm. Directing the beam
onto one ion, the remaining intensity in the wing of the beam incident on the
neighbouring ion is suppressed by a factor of 2.5 X 10~ °. The addressing beam can be
switched from one ion to the other within 15ps using an electro-optical beam
deflector.
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