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Abstract

Quantum information processing combines two of the most successful and fascinating ideas of
the 20th century - quantum physics and computer science. A quantum computer promises to
solve certain problems more efficient than classical computers. But building such a quantum
computer is a cumbersome task as the quantum system needs to be manipulated with tremen-
dous accuracy while being well shielded from the classical environment to preserve its quantum
nature. An unwanted coupling to the surrounding environment manifests itself in computational
errors. This coupling can be suppressed with the aid of quantum error correction schemes that
are still a mainly theoretical construct.

These error correcting protocols can only protect the information if they are applied multiple
times subsequently. For this, it is necessary to remove the information about previous errors
from the quantum system before performing the actual correction. However, this removal of
information requires a controlled coupling to the environment which is beyond the standard set
of operations available in a quantum computer. In this work, an experimental realization of
repetitive quantum error correction in an ion-trap quantum information processor is presented,
performing up to three consecutive rounds of correction.

Moreover such an error correction algorithm can also be used to demonstrate a physical connec-
tion between information processing and quantum mechanics - computational errors are mapped
onto quantum mechanical measurements. Therefore, a quantum error correction protocol is able
to undo quantum measurements - a task that seemingly contradicts the foundations of quantum
physics. In this work, we show that it is indeed possible to undo a partial measurement on a
quantum register using an error correction protocol. After closer inspection it becomes obvious
this does not violate the laws of quantum mechanics.

However, the realization of a large-scale quantum computer lies in the far future as current quan-
tum systems do not allow for the required level of control. Nevertheless it seems promising to
adapt the techniques developed for quantum information processing to build a quantum simula-
tor. Such a device is able to efficiently reproduce the dynamics of any quantum system - a task
that is only possible for small systems on existing classical computers. However, the quantum
system of interest may be coupled to a classical environment where many examples for such
systems can be found in quantum biology and quantum chemistry. These systems are often em-
bedded in a thermal environment and, analogous to classical physics, show non-reversible, or
dissipative, dynamics. Thus, also the quantum simulator should be able to reproduce dissipative
dynamics which requires an extension of the usual quantum computing toolbox.

In the context of quantum computing, such a coupling is usually treated as a noise process that
defeats the possible gain from using such a device. Interestingly it has been shown that an en-
vironment can be engineered that drives the system towards a state that features entanglement
and can serve as a resource for quantum information processing. In this thesis, an extended
toolbox that goes beyond coherent operations is introduced in our small-scale ion-trap quantum
information processor. This is then used to create an entangled state through dissipative dy-
namics. In the next step a quantum simulation of a dissipative many-body system is performed,
demonstrating the hallmark feature of a novel type of quantum phase transitions.
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Kurzfassung

Quanteninformationsverabeitung vereint zwei der erfolgreichsten und faszinierendsten Errungen-
schaften des 20. Jahrhunderts - Quantenphysik und elektronische Informationsverabeitung. Ein
Quantencomputer könnte gewisse Probleme effizienter lösen als es mit herkömmlichen klassis-
chen Computern möglich ist. Einen solchen zu bauen ist jedoch ein schwieriges Unterfangen, da
das Quantensystem sowohl präzise manipuliert als auch vor der klassischen (makroskopischen)
Umgebung geschützt werden muss. Eine ungewollte Kopplung mit der klassischen Umgebung
führt hierbei zu Rechenfehlern. Es existieren jedoch Methoden zur Quantenfehlerkorrekur, die
diese Kopplung unterdrücken.

So eine Fehlerkorrekur muss allerdings wiederholt angewendet werden um die fragile Infor-
mation schützen zu können. Dies ist nur möglich, wenn die Information über vorangehende
Fehler aus dem Quantensystem entfernt wird, was eine kontrollierte Kopplung an die klassische
Umgebung nötig macht. Eine entsprechende Kopplung ist nicht in den üblichen Operationen
eines Quantencomputers enthalten. Die vorliegende Arbeit beschreibt die Realisierung einer
wiederholten Fehlerkorrektur in einem Ionenfallenquantencomputer.

Diese Korrekturmethoden können weiters verwendet werden, um eine Verbindung zwischen
Informationsverarbeitung und Quantenphysik aufzuzeigen - Fehler in der Informationsverbeitung
entsprechen quantenmechanischen Messungen. Deswegen ermöglicht es Quantenfehlerkorrek-
tur, eine Messung in einem Quantensystem rückgängig zu machen, was scheinbar den Grund-
lagen der Quantenmechanik widerspricht. In dieser Arbeit wird gezeigt, dass es tatsächlich
möglich ist eine partielle Messung an einem Quantenregister rückgängig zu machen. Bei genauerer
Betrachtung wird klar, dass dies in keiner Weise die Gesetze der Quantenmechanik verletzt.

Voraussichtlich wird in den nächsten Jahren kein Quantencomputer entstehen, der schneller als
herkömmliche Computer rechnen kann. Dies könnte jedoch mit Quantensimulatoren ermöglicht
werden, die auf den Techniken der Quanteninformationsverarbeitung aufbauen. Diese Simu-
latoren reproduzieren die Dynamik eines beliebigen Quantensystems, was in einem herköm-
mlichen Computer nur für kleine Systeme möglich ist. Das zu untersuchende Quantensys-
tem kann jedoch an eine klassische Umgebung gekoppelt sein. Beispiele hierfür findet man
in der Quantenbiologie und der Quantenchemie. Diese Systeme befinden sich oft in einer war-
men (thermodynamischen) Umgebung, die analog zur klassischen Physik einer nichtreversiblen,
oder dissipativen, Zeitentwicklung gehorchen. Deswegen sollte auch ein Quantensimulator in
der Lage sein, dissipative Zeitentwicklungen nachzustellen. Dies wiederum erfordert eine Er-
weiterung des üblichen Werkzeugkastens eines Quantencomputers.

Normalerweise wird eine dissipative Zeitentwicklung damit identifiziert, dass ein System seine
quantenmechanischen Eigenschaften verliert. Interessanterweise ist es jedoch möglich, eine
Kopplung mit der Umgebung zu erzeugen, die das System in Zustände treibt, die quanten-
mechanische Korrelationen enthalten. So eine dissipative Zeitentwicklung kann dann auch als
Resource für einen Quantencomputer dienen. In dieser Arbeit wird ein Werkzeugkasten demon-
striert, der es ermöglicht, verschränkte Zustände mithilfe einer dissipativer Zeitentwicklung zu
erzeugen. Dies wird in der Folge dazu verwendet, um ein eindeutiges Kennzeichen eines neuar-
tigen Phasenüberganges im Quantensimulator zu beobachten.
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1. Introduction

1.1. Introduction to quantum computation and
quantum simulation

There is hardly any technical invention that has changed our everyday life over the last decades
like computers. The rapid growth of computational power is rooted in an impressive devel-
opment of their elementary building blocks which started in the 1960s when semiconductor
transistors replaced the vacuum tubes in the available computing machines. Of course, a transis-
tor could not be built without a predictive theory of the physics in semiconductor devices. This
theory is based upon one of the greatest advances of physics in recent history: quantum physics.

Although quantum physics is required to understand the computer’s hardware, any algorithm can
be executed on a universal Turing machine which itself can be described by the laws of classical
physics. In this sense, the dynamics of any computer, be it a mechanical computing machine
used in the 1940’s, or a modern supercomputer, are equivalent. Already in the early 1980’s
it was realized that it might be possible to establish a deeper connection between information
and quantum physics: A computer where the information and the algorithms obey the laws
of quantum physics. Such a device would represent a revolutionary change in the underlying
computational model [1].

It was mainly physicists that began to see the potential of a computing device where the com-
putational model is based on quantum mechanics. In such a device, the information is stored in
a register consisting of quantum objects and an algorithm corresponds to the quantum mechan-
ical time evolution of the register. But is a quantum computer more powerful than a classical
computer? In order to answer this question, one has to find a way to compare distinct models
of computation. In a computer science context, an algorithm is called efficient, if the required
resources, time and memory, scale polynomially with the system size. Thus, a computational
model can be considered more powerful if it is able to solve more problems efficiently. Richard
Feynman discussed in 1982 whether a quantum mechanical system can be efficiently simulated
on a classical computer, and came to the conclusion that this is not the case [2]. He suggested
the use of a quantum computer to solve this problem where his motivation why to use a quantum
system to perform this task was simple:

Nature isn’t classical, dammit, and if you want to make a simulation of Nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.

To understand why a simulation of quantum mechanical systems cannot be performed efficiently
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1. Introduction

on a classical computer in general, one needs to analyze the underlying problem. Simulating a
quantum system on a classical computer is performed by numerically solving the Schrödinger
equation which is a problem whose complexity grows exponentially with the system size. This is
due to the fact that the state-space of any quantum system grows exponentially with the system
size. On the other hand, a quantum computer has itself an exponentially growing state-space
which may be used to simulate any quantum system efficiently.

However, Feynman did not specify the requirements on a quantum system to be used as such a
quantum computer. In another groundbreaking work, the theoretical framework of a quantum
computer that is capable to perform arbitrary computations was developed by David Deutsch by
introducing the quantum Turing machine in 1985 [3]. He suggested that

... such computers could operate at effective computational speeds in excess of
Turing-type machines built with the same technology.

At that time, no quantum system was available to host even a small-scale quantum computer
and thus the research focused on theoretical aspects of quantum information processing, such as
finding efficient algorithms. The most prominent quantum algorithm has been presented by Peter
Shor in 1994 to efficiently find the prime factors for any number, where no classical algorithm is
known to perform this task efficiently [4]. More importantly, the fact that no efficient algorithm
is known to factor an integer is exploited in classical cryptography methods such as the Rivest-
Shamir-Adleman (RSA) protocol which is widely used in today’s encrypted data transfer [5].
A large-scale quantum computer capable of executing Shor’s algorithm would render such an
encryption protocol useless.

Since it was evident that a quantum computer would be a useful device, the quest for finding
physical implementations was intensified. It soon became a certainty that a real-world quantum
computer requires a quantum system which needs to be controlled with tremendous precision
while still being well isolated from the environment. In 1995, Peter Zoller and Ignacio Cirac
presented a viable route to realize the required quantum operations to build a quantum computer
in a system consisting of trapped ions [6]. Five general criteria for any system hosting a quantum
computer were formulated by David DiVincenzo in 2000 [7].1

1. A scalable physical system with a well characterized quantum register

2. The ability to initialize the quantum register in a simple fiducial state

3. Long relevant coherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. A system-specific measurement capability

Since then, multiple groups of physicists have been trying to meet these criteria in various phys-
ical systems such as trapped atomic ions, neutral atoms in optical lattices, single photons, su-
perconducting resonators and ensembles of molecules [8–11]. Although impressive proof of
concept experiments have been performed, no system has satisfied all criteria at a level to build
a quantum computer powerful enough to compete with today’s classical computers. The main

1The wording of the criteria has been adapted to be more understandable.
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1.1. Introduction to quantum computation and quantum simulation

difficulty in building a large quantum computer lies mainly in the fact that the quantum me-
chanical system cannot be shielded well enough from the environment resulting in erroneous
calculations. In quantum physics this is known as decoherence which is responsible for the fact
that we do not experience quantum mechanical effects in macroscopic objects. It is clear, that a
realistic system can never be shielded perfectly from the environment and thus at least a small
amount of noise will always be present. First, it seemed as if even a small amount of noise
would make a large-scale quantum computer impossible, similar to analog classical comput-
ers where it is proven that noise forbids arbitrarily long computation. In contrast, for classical
digital computers it has been shown that arbitrarily long algorithms can be executed in a noisy
implementation faithfully, when error correction techniques are applied [12]. However, it was
questionable whether such procedures could be applied to a quantum computer until Andrew
Steane and Peter Shor developed an error correction framework for quantum computers in a
milestone work in 1996 [13, 14].

With further exploration of the possibilities and requirements to a real-world quantum computer
it became clear that for outperforming state-of-the-art classical computers, very large quantum
systems would be required. Since such a large quantum computer won’t be available in the
next few years, the research focused on finding applications for small to medium scale quantum
computers [15]. As already mentioned, Richard Feynman stated that a quantum mechanical
system cannot be efficiently simulated on a classical computer. This is due to the fact that
although in principle the dynamics of any quantum system can be predicted by the Schrödinger
equation, it is almost impossible to make precise predictions for a large-scale system because the
computational costs grow exponentially. With modern supercomputers it is only possible to store
the state of a system consisting of about 40 two-level atoms let alone calculate the dynamics of
such a system [16]. Therefore, a quantum simulator that is able to faithfully investigate systems
with more than 40 particles would already be a useful device. Simulation problems can be
closely related to the physical system building up the quantum computer, making it conceivable
that they can be solved relatively easily on a quantum system. Nevertheless, these problems are
still hard to solve on a classical computer and thus quantum simulators offer the possibility for
a break-even with a classical computer in the near future.

Another major difference between quantum simulation and computation is that for simulations
one might also consider quantum systems which are coupled to a classical environment, a setting
that is avoided at all costs in traditional quantum computing. Important examples for such sys-
tems include quantum chemistry or quantum biology where the classical environment is treated
as a thermal bath in analogy to classical thermodynamics [17, 18]. In these systems, the envi-
ronment introduces noise and drives the system towards a classical state. Analog to classical
thermodynamics, the coupling to the environment can only be described by irreversible pro-
cesses whereas processes that do not couple to the environment are reversible. Algorithms for
quantum computers are in general coherent and can thus be described by reversible operations
but in contrast, simulating the dynamics of open quantum systems needs to be irreversible as
quantum information is lost to the classical environment. This conceptionally distinguishes
quantum simulation of open systems from time reversible quantum computing.

Recently, a lot of attention has been devoted to systems where the coupling to the environment
is engineered in a way so it does not result in decoherence, but rather builds up quantum co-
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1. Introduction

herence [19, 20]. Along this line, it has even been shown that it is possible to build a quantum
computer without any coherent operation at all [21]. In this work first experiments in this di-
rection are described, where a controlled coupling to the classical environment in combination
with coherent quantum operations is used to implement non-reversible processes that generate
quantum coherence and can also be used to simulate quantum systems coupled to a classical
environment.

This work is based upon a particular physical implementation of a small-scale quantum infor-
mation processor using trapped atomic ions. The ions are confined in a linear Paul trap, which
is able to hold linear strings of ions building up a quantum register [22]. This system has been
particularly successful in performing proof-of-concept experiments for both, a quantum com-
puter, and a quantum simulator [23–29]. Such ion trap quantum information processors encode
the quantum information in electronic states of single atomic ions that are arranged in a lin-
ear string. The motion of the ions in the string is used as a databus to mediate the interaction
between different atoms [6].

In particular, this work describes an experimental quantum computer and simulator using 40Ca+

ions to encode the information in the ground state and a metastable excited state. This thesis
is focused on the use of irreversible operations for quantum computation and simulation. In
section 1.2 basic concepts of quantum information theory are covered. Section 1.3 extends this
analysis to incoherent states and processes followed by a short review of quantum information
processing in ion traps in section 2.1. Our particular setup and the extensive toolbox of coher-
ent and incoherent operations are presented in section 2.2. Furthermore, it is shown how the
entire toolbox can be used to realize an efficient implementation of the quantum order finding
algorithm.

Then, an introduction to quantum error correction techniques and their application is given in
section 3.1 and section 3.2 describes the first implementation of a repetitive quantum error cor-
rection algorithm. Section 3.3 emphasizes the interesting connection between quantum error
correction and the foundations of quantum physics by demonstrating that an error correction
protocol can be used to undo a quantum measurement. Subsequently, techniques to simulate
open quantum systems are introduced in section 4.1. These techniques are showcased in a uni-
versal toolbox for simulation of open quantum systems in section 4.2. Building on this frame-
work, the work presented in section 4.3 realizes the simulation of a complex bosonic many-body
system.
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1.2. Basic concepts of quantum information theory

1.2. Basic concepts of quantum information theory

In the following basic concepts used in quantum information science are introduced, assuming
that the reader is familiar with elementary quantum mechanics. For an extensive treatment of
this topic the book “Quantum Computation and Quantum Information” is recommended to the
interested reader [30]. This section focus now on an idealized quantum computer fulfilling all
DiVincenzo criteria [7, 30].

In classical information theory the value of the smallest unit of information (bit) can be in one
out of two states, 0 or 1. The quantum mechanical counterpart of the bit is the quantum bit
(qubit) which can be represented by a quantum mechanical two-level system with basis states
|0〉 and |1〉. Due to its quantum nature, the qubit can not only be in one of the two basis states
but also in a superposition of the two states which could be interpreted classically as being 0
and 1 simultaneously. The most general state of a single qubit in a system undergoing reversible
dynamics can be expressed as

|Ψ〉 = α|0〉+ β|1〉

where α, β are complex numbers satisfying |α|2 + |β|2 = 1. The state can be described by the
complex vector ~c = (α, β)T . It can be interpreted intuitively by a real vector on a unity sphere
called the Bloch sphere as shown in figure 1.1. On the Bloch sphere, each state is described by
the angles θ and φ as

|Ψ〉 = sin

(
θ

2

)
|0〉+ cos

(
θ

2

)
eiφ|1〉

Thus, the basis states represent the poles of the sphere, whereas an equal superposition (|α| =
|β| = 1/

√
2) is located in the equatorial plane.

a) b) c)

Figure 1.1.: The Bloch sphere representation of a single qubit. a) qubit in state |0〉, b) qubit in
state |1〉, c) qubit in state |+〉x = 1/

√
2 (|0〉+ i|1〉)

Reversible operations on a qubit are described by unitary operations Û acting on the state vector
as

~c→ Û · ~c .

More specifically, any reversible operation on a two-level system can be expressed by an opera-
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1. Introduction

tor basis consisting of the three Pauli matrices σx,y,z and the identity I

σx =

(
0 1
1 0

)
σy =

(
0 i
−i 0

)
σz =

(
1 0
0 −1

)
I =

(
1 0
0 1

)
acting on the state vector ~c. The operation can also be visualized by rotations on the Bloch
sphere where for example, the operation Û = exp (−iθσx/2) implements a rotation around the
x-Axis of the sphere by a rotation angle θ.

For useful computation, a quantum register with multiple (N ) qubits is necessary. Such quantum
registers differ from classical registers as they can exhibit correlations that have no counterpart
in any classical system. Such correlations are widely known as entanglement where a state is
entangled if it cannot be written as a product state of its constituents [31]. For a two-qubit
entangled state follows

|Ψ12〉 6= |Ψ1〉 ⊗ |Ψ2〉 .

The state of an N -qubit quantum register can be described by a basis consisting of 2N vectors.
One possible basis are number states where |i〉N corresponds to the binary representation of
i in an N qubit register. For example, the state |5〉4 of a four qubit register is |0101〉. This is
analogous to a classical register, where the state of each bit in the register is defined by a number
i ranging from 0 to 2N − 1. But in a quantum register, arbitrary superpositions of all number
states are allowed and therefore the most general state of any N -qubit register can be expressed
as

|Ψ〉N =
2N−1∑
k=0

ck|k〉N

with ck being complex numbers satisfying
∑

k |ck|2 = 1. The state of the register is therefore
described by the vector ~c = (c0, c1, · · · , c2N−1)T .

One should note, that if |Ψ〉N is a superposition of number states, it may be entangled, as it
cannot be written as a product state of all constituents. However, not all superpositions of
number states are necessarily entangled. Let’s consider a two-qubit register and the states |Ψ〉 =
1/
√

2 (|2〉2 + |3〉2) and |Φ〉 = 1/
√

2 (|1〉2 + |2〉2). The state |Ψ〉 can be written as a product state
of both qubits 1/

√
2 (|10〉+ |11〉) = 1/

√
2 |1〉 ⊗ (|0〉+ |1〉) whereas |Φ〉 = 1/

√
2 (|10〉+ |01〉)

is clearly entangled. An extreme example is the equal superposition of all number states (cK =
1/
√

2N ) which is not an entangled state as it can be written as 1/
√

2N(|0〉+ |1〉)⊗N . Therefore
it is not always advantageous to use the number states for representing the state of a quantum
register as certain properties such as entanglement cannot be identified easily.

Analogous to a single qubit, reversible operations on a multi-qubit register are described by
unitary operations which can be defined by a 2N ⊗ 2N matrix acting on the state vector ~c

~c→ ÛN · ~c .

However, describing algorithms by their unitary operation is impractical. In classical informa-
tion theory, algorithms are often displayed as a circuit built up of elementary logic gates. The
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1.2. Basic concepts of quantum information theory

HX

a) b)

c)

Figure 1.2.: Standard quantum circuit gates. a) Bit-flip operation exchanging the computational
basis states. b) Hadamard gate mapping the computational basis state into an equal
superposition. c) CNOT operation that performs a bit-flip on the target qubit de-
pending on the state of the control qubit.

quantum mechanical counterpart to these gate sequences is known as the circuit model of quan-
tum computation [30]. Analogous to classical computation, it has been shown that every unitary
operation can be expressed as a sequence of operations from a finite set of quantum gates. This
is crucial for the realization of a quantum computer: If a certain finite set of operations can be
implemented it is possible to implement any unitary operation. Such a finite set is known as a
universal set of operations [30].

A prominent universal set of operations is formed by arbitrary single qubit rotations and con-
trolled NOT (CNOT) operations. The CNOT gate performs a bit-flip on the target qubit if the
control qubit is in state |1〉 otherwise the target qubit is left unchanged. The circuit representation
of the CNOT and other common quantum gates is shown in figure 1.2.

It is easy to understand that performing single-qubit operations on any qubit is certainly not
sufficient for universal quantum computing as it is not able to generate entanglement. Any
operation that can be decomposed into single-qubit operations is called local operation whereas
the CNOT operation is an entangling operation. The process of generating an entangled state
with the aid of a Hadamard and a CNOT operation is performed as follows (see also figure 1.3):
(i) The Hadamard creates an equal superposition of the basis states on the first qubit. (ii) The
following CNOT operation performs now a bit-flip operation on the second qubit if the first qubit
was in state |0〉. The final state of the procedure is one of the maximally entangled two-qubit
Bell states. Mathematically, this process is described by2:

~cfinal = ÛCNOT · ÛHadamard · ~cinitial
with the initial state being |00〉 represented by the vector ~cinitial = (1, 0, 0, 0)T .

As will be shown in section 2.2, a different set of universal gates might be beneficial for a given
physical system. For example in ion trap quantum computers, entangling operations following
the ideas of Mølmer and Sørensen have been proven to yield the highest quality [32]. Unlike
the CNOT gate, these operations act on the entire register simultaneously. Therefore one needs
to find an efficient decomposition of operations for a given quantum circuit. This is a non-trivial
problem which scales exponentially with the system size [33].

2Please note that the quantum circuit is acting from left to right whereas the matrix multiplication is performed
from right to left.
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1. Introduction

H

Figure 1.3.: Generating a two qubit entangled state with the aid of a CNOT operation.

At the end of a quantum algorithm it is necessary to learn about the state of the quantum regis-
ter, which corresponds to performing measurements on the qubits. However, measurements in
quantum mechanics, and therefore also in a quantum computer, are an interesting topic in their
own right. At this point a brief description of measurements in quantum information processing
in general will be presented. In section 3.3 it will be shown that measurements can be used
to demonstrate the intriguing connection between the foundations of quantum mechanics and a
quantum computer.

In the following projective measurements of an observable M are discussed, where the corre-
sponding measurement operator M̂ is defined by its projectors P̂j with eigenvalues λj as

M̂ =
∑
j

λj P̂j

The probability that the outcome j occurs when performing the measurementM on a given state
|Ψ〉 is then given by

p(j) = 〈Ψ|P̂j|Ψ〉 .

Measurements on quantum systems are not only inherently probabilistic, they furthermore affect
the state of the system: If a measurement gives the outcome j, it leaves the system in the
corresponding eigenstate of the projector P̂j . Multiple initial states may lead to the identical
state after the measurement if the same outcome was observed. This means, that in general a
measurement is an irreversible process which will be covered in more detail in the next section.
One should note that if the system was already in an eigenstate of one of the projectors P̂j before
the measurement, the measurement will always result in outcome j and the state of the system
is not affected as |Ψ〉 = P̂j|Ψ〉 holds.

Let’s look now on reasonable measurements for a quantum computer. The most straightforward
measurement of a single qubit is a projection onto the computational basis states with projectors
P̂0 = |0〉〈0| and P̂1 = |1〉〈1|. Therefore, the measurement operator M̂ can be composed as

M̂ = σz = (−1)P̂1 + (+1)P̂0 .

For a multi-qubit register, this can be extended by using the projectors Pj = |j〉N〈j| correspond-
ing to the number state |j〉N as defined before. The measurement operator in the computational
basis on the entire register is then defined by

M̂ =
2N−1∑
j=0

λjP̂j =
N⊗
k=1

σz .

8



1.2. Basic concepts of quantum information theory

Of course measuring a register in the computational basis is not sufficient to gain the full infor-
mation about its state. This can be achieved by using tomographic techniques which use the fact
that a unitary operation Û followed by a measurement M̂ can be interpreted as a measurement
of the operator N̂ defined as

N̂ = Û · M̂ (1.1)

which can be used to learn about the state |Ψ〉 along different directions in the Hilbert space.

9



1. Introduction

1.3. Incoherent states and processes in quantum
information

The presented concepts of quantum information processing are based on coherent operations
that can be completely reversed. In contrast the following section has a focus on irreversible or
incoherent processes which arise if the quantum register is coupled to a classical environment. In
the literature these processes are predominantly treated as unwanted noise but it is also possible
to engineer a coupling to the environment that is able to generate useful quantum coherence as
will be shown in section 4.1. An incoherent process acting on a system S can be described by
a coherent process acting on a larger system consisting of S and an environment E as sketched
in figure 1.4a). The state of the system S can then be constructed from the combined state
by discarding the state of the environment as shown in figure 1.4b). In order to describe this
reduction of the dimension a more general representation of the system’s state than the vector
formalism used before is required.

The density matrix formalism can describe single quantum states as the state vector formalism,
but it is also capable of treating classical ensembles of quantum states. There, a single quantum
state |Ψ〉 is described by the operator ρ = |Ψ〉〈Ψ|. Furthermore an ensemble of states is written
as

ρ =
∑
i

ci|Ψi〉〈Ψi|

with
∑
ci = 1. This ensemble can be interpreted as a mixture of states |Ψi〉 each occurring

with probability ci. A measure whether a given matrix can be written as a quantum state in
any possible basis or whether it really is a classical ensemble of states, is the purity Trρ2. If the
purity equals to one, then the density operator corresponds to a single quantum state and is called
pure. Analogously, it follows that ρ cannot be written as a single quantum state if Trρ2 < 1 and
is therefore denoted a mixed state.

Let’s consider now a two-partite state |ΨAB〉where the combined density matrix ρAB = |ΨAB〉〈ΨAB|
is a pure state. We analyze the state of the system A if the information from system B is
discarded. This process is described mathematically by a partial trace over the discarded sys-
tem B [30]:

ρA = TrB (|ΨAB〉〈ΨAB|) (1.2)

It is reasonable that for a state that is not entangled (ρAB = ρA ⊗ ρB), the state after the partial
trace is ρA = |ΨA〉〈ΨA| which itself is pure again. For an entangled state this discarding process
is not so straightforward but reveals fundamental properties of entanglement [31].

Let’s now explain this process on the example of the simple two-qubit entangled state |ΨAB〉 =
1/
√

2 (|00〉+ |11〉). The density operator of the pure combined state is

ρAB =
1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|) .

Now the partial trace over the system B has to be performed which reduces the elements of the
density operator as follows [30]:

|a1b1〉〈a2b2| → |a1〉〈a2| · 〈b1|b2〉 .

10



1.3. Incoherent states and processes in quantum information

a) b)

Figure 1.4.: a) Schematic of a system coupled to an environment. b) The time evolution of the
system can be calculated by discarding the state of the environment.

Thus, the off-diagonal elements |00〉〈11| and |11〉〈00| do not contribute to the state ρA after the
trace operation as 〈0|1〉B = 0. Discarding one qubit out of the state |ΨAB〉 = 1/

√
2 (|00〉+ |11〉)

results thus in the state
ρA =

1

2
(|0〉〈0|+ |1〉〈1|) .

This state is a mixed state as Tr(ρ2
A) = 1/2. Any pure entangled state is reduced to a classical

mixture of states if the information of any subsystem is discarded. This fundamental property of
entangled states can be used to describe the decoherence process where a state of the quantum
system S couples to a classical environment E . If the system is entangled with the environment,
then the reduced state of the system ρS is a mixed state. One can therefore describe the decoher-
ence process of a quantum superposition being transferred towards a classical state by creating
entanglement between the quantum system and a classical environment.

As mentioned above, a process acting on the combined system is described by a unitary opera-
tion acting on the combined system. The action of this process on the system S is then

ρS → ε(ρS) = TrE

(
ÛE+S ρS ⊗ ρE Û †E+S

)
.

Describing this process with the full unitary ÛE+S is impractical as the dimensions of the envi-
ronment are usually very large, often they are even infinite. Therefore, a method is required to
describe the action on the system without any knowledge on the environment. In general, this
is only feasible for Markov processes, where the environment has no “memory” [30]. With |eo〉
being the initial state of the environment and {|ek〉} being a basis of the environment one can
perform the partial trace over the environment

ε(ρ) =
∑
k

〈ek|ÛE+S
(
ρS ⊗ |e0〉〈e0|

)
Û †E+S |ek〉

One can then calculate the operators Ek = 〈ek|ÛE+S |e0〉 acting on the system only. The entire
process is then described by the following operator sum representation:

ε(ρ) =
∑
k

EkρE
†
k (1.3)

where the Kraus operators Ek satisfy the completeness relation
∑
EkE

†
k = I [30]. A unitary,

and therefore reversible, process acting only on the system S can always be described by a single
Kraus operator E0 = ÛS .

11
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A simple example for an incoherent process on a single qubit is dephasing. There, the population
of the state is not altered but the quantum coherence is destroyed. The process can be described
by a random phase-flip that occurs with probability p. A phase-flip corresponds to applying the
operation σz and therefore the Kraus operators are

E0 =
√
p σz =

√
p

(
1 0
0 −1

)
E1 =

√
1− p I =

√
1− p

(
1 0
0 1

)
.

Therefore, a single-qubit density matrix ρ is mapped onto the state

ρp =

(
ρ11 (1− 2 p) ρ12

(1− 2 p) ρ21 ρ22

)
where all off-diagonal elements vanish for a full strength dephasing process with p = 0.5.
Implementations of further incoherent processes are presented in section 4.1.

Any implementation of a quantum computer will show noise and therefore it will never be
possible to generate an exactly pure state in the laboratory. Thus it is important to be able to
characterize a mixed state, which means reconstructing the density matrix from measured data.
A technique that allows one to gain complete knowledge about a density matrix is known as
state tomography [34]. Such tomographic protocols require typically a well calibrated set of
single-qubit operations.

We will now consider the state tomography of a single qubit to give an intuitive picture of
its basic working principle. As described in section 1.2, a pure state of a single qubit can be
illustrated by a vector on the surface of the Bloch sphere. This intuitive picture can be easily
extended towards mixed states, which are located inside the Bloch sphere. It can be shown that
for a pure state, the coordinates of the vector in the Cartesian basis correspond directly to the
expectation values of the corresponding Pauli operator σx,y,z. For example, the projection of the
vector on the z-axis is given by its expectation value of σz. The expectation value of the operator
M̂ for a density matrix ρ is given by

〈M̂〉 = Tr(M̂ · ρ)

In order to gain information about the quantum state, the expectation values of all three Pauli
operators are sufficient to completely describe the state as shown in figure 1.5. Usually, in
quantum computers only the expectation value of σz can be measured directly, so the other Pauli
operators need to be measured indirectly by performing coherent rotations before measuring in
the computational basis as shown in equation (1.1).

After measuring all three expectation values, the state can be written as

ρ =
1

2

(
I + ~n · ~Σ

)
where ~Σ = (σx, σy, σz) is the vector of Pauli matrices and ~n = (〈σx〉, 〈σy〉, 〈σz〉) are the expec-
tation values of the Pauli operators.
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1.3. Incoherent states and processes in quantum information

Figure 1.5.: The Bloch sphere representation of a mixed state of a single qubit. The expectation
values of the three Pauli matrices 〈σx,y,z〉 completely define the state.

This tomography technique can be straightforwardly extended to a multi-qubit system by mea-
suring all permutations of observables

σz ⊗ . . .⊗ σz ⊗ σz
σz ⊗ . . .⊗ σz ⊗ σx
σz ⊗ . . .⊗ σz ⊗ σy
σz ⊗ . . .⊗ σx ⊗ σz

. . .

σy ⊗ . . .⊗ σy ⊗ σy .

A major drawback of these technique is that the resources needed to perform this tomography
scale exponentially with the size of the quantum register as the number of required measurement
settings is 3N [34]. Lately, more efficient techniques have been developed that promise more
favorable scaling at the cost of omitting information on the quantum state [35, 36]. These tech-
niques cannot provide full information on any state but they are particularly useful for certain
classes of states.

Once the actual generated state ρexp has been reconstructed, it has to be compared to the ideal
target state ρid. The most commonly used measure for comparing two states is the fidelity which
can be simply calculated as

F = Tr(ρexp · ρid)
if the target state is a pure state. The fidelity can be interpreted as the probability to generate the
desired state. As different problems require different distance measures there exists a huge vari-
ety of them [37]. Similar to a density matrix also a quantum process can be fully characterized
using quantum process tomography [38]. There, multiple state-tomographies are performed for
a set of input states.
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2. A quantum information processor
with trapped ions

2.1. Introduction to ion traps

... we never experiment with one electron or atom or molecule. In thought ex-
periments we sometimes assume that we do; this is invariably entails ridiculous
consequences... we are not experimenting with single particles, any more than we
can raise Ichtyosauria in the zoo.

This statement of Erwin Schrödinger in 1952 should not hold for a long time, as it became
refuted when the experimental group around Hans Dehmelt stored a single electron in a Penning
trap in 1973 [39, 40]. In the meantime, single charged electrons, atoms and molecules are
routinely trapped and manipulated due to the advancement of laser-cooling and ion trapping
techniques [22].

Trapping a charged particle in all three dimensions is not trivial as Earnshaw’s theorem1 states
that a charged particle cannot be confined by static electric and magnetic fields. The quadrupole
ion trap, invented by Paul in 1953, is able to sidestep this problem as it uses rapidly varying elec-
tric fields to confine charged particles. In such a trap, a quasi-static potential is generated if the
oscillations are fast enough so that the particle cannot follow. Since its invention, a constant trap
development cycle has begun which was accompanied by the impressive technological progress
in laser technology and the discovery of laser-cooling techniques. Today’s ion traps deliver us
the required precision to routinely perform experiments on a single or a few particles.

A linear Paul trap as sketched in figure 2.1a) consists of four rods and two endcaps. The rods are
connected to either ground potential or to an oscillating voltage source. Would the rods be at a
constant voltage, their quadrupole field would create a saddle potential in the xy-plane as shown
in figure 2.1b). If a temporally oscillating voltage is applied between the different rods, the
potential starts oscillating as sketched in figure 2.1a). If this oscillation is fast enough, a charged
particle can be trapped in the xy-plane of the trap which we denote the radial directions of the
trap. For trapping the particle in the axial dimension along the z-axis, an additional constant
repulsive field on the endcaps is sufficient [41].

The motion of a single particle inside the trap can be described by two-distinct types of motion:
Micromotion, which is the residual motion of the particle due to the oscillating electrical driving
fields and the secular motion which corresponds to the motion of the particle in the harmonic

1Note that Earnshaw’s theorem is an application of the Gauss law.
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2. A quantum information processor with trapped ions

a) b)

Figure 2.1.: a) Potential generated by a static voltage applied to hyperbolic electrodes. When
an oscillating field is applied to the electrodes, the saddle potential oscillates as
indicated by the arrows. b) Sketch of a linear Paul trap with four linear rods and two
endcaps.

oscillator due to the constant pseudo-potential of the trap. Micromotion can be suppressed
by placing the particle in the minimum of the saddle potential generated by the rods. This is
accomplished by applying a constant voltage to additional compensation electrodes between the
rods. Their field is used to push the equilibrium position of the ion towards the minimum of the
potential. In a well designed trap, the amplitude of the micromotion can be suppressed to a level
where it does not need to be taken into account to calculate the dynamics of the particles in the
trap [41].

The secular motion corresponds to the motion of a particle in a harmonic oscillator and therefore
it can be described by normal modes in three dimensions. The parameters are chosen so that
the oscillating frequencies in the radial directions are larger than the axial frequency. If the
separation of the oscillation frequencies of the axial and radial modes is large enough, it is
possible to address the axial mode spectroscopically and thus the system can be modeled as a
single mode harmonic oscillator. The axial trapping potential can be stabilized with less effort
than the radial potential and thus the secular motion along the z-axis is preferably used for
quantum information processing [41].

The idealized system of an ion trap quantum computer consists of two-level atoms that are
coupled to a single mode harmonic oscillator. We will now briefly investigate the interaction of
a single two-level ion confined in a single mode harmonic oscillator with an external light field.
A more in depth treatment of this subject is given in the PhD thesis of Christian Roos [42]. The
Hamiltonian of the ion-trap system without an external field is given by

H0 = Hatom +Htrap

Hatom =
1

2
~ω0σz

Htrap =
p2

2m
+

1

2
mω2

zz
2 = ~ωz(a† a+

1

2
)

where ω0 corresponds to the energy difference of the two-level system, m is the mass of the
particle and ωz is the frequency of the secular oscillator mode. It should be noted, that the
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state of the two-level system does not couple with the harmonic oscillator in the absence of an
external field. This coupling can be introduced by applying a light field onto the atom. The
atom-light interaction can be described by the interaction Hamiltonian

Hint =
~
2

Ω(σ+ + σ−)

(
ei(kx−ωt+φ) + e−i(kx−ωt+φ)

)
where the Rabi frequency Ω is determined by the strength of the driving field and the coupling
strength of the used transition. This interaction can be written in terms of raising and lowering
operators of the harmonic oscillators:

Hint =
~
2

Ω

(
σ+ e

−i(η(a+a†)+ωt+φ) + σ− e
i(η(a+a†)+ωt+φ)

)
with the Lamb-Dicke parameter η = k

√
~

2mωz
.

If the Lamb-Dicke parameter is small η << 1, it is possible to perform a first order approxima-
tion of eηx ≈ 1 + ηx and one can rewrite the Hamiltonian in a frame rotating with the two-level
transition frequency ωo. This yields the fundamental interaction Hamiltonian for trapped ion
quantum computing:

Hint =
~
2

Ωσ+

(
1 + η(a e−iωzt+φ + a† eiωzt+φ)

)
eiδt + H.c. (2.1)

where δ = ωo − ω is the detuning of the driving field from the two-level system transition
frequency.

From this Hamiltonian, one can immediately identify three interesting cases namely δ = 0 and
δ = ±ωz. For δ = 0 the harmonic oscillator can be neglected leading to:

Hc =
~
2

Ω(ei φσ+ + e−i φσ−) = Ωσφ

with σφ = σy sinφ+ σx cosφ. Since the motional state of the ion is not changed, this transition
is denoted carrier. If such a resonant field is applied for a duration t, the corresponding unitary
operation is

U(t) = e−iσφt

which corresponds to rotations around the rotation axis φ in the Bloch sphere. The rotation angle
of this operation is determined by the duration when the light field is applied and the rotation
axis is given by the phase φ of the light field. With this operation it is possible to perform any
arbitrary single-qubit operation.

The next interesting case is when the light field is detuned by exactly the axial transition fre-
quency: δ = +ωz. Then the Hamilton is

H+ =
~
2

Ωη
√
n+ 1(ei φa†σ+ + e−i φaσ−)

which corresponds exactly to the anti-Jaynes-Cummings Hamiltonian known from quantum op-
tics [43]. In an iont-rap system these transitions are called blue sidebands and add one phonon
two the system when performing a spin-flip as outlined in figure 2.2b).
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Frequency

Blue sidebandRed sideband

Carrier

NN-1 N+1

Figure 2.2.: a) Schematic spectrum showing the blue and red sideband transitions. b) Ladder
scheme showing the blue and red sideband transitions with the corresponding cou-
pling strengths.

The last case is δ = −ωz leading to the Hamiltonian:

H− =
~
2

Ωη
√
n(ei φσ+a+ e−i φa†σ−)

which corresponds to the Jaynes-Cummings Hamiltonian. Analog to above, this transition is
called red sideband as it removes a phonon upon a transition from the ground to the excited state.
The resulting spectrum including these three transitions and the respective coupling strengths are
shown in figure 2.2.

Naturally, a quantum information processor requires more than a single ion inside a trap. Let’s
consider multiple trapped ions where the axial trap frequency is smaller than the two radial
trap frequencies. In such a system, the ions arrange themselves in a linear string along the
axial direction [44]. Analog to a classical harmonic oscillator, the movement of the ions can
be described by normal modes in three directions. The possible axial modes for a register
of two and three ions are shown in figure 2.3. Again, we consider now only the modes in
the axial directions and there, the mode corresponding to the smallest frequency is the center-
of-mass mode, where all ions move synchronously. This mode is ideally suited as a databus
to exchange information between individual ions inside the string as each individual ion can
transfer information onto and from the databus with equal coupling strength.

There exist two distinct ways of performing operations on such a register. First, the manipulating
light field may act only on a single ion. Mathematically, this can be described by exchanging
the single-qubit Pauli matrices with a corresponding matrix describing an operation on the entire
register but affecting only on the addressed qubit j:

σ± → σ
(j)
±

In the second approach all ions see the identical light field. It can be shown that considering
only the COM mode, the single-particle Hamiltonians as derived above can still be used when
the single particle operators are exchanged with a collective operator

σ± → S± =
N∑
j=1

σ
(j)
±
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COM
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Figure 2.3.: Axial normal modes of a) 2 and b) 3 ions in a Paul trap

where σ(j)
± is again the operator acting on ion j.

In the following publication the used ion species and our experimental system will be described
extensively. First, the 40Ca+ ion is introduced and the qubit and detection transitions are de-
scribed. Then, our universal set of operations is presented which is immediately extended to
include incoherent operations. Furthermore, the experimental setup is briefly described, fol-
lowed by an in detail treatment of the noise sources in our system. Finally, it is shown that our
complete toolbox can be exploited to realize an order finding algorithm which lies at the heart
of Shor’s factoring algorithm.
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2.2. Publication: A quantum information processor
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Österreichische Akademie der Wissenschaften,

Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria
3Massachusetts Institute of Technology, Center for Ultracold Atoms,

Department of Physics, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria

4Institut für Theoretische Physik, University of Innsbruck,
Technikerstr. 25, A-6020 Innsbruck, Austria,

Quantum computers hold the promise to solve certain problems exponentially faster than
their classical counterparts. Trapped atomic ions are among the physical systems in which
building such a device seems viable. In this work we present a small-scale quantum infor-
mation processor based on a string of 40Ca+ ions confined in a macroscopic linear Paul trap.
We review our set of operations that includes non-coherent operations allowing to realize
arbitrary Markovian processes. In order to build a larger quantum information processor it
is mandatory to reduce the error rate of the available operations which is only possible if the
physics of the noise processes is well understood. We identify the dominant noise sources
in our system and discuss their effects on different algorithms. Finally we demonstrate how
our entire set of operations can be used to facilitate the implementation of an algorithm by
the examples of a quantum Fourier transform and the quantum order finding algorithm.

2.2.1. Tools for quantum information processing in ion traps

Quantum information processing in ion traps

A quantum computer (QC) promises to solve certain problems exponentially faster than any
classical computer. Its development was boosted by the discovery of Shor’s algorithm to factor-
ize large numbers and the insight that quantum error correction allows arbitrary long algorithms

2The author of the present thesis measured and analyzed the data, and wrote the manuscript
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even in a noisy environment [4, 13, 14, 45]. These findings initiated major experimental ef-
forts to realize such a quantum computer in different physical systems[8–10]. One of the most
promising approaches utilizes single ionized atoms confined in Paul traps. Here, the internal
state of each ion represents the smallest unit of quantum information (a qubit). Multiple qubit
registers are realized by a linear ion string and the interaction between different ions along the
string is mediated by the Coulomb interaction [6, 41, 44]. In this work we present a review
of a small scale quantum information processor based on a macroscopic linear Paul trap [46].
The work is structured as follows: The first section summarizes the available coherent and non-
coherent operations while in section 2.2.2 the experimental setup is reviewed. In section 2.2.3
the noise sources are characterized and finally, in section 2.2.4 we discuss examples of imple-
mented algorithms using the full set of operations.

The qubit - 40Ca+

A crucial choice for any QC implementation is the encoding of a qubit in a physical system.
In ion trap based QCs, two distinct types of qubits have been explored: (i) Ground-state qubits
where the information is encoded in two hyperfine or Zeeman sublevels of the ground state [41],
and (ii) Optical qubits where the information is encoded in the ground state and an optically
accessible metastable excited state [46]. The two types of qubits require distinct experimental
techniques where ground-state qubits are manipulated with either two-photon Raman transitions
or by direct microwave excitation [41]. In contrast, operations on optical qubits are performed
via a resonant light field provided by a laser [46, 47]. Measuring the state of the qubits in a
register is usually performed via the electron shelving method using an auxiliary short-lived
state for both qubit types [41]. In the presented setup we use 40Ca+ ions, which contain both, an
optical qubit for state manipulation and a ground-state qubit for a quantum memory. Figure 2.4a)
shows a level scheme of the 40Ca+ ions including all relevant energy levels.

Our standard qubit is encoded in the 4S1/2 ground state and the 3D5/2 metastable state where the
natural lifetime of the 3D5/2 state (τ1 = 1.1s) provides an upper limit to the storage time of the
quantum information. The 4S1/2 state consists of two Zeeman sublevels (m = ±1/2) whereas
the 3D5/2 state has six sublevels (m = ±1/2,±3/2,±5/2). This leads to ten allowed optical
transitions given the constraint that only ∆m = 0, 1, 2 are possible on a quadrupole transition.
The coupling strength on the different transitions can be adjusted by varying the polarization of
the light beam and its angle of incidence with respect to the quantization axis set by the direction
of the applied magnetic field. Usually we choose the 4S1/2(mj = −1/2) = |S〉 = |1〉 and the
3D5/2(mj = −1/2) = |D〉 = |0〉 as the computational basis states because the transition
connecting them is the least sensitive to fluctuations in the magnetic field. Furthermore it is
possible to store quantum information in the two Zeeman substates of the 4S1/2 ground-state
which are not subject to spontaneous decay (4S1/2(mj = −1/2) = |1〉Z and 4S1/2(mj =
+1/2) = |0〉Z).

The projective measurement of the qubit in the computational basis is performed via the 4S1/2 ↔
4P1/2 transition at a wavelength of 397nm. If the qubit is in a superposition of the qubit states,
shining in a near resonant laser at the detection transition projects the ion’s state either in the
4S1/2 or the 3D5/2 state. If the ion is projected into the 4S1/2 state, a closed cycle transition is
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Figure 2.4.: (a) Level scheme of 40Ca+. Solid circles indicate the usual optical qubit
(4S1/2(mj = −1/2) = |1〉 and 3D5/2(mj = −1/2) = |0〉). Open circles indicate
the ground state qubit that avoids spontaneous decay (4S1/2(mj = −1/2) = |1〉Z
and 4S1/2(mj = +1/2) = |0〉Z). (b) Schematic representation of electron shelving
detection. The histogram shows the detected photon counts from projections onto
both states during the detection interval. It can be seen that it is possible to dis-
tinguish the two different outcomes. The highlighted area illustrates the threshold
whether the stat is detected as |0〉 or |1〉.

possible and the ion will fluoresce as sketched in figure 2.4(b). It is however still possible that the
decay from 4P1/2 leads to population being trapped in the 3D3/2 state that needs to be pumped
back to the 4P1/2 with light at 866nm. Fluorescence is then collected with high numerical
aperture optics and single-photon counting devices as described in section 2.2.2. If the ion is
projected into the 3D5/2 state though, it does not interact with the light field and no photons
are scattered. Thus the absence or presence of scattered photons can be interpreted as the two
possible measurement outcomes which can be clearly distinguished as shown in the histogram in
figure 2.4b). In order to measure the probability p|1〉 to find the qubit in 4S1/2, this measurement
needs to be performed on multiple copies of the same state. In ion-trap QCs these multiple
copies are produced by repeating the experimental procedure N times yielding the probability
p|1〉 = n(|1〉)/N where n(|1〉) is the number of bright outcomes. This procedure has a statistical
uncertainty given by the projection noise ∆p|1〉 =

√
p|1〉(1− p|1〉)/N [48]. Depending on the

required precision, the sequence is therefore executed between 50 and 5000 times.

Preparing the qubit register in a well defined state is a crucial prerequisite of any quantum
computer. In our system this means (i) preparing the qubit in one of the two Zeeman levels of
the ground state and (ii) cooling the motional state of the ion string in the trap to the ground
state. The well established technique of optical pumping is used to prepare each ion in the
mj = −1/2 state of the 4S1/2 state [46]. In our setup two distinct methods for optical pumping
are available: (i) Polarization dependent optical pumping by a circularly polarized laser beam
resonant on the 4S1/2 ↔ 4P1/2 transition as shown in figure 2.5a) and (ii) frequency selective
optical pumping via the Zeeman substructure of the 3D5/2 state as depicted in figure 2.5b). Here,
the transfer on the qubit transition at 729nm is frequency selective. Selection rules ensure that
depletion the of the 3D5/2(mj = −3/2) level via the 4P3/2 effectively pumps the population
into the 4S1/2(mj = −1/2) state. The second part of the initialization procedure prepares the
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Figure 2.5.: Schematic view of optical pumping which is (a) polarization selective and (b) fre-
quency selective (c) Sideband cooling on the qubit transition. The light resonant
with the 3D5/2 → 4P3/2 transition is used to tune the effective linewidth of the
excited state leading to an adiabatic elimination of the 3D5/2 state. (d) Scheme for
sideband cooling utilizing a Raman transition. Here, the σ− light performs optical
pumping which corresponds to the spontaneous decay on the optical transition.

ion string into the motional ground state which requires multiple laser-cooling techniques. We
use a two-step process where the first step consists of Doppler cooling on the 4S1/2 ↔ 4P1/2

transition that leads to a mean phonon number of 〈n〉 ≈ 10. The motional ground state is
subsequently reached with sideband cooling techniques [49]. In our system, the necessary two-
level system can be either realized on the narrow qubit transition [50] or as a Raman process
between the two ground states via the 4P1/2 level [41, 46]. A crucial parameter, determining
the cooling rate, is the linewidth of the actual cooling transition [49]. When cooling on the
long-lived optical transition, the excited state lifetime needs to be artificially shortened in order
to adjust the effective linewidth of the transition. This is realized by repumping population
from the 3D5/2 state to the 4S1/2 state via the 4P3/2 level with light at 854nm, as outlined in
figure 2.5c) [49]. The procedure using the Raman transition is outlined in figure 2.5d). Here,
the spontaneous decay is replaced by optical pumping as used for state preparation [41, 51].
In principle, this cooling technique allows for faster cooling rates as the coupling strength to
the motional mode, described by the Lamb-Dicke parameter, increases for smaller wavelengths.
More importantly, it has the advantage that it can be applied within a quantum algorithm without
disturbing the quantum state of idling qubits when the population of the 4S1/2 state is transferred
to a Zeeman substate of the excited state that is outside the computational basis, for example
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3D5/2(mj = −5/2) = |D′〉 [28].

The universal set of gates

With a universal set of gates at hand, every unitary operation acting on a quantum register can
be implemented [30]. The most prominent example for such a set consists of arbitrary single-
qubit operations and the controlled NOT (CNOT) operation. However, depending on the actual
physical system, the CNOT operation may be unfavorable to implement and thus it may be
preferable to choose a different set of gates. In current ion trap systems, entangling operations
based on the ideas of Mølmer and Sørensen have achieved the highest fidelities [27, 32, 52]
which, in conjunction with single-qubit operations, form a universal set of gates. In order to
implement all necessary operations, we use a wide laser beam that illuminates the entire register
uniformly and a second, tightly focused, laser beam to address each ion. Interferometric stability
between the two beams would be required, if arbitrary single-qubit operations were performed
with this addressed beam in addition to the global MS operations. To circumvent this demanding
requirement, the addressed beam is only used for inducing localized phase shifts caused by the
AC-Stark effect. Using an off-resonant light field causing AC-Stark shifts has the advantage that
the phase of the light field does not affect the operations and thus no interferometric stability is
needed. The orientation of the two required laser beams is shown in figure 2.6a).

Applying an off-resonant laser light with Rabi frequency Ω and detuning δ onto a the j-th ion
modifies its qubit transition frequency by an AC-Stark shift of δAC = −Ω2

2∆
. This energy shift

causes rotations around the Z axis of the Bloch sphere and the corresponding operations on ion
j can be expressed as

S(j)
z (θ) = e−iθσ

(j)
z /2

where the rotation angle θ = δACt is determined by the AC-Stark shift and the pulse duration.
As the 40Ca+ ion is not a two-level system, the effective frequency shift originates from AC-
Stark shifts on multiple transitions. We choose the laser frequency detuning from any 4S1/2 ↔
3D5/2 transition to be 20MHz. There, the dominating part of the AC-Stark shift originates from
coupling the far off-resonant transitions from 4S1/2 to 4P1/2 and 4P3/2 as well as from 3D5/2 to
4P3/2 [53].

The second type of non-entangling operations are collective resonant operations using the global
beam. They are described by

Rφ(θ) = e−iθSφ/2

where Sφ =
∑N

i=0(σ
(i)
x cosφ + σ

(i)
y sinφ) is the sum over all single-qubit Pauli matrices σ(i)

x,y

acting on qubit i. The rotation axis on the Bloch sphere φ is determined by the phase of the light
field and the rotation angle θ = t/Ω is fixed by the pulse duration t and the Rabi frequency Ω.
Together with the single-qubit operations described above this allows us to implement arbitrary
non-entangling operations on the entire register.

The entangling MS gate operation completes the universal set of operations. The ideal action of
the gate on an N-qubit register is described by

MSφ(θ) = e−iθS
2
φ/4 .
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Figure 2.6.: a) Schematic view of the laser beam geometry for qubit manipulation. b) Schematic
level scheme of a Mølmer Sørensen type interaction. The bichromatic light field
couples the states |SS, n〉 with |DD,n〉 via the intermediate states |SD, n± 1〉 and
|DS, n± 1〉 with a detuning δ.

For any even number of qubits the operation MSφ(π/2) maps the ground state |00..0〉 directly
onto the maximally entangled GHZ state 1/

√
2(|00..0〉+ eiφ|11..1〉). For an odd number of ions

the produced state is still a maximally GHZ-class entangled state which can be transferred to a
GHZ state by an additional collective local operation Rφ(π/2).

Implementing the MS gate requires the application of a bichromatic light field E(t) = E+(t) +
E−(t) with constituents E± = E0 cos((ω0 ± (wz + δ))t) where ω0 is the qubit transition fre-
quency, ωz denotes the frequency of the motional mode and δ is an additional detuning. The
level scheme of the MS operation acting on a two-ion register is shown in figure 2.6b). Mølmer
and Sørensen showed that if the detuning from the sideband δ equals the coupling strength on the
sideband ηΩ the operation MS(π/2) is performed when the light field is applied for a duration
t = 2π/δ.

However, implementing MS operations with rotation angles π/2 is not sufficient for universal
quantum computation. Arbitrary rotation angles θ can be implemented with the same detuning δ
by adjusting the Rabi frequency on the motional sideband to ηΩ = δ θ /(π/2). Due to this fixed
relation between the rotation angle and the detuning, the gate operation needs to be optimized
for each value of θ. In practice this optimization is a time-consuming task and thus the gate
is optimized only for the smallest occurring angle in the desired algorithm. Gate operations
with larger rotation angles are realized by a concatenation of multiple instances of the already
optimized operation.

If the physical system would consist of a two-level atom coupled to a harmonic oscillator the
AC-Stark introduced by one off-resonant light field would be perfectly compensated by its coun-
terpart in the bichromatic field. However, 40Ca+ shows a rich level structure where due to the
additional Zeeman levels and coupling to the other 4P states an additional AC-Stark shift is
introduced [53]. This shift changes the transition frequency between the two qubit states which
has the effect that the detuning from the sideband transition δ is not equal for both constituents
of the bichromatic light field. This would degrade the quality of the operation drastically and
thus the shift has to be compensated for which can be achieved by two distinct techniques [54]:
(i) The center frequency of the bichromatic light field can be shifted or (ii) the light intensity
of the two constituents can be unbalanced to induce a Stark shift on the carrier transition which
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compensates the unwanted Stark shift. Depending on the application, one compensation method
is favorable over the other. Method (i) makes it easier to optimize the physical parameters to
achieve very high gate fidelities but leads to an additional global rotation around σz which is
tedious to measure and compensate for in a complex algorithm. This can be avoided by method
(ii) but the compensation is not independent of the motional state leading to a slightly worse
performance [54]. Therefore, we generally choose method (i) if the goal is to solely generate a
GHZ state whereas method (ii) is favorable if the gate is part of a complex algorithm.

In general an algorithm requires operations with positive and negative values of the rotation
angles for the available operations. For the resonant Rφ(θ) operation both signs of θ can be
realized by changing the phase of the light field since e−i(−θ)Sφ = e−iθS(π+φ) which is not possible
for MS operations as S2

φ = S2
φ+π. The sign of the rotation of the MS operation angle can only

be adjusted by choosing the sign of the detuning δ [55]. However, performing MS operations
with positive and negative detunings results in a more complex setup for generating the required
RF signals and also a considerable overhead in calibrating the operation. Therefore it can be
favorable to implement negative θ by performingMSφ(π−|θ|) which works for any odd number
of ions whereas for an even number of ions, an additional Rφ(π) operation is required [55].
With this approach the quality of operations with negative rotation angles is reduced but the
experimental overhead is avoided.

Optimized sequences of operations

Typically, quantum algorithms are formulated as quantum circuits where the algorithm is build
up from the standard set of operations containing single qubit operations and CNOT gates. Im-
plementing such an algorithm is straightforward if the implementation can perform these stan-
dard gate operations efficiently. Our set of gates is universal and thus it is possible to build
up single qubit and CNOT operations from these gates. However, it might be favorable to de-
compose the desired algorithm directly into gates from our implementable set as the required
sequence of operations might require less resources. This becomes evident when one investi-
gates the operations necessary to generate a four-qubit GHZ state. Here, a single MS gate is
able to replace four CNOT gates.

The problem of breaking down an algorithm into an optimized sequence of given gate opera-
tions was first solved by the NMR quantum computing community. There, a numerical optimal
control algorithm was employed to find the sequence of gate operations that is expected to yield
the lowest error rate for a given unitary operation [56]. This algorithm optimizes the coupling
strength of the individual parts of the Hamiltonian towards the desired sequence. Unfortunately
the NMR algorithm is not directly applicable to our ion trap system as the set of operations
differ. In an NMR system the interactions are present at all times, only their respective strengths
can be controlled. This allows for an efficient optimization as there is no time order of the indi-
vidual operations. This is not true for current ion trap quantum computers where only a single
operation is applied at a time which makes it necessary to optimize the order of the operations
within the sequence in addition to the rotation angles. Furthermore, the same type of operation
might appear several times at different positions. Thus we modified the algorithm so that it
starts from a long random initial sequence and optimizes the rotation angles of the operation.
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This optimization converges towards the desired algorithm, if the required sequence is a subset
of this random initial sequence. The key idea of our modification is that rotation angle of opera-
tions that are included in the random initial sequence but are not required for the final sequence
shrinks during the optimization. If the rotation angle of an operations shrinks below a threshold
value, the operation is removed from the sequence as it is superfluous. If the algorithm fails to
find a matching sequence, further random operations are inserted into the sequence. A more de-
tailed treatment on the algorithm is given in reference [33]. In general this optimization method
is not scalable as the search space increases exponentially with the number of qubits but it is
possible to build up an algorithm from optimized gate primitives acting on a few qubits.

Even for complex algorithms on a few qubits, the sequence generated with this optimization
method might include too many operations to yield acceptable fidelities when implemented.
Then it can be advantageous to split the algorithm in parts that act only on a subset of the
register and generate optimized decompositions for these parts. For this task, the physical in-
teractions need to be altered so that they only affect the relevant subset. Multiple techniques
for achieving this in ion traps have been proposed, where the best known techniques rely on
physically moving and splitting the ion-chains in a complex and miniaturized ion trap [57]. Our
approach to this problem is to decouple them spectroscopically by transferring the information
of the idling ions into a subspace that does not couple to the resonant laser light. Candidates
for such decoupled subspaces are either (i) 4S1/2(mj = +1/2) with 3D5/2(mj = +1/2) or
alternatively (ii) 3D5/2(mj = −5/2) = |D′〉 with 3D5/2(mj = −3/2) = |D′′〉. The decoupling
technique (ii) is sketched in figure 2.7a). The only remaining action of the manipulation laser
on the decoupled qubits is then an AC-Stark shift that acts as a deterministic rotation around the
Z-axis. This rotation can be measured and subsequently be compensated for by controlling the
phase of the transfer light. When qubits in the set U are decoupled, the action of the operations
can then be described by (

∏
j∈U 1j) ⊗ U where the operation U is the implemented interaction

on the desired subspace. Note that parameters of the MS operations do not change when the
number of decoupled qubits is altered thus the gate does not need to be re-optimized.

Tools beyond coherent operations

In general, any quantum computer requires non-reversible and therefore also non-coherent op-
erations for state initialization and measurements [30]. For example, quantum error correction
protocols rely on controlled non-coherent operations within an algorithm to remove information
on the error from the system similar to state initialization. Furthermore, the robustness of a
quantum state against noise can be analyzed by exposing it to a well defined amount of phase or
amplitude damping [58]. Surprisingly, it has been shown theoretically that non-coherent oper-
ations can serve as a resource for quantum information [21, 55, 59]. Naturally, these ideas can
only be implemented if controlled non-coherent operations are available in the system. Math-
ematically, these non-reversible operations are described by a trace-preserving completely pos-
itive map E(ρ) acting on a density matrix rather than unitary operations acting on pure states.
The action of such a map is described by E(ρ) =

∑
k E
†
kρEk with Kraus operators Ek fulfilling∑

k E
†
kEk = 1 [30].

In our system two different variations of these controlled dissipative processes are available [60]:
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Figure 2.7.: a) The process to decouple individual qubits: (i) The population from |S〉 is trans-
ferred to |D′〉. (ii) The population from |D〉 is transferred to |S ′〉 and subsequently
to (iii) |D′′〉. b) Controlled phase damping with strength γ utilizing light at 854nm.
(i) Population from |D〉 is hidden in the |S ′〉 state. (ii) The population from |S〉 is
partially brought to |D′〉 and (iii) shining in light at 854 nm depletes the 3D5/2 via
4P3/2 and finally (iv) the population is brought from |S ′〉 back to |D〉. (c) Imple-
menting controlled amplitude damping using the 397 σ beam. (i) Transferring the
population from |D〉 to |S ′〉. (ii) Optical pumping of |S ′〉 using light at 397nm.

The archetype of a controlled non-coherent optical process is optical pumping. We can per-
form optical pumping on individual qubits inside the register with the following sequence as
shown in figure 2.7b): (i) Partially transfer the population from |D〉 to |S ′〉 with probability
γ, and (ii) optical pumping from |S ′〉 to |S〉 analogous to the qubit initialization. The par-
tial population transfer is performed by a coherent rotation with an angle θ on the transition
4S1/2(mj = +1/2) ↔ 3D5/2(mj = −1/2) which leads to γ = sin2(θ). This reset process can
be described as controlled amplitude damping on an individual qubit where the map affecting
the qubit is shown in table 2.1. Note that the information in the qubit states is not affected as the
optical pumping light couples to neither of the original qubit states. For a full population trans-
fer (γ = 1) the procedure acts as a deterministic reinitialization of an individual qubit inside a
register as required for repetitive quantum error correction [61].

Furthermore an alternative implementation of optical pumping can be used to generate con-
trolled phase damping. This process preserves the populations in the respective qubit states but
destroys the coherences between them with probability γ: (i) The information residing in state
|D〉 of all qubits is protected by transferring it to the |S ′〉 = 4S1/2(mj = +1/2) state before the
reset step. (ii) On the qubit to be damped, the population from |S〉 is partially transferred into
the |D′〉 = 3D5/2(mj = −5/2) state with probability γ. Here, the partial population transfer is
performed by a coherent rotation on the transition 4S1/2(mj = −1/2) ↔ 3D5/2(mj = −5/2)
(iii) Shining light resonant with the 3D5/2 ↔ 4P3/2 transition at 854nm onto the ions depletes
this level to |S〉. (iv) Transferring |S ′〉 back to |D〉 restores the initial populations, the coherence
of the qubit has been destroyed with probability γ. The schematic of this process is shown in
figure 2.7c) and the resulting map can be found in table 2.1.

Our system furthermore allows measuring a single qubit without affecting idling qubits in the
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Table 2.1.: The extended set of operations in our ion trap QC. This set of operations allows us
to implement any possible Markovian process.

Name Addressed/global Ideal operation
AC-Stark shift pulses addressed S

(i)
z (θ) = e−iθ/2σ

(i)
z

Collective resonant operations collective non-entangling Sφ(θ) = e−iθ/2Sφ

Mølmer-Sørensen collective entangling MSφ(θ) = e−iθ/2S
2
φ

Phase damping addressed non-coherent Ep
0 =

∣∣ 1 0
0
√

1−γ
∣∣ Ep

1 =
∣∣ 0 0

0
√
γ

∣∣
Amplitude damping addressed non-coherent Ea

0 =
∣∣ 1 0

0
√

1−γ
∣∣ Ea

1 =
∣∣ 0
√
γ

0 0

∣∣
Single-qubit measurement addressed non-coherent Projection onto |0〉〈0| or |1〉〈1|

same ion string. For this, all spectator ions need to be decoupled from the detection light. This
is realized by transferring the population from the |S〉 state to the |D′〉 = 3D5/2(mj = −5/2)
state. Applying light on the detection transition measures the state of the ion of interest while
preserving the quantum information encoded in the hidden qubits. This information can be
used to perform conditional quantum operations as needed for teleportation experiments [28] or
quantum non-demolition measurements [62].

It should be noted, that the operations forming our implementable set of gates shown in table
2.1 allow the realization of any completely positive map, which corresponds to a Markovian
process [19, 20, 62]. The quality of the operations is affected by multiple physical quantities
which are discussed in more detail in section 2.2.3. In order to faithfully estimate the resulting
fidelity of an implemented algorithm, a complete numerical simulation of the physical system
has to be performed. However, a crude estimation can be performed assuming a fidelity of
99.5% for non-entangling operations and {98, 97, 95, 93, 90}% for the MS operations on a string
of {2, 3, 4, 5, 6} ions [23]. The fidelity of the entire algorithm is then estimated by simply
multiplying the fidelities of the required operations.

2.2.2. Experimental setup

In this section we give an overview of the experimental setup of our ion-trap quantum informa-
tion processor. First, we describe in detail the ion trap, the optical setup and the laser sources.
Then we concentrate on the experiment control system and techniques to infer the state of the
qubit register.

The linear Paul trap

The trap in our experimental system is a macroscopic linear Paul trap with dimensions as shown
in figure 2.8[46]. The trap is usually operated at a radial motional frequency of 3MHz and an
axial motional frequency of 1MHz. These trapping parameters are slightly adjusted with respect
to the number of ions in the string to prevent overlap of the frequencies from different mo-
tional modes of all transitions. In order to minimize magnetic field fluctuations, the apparatus
is enclosed in a magnetic shield (75x75x125 cm) that attenuates the amplitude of an external
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Figure 2.8.: Schematic drawing of the linear Paul trap used in our experiment. The distance be-
tween the endcaps is 5mm whereas the distance between the radio-frequency blades
is 1.6mm.

magnetic at frequencies above 20 Hz by more than 50dB 3. The trap exhibits heating rates of
70ms per phonon at an axial trap frequency of 1MHz. Micromotion for a single ion can be
compensated with the aid of two compensation electrodes. The remaining micromotion creates
sidebands at the trap frequency which can be observed in an ion spectrum on the qubit transi-
tion. The strength of the excess micromotion is described by the modulation index β of these
sidebands where in our setup a modulation index of β < 1% is observed [63, 64].

Optical setup

A quantum information processor with 40Ca+ requires multiple laser sources, listed in table 2.2,
to prepare, manipulate and measure the quantum state of the ions. The ions are generated from
a neutral atom beam with a two-step photo-ionization process requiring laser sources at 422nm
and 375nm. Manipulating the state of the qubits is done with a Titanium-Sapphire laser at
729nm on the 4S1/2 ↔ 3D5/2 qubit transition and its setup as described in reference [65]. Its
frequency and amplitude fluctuations affect crucially the performance of the coherent operations
as will be discussed in section 2.2.3. The laser has a linewidth of below 20Hz and the relative
intensity fluctuations are in the range of 1.5% [65].

The laser sources sources reside on different optical tables than the vacuum vessel housing the
trap, and thus the light is transferred between different tables with optical fibers. The optical ac-
cess to the trap itself is constrained by the surrounding octagon vacuum vessel which is sketched
in figure 2.9 including the available beams with their respective directions. The 397nm light is
required for multiple tasks and thus multiple beams are required: one beam for Doppler-cooling
and detection, another beam for optical pumping (labeled Pumping σ), and two beams for Ra-
man sideband-cooling (labeled Raman σ, Raman π). In particular, the beams used for optical
pumping need to be aligned with the magnetic field generated by the coils as indicated in fig-
ure 2.9. In practice it is favorable to adjust the orientation of the magnetic field with respect to

3Imedco, Proj.Nr.: 3310.68
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Transition Wavelength Usage Linewidth
4S1/2 ↔ 4P1/2 397nm Doppler cooling, optical pumping and detection <1MHz
4S1/2 ↔ 3D5/2 729nm Sideband cooling and qubit manipulation < 20Hz
3D3/2 ↔ 4P1/2 866nm Repumping for detection <1MHz
3D5/2 ↔ 4P3/2 854nm Quenching for Sideband cooling and qubit reset <1MHz
neutral calcium 422nm Photoionization first stage -
neutral calcium 375nm Photoionization second stage -

Table 2.2.: Laser wavelengths needed for a Ca+ ion trap experiment. The lasers are stabilized
to a reference cavity with the Pound-Drever-Hall locking technique except for the
photoionization lasers which are not actively stabilized.

the light beam since the magnetic field can be adjusted without moving any mechanical part.
The beams of the 866nm and 854nm laser are overlapped with the 397nm detection beam in a
single-mode photonic crystal fiber.

In order to implement our set of operations, the 729nm light needs to be applied to the ions from
two different optical ports: (i) the addressed beam which is a tightly focused beam illuminating
only a single ion and (ii) the global beam which is a wide beam that illuminates all ions with an
approximately homogeneous light intensity. The angle between the global beam and the axial
trap axis is 22.5◦ which leads to a Lamb-Dicke parameter of ηglob = 6% [66]. The width of
the beam is chosen so that the light intensity shows variations of less than 2% over the entire
ion string. Considering that the ions are arranged in a linear crystal, it is advantageous to use
an elliptical shape for the global beam to achieve higher light intensities at the position of the
ions. The elongated axis of the beam has typically a diameter of 100µm which is sufficient for
ion strings with up to 8 ions. For larger ion strings, the beam size needs to be enlarged which
increases the required time for performing collective operations.

The angle between the addressed beam and the trap axis is 67.5◦ so that there the Lamb-Dicke
parameter is smaller ηadd = 2.5%. The addressed beam needs to be able to resolve the individual
ions in the string which means that the beam size needs to be smaller than the inter-ion distance
of approximately 5µm. This small beam size is realized with the aid of a custom high numerical
aperture objective situated in an inverted viewport as sketched in figure 2.10a). Additionally,
the beam has to be rapidly switched between the ions which is realized with an electro-optical
deflector (EOD). The switching speed depends on the capacitance of the EOD and the output
impedance of the driving high voltage amplifier. Figure 2.10b) shows the voltage on the EOD
during a switching event between two neighboring ions which demonstrated that a switching
event requires approximately 15µs. Experience has shown that a delay between the switching
event and the next light pulse of 30µs is sufficient to switch between arbitrary ions in a string
of up to 8 ions. Note that the voltage ramp measured at the EOD can only serve as an indicator
for the position of the laser beam but does not provide information about the settling time of the
laser light phase at the position of the ion. It was observed that the phase of the light field keeps
changing for more than 100µs after a switching event. However, this does not affect the qubit
operations for our set of operations as the AC-Stark shift does not depend on the phase of the
light field as described in section 2.2.1.
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Figure 2.9.: Overview of the alignment of the various laser beams, the coils generating the mag-
netic field and the trap with respect to the vacuum vessel.

Experiment control

Any ion-trap quantum information experiment requires precise and agile control of duration, fre-
quency and amplitude of laser beams originating from multiple sources. A typical experimental
sequence consists of optical pumping, cooling the center of mass (COM) mode, coherent opera-
tions and qubit measurements as shown in figure 2.11a). Usually the required control is achieved
by using acousto-optical devices which map the control over intensity and frequency of the light
field onto the manipulation of amplitude and frequency of a radio-frequency signal. Thus, ver-
satile and fast radio-frequency(RF) signal generators are a necessity for a high-fidelity quantum
information processor. Modern RF signal generators are commonly based on direct digital syn-
thesizers (DDS) enabling switching times on a nanosecond timescale and frequencies between
1 and 400 MHz with sub-Hertz resolution. In our experiment, these DDSs are controlled by a
special purpose microcontroller embedded on a field-programmable-gate-array (FPGA) [67]4.
This FPGA is able to generate digital pulses with a duration from 10ns up to several seconds.
In order to allow coherent rotation on different transitions, the control system needs to be able
to perform phase-coherent switching between multiple frequencies. The phase stability of the
phase-coherent switching has been tested to be 0.0001(90)◦ [64]. The controller is connected to
the experimental control computer via a standard ethernet connection. For quantum algorithms
requiring feed-forward operations, such as teleportation, it is necessary to use the outcome of a

4http://pulse-programmer.org
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Figure 2.10.: a) Optical setup for the addressing beam setup. b) Time dependence of the voltage
on the EOD switching between two neighboring ions. After approximately 15µs
the voltage settles and thus the switching process is finished.

Parameter Type Required for each ion
Ion position Voltage yes

Telescope lens position Position no
Rabi frequency Time yes

Zeeman splitting Magnetic field no
Laser frequency drift Frequency no

Table 2.3.: List of automatically calibrated parameters.

measurement within the algorithm to control subsequent operations in the algorithm. This can
be realized by analyzing the measurement outcome by counting the PMT signal on dedicated
counters and performing the controlled operations in the sequence depending on state of this
counters [28]. A schematic view of the control system including this feedback mechanism is
shown in figure 2.11b).

The FPGA determining the timing of the experiment is itself controlled by a personal computer
running a custom LabView program. This program translates the sequence of operations from a
human readable format to binary code that can be executed on the FPGA. In order to minimize
the required time for calibrating the system, the parameters shown in table 2.3 are calibrated
automatically without any user input. Our set of operations can only be implemented, if the
frequency of the manipulation laser is close to the qubit transition frequency. Since the frequency
of each individual transition is mainly determined by the center frequency of all transitions
shifted by the respective Zeeman shift due to the applied magnetic field, it is sufficient to infer
the magnitude of the magnetic field and the frequency difference between the laser and the center
frequency. For this, the difference frequencies between the laser and two distinct transitions are
measured on the transitions 4S1/2(mj = −1/2) ↔ 3D5/2(mf = −1/2) and 4S1/2(mj =
−1/2)↔ 3D5/2(mf = −5/2) which allows us to determine the long-term drift of the magnetic
field and the 729nm reference cavity. Typical values for the magnetic field drift are 10−8G/s
and for the cavity drift 60 mHz/s which is expected due to aging of the cavity spacer crystal [68].

In order to perform addressed single-qubit operations, the position of the addressed beam with
respect to the ion positions needs to be characterized. The position of the beam is controlled
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Figure 2.11.: a) Timing sequence of a typical experiment consisting of state initialization, coher-
ent manipulation and measurement. b) Schematic representation of the experiment
control hardware. The FPGA is programmed by the experimental control PC and
controls the timing of all signals used in the experiment. RF signals for the co-
herent manipulation are generated by DDS. It is possible to perform conditional
operations based on measurement outcomes with external counters that analyze
the photon counts from the PMT.

via a motorized lens before the objective, as indicated in figure 2.10a), and the voltage that is
applied to the EOD. The calibration routine consists of moving the beam onto the center of the
ion string with the motorized lens, followed by finding the EOD voltages for every individual
ion. The position of the beam with respect to the ions can be determined to approximately
50nm. In order to perform the desired operations, the Rabi oscillation frequencies on the global
beam and the addressed beam need to be measured. On the two global beam the transitions
required for the drift compensation need to covered, whereas on the the addressed beam, the
oscillation frequencies need calibrated for each ion for the AC-Stark operations using Ramsey
spectroscopy. In general, the frequencies can be determined with a precision of approximately
1%.
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Figure 2.12.: Histogram of counted pulses from the PMT for a 4 ion string. The histogram is
derived 21200 measurements with a detection time of 5ms.

Measuring individual ions within a quantum register

As described in section 2.2.1, measuring the quantum state of the ions is performed by counting
single photons on the 4S1/2 ↔ 4P1/2 transition. We use high numerical aperture objectives
located in an inverted viewport to reduce the distance between the ion and the objective as
shown in figure 2.9. Two detection channels are available: one with a photo-multiplier-tube
(PMT) and another with an electron multiplying CCD camera. The PMT integrates the photons
over its sensitive area and thus cannot infer any spatial information on the ions. The number of
detected photon counts depends on the number of bright ions as is indicated in the histogram
of PMT counts shown in figure 2.12. By setting appropriate thresholds it is then possible to
determine the number of ions found in the 4S1/2 = |0〉 state which is sufficient information to
perform permutationally invariant state tomography [35] or to determine the fidelity of a multi-
qubit GHZ state [23].

In contrast, the CCD camera is able to resolve the spatial information of the detected light and
is thus able to determine the state of each ion in the string separately. It uses the same objective
as for generating the addressed 729nm beam where the beam at 729nm and the detected light
at 397nm are separated by a dichroic mirror as sketched in figure 2.10a). The analysis of the
camera data is performed in five steps: (i) A camera image is taken with an exposure time of 7ms.
The value of each pixel corresponds to the number of detected photons. (ii) For further analysis,
a limited region of interest (ROI) around the ion’s position of the whole camera image is used.
For a register of 4 ions the ROI consists of 35x5 pixels but the ROI size needs to be adjusted to
the length of the ion string. (iii) The pixel values are summed over the y-axis of the ROI-image
to get the brightness information along the ion string. (iv) This brightness distribution is then
compared to pre-calculated distributions which are generated from a reference image where all
ions are bright. From this reference image, the position and brightness distribution of each ion
are determined. The state of the ion string is then inferred by comparing the summed pixel values
with the pre-calculated distributions of each possible outcome by calculating the mean squared
error χ2. Finally (v) the state with the smallest mean squared error is chosen to be the most
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likely state. Two examples of this analysis procedure are shown in figure 2.13. Note that this
method is not scalable as the number of pre-calculated distributions grows exponentially with
the number of ions. However recent work on state detection in trapped ion system promises
efficient detection schemes [69].
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Figure 2.13.: Schematic illustration of the camera detection in a 4 ion register. (a) False color
image of the region of interest. (b) Brightness information after summation over
the y-axis of the image. (c) 1/χ2 of the sum with generated data for every possible
state. The peak corresponds to the most likely state. In this case index 6 (15),
which corresponds to the state |SDSD〉 ( |SSSS〉), is the most likely state.
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2.2.3. Error sources

Any implementation of a quantum computer will be affected by errors which ultimately need
to be corrected with quantum error correction techniques. Identifying and characterizing the
noise sources are therefore crucial steps towards a large scale quantum information processor.
In this analysis we distinguish noise sources, that affect a qubit used as a quantum memory,
from additional error sources, that occur when performing operations. For the presented error
sources we describe the origin, present a method to characterize the magnitude, and provide
typical values for our experimental system.

Errors in the qubit memory

In general, errors affecting a qubit memory are described by a combination of phase damping
and amplitude damping [30]. In optical qubits, amplitude damping corresponds to decay from
the excited to the ground state whereas phase damping destroys the phase of a superposition state
but does not alter the population of the qubit. The lifetime of the excited qubit is a fundamental
property of the ion species and gives an upper limit to the storage time of a quantum memory
encoded in an optical qubit. In the experiment, the lifetime of the excited state can be reduced
due to residual light fields depleting the 3D5/2 state via another state, or by collisions with
background gas particles. This possible error source can be investigated by confirming that the
time constant of the exponential decay from the 3D5/2 state is close to the natural lifetime of
1.168(7)s [70]. In our setup, we find a lifetime of τ1 = 1.13(5)s [60].

The second noise type, phase damping, is usually investigated with Ramsey spectroscopy which
determines the coherence properties of a superposition state [46]. There, the qubit is initially
prepared in an equal superposition of the two computational states by a R0(π/2) rotation. After
a certain storage time, a second rotation Rπ(π/2) is applied that ideally maps the qubit back
into the state |1〉. If the phase φ of the second pulse Rφ(π/2) is varied with respect to the first
pulse, the probability of being in state |1〉 is an oscillation dependent on φ. If the coherence of
the state is decreased due to phase damping, the second mapping pulse cannot reach the basis
states anymore which is observed as a decrease in the amplitude of the oscillation. This loss
of contrast corresponds directly to the remaining phase coherence of the superposition which
naturally decreases with increasing storage time.

In our system, phase damping is predominantly caused by fluctuations between the frequency
of the qubit transition and the driving field. The two main contributions are (i) laser frequency
fluctuations and (ii) fluctuations in the magnetic field which translate into fluctuations of the
qubit transition frequency. It is then possible to distinguish the contributions by investigat-
ing the coherence decay on multiple transitions between different Zeeman substates of the
4S1/2 and 3D5/2 levels because they show different susceptibility to the magnetic field due
to different Lande g factors. In figure 2.14a) the blue rectangles represent the coherence de-
cay on the 4S1/2(mj = −1/2) ↔ 3D5/2(mj = −1/2) transition which is least sensitive
to fluctuations in the magnetic field. The green diamonds show the coherence decay for the
4S1/2(mj = −1/2) ↔ 3D5/2(mj = −5/2) which has approximately 5 times higher sensitiv-
ity to fluctuations of the magnetic field [64, 71]. Note that both transitions show effectively

38



2.2. Publication: A quantum information processor with trapped ions

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
RamseyTime (ms)

0.6

0.7

0.8

0.9

1.0

C
oh

er
en

ce

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
RamseyTime (ms)

0.6

0.7

0.8

0.9

1.0

C
oh

er
en

ce

Figure 2.14.: a) Ramsey contrast decay on two transitions with different sensitivity to the mag-
netic field fluctuations. Blue squares indicate the less sensitive 4S1/2(mj =
−1/2) ↔ 3D5/2(mj = −1/2) transition whereas green diamonds correspond to
the 4S1/2(mj = −1/2)↔ 3D5/2(mj = −5/2) transition. b) Ramsey contrast de-
cay on the transition which is least sensitive to magnetic field fluctuations, without
(blue squares) and with (red diamonds) spin echo.

the same coherence decay for storage times up to 1ms. This suggests that for typical experi-
ments where the coherent manipulation is shorter than 1ms, the main source for dephasing are
laser-frequency fluctuations.

The phase damping process can be theoretically described by a model that applies random phase-
flips with a certain probability p to multiple copies of the same state. The ensemble of all states
is then described by a density matrix whose off-diagonal elements are affected by the phase
damping as ρi,j

i 6=j−−→ ρi,j(1− 2p). This model of a phase-flip rate is close to the concept of a bit-
flip rate used in classical computer science and is therefore widely used in theoretical works on
quantum information [30]. However, a physical model for phase damping describes the phase-
flip probability as a function of the information storage time. In order to do so, one has to find
a noise-model describing temporal correlations of the noise source. The most straightforward
noise model assumes temporally uncorrelated noise which leads to an exponential decay of the
coherence characterized by the transversal coherence time τ2 and therefore to off-diagonal ele-
ments ρi,j = ρi,j e

−t/τ2 [41]. This description is used in most quantum computing models where
the noise can be fully characterized by the amplitude damping timescale τ1 and the phase coher-
ence time τ2 [30]. In most physical systems, technical noise is temporally correlated and thus
this simple model of uncorrelated phase noise does not apply [23]. In particular the coherence
decay in our system deviates notably from an exponential decay as can be seen in figure 2.14a).
This effect can be amplified with the aid of a well known method to enhance the storage time
of a quantum memory known as the spin echo technique. There, the basis states are swapped at
half the storage time which reverses the phase evolution and thus cancels fluctuations provided
their timescale is longer than the storage time. However, it is possible that the performance with
a single echo is worse than the original register if this condition is not satisfied. This effect
is demonstrated in figure 2.14b) where the coherence with spin echo (red diamonds) is worse
than without echo (blue squares). There exist more sophisticated methods to enhance the qubit
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storage time which are able to take temporal correlations into account. A formal description
of this techniques is known as dynamical decoupling which has already been demonstrated in
various physical systems[72–78]. For a given noise spectrum an optimal pattern of echo pulses
can be determined to maximize the phase coherence. Interestingly, one can use this technique
to determine the spectral noise density from multiple coherence decays with varying number
of echos [79, 80]. In the following we describe a simple experiment to identify the dominant
features of the noise spectrum without using any spin echo technique.

It is possible to infer the noise spectrum from a coherence decay C(T ) without any echo when
only a few parameters of the noise spectrum need to be determined. For a given noise spectrum
A(ω), the Ramsey contrast decay is given by

C(T ) = exp

{
−
∫ ∞

0

dω
A(ω)2

ω2
sin2(ωT/2)

}
.

which is a special case of the general coherence decay for dynamical decoupling given in ref-
erence [80]. Calculating the noise spectrum from a measured coherence decay is not uniquely
possible, thus we characterize A(ω) assuming a certain spectral shape of the noise and inferring
only a few parameters. Our main source of phase noise at relevant timescales smaller than 1ms
seems to be the laser frequency noise and thus we model the spectrum accordingly. Typically a
laser spectrum is modeled as a Lorentzian line, which we extend with two broad Gaussian peaks,
where the first originates from the laser locking electronics centered at 300Hz and the second
peak is attributed to the second harmonic of the power line frequency at 100Hz. We model these
two contributions with Gaussian peaks Gν(ω) = exp((ω− ω0 − ν)2/σ2) where σ = 10Hz. The
resulting spectral noise density for our model is then

A(ω) = α

(
γ2

γ2 + (ω − ω0)2
+ a1G300(ω − ω0) + a2G100(ω − ω0)

)
.

Noise at the fundamental frequency of the power line (50Hz) is not included in the model as it
does not contribute to the shape of the coherence decay for waiting times below 10ms. Figure
2.15 shows the fitted coherence decay of the model with parameters α = 89

√
Hz, γ = 3 Hz,

a1 = 0.22 and a2 = 0.02.

When generalizing these results to multi-qubit systems, the spatial correlation of the noise on
all qubits needs to be considered. In our system the noise from the laser and magnetic fields are
almost identical over the entire register and therefore the phase noise can be modeled affecting
the entire register simultaneously. This correlation leads to a faster loss of coherence between
states with large total energy difference [23]. On the other hand, this spatial correlation enables
decoherence free subspaces (DFS) which are not affected by dephasing. The DFS consists of
states where acquiring an equal phase on all qubits leads only to a global phase of the state
and thus to no dephasing. For example, a single logical qubit can be encoded in two physical
qubits as |0l〉 = |01〉 + |10〉 and |1l〉 = |01〉 − |10〉 respectively. The two logical states have
identical total energy difference and thus form a DFS, where a universal set of operations with
two logical qubits has been demonstrated in our system [25]. However, it is not clear how well
the concept of a DFS can be extended to larger register sizes, and thus we show the coherence
decay of an 8-qubit DFS state of the form |00001111〉+eiφ|11110000〉 in figure 2.16. The state is
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Figure 2.15.: Measured Ramsey contrast decay on the 4S1/2(mj = −1/2) ↔ 3D5/2(mj =
−1/2) transition. The solid line shows a modeled Ramsey contrast decay with
fitted parameters.

generated by preparing the qubit register in the state |00001111〉 and performing a MSφ=0(π/2)
operation. If the DFS is also present for 8 ions, the loss of coherence should correspond to the
spontaneous decay of the 3D5/2 state resulting in an exponential decay of the coherence with
timescale τ = τ1/n where n = 4 is the number of excited ions. This is illustrated in figure 2.16
showing the measured coherence decay and the expected decay, assuming only spontaneous
decay. Furthermore, the spontaneous decay can be eliminated by encoding the qubit in the two
substates of the 4S1/2 level as introduced in section 2.2.1. The red squares in figure 2.16 show
no noticeable decay during a storage time of 200ms where limitations of the experiment control
system (and PhD students) prevent investigating longer storage times. The storage time limit of
this DFS is then given by fluctuations in the magnetic field gradient and is expected to be in the
30s regime [81].

Errors in quantum operations

Performing operations on the qubit adds additional noise sources, and thus the error rate of the
entire algorithm cannot be described by spontaneous decay and phase damping. We will now
describe these sources by their physical causes and categorize them by their occurrence in (i)
state initialization, (ii) coherent manipulation and (iii) state detection.

Initialization

As described in section 2.2.1 the qubit is initialized by means of an optical pumping process
towards the 4S1/2(m = −1/2) state using a circularly polarized laser beam aligned parallel to
the magnetic field. The possible error sources are (i) imperfect polarization of the pumping light
and (ii) misalignment with respect to the magnetic field. The polarization quality is determined
by the quality of the polarization optics and the birefringence caused by stress on the window
attached to the vacuum vessel. The quantization axis can be aligned by biasing the current in
the different magnetic field coils. The error probability of this process can be measured by
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Figure 2.16.: Coherence as a function of the qubit storage time of an 8 qubit DFS state encoded
in the optical qubit (blue squares) and the ground-state qubit (green diamonds)
eliminating amplitude damping decay. The solid lines represent the expected decay
for both qubit types.

transferring the remaining population from the 4S1/2(m = 1/2) to the 3D5/2 level and measure
it subsequently. If the transfer works perfectly, the population left in the 4S1/2 level is due to
imperfect optical pumping. Since the transfer is imperfect, the population needs to be shelved
multiple times to multiple substates in the 3D5/2 manifold. Every shelving pulse is performed
with an error rate of less than 1% and thus the error rate of two combined shelving pulses is on
the order of 10−4. With this technique, the fidelity of the optical pumping process can be deter-
mined accurately. We find a fidelity of the optical pumping process of better than 99.1% [82].
The second optical pumping technique, as introduced in section 2.2.1, is frequency selective on
the qubit transition. Thus the direction of the magnetic field with respect to the laser beam can
be neglected which leads to a more robust pumping. With this technique we find a pumping
fidelity of larger than 99% [83].

The second initialization step prepares the ion in the motional ground state of the harmonic
oscillator. We treat the common-mode motion (COM) separate from the other modes as it is
used by the entangling MS operations. In order to reach the lowest possible mean phonon
number, sideband cooling on the qubit transition as described in section 2.2.1 is performed
on the common mode after a Doppler pre-cooling cycle. The final phonon occupation can be
determined by various techniques where a suitable method, when the motion is close to the
ground state, is to perform Rabi oscillations on the motional sideband. This method uses the
fact that the Rabi frequency on the blue sideband for a given phonon number n is given by
Ωn =

√
n+ 1 ηΩ0 where Ωo is the Rabi frequency on the carrier transition. Rabi oscillations

for a given phonon distribution are described by

p|1〉 =
∑
n

cn sin2(ηΩ0/2
√
n+ 1 t)

where the parameters cn can be determined by performing a numerical fit to the measured data
assuming a thermal distribution of cn = 〈n〉n/(〈n〉+ 1)n+1 which is completely described by
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Figure 2.17.: Cooling rates for sideband cooling on the Raman (red diamonds) and the optical
(blue squares) transition. Although cooling via the Raman process is faster it leads
to a higher steady state phonon number.

the mean phonon number 〈n〉. A typical value for our experiments using sideband cooling on
the optical transition is 〈n〉 = 0.05(3) after a cooling time of 2ms [50]. In our setup we have
also the probability of performing sideband cooling on the Raman transition as introduced in
section 2.2.1. This technique is used as an in-sequence recooling technique after a measurement
and therefore the cooling time has to be short compared to the qubit coherence time. Therefore,
we adjust the cooling parameters to achieve a faster cooling rate at the cost of a higher steady
state phonon number of 〈n〉 = 0.5 after a cooling time of 200µs. Figure 2.17 compares the
cooling rates of the two distinct cooling techniques.

In first-order Lamb-Dicke approximation (η � 1), the phonon number of the remaining mo-
tional modes does not affect the dynamics of the system. But as a second order effect, the
occupation of these modes alters the coupling strength of the ion to the light, which causes an
effective fluctuation of the Rabi frequency as the phonon number follows a thermal distribution
after cooling [41, 84]. These fluctuations are equivalent to intensity fluctuations of the driving
laser and cause a damping of the contrast of the Rabi oscillations. This is illustrated in fig-
ure 2.18a) which shows Rabi oscillations in a register of three ions where sideband cooling was
applied only to the COM mode. In contrast, figure 2.18b) shows the same oscillations where
all three axial modes were cooled subsequently and the damping of the oscillations is reduced.
An N ion crystal features 3N modes and thus cooling all modes in a crystal gets increasingly
difficult for larger registers. Fortunately, cooling all modes of the crystal is not always necessary
as the mean-phonon number decreases with increasing mode energy. Therefore we cool only
the three modes corresponding to the lowest energies to effectively suppress this error source
for up to 10 ions. In our setup this error source is smaller on the addressed beam than the global
beam, as the Lamb-Dicke parameter is smaller as described in section 2.2.2.

Coherent manipulation

Additional errors occurring during the coherent manipulation of the quantum information are
mainly due to (i) laser intensity fluctuations (ii) crosstalk and (iii) the limited coherence of the
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Figure 2.18.: Rabi oscillations illustrating the influence of thermal occupation of the motional
modes when a) only the COM mode is cooled and b) all three axial modes are
cooled

motional mode.

Intensity fluctuations of the laser light manipulating the ions lead to a fluctuating Rabi frequency
and thus decrease the fidelity of the operations. Measuring the fluctuations of the light field with
a photo diode indicates that the fluctuations have relevant timescales on the order of seconds
to minutes. We assume therefore that the major sources are (i) fluctuations of the coupling
efficiency into a single-mode optical fiber, (ii) thermal effects in acousto-optical devices, (iii)
polarization drifts in the fiber, which translate into a varying intensity after polarization defining
optics, and (iv) beam pointing instability of the laser light with respect to the ion. These inten-
sity fluctuations can be measured directly on the ions by inserting AC-Stark shift operations with
varying length into a Ramsey experiment as sketched in figure 2.19a). The AC-Stark shift oper-
ations translate intensity fluctuations directly into phase fluctuations and thus the same Ramsey
techniques as for characterizing phase-noise can be used to measure them. The timescale of
the intensity fluctuations is slow compared to the required time for taking 100 repetitions of the
sequence and thus they cause excess fluctuations of the measured excitation probabilities rather
than a coherence decay.

These excess fluctuations can be determined by comparing the standard deviation of the mea-
sured data with the expected projection noise ∆p2 = ∆2

proj + ∆2
excess. This excess noise in

the state probability can be translated into fluctuations of the rotation angle via error propaga-
tion. We choose the rotation angle to be θ = Nπ with N being an integer yielding ∆θ/θ =
∆pexcess/πN and perform this analysis up to N = 8. The measured state probability fluc-
tuations are then analyzed with a linear fit as shown in figure 2.19b). From this, the relative
fluctuations of the rotation angles are determined which are directly equivalent to the relative
fluctuation of the Rabi frequency ∆θ/θ = ∆Ω/Ω. For the AC-Stark shift operations the Rabi
frequency is directly proportional to the laser intensity yielding ∆Ω/Ω = ∆I/I . From the fitted
data we can identify the average laser fluctuations to be 〈∆I/I〉N = 0.41(6)%.

An error source that affects the register when performing addressed single-qubit operations is
crosstalk where due to the finite width of the addressing laser, along with the desired ion, also
its neighboring ions are affected. This addressing error is characterized by the ratio of the
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Figure 2.19.: a) Measurement scheme for the slow intensity fluctuations with Ramsey type ex-
periments. Multiple (N -times) rotations around the z-axis of the Bloch sphere
are introduced into a Ramsey experiment translating intensity fluctuations into ad-
ditional noise on the excitation probability. b) Measured state probability fluctua-
tions ∆p for multipleN where the slope is fitted to be 0.013(1) leading to effective
intensity fluctuations of 〈∆I/I〉N0.41(6)%.

Rabi frequency of the addressed ion i to the Rabi frequencies the neighboring ion j: εi,j =

Ωi/Ωj . The addressed operation, when addressing ion i, can then be described by S(i)
z (θ) =

exp(iθ
∑

j σ
(j)
z εi,j) where ε is the addressing matrix describing the crosstalk. The magnitude

of the error can then be bounded by the maximum off-diagonal element of this matrix εmax =
maxi 6=j εi,j . In figure 2.20 an example of excessive crosstalk in a three ion register is shown
with εmax = 22/121 = 18%. . Typically, the maximum crosstalk on the addressed AC-Stark
operations is εmax < 3% for up to 8 ions where crosstalk between more distant ions is typi-
cally smaller than 10−3. Note that this error is coherent, and thus can be undone if the whole
addressing matrix is known. Thus, the compensation of the crosstalk can be integrated into
the numerical optimization algorithm generating the sequence of operations if the crosstalk is
constant over time.

The presented error sources affect both, entangling as well as non-entangling operations. A
loss of coherence on the motional mode does not affect non-entangling operations. However,
the entangling MS operation require coherences between different motional states which can be
decreased by (i) fluctuations of the static voltages defining the trap frequencies and (ii) heating
of the ion string. The coherence time of the motional mode can be determined by performing
a Ramsey type experiment which is only sensitive to the phase between two different motional
states. This is possible by using a superposition of two motional states 1/

√
2(|S, 0〉 + |S, 1〉)

instead of a superposition of the electronic state 1/
√

2(|S〉+ |D〉) [85]. The motional coherence
can then be measured analogous to the qubit storage time and yields an exponential decay with
time constant τmotion = 110(20)ms. This coherence time is sufficiently long to allow high
fidelity operations [46].

Measurement

The dominant source of errors in the measurement of the qubit is given by spontaneous decay
from the 3D5/2 state during the measurement process as well as stray-light. Both errors affect
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Figure 2.20.: Illustration of the crosstalk between neighboring qubits where the middle ion (blue
rectangles) is addressed. The fitted Rabi oscillation periods are 22µs for the ad-
dressed ion 2, 121µs for ion 1 (red diamonds), and 464µs for ion 3 (green circles).

the measurement if the qubit is projected into the |0〉 = 3D5/2(m = −1/2) state. The stray-light
is modeled by a Poissonian distribution with a mean value of typically 1 counts/ms. The decay
from the 3D5/2 state can also be included which slightly modifies this distributions (for details
see reference [42]). For a ion being projected into the |1〉 (4S1/2) state, the photon distribution
corresponds to a simple Poissonian distribution with typically 50 counts/ms. The detection error
corresponds then to the overlap of the probability distributions for a bright and a dark ion which
can be well below 10−3. The results from the CCD camera detection overlaps with the PMT
outcome at a level of better than 99.3% [86].

Estimating the effect of noise on an algorithm

In order to determine the effect of the individual error sources for a given sequence of operations,
a numerical simulation including them has to be performed on a classical computer, which is in
general a tedious task - even for a few ions. We developed and use a numerical modeling soft-
ware named “Trapped Ion Quantum Computing - Simulation Program with Integrated Circuit
Emphasis” (TIQC-SPICE) [87]. It follows a Monte Carlo approach which simulates multiple
random trajectories of varying parameters [88, 89] where each trajectory yields a pure final
state. The ensemble average over all trajectories is then the density operator corresponding to
the simulated state of the system.

In the following we investigate two algorithms which show different susceptibility to the indi-
vidual noise sources. The algorithms will not be explained in detail here as we focus on the
effect of the different noise sources on the fidelity of the final state. As a first algorithm we
investigate a single timestep of an open-system quantum simulator (details on the algorithm are
given in reference [90]). This algorithm acts on two system qubits but requires an additional
auxiliary qubit whose state can be neglected. We simulate its sequence of operations, shown
in the appendix, table B.1, on a three-ion register using our TIQC-SPICE program where each
simulation run consists of a Monte-Carlo simulation with 15 trajectories. The included noise
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Error source Overlap with ideal state
All 77 %

Crosstalk 95%
Dephasing 84 %

Intensity fluctuations 99%
Spectator modes 94%

Table 2.4.: Results for the numerical simulation of a quantum simulation algorithm where
smaller overlap means a larger error. In order to identify the dominant error source,
the simulation is performed multiple times with only a single active error source.
From the results one can infer that dephasing is the dominant source of errors. The
errors caused by motional heating, imperfect optical pumping and spontaneous decay
are negligible.

Error source Overlap with ideal state
All 93 %

Crosstalk 95%
Dephasing 98 %

Intensity fluctuations >99%
Spectator modes >99%

Table 2.5.: Results of a numerical simulation of a three-qubit QFT algorithm where a smaller
overlap means a larger error. Here, the dominant noise source is crosstalk. The errors
caused by motional heating, imperfect optical pumping and spontaneous decay are
negligible.

sources and their magnitudes are: crosstalk between next neighbors of εneighbor = 3%; Inten-
sity fluctuations are given by ∆I/I = 2%; Dephasing is characterized by the coherence time
τcoh = 15ms and the correlation time τcorr = 333µs as defined in reference [23]. Coupling to
spectator modes is modeled by additional intensity fluctuations of 2%. The simulated output
state of the two system qubits is then compared with the expected ideal state. The effect for each
individual noise source is identified by simulating the sequence multiple times where for each
simulation only a single source is affecting the simulation. The simulations for individual error
sources indicate that the dominant error source is dephasing as shown in table B.19. This is
expected because the duration of the sequence of operations is 2ms which is not short compared
to the coherence time of 15ms. Including all noise sources, the simulation predicts a fidelity
with the ideal density matrix of 79% whereas the experimentally measured fidelity is 72%. The
overlap of the simulated with the measured density matrix is 94%.

The second simulated algorithm is a fully coherent quantum Fourier transform (QFT) which is
treated in more detail in section 2.2.4. The sequence of operation as shown in the appendix,
table B.2, is simulated with identical parameters as the previous algorithm. The simulation
predicts a fidelity of 92.6% with the ideal state whereas an experimentally obtained density
matrix leads to an overlap of 81(3)%. The results of the simulation for the individual noise
sources are shown in table 2.5 where the biggest contribution is now crosstalk.
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Figure 2.21.: (a) Quantum circuit for a three qubit QFT algorithm. (b) Single-qubit Kitaev ver-
sion of the QFT. The measurement outcome is stored in a classical memory which
controls the subsequent single-qubit rotations.

2.2.4. Example algorithms

In the following we provide examples of how the available toolbox can be employed to realize
various quantum algorithms where we focus on building blocks for a realization of Shor’s algo-
rithm to factor a large integer numbers [4, 30]. The part of the algorithm that requires a quantum
computer is based on an order-finding algorithm which itself requires the quantum Fourier trans-
form (QFT). This quantum analog to the discrete Fourier transform maps a quantum state vector
|x〉 =

∑
j xj|j〉, into the state |y〉 =

∑
k yk|k〉 where the vector y = (y1, . . . , yN) = F(x)

is the classical discrete Fourier transform of x = (x1 . . . , xN) [30]. It is straightforward to
translate this operation into a quantum circuit (see reference [30]) where an example for three
qubits is shown in figure 2.21a). The most straightforward (although not necessarily the most
effective) way to implement the QFT is to realize directly the desired unitary using our available
operations. With our optimization toolbox as described in section 2.2.1 we are able to find an
optimized decomposition of the three-qubit QFT consisting of 18 operations as shown in the
appendix, table B.2. The smallest MS operation in the sequence is π/16 and thus the MS op-
erations has to be optimized with this rotation angle. A maximally entangling operation is then
implemented by applying this operation 8 times subsequently.

We benchmark the QFT by performing a full three-qubit quantum process tomography and find
a process fidelity of 72% with the ideal QFT [38]. However, in order to find the best suited
measure for the quality of an algorithm, one should consider how the quantum algorithm is em-
bedded in the given problem. The QFT is almost exclusively used as the final building block of
larger algorithms and then only the classical information of the final state is needed to determine
the algorithm’s performance [91]. The quantum process fidelity is not the optimal measure to
benchmark the performance of the QFT as it includes correlations that do not affect the outcome
of the algorithm. One would rather choose a measure that utilizes the classical probabilities of
the individual output states which can be described by a 2N vector p = (p1, . . . , P2N ). Such a
measure is the squared statistical overlap (SSO) S(p, q) = (

∑
i

√
piqi)

2 which is the classical
analog to the quantum state fidelity [92]. An alternative suitable measure for the classical in-
formation is the statistical distinguishability D(p, q) = 1− 1/2

∑
i |pi − qi|, which is related to

the quantum trace distance. These benchmarks are applied to a representative set of input states
covering all possible periods. In reference [93], a QFT algorithm was benchmarked using 5 in-
put states with different period and thus we use similar input states for comparability, as shown
in table 2.6. The classical benchmarks yield on average an SSO of 87% which is considerably
higher than the quantum process fidelity of 72%.

Since the QFT is mainly used as the final block in an algorithm, it can be replaced by the
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Input state Period SSO Distinguishability
1/
√

8 (|111〉+ |110〉+ ...+ |000〉) 1 77.1 77.1
1/
√

4 (|110〉+ |100〉+ |010〉+ |000〉) 2 78.0 73.3
1/
√

4 (|110〉+ |100〉+ |011〉+ |000〉) 3 90.4 86.4
1/
√

2 (|011〉+ |000〉) 4 94.8 87.4
|000〉 8 97.3 88.1

Table 2.6.: Results for a fully coherent 3 qubit QFT.

Input state Period SSO Distinguishability
1/
√

4 (|000〉+ |100〉+ |010〉+ |110〉) 2 99.5 94.5
1/
√

2 (|100〉+ |000〉) 4 99.6 96.4
|000〉 8 99.7 95.6

Table 2.7.: Results for the semiclassical Kitaev single qubit QFT.

semi-classical QFT that exchanges the quantum-controlled rotations by a measurement and a
classically controlled rotation [91, 93]. This requires the measurement of each qubit to be per-
formed before the operations that are controlled by this qubit. In figure 2.21 the time order
of the measurements corresponds to qubit q0, q1, q2. A measurement furthermore destroys all
quantum coherence on the qubit and thus it is possible to reuse the physical qubit and store the
measurement outcome on a classical computer. This allows to perform a semi-classical QFT
on a single qubit as sketched in figure 2.21b) which is known as the Kitaev QFT [94]. Note
that it is not possible to generate an entangled input state with this version of the QFT and thus
the Kitaev QFT is more restricted than the semi-classical QFT. Furthermore, the ability to mea-
sure and reset the qubit within the algorithm is required which is possible with our extended
set of operations. In ion-trap systems, in-sequence measurements notably disturb the motional
state of the ion string and thus it is advisable to make the measurement as short as possible. In
this case we chose a measurement duration of 150µs which still allows for a detection fidelity
of 99% [95]. In order to achieve high fidelity operations after such a measurement it appears
necessary to recool the COM mode with the Raman cooling technique as described in section
2.2.1. In the special case of the single-qubit QFT however only local operations are required af-
ter a measurement which can furthermore be implemented with the addressed beam. Due to the
small Lamb-Dicke parameter, the quality of the single-qubit operations is not notably affected
by the thermal occupation of the COM and the spectator modes after the measurements and thus
recooling is not required. In table 2.7 the outcome for the single qubit QFT is shown for the
non-entangled input states used before, leading to an average SSO of 99.6%. As expected, the
single-qubit Kitaev QFT clearly performs better than the fully coherent QFT.

One of the important algorithms that is compatible with the presented Kitaev single-qubit QFT
is the order-finding algorithm which is able to determine the order of a permutation operation ef-
ficiently [30]. A permutation operation π(y) has order k if k-times application of the operations
results in the identity: π(y)k = y. The algorithm splits the available quantum register in two
parts: (i) a register where the permutation operation is applied and (ii) a QFT register that is ini-
tially prepared in an equal superposition state. The qubits from the QFT register control whether

49



2. A quantum information processor with trapped ions

a)

90

45 90

H H 90 H 90 45

b)

H

H

H

H H H

H

H

H

Figure 2.22.: order finding algorithm for a two qubit permutation operation in a) fully coherent
and b) Kitaev version.

the permutation operations are applied. This operation is analogous to a CNOT operation where
instead of the NOT operation the permutation operation is controlled. The k-th qubit from the
QFT register controls the permutation operations π(y)l with l = 2k as shown in figure 2.22a).
With this algorithm it is possible to use the single-qubit QFT to reduce the number of required
qubits from 5 to 3 where the resulting quantum circuit is shown in figure 2.22b).

We seek to implement the optimized order-finding algorithm using permutations on two qubits
as a proof of concept experiment. The chosen permutations, as shown in table 2.8, span an order
from 2 to 4 where it is notable that the order of the permutation can depend on the input state.
For example π1(y) has order one for input states y = 0, 2 and order two for y = 1, 3, whereas
π2(y) has order two regardless of the input state. The complexity of the algorithm depends on the
investigated permutation operation, as the controlled permutation operations require entangling
operations. The number of required operations for the individual permutation operations are
presented in table 2.8 and the sequences of operations can be found in the appendix. In contrast
to the single-ion QFT as presented above, the use of entangling operations after measuring the
QFT qubit is required. This makes it necessary to recool the ion string within the sequence,
where we employ the Raman recooling technique as described in section 2.2.1. We choose a
recooling time of 800µs as this proved to provide a good balance between remaining excitation
of the COM mode and additional phase damping due to the cooling time [95].

The output of the algorithm is again classical and thus the classical probabilities for measuring
the state |j〉 are sufficient to infer the quality of the operation. Figure 2.23 shows the classical
probabilities of the basis states for all permutation operations where the experimental results
(blue bars) are compared with the expected ideal probabilities (red bars) and estimated proba-
bilities from TIQC-SPICE simulations (green bars). Again the implementation is benchmarked
with the classical SSO and distinguishability measures as presented in table 2.9 yielding an av-
erage SSO of 80.7%. The original problem is finding the correct permutation and therefore one
could think of using a classical algorithm to find the most likely order for a given outcome. This
algorithm can then serve as a benchmark for the quality of the order-finding. However, finding
such an efficient evaluation is beyond the scope of this work.
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y π1(y) π2(y) π3(y) π4(y)
0 0 1 0 3
1 3 0 3 0
2 2 3 1 1
3 1 2 2 2

max(order) 2 2 3 4
no of operations π(y) 11 10 23 24
no of operations π(y)2 - - 17 10

Table 2.8.: Representative permutation operations for order 2 to 4 which were used as examples
for the order-finding algorithm. The number of operations for applying the opera-
tion once and twice are also shown. The sequence of operation for the controlled
permutation operations are presented in the appendix.

Order Permutation operation SSO Distinguishability
1 π1(0) 75.3(7) 75.3(7)
2 π2(0) 86.4(6) 86.5(6)
3 π3(1) 85.9(6) 70.3(8)
4 π4(0) 91.6(5) 90.7(6)

Table 2.9.: Results for the semiclassical Kitaev order finding algorithm using the permutation
operations defined in table 2.8.

Figure 2.23.: State probabilities for the order finding algorithm for the permutation operations
π1 . . . π4. The ideal probabilities (blue), experimental results (red) and predictions
from a classical simulation (green) are shown.
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2.2.5. Conclusion and Outlook

In conclusion we have presented a small-scale quantum information processor based on trapped
40Ca+ ions. A set of operations beyond coherent operations, that is capable to implement arbi-
trary Markovian processes, has been introduced. The major noise sources of the system acting
on a qubit memory and during operations have been analyzed and their influence on different
algorithms have been discussed. It has been shown that the dominant source of errors depends
on the actual sequence of operations. We used the entire set of operations to realize an efficient
implementation of the order-finding algorithm. Here, we have been able to reduce the number
of required qubits in the sense that only a single qubit is required for the entire QFT register
in the algorithm. We envision, that these techniques will be the building blocks in a scalable
implementation of Shor’s factoring algorithm. Furthermore we hope that the presented methods
for characterizing the noise sources will lead to successful strategies for reducing the error rate
in complex algorithms paving the way to fault-tolerant quantum computation.
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3.1. Introduction to quantum error correction

It is obvious that in any physical realization of a quantum computer, the operations cannot be
implemented perfectly. Over the course of a complex algorithm, even small errors will amplify
and refute any gain from a quantum computer if the errors are ignored. It is well known that
classical computing systems can be built fault-tolerant using techniques to detect and correct for
failures in parts of the system [12]. However, it was highly disputed whether a fault tolerant
quantum computer obeying the laws of quantum mechanics could be built, until the ground-
breaking work of Steane and Shor in 1996[13, 14]. They independently proposed quantum error
correction (QEC) schemes which allow one to perform arbitrary complex quantum algorithms
with non-exponential overhead. These protocols protect the quantum information by encoding
the information of a single logical qubit into multiple physical qubits and continuously detecting
and correcting occurring errors.

Presenting a full theory of quantum error correction and fault tolerant quantum computing is
beyond the scope of this work and thus the interested reader is referred to the tutorial in ref-
erence [96]. Instead of presenting a rigorous treatment of QEC protocols I will illustrate the
differences between classical and quantum error correction by simple examples.

A familiar example for a classical error correction procedure is the three bit repetition code that
copies the information of a single logical bit [0l, 1l] onto a register of three bits:

[0l, 1l]→ [000, 111]

The set of valid states of the encoded register is then {000, 111}. Errors in a classical computer
occur in form of bit-flips described by 0 → 1 and 1 → 0. Assuming a bit-flip on the first qubit
of the encoded state changes the register to [001, 110] moving the state out of the allowed set of
states. In a classical computer one can now easily measure all three bits and perform a majority
vote to gain information on the error but also on the most likely encoded value. The error can
be easily corrected by performing a NOT operation on the distorted qubit if only a single bit-flip
occurred on the entire register. If more than a single bit-flips on the physical bits occur, the
majority vote will result in a bit-flip of the encoded information and thus the correction fails.

Naturally, QEC techniques share fundamental ideas with error correction in classical computers
as they encode the information redundantly in a larger system. Performing error correction in a
quantum system adds further difficulties because the laws of quantum mechanics set following
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partial Bit-flip
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Error qubit 1
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Figure 3.1.: Illustration of the discretization of a partial bit-flip by an error measurement in a
three qubit QEC protocol.

constraints:

1. The information of a qubit cannot be copied to another qubit.

2. Errors on a qubit are continuous.

3. The measurement of a qubit irreversibly affects its state.

Let’s try to transfer the three-bit classical error correction algorithm to a quantum computer sat-
isfying the mentioned constraints. The most general state of the qubit to be encoded (the system
qubit) is |Ψs〉 = α|0〉s + β|1〉s but here, contrary to the classical algorithm, it is impossible to
copy this state onto the two remaining qubits. This problem can be overcome by generating an
entangled state of the form

|Ψ〉 = α|000〉+ β|111〉

that allows one to perform a majority vote.

The next obstacle for QEC is that errors in a quantum system are continuous. It should be noted
here, that any error can be decomposed in a partial phase-flip and a partial bit-flip. A phase-flip
(bit-flip) corresponds to an incoherent rotation around the z-axis (x-axis) on the Bloch sphere.
Thus any arbitrary error can be described by these two types of flips in the same way as any
coherent operation on a qubit can be decomposed into rotations around the x-axis and z-axis of
the Bloch spheres. We will now concentrate on bit-flips only, the generalization onto both types
of errors will be done later. First, it is outlined how a collective measurement can be used to
discretize a partial bit-flip. It is well known in quantum physics that any measurement affects
the state of the system as it leaves the system in a state that is compatible with the outcome of
a measurement. For example, a measurement in the computational basis on a qubit projects the
system onto the state |0〉 or |1〉 depending on the outcome. Thus, one can think of a collective
measurements on the entire register that asks only if a certain type of error happened or not.
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Figure 3.2.: a) Encoding of a qubit in the three-qubit repetition code. b) Decoding and correction
without additional ancilla qubits. c) Decoding and correction without leaving the
protected subspace

Such a measurement projects the register always into a state where no error happened at all, or
where the error happened with full strength which discretizes a partial error. An example for
this in a three-qubit repetition coed is shown in figure 3.1: The error measurement is performed
on the encoded state and has four possible outcomes: No Error or a single qubit bit-flip on a
known qubit. After this measurement, the system is projected into an eigenstate of its outcome
which corresponds either to the original state or to the state undergoing a full bit-flip. Therefore
it is clear that this procedure discretizes a partial error.

One last and crucial difference between classical and quantum error correction is also related to
measuring the error syndrome. As discussed above, a measurement always affects the state of
the register. In order to protect the encoded quantum information, the measurement for detecting
the error has to be designed such, that it cannot gain any information on the state of the logical
qubit at the same time as it gets full information about which error happened. As mentioned
in section 1.2 it is possible to perform an effective arbitrary measurement by applying unitary
operations followed by a measurement in the computational basis. Thus, a measurement is
required that maps the information about the errors into the computational basis of additional
auxiliary qubits.

Now the quantum circuit that is required to implement a simple proof of concept QEC protocol is
discussed. Analogous to classical error correction, the system qubit is encoded into the register
as:

α|0〉+ β|1〉 ⊗ |00〉 → α|000〉+ β|111〉 .

Similar to the process to create an entangled state with a CNOT operation as described in sec-
tion 1.2 and shown in figure 1.3, encoding a single qubit into the three qubit repetition code can
be performed with the aid of two CNOT operations as shown in figure 3.2a). It is important to
note here, that this code only protects against either bit-flips or phase-flips and cannot be used
to correct for arbitrary errors. However, it is possible to concatenate two three-qubit repetition
codes, where the first instance corrects for phase-flips and the second for bit-flips. In this exten-
sion, a single logical qubit is then encoded in nine physical qubits as shown in figure 3.3 [30].

In the classical case, the error syndrome can be simply obtained by measuring all three qubits
and performing a majority vote. But as mentioned above, in the quantum case a collective
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Figure 3.3.: Error correction scheme for a single qubit protecting against arbitrary errors.

State Detected error Syndrome state
α|000〉+ β|111〉 No error |00〉
α|001〉+ β|110〉 Bit-flip on qubit 1 |10〉
α|010〉+ β|101〉 Bit-flip on qubit 2 |01〉
α|100〉+ β|011〉 Bit-flip on qubit 3 |11〉

Table 3.1.: The detectable errors and the corresponding states.

measurement on the system has to be performed to gain information about the possible error.
For the three-qubit code, four possibilities exist: No error, or a bit-flip on one of the three qubits.
This information can be stored in two qubits and thus one can obtain information on the error
(the error syndrome) by mapping it onto two auxiliary qubits as illustrated in figure 3.2b) [30].
The actual value of the syndrome qubits are shown in table 3.1. A bit flip on qubit 3 is indicated
by the ancilla qubits being in state |11〉 and can be corrected by performing a double controlled
NOT operation1 on the third qubit. Qubit 2 and 3 can be corrected with analogous operations that
are performing the NOT operation if the ancilla qubits are in state |10〉 and |01〉. Figure 3.2b)
shows the full en- and decoding circuit where closed (open) circles correspond to a apply the
NOT operation if the corresponding qubit is in state |1〉 (|0〉). This procedure preserves the
register in a protected state even after the correction but has the drawback that it requires two
additional qubits to gain knowledge about the occurred error.

There exists an alternative correction procedure that leaves the system in an unprotected state
after the correction but is still able to correct for an occurring error on the system qubit as shown
in figure 3.2c) [30]. Once, the error syndrome is known, the correction of the error can be
performed by coherent operations. It should be noted though, that the error syndrome can be
represented by classical information and therefore it also possible to perform a measurement of
the error syndrome in the computational basis and correct the error with subsequent classically
controlled single-qubit rotations as shown in reference [93].

In order to realize a fault-tolerant quantum computer, the errors need to be corrected continously.

1This operation is known as a Toffoli gate.
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It has been shown, that it is sufficient to perform the QEC protocols repeatedly, which corre-
sponds to a discrete correction of the occuring errors [96]. In the QEC protocol explained above,
the information about the error resides in the auxiliary qubits after the correction. In order to
repeat the correction with the same auxiliary qubits, this information has to be removed from the
system. This is a prime example of non-coherent operations being required inside an algorithm.
From a thermodynamic point of view, the errors can be described by adding entropy to the sys-
tem, which has to be removed via resetting the auxiliary qubits [97]. A toy model for this error
correction process is then a thermodynamic machine, where errors on the register correspond
to a heating due to coupling to a hot environment. The QEC procedure couples the register to
zero-temparature auxiliary qubits. This allows one to hold the machine at a low temperature
which corresponds to the desired low error rate as shown in figure 3.4. The QEC protocol maps
the entropy introduced by the noise onto the ancilla qubits. This entropy needs to be removed
from the system with an irreversible process. On the qubits, this entropy transfer corresponds to
re-initializing them into a well defined state.

From the comparison between quantum and classical error correction it became clear that many
differences between the two protocols are rooted in the peculiarities of measurements on a quan-
tum system. Furthermore, errors in a quantum register can be described as measurements in
different bases and thus the connection between quantum measurements and error correction
becomes even more obvious. Thus, QEC protocols have the ability to undo (or reverse) mea-
surements, which seemingly contradicts the foundations of quantum mechanics stating that mea-
surements are irreversible processes [98]. This confusion can be solved if one keeps in mind that
the QEC protocol is only able to correct for errors that occur on parts of the register. Therefore
it is only possible to reverse measurements that act partially on the register which is not for-
bidden by the no-cloning theorem. A measurement in the computational basis corresponds to a
phase-flip error and thus a three-qubit repetition code protecting against phase-flip errors is able
to undo a measurement on a single-qubit in the register.

In the following publication, the first realization of three rounds of QEC were presented. For this
experiment, a technique to reset a single qubit in a larger register was developed. In a following
experiment, it was shown that the three-qubit repetition code protecting against phase-flips is
able to reverse a partial measurement of a qubit register. In order to perform this measurement
reversal, it is necessary to be able to perform entangling operations after the measurement on
a single qubit. Measurements in ion-trap systems disturb the state of the motional mode sig-
nificantly and thus the ion-string needs to be recooled before applying subsequent entangling
operations. Therefore we introduced an in-sequence recooling technique based on a Raman
transition (for details see section 2.2)
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Figure 3.4.: Thermodynamic analogon to a continuously applied QEC protocol.
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Österreichische Akademie der Wissenschaften,

Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria

The computational potential of a quantum processor can only be unleashed if errors dur-
ing a quantum computation can be controlled and corrected for. Quantum error correction
works if imperfections of quantum gate operations and measurements are below a certain
threshold and corrections can be applied repeatedly. We implement multiple quantum error
correction cycles for phase-flip errors on qubits encoded with trapped ions. Errors are cor-
rected by a quantum-feedback algorithm employing high-fidelity gate operations and a reset
technique for the auxiliary qubits. Up to three consecutive correction cycles are realized and
the behavior of the algorithm for different noise environments is analyzed.

Information in a quantum computer is extremely vulnerable to noise induced by the environment
and thus needs to be protected with quantum error correction (QEC) techniques. Pioneering the-
oretical work in this field has shown that all errors can be corrected for if imperfections of the
quantum operations and measurements are below a certain (error) threshold and the correction
can be applied repeatedly [13, 99, 100]. Such error thresholds depend on details of the physical
system and quantifying them requires a careful analysis of the system-specific errors, the en-
and decoding procedure and their respective implementation [30]. It is currently accepted that
gate error probabilities ranging from 10−4 - 10−5 are tolerable [101], which seem to be in reach
with technical improvements in conjunction with dynamical control techniques [102]. In addi-
tion, a fault-tolerant operation requires highly efficient, repeatable algorithms to minimize the
computational overhead. So far, all experimental implementations [103–108] are limited to a
single correction cycle, where the only experimental implementation in a scalable system [106]
relies on projective measurements and classical feedback. Because high-fidelity measurements
take time and potentially disturb the qubit system, it can be advantageous to use a measurement-
free QEC algorithm based on implicit quantum feedback [30, 103]. Also, in contrast to previous
expectations [7], these measurement-free protocols lead to error thresholds comparable to their
measurement-based counterparts [109].

2The author of the present thesis measured and analyzed the data and wrote the manuscript
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Figure 3.5.: (A) Schematic view of three subsequent error-correction cycles. (B) Quantum cir-
cuit for the implemented phase-flip error-correction code. The operations D, D−1,
and U are described in the text. The operations H are Hadamard gates. (C) Opti-
mized pulse sequence implementing a single error correction cycle; the operations
are described in the text. (D) Schematic of the reset procedure. The computational
qubit is marked by filled dots. The reset procedure consists of (i) shelving the popu-
lation from |0〉 to |s′〉 = 4S1/2(m = +1/2) and (ii) optical pumping to |1〉 (straight
blue arrow).

We demonstrate repeated QEC with a system of trapped 40Ca+ ions as qubits, and multiple
repetitions of the algorithm are enabled by a toolbox consisting of high-fidelity quantum opera-
tions [23, 27], an optimized pulse sequence [33], and a qubit-reset technique that has a negligible
effect on the system of qubits. The performance of the implementation is assessed with quantum
process tomography in the presence of phase-flip errors and its behavior is analyzed for differ-
ent environments that show correlated and uncorrelated phase-noise. Our approach is based on
the three-qubit repetition code capable of detecting and correcting phase-flip errors on a single
qubit [13, 30]. This algorithm protects against phase-noise which is the dominant error source
in our ion-trap quantum computer causing gate errors as well as decoherence.

As indicated in figure 3.5a), each QEC cycle consists of (i) encoding the system qubit {|0〉, |1〉}
and two auxiliary qubits (ancillas) into an entangled state, (ii) error incidence, (iii) detecting
and correcting the error, and (iv) resetting the ancillas. Initially, the qubit to be protected is in
the state |Ψ〉 = α|+〉 + β|−〉 , where |±〉 = 1/

√
2 (|0〉 ± |1〉), and the two ancilla qubits are

both prepared in the state |1〉. In the encoding stage, they are mapped into the entangled state
α| + ++〉 + β| − −−〉. Next, a single-qubit phase-flip error may change |±〉 to |∓〉. In the
decoding and correction stage, the error is identified by a majority vote and the system qubit is
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corrected accordingly. It should be noted that this protocol maps the information in and out of
the protected state between QEC cycles. Each cycle is concluded by resetting the ancilla qubits
while preserving the information on the system qubit.

The textbook implementation of a single cycle of this QEC procedure would consist of a cir-
cuit employing four controlled-NOT (CNOT) and one controlled controlled-NOT (Toffoli) gate
operations[30] (see figure 3.5b). While the process fidelities of available CNOT (92%) [110]
and Toffoli (80%) [26] implementations could possibly be improved, it seems more promis-
ing to pursue an approach based on global Mølmer-Sørensen (MS) entangling gate operations
(99%) [27, 32]. These operations provide a universal set of gates in combination with individ-
ually addressed Stark-shift gates and collective single-qubit rotations [33, 46]. Moreover, the
optimization procedure of Ref. [33] allows us to rigorously simplify the pulse sequence for a
complete algorithm based on this set of gates. Two additional refinements lead to the algorithm
used for the optimization (figure 3.5b). First, the space of optimized solutions is increased by
adding an arbitrary unitary operation U acting only on the ancillas before resetting them. Sec-
ond, the encoding stage can be simplified by adding an operation D and its inverse D−1 that
commutes with any phase error. As a result, the encoding stage consists of a single entangling
operation, and the decoding stage can be implemented with a total of eight pulses with only three
entangling operations (figure 3.5c). Formally, this encoding implements a stabilizer code with
the generators G = {σ(1)

y σ
(2)
z σ

(3)
y , σ

(1)
y σ

(2)
y σ

(3)
z } which are a tensor product of the Pauli operators

σ
(i)
x,y,z acting on qubit i [30].

The QEC protocol is realized in an experimental system consisting of a string of three 40Ca+ ions
confined in a macroscopic linear Paul trap. Each ion represents a qubit in the |1〉 = 4S1/2(m =
−1/2) and |0〉 = 3D5/2(m = −1/2) states. The state of the qubits is then manipulated by
a series of laser pulses resonant with the qubit transition. Our universal set of gates consists
of (i) collective local operations X(Θ), Y (Θ) = exp(−iΘ/2Sx,y), (ii) single-qubit operations
Zk(Θ) = exp(−iΘ/2σ

(k)
z ), and (iii) collective entangling Mølmer-Sørensen [23, 27, 32] opera-

tions Y 2(Θ) = exp(−iΘ/4 S2
y), with Sx,y =

∑3
k=1 σ

(k)
x,y. The collective operations are realized

with a wide beam exciting all ions simultaneously and the single-qubit operations are performed
with a tightly focused beam affecting only individual ions. An experimental cycle consists of
cooling the ion string to the motional ground state, applying the manipulating laser pulses, and
measuring the population of the qubit states. This procedure is repeated up to 1000 times to
obtain the final quantum state of the qubits.

An important tool, critical to the repeated application of the QEC protocol, is the proper reset of
the ancilla qubits which is carried out with an optical-pumping technique (figure 3.5d). For the
reset procedure, the population of the ancilla qubits in state |0〉 is first transferred into the state
|S ′〉 = 4S1/2(m = +1/2) using the addressed beam. This population in |S ′〉 is then excited
to the 4P1/2(m = −1/2) level by a circularly-polarized laser beam at a wavelength of 397 nm.
Finally, the population from the 4P1/2 level spontaneously decays to the 4S1/2 level (population
loss into 3D3/2 level is avoided by a repump laser resonant with the 3D3/2 − 4P1/2 transition).
The electronic state of the system qubit is not affected by the wide pumping laser because it
couples only to the ancillas’ population in |S ′〉. The effect on the motional state of the ion string
was calculated with a multi-level numerical simulation from which we estimate a heating rate of
0.015 phonons per reset step for our experimental parameters. Because the protocol uses only
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Number of QEC
cycles

no error Fnone optimized no
error Fopt

single-qubit
errors Fsingle

optimized single-
qubit errors Fsopt

0 97(2) 97(2) - -
1 87.5(2) 90.1(2) 89.1(2) 90.1(2)
2 77.7(4) 79.8(4) 76.3(2) 80.1(2)
3 68.3(5) 72.9(5) 68.3(3) 70.2(3)

Table 3.2.: Process fidelity for a single uncorrected qubit as well as for one, two, and three error
correction cycles. Fnone is the process fidelity without inducing any errors. Fsingle is
obtained by averaging over all single-qubit errors. Fopt and Fsopt are the respective
process fidelities where constant operations are neglected. The statistical errors are
derived from propagated statistics in the measured expectation values.

⏐χ
3
⏐⏐χ

2
⏐⏐χ

1
⏐⏐χ

0
⏐

QEC+error QEC+error QEC+error
no error

error

Figure 3.6.: Mean single-qubit process matrices χn (absolute value) for n QEC cycles with
single-qubit errors. Transparent bars show the identity process matrix and the red
bar denotes a phase-flip error. These process matrices were reconstructed from a
data set averaged over all possible single-qubit errors (see text).

entangling operations of the Mølmer-Sørensen type, which are insensitive to the ion motion in
first order, the reset has a negligible effect on the QEC protocol.

The operational quality of the QEC protocol can be assessed by exposing it to correctable er-
rors, i.e. single-qubit phase-flip errors. Ideally, the encoded qubit experiences an identity opera-
tion. Experimentally, the implemented process is characterized with quantum process tomogra-
phy [28, 38] which yields a process matrix χ. The performance of the implementation is given by
the overlap of the identity process χid with the implemented process, also known as the process
fidelity Fproc = Tr (χ · χid). The achieved process fidelities for up to three repetitions (without
inducing any errors) Fnone are shown in table 3.2. The process fidelity, however, does not distin-
guish between constant operational errors (that could be undone in principle) and decoherence
(irreversible processes). A measure which is only sensitive to errors due to decoherence is the
optimized process fidelity Fopt as displayed in Table 1. It is defined as the maximum fidelity that
could be obtained if an additional fixed single-qubit rotation was perfectly implemented on the
output state (see supplementary material in section B.2).

The error-correcting capability of the implementation is assessed by applying in each cycle ei-
ther no-error or a single-qubit phase-flip Zi(π) on ion i (1 being the system ion and 2,3 being
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Figure 3.7.: (A) Probability of simultaneous two-qubit phase-flips as a function of the single-
qubit phase flip probabilities for uncorrelated (square) and correlated (circle) noise
measured by a Ramsey type experiment. (B) Process fidelity of the QEC algorithm
in the presence of correlated (circle) and uncorrelated (square) phase noise as a
function of the single-qubit phase flip probability. The theory is shown for an un-
encoded qubit (solid line), a corrected qubit in presence of correlated (dashed line)
and uncorrelated noise (dashdotted line).

the 1st and 2nd ancilla) followed by a process tomography for all combinations. As these single-
qubit errors are corrected by the algorithm, the ideal process is again the identity process. The
mean process matrix χ is then reconstructed from the data obtained by averaging over all mea-
sured expectation values, as shown for zero to three correction cycles in figure 3.6. The results
shown in Table 1 demonstrate that the optimized process fidelities with single-qubit errors, Fsopt,
and without an induced error, Fopt, are the same for one, two, and three correction cycles. From
this data we infer that the QEC protocol corrects single-qubit errors perfectly within our statis-
tical uncertainty. The infidelities of the implementation are mainly caused by imperfections in
the entangling gates as discussed in section B.2).

In addition to characterizing the implemented process in the presence of correctable errors we
investigate the algorithm’s behavior in a dephasing environment where also uncorrectable errors
occur. For single qubits, a dephasing process can be described by a phase-flip probability p
which reduces the off-diagonal elements of the density matrix by a factor of 1 − 2p (for com-
plete dephasing p = 0.5). In a system of multiple qubits, the probability of simultaneous n-qubit
phase-flips, which cannot be corrected by the three-qubit QEC protocol, depends on the correla-
tions between the qubits (see supplementary material in section B.2). We analyze the behavior
of the QEC algorithm in the presence of the two most prominent noise types, namely uncorre-
lated and correlated phase-noise, where the qubits are affected by independent or one and the
same noise source, respectively. In our system, the inherent phase-noise is correlated as it orig-
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inates predominantly from fluctuations in the magnetic-field strength and the laser frequency
which are both equal on all qubits [23]. A controlled amount of this noise can be simply applied
by inserting a waiting time between the encoding and the decoding stage. The second noise
type, uncorrelated phase-noise, can be engineered by performing a weak qubit projection [30],
which is realized by a short laser pulse on the detection transition once the qubit is encoded (see
supplementary material in section B.2). We characterized the phase noise by Ramsey type ex-
periments, which translate phase-flips into bit-flips. The presence of the respective noise type
can then be verified by the probability of simultaneous n-qubit bit-flips (figure 3.7a).

For both uncorrelated and correlated phase noise, our error correction algorithm performs as
depicted in figure 3.7b. As uncorrectable two- and three-qubit phase-flips occur more frequently
in the presence of correlated noise (figure 3.7b) the QEC implementation yields lower fidelities.
It should be noted though, that correlated phase-noise can be completely eliminated by encoding
the qubits in decoherence-free subspaces [105, 111, 112] at the expense of a further increased
complexity. For uncorrelated phase noise no decoherence-free subspaces exist, and therefore
only quantum error correction can protect the qubit. In our implementation, a protected qubit
shows less noise than an unencoded qubit for an error probability p larger than 0.15 (figure 3.7b).
In the investigation with uncorrelated noise, the weak projection collapses each qubit with a
small probability into the computational basis. Our data thus indicates that the algorithm can
recover the quantum information from this single-qubit state collapse.

Our results demonstrate an implementation of a repeatable error correction algorithm in a sys-
tem of three trapped-ion qubits. Using global-entangling and local-qubit operations in an opti-
mized pulse sequence allows for very short and efficient QEC cycles. For uncorrelated errors,
a (single-cycle) corrected qubit performs better than an uncorrected qubit for a range of error
probabilities. The algorithm can be extended to a five-qubit implementation, where the qubit
stays protected during error correction [33]. Though technically challenging, such an imple-
mentation in conjunction with DFS encoding appears as a viable route towards quantum error
correction for trapped ions.

64



3.3. Publication: Undoing a quantum measurement

3.3. Publication: Undoing a quantum measurement

Undoing a quantum measurement3

Phys. Rev. Lett. 110, 070403 (2013)

Philipp Schindler1, Thomas Monz1, Daniel Nigg1, Julio T. Barreiro1, Esteban A. Martinez1,
Matthias F. Brandl1, Michael Chwalla1,2, Markus Hennrich1, Rainer Blatt1,2

1Institut für Experimentalphysik, University of Innsbruck,
Technikerstr. 25, A-6020 Innsbruck, Austria,

2Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften,

Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria

In general, a quantum measurement yields an undetermined answer and alters the system
to be consistent with the measurement result. This process maps multiple initial states into
a single state and thus cannot be reversed. This has important implications in quantum in-
formation processing, where errors can be interpreted as measurements. Therefore, it seems
that it is impossible to correct errors in a quantum information processor, but protocols exist
that are capable of eliminating them if they affect only part of the system. In this work
we present the deterministic reversal of a fully projective measurement on a single particle,
enabled by a quantum error-correction protocol that distributes the information over three
particles.

Measurements on a quantum system irreversibly project the system onto a measurement eigen-
state regardless of the state of the system. Copying an unknown quantum state is thus impossible
because learning about a state without destroying it is prohibited by the no-cloning theorem[98].
At first, this seems to be a roadblock for correcting errors in quantum information processors.
However, the quantum information can be encoded redundantly in multiple particles and sub-
sequently used by quantum error correction (QEC) techniques [13, 14, 103, 106–108]. When
one interprets errors as measurements, it becomes clear that such protocols are able to reverse a
partial measurement on the system. In experimental realizations of error correction procedures,
the effect of the measurement is implicitly reversed but its outcome remains unknown. Previous
realizations of measurement reversal with known outcomes have been performed in the context
of weak measurements where the measurement and its reversal are probabilistic processes[113–
116]. We will show that it is possible to deterministically reverse measurements on a single
particle.

We consider a system of three two-level atoms where each can be described as a qubit with the
basis states |0〉, |1〉. An arbitrary pure single-qubit quantum state is given by |ψ〉 = α|0〉+ β|1〉
with |α|2 + |β|2 = 1 and α, β ∈ C. In the used error-correction protocol, the information of
a single (system) qubit is distributed over three qubits by storing the information redundantly

3The author of the present thesis designed the experiment, measured and analyzed the data and wrote the
manuscript
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in the state α|000〉 + β|111〉. This encoding is able to correct a single bit-flip by performing a
majority vote and is known as the repetition code [30].

A measurement in the computational basis states |0〉, |1〉 causes a projection onto the σz axis
of the Bloch sphere and can be interpreted as an incoherent phase flip. Thus, any protocol
correcting against phase-flips is sufficient to reverse measurements in the computational basis.
The repetition code can be modified to protect against such phase-flip errors by a simple basis
change from |0〉, |1〉 to |±〉 = 1/

√
2(|0〉±|1〉). After this basis change each individual qubit is in

an equal superposition of |0〉 and |1〉 and therefore it is impossible to gain any information about
the encoded quantum information by measuring a single qubit along σz. Because the repetition
code relies on a majority vote on the three-qubit register the measurement can be only perfectly
corrected for if it acts on a single qubit as outlined in the schematic circuit shown in Fig. 3.8(a).

This process protects the information on the system qubit, leaving it in the same state as prior
to the encoding. A complete reversal of the measurement brings the register back to the state
it had immediately before the measurement. Therefore one needs to re-encode the register into
the protected state. This is not directly possible because the ancilla qubits carry information
about the measurement outcome. Therefore the auxiliary qubits have to be re-initialized prior to
re-encoding as outlined in Fig. 3.8(a).

The experiment is realized in a linear chain of 40Ca+ ions confined in a macroscopic linear
Paul trap[46]. Each ion encodes a qubit in the 4S1/2(m = −1/2) = |1〉 and the metastable
3D5/2(m = −1/2) = |0〉 state. Coherent manipulations of the qubit state are performed by
exactly timed laser pulses in resonance with the energy difference between the two levels. A
typical experimental sequence consists of (i) initialization of the quantum register, (ii) coherent
state manipulation, and (iii) measurement of the register. Initializing the register consists of
preparing the electronic state of the ions in a well defined state and cooling the common motional
mode of the ions close to the ground state. In our experiment, any coherent operation can be
implemented with a universal set of gates consisting of collective spin flips, phase shifts of
individual qubits and collective entangling operations [32, 33].

The qubit can be measured in the computational basis by performing electron shelving on the
short-lived S1/2 ↔ P1/2 transition as sketched in Fig. 3.9(a). Here, projection onto the state |1〉
enables a cycling transition and scatters many photons if the detection light is applied, whereas
after projection onto |0〉 no population is resonant with the laser light at 397 nm. The outcomes
can be distinguished by shining in the laser light long enough to detect multiple photons with
a photo-multiplier tube after projecting into |1〉. The absence of photons is then interpreted as
outcome |0〉. Although the projection is already performed after scattering a single photon, it is
necessary to detect multiple photons for faithful discrimination.

For the reversal scheme as shown in Fig. 3.8(a) only a single ion of the register is measured.
This is realized by protecting the other two ions from the detection light by transferring the
population from |1〉 in the m = −5/2 Zeeman substate of the D5/2 level with the procedure
outlined in Fig. 3.9(a) [28]. Then, a projective measurement does not affect the electronic state
of the hidden ions which are the remaining carriers of the information. The uncertainty of the
measurement on the remaining ion depends on how many photons are detected if the state was
projected into |1〉. Given that the number of detected photons follow a Poissonian distribution,

66



3.3. Publication: Undoing a quantum measurement

Figure 3.8.: (a) Schematic circuit of undoing a quantum measurement. ρenc is the encoded state
of the register, ρmeas is the state after the measurement, ρsys is the corrected state
of the system qubit after the QEC cycle and ρrec is the state of the register after
the full correction. (b) Circuit representation of the error correction algorithm. D
is a unitary operation that commutes with phase flips. U is an arbitrary unitary
operation. These operations do not affect the error correction functionality.

the detection uncertainty can be easily calculated via the cumulative distribution function of
the Poisson distribution and the measurement durations as shown in columns one to three in
table 3.3.

The quality of subsequent coherent operations is significantly lowered by the recoil of the scat-
tered photons heating the motional state of the quantum register. Therefore, recooling the ion-
string close to the ground state is required without disturbing the quantum information in the
non-measured qubits. In ion-traps this can be achieved with sympathetic cooling using a second
ion species. As trapping and cooling two different ion species requires major experimental ef-
fort, we employ a recooling technique that can be used with a single trapped species. We perform
a Raman cooling scheme as shown in Fig. 3.9(b) while the ancilla qubits are still protected.

Encoding and decoding of the register as shown in Fig. 3.8(b) are implemented in our setup as
described in Ref.[61]. The encoding is realized with a single entangling operation and the decod-
ing is performed using a numerically optimized decomposition into available operations [33].
In order to facilitate the optimization procedure, the QEC algorithm is slightly modified without
affecting its functionality by two additional unitary operations D and U as shown in Fig. 3.8(b).
The actual implementation can be benchmarked with the aid of quantum state and process to-
mography [28, 30]. We use a maximum likelihood algorithm to reconstruct the density matrix
and perform a non-parametric bootstrap for statistical error analysis [34]. Because the error cor-
rection protocol acts as a single qubit quantum channel, it can be characterized by a quantum
process tomography on the system qubit (indicated as ρsys in Fig 1(a)). This process is char-
acterized by the process matrix χexp and its performance compared to the ideal process χid is
given by the process fidelity F proc = Tr(χid · χexp). The process fidelity of a single error cor-
rection step without measurement and recooling was measured to be F = 93(2)%. The process
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Figure 3.9.: (a) Schematic of the measurement process on the S1/2 ↔ P1/2 transition. The
auxiliary qubits are hidden from the measurement by transferring the population to
the m = −5/2 substate of the D5/2 level. (b) Schematic of the Raman recooling
procedure. This scheme utilizes two 1.5GHz detuned Raman beams that remove
one phonon upon transition from the Zeeman substates m = −1/2 to m = +1/2
and an additional resonant beam that is used to optically pump from m = +1/2 to
m = −1/2 via the P1/2 state.

including the measurement can be analyzed by either ignoring the measurement outcome or by
investigating the process depending on the outcome as presented in Table 3.3.

The overall performance of the reversal process is determined by the quality of the operations
and the loss of coherence during the measurement and the recooling process. As the quality of
the operations is affected by the motional state of the ion-string after recooling, there is a trade-
off between their fidelity and the loss of coherence during measurement and recooling. It should
be noted that the measurement affects the motion only if it is projected into the |1〉 state whereas
the loss of coherence affects both possible projections. The performance of the algorithm for
different measurement and recooling parameters is shown in Table 3.3. A detection error of
less than 0.5% is achieved with a measurement time τmeas = 200µs and a recooling time of
τrecool = 800µs leading to a mean process fidelity of F = 84(1)% which exceeds the bound for
any classical channel of F = 50%. We analyzed the measurement outcome for τmeas = 200µs
and a measurement threshold of three photon counts to show that no information about the
encoded quantum information can be gained by measuring a single qubit. The measurement was
performed for the initial basis states |0〉, |0〉 + |1〉, |0〉 + i|1〉, |1〉 and results in probabilities
to find the outcome in state |0〉 of 48(1)%, 50(1)%, 50(1)%, 50(1)%. This shows that indeed no
information about the initial quantum state can be inferred by measuring a single qubit.

The presented procedure is able to protect the quantum information on the system qubit in the
presence of a quantum measurement. In order to perform the full measurement reversal, the
ancilla qubits have to be reset before applying the same encoding as demonstrated in Ref [61].

As this technique recovers the state of the entire register, the measurement reversal can be di-
rectly benchmarked by comparing the state before the measurement and after the reconstruction.
A quantum state can be analyzed using quantum state tomography and evaluating the fidelity
between two states ρ1, ρ2 with the Uhlmann fidelity[117] F rho(ρ1, ρ2) = (Tr

√√
ρ1ρ2
√
ρ1) 2 .
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τRaman τmeas Detection error 〈nphonon〉 F proc
mean F proc

|1〉 F proc
|0〉 F rho

mean F rho
|1〉 F rho

|0〉
800 100 4 % 0.17 86(3) 82(3) 90(2) 89(1) 87(1) 91(2)
800 200 < 0.5 % 0.24 85(2) 87(3) 90(3) 84(1) 82(1) 85(2)
800 300 < 0.5 % 0.41 81(3) 78(2) 87(3) 84(1) 80(1) 87(2)
800 400 < 0.5 % 0.50 78(3) 71(5) 85(4) 82(1) 76(2) 90(2)

Table 3.3.: Columns 1 to 3: Raman recooling and measurement duration in µs with correspond-
ing detection error. Column 4: Measured mean phonon number 〈n〉 after measure-
ment and recooling. Columns 5 to 7: Measured process fidelities on the system qubit
without re-encoding F proc in(%) and columns 8 to 10: Overlap of the quantum state
after the full reconstruction with the state prior to the measurement F rho in (%).
Lower indices Fmean indicate a mean fidelity while ignoring the measurement out-
come. F|0〉 and F|1〉 indicate fidelities if the measurement outcome was |0〉 (|D〉) and
|1〉 (|S〉). Errors correspond to one standard deviation.

The state ρenc after encoding shows a fidelity with the ideal state of F (ρid, ρenc) = 94(1)%. In
order to demonstrate the effect of the measurement the states ρmeas after measuring and recool-
ing, and ρrec after the reconstruction are analyzed with respect to the state ρenc. The measured
density matrices for these states are shown in Fig. (3.10). The overlap of the state after the mea-
surement ρmeas with the state ρenc is F (ρenc, ρmeas) = 50(2)% as expected from pure dephasing
which shows that the measurement acts as dephasing when the outcome is ignored. In contrast,
Fig. 3.10 illustrates the evolution of the states with known outcome. The reconstructed state ρrec
after correction, reset and re-encoding is measured to have an overlap of F (ρenc, ρrec) = 84(1)%
which indicates that the measurement was successfully reversed. The quality of the measure-
ment reversal depends again on the number of scattered photons during the measurement and
the recooling time and the optimum is also τdetect = 200µs. Fidelities depending on the outcome
and for various measurement durations are displayed in table 3.3.

In conclusion we have demonstrated the full reversal of a strong quantum measurement on a
single qubit. We further presented an in-sequence recooling technique that can serve as an
alternative to sympathetic two-species cooling. This may simplify the architecture for a future
large-scale ion-trap quantum information processor.
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Figure 3.10.: (a) Absolute value of the reconstructed three qubit density matrices before the mea-
surement ρenc. (b) Histogram of the measured photon counts for a measurement
time of 200µs. Absolute value of three qubit density matrices after the measure-
ment ρmeas for outcome (c) |0〉 and (d) |1〉. Density matrices after the measurement
reversal ρrec for outcome (e) |0〉 and (f) |1〉.
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4.1. Introduction to open-system quantum simulation

Already in 1982, R. Feynman dreamed of a quantum machine to calculate the dynamics of arbi-
trary quantum systems [2]. Thus the idea of using a well-controllable quantum system to learn
about other quantum systems was already present at the early stages of quantum computing.
Presently, two distinct types of quantum simulators are worked on. One is analog quantum sim-
ulation, or quantum emulation, where the system of interest has the same Hamiltonian as the
simulator system and the dynamics of the simulator system are therefore equivalent to the dy-
namics of the systems of interest [16, 118]. The second approach, digital quantum simulation,
takes a universal set of quantum operations and uses them to simulate any possible quantum
system with a discretized time evolution.

These two types of simulators are also found in classical physics. The analog simulator corre-
sponds for example to a wind tunnel where a scaled model of a race-car is tested. The digital
simulator could be a classical computer solving the classical equations of motion for a wheather
forecast. The strenghts and weaknesses of both systems are clear: the analog simulator is able
to simulate complex systems whereas the digital simulator is more versatile and can be verified
easily. The quantum versions of both simulators share the same strengths and weaknesses: The
analog quantum simulator is less stringent on the required control of the simulator system. On
the other hand it is believed that certifying the simulator for a large quantum system is much
more difficult than for a classical system and thus this will be a major challenge for future
quantum simulators. This leads immediately to a strong argument in favor of a digital quantum
simulator where a universal set of quantum operations is sufficient to perform any possible sim-
ulation. Moreover, one can use the quantum error correction framework to make the simulator
inherently faithful [119] with the obvious drawback of their substantial overhead.

The following part will focus on digital quantum simulators. These simulators discretize the
time and implement the time evolution in fine grained time-steps. This naturally leads to an
approximation of the continuous time dynamics of the system of interest. It was shown by
Seth Lloyd, that this decomposition into discrete time-steps can be performed efficiently for
any closed quantum system of interest [15]. In this case efficient means, that the number of
required gate operations grows polynomially with the size of the system of interest for any fixed
approximation error. The discretization is performed by the Trotter-Suzuki approximation [120].
For example, a quantum register may simulate a one dimensional bosonic system as sketched
in figure 4.1. There, each lattice site corresponds to a single qubit where the state |1〉 (|0〉) of
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Figure 4.1.: Digital simulation of a bosonic system with next-neighbor interaction. The state
|1〉 (|0〉) of the simulator system correspond to an occupied (empty) lattice site. A
single stroboscopic time-step corresponds to performing the unitary corresponding
to a next neighbor interaction on all pairs of qubits.

the simulator system corresponds to an occupied (empty) lattice site. Bosonic interactions are
mapped onto two-qubit gate operations. In a single stroboscopic time-step of the spin system
the interactions between all sites need to be applied.

However, many interesting systems need to be described by open quantum systems that couple
to an environment which are not straightforward to simulate with a toolbox consisting only
of coherent operations. Prominent examples for such open quantum systems can be found in
quantum biology and quantum chemistry, where quantum effects in a very noisy environment
are investigated [17, 18]. In these systems, the coupling to the environment results in noise
driving the system towards a classical state, but lately systems have been identified where this
dissipative coupling to an environment can be used as a resource [19, 20]. An example is a
bosonic system, where long-range order can be built build up from purely dissipative dynamics.
In this system, a novel type of phase transition has been studied theoretically [59, 121].

In the following, a digital quantum simulator is presented that is able to realize the dynamics of
any Markovian open quantum system. Such a simulation can be realized in two distinct ways:
One can either use a larger simulator system undergoing only coherent dynamics similar to
the description of an incoherent process as unitary process of the system and the environment as
shown in section 1.3. Alternatively, one can simulate the environment using a single qubit with a
controlled coupling to the environment, the coupling of the simulated system to the environment
is then implemented by performing entangling operations between the system and the auxiliary
qubit. The qubit reset technique as already used for the repetitive quantum error correction in
section 3.1 can be interpreted as such a controllable coupling to the environment. As mentioned
in section 1.3, any irreversible quantum process can be described by a dynamical map

ρ→ ε(ρ) =
∑
j

EjρE
†
j .

Such dynamical maps are directly implemented in the simulator and each map corresponds to a
discrete time-step of the system of interest. This is then the open-system analogon to the Trotter
approximation simulating a time-continuous master equation as will be shown in sections 4.2
and 4.3.

In the following the concept of the open system simulator is demonstrated by the example of a
spontaneous decay in a two level scheme as an example of such a dynamical map. If the decay
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Environment

System

p

Figure 4.2.: Quantum Circuit to simulate a spontaneous decay on a single qubit.

occurs with probability p the Kraus operators Ej are

E0 =
√
p

(
0 1
0 0

)
E1 =

(
1 0
0
√

1− p

)
(4.1)

For decay probability p = 1 any input state is mapped to the ground state ρ = |0〉〈0| which is
called the fixed point of the map. For any intermediate decay probability, the population in the
excited state |1〉 is partially transferred to the ground state. The most general output state is then

ε(ρ) = p

(
0 0
0 ρ11

)
+

(
(1− p) ρ11

√
1− p ρ12√

1− p ρ21 ρ22

)
which is a mixed state. For simulating this process on a quantum computer we will now look
at a two-qubit system where a single qubit represents the environment. As a first example the
deterministic decay process (p = 1) is covered. For this, the information whether the system
qubit is in state |1〉 or |0〉 is mapped onto the auxiliary qubit with the aid of a CNOT operation:

(α|0〉S + β|1〉S)⊗ |0〉E → α|00〉+ β|11〉 .

Then, another CNOT where the control and target qubits are swapped is performed leaving the
system in the state

α|00〉+ β|11〉 → α|00〉+ β|01〉 .
In the next step the information of the auxiliary qubit is discarded which corresponds to a partial
trace over its system as outlined in section 1.3. Now the auxiliary and the system qubit are not
entangled and thus the final state is the pure state |0〉 as expected.

The more interesting case is certainly a probabilistic decay process (p < 1). In the interest of
simplicity, I will assume a pure input state |Ψ〉 = α|0〉 + β|1〉. In the first step, the CNOT
operation does not perform a full bit-flip anymore but the flip is performed only with probability
p. This operation corresponds to a controlled rotation around the x-axis on the Bloch sphere
with rotation angle θ = arcsin

√
p

|Ψ〉S ⊗ |0〉E → α |00〉+ β
(√

p |11〉+
√

1− p |10〉
)
.

The second step is now performed analogous to the deterministic decay by performing a deter-
ministic CNOT with the auxiliary qubit as control

α |00〉+ β
(√

p |11〉+
√

1− p |10〉
)
→ α |00〉+ β

(√
p |01〉+

√
1− p |10〉

)
.
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In the next step, the information of the auxiliary qubit is discarded. The partial trace leads to the
following density matrix: (

(1− p) |β|2 √
1− pαβ∗√

1− pα∗β |α2|+ p |β|2
)
.

This state is equal to the target state as shown in equation (4.1). A quantum circuit for this
procedure is shown in figure 4.2 consisting of a probabilistic CNOT operation, a deterministic
CNOT and the final reset of the environment qubit.

This example demonstrated how a simple single-body dynamical map can be implemented using
coherent operations and a qubit reset. The realization of many-body dynamical maps is analog
to this procedure where the system consists of multiple qubits. Such many body dynamical
maps are an interesting subject on their own right. Their unique dark-state or fixed point can be
any multi-qubit state may it be entangled or not. This means it is possible to design a map that
shows a dark state with long-range many-body correlations allowing us to explore new many-
body physics. Such states may also be used as a resource for quantum computation[19, 20].

In the following publication, a toolbox for a universal open system simulator is demonstrated.
First, a many-body dissipative map is demonstrated simulating a process that has a maximally
entangled state as its unique dark state. Furthermore, a framework is developed to implement
any arbitrary dynamical map. In the second publication, this toolbox is then used to simulate a
many body bosonic system. The dynamics of this system is governed by composite dynamical
maps build up from quasi-local elementary maps [59, 121] leading to a dark state showing long-
range coherence. In a bosonic picture, this dark state corresponds to a superfluid state where
the particles are delocalized. In our simulation, we explore the dynamics that arises when these
composite maps are complemented by coherent operations that are incompatible with the dark
state. As the coherent operations are incompatible with the dark state, their competition with
the dissipative dynamics will lead to the destruction of the phase coherence. This resembles
the hallmark feature of a theoretically predicted non-equilibrium many-body quantum phase
transition.

During the analysis of the data obtained by the boson simulation process, it became clear that
an error reduction technique is required to achieve faithful simulation results. The problem
arises as the erroneous operations in our simulator do not preserve the simulated boson number.
Therefore we developed a novel error detection and error reduction scheme based on quantum
feedback techniques stabilizing the boson number. This opens the question whether a full QEC
protocol is required for a special purpose digital simulator or if a simplified error reduction
protocol with less overhead is sufficient.
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The control of quantum systems is of fundamental scientific interest and promises pow-
erful applications and technologies. Impressive progress has been achieved in isolating the
systems from the environment and coherently controlling their dynamics, as demonstrated
by the creation and manipulation of entanglement in various physical systems. However,
for open quantum systems, engineering the dynamics of many particles by a controlled cou-
pling to an environment remains largely unexplored. Here we report the first realization of
a toolbox for simulating an open quantum system using up to five qubits. Using a quan-
tum computing architecture with trapped ions, we combine multi-qubit gates with optical
pumping to implement coherent operations and dissipative processes. We illustrate this
engineering by the dissipative preparation of entangled states, the simulation of coherent
many-body spin interactions and the quantum non-demolition measurement of multi-qubit
observables. By adding controlled dissipation to coherent operations, this work offers novel
prospects for open-system quantum simulation and computation.

Every quantum system is inevitably coupled to its surrounding environment. Significant progress
has been made in isolating systems from their enviroment and coherently controlling the dy-
namics of several qubits [122–125]. These achievements have enabled the realization of high-
fidelity quantum gates, the implementation of small-scale quantum computing and communica-
tion devices as well as the measurement-based probabilistic preparation of entangled states, in
atomic [126, 127], photonic [128], NMR [129] and solid-state setups [9, 130, 131]. In particular,
successful demonstrations of quantum simulators [2, 15], which allow one to mimic and study
the dynamics of complex quantum systems, have been reported [132].

In contrast, controlling the more general dynamics of open systems amounts to engineering both
the Hamiltonian time evolution of the system as well as the coupling to the environment. In pre-

1The author of the present thesis measured and analyzed the data.
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vious works [58, 133–135], controlled decoherence has been used to systematically study its
detrimental effects on many-body or multi-qubit open systems. The ability to design dissipation
can, however, be a useful resource, as in the context of the preparation of a desired entangled
state from an arbitrary initial state [59, 136, 137], and, closely related, dissipative quantum com-
putation [21] and quantum memories [138]. It also enables the preparation and manipulation of
many-body states and quantum phases [59], and provides an enhanced sensitivity in precision
measurements [139]. In particular, by combining suitably chosen coherent and dissipative op-
erations, one can engineer the system-environment coupling, thus generalizing the concept of
Hamiltonian quantum simulation to open quantum systems [15, 19].

Here we provide the first experimental demonstration of a toolbox of coherent and dissipa-
tive multi-qubit manipulations to control the dynamics of open systems. In a string of trapped
ions, each ion encoding a qubit, we subdivide the qubits into “system” and “environment”. The
system-environment coupling is then engineered through the universal set of quantum operations
available in ion-trap quantum computers [140, 141], whereas the environment ion is coupled to
the dissipative bath of vacuum modes of the radiation field via optical pumping. Following
Ref. [21] (see also [142]) these quantum resources provide a complete toolbox to engineer gen-
eral Markovian open-system dynamics in our multi-qubit system [19, 143].

We first illustrate this engineering by dissipatively preparing a Bell state in a 2+1 ion system,
such that an initially fully mixed state is pumped into a given Bell state. Similarly, with 4+1
ions, we also dissipatively prepare a 4-qubit GHZ-state, which can be regarded as a minimal
instance of Kitaev’s toric code [144]. Besides the dissipative elements, we show coherent n-body
interactions by implementing the fundamental building block for 4-spin interactions. In addition,
we demonstrate a readout of n-particle observables in a non-destructive way with a quantum-
nondemolition (QND) measurement of a 4-qubit stabilizer operator. We conclude by outlining
future perspectives and implications of the present work in quantum information processing and
simulation, as well as open-system quantum control scenarios including feedback [19].

4.2.1. Open-System Dynamics & Bell-State Pumping

The dynamics of an open quantum system S coupled to an environment E can be described
by the unitary transformation ρSE 7→ UρSEU

†, with ρSE the joint density matrix of the com-
posite system S + E. Thus, the reduced density operator of the system will evolve as ρS =
TrE

(
UρSEU

†). The time evolution of the system can also be described by a completely posi-
tive Kraus map

ρS 7→ E(ρS) =
∑
k

EkρSE
†
k (4.2)

with Ek operation elements satisfying
∑

k E
†
kEk = 1, and initially uncorrelated system and

environment [30]. If the system is decoupled from the environment, the general map (4.2)
reduces to ρS 7→ USρSU

†
S , withUS the unitary time evolution operator acting only on the system.

Control of both coherent and dissipative dynamics is then achieved by finding corresponding
sequences of maps (4.2) specified by sets of operation elements {Ek} and engineering these se-
quences in the laboratory. In particular, for the example of dissipative quantum-state preparation,
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pumping to an entangled state |ψ〉 reduces to implementing appropriate sequences of dissipa-
tive maps. These maps are chosen to drive the system to the desired target state irrespective
of its initial state. The resulting dynamics have then the pure state |ψ〉 as the unique attractor,
ρS 7→ |ψ〉〈ψ|. In quantum optics and atomic physics, the techniques of optical pumping and
laser cooling are successfully used for the dissipative preparation of quantum states, although
on a single-particle level. The engineering of dissipative maps for the preparation of entangled
states can be seen as a generalization of this concept of pumping and cooling in driven dissipa-
tive systems to a many-particle context. To be concrete, we focus on dissipative preparation of
stabilizer states, which represent a large family of entangled states, including graph states and
error-correcting codes [145].

We start by outlining the concept of Kraus map engineering for the simplest non-trivial example
of “pumping” a system of two qubits into a Bell state. The Hilbert space of two qubits is
spanned by the four Bell states defined as |Φ±〉 = 1√

2
(|00〉 ± |11〉) and |Ψ±〉 = 1√

2
(|01〉 ±

|10〉). Here, |0〉 and |1〉 denote the computational basis of each qubit, and we use the short-hand
notation |00〉 = |0〉1|0〉2, for example. These maximally entangled states are stabilizer states:
the Bell state |Φ+〉, for instance, is said to be stabilized by the two stabilizer operators Z1Z2 and
X1X2, where X and Z denote the usual Pauli matrices, as it is the only two-qubit state being
an eigenstate of eigenvalue +1 of these two commuting observables, i.e. Z1Z2|Φ+〉 = |Φ+〉
and X1X2|Φ+〉 = |Φ+〉. In fact, each of the four Bell states is uniquely determined as an
eigenstate with eigenvalues ±1 with respect to Z1Z2 and X1X2. The key idea of pumping is
that we can achieve dissipative dynamics which pump the system into a particular Bell state, for
example ρS 7→ |Ψ−〉〈Ψ−|, by constructing two dissipative maps, under which the two qubits are
irreversibly transferred from the +1 into the -1 eigenspaces of Z1Z2 and X1X2.

The dissipative maps are engineered with the aid of an ancilla ”environment” qubit [19, 146] and
a quantum circuit of coherent and dissipative operations. The form and decomposition of these
maps into basic operations are discussed in Box 1. The pumping dynamics are determined by
the probability of pumping from the +1 into the -1 stabilizer eigenspaces, which can be directly
controlled by varying the parameters in the employed gate operations. For pumping with unit
probability (p = 1), the two qubits reach the target Bell state — regardless of their initial state —
after only one pumping cycle, i.e., by a single application of each of the two maps. In contrast,
when the pumping probability is small (p� 1), the process can be regarded as the infinitesimal
limit of the general map (4.2). In this case, the system dynamics under a repeated application of
the pumping cycle are described by a master equation [147]

ρ̇S = −i[HS, ρS] (4.3)

+
∑
k

(
ckρSc

†
k −

1

2
c†kckρS − ρS

1

2
c†kck

)
.

Here,HS is a system Hamiltonian, and ck are Lindblad operators reflecting the system-environment
coupling. For the purely dissipative maps discussed here, HS = 0. Quantum jumps from the +1
into the -1 eigenspace of Z1Z2 and X1X2 are mediated by a set of two-qubit Lindblad operators
(see box 1 for details); here the system reaches the target Bell state asymptotically after many
pumping cycles.
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Box 1: Engineering dissipative open-system dynamics
Dissipative dynamics which pump two
qubits from an arbitrary initial state into the
Bell state |Ψ−〉 are realized by two maps
that generate pumping from the +1 into the
-1 eigenspaces of the stabilizer operators
Z1Z2 and X1X2:

⎥Ψ+〉

⎥Ψ-〉

⎥Φ+〉

⎥Φ-〉

Z1Z2+1 -1

-1

⎥Ψ+〉

⎥Ψ-〉

⎥Φ+〉

⎥Φ-〉

X 1X
2

+1

For Z1Z2, the dissipative map pumping
into the -1 eigenspace is ρS 7→ E(ρS) =
E1ρSE

†
1 + E2ρSE

†
2 with

E1 =
√
pX2

1

2
(1 + Z1Z2) ,

E2 =
1

2
(1− Z1Z2) +

√
1− p 1

2
(1 + Z1Z2) .

The map’s action as a uni-directional pump-
ing process can be seen as follows. Since
the operation element E1 contains the pro-
jector 1

2
(1 + Z1Z2) onto the +1 eigenspace

of Z1Z2, the spin flip X2 can then convert
+1 into -1 eigenstates ofZ1Z2, e.g., |Φ+〉 7→
|Ψ+〉. In contrast, the -1 eigenspace ofZ1Z2

is left invariant. In the limit p � 1, the re-
peated application of this map reduces the
process to a master equation with Lindblad
operator c = 1

2
X2(1− Z1Z2).

We implement the two dissipative maps by
quantum circuits of three unitary operations
(i)-(iii) and a dissipative step (iv). Both
maps act on the two system qubits S and
an ancilla which plays the role of the envi-
ronment E:

1

⎥1〉 0 ⎥1〉

2 UX(p)M
(Z

1Z
2)

M
-1
(Z

1Z
2)

(i) (ii) (iii) (iv)

M
(X

1X
2)

M
-1
(X

1X
2)

(i) (ii) (iii) (iv)

E

S

⎥1〉

Z1Z2(p) X1X2(p)

UZ(p)

Pumping Z1Z2 proceeds as follows:
(i) Information about whether the system
is in the +1 or -1 eigenspace of Z1Z2 is
mapped byM(Z1Z2) onto the logical states
|0〉 and |1〉 of the ancilla (initially in |1〉).
(ii) A controlled gate C(p) converts +1 into
-1 eigenstates by flipping the state of the
second qubit with probability p, where

C(p) = |0〉〈0|0 ⊗ UX2(p) + |1〉〈1|0 ⊗ 1,

with UX2(p) = exp(iαX2) and α control-
ling the pumping probability p = sin2 α.
(iii) The initial mapping is inverted by
M−1(Z1Z2). At this stage, in general, the
ancilla and system qubits are entangled.
(iv) The ancilla is dissipatively reset to |1〉,
which carries away entropy to “cool” the
two system qubits.
The second map for pumping into the -1
eigenspace of X1X2 is obtained from inter-
changing the roles of X and Z above.
The engineering of dissipative maps can
be readily generalized to systems of more
qubits. As an example, dissipative prepa-
ration of n-qubit stabilizer states can be re-
alized by a sequence of n dissipative maps
(e.g. for Z1Z2 and X1X2X3X4 pumping),
which are implemented in analogy to the
quantum circuits for Bell state pumping dis-
cussed above:

0

4

n

2
1

...

⎥1〉

Z 1Z
2(p

)

...

X 1X
2X

3X
4(p

)

X1X2X3X4

Z 1Z
2
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4.2.2. Experimental Bell-State Pumping

The dissipative preparation of n-particle entangled states is realized in a system of n+1 40Ca+

ions confined to a string by a linear Paul trap and cooled to the ground state of the axial centre-
of-mass mode [46]. For each ion, the internal electronic Zeeman levels D5/2(m = −1/2) and
S1/2(m = −1/2) encode the logical states |0〉 and |1〉 of a qubit. For coherent operations, a
laser at a wavelength of 729 nm excites the quadrupole transition connecting the qubit states
(S1/2 ↔ D5/2). A broad beam of this laser couples to all ions (see Fig. 4.3a) and realizes
the collective single-qubit gate UX(θ) = exp(−i θ

2

∑
iXi) as well as a Mølmer-Sørensen [148]

(MS) entangling operation UX2(θ) = exp(−i θ
4
(
∑

iXi)
2) when using a bichromatic light field.

Shifting the optical phase of the drive field by π/2 exchanges Xi by Yi in these operations.
As a figure of merit of our entangling operation, we can prepare 3 (5) qubits in a GHZ state
with 98% (95%) fidelity [23]. These collective operations form a universal set of gates when
used in conjuction with single-qubit rotations UZi(θ) = exp(−i θ

2
Zi), which are realized by an

off-resonant laser beam that can be adjusted to focus on any ion.

For engineering dissipation, the key element of the mapping steps, shown as (i) and (iii) in
Box 1, is a single MS operation. The two-qubit gate, step (ii), is realized by a combination
of collective and single-qubit operations. The dissipative mechanism, step (iv), is here carried
out on the ancilla qubit by a reinitialization into |1〉, as shown in Fig. 4.3b. Another dissipative
process [61] can be used to prepare the system qubits in a completely mixed state by the transfer
|0〉 → (|0〉+ |S ′〉)/

√
2 followed by optical pumping of |S ′〉 into |1〉, where |S ′〉 is the electronic

level S1/2(m = 1/2).

Qubit read-out is accomplished by fluorescence detection on the S1/2 ↔ P1/2 transition. The
ancilla qubit can be measured without affecting the system qubits by applying hiding pulses that
shelve the system qubits in the D5/2 state manifold during fluoresence detection [149].

We use these tools to implement up to three Bell-state pumping cycles on a string of 2+1 ions.
Starting with the two system qubits in a completely mixed state, we pump towards the Bell state
|Ψ−〉. Each pumping cycle is accomplished with a sequence of 8 entangling operations, 4 col-
lective unitaries and 6 single-qubit operations; see the Supplementary Information section B.3.
The pumping dynamics are probed by quantum state tomography of the system qubits after ev-
ery half cycle. The reconstructed states are then used to map the evolution of the Bell-state
populations.

In a first experiment, we set the pumping probability at p = 1 to observe deterministic pumping,
and we obtain the Bell-state populations shown in Fig. 4.4a. As expected, the system reaches
the target state after the first pumping cycle. Regardless of experimental imperfections, the tar-
get state population is preserved under the repeated application of further pumping cycles and
reaches up to 91(1)% after 1.5 cycles (ideally 100%). In a second experiment towards the sim-
ulation of master-equation dynamics, the probability is set at p = 0.5 to probe probabilistic
pumping dynamics. The target state is then approached asymptotically (Fig. 4.4b). After pump-
ing the system for 3 cycles with p = 0.5, up to 73(1)% of the initially mixed population pumps
into the target state (ideally 88%). To achieve Bell-state pumping in the limit of p� 1, the gate
fidelities need to be raised closer to one because close to the stationary state of the dynamics, the
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Figure 4.3.: Experimental tools for the simulation of open quantum systems with ions. a,
The coherent component is realized by collective (UX , UY , UX2 , UY 2) and single-
qubit operations (UZi) on a string of 40Ca+ ions which consists of the environment
qubit (ion 0) and the system qubits (ions 1 through n). Coherent operations on S
and E, combined with a controllable dissipative mechanism involving spontaneous
emission of a photon from the environment ion, allow one to tailor the coupling
of the system qubits to an artificial environment. This should be contrasted to the
residual, detrimental coupling of the system (and environment) ions to their physical
environment. b, The dissipative mechanism on the ancilla qubit is realized in the
two steps shown on the Zeeman-split 40Ca+ levels by (1) a coherent transfer of the
population from |0〉 to |S ′〉 and (2) an optical pumping to |1〉 after a transfer to the
42P1/2 state by a circularly-polarised laser at 397 nm.

pumping rate p for populating the target state competes directly with loss processes at a rate ε.
Such losses are associated with gate errors and lead to a steady state infidelity scaling as ∝ ε/p,
see Supplementary Information (section B.3) for further details.

In order to completely characterize the Bell-state pumping process, we also perform a quantum
process tomography [30]. As an example, the reconstructed process matrix for p = 1 after 1.5
cycles (Fig. 4.4c) has a Jamiolkowski process fidelity [37] of 87.0(7)% with the ideal dissipative
process ρS 7→ |Ψ−〉〈Ψ−| which maps an arbitrary state of the system into the Bell state |Ψ−〉.

4.2.3. Four-Qubit Stabilizer Pumping

The engineering of the system-environment coupling, as demonstrated by Bell-state pumping
above, can be readily extended to larger n-qubit open quantum systems. We illustrate such an
engineering experimentally with the dissipative preparation of a four-qubit Greenberger-Horne-
Zeilinger (GHZ) state (|0000〉+ |1111〉)/

√
2. This state is uniquely characterized as the simul-

taneous eigenstate of the four stabilizers Z1Z2, Z2Z3, Z3Z4 andX1X2X3X4, all with eigenvalue
+1 (see Fig. 4.5a). Therefore, the pumping dynamics into the GHZ state are realized by four
consecutive dissipative steps, each pumping the system into the +1 eigenspaces of the four sta-
bilizers. In a system of 4+1 ions, we implement such pumping dynamics in analogy with the
Bell-state pumping sequence. Here, however, the circuit decomposition of one pumping cycle
involves 16 five-ion entangling operations, 20 collective unitaries and 34 single-qubit operations;
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Figure 4.4.: Experimental signatures of Bell-state pumping. Evolution of the Bell-state popu-
lations |Φ+〉 (down triangles), |Φ−〉 (circles), |Ψ+〉 (squares) and |Ψ−〉 (up triangles)
of an initially mixed state under a pumping process with probability a, p = 1 or de-
terministic and b, p = 0.5. Error bars, not shown, are smaller than 2% (1σ). c,
Reconstructed process matrix χ (real part), displayed in the Bell-state basis, de-
scribing the deterministic pumping of the two ions after one and a half cycles. The
ideal process mapping any input state into the state |Ψ−〉 has as non-zero elements
only the four transparent bars shown. The imaginary elements of χ, ideally all zero,
have an average magnitude of 0.004 and a maximum of 0.03. The uncertainties in
the elements of process matrix are smaller than 0.01 (1σ).

further details in the Supplementary Information section B.3.

In order to observe this deterministic pumping process into the GHZ state, we begin by preparing
the system ions in a completely mixed state. The evolution of the state of the system after each
pumping step is characterized by quantum state tomography. The reconstructed density matrices
shown in Fig. 4.5b for the initial and subsequent states arising in each step have a fidelity, or
state overlap [117], with the expected states of {79(2),89(1),79.7(7),70.0(7),55.8(4)}% (the final
state is genuinely multi-partite entangled [150]); see Supplementary Information (section B.3)
for further details. The pumping dynamics is clearly reflected by the measured expectation
values of the stabilizers ZiZj (ij = 12, 23, 34, 14) and X1X2X3X4 at each step, as shown in
Fig. 4.5c.

Although the simulation of a master equation requires small pumping probabilities, as an ex-
ploratory study, we implement up to five consecutive X1X2X3X4-stabilizer pumping steps with
two probabilities p = 1 and 0.5, for the initial state |1111〉. The measured expectation values of
all relevant stabilizers for pumping with p = 1 are shown in Fig. 4.5d. After the first step, the
stabilizer X1X2X3X4 reaches an expectation value of -0.68(1); after the second step and up to
the fifth step, it is preserved at -0.72(1) regardless of experimental imperfections.

For X1X2X3X4-stabilizer pumping with p = 0.5, the four-qubit expectation value increases at
each step and asymptotically approaches -0.54(1) (ideally -1, fit shown in Fig. 4.5d). A state
tomography after each pumping step yields fidelities with the expected GHZ-state of {53(1),
50(1), 49(1), 44(1), 41(1)}%. From the reconstructed density matrices we determine that the
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states generated after one to three cycles are genuinely multi-partite entangled [150].

4.2.4. Coherent Four-Particle Interactions

The coupling of the system to an ancilla particle, as used above for the engineering of dissipative
dynamics, can also be harnessed to mediate effective coherent n-body interactions between the
system qubits [30, 146]. The demonstration of a toolbox for open-system quantum simulation is
thus complemented by adding unitary maps ρS 7→ USρSU

†
S to the dissipative elements described

above. Here, US = exp(−iτHS) is the unitary time evolution operator for a time step τ , which
is generated by a system Hamiltonian HS . In contrast to the recent achievements [151, 152] of
small-scale analog quantum simulators based on trapped ions, where two-body spin Hamiltoni-
ans have been engineered directly [153], here we pursue a gate-based implementation following
the concept of Lloyd’s digital quantum simulator [15], where the time evolution is decomposed
into a sequence of coherent (and dissipative) steps.

In particular, the available gate operations enable a simulation of n-body spin interactions which
we illustrate by implementing time dynamics of a four-body HamiltonianHS = −gX1X2X3X4.
This example is motivated by the efforts to experimentally realize Kitaev’s toric code Hamilto-
nian [144], which is a sum of commuting four-qubit stabilizer operators representing four-body
spin interactions. This paradigmatic model belongs to a whole class of spin systems, which have
been discussed in the context of topological quantum computing and quantum phases exhibiting
topological order [154].

The elementary unitary operation US can be realized by the circuit shown in Fig. 4.6a: (i) As in
the stabilizer pumping above, an operation M(X1X2X3X4), here realized by an entangling MS
gate UX2(π/2), coherently maps the information about whether the four system spins are in the
+1(-1) eigenspace ofX1X2X3X4 onto the internal states |0〉 and |1〉 of the ancilla qubit. (ii) Due
to this mapping, effectively all +1 (-1) eigenstates acquire a phase β/2 (−β/2) by a subsequent
single-qubit rotation UZ(β) on the ancilla ion. The simulation time step τ is related to the phase
by β = 2gτ . (iii) After the initial mapping is inverted by a second MS gate UX2(π/2), the ancilla
qubit returns to its initial state and decouples from the four system qubits, which in turn have
evolved according to US . This compact sequence makes the simulation of n-body interactions
experimentally efficient. Here, the use of global MS gates conveniently bundles the effect of
several operations [55], which arise in alternative circuit decompositions based on two-qubit
gates [30].

In an experiment carried out with 4+1 ions, we apply US for different values of τ to the system
ions initially prepared in |1111〉. We observe coherent oscillations in the subspace spanned
by |0000〉 and |1111〉, as shown in Fig. 4.6b. We characterize our implementation of US by
comparing the expected and measured states, determined by quantum state tomography, for
each value of τ . The fidelity between the expected and measured states is on average 85(2)%.
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4.2.5. QND Measurement of Four-Qubit Stabilizer

Our toolbox for quantum simulation of open systems is extended by the possibility of reading
out n-body observables in a nondestructive way, which is also an essential ingredient in quantum
error correction protocols. Here, we illustrate this for a 4-qubit stabilizer operator X1X2X3X4.
As above, we first coherently map the information about whether the system spins are in the +1(-
1) eigenspace of the stabilizer operator onto the logical states |0〉 and |1〉 of the ancilla qubit. In
contrast to the engineering of coherent and dissipative maps above, where this step was followed
by single-and two-qubit gate operations, here we proceed instead by measuring the ancilla qubit.

Thus, depending on the measurement outcome for the ancilla, the system qubits are projected
onto the corresponding eigenspace of the stabilizer: ρS 7→ P+ρSP+/N+ (P−ρSP−/N−) for
finding the ancilla in |0〉 (|1〉) with the normalization factor N± = Tr(P±ρSP±). Here, P± =
1
2
(1 ± X1X2X3X4) denote the projectors onto the ±1 eigenspaces of the stabilizer operator.

Note that our measurement is QND in the sense that (superposition) states within one of the two
eigenspaces are not affected by the measurement.

In the experiment with 4+1 ions, we prepare different four-qubit system input states (tomo-
graphically characterized in additional experiments), carry out the QND measurement and to-
mographically determine the resulting system output states.

To characterize how well the measurement device prepares a definite state, we use as input
|1111〉, which is a non-eigenstate of the stabilizer. In this case, when the ancilla qubit is
found in |0〉 or |1〉 the system qubits are prepared in the state (|0000〉 ± |1111〉)/

√
2 by the

QND measurement. Experimentally we observe this behaviour with a quantum state prepara-
tion (QSP) fidelity [155] of FQSP = 73(1)%. On the other hand, for a stabilizer eigenstate, the
QND measurement preserves the stabilizer expectation value. Experimentally, for the input state
(|0011〉 − |1100〉)/

√
2, we observe a QND fidelity [155] of FQND = 96.9(6)%. For more details

see the Supplementary Information section B.3.

4.2.6. Conclusions and Outlook

In the present work we have demonstrated engineering of dissipative Kraus maps for Bell-state
and four-qubit stabilizer pumping. These particular examples exploited the available quantum
resources by coupling the system qubits to an ancilla by a universal set of entangling operations.
The engineered environment was here represented by an ancilla ion undergoing optical pumping
by dissipative coupling to the vacuum modes of the radiation field. These experiments, where
the ancilla remains unobserved, represent an open-loop dynamics. Such scenarios were recently
discussed in the context of an open-system quantum simulator for spin models, including lattice
gauge theories, realized with Rydberg atoms in optical lattices. In fact, according to Ref. [142],
four-qubit stabilizer pumping together with four-spin interactions demonstrates the basic ingre-
dients for the simulation of spin dynamics and ground-state cooling for the example of Kitaev’s
toric code Hamiltonian [144] on a single four-spin plaquette.

For a closed system only a small number of Hamiltonians as generators are required to generate
all possible unitary time evolutions. In the context of qubits this is given by a finite set of single

83



4. Quantum simulation of open systems

qubit operations together with an entangling CNOT gate. In contrast, as noted in Ref. [19, 143],
using a single ancilla qubit the most general Markovian open-system dynamics cannot be ob-
tained with a finite set of non-unitary open-loop transformations. However, such a universal
dynamical control can be achieved through repeated application of coherent control operations
and measurement of the auxiliary qubit, followed by classical feedback operations onto the
system. We note that our demonstration of a multi-qubit QND measurement provides, in com-
bination with our previously demonstrated feedback techniques [156], the basic ingredient for
the realization of such closed-loop dynamics.

Our experimental demonstration of a toolbox of elementary building blocks in a system of
trapped ions should be seen as a conceptual step towards the realization of an open quantum
system simulator with applications in various fields [132], including condensed-matter physics
and quantum chemistry, possibly in modelling quantum effects in biology [157], and in quantum
computation driven by dissipation [21].

Although the present experiments were performed with a linear ion-trap quantum computer
architecture, the ongoing development of two-dimensional trap arrays promises scalable imple-
mentations of spin-models simulators. In addition, gate-based simulation approaches can incor-
porate quantum error correction protocols, which may prove essential for fault-tolerant quantum
simulation. The demonstrated concepts can also be readily adapted to other physical platforms
ranging from optical, atomic and molecular systems to solid-state devices.
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Figure 4.5.: Experimental signatures of four-qubit stabilizer pumping. a, Schematic of the
four system qubits to be pumped into the GHZ state (|0000〉 + |1111〉)/

√
2, which

is uniquely characterized as the simultaneous eigenstate with eigenvalue +1 of the
shown stabilizers. b, Reconstructed density matrices (real part) of the initial mixed
state ρmixed and subsequent states ρ1,2,3,4 after sequentially pumping the stabilizers
Z1Z2, Z2Z3, Z3Z4 and X1X2X3X4. Populations in the initial mixed state with
qubits i and j antiparallel, or in the -1 eigenspace of the ZiZj stabilizer, disappear
after pumping this stabilizer into the +1 eigenspace. For example, populations in
dark blue dissappear after Z1Z2-stabilizer pumping. A final pumping of the sta-
bilizer X1X2X3X4 builds up the coherence between |0000〉 and |1111〉, shown as
red bars in the density matrix of ρ4. c, Measured expectation values of the relevant
stabilizers; ideally, non-zero expectation values have a value of +1. d, Evolution
of the measured expectation values of the relevant stabilizers for repetitively pump-
ing an initial state |1111〉 with probability p = 0.5 into the -1 eigenspace of the
stabilizer X1X2X3X4. The incremental pumping is evident by the red line fitted
to the pumped stabilizer expectation value. The evolution of the expectation value
〈X1X2X3X4〉 for deterministic pumping (p = 1) is also shown. The observed de-
cay of 〈ZiZj〉 is due to imperfections and detrimental to the pumping process (see
Supplementary Information). Error bars in c and d, ±1σ.
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Dynamical maps describe general transformations of the state of a physical system -
their iteration interpreted as generating a discrete time evolution. Prime examples include
classical nonlinear systems undergoing transitions to chaos. Quantum mechanical coun-
terparts show intriguing phenomena such as dynamical localization on the single particle
level. Here we extend the concept of dynamical maps to a many-particle context, where the
time evolution involves both coherent and dissipative elements: we experimentally explore
the stroboscopic dynamics of a complex many-body spin model with a universal trapped
ion quantum simulator. We generate long-range phase coherence of spin by an iteration
of purely dissipative quantum maps and demonstrate the characteristics of competition be-
tween combined coherent and dissipative non-equilibrium evolution - the hallmark of a
novel dynamical phase transition. In order to do so, we employ a new spectroscopic de-
coupling technique facilitating the simulation of complex many-body systems in an ion trap
quantum information processing architecture.

Obtaining full control of the dynamics of many-particle quantum systems represents a fun-
damental scientific and technological challenge. Impressive experimental progress on various
physical platforms has been made [9, 118, 122, 126, 128, 130, 131, 158–162], complemented
with the development of a detailed quantum control theory [19, 20, 112, 143]. Controlling the
coherent dynamics of systems well-isolated from the environment enables, for example, quan-
tum computation in the circuit model [30]. But this also allows for digital coherent quantum
simulation with time evolution realized by sequences of small Trotter steps [15], as demon-
strated in recent experiments [24, 163]. On the other hand, engineering the coupling of a system

2The author of the present thesis designed the experiment, measured and analyzed the data and wrote the
manuscript
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to its environment – and thus its resulting dissipative dynamics – introduces new scenarios of
dissipative quantum state preparation [62, 136, 137, 164, 165], dissipative variants of quantum
computing and memories [21, 138, 166] and non-equilibrium many-body physics [59, 142, 167].
The experimental combination of both coherent and dissipative evolution allows us to explore
the dynamics of novel classes of non-equilibrium many-body quantum systems.

The dynamics of these systems is often considered as continuous in time, described by many-
body Lindblad master equations, cf. e.g. [168]. This may be conceived as a special instance
of a more general setting, where a discrete time evolution of a system’s reduced density ma-
trix is generated by concatenated dynamical maps. So far, the concept of dynamical maps has
proven useful for the description of periodically driven classical nonlinear systems [169], and
their quantum mechanical counterparts, such as the kicked rotor, providing one of the paradig-
matic models of quantum chaos [170–172]. Remarkable experiments have been performed with
periodically driven systems of cold atoms, which have demonstrated some of the basic phenom-
ena of quantum chaos such as dynamical localization [173–176]. At present all these studies are
on the level of single particle physics.

Below we present a first experimental study of many-particle open-system dynamical maps for
complex spin models (representing hardcore bosons), implemented in a linear ion-trap quantum
computing architecture using up to five ions. The dynamical maps are realized by a digital
simulation strategy, contrasting analog Hamiltonian quantum simulation with trapped ions [151–
153, 177, 178]. Our study of new physical phenomena, involving the competition between
coherent and dissipative multi-particle dynamics, is enabled by recent progress in performing
high-fidelity quantum operations in systems of trapped ions. This allows us not only to engineer
(program) complex individual dynamical maps, but provides the high fidelities required to iterate
dynamical maps in a meaningful way to follow the time evolution for multiple iterated maps,
and thus to observe for the first time the novel physics associated with the competition between
coherent and dissipative dynamics.

In particular, we demonstrate the purely dissipative creation of quantum mechanical long-range
phase order. Furthermore, we implement a competition between coherent and dissipative many-
particle dynamics by alternating sequences of unitary and non-unitary maps outlined in Fig. 4.3a,
and observe the destruction of phase coherence as a result. This reflects the hallmark feature of a
strong coupling non-equilibrium phase transition predicted in a closely related driven-dissipative
model of bosons [121]. In the actual implementation of the simulation, the engineered dissipa-
tive and coherent dynamics compete with undesired dissipative processes mainly caused by
imperfect gate operations. We address this generic, though so far widely disregarded aspect, by
carefully assessing the experimental errors. As a step towards solving this problem, we develop
a novel and efficient special purpose error reduction technique.
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Figure 4.7 (following page): Competing dissipative and Hamiltonian dynamical maps in the
spin or hardcore boson model. a, Dynamical maps, acting on
the reduced density matrix ρ of an open many-body quantum sys-
tem, can be composed of elementary (i) dissipative and (ii) unitary
maps. The dissipative maps considered here drive the system into
a pure, long-range ordered many-body “dark” state ρD = |ψ〉D〈ψ|.
The addition of suitable Hamiltonian maps leads to a competition
of dissipative and coherent dynamics, in such a way that for strong
enough coherent interactions, a phase transition into a mixed, dis-
ordered state results in large systems. b, Analogy of spins and
hardcore bosons, in turn equivalent to bosons in the limit of low
lattice filling (cf. Methods): In the considered open-system spin-
1/2 (hardcore boson) lattice model, spin excitations |↑〉 (|↓〉) can be
identified with occupied (empty) lattices sites. Quasi-local dissipa-
tive maps Di,i+1 acting on neighboring pairs of spins lead to delo-
calization of spin excitations (hardcore bosons) over pairs of lattice
sites. Competing coherent dynamics is realized by unitary maps
corresponding to interactions of spin excitations (hardcore bosons)
located on neighboring lattice sites Uj,j+1. c, Numerically simu-
lated dynamics for an open-boundary chain of N = 10 spins, start-
ing in an initial state containing m = 3 spin excitations (hardcore
bosons) (see appendix section B.4.2). Time evolution is realized by
sequentially applying composite maps consisting of (i) dissipative
and (ii) coherent elementary dynamical maps, as shown in a. For
vanishing Hamiltonian interactions, perfect long-range order (as
measured by the overlap fidelity with the Dicke state |D(m,N)〉)
is built up by the sequential application of dissipative maps (white),
whereas increasing competing interactions (from yellow to red)
lead to a decrease in the dissipatively created long-range order. The
lower part of the figure shows a zoom into the composite maps 14
to 18, resolving that each of them is built up from 9 two-spin ele-
mentary dissipative maps, followed by 9 two-spin coherent maps,
the latter which can be realized by a single, global unitary map
in our setting. d, Illustration of the generic effect of experimental
errors affecting the quantum simulation. The sketched plane corre-
sponds to the simulation subspace with a given, ideally conserved
hardcore boson (spin excitation) numberm. Experimental errors in
the implementation of dynamical maps lead to population leakage
of the system out of the desired subspace.
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4.3.1. Competing dissipative and unitary dynamics in a complex
spin model

Two competing, non-commuting contributions to a Hamiltonian give rise to a quantum phase
transition, if the respective ground states of each contribution separately favor states with differ-
ent symmetries [179]. The transition takes place at a critical value of the dimensionless ratio g of
the two competing energy scales. A non-equilibrium analog can be achieved in open many-body
quantum systems, where coherent Hamiltonian and dissipative dynamics compete with each
other: The role of the ground state is played by the stationary state of the combined evolution,
and the dimensionless ratio g is provided by a Hamiltonian energy scale vs. a dissipative rate.
Such a situation has been addressed previously theoretically in the context of driven-dissipative
dynamics of atomic bosons on a lattice [121]: A dissipative dynamics can be devised to drive
the system from an arbitrary initial state with density matrix ρin into a Bose-Einstein condensate
with long-range phase coherence as the unique, pure “dark” state |ψ〉D of the dissipative evolu-
tion, i.e. ρin → ρD = |ψ〉D〈ψ| for long enough waiting time. Supplementing this dynamics with
a Hamiltonian representing local interactions, being incompatible with the dissipative tendency
to delocalize the bosons, gives rise to a strong coupling dynamical phase transition. It shares
features of a quantum phase transition in that it is driven by the competition of non-commuting
quantum mechanical operators, and a classical one in that the ordered phase terminates in a
strongly mixed state.

In our experiment, we consider analogous open-system dynamics of a quantum spin-1/2 – or
hardcore boson – model, realized with trapped ions. A schematic overview of the relation of the
ionic spin- and the atomic boson model is given in Fig. 4.3b, whereas a more detailed descrip-
tion is provided in Methods and (see appendix section B.4.2). The discrete time evolution is
generated by sequences of dynamical or Kraus maps E (l) acting on the system’s reduced density
matrix ρ as illustrated in Fig. 4.3a, with time steps t` → t`+1 represented by

ρ(t`) 7→ ρ(t`+1) = E (l)[ρ(t`)] =
K∑
k=1

E
(l)
k ρ(t`)E

(l)†
k . (4.4)

The set of Kraus operators {E(l)
k } satisfies

∑K
k=1E

(l)†
k E

(l)
k = 1 [30]. While the familiar se-

quences of unitary maps are obtained for a single Kraus operator K = 1, dissipative dynamics
corresponds to multiple Kraus operators K > 1. In particular, the continuous time evolution
of a Lindblad master equation is recovered in the limit of infinitesimal time steps, cf. Methods.
The dissipative dynamics studied in our spin model is governed by dynamical maps according
to two-body Kraus operators acting on pairs of neighboring spins i, i+ 1:

Ei,1 = ci, Ei,2 = 1− c†ici. (4.5)

The elementary operators generating the dynamics are given by

ci = (σ+
i + σ+

i+1)(σ−i − σ−i+1), (4.6)

where σ±i = (σxi ± iσyi )/2 are spin-1/2 raising and lowering operators acting on spin i. In the
continuous time limit, the operators ci correspond precisely to Lindblad quantum jump opera-
tors and generate a dissipative evolution described by a quantum master equation, cf. Methods.
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The operators act bi-locally on pairs of spins, as visualized in Fig. 4.3b: Physically, they map
any antisymmetric component in the wave function on a pair of sites into the symmetric one, or
– in the language of hardcore bosons – symmetrically delocalize particles over pairs of neigh-
boring sites. Since this process takes place on each pair of neighboring sites, eventually only the
symmetric superposition of spin excitations over the whole array persists as the stationary state
of the evolution: Iteration of the dissipative dynamical map attracts the system towards a unique
dynamical fixed point, or dark state, characterized by ρ(t`+1) = ρ(t`) ≡ ρD, resulting from the
property ciρD = 0 for all i separately. More specifically, for m spin excitations initially present
in the array of N spins, this pure dark state is given by the Dicke state

|ψ〉D = |D(m,N)〉 ∼
( N∑
i=1

σ+
i

)m
|↓〉⊗N (4.7)

with m collective spin excitations. The delocalization of the spin excitations over the whole
array gives rise to the creation of entanglement and quantum mechanical off-diagonal long range
order, witnessed, e.g., by the single-particle correlations 〈σ+

i σ
−
j 〉 6= 0 for |i − j| → ∞ (see

appendix section B.4.3).

In our interacting lattice spin system, competing unitary dynamics can be achieved by the stro-
boscopic realization of coherent maps ρ(t`) 7→ ρ(t`+1) = Uρ(t`)U

† with U = exp(−iφH)
according to the dimensionless spin Hamiltonian

H =
∑
i

|↑〉〈↑ |i ⊗ |↑〉〈↑ |i+1 =
∑
i

(1 + σzi )(1 + σzi+1)/4. (4.8)

The bi-local terms of the Hamiltonian describe interactions of spin excitations or hardcore
bosons located on neighboring sites (see Fig. 4.3a). The competition between dissipative and
unitary dynamics arises since the dissipative dark states ρD are not eigenstates of the Hamilto-
nian, which is diagonal in Fock space and thus leads to a dephasing of the dissipatively induced
off-diagonal order. The strength of the competition between the Hamiltonian and dissipative dy-
namics is determined by the parameter φ ∈ [0, π] and plays a role analogous to a dimensionless
ratio of energy scales in a quantum phase transition, or of an energy scale and a dissipative rate
in the above scenario (see Methods). Clearly, for small system sizes, the sharp transition found
in the thermodynamic limit is replaced by a smooth crossover as indicated in the numerical
simulations in Fig. 4.3c.

Whereas under ideal dynamical coherent and dissipative maps, the total spin excitation (or hard-
core boson) number m is a conserved quantity, the presence of experimental errors leads to a
population leakage out of the initial subspace with m0 excitations (see Fig. 4.3d). Thus, even
under the repeated application of almost ideal dissipative dynamical maps the system of N sites
is ultimately driven into the steady state

ρ =
1

2N

N∑
m=0

(
N
m

)
|D(m,N)〉〈D(m,N)| . (4.9)

This steady state, representing an incoherent mixture of Dicke states, each appearing according
to its microcanonical statistical weight, is independent of the initial state and excitation number
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m0, and an expected mean filling of 〈m〉/N = 1/2 (see appendix section B.4.3). This generic
effect imposes a major obstacle of a controlled study of systems at small and high excitation
number (hardcore boson) densities, and motivates us to develop and implement a quantum-
feedback error correction to counteract this effect.

We note that many of the theoretical aspects of the long time evolution of dynamical maps in
many particle physics, such as the question of dynamical phase transitions are presently unex-
plored. In addition, the present experimental study emphasizes the importance of understanding
the role of imperfections in this dynamics.
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4.3.2. Experimental realization

The simulation is performed with 40Ca+ ions, confined to a string by a macroscopic linear Paul
trap (see appendix section B.4.1). Each ion hosts a qubit or spin-1/2, which is encoded in the
4S1/2(m = −1/2) = |1〉 ≡ | ↑〉 and the 3D5/2(m = −1/2) = |0〉 ≡ | ↓〉 states. The
backbone of this digital quantum simulator setup is a universal set of high-fidelity operations,
which are realized by exactly timed laser pulses resonant with the qubit transition (see appendix
sectionB.4.1). The entangling gate operations [148] act on the entire ion string, but the ele-
mentary dissipative maps Di,i+1 act on only two of the N system spins (Fig. 4.8a). We achieve
operations on subsets of ions via decoupling all ions not involved in the elementary map, by
shelving their population into additional storage states (Fig. 4.8b). In these electronic states,
these ions are effectively “inactive” as they do not interact with the globally applied laser beams.
This novel spectroscopic decoupling technique is experimentally simpler than physically mov-
ing the ions with respect to the laser beam [57]. This technique has the potential to simplify the
architecture of ion traps used for quantum simulation and quantum computing.

To observe the complex dynamics of the open interacting spin system, we combine these exper-
imental techniques (i) to generate long-range phase coherence of spins by an iteration of purely
dissipative maps, (ii) to combine these dissipative dynamics with competing coherent maps,
(iii) and finally to implement quantum non-demolition (QND) readout and quantum-feedback
protocols for error detection and stabilization.

(i) The basis of the composite maps is a single elementary dissipative map Di,i+1 that is imple-
mented by a quantum circuit of coherent gate operations and addressed optical pumping (see
Fig. 4.8c), acting on the two currently active ions i, i + 1 and an ancillary qubit, which is used
to engineer the coupling to the environment [19, 62, 143]. The circuit decomposition of the
three-qubit unitary underlying a single elementary dissipative map, is obtained from an optimal
control algorithm (see appendix section B.4.1), resulting in a sequence of 17 operations contain-
ing 4 entangling gates. We have characterized a single elementary dissipative map by quantum
process tomography on the two system qubits leading to a mean state fidelity of 68(1)%, which
approximately corresponds to an average fidelity of over 98% per gate operation (see appendix
section B.4.2). Due to the considerable complexity of the gate sequence, errors occur in different
bases and are expected to average out and give rise to depolarizing noise without any preferred
direction. Therefore, the actual implemented dynamics can be modeled as a combination of the
ideal, tailored dissipative map and the depolarizing noise channel. Detailed numerical simula-
tions show that the error is mainly caused by laser frequency and magnetic field fluctuations (see
appendix section B.4.3).

We repeatedly apply such elementary maps Di,i+1, interspersed with decoupling pulses to co-
herently transfer ions in and out from the storage states, to build up the composite dissipative
map in a modular way, Fig. 4.8a. Using 3+1 ions, we studied pumping towards Dicke states
in a three-spin chain with open boundary conditions, where we applied up to three simulation
timesteps, each consisting of the two elementary maps D1,2 and D2,3. The results displayed in
Fig. 4.9a show a clear experimental signature of dissipatively induced delocalization of the spin
excitations during the application of the first two elementary dissipative maps, before experi-
mental imperfections become dominant for longer sequences.
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Figure 4.8.: Experimental procedure to implement open-system dynamical maps. a,
Schematic overview of the experimental implementation of a composite dynamical
map consisting of (i) multiple elementary dissipative maps, (ii) coherent competi-
tion, and (iii) error detection and correction. Decoupled ions are represented as gray
bullets and decoupling (re-coupling) operations as gray (blue) squares. b, Scheme
for decoupling ions from the interaction with the manipulating light fields: (i) shelve
population from 4S1/2(m = −1/2) = |↑〉 to 3D5/2(m = −5/2), (ii) transfer the
population from 3D5/2(m = −1/2) = |↓〉 to 4S1/2(m = +1/2), and subsequently
to (iii) 3D5/2(m = −3/2). c, A single dissipative element is realized using two sys-
tem spins and one ancilla qubit (|0〉 ≡ |↓〉,|1〉 ≡ |↑〉) by (i) mapping the information
whether the system is in the symmetric or antisymmetric subspace onto the logical
states |1〉 or |0〉 of the ancilla, respectively; (ii) mapping the antisymmetric onto the
symmetric state using a controlled phase flip conditioned by the state of the ancilla
qubit; and finally (iii) reinitialization of the ancilla qubit via optical pumping using
the 42P1/2 state (see appendix section B.4.1). d, Schematic view of the competing
interaction consisting of quasi-local unitary maps Uj,j+1.
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Figure 4.9.: Experimental results of dissipatively induced delocalization through composite
dynamical maps with 3+1 ions. The results from an ideal model are shown in light-
blue bars whereas those from a model including depolarization noise are indicated
by dark-grey bars. Blue rectangles indicate the experimentally observed dynamics
without any correction scheme whereas red diamonds include a post-selective error
detection scheme (error bars, 1σ). a, Dissipative pumping into a three-spin Dicke
state: Starting in an initial product state with two localized spin excitations | ↑↓↑〉,
the application of the first two elementary dissipative maps leads to an increase in
the delocalization of the two excitations over the spin chain, which is reflected by
an increasing state overlap fidelity with the three-spin Dicke state |D(2, 3)〉. How-
ever, after applying a second and a third composite dissipative map, a decrease in
the state overlap fidelity sets in and becomes dominant for long sequences of dy-
namical maps. b, The presence of depolarizing noise results in population leakage
out of the initial subspace with m = 2 spin excitations. This effect is evident in the
decay of the probability of finding the three-spin system in the m = 2 excitations
subspace as a function of the number of applied elementary dissipative maps. A
single composite dissipative map is indicated by a yellow bar.
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Figure 4.10.: Experimental results for competing dissipative and coherent dynamics with
3+1 and 4+1 ions. As in Fig. 4.9, the results from an ideal model are shown in
light-blue bars whereas those from a model including depolarization noise are in-
dicated by dark-grey bars. Blue rectangles indicate the experimentally observed
dynamics without any correction scheme whereas red diamonds include a post-
selective error detection scheme (error bars, 1σ). The application of dissipative
(coherent) maps is indicated by yellow (red) bars. Competing dissipative and co-
herent dynamics for m = 2 excitations in chains of a, N = 3 and b, N = 4
spins: the spin chains are first driven towards the Dicke-type dark state by the two
and three elementary dissipative maps for a system of 3 and 4 spins. The subse-
quent application of the non-compatible unitary dynamical maps leads to a strong
decrease of the overlap with the respective Dicke states, before subsequent ele-
mentary dissipative maps again start to pump the system back towards the Dicke
states.

(ii) To investigate the competition between dissipative and competing Hamiltonian dynamics,
we added elementary unitary maps according to nearest-neighbor spin-spin interactions to the
composite dynamical maps (see appendix section B.4.2). Note that due to the commutativity
of the two-spin elementary unitary maps, the composite, globally acting unitary map can be
realized by a single unitary sequence (Fig. 4.8d). The results displayed in Fig. 4.10 for experi-
ments with 3+1 and 4+1 ions show a clear fingerprint of incompatible Hamiltonian dynamics,
which competes with the dissipative maps driving the spin chains towards the Dicke states. Fur-
ther measurements with varying excitation number and competition strength are discussed (see
appendix section B.4.7).

(iii) To reduce the detrimental effect of the experimental imperfections and thus to enable the
implementation of longer sequences of dynamical maps, we developed and implemented two
counter-strategies (see Fig. 4.3.2 for details). In a first approach we applied a quantum non-
demolition (QND) measurement of the spin excitation number at the end of the sequence of dy-
namical maps, which allowed us to detect and discard experimental runs with a final erroneous
excitation number and thereby improve the overall simulation accuracy. This global measure-
ment is QND in the sense that only information about the total number of excitations, but not on
their individual spatial locations along the chain is acquired; thus the simulation subspace is not
disturbed (see appendix section B.4.5). The results shown in Fig. 4.9 and Fig. 4.10 confirm that
the errors in the spin excitation number are strongly suppressed and a reasonable overlap with
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the ideal evolution can be maintained for more simulation time steps.

Figure 4.11 (following page): Experimental error detection and reduction techniques. a,
Numerical simulation of the time evolution consisting of com-
posite dynamical maps building up long-range order quantified by
overlap fidelity with the Dicke state |D(m,N)〉, starting in an ini-
tial state containing m = 3 spin excitations on an open-boundary
chain of N = 10 spins. The simulation was performed for (i)
ideal operations without experimental imperfections, (ii) a model
including experimental errors, (iii) a model including errors but
with the stabilization scheme. The lower part depicts the expected
excitation distribution of the time evolution demonstrating that the
stabilization keeps the system in the correct excitation subspace.
b, Schematic idea and quantum circuit for a post-selective QND
measurement of the total spin excitation number: First the infor-
mation whether the N system spins are (not) in the subspace with
m spin excitations or not is mapped coherently onto the logical
state |1〉 (|0〉) of an ancillary qubit. A subsequent projective mea-
surement of the latter indicates the presence of an erroneous ex-
citation number, in which case the experimental run is discarded.
c, Active QND feedback scheme to stabilize the spin system in a
desired excitation number subspace by actively extracting (inject-
ing) spin excitations in case errors in previous dynamical maps
have led to a larger (smaller) excitation number than present ini-
tially. The information whether more excitations than the desired
value are present in the system (or not) is coherently mapped onto
the state |1〉 (|0〉) of the ancilla qubit. A non-unitary controlled-
operation, only active for the ancilla qubit in |1〉, then extracts
in a minimally destructive way one spin excitation from the sys-
tem and automatically stops once this is achieved. d, Experimen-
tal demonstration of the stabilization protocol for m0 = 1 us-
ing 3+1 ions by applying the excitation removal to an initial state
consisting of an equal superposition of all computational states,
|ψ0〉 = 1/

√
8(| ↓〉+ | ↑〉)⊗3. Here, a single spin excitation should

be removed if two or more excitations are present in the system
(blue bars). Thus, pumping from the m = 3 into the m = 2 and
from the m = 2 into the m = 1 subspace is expected, whereas
population initially present in the m = 0 and m = 1 subspaces
should be left untouched. The correct populations after the ap-
plication of the excitation removal protocol are confirmed by the
measured data (blue rectangles) which are close to the ideally ex-
pected behavior (colored bars). Data error bars are smaller than
the markers.
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Complementary to this post-selective method, we introduced a more powerful, active QND feed-
back scheme, which bears similarities to quantum feedback protocols as realized with photons
in a cavity [180]. The key idea is to actively stabilize the spin system during the sequence of
dynamical maps in a subspace with a particular spin excitation (or hardcore boson) number. In
order to be able to perform this stabilization with a single ancilla qubit, we break the stabiliza-
tion process into two independent parts, where the first part removes one excitation if there are
too many excitations in the system, and the second part adds one excitation if needed. Similarly
to the post-selective technique presented above, first the information whether there are too many
(few) excitations in the system is coherently mapped onto the ancilla qubit. Depending on the
state of the ancilla qubit, a single excitation is removed from (injected into) the system by a
quantum feedback protocol. This extraction (injection) is in general an ambiguous process, as
the excitation can be removed (injected) on multiple sites. We use a scheme that tries to perform
the removal (injection) subsequently on each site and stops once it was successful. Using only
a single ancilla qubit, this process cannot be performed efficiently as a unitary process, there-
fore we developed a technique making use of the resetting and decoupling techniques described
above (see appendix section B.4.6).

We demonstrate the excitation removal for a chain of 3+1 spins, initially prepared in an equal
superposition of all basis states, as shown in Fig. 4.9c. At the current level of experimental ac-
curacy, the implementation of this stabilization scheme cannot improve the performance when
used in the full simulation sequence (see appendix section B.4.6). We emphasize, however, that
our approach relies only on a single ancillary qubit, regardless of the system size. More gener-
ally, such customized error detection and reduction strategies will incur a substantially reduced
resource overhead as compared with full-fledged quantum error correction protocols. We show-
cased a novel error management technique consisting of theoretical modeling of the errors, as
well as designing system specific error reduction techniques. For the simulation of large systems
it will be imperative to develop and understand sophisticated error models. Furthermore, we ex-
pect our experimental observations on the interplay of engineered and detrimental dissipation to
stimulate theoretical research on the fundamental issue of robustness of (dynamical) many-body
phenomena in open quantum systems in the presence of noise - similar to the persistence of
quantum phases at finite as compared to zero temperature in Hamiltonian systems.

4.3.3. Methods

Dynamical maps vs. quantum master equation. The dissipative Kraus maps specified in
equation (4.5) are obtained as a special case of the operators Ei,1 = sin θci, Ei,2 = 1 + (cos θ −
1)c†ici, for θ = π/2. This limit corresponds to a deterministic action of the Kraus map (see
appendix section B.4.2), in this case generating truly stroboscopic dynamics. Instead, in the limit
θ → 0, we approximate Ei,1 ≈ θci, Ei,2 ≈ 1− 1

2
θ2c†ici. In this limit, the sequence of dynamical

maps reduces to the continuous time evolution described by a quantum master equation entirely
generated by a dissipative Liouville operator, L[ρ] =

∑
i

(
ciρc

†
i − 1

2
{c†ici, ρ}

)
[30]. Similarly,

the Hamiltonian Kraus map can be expanded, exp(−iφH) ≈ 1− iφH for φ→ 0. The dynamics
in this continuum limit is then described by the quantum master equation ∂tρ = −i[UH, ρ] +
κL[ρ], with the dimensionful energy scale U (Udt = φ) and dissipative rate κ (κdt = θ2).
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Here, dt is the physical time required for the implementation of one Kraus map in the digital
simulation. The dimensionless ratio describing the competition g = U/κ = φ/θ2 remains well-
defined in this limit. We finally note that a temporal coarse graining implemented by averaging
over a sequence of elementary maps with even larger discrete mapping steps gives rise to a
quasi-continuous evolution, as shown numerically in Fig. 4.3c. In a large system, the quasilocal
operations can be coarse grained also over space. The result is an effective quasi-continuous
master equation dynamics for the density operator.

Atomic boson vs. ionic spin model. The dissipative spin operators ci of equation (4.6) are
constructed in complete analogy to the case of bosons, which has been proposed theoretically
in [59]: Formally, and as further detailed in (see appendix section B.4.2), they obtain by replac-
ing the spin raising (lowering) operators σ+

i (σ−i ) by bosonic creation (annihilation) operators
a†i (ai) of atoms confined to an optical lattice. In that case, the dark state is given by m symmet-

rically delocalized particles on N lattice sites, i.e. |ψ〉D = (m!)−1/2
(∑N

i=1 a
†
i

)m
|0〉⊗N – the

Dicke dark states of the spin model are replaced by a fixed number Bose-Einstein condensate
(the bosonic vacuum state is defined by ai|0〉⊗N = 0 for all i). Using the Holstein-Primakoff
representation of spin 1/2 operators in terms of bosons, σ+

i = a†i
√

1− n̂i (n̂i = a†iai), it is
seen that the dissipative spin operators reduce to their bosonic counterpart in the limit of small
average occupation n̄ = 〈n̂i〉 � 1, where the square root can be safely replaced by one.
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5. Summary and outlook

This work summarized several proof of concept experiments towards a quantum information
processor beyond coherent operations. First a toolbox beyond a universal set of operations was
developed to implement both, coherent and incoherent, dynamics on a register of qubits.

This toolbox was used to implement the first experimental realization of repetitive quantum er-
ror correction. This is an important milestone towards a quantum computer because it requires
high quality coherent operations in addition to a technique to remove entropy from the sys-
tem. The three qubit error correction algorithm represents furthermore an ideal benchmark for
different implementations of a quantum computer. Recently, the same algorithm has been imple-
mented in a quantum information processor based on superconducting qubits with comparable
fidelity [181]. The implementation of multiple rounds of quantum error correction procedures
has not been repeated in any other physical system and thus our work emphasizes the feasibility
of a trapped ion quantum computer.

Another addition to our toolbox is the in-sequence recooling technique which allows us to per-
form measurements during an algorithm. This technique enabled the reversal of a quantum
measurement with the aid of the quantum error correction protocol. We have also demonstrated
that these techniques are useful tools towards a scalable and efficient implementation of an order
finding algorithm in an ion trap following the ideas of Kitaev. There, measurements during the
algorithm are used to perform the required quantum Fourier transform semiclassically and this
reduces the number of required qubits considerably.

Besides quantum computing, well controllable quantum systems can also be used for the simula-
tion of quantum system which has gained a lot of interest lately. In our lab, a universal coherent
quantum simulator has been demonstrated recently [24]. The concept of simulating quantum
systems was then extended towards open systems, where in a first proof of concept experiment,
a complete toolbox to simulate any arbitrary Markovian system was realized. For the first time,
a dissipative process with an entangled state as its unique dark state was realized. This toolbox
was then used to simulate the complex dissipative dynamics of a many-body bosonic system in
an ion trap. In particular, the hallmark features of competition between coherent and dissipative
many-body dynamics have been observed. For a large system, this competition should yield
a novel non-equilibrium phase transition which shares features of both classical and quantum
phase transitions.

Future ion trap quantum simulators will certainly try to increase the system size in analog quan-
tum emulators to a level where classical computers cannot reproduce the results. These achieve-
ments will be likely criticized as they are not believed to be faithful, which means that the effect
of the experimental errors on the simulation results cannot be quantified reliably. Therefore, er-
ror detection and reduction procedures will be required, but the overhead of full quantum error
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5. Summary and outlook

correction protocols will be likely too large so that these techniques are not able to improve the
actual simulation. Therefore it is necessary to develop error reduction methods with significantly
less overhead. We took a first step in this direction for the boson simulation where we developed
an error reduction scheme that requires only a single auxiliary qubit independent of the system
size. This scheme can be interpreted as a feedback loop that keeps the system inside the simula-
tion subspace. Although we were not able to show an improvement in the actual simulation, the
required quality of operations for an improvement is in the reach of today’s technology.

Anyway, a fault tolerant quantum computer needs to be the long-term goal of our efforts in ex-
perimental quantum information processing. I envision, that further experimental analysis of
quantum error correction techniques will converge with the process of developing more efficient
error correction algorithms. Ideally, this will lead to a feedback process where the next gener-
ation of quantum computer hardware is being designed to yield optimal results for the refined
error correction procedures.
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B.1. A quantum information processor with trapped
ions

In the following, tables containing the sequences operations for the presented algorithms are
shown.

Number Pulse Number Pulse
1 S

(1)
z (1.5π) 11 MS1.5π(0.5π)

2 Rπ(1.5π) 12 S
(3)
z (1.75π, 2)

3 MSπ(0.25) 13 MS2.25π(0.5π)

4 S
(2)
z (π) 14 R1.75π(0.5π)

5 MSπ(0.875π) 15 R2.25π(0.5π)

6 S
(3)
z (π) 16 MS2.25π(0.25π)

7 MSπ(0.125π) 17 S
(3)
z (1.5π)

8 S
(3)
z (π) 18 S

(2)
z (1.0π)

9 R0.5π(0.5π) 19 R2.25π(0.5π)

10 S
(3)
z (0.5π)

Table B.1.: Sequence of operations for the algorithm used for an open system quantum simula-
tor [90].

Number Pulse Number Pulse
1 Rπ(π/2) 10 Rπ/2(3π/16)

2 S
(2)
z (π) 11 S

(2)
z (3π/2)

3 S
(3)
z (π/2) 12 Rπ/2(π/4)

4 MSπ/2(π/8) 13 MSπ/2(π/8)

5 S
(3)
z (π) 14 S

(3)
z (π)

6 MSπ/2(π/16) 15 MSπ/2(π/8)

7 R−π/2(π/2) 16 S
(1)
z (π/2)

8 S
(2)
z (π) 17 S

(2)
z (π)

9 MSπ/2(3π/16) 18 Rπ(π/2)

Table B.2.: Sequence of operations for the fully coherent QFT operation on three qubits.
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Number Pulse Number Pulse
1 Rπ/2(π/2) 7 MS0(π/4)

2 S
(3)
z (7π/4) 8 S

(3)
z (3π/2)

3 MS0(π/2) 9 MS0(π/2)
4 Rπ(π/2) 10 R−π(π/2)

5 S
(3)
z (π/2) 11 R−π/2(π/2)

6 Rπ(π/4)

Table B.3.: Sequence of the controlled π1(y) permutation operation.

Number Pulse Number Pulse
1 Rπ(π/2) 5 MS0(π/4)

2 S
(1)
z (3π/2) 6 S

(1)
z (3π/2)

3 MS0(π/2) 7 Rπ(π/2)

4 Rπ(π/2) 8 S
(2)
z (π)

Table B.4.: Sequence of the controlled π2(y) permutation operation.

Number Pulse Number Pulse
1 S

(3)
z (π/2) 13 S

(2)
z (π/2)

2 Rπ(3π/2) 14 S
(3)
z (3π/2)

3 S
(3)
z (π/2) 15 MS0(3π/4)

4 MS0(π/4) 16 R−π/2(0.196π)

5 R−π(5π/2) 17 S
(2)
z (2π/3)

6 S
(1)
z (3π/2) 18 Rπ/2(0.196π)

7 Rπ(π/2) 19 Rπ(π/4)
8 Rπ/2(π/4) 20 MS0(π/2)

9 S
(2)
z (π) 21 S

(2)
z (7π/4)

10 Rπ/2(π/4) 22 Rπ/2(π/2)

11 MS0(π/2) 23 S
(1)
z (π/2)

12 S
(1)
z (π)

Table B.5.: Sequence of the controlled π3(y) permutation operation.
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Number Pulse Number Pulse
1 Rπ/2(π/2) 10 S

(2)
z (3π/2)

2 S
(2)
z (π/4) 11 MS0(π/2)

3 R−π(π/2) 12 S
(3)
z (3π/2)

4 MS0(π/2) 13 Rπ(π/4)

5 S
(2)
z (3π/2) 14 MS0(π/4)

6 MS0(3π/4) 15 S
(1)
z (3π/2)

7 Rπ(π/4) 16 S
(2)
z (3π/2)

8 S
(3)
z (π/4) 17 R−π(π/2)

9 Rπ(π/2)

Table B.6.: Sequence of the controlled π2
3(y) permutation operation.

Number Pulse Number Pulse
1 R−π(π/2) 13 R−π/2(0.196π)

2 Rπ/2(π) 14 S
(1)
z (4π/3)

3 S
(1)
z (3π/2) 15 S

(3)
z (1.905π)

4 MS0(7π/8) 16 Rπ/2(0.196π)

5 S
(3)
z (π) 17 R−π(π/4)

6 MS0(π/8) 18 R−π/2(π/2)
7 Rπ/2(π/2) 19 MS0(π/2)

8 R−π(3π/2) 20 S
(2)
z (π/3)

9 S
(1)
z (3π/2) 21 MS0(π/2)

10 S
(2)
z (π/2) 22 S

(3)
z (1.905π)

11 MS0(3π/4) 23 Rπ/2(π/2)

12 S
(3)
z (1.33π) 24 S

(3)
z (7π/4)

Table B.7.: Sequence of the controlled π4(y) permutation operation.
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Number Pulse Number Pulse
1 Rπ(π/2) 6 Rπ(π/4)

2 S
(1)
z (3π/2) 7 MS0(π/4)

3 MS0(π/4) 8 S
(1)
z (3π/2)

4 Rπ(π/4) 9 Rπ(π/2)

5 S
(2)
z (π) 10 S

(2)
z (π)

1 R−π(π/2) 13 R−π/2(0.196π)

2 Rπ/2(π) 14 S
(1)
z (4π/3)

3 S
(1)
z (3π/2) 15 S

(3)
z (1.905π)

4 MS0(7π/8) 16 Rπ/2(0.196π)

5 S
(3)
z (π) 17 R−π(π/4)

6 MS0(π/8) 18 R−π/2(π/2)
7 Rπ/2(π/2) 19 MS0(π/2)

8 R−π(3π/2) 20 S
(2)
z (π/3)

9 S
(1)
z (3π/2) 21 MS0(π/2)

10 S
(2)
z (π/2) 22 S

(3)
z (1.905π)

11 MS0(3π/4) 23 Rπ/2(π/2)

12 S
(3)
z (1.33π) 24 S

(3)
z (7π/4)

Table B.8.: Sequence of the controlled π2
4(y) permutation operation.
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B.2. Experimental repetitive quantum error correction
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Figure B.1.: Schematic of the experimental setup. The ion string contains one system qubit (ion

1) and two ancillas (ions 2 and 3). In the QEC protocol quantum operations are
performed by addressed and global laser pulses. After each QEC cycle the ancilla
ions are reset by an optical pumping technique.

B.2.1. Process fidelity

Any quantum process acting on a state ρ can be described by a completely positive map E(ρ).
For our three-qubit QEC algorithm it is sufficient to characterize the process experienced by the
system qubit. This process is expressed in an operator sum representation

E(ρ) =
4∑

m,n=1

χmnAmρA
†
n,

where the basis is formed by the single-qubit Pauli operators and the identity operator: {Ai} =
{1, σx, σy, σz}. The process is then completely described by the process matrix χ, which can be
reconstructed from measured data with the help of a maximum likelihood method (4,16).

The reconstructed process matrix is then compared to the ideal process to evaluate the quality
of the implementation. In the case of the QEC algorithm, the ideal process corresponds to
the identity (1ρ1) for the correctable single-qubit errors and σz (σzρσz) for the uncorrectable
two- and three-qubit errors (the majority voting detects the wrong state and effectively induces
a phase flip (4)). A measure of the quality of the implementation is the process fidelity Fproc

which can be directly calculated from the χ matrix as Fproc = Tr(χχid).

This measure does not distinguish between constant operational errors (the wrong operation
is performed) and irreversible decoherence, and is thus not an ideal test for the algorithm. A
benchmark measure which is only susceptible to decoherence but still closely related to the
process fidelity can be generated by maximizing the overlap of the measured process and the
ideal process with the help of unitary single-qubit operations. Applying this unitary with angles
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θx,y,z around the x, y, z axis leads to a rotated process matrix

χθx,θy ,θz =
( ∏
j={x,y,z}

eiθjΣj
)
χ
( ∏
j={x,y,z}

eiθjΣj
)†
.

where Σj are maps corresponding to the rotation axes. The optimization procedure maximizes
then the process fidelity: Fopt = Tr(χidχ

θx,θy ,θz).

B.2.2. Gate errors and infidelities

As discussed above, the performance of any quantum process is faithfully given by the process
fidelity. In general, a full quantum process tomography (QPT) is necessary to determine this
quantity. For the QPT to produce meaningful results, the quality of the operations which are
needed for the tomography need to be considerable higher than the quality of the process under
investigation. We believe that the fidelity of our single-qubit operations is Flocal ≈ 99%. For the
entangling gate we determine the fidelity of a generated entangled state only. The fidelity of the
generated Greenberger-Horne-Zeilinger (GHZ) state is FMS ≈ 97% (16). Numerical simulations
indicate that infidelities are mainly caused by phase-fluctuations due to laser-frequency and
magnetic-field fluctuations. One can then naively determine the expected fidelity of the QEC
algorithm by multiplying these state fidelities for each implemented operation:

FQEC = F 4
MS · F 5

local ≈ 84%

The process fidelity of the implemented algorithm is higher than this expected value. This may
be because we are not using the full three-qubit Hilbert space but rather a smaller subspace that
is restricted to the information of a single qubit.

B.2.3. QEC and different noise models

In general, phase noise describes a kind of noise that destroys the coherence of a quantum
state, but does not change its populations. The amount of phase noise on a single qubit can be
described by the phase-flip probability p that reduces the off-diagonal elements of the density
matrix by 1− 2p. For a completely dephasing process, the phase-flip probability is p = 0.5.

The noise of a multi-qubit system can be described by considering the correlations between the
qubits. If the probabilities pn for n simultaneous phase flips are known for a given noise model,
it is straightforward to analyze the performance of the implemented QEC algorithm for this
model. The simplest error model includes uncorrelated noise on all qubits. For the three-qubit
QEC the probabilities pn are then

p0 = (1− p)3

p1 = 3 p (1− p)2

p2 = 3 p2 (1− p)
p3 = p3
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similar to the analysis in Ref. (10) and in chapter 10.3. of Ref. (4). As the QEC algorithm can
correct up to one phase flip, the probability of implementing an identity operation is equal to the
probability that no error or a single error occurs p1 = p0 + p1. For two and three simultaneous
phase flips the majority vote identifies the wrong state so that after the correction cycle the qubit
experiences a phase flip. Such uncorrectable errors occur with probability pz = p2 + p3.

The noise model used above assumes uncorrelated noise on all qubits. On the other hand many
systems, including our experimental setup, show correlated noise on all qubits (16). This error
model leads to an increased probability for two- and three-qubit errors for a given single-qubit
error probability.

This correlated noise process cannot be expressed by phase-flip probabilities pn independent of
the input states. Therefore it is not possible to reconstruct the performance of the algorithm
analogous to the uncorrelated case. Instead, one has to simulate the whole algorithm including
correlated noise. This simulation is split into the three steps: i) encoding, ii) error incidence, and
iii) decoding. First, the input state ρin = |ψin〉〈ψin| with |ψin〉 = (α|0〉q + β|1〉q)⊗|1〉a1⊗|1〉a2

(q being the system qubit, a1 and a2 the ancillas) is mapped by the unitary operation Uenc (as in
figure 3.5c) to the encoded state

ρenc = UencρinU
†
enc.

Then the correlated noise acts as

ρcorr =

∫ ∞
φ=−∞

N (φ,p)Ucorr(φ) ρenc Ucorr(φ)† dφ

where ρcorr is the erroneous state, Ucorr(φ) = eiφSz is a global phase rotation with angle φ and
N (φ,p) is the noise density. Finally, after the decoding stage (with unitary operation Udec as in
figure 3.5c) the decoded state reads

ρdec = Udec ρcorr U
†
dec.

As we reset the ancilla qubits after the correction cycle, we can neglect their states. Mathe-
matically this can be formulated by tracing over both auxiliary qubits so that we reach the final
output state

ρf = Tr2,3(ρdec).

The full process from the input state ρi = Tr2,3(ρin) to the output state ρf can then be written
as

ρf = (1− pz) · 1ρi1 + pz · σzρiσz,
where (1 − pz) is the probability that only correctable errors occur (no error or single-qubit
phase-flip errors) while pz corresponds to the probability for uncorrectable errors (two- or three-
qubit phase flips) in the algorithm. The fidelity of the quantum error correction algorithm is then
the overlap with the identity process, F = 1− pz.
A detailed analysis requires to choose a noise densityN (φ,p), for example the cases of Lorentzian(
NL(φ,p) = p

π
1

p2+φ2

)
and Gaussian

(
NG(φ,p) = 1√

πp
e−φ

2/p2
)

noise distributions. Generally,
the fidelity of the QEC algorithm F = 1− pz(p) will depend on the parameter p which defines
the magnitude of the respective noise. A more accessible parameter is the single-qubit phase-flip
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Figure B.2.: Simulated fidelity of a single QEC cycle in the presence of different noise models.

probability p which is independent of the type of noise and can be directly characterized in the
experiment. This probability p can be defined for the respective noise types by

εsingle(ρi) = (1− p) · 1ρi1 + p · σzρiσz =

∫ ∞
φ=−∞

N (φ,p)Ucorr(φ) ρi Ucorr(φ)†

This equation gives a direct relation between p and p which can then be used to eliminate p.
For correlated Lorentzian noise we then obtain the process fidelity

Fcorr, Lorentz = 1− 3

4
p− 3

4
p2 +

1

2
p3,

and for correlated Gaussian noise

Fcorr, Gauss = 1− 9p2 + 42p3 − 126p4 + 252p5 − 336p6 + 288p7 − 144p8 + 32p9.

In figure B.2 we show the expected fidelity of a perfect QEC cycle in the presence of uncorre-
lated and, correlated noise with a Lorentzian density as well as correlated noise with a Gaussian
density. It is remarkable that for small phase-flip probabilities p, the fidelity decays linearly with
p for correlated Lorentzian noise, whereas it decays quadratically with p for correlated Gaussian
noise.

B.2.4. Implementing noise

The main noise source in our experimental system is correlated phase noise. Thus the system
can be exposed to a controlled amount of this noise by adding a waiting time between the
encoding and the decoding stage. We perform a Ramsey type experiment where the second
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Figure B.3.: Single-qubit phase-flip probability p as a function of laser pulse duration to induce
uncorrelated phase noise.

pulse has an opposite phase to the first pulse (corresponding to the pulsesX(π/2) andX(−π/2)
separated by a waiting time). A phase flip is then directly mapped into a bit flip which can be
easily measured. The single-qubit phase-flip probability p is then directly determined via the
single-qubit excitations and the correlated phase-flip probabilities correspond to their respective
bit-flip counterparts. As the noise level in our system fluctuates slowly over time, a frequent
recalibration of the delay time is necessary.

Realizing uncorrelated phase noise requires a different approach. It can be shown that projecting
a state with probability p′ can be interpreted as phase damping with probability p = p′/2 (4).
We realize this measurement by exciting the 3D1/2 ↔ 4P1/2 transition with a short (¡5µs) pulse
resonant with this transition. To avoid population loss to the state |S ′〉 = 4S1/2(m = +1/2)
which is outside the computational subspace, an additional optical pumping step is necessary.
This technique introduces an additional AC Stark shift, which could in principle be measured
and compensated for. In figure B.3 we show the single-qubit error probability as a function
of the excitation duration. It can be seen that a delay time of around 1.6µs is introduced by
electronic and optical components.

B.2.5. Determining noise correlations

It was shown above that the scaling of the fidelity of the QEC implementation changes dramat-
ically with different noise densities. We determined the noise in our experimental setup by di-
rectly measuring pn(p) in a two-qubit system. We use a Ramsey type experiment to measure the
correlations of the phase flip probabilities. As noted above, the single-qubit phase-flip probabil-
ity p is then directly determined via the single-qubit excitations whereas the correlated phase-flip
probabilities pn can be determined via the simultaneous n-qubit excitations. In figure B.4 we

115



B. Supplementary information

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
single error probability p

0.00

0.05

0.10

0.15

0.20

0.25
si

m
u
lta

n
e
o
u
s

p
h

a
se

fli
p
s
p 2

Correlated Lorentzian (theory)

Correlated Gauss (theory)

Uncorrelated (theory)

Experiment Correlated

Experiment Uncorrelated

-

Figure B.4.: Probability of two simultaneous phase flips as a function of single-qubit flip prob-
ability p for different noise sources.

show p2(p) for a two qubit system which allows us to confirm the presence of Gaussian corre-
lated noise. With the same analysis we prove that we are able to engineer uncorrelated phase
noise with the aid of a weak projection.
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B.3. An Open-System Quantum Simulator with Trapped
Ions

B.3.1. Bell-state pumping

Implemented Kraus maps

The Bell state |Ψ−〉 is not only uniquely determined as the simultaneous eigenstate with eigen-
value -1 of the two stabilizer operators X1X2 and Z1Z2 (as mentioned in the text), but also by
X1X2 and Y1Y2. In the experiment, we implemented pumping into |Ψ−〉 by engineering the two
Kraus maps ρS 7→ E1ρSE

†
1 + E2ρSE

†
2 and ρS 7→ E ′1ρSE

′
1
† + E ′2ρSE

′
2
†, where

E1 =
√
p Y1

1

2
(1 +X1X2) , (B.1)

E2 =
1

2
(1−X1X2) +

√
1− p 1

2
(1 +X1X2) (B.2)

E ′1 =
√
pX1

1

2
(1 + Y1Y2) , (B.3)

E ′2 =
1

2
(1− Y1Y2) +

√
1− p 1

2
(1 + Y1Y2) , (B.4)

which generate pumping into the -1 eigenspaces of X1X2 and Y1Y2 (instead of pumping into the
eigenspaces of X1X2 and Z1Z2 as explained in Box 1 of the main text). The reason for pumping
into the eigenspaces of X1X2 and Y1Y2 is that the mapping and unmapping steps, shown as (i)
and (iii) in Box 1, are realized by a single MS gate UX2(π/2) and UY 2(π/2), respectively.

Circuit decomposition

The map for pumping into the -1 eigenspace of X1X2 can be realized by the unitary

UX2(π/2)C(p)UX2(π/2) (B.5)

(corresponding to steps (i) - (iii) in Box 1) followed by optical pumping of the ancilla qubit to
|1〉. Here, the two-qubit controlled gate is

C(p) = |0〉〈0|0 ⊗ exp(iαZ1) + |1〉〈1|0 ⊗ 1

= exp

[
1

2
(1 + Z0)iαZ1

]
= UZ1(−α)UY (π/2)U

(0,1)

X2 (−α)UY (−π/2) (B.6)

where U (0,1)

X2 (−α) = exp(i(α/2)X0X1) denotes an MS gate acting only on the ancilla and the
first system qubit. This two-qubit MS gate operation was implemented in the experiment by
the use of refocusing techniques [33]. In more detail, the gate U (0,1)

X2 was realized by inter-
spersing two of the available three-qubit MS gate operations with single-ion light shifts on the
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second system qubit which induces a π-phase shift between the qubit states. Alternatively, this
refocusing could be avoided, and the sequences further simplified, by hiding the population of
individual ions (here the second system ion) which are not supposed to participate in collective
coherent operations in electronic levels decoupled from the driving laser excitation. More de-
tails on how to systematically decompose Kraus maps into the experimentally available ion-trap
gate operations, in particular the multi-ion MS entangling gate, can be found in [55].

The circuit decompositions for the actual experimental implementation of the two maps are
shown in Fig. B.5. They differ from the two quantum operations, which are specified in Eqs. (B.1)-
(B.4), by two single-ion rotations. They arise since the circuit has been slightly modified (by
changing the phase of one of the global Y -rotations) at the expense of implementing in addi-
tion in each dissipative map a flip operation Y1Y2 on the two system qubits. However, as this
additional unitary corresponds to one of the stabilizers into whose -1 eigenspace the pumping is
performed, this does not interfere with the pumping dynamics.

Pumping with unit pumping probability p = 1 corresponds to α = π/2, whereas p = 0.5 is
realized by setting α = π/4. In the experiment, the ”fundamental” MS gate was calibrated to
implement UX2(α/2). The fully entangling operation UX2(π/2) at the beginning and the end of
the sequence Fig. B.5a was then implemented by applying the UX2(α/2) operation twice (for
p = 1) or four times (for p = 0.5). The fully entangling operations UY 2(π/2) in Fig. B.5b were
implemented by two- and four-fold application of the ”fundamental” MS gate with a shifted
optical phase of the driving laser (cf. Section 4.2.2 in the main text).
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Figure B.5.: Experimental sequences for Bell-state pumping. Pumping into the eigenspaces
of eigenvalue -1 of X1X2 (circuit a,) and Y1Y2 (circuit b,) occurs with a probability
p in each step, where sin2 α = p. The circuit is up to two local rotations equivalent
to the quantum operations specified in Eqs. (B.1)-(B.4).

Towards master equation dynamics

For an implementation of pumping dynamics with small pumping probabilities p� 1, described
by a multi-qubit master equation with two-qubit quantum jump operators, several requirements
have to be met:

From a practical point of view, to reach the desired target Bell state via pumping with small
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pumping probabilities p requires increased gate fidelities as more time steps are needed to come
close to the steady state of the repeated pumping dynamics. This implies that processes, such as
e.g. decay of population into decoupled electronic states, which correspond to “leakage” out of
the logical Hilbert space, have to be kept small after a larger number of gate operations. More
fundamentally, even in the absence of these leakage processes, the errors in the implementation
of the dissipative maps eventually hinder the system from coming arbitrarily close to the target
state. Loosely speaking, one can think of the ideal dissipative dynamics as describing an infinite
set of non-reversible paths along which any initial state is pumped towards the desired target
state. Deviations from the ideal path during the preparation due to implementation errors and
other disturbances then place the system onto points in Hilbert space, which differ from the
ideally expected ones. From there, the system “gets a new chance” and is again attracted towards
the target state under subsequent dissipative operations. However, as the system approaches the
vicinity of the target state, the errors hinder the system from coming closer and closer to the
target state. Here, a balance between pumping towards and repulsion from the target state builds
up, which is closely related to the error level and the chosen pumping probability: here the
pumping rate p for populating the target state competes with the loss processes at a rate ε due to
implementation errors. This competition leads to a steady state infidelity scaling as ∝ ε/p.

In the experiment on Bell state pumping into |Ψ−〉 at a pumping rate p = 0.5, we have carried
out up to three and a half pumping cycles and observed that the two system qubits reached a
maximum overlap fidelity with the target Bell state of 73(1)% after three pumping cycles.

Further experimental details

As mentioned in the main text, fully mixed states of two and four qubits were prepared by a
dissipative process based on optical pumping. First, every system qubit, initially prepared in
|0〉, is coherently transfered to (|0〉+ |S ′〉) /

√
2 via a π/2 laser pulse on the quadrupole transi-

tion, where |S ′〉 is the electronic level S1/2(m = 1/2). Subsequently, optical pumping of the
population in |S ′〉 into |1〉 creates a state where the coherence between the resulting populations
in |0〉 and |1〉 is completely destroyed.

The initial two-qubit mixed state was prepared with a fidelity of F=99.6(3)% with respect to the
ideal state 1

4
14×4.

Physical process matrices were reconstructed with maximum likelihood techniques [34]. An
error analysis was carried out via Monte Carlo simulations over the multinomially distributed
measurement outcomes of the state and process tomography. For each process and state, 200
Monte Carlo samples were generated and reconstructed via maximum-likelihood estimation.

B.3.2. Four-qubit stabilizer pumping

Expectation values of the stabilizer operators Z1Z2, Z2Z3, Z3Z4 and X1X2X3X4 were not de-
termined from the reconstructed density matrices of the system qubits. Instead, we performed
fluorescence measurements in the X and Z basis on 5250 copies of the corresponding quantum
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states (for p = 0.5 pumping, 2100 copies were measured). The error bars were then determined
from the multinomially distributed raw data.

Pumping

Pumping into the GHZ state (|0000〉 + |1111〉)/
√

2 was realized by a pumping cycle where
the four system qubits were deterministically pumped into the +1 eigenspaces of the stabilizers
Z1Z2, Z2Z3, Z3Z4 and X1X2X3X4.

The ideal dissipative Kraus map describing the first three pumping steps into the +1 eigenspace
of Z1Z2, Z2Z3 and Z3Z4 read ρS 7→ E id

ZiZj
(ρS) = E1ρSE

†
1 + E2ρSE

†
2 with

E1 =
1

2
(1 + ZiZj) , (B.7)

E2 =
1

2
Xj (1− ZiZj) , (B.8)

for (i, j = 12, 23, 34). The Kraus maps are constructed such that the +1 eigenspace of ZiZj is
left invariant, whereas a spin flip Xj on the second spin (index j) converts with unit probability
-1 into +1 eigenstates.

The dissipative map for pumping into the +1 eigenspace of, e.g., Z1Z2 could be achieved in
complete analogy with Bell state pumping, i.e. by effectively only implementing operations on
the ancilla qubit and the system qubits #1 and #2, whereas the system qubits #3 and #4 remain
completely unaffected. This could either be achieved through refocusing techniques or by hiding
system ions #3 and #4 in electronically decoupled states for the duration of the dissipative circuit.

In the experiment, however, we used a few simplifications that allowed us to simplify the em-
ployed circuits. These are schematically shown in Fig. B.6 and listed below:

• For deterministic pumping (p = 1), the inverse mapping step (shown in Box 1) is not
necessary and has been taken out.

• In the coherent mapping step (shown in Box 1) the information about whether the sys-
tem ions are in a ±1 eigenstate of Z1Z2 is mapped onto the logical states of the ancilla
qubit. This step ideally only involves the ancilla and the system qubits #1 and #2. One
way to achieve this three-qubit operation without affecting the system qubits #3 and #4,
is to combine the available five-ion MS gate with appropriately chosen refocusing pulses,
i.e. light shift operations on individual ions. Those would have to be chosen such that ions
#0, #1 and #2 become decoupled from ions #3 and #4, and furthermore residual interac-
tions between ions #3 and #4 cancel out. However, it turns out that residual interactions
between ions #3 and #4 can be tolerated: although not required for the Z1Z2-pumping
dynamics, they are not harmful, as they do not alter the expectation values of the other
two-qubit stabilizers Z2Z3 and Z3Z4. In our experiment the decoupling of ions #0, #1 and
#2 from the ions #3 and #4 was achieved by the circuit shown in Fig. B.6b.

The additional interactions in the pumping of the two-qubit stabilizer operators ZiZj af-
fect the state of the system qubits with respect to the four-qubit stabilizer X1X2X3X4.
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Figure B.6.: Pumping into the +1 eigenspace of the Z1Z2 stabilizer operator a, Ideally, only
the ancilla qubit and the two system qubits #1 and #2 are involved in the circuit.
b, An entangling gate acting on these three ions can be achieved by a refocusing
technique, where ions #3 and #4 decouple from the dynamics. However, the latter
ions still become entangled. However, these residual interactions are not harmful to
the pumping, as they do not affect the expectation values of the other two-qubit sta-
bilizer operators. c, Dashed operations in the quantum circuit indicate such residual
entangling operations.

However, this effect is not detrimental to the pumping, provided the pumping into the
eigenspace of X1X2X3X4 is performed as the final step in the pumping cycle.

• In the employed sequence, the number of single-qubit rotations was reduced wherever
possible. Essential single-qubit light shift operations, such as those needed for re-focusing
operations, were kept.

• Local rotations of the system ions at the end of a pumping step, which would be compen-
sated at the beginning of the subsequent pumping step, were omitted when several dissi-
pative maps were applied in a row. The corresponding gate operations of the sequences
are displayed in blue in Steps 1-3.

These simplifications allowed us to significantly reduce the length and complexity of the em-
ployed gate sequences for one stabilizer pumping step. As a consequence, the actual Kraus
map for pumping into the +1 eigenspace of the stabilizer operator Z1Z2 as implemented in the
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experiment is ρS 7→ Eexp
ZiZj

(ρS) = E1ρSE
†
1 + E2ρSE

†
2 with

E1 = X1X2

(
Ã− Z1S̃

)
X2

1

2
(1− Z1Z1) , (B.9)

E2 =

(
X1X2S̃ +

i

2
(X1Y2 + Y1X2) Ã

)
1

2
X2 (1− Z1Z2) , (B.10)

where
S̃ = X3X4 + Y3Y4 and Ã = X3Y4 + Y3X4. (B.11)

This quantum operation differs from the ideal Kraus map specified in Eqs. (B.7) and (B.8) by
combinations of additional simultaneous X and Y -type spin flips on all four system spins. As
explained above, these additional terms do not interfere with the ZiZj pumping dynamics, as
any four-spin operator, which is built up by a product of either X or Y for each of the four spins
commutes with the Z-type two-body stabilizers, e.g. [X1X2Y3Y4, ZiZj] = 0.

The experimental Kraus maps for pumping into the +1 eigenspaces of Z2Z3 and Z3Z4 are ob-
tained from Eqs. (B.9)-(B.11) by applying the corresponding permutation of system spin indices.

The fourth dissipative step, which realizes pumping into the +1 eigenspace of X1X2X3X4, is
described by the ideal and also experimentally implemented Kraus map ρS 7→ Eexp

X1X2X3X4
(ρS) =

E1ρSE
†
1 + E2ρSE

†
2 with

E1 =
1

2
(1 +X1X2X3X4) , (B.12)

E2 =
1

2
Z4 (1−X1X2X3X4) . (B.13)

The gate sequences, which have been used in the experiment to implement these Kraus maps
are explicitly given below:

Step 1 (pumping into the +1 eigenspace of Z1Z2):

UY (−π/2)UZ2(−π/2)

UX(π/2)UZ2(−π/2)UX(−π/2)

UZ1(π)UX2(π/4)UZ2(π)UZ0(π)UX2(π/4)

UX(−π/2)UZ2(−π/2)UZ0(−π/2)UX(π/2)

UX2(π/4)UZ4(π)UZ3(π)UX2(π/4)

UY (π/2)UX(−π/2)UZ0(−π/2)UX(π/2)

Step 2 (pumping into the +1 eigenspace of Z2Z3):

UY (−π/2)UZ3(−π/2)

UX(π/2)UZ3(−π/2)UX(−π/2)

UZ2(π)UX2(π/4)UZ3(π)UZ0(π)UX2(π/4)

UX(−π/2)UZ3(−π/2)UZ0(−π/2)UX(π/2)

UX2(π/4)UZ4(π)UZ1(π)UX2(π/4)

UY (π/2)UX(−π/2)UZ0(−π/2)UX(π/2)
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Step 3 (pumping into the +1 eigenspace of Z3Z4):

UY (−π/2)UZ4(−π/2)

UX(π/2)UZ4(−π/2)UX(−π/2)

UZ3(π)UX2(π/4)UZ4(π)UZ0(π)UX2(π/4)

UX(−π/2)UZ4(−π/2)UZ0(−π/2)UX(π/2)

UX2(π/4)UZ2(π)UZ1(π)UX2(π/4)

UY (π/2)UX(−π/2)UZ0(−π/2)UX(π/2)

Step 4 (pumping into the +1 eigenspace of X1X2X3X4):

UX(−π/2)

UZ4(−π/2)UX(π/2)UZ4(−π/2)

UX2(π/4)UZ4(π)UZ0(π)UX2(π/4)

UZ4(−π/2)UX(−π/2)UZ0(−π/2)UX(π/2)

UX2(π/4)UX2(π/4)

Figure B.14 shows the reconstructed density matrices (real and imaginary parts) for every step of
the pumping cycle. The complete circuit decomposition of one pumping cycle involves 16 five-
ion entangling operations, 28 (20) collective unitaries and 36 (34) single-qubit operations with
(without) optional operations in blue. The reset operation involves further pulses not accounted
for above.

Repeated four-qubit stabilizer pumping

To study the robustness of the dissipative operation, we prepared the initial state |1111〉 and
subsequently applied repeatedly the dissipative map for pumping into the +1 eigenspace of the
four-qubit stabilizer X1X2X3X4. We observed that after a single dissipative step a non-zero ex-
pectation value ofX1X2X3X4 built up and stayed constant under subsequent applications of this
dissipative map. However, due to imperfections in the gate operations, the expectation values
of the two-qubit stabilizers decreased, ideally they should not be affected by the X1X2X3X4-
pumping step (see Fig. B.7). Interestingly, the expectation values of Z1Z4 and Z3Z4 decayed
significantly faster than those for Z1Z2 and Z2Z3. This decay can be explained by the fact that
in the gate sequence used for pumping into the +1 eigenspace of X1X2X3X4, step 4 above,
single-ion light-shift operations are applied only to the fourth system qubit and the ancilla. This
indicates that errors in the single-qubit gates applied to the fourth system ion accumulate under
the repeated application of the dissipative step, and thus affect the stabilizers Z1Z4 and Z3Z4

which involve this system qubit more strongly than the others. This destructive effect can be
minimized by alternating the roles of the system qubits.

Such optimization has been done for the dissipative dynamics shown in Fig. B.8. Here, starting
from the initial state |1111〉, repeated pumping into the -1 eigenspace of X1X2X3X4 has been
implemented by the sequence
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quence optimization. The expectation values of Z1Z4 and Z3Z4 show a signifi-
cantly faster decay than those for Z1Z2 and Z2Z3. In every step of the pumping,
most single-ion light-shift operations are applied to the fourth system qubit.
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Figure B.8.: Measured expectation value of stabilizers for repeated pumping with sequence
optimization. All two-qubit stabilizers decay at the same rate during pumping. In
step 1,2,3,4, and 5 the single-qubit light-shift operations were applied on the system
qubits 4,3,2,1, and 1, respectively.

UX2(π/8)UX2(π/8)UX2(π/8)UX2(π/8)

UX(−π/2)

UZ4(−π/2× p)UX(π/2)UZ4(π)

UY 2(π/4× p)UZ0(π)UZ4(π)UY 2(π/4× p)
UY (π/2)UZ0(−π/2)UY (−π/2)

UX2(π/8)UX2(π/8)UX2(π/8)UX2(π/8).

Here, we observed that indeed the expectation values of all two-qubit stabilizers decreased at
the same pace and at a slightly slower rate (see Fig. B.8). Upon repeating the sequence above
1,2,3,4, and 5 times, we changed the operations shown in red to act on qubits 4,3,2,1, and 1,
respectively. The stabilizer expectation values for deterministic pumping, or p = 1, are shown
in Fig. B.8.
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Pushing “anyons” around

In Kitaev’s toric code [144], spins are located on the edges of a two-dimensional square lattice.
The Hamiltonian

H = −g(
∑
p

Ap +
∑
v

Bp) (B.14)

is a sum of mutually commuting four-qubit stabilizers Ap =
∏

i∈pXi and Bv =
∏

i∈v Zi, which
describe four-spin interactions between spins located around plaquettes p and vertices v of the
lattice. The ground state of the Hamiltonian is the simultaneous +1 eigenstate of all stabilizer op-
erators. The model supports two types of excitations that obey anyonic statistics under exchange
(braiding), and they correspond to -1 eigenstates of either plaquette or vertex stabilizers.

For a minimal instance of this model, represented by a single plaquette of four spins located
on the edges, the Hamiltonian contains a single four-qubit interaction term X1X2X3X4 and
pairwise two-spin interactions ZiZj of spins sharing a corner of the plaquette. The ground state
as the simultaneous +1 eigenstate of these stabilizers is the GHZ-state (|0000〉 + |1111〉)/

√
2.

States corresponding to -1 eigenvalues of a two-qubit stabilizer ZiZj can be interpreted as a
configuration with an excitation located at the corner between the two spins i and j. Similarly,
a four-qubit state with an eigenvalue of -1 with respect to X1X2X3X4, would correspond to an
anyonic excitation located at the center of the plaquette.

In the experiment we prepared an initial state |0111〉 and then performed the pumping cycle of
four deterministic pumping steps into the +1 eigenspaces of Z1Z2, Z2Z3, Z3Z4 andX1X2X3X4,
using the sequences for Steps 1 to 4 given in section B.3.2. The expectation values of the
stabilizer operators for the initial state and the four spins after each pumping step are shown
in Fig. B.9. The dissipative dynamics can be visualized as follows: For the initial state with
〈Z1Z2〉 = −1 and 〈Z1Z4〉 = −1 a pair of excitations is located on the upper left and right
corners of the plaquette, whereas 〈X1X2X3X4〉 = 0 implies an anyon of the other type is
present at the center of the plaquette with a probability 50%. In the first pumping step, where
the first two spins are pumped into the +1 eigenspace ofZ1Z2, the anyon at the upper right corner
is dissipatively pushed to the lower right corner of the plaquette. In the third step of pumping
into the +1 eigenspace of Z3Z4, the two excitations located on the upper and lower lefts corners
fuse and disappear from the system. In the final step of pumping into the +1 eigenspace of
X1X2X3X4, the anyon with a probability of 50% at the center of the plaquette is pushed out
from the plaquette.

However, we’d like to stress that borrowing concepts from topological spin models, such as
anyonic excitations, here is merely a convenient language to phrase and visualize the dissipative
dynamics. In the present work with up to five ions, we do not explore the physics of topological
spin models, since (i) in a minimal system of four spins the concepts developed for larger lattice
models become questionable, and more importantly, (ii) during the implemented pumping dy-
namics the underlying (four-body) Hamiltonian of the model was not present. We rather demon-
strate the basic tools which will allow one to explore this physics once larger, two-dimensional
systems become available in the laboratory.

We note that photon experiments have reported the observation of correlations compatible with
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the manipulations of “anyons” in a setup representing two plaquettes [182, 183]. Such experi-
ments are based on postselection of measurements [as in teleportation by 184], which should be
contrasted to our deterministic implementation of open system dynamics to prepare and manip-
ulate the corresponding quantum state [as in deterministic teleportation by 185, 186].
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Figure B.9.: Pushing “anyons” around by dissipation. Measured expectation values of stabi-
lizer operators for pumping dynamics of pumping into the +1 eigenspaces of Z1Z2,
Z2Z3, Z3Z4 and X1X2X3X4, starting in the state |0111〉.

Pumping into “excited” states

Starting from an initially fully mixed state of four qubits, we also implemented pumping into
a different GHZ-type state, (|0010〉 − |1101〉)/

√
2, by a sequence of four dissipative steps:

1) pumping into the +1 eigenspace of Z1Z2, 2) pumping into the -1 eigenspace of Z2Z2, 3)
pumping into the -1 eigenspace of Z3Z4 and 4) pumping into the -1 eigenspace of X1X2X3X4.
In the context of Kitaev’s toric code, this state would correspond to an excited state. However,
as above, we point out that the underlying Hamiltonian was not implemented in the pumping
dynamics.

The measured expectation values of the stabilizers are shown in Fig. B.10. The final density
matrix, as determined from quantum state tomography after the four pumping steps, is shown in
Fig. B.11. This pumping cycle was implemented with the same sequences as given for Step 1 to
4 in section B.3.2, with the only difference that the sign of the phase shift operations displayed
in red was changed in Steps 2, 3, and 4. This allowed us to invert the pumping direction from
the +1 into -1 eigenspaces of Z2Z2, Z3Z4 and X1X2X3X4.

B.3.3. QND measurement of a four-qubit stabilizer

Further details

As shown in Fig. B.12, the QND measurement involves a mapping step where the information
about whether the system described by an input density matrix ρin is in the +1 / -1 eigenspace of
A = X1X2X3X4 is coherently mapped onto the internal states |0〉 and |1〉 of the ancilla qubit,
which is initially prepared in |1〉. Subsequently the ancilla qubit is measured in its computational
basis, leaving the system qubits in a corresponding output state ρout.
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of 60(2)% with the expected state. This fidelity was determined from parity and
coherence measurements and analysed with bayesian inference techniques as done
in [23].
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Figure B.12.: QND measurement of the four-qubit stabilizer operatorX1X2X3X4. After the
coherent mapping M(X1X2X3X4), the ancilla qubit is measured. This measure-
ment was performed both with and without applying additional pulses to hide the
populations of the system qubits in electronically uncoupled states for the duration
of the fluorescence measurement on the ancilla.

The coherent mapping M(X1X2X3X4) was realized by the sequence

UX(π/4)UZ0(π)UX(−π/4)

UX2(π/4)UX2(π/4)UZ0(−π/2)UX2(π/4)UX2(π/4)

UY (−π/4)UZ0(π)UY (π/4)
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which implements

M(X1X2X3X4) = − i√
2

(X0 + Y0)⊗ P+

+
1√
2

(1− iZ0)⊗ P−, (B.15)

with P± = 1
2
(1±X1X2X3X4) the projectors onto the±1 eigenspaces of X1X2X3X4. Equation

(B.25) shows that for the system qubits being in a state belonging to the +1 eigenspace of the
stabilizer operator, the ancilla is flipped from |1〉 to |0〉, whereas it remains in its initial state |1〉
otherwise.

Subsequently, the ancilla as well as the four system qubits were measured. This was done by
measuring the five ions simultaneously. Alternatively, we first hid the four system qubits in
electronic levels decoupled from the laser excitation, performed the fluorescence measurement
of the ancilla qubit, then recovered the state of the system qubits and tomographically measured
the state of the four system qubits. The second approach, where the state of the system is not
affected by the measurement of the ancilla, is of importance if the information from the ancilla
measurement is to be used for feedback operations on the state of the system.

Quantitative analysis of the performance

To characterize the performance of a QND measurement for a (multi-)qubit system, a set of
requirements and corresponding fidelity measures have been discussed in the literature [155].

(1) First of all, the measurement outcomes for the ancilla qubit should agree with those that one
would expect from a direct measurement of the observable A on the input density matrix. This
property can be quantified by the measurement fidelity,

FM =
(√

pin
+p

m
|0〉 +

√
pin
−p

m
|1〉

)2

, (B.16)

which measures the correlations of the distribution of measurement outcomes pm = {pm
|0〉, p

m
|1〉}

of the ancilla qubit with the expected distribution pin = {pin
+, p

in
−} directly obtained from ρin,

where pin
± = Tr{1

2
(1± A)ρin}.

(2) The QND character, reflected by the fact that the observable A to be measured should not
be disturbed by the measurement itself, becomes manifest in ideally identical probability distri-
butions pin and pout, which are determined from the input and output density matrices. These
correlations are quantified by the QND fidelity

FQND =

(√
pin

+p
out
+ +

√
pin
−p

out
−

)2

, (B.17)

where pout
± = Tr{1

2
(1± A)ρout}.

(3) Finally, by measuring the ancilla qubit the system qubits should be projected onto the corre-
sponding eigenspace of the measured observable A. Thus the quality of the QND measurement
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as a quantum state preparation (QSP) device is determined by the correlations between the an-
cilla measurement outcomes and the corresponding system output density matrices. It can be
described by the QSP fidelity

FQSP = pm
+p

out
|0〉,+ + pm

−p
out
|1〉,−, (B.18)

where pout
|0/1〉,± denotes the conditional probability of finding the system qubits in the +1 (-1)

eigenspace of A, provided the ancilla qubit has been previously measured in |0〉 (|1〉).
The probability distributions for the system input and output states, the ancilla measurement
outcome distributions, and the resulting fidelity values are summarized in Tables I to IV. The
input states had a fidelity [117] with the ideal states (|0000〉+|1111〉)/

√
2, (|0000〉−|1111〉)/

√
2

and (|0011〉 − |1100〉)/
√

2 of 75.3(9), 77.3(8), 93.2(4)%.

We observe that we obtain higher values for the measurement and QND fidelities than for the
QSP fidelities. The latter is relevant in the context of quantum error correction or closed-loop
simulation protocols or more generally whenever the information from the ancilla measurement
is used for further processing of the system output state.

With the additional hiding and unhiding pulses before and after the measurement of the ancilla
we observe a loss of fidelity of a few percent in the QSP fidelities.
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Table B.9.: QND probability distributions. Obtained from measurements with hiding of the
system ions during the measurement of the ancilla.

input
state

eigen-
space

pmin pmout pin pinm=0 pinm=1 pout poutm=0 poutm=1

|0000〉 +
|1111〉

+1 0.959(1) 0.847(3) 0.817(9) 0.822(9) 0.618(34) 0.689(12) 0.736(12) 0.359(34)

−1 0.041(1) 0.153(3) 0.183(9) 0.178(9) 0.382(34) 0.311(12) 0.264(12) 0.641(34)
|0000〉 −
|1111〉

+1 0.955(1) 0.169(3) 0.191(10) 0.187(9) 0.328(36) 0.310(11) 0.640(26) 0.242(12)

−1 0.045(1) 0.831(3) 0.809(10) 0.813(9) 0.672(36) 0.690(11) 0.360(26) 0.758(12)
|0011〉 −
|1100〉

+1 0.978(1) 0.103(2) 0.041(4) 0.035(4) 0.412(47) 0.137(9) 0.476(36) 0.097(7)

−1 0.022(1) 0.897(2) 0.959(4) 0.965(4) 0.588(47) 0.863(9) 0.524(36) 0.903(7)

Table B.10.: QND probability distributions. Obtained from measurements without hiding of the
system ions during the measurement of the ancilla.

input state eigenspace pmout pout poutm=0 poutm=1

|0000〉+ |1111〉 +1 0.850(3) 0.713(11) 0.789(11) 0.336(30)
−1 0.150(3) 0.287(11) 0.211(11) 0.664(30)

|0000〉 − |1111〉 +1 0.188(3) 0.265(12) 0.504(28) 0.220(11)
−1 0.812(3) 0.735(12) 0.496(28) 0.780(11)

|0011〉 − |1100〉 +1 0.099(2) 0.073(7) 0.416(35) 0.038(5)
−1 0.901(2) 0.927(7) 0.584(35) 0.962(5)

Table B.11.: QND figures of merit. Determined from measurements with hiding of the system
ions during the measurement of the ancilla. Since the state |0011〉 − |1100〉 is
particularly robust against decoherence, the fidelity FQSP is higher, as shown for 8
ions in [23].

input
state

eigen-
space

pin pout pm pout
QND=+ pout

QND=− FM(pin, pm) FQND(p
in, pout) FQSP(p

m, pout
QND)

|0000〉+
|1111〉

+1 0.82(1) 0.69(1) 0.85 0.74(1) 0.998(1) 0.978(5) 0.72(1)

−1 0.18(1) 0.31(1) 0.15 0.64(3)
|0000〉−
|1111〉

+1 0.19(1) 0.31(1) 0.17 0.64(3) 0.999(1) 0.980(5) 0.74(1)

−1 0.81(1) 0.69(1) 0.83 0.76(1)
|0011〉−
|1100〉

+1 0.041(4) 0.14(1) 0.10 0.48(4) 0.985(3) 0.969(6) 0.86(1)

−1 0.959(4) 0.86(1) 0.90 0.90(1)
|1111〉 +1 0.5 0.47(1) 0.50049 0.70(1) 1 0.9992(6) 0.73(1)

−1 0.5 0.53(1) 0.49951 0.76(1)
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Table B.12.: QND figures of merit. Determined from measurements without hiding of the sys-
tem ions during the measurement of the ancilla. Since the state |0011〉 − |1100〉 is
particularly robust against decoherence, the fidelity FQSP is higher, as shown for 8
ions in [23].

input state eigenspace pout pm pout
QND=+ pout

QND=− FM(pin, pm) FQND(p
in, pout) FQSP(p

m, pout
QND)

|0000〉+ |1111〉 +1 0.71(1) 0.85 0.79(1) 0.998(1) 0.984(4) 0.77(1)
−1 0.29(1) 0.15 0.66(3)

|0000〉 − |1111〉 +1 0.26(1) 0.19 0.50(3) 1.0000(1) 0.992(3) 0.73(1)
−1 0.74(1) 0.81 0.78(1)

|0011〉 − |1100〉 +1 0.07(1) 0.10 0.42(3) 0.986(2) 0.996(2) 0.91(1)
−1 0.93(1) 0.90 0.96(1)

|1111〉 +1 0.52(1) 0.5078 0.75(1) 0.99994 0.9996(5) 0.74(1)
−1 0.48(1) 0.4922 0.73(1)
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Figure B.13.: Reconstructed process matrices of experimental Bell-state pumping. The re-
constructed process matrix for p = 1 after 1 (1.5) cycles has a Jamiolkowski
process fidelity [37] of 83.4(7)% (87.0(7)%) with the ideal dissipative process
ρS 7→ |Ψ−〉〈Ψ−| which maps an arbitrary state of the system into the Bell state
|Ψ−〉. This ideal process has as non-zero elements only the four transparent
bars shown. The reconstructed process matrix for p = 0.5 after 3 cycles has
a Jamiolkowski process fidelity of 60(1)% with the ideal process χideal shown
[Im(χideal) = 0].
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Figure B.14.: Ideal and reconstructed density matrices of plaquette pumping. An inital
mixed state ρmixed is sequentially pumped by the stabilizers Z1Z2, Z2Z3, Z3Z4

and X1X2X3X4 driving the system into the states ρ1,2,3,4.
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Figure B.15.: Pushing “anyons”. Cartoon of the dissipative dynamics. The pumping dynam-
ics can be visualized by dissipative pushing of excitations (green and red dots)
between adjacent corners of the plaquette.
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Nr. of Nr. of global Nr. of AC- Nr. of Total number
Algorithm type MS gates rotations R Stark shifts SZ resets of operations
Elementary dissipative map 6 7 9 1 23
Hamiltonian competing dynam-
ics with 3+1 ions

2 3 2 0 7

Hamiltonian competing dynam-
ics with 4+1 ions

3 4 4 0 11

QND post-selective error detec-
tion

4 8 6 0 18

Mapping for the spin excitation
removal

2 9 4 0 15

Mapping for the spin excitation
injection

3 12 7 0 22

Excitation injection / removal
step (single site)

4 0 2 0 6

Spectroscopic decoupling 0 5 4 0 9

Composite dissipative map (3
spins)

12 26 24 2 64

Composite diss. and coh. dyn.
map (3 spins)

14 29 26 2 71

Composite diss. and coh. map +
QND (3 spins)

18 40 27 3 88

Composite dissipative map (4
spins)

18 33 35 3 89

Composite diss. and coh. dyn.
map (4 spins)

21 44 44 3 112

Table B.13.: Summary of the required resources for the elementary and composite dynamical
maps and additional tools used in the quantum simulation. The required operations
for the composite maps do not strictly match the sum of the required elementary
operations, since in the implementation of composite maps synergy effects in the
resources for the spectroscopic decoupling operations can be exploited.

B.4. Quantum Simulation of Dynamical Maps with
Trapped Ions

Table B.13 provides an overview of the algorithmic building blocks required for the implemen-
tation of elementary dissipative Kraus maps, the realization of Hamiltonian dynamical maps,
spectroscopic decoupling of ions, and elements for the detection and reduction of errors in our
ion-trap quantum simulator. The table describes the experimental resources needed for the im-
plementation of these elementary sub-routines as well as for the combination of these building
blocks in more complex composite dynamical maps. The details of the underlying Kraus map
engineering as well as the detailed quantum circuits used in the experiment are presented in the
corresponding subsections below.
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Figure B.16.: Illustration of the geometry of the laser-beams used for qubit manipulation. A
global beam illuminating the ion string homogeneously is used to implement col-
lective rotations R(θ, φ) and multi-ion Mølmer-Sørensen-type entangling gates
MS(θ, φ), whereas an addressed beam enables the realization of single-qubit ro-
tations SZ(θ, j). An addressed optical pumping technique allows one to incoher-
ently reinitialize the state of an ancillary qubit, which plays the role of a tailored
environment. See text for more details.

B.4.1. Experimental system and techniques

In this section we will describe the available operations in our universal ion-trap quantum sim-
ulator.

Coherent gates

The qubit is encoded in the 4S1/2(mj = −1/2) and 3D5/2(mj = −1/2) electronic states of the
40Ca+ ion and is manipulated by precisely timed light pulses on resonance or near resonant with
the optical transition. The laser light can be applied from two different directions as depicted
in figure B.16, where one beam illuminates the entire ion string homogeneously and the second
beam is able to address each ion individually [46].

The set of coherent gates consists of collective single-qubit rotations, addressed single-qubit
gates and collective entangling gates. Collective single-qubit rotations are implemented by the
globally applied laser beam, resonant with the qubit transition, realizing the unitary

R(θ, φ) = exp

(
−iθπ

2
Sφ

)
, (B.19)

with Sφ =
∑N

i=0 σ
φ
i a collective spin operator, and

σφi = σxi cos(φ · π) + σyi sin(φ · π)

being a linear combination of the single-qubit Pauli matrices σxi and σzi , acting on qubit i. The
rotation angle θ is determined by θ = Ω τ/π, which can be controlled by the Rabi frequency Ω
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and the pulse duration τ . In this notation a complete π-flop inverting the electronic population
of the logical states corresponds to a rotation angle θ = 1. On the other hand, tuning the phase
φ of the global laser beam allows one to control the rotation axis lying in the x-y-plane of the
Bloch sphere, around which each of the qubits is rotated. Addressed single-qubit operations

Sz(θ, i) = exp

(
−iθπ

2
σzi

)
(B.20)

around the z-axis are realized by shining in laser light near resonant with the qubit transition that
induces an intensity-dependent AC-Stark shift ∆AC . Again, the rotation angle θ is determined
by the pulse length τ , θ = ∆AC τ/π, and a π-pulse corresponds to θ = 1. Finally, collective
entangling operations are implemented by a bi-chromatic, globally applied laser field, which
effectively realizes two-body Mølmer-Sørensen (MS) type interactions,

MS(θ, φ) = exp

(
−iθπ

4
S2
φ

)
= exp

(
−iθπ

2

∑
i>j

σφi σ
φ
j

)
(B.21)

between all pairs i and j of the ion chain (i, j = 0, 1, . . . N ) [148, 187]. Again, the angle φ allows
one to control whether σxi σ

x
j (for φ = 0), σyi σ

y
j (for φ = 1/2) or interactions σφi σ

φ
j corresponding

to any other axis σφ in the x-y-plane are realized. In this notation, the angle θ = 1/2 corresponds
to a ”fully-entangling” MS gate, i.e. a unitary which maps the computational basis states ofN+1
ions onto multi-particle entangled states, which are (up to local rotations) equivalent to N + 1-
qubit GHZ states. Altogether, operations (B.19) to (B.21) form a universal set of gates, enabling
the implementation of arbitrary unitaries on any subset of ions [33].

Numerical optimization of gate sequences

Any unitary operation required for the implementation of dissipative and coherent maps, as
well the error detection and reduction protocols, needs to be decomposed into a sequence of
available operations. As discussed in more detail below, such decompositions can be constructed
systematically [55]. However, as such decompositions are in many cases not optimal in terms of
the number of required gate operations, it is convenient to resort to a numerical optimal control
algorithm [33] to search for optimized sequence decompositions involving less gates. Whereas
the numerical optimization algorithm becomes inefficient for general unitary operations acting
on a large number of qubits, it is well-suited for the optimization of unitaries which act only
on a small subset of ions (such as 2+1 ions in the implementation of an elementary dissipative
Kraus map), independently of the total system size.

Numerically optimized pulse sequences may include global AC-Stark pulses and MS gates with
negative rotation angles θ < 0, which are not directly contained in the available gate set dis-
cussed in Sec. B.4.1. However, as any collective rotation around the z-axis of the Bloch sphere
can be interpreted as a re-definition of the x- and y-axes, a global AC-Stark pulse can be omit-
ted if the phases φ of the following resonant operations are properly adjusted. Regarding MS
gates with θ < 0, these can be implemented by MS gates with positive rotation angles, as
MS(−θ, φ) ≡MS(1− θ, φ) up to local rotations (see Eq. (9) in Ref. [55]).
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Transition Pulse
|S〉 → |D′〉 R(0.5, 0)
|S〉 → |D′〉 Sz(1, i)
|S〉 → |D′〉 Sz(1, j)
|S〉 → |D′〉 R(0.5, 1)
|D〉 → |S ′〉 R(0.5, 0)
|D〉 → |S ′〉 Sz(1, i)
|D〉 → |S ′〉 Sz(1, j)
|D〉 → |S ′〉 R(0.5, 1)
|S ′〉 → |D′′〉 R(1, 0)

Table B.14.: Pulse sequence for spectroscopic decoupling of ions i and j by coherently transfer-
ring their quantum information from the qubit states |S〉 and |D〉 to the states |D′′〉
and |D′′〉. The gates listed in the three blocks of the table realize the pulses (i) -
(iii) shown in Fig. 2b of the main text.

Spectroscopic decoupling of ions

Despite the globally applied beams for the collective rotations and MS gates, operations on sub-
sets of ions can be realized by spectroscopically decoupling ions not involved in the realization
of a certain Kraus map from the dynamics. This is realized by coherently transferring ions to
electronic states, where they do not couple to the globally applied light fields to a very good
approximation. This decoupling technique enables the use of optimized sequences for the re-
alization of Kraus maps on a small number of sites, independently of which subset of ions is
currently involved in the map, and independently of the system size, i.e. the total number of
sites.

The full decoupling sequence consists of the following parts as also outlined in Fig. 4.8 in
the main-text: (i) First, the population is transferred from the qubit state |S〉 = 4S1/2(mf =
−1/2) = |1〉 = | ↑〉 to the |D′〉 = 3D5/2(mf = −5/2) state. (ii) Then, the population from the
other qubit state |D〉 = 3D5/2(mf = −1/2) = |0〉 = | ↓〉 is transferred via |S ′〉 = 4S1/2(mf =
+1/2) to the |D′′〉 = 3D5/2(mf = −3/2) state. The required pulses for decoupling two ions
are shown in Table B.14. Bringing the population from the decoupled states back to the original
qubit states is realized by implementing the described sequence in reverse order.

The decoupling technique introduces additional errors that are not included in the theoretical
error model. A rigorous treatment of these errors is cumbersome since it cannot be modeled in
a qubit system anymore, but involves the full electronic substructure of the ion. However, the
effect of the decoupling process in the computational basis can be characterized by quantum
process tomography. We found a process fidelity of 94(2)% for decoupling a qubit and bringing
it back to the original states. Next, we proved that the decoupled qubit is indeed to a high degree
not affected by the manipulation pulses. We checked this in a system of 3+1 ions, where we first
decoupled a single qubit, then applied the pulses as required for a single elementary dissipative
Kraus map on the remaining two system ions and the ancilla ion, and finally transferred the
decoupled qubit back to the original qubit state. Due to residual far off-resonant coupling to
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Transition Pulse
|S ′〉 → |D〉 R(0.5, 0)
|S ′〉 → |D〉 Sz(1, j)
|S ′〉 → |D〉 R(0.5, 1)
|S ′〉 → |P 〉 σ− repump

Table B.15.: Pulse sequence for the individual reset of qubit j.

transitions coupling different Zeeman sublevels, the pulses implementing the dissipative Kraus
map induce a deterministic AC-Stark shift on the decoupled ion. This Stark shift is measured
with a Ramsey-type experiment, and its compensation is performed with the final two pulses in
the sequence as shown in Table B.14. Quantum process tomography on the decoupled qubit,
where the systematic Stark shift has been compensated, yields a process fidelity of 93(2)%.
Thus we can conclude that the pulses corresponding to the Kraus map implementation do not
affect the decoupled qubit significantly, and that the dominant errors result from laser intensity
fluctuations in the decoupling pulses themselves.

Incoherent reinitialization of individual ions

The implementation of an elementary dissipative Kraus map is completed by an incoherent
reset of the ancillary ion to its initial state |S〉, see step (iii) in Fig. 4.8c in the main text. This
reinitialization is realized by an optical pumping technique: First, an addressed pulse is applied
to the ancillary ion to transfer the population present in the |D〉 state to the |S ′〉 state. Then σ−

polarized light is applied to the entire ion string performing optical pumping from |S ′〉 towards
|S〉 via the short-lived 42P1/2 state. This procedure does not affect the information in the system
ions encoded in the original qubit states |S〉 and |D〉, as the light couples only to the |S ′〉 level
[62]. The required operations are shown Table B.15

B.4.2. Engineerging of dissipative and Hamiltonian dynamical
maps

In this section we provide details on the engineering and the specifics of the circuit-based exper-
imental implementation of elementary dissipative and Hamiltonian dynamical maps.

Action of the dissipative Kraus maps

The elementary dissipative Kraus maps

ρ 7→ Ei,1ρE
†
i,1 + Ei,2ρE

†
i,2 (B.22)

with
Ei,1 = ci and Ei,2 = 1− c†ici, (B.23)
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are generated by the operators ci (cf. Eq. (4.5) in the main text), as given by

ci = (σ+
i + σ+

i+1)(σ−i − σ−i+1). (B.24)

These operators act bi-locally, i.e. involve two neighboring spins i and i + 1, whereas the other
spins are spectators. It is instructive to examine their action on the basis states of the local
Hilbert space of the two qubits i and i + 1, which is spanned by the singlet and triplet states of
the total spin S2

i,i+1 of the two spin-1/2 particles:

S2
i,i+1

1√
2

(|01〉 − |10〉) = 0

and

S2
i,i+1(|00〉, 1√

2
(|01〉+ |10〉), |11〉)

= 2 (|00〉, 1√
2

(|01〉+ |10〉), |11〉).

Here, Si,i+1 = Si + Si+1 with Si = 1
2
σi = 1

2
(σxi , σ

y
i , σ

z
i )
T and

S2
i,i+1 = (Si + Si+1)2 =

3

2
+

1

2
(σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1).

For simplicity of the notation, we skip the spin indices i and i + 1 for the states and use the
short-hand notation |00〉 = |0〉i ⊗ |0〉i+1, etc. As illustrated in Fig. B.17, the operators ci induce
pumping from the singlet into the triplet mS = 0 state,

ci
1√
2

(|01〉 − |10〉) =
1√
2

(|01〉+ |10〉),

whereas all triplet states are dark states,

ci|00〉 = ci
1√
2

(|01〉+ |10〉) = ci|11〉 = 0.

As shown in Fig. 4.3 of the main text, under this dissipative dynamics a single spin excitation
(or hardcore boson) is symmetrically delocalized over the two sites, whereas the states of two
(|11〉) or zero (|00〉, ”vacuum”) spin excitations (or hardcore bosons) are left unchanged.

Circuit-based implementation of elementary dissipative Kraus maps

Open-system dynamics according to the elementary dissipative Kraus maps (B.22) can be real-
ized in a ”digital” way, by using quantum simulation tools for open systems, which have been
previously developed and demonstrated experimentally in the context of dissipative prepara-
tion of Bell and multi-qubit stabilizer states [62]. The key idea in engineering the two-spin
dissipative dynamics according to Eq. (B.22) is to combine the experimentally available gates
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⎥01〉 −⎥10〉 ⎥01〉 +⎥10〉 
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Figure B.17.: Schematics of the action of the two-spin operator (B.24) in the local Hilbert space
of the two spins i and i + 1, which is spanned by the singlet state (left sector of
the Hilbert space) and the triplet states (right sector). The operator ci converts the
singlet state 1√

2
(|01〉 − |10〉) into the triplet mS = 0 state 1√

2
(|01〉 + |10〉). All

triplet states are dark states and left invariant.

(see Sec. B.4.1 below for details) with optical pumping on an additional ancillary qubit (see
Sec. B.4.1), which plays the role of a tailored environment.

General engineering strategy – The observation that the singlet state is dissipatively converted
into the mS = 0 triplet state suggests the following gate-based implementation via a four-step
process (shown in Figure B.18a), which involves a circuit of unitaries applied to the qubits i,
i+ 1 (steps (i) to (iii)), followed by the incoherent reset of the ancilla qubit (step (iv)):

(i) First, a unitaryM , acting on the two system spins i and i+1 and the ancillary qubit, coherently
maps the binary information whether the two system spins are in the singlet or triplet subspace
onto the two logical states |0〉 and |1〉 of the ancillary qubit. This is achieved by the unitary

M(θ) = exp

(
−iθ

2

(
S2
i,i+1 − 2

)
⊗ σx0

)
(B.25)

= exp (iθPi,i+1 ⊗ σx0 )

= cos(θPi,i+1)⊗ 10 − i sin(θPi,i+1)⊗ σx0

for which we choose θ = π/2 so that the unitary reduces to

M(π/2) = (1− Pi,i+1)⊗ 10 − i Pi,i+1 ⊗ σx0 . (B.26)

The unitary M is constructed in a way that the state of the ancilla qubit is rotated conditional
on the state of the two system spins, and that the angle of this rotation depends on the operator
(S2

i,i+1 − 2) which acts on the two system spins i and i + 1. Here, Pi,i+1 = c†ici is the projector
onto the singlet subspace, (1 − Pi,i+1) its orthogonal complement, and we have used S2

i,i+1 =
2(1−Pi,i+1). Under the unitary M(π/2), the ancilla qubit is rotated from its initial state |1〉 into
|0〉 if and only if the two systems spins are in the singlet state.

(ii) Next, the transfer of the system qubits from the singlet to the triplet subspace is enabled by
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spin i (ii)
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M σz

Figure B.18.: Quantum circuits for the realization of elementary dissipative Kraus maps (B.22)
on spins i and i + 1. a, First, the information whether the two system spin-1/2
particles i and i + 1 are in the singlet or triplet subspace of the two-spin Hilbert
space (see Fig. B.17) is coherently mapped onto the logical states |0〉 and |1〉 of an
ancilla qubit which is initially in |1〉. (ii) Next, a two-qubit gate is applied, which
realizes an effective spin flip on one of the system spins, and thereby condition-
ally on the state of the ancilla converts the singlet into the triplet mS = 0 state:

1√
2
(|01〉 − |10〉)→ 1√

2
(|01〉+ |10〉). After inverting the mapping (iii), the ancilla

ion is optically pumped backed to its initial state |1〉 (iv). This last steps renders
the dynamics irreversible and provides the dissipative ingredient to extract entropy
from the two system spins. The probability of the conversion from the singlet to
the triplet state is controlled by the angle φ appearing in the two-qubit gate, and it
is given by p = sin2 φ. In the limit of φ � π/2, the conversion from the singlet
into the triplet state takes place only with a small probability, and the general dis-
sipative Kraus map describing the pumping process reduces to the master equation
(B.29). b, In this work we are interested in deterministic pumping from the singlet
into the triplet subspace, i.e. in the case of probability p = 1 for φ = π/2. In
this situation, the circuit simplifies as the inverse mapping to partially disentangle
the system spins from the ancilla is not required, and the circuit simplifies to the
three-step process, which is also shown in Fig. 4.8 of the main text.
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a two-qubit gate, which acts on the ancilla qubit and the system qubit i. It reads

C(φ) = exp

(
±1

2
(1− σz0)⊗ iφσzi

)
(B.27)

=|1〉〈1|0 ⊗ 1i + |0〉〈0|0 ⊗ exp(±iφσzi ).

This controlled-operation applies σz to the i-th system qubit, and thus with probability p =
sin2 φ converts the singlet into the triplet state: σzi

1√
2
(|01〉 − |10〉) = 1√

2
(|01〉 + |10〉). Here,

the ancilla qubit acts as a quantum controller [19, 20], which is not observed but controls the
coherent feedback which is applied to the system qubits. From Eq. (B.27) it is clear that if the
ancilla is in state |1〉, corresponding to the case of the two system spins residing in the triplet
subspace, no quantum feedback is applied and the state of the system spins remains unchanged.
Due to the previous mapping M , this assures that the triplet subspace is left invariant.

(iii) The initial mapping (i) is inverted by applying the inverse unitary M †(π/2). For the system
being in the target triplet space from the outset, this re-installs the conditions before step (i). For
the special case of deterministic pumping (p = 1), as experimentally realized in this work, the
inverse unitary can be omitted (see also Figure B.18b).

(iv) After these unitary steps, the ancillary qubit remains in general entangled with the two
system spins i and i + 1. It is finally reset to its initial state |1〉 by optical pumping: this is the
physical dissipative mechanism, which renders the dynamics irreversible and allows to extract
entropy from the system spins. This refreshes the ancilla qubit and prepares it in the known pure
state |1〉, so that it can be used for the implementation of subsequent dissipative Kraus maps.

For an initially uncorrelated state of the ancilla qubit and the system spins, |1〉〈1|0 ⊗ ρ, the
resulting dynamics for the system spins (described by the reduced density matrix ρ of the system
spins) is obtained by applying the combined unitary U = M †(π/2)C(φ)M(π/2) and tracing
over the ancilla qubit’s degrees of freedom,

ρ 7→ tr0

{
U(|1〉〈1|0 ⊗ ρ)U †

}
. (B.28)

Straightforward algebra yields the Kraus map ρ 7→∑
k=1,2Ei,kρE

†
i,k with the operation elements

Ei,1 = sinφ ci and Ei,2 = 1 + (cosφ− 1) c†ici.

One the one hand, for φ = π/2 the operation elements reduce to Eq. (B.23) and correspond
to deterministic pumping (p = 1) from the singlet into the triplet states, which is the scenario
realized in this work. On the other hand, for φ � π/2 one can expand the operation elements
of the Kraus map and recovers the master equation limit

ρ 7→ ρ+ φ2

(
ciρc

†
i −

1

2

{
c†ici, ρ

})
+O(φ4). (B.29)

Additional remarks – We note that our implementation corresponds to an open-loop control sce-
nario, where the ancillary qubit remains unobserved during the simulation. However, we remark
that it is possible to measure the state of the ancillary qubit in the computational basis by an ad-
dressed fluorescence measurement, before it is reset to its initial state by optical pumping [62].
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Such measurement reveals whether under the application a particular dissipative Kraus map the
two system spins have undergone a collective two-spin quantum jump from the singlet into the
triplet state or not. This information yields ”in-situ” information about the many-body system’s
dynamics along a particular trajectory. The temporal statistics of quantum jumps in open, driven
many-body quantum spin systems contains valuable information about dynamical phase transi-
tions [188, 189]. In the present work we do not further explore this possibility. We remark that
the fluorescence measurement of the ancillary ion, which is associated to the scattering of many
photons and non-negligible heating of the vibrational modes, can be combined with subsequent
laser re-cooling of the relevant vibrational modes via the ancillary ion, as demonstrated by [95].
This allows one to perform such quantum jump measurements and to afterwards re-initialize the
external degrees of freedom, thereby enabling that in the same experimental run further gate
operations required for the implementation of subsequent Kraus maps can be still applied with
high fidelity.

Specific experimental implementation – For the implementation of the elementary dissipative
Kraus maps in the ion-trap simulator, the unitary operationsM(π/2) andC(π/2) (see Eqs. (B.25)
and (B.27)) have to be decomposed into a quantum circuit of available gates: The mapping M
can be written as a product of three unitaries involving 3-body spin interaction terms,

M(π/2) = exp

(
−iπ

4
σx0 (S2

i,i+1 − 2)

)
(B.30)

= exp

(
+
iπ

8
σx0

)
exp

(
−iπ

8
σx0σ

x
i σ

x
i+1

)
× exp

(
−iπ

8
σx0σ

y
i σ

y
i+1

)
exp

(
−iπ

8
σx0σ

z
i σ

z
i+1

)
.

As discussed in Ref. [55] each of the three-body unitaries can be realized by two ”fully-entangling”
MS gates in combination with single-qubit rotations, such that M could be implemented by a
quantum circuit involving six MS gates and a number of single-qubit gates to rotate the system
spins between the x, y and z-bases between the different unitaries.

Similarly, the two-qubit controlled operation C(π/2) (see Eq. (B.27)) is up to local unitaries
equivalent to one ”fully-entangling” two-ion MS gate [55],

C(π/2) ∼ exp(−i(π/4)σx0σ
x
i ),

acting on the ancilla qubit and the system spin i. In the experiment, we did not use such a sys-
tematically constructed circuit decomposition, but instead resorted to the numerical optimization
algorithm described in Sec. B.4.1 to further reduce the complexity of the quantum circuit: The
gates of the experimentally employed sequence decomposition for the implementation of the
unitaries of one elementary dissipative Kraus map are listed in Table B.16.

143



B. Supplementary information

Number Pulse Number Pulse
1 Sz(1.5, 0) 11 MS(0.5, 1.5)
2 R(1.5, 1.0) 12 Sz(1.75, 2)
3 MS(0.25, 1.0) 13 MS(0.5, 2.25)
4 Sz(1.0, 1) 14 R(0.5, 1.75)
5 MS(0.875, 1.0) 15 R(0.5, 2.25)
6 Sz(1.0, 2) 16 MS(0.25, 2.25)
7 MS(0.125, 1.0) 17 Sz(1.5, 2)
8 Sz(1.5, 2) 18 Sz(1.0, 1)
9 R(0.5, 0.5) 19 R(0.5, 2.25)

10 Sz(0.5, 2)

Table B.16.: Pulse sequence for the implementation of a single elementary dissipative map. The
necessary operations for the reset step are not shown.

Engineering Hamiltonian maps for competing coherent interactions

Competing Hamiltonian dynamical maps are realized according to the dimensionless many-
body spin Hamiltonian (cf. Eq. 4.8 in the main text)

H =
N−1∑
i=1

Hi :=
N−1∑
i=1

(1 + σzi )(1 + σzi+1)/4, (B.31)

where the two-body terms correspond to interactions between spin excitations (or hardcore
bosons) located on neighboring sites i and i + 1. The Hamiltonian dynamical maps Ui,i+1 =
exp(−iφHi) acting on spins i and i + 1 are up to local rotations equivalent to two-spin MS in-
teractions, exp(−iφ σxi σxi+1/4). The implementation of the competing Hamiltonian dynamical
maps can be realized with two distinct approaches: (i) The elementary two-spin Hamiltonian
maps can be implemented sequentially, in analogy to the sequential implementation of the ele-
mentary dissipative maps. (ii) Alternatively, since the elementary Hamiltonian maps mutually
commute, they can be implemented by a single global unitary operation, acting directly on the
entire register of system spins. The unitary according to a sum of pairwise interactions be-
tween neighboring spins can for instance be built up from MS gates, which involve pairwise
interactions between all pairs of spins, by means of refocusing techniques [55]. Although one
could again try to find numerically optimized sequences of gates for the implementation of the
composite Hamiltonian map, we note that such optimization for the unitary acting on the entire
register of system spins would have to be done for each system size, and becomes inefficient for
increasing system sizes. It is thus advisable to exploit the symmetries of the MS interactions,
and to systematically construct sequence decompositions.

Specific experimental implementation – For instance, in the case of 3 system spins (with open
boundary conditions), this operation can be decomposed into the following unitaries according
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to single- and two-body interactions

Ucomp = exp

(
−iφ

4
(σz1σ

z
2 + σz2σ

z
3)

)
(B.32)

× exp

(
−iφ

4
(σz1 + σz2 + σz3)

)
exp

(
−iφ

4
σz2

)
.

As the ancilla qubit is not required to realize the unitary map, and must not be entangled with
the system spins during the operation, it is spectroscopically decoupled during the application
of the gate sequence. The experimental sequences used for the implementation of competing
Hamiltonian maps for 3 system spins (3+1 ions) and 4 system spins (4+1 ions) are shown in
Tables B.17 and B.18, respectively.

Number Pulse
1 Sz(1.5, 1)
2 R(0.5, 0.0)
3 MS(1− 0.25 k, 0.5)
4 Sz(1.0, 1)
5 MS(0.25 k, 0.5)
6 Sz(1.0, 1)
7 R(0.5, 1.0)

Table B.17.: Pulse sequence for the implementation of a composite Hamiltonian map in a 3-spin
system, according to Eq. (B.32). The Hamiltonian strength is controlled by the
parameter k, with experimentally implemented values k ∈ {1, 0.5}, corresponding
to φ ∈ {π/2, π/4}.

Number Pulse
Act on qubit 2 and 3

1 R(0.5, 0.5)
2 MS(0.5, 1.0)
3 R(0.5, 1.5)

Act on qubit 1,2,3,4
4 R(0.5, 0.5)
5 MS(0.25, 1.0)
6 Sz(1.0, 3)
7 Sz(1.0, 2)
8 MS(0.25, 1.0)
9 Sz(1.5, 3)

10 Sz(1.5, 2)
11 R(0.5, 1.5)

Table B.18.: Pulse sequence for the implementation of a composite Hamiltonian map in a 4-spin
system, for strong competing interactions corresponding to an angle φ = π/2.
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B.4.3. Experimental characterization of an elementary dissipative
map and noise model

Modeling an imperfect elementary dissipative map

In the following, we will introduce a theoretical model of the elementary pumping step in the
presence of experimental noise. A single elementary dissipative map acting on two system ions
can be ideally described by the two-qubit process matrix χid which can be straightforwardly
calculated from the Kraus map (B.22) with generating operators as defined in Eq. (B.23) [30].
In order to describe the implementation of the elementary dissipative map on the three system
qubits (two ”active” and one spectroscopically decoupled ion), we will assume a process con-
sisting of the modeled elementary map on the two active system qubits and an identity process
on the third qubit. The noise affecting the elementary map is modeled by two independent depo-
larizing channels acting on each of the two ”active” system qubits where the fully depolarizing
channel on a single qubit i can be written as the Kraus map [30]

ρ 7→ E (i)
dep(ρ) =

1

4
(ρ+ σxi ρσ

x
i + σyi ρσ

y
i + σzi ρσ

z
i ) .

The physical noise acting on the register during the individual gates is certainly more complex
than this, but the effect of noise on the outcome of any complex algorithm can be approximated
by depolarizing noise regardless of the specific characteristics of the noise [30]. We model
a noisy elementary dissipative map with the concatenation of two depolarizing channels each
acting on one of the system qubits ρ 7→ Π(ρ) = E (i+1)

dep (E (i)
dep(ρ)) with process matrix χΠ as

χdiss(ε) = (1− ε)χid + ε χΠ.

In the limit ε→ 0, the imperfect process χdiss reduces to the ideal two-qubit process χid, where
in the extreme opposite limit of ε→ 1 depolarizing noise completely dominates and overwrites
any effect of the desired engineered dissipative process χid. One can now adjust the parameter
ε of this model to the obtained data by a numerical optimization. For this, we maximized the
overlap between the expected output state after a single elementary map ρε with noise strength
ε with the actual measured state ρexp,

argε maxF(ρexp, ρε).

where the Uhlmann fidelity F(ρ1, ρ2) for the comparison of two density matrices ρ1, ρ2 is used
[37]. We find an optimum for a noise parameter of ε = 0.27.

Implementation and analysis of an elementary dissipative map

Here, we will provide a more detailed analysis of the specific implementation of a single dissi-
pative step. During the realization of an elementary dissipative Kraus map gates act on the two
ions encoding the system spins i and i + 1 and the ancilla ion, while all other ions are spec-
troscopically decoupled. To quantitatively characterize the implementation of the Kraus map,
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Error source Overlap with Ψ+

All 77 %
Addressing 95%
Dephasing 84 %

Intensity fluctuations 99%
Spectator modes 94%

Table B.19.: Results for the numerical simulation of a quantum simulation algorithm, in order
to identify the dominant experimental error source. The simulation is performed
multiple times with only a single active error source. From the results one can infer
that dephasing is the dominant error source.

as realized by the gate sequence shown in Table B.16 (see also Sec. B.4.2), we performed a
quantum process tomography on the two system qubits. A benchmark for the performance is
given by the process fidelity with the ideal two-qubit process. Since the ideal process is not a
unitary process, the Choi-Jamiolkowsky process fidelity is a suitable measure [37]. We find a
mean state fidelity of F = 68(1)%.

In order to identify the leading source of imperfections in the implementation, a numerical anal-
ysis of the actual physical system is performed. We performed a Monte Carlo simulation of a sin-
gle elementary map acting on three ions, including noise originating from: laser frequency and
intensity fluctuations, magnetic field fluctuations, imperfect state preparation, motional heating,
spontaneous decay and crosstalk of the addressed operations. The noise parameters are indepen-
dently measured and we find an overlap between the numerically predicted and the measured
state ofF = 97%. In order to determine the dominant error source, we performed the simulation
multiple times where only a single noise source affects the evolution. The results are shown in
Table B.19. From this we find that the main error source is dephasing due to fluctuations in the
laser frequency and the magnetic field.

Numerical simulation and long-time dynamics under dissipative maps

B.4.4. Numerical simulation and long-time dynamics under
dissipative maps

Based on the study of experimental errors of an elementary dissipative Kraus map in the previous
sections, we have realized a numerical study of the dissipative dynamics driving a mesoscopic
spin systems (N = 10) with initially three spin excitations present (m0 = 3) towards the Dicke
state |D(3, 10)〉. The results are shown and discussed in Figure4.3.2 of the main text. To take
into account the imperfections in the implementation of the elementary maps, as discussed in the
previous section, we assumed a depolarizing noise strength of εdiss = 0.02 for each of the two
spins i and i+1 involved in an elementary dissipative mapDi,i+1. Since the implementation of an
elementary Hamiltonian dynamical map Ui,i+1 on two spins is less complex than the realization
of a dissipative map, we assumed a depolarizing noise strength for Ui,i+1 of εcoh = εdiss/5. The
error reduction protocol to stabilize the system within the desired m0 = 3 excitation subspace
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Figure B.19.: Numerical study of competing Hamiltonian and dissipative dynamics in the
presence of depolarizing noise. The curves corresponding to varying strengths
φ of competing Hamiltonian dynamics show the overlap with the |D(3, 8)〉 Dicke
state for a chain of 8 spins with m = 3 excitations, a, without and b, with active
error reduction, as a function of the strength ε of the depolarizing noise. Under
incorporation of the error reduction protocol the dynamical crossover becomes
visible for experimental noise levels on the order of 10−2 and below. Dashed ver-
tical lines serve as a guide to the eye roughly indicating the current experimental
noise level (ε = 0.27) as well as the smaller value of ε = 0.02 used for the numer-
ical simulations in the main text. For details see text.

can in practice also be only implemented with a finite accuracy. Here we assumed both for
the global operation required for one spin extraction procedure and for one injection procedure
that the whole spin register is exposed to a global depolarizing noise channel with a probability
ε = 0.02.

Note that the chosen value of ε = 0.02 for the noise strength is roughly one order magnitude
smaller than the current experimental value (ε = 0.27, see the main text and Sec. B.4.3 above
for details). The value of ε = 0.02 for the numerical study is chosen in a way to illustrate how
the characteristic physical features of the non-equilibrium dynamics, as generated by competing
(imperfect) coherent and dissipative dynamical maps, become more and more visible, under a
projected future improvement of the quality of the experimental operations by about a factor
of ten. To illustrate this, Fig. B.19 shows the numerically determined dynamics for a system
of 8 spins with initially 3 excitations, as a function of the depolarizing noise strength ε. The
different curves display the overlap fidelity with the Dicke state |D(3, 8)〉 for different strengths
φ of competing Hamiltonian dynamics. Whereas without active error reduction the competition
between engineered coherent and dissipative dynamics is covered by the dominant effect of
the noise. However, as anticipated, under the incorporation of the error reduction protocol the
crossover for varying competing Hamiltonian strengths becomes clearly visible as the noise
level reaches values on the order of 10−2 and below.

Long-time dynamics and off-diagonal long-range order under imperfect dissipative dynamical
maps – As discussed above and in the main text, under experimental imperfections during the
pumping into Dicke states, the system initially residing in the m0 excitation subspace suffers
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population leakage into the subspaces with m 6= m0. In the long time limit, the population of
the spin system is homogeneously distributed over these m-subspaces, each subspace populated
according to its micro-canonical weight, i.e. the number of computational basis states spanning
the corresponding subspace. Within each of the subspaces, not only for m = m0, the dissipative
maps are active and pump the population within each subspace towards the corresponding Dicke
state |D(m,N)〉. As a result, for weak noise and in the long time limit, the system is driven into
an incoherent mixture of Dicke states of different excitation numbers m = 0, . . . , N .

More quantitatively, a normalized Dicke state with m excitations for N spins is given by

|D(m,N)〉 = (m!)−1

(
N
m

)−1/2 (
S+
)m |0〉⊗N (B.33)

with S+ =
∑N

k=1 σ
+
k . The number of micro-states of m excitations on N sites is

(
N
m

)
. Thus

the incoherent mixture of Dicke states is given by

ρ =
1

2N

N∑
m=0

(
N
m

)
|D(m,N)〉〈D(m,N)| (B.34)

=
1

2N

N∑
m=0

1

(m!)2

(
S+
)m |0〉⊗N〈0|⊗N (S−)m

Interestingly, this incoherent mixture of Dicke states is a state with off-diagonal order 〈σ+
i σ
−
j 〉 6=

0,

〈σ+
i σ
−
j 〉 =

1

N(N − 1)

(
〈S+S−〉 −m

)
, (B.35)

as we will show in the following. In Eq. (B.35) we have made use of the symmetry of the Dicke
states under permutations of the spin indices. In order to evaluate the global expectation value
〈S+S−〉, we decompose it as 〈S+S−〉 = 〈S−S+〉+ 〈Sz〉. Both contributions are easily obtained
as 〈Sz〉 =

∑
i〈σzi 〉 = 2m−N , and 〈S−S+〉 = (m+1)(N−m). The latter expectation value can

be obtained using the normalization factors for the Dicke states |D(m,N)〉 and |D(m+ 1, N)〉
with m and m + 1 excitations, respectively. Adding both contributions, we obtain 〈S+S−〉 =
m(N + 1−m). This allows us to evaluate the expectation value 〈σ+

i σ
−
j 〉 with respect to a pure

Dicke state:

〈σ+
i σ
−
j 〉|D(m,N)〉 =

1

N(N − 1)

(
〈S+S−〉 −m

)
=
m

N

(
1− m

N

)
· 1

1− 1
N

.

In the thermodynamic limit, N → ∞, m/N = const., we have 〈σ+
i σ
−
i 〉 → m/N(1 − m/N).

This expression reflects the ”particle-hole” symmetry and shows that at complete filling (m = N
spin excitations) or in the ”vacuum” state (m = 0) there is no off-diagonal order because spin
excitations or missing spin excitations cannot be delocalized over the spin chain. At half filling
m = N/2, where the number of micro-states is maximal, the effect of delocalization and thus
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the off-diagonal order is maximal. The finite-size factor 1/(1− 1/N) is to be taken into account
in small or mesoscopic spin systems, and approaches 1 in the thermodynamic limit.

From this, we can now determine the off-diagonal order of the system in the incoherent mixture
of Dicke states as given by the density matrix of Eq.(B.35). Using the identities

N∑
m=0

(
N
m

)
m = N2N−1,

N∑
m=0

(
N
m

)
m2 = N(N + 1)2N−2,

one obtains

〈σ+
i σ
−
j 〉mixture =

1

4
.

As expected, this value does not depend on the initial number of excitations anymore, since
this information is completely lost, once the system has diffused into the incoherent mixture of
Dicke states. The off-diagonal order in the incoherent mixture of Dicke states assumes a value
which is independent of the system size N , and remains finite in the thermodynamic limit.

In summary, the experimental imperfections, as described by depolarizing noise and resulting in
the non-conservation of the excitation-number during the simulation, lead to a strong decrease
of the state overlap between the asymptotically reached many-body body state of Eq. (B.35)
and the ideal ”target” dark state |D(m0, N)〉. However, from a condensed-matter perspective
one can state that the imperfections are not too harmful to the off-diagonal long-range order,
measured by the two-spin correlation function 〈σ+

i σ
−
j 〉 for |i − j| � 1 as an order parameter.

The off-diagonal order is constantly stabilized and re-built by virtue of the repeated application
of the engineered (though imperfectly implemented) dissipative dynamical maps.

B.4.5. Quantum error detection method: Post-selective QND
scheme

General idea

The post-selective error detection method is based on a quantum non-demolition (QND) mea-
surement of the total number m of spin excitations present in the system at the end of the
sequence of dynamical maps. Simulation outcomes, where due to experimental imperfections
the ideally conserved initial spin excitation number m0 has changed to a final value m 6= m0

are discarded. This leads to an improvement of the simulation accuracy for longer sequences
of dynamical maps, at the expense of an increased number of experimental runs to obtain the
same measurement statistics. We remark that in a large system, as typical for post-selective
techniques, this method becomes inefficient as the probability of remaining within the subspace
of initial excitation number m0 becomes exponentially small and thus only a vanishingly small
number of ”successful” runs enter the measurement statistics.
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In order to maintain the dissipatively created off-diagonal order in the many-spin system, a
crucial property of the excitation number measurement is its QND nature: the spin excitation
number m has to be determined in a way that allows one to only obtain information about the
total number of excitations in the system, but no knowledge about the spatial positions of indi-
vidual excitations along the array. This QND measurement can be realized by a global unitary
map, which acts on the entire register of system spins and an ancillary qubit (see Fig. 4.3.2b
of the main text). Such a unitary is constructed in a way that it maps the binary information
whether the register of system spins is in the correct excitation number subspace with m = m0

(or not) onto the logical state |0〉 (|1〉) of the ancillary qubit. It involves the projector P (N)
m0 onto

the subspace of m0 spin excitations in an array of N spins, and reads

U (N)
m0

= exp
(
−iπ

2
P (N)
m0
⊗ σx0

)
(B.36)

= P (N)
m0
⊗ (−iσx0 ) + (1− P (N)

m0
)⊗ 10.

This equation can be understood as follows: The state of the ancilla qubit, initially prepared
in |1〉, is flipped by the σx0 operation if the system spins are in a state with exactly m = m0

excitations, whereas the ancilla qubit is left unchanged otherwise. The QND measurement is
then completed by a measurement of the ancilla qubit in the computational basis, providing the
desired information on whether m = m0 or m 6= m0, depending on whether the ancilla qubit is
measured in |0〉 or |1〉.

Construction of the projectors onto excitation number subspaces

The projector P (N)
m0 required for the unitary (B.36) can be constructed systematically and effi-

ciently for any m0 and N as follows: One starts from the ansatz

P (N)
m0

=
N∑
k=0

αkS
k
z (B.37)

with Sz =
∑N

i=1 σ
z
i . This ansatz assures that the projector P (N)

m0 (i) is diagonal in the compu-
tational basis, (ii) symmetric under any permutation of spin indices, and (iii) does not involve
higher powers with k > N as such terms are already contained in previous terms with k ≤ N
due to the property (σzi )

2 = 1. Since the computational basis states are eigenstates of Sz,

Sz|0 . . . 0〉 = N |0 . . . 0〉,
Sz|0 . . . 0, 1〉 = (N − 2)|0 . . . 0, 1〉, . . .

...
Sz|1 . . . 1〉 = −N |1 . . . 1〉,
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and the projector per definition fulfills

P (N)
m0
|0 . . . 0〉 = 0,

...

P (N)
m0
|

m0︷ ︸︸ ︷
0 . . . 0

N−m0︷ ︸︸ ︷
1 . . . 1〉 = |0 . . . 01 . . . 1〉, . . .

...

P (N)
m0
|1 . . . 1〉 = 0,

its form is uniquely determined by the following coupled system of N + 1 linear equations,
1 N N2 . . . NN

1 (N − 2) (N − 2)2 . . . (N − 2)N

...
...

...
...

...
...

...
...

1 −N (−N)2 . . . (−N)N




α0

α1
...
...
αN

 =


0
...
1
0
...


with the only non-zero entry in the (N − m0 + 1)-th row. This matrix equation is readily
solved, yielding for the experimentally relevant case of three system spins with one or two spin
excitations the projectors

P
(3)
1 = |011〉〈011|+ |101〉〈101|+ |110〉〈110| (B.38)

=
1

16
(9− 9Sz − S2

z + S3
z )

=
1

8
(3− (σz1 + σz2 + σz3)

−(σz1σ
z
2 + σz1σ

z
3 + σz2σ

z
3) + 3σz1σ

z
2σ

z
3)

and

P
(3)
2 = |001〉〈001|+ |010〉〈010|+ |100〉〈100| (B.39)

=
1

16
(9 + 9Sz − S2

z − S3
z )

=
1

8
(3 + (σz1 + σz2 + σz3)

−(σz1σ
z
2 + σz1σ

z
3 + σz2σ

z
3)− 3σz1σ

z
2σ

z
3) ,

where Sz =
∑3

i=1 σ
z
i . Note that the projectors are closely related and can be transformed into

each other by the symmetry operation Sz → −Sz, which interchanges the role of up- and down-
spins, or occupied and empty sites in the hardcore boson model, respectively.

Experimental implementation of the QND measurement

As by the total spin excitation number m a collective property of the entire spin system is mea-
sured, the unitary of Eq. (B.36) truly is a many-qubit operation: Equations (B.38) and (B.39)
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show that the projectors contains 1, 2 and 3-body spin interaction terms, such that the QND
mapping of Eq. (B.36) involves interaction terms with up to 4-body Pauli operators. A decom-
position of the unitary for the QND measurement U (3)

m0=1 into experimentally available gates, as
obtained using the numerical optimization algorithm, is shown in Table B.20. We note that since
the QND measurement involves a global unitary, a numerical optimization has to be done sepa-
rately for any register size and any particular spin excitation number, and furthermore becomes
inefficient for increasing register sizes. However, the unitary can be implemented efficiently
without resorting to numerical optimization: For a system of N spins, U (N)

m0 will generally be
the product of unitaries corresponding to many-spin interactions, at most (N + 1)-body Pauli
operators. These unitaries can be decomposed into sequences of available gates following the
recipes outlined in [55]. Although the implementation of U (N)

m0 becomes experimentally de-
manding for increasing system sizes N and in general requires more operations than numeri-
cally optimized circuits, the number of required operations for the QND mapping operation still
grows polynomially with the number of system spins.

Number Pulse Number Pulse
1 R(0.5,−0.5) 11 R(0.146,−0.895)
2 R(0.5, 0.0) 12 MS(0.375,−1.054)
3 Sz(0.5, 3) 13 Sz(0.364, 3)
4 MS(0.125, 0.0) 14 MS(0.75,−1.054)
5 R(0.098, 1.0) 15 R(1.0, 0.0)
6 Sz(1.636, 3) 16 Sz(1.818, 3)
7 MS(0.25, 0.0) 17 R(0.277,−1.054)
8 R(0.136, 0.5) 18 Sz(0.152, 3)
9 Sz(0.75, 3) 19 R(0.5, 0.895)

10 R(0.113,−1.054)

Table B.20.: Pulse sequence for the QND post-selective measurement of the spin excitation
number in a system of 3+1 ions.

Due to the considerable complexity of the mapping operation for the QND measurement, with
the optimized circuit involving in total 19 operations (see Table B.20), this method for error
detection itself can only be implemented with a certain accuracy and requires a constant resource
overhead, independently of the number of dynamical maps applied in the simulation. It can
be seen from the data shown in Figs. 3a and b, and Fig. 4a of the main text, that for short
sequences such as e.g. only a single elementary dissipative map, where the system without error
detection remains with high probability in the desired excitation number subspace, experimental
imperfections in the QND measurement itself actually introduce even more errors on the state of
the system (red data points) than in the case where it is not applied (blue data points). However,
for longer sequences of dynamical maps, where the population loss out of the initial excitation
number subspace becomes more and more significant, the application of the QND post-selective
method becomes effective and enables a more accurate simulation of the system dynamics for
longer times.
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B.4.6. Quantum error reduction scheme - Excitation number
stabilization

General idea

The second error reduction procedure goes beyond the error detection method described in the
previous section: it does not only allow one to detect errors, which have changed the ideally
conserved spin excitation number m during the quantum simulation, but performs an active
stabilization of the register of system spins in the wanted subspace of spin excitation number
m0. In the previous post-selective case the ancilla qubit carried the binary information whether
the system is in the correct subspace or not. Here, in contrast, it is necessary to distinguish
between at least three cases: (i) The excitation number m is correct, and thus no error correction
process is required; the excitation number is (ii) too small or (iii) too large, as illustrated in figure
4.3.2b,c in the main text. This information cannot be stored in a single ancilla qubit with two
logical states anymore. Although it is in principle possible to use a higher-dimensional ancillary
system, such as multiple ancillary qubits, to store the required information, such an approach
would require significantly more complex detection and correction algorithms. Here, we choose
an alternative approach, which still allows one to perform the excitation number stabilization
with a single ancilla qubit if the stabilization process is implemented as a two-step process:
One stabilization step injects a single excitation into the register if there are too few excitations
present (m < m0) and a second stabilization step removes an excitation from the system if too
many are present (m > m0), as schematically shown in Fig. 4.3.2c of the main text. Similarly to
repetitive quantum error correction, the state of the ancilla qubit has to be reset in between the
two steps. As the underlying construction of the excitation injection and the extraction step is
very similar, we focus in the following on a detailed description of the protocol for the excitation
extraction procedure.

Conceptually, the injection protocol consists of two main parts: First, similar to the QND mea-
surement in the previous section, the binary information whether or not there are too many spin
excitations in the system is coherently mapped onto the two logical states of an ancillary qubit.
Second, conditional on the state of the ancilla qubit, which is acting as a quantum controller, a
feedback procedure is applied to the system spins. This quantum feedback procedure extracts
one of the (possibly multiple) superfluous spin excitations and stops once this has been achieved.

The first part is realized by a unitary mapping acting on the entire register of system spins and
the ancilla qubit. However, in contrast to the QND post-selective method, the ancillary qubit is
not measured after this mapping. The unitary for the mapping reads

U
(N)
m>m0

= exp

(
−iπ

2

(
N∑

j=m0+1

P
(N)
j

)
⊗ σx0

)
(B.40)

and can be understood as follows: The state of the ancilla qubit prepared in |1〉 is flipped if
and only if there are too many spin excitations present in the system; here the system oper-
ator

∑N
j=m0+1 P

(N)
j denotes the projector onto the subspace of states containing strictly more

excitations than the desired value m0. It is the sum over all projectors P (N)
j onto subspaces
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with j > m0 excitations in a system of N spins, and each of these projectors can be readily
constructed following the procedure described in Sec. B.4.5.

After the mapping operation between the system spins and the ancilla, the second part of the
protocol deals with the actual extraction of a spin excitation from the system. This step faces
the difficulty that due to the QND character of the first mapping step, the state of the ancilla
qubit only encodes information about whether too many excitations are present in the system,
but not on which sites the excitations are located. In order to minimally disturb the state of the
system spins it is desirable to devise an extraction scheme with the following properties: (i) An
excitation is extracted in a minimally invasive way, i.e. under an extraction of an excitation from
a certain site, off-diagonal order among system spins of the rest of the chain is maintained as
far as possible. (ii) Second, the scheme should effectively hold and not further alter the state
of the system spins once an excitation has been successfully extracted. We have developed
and implemented a scheme, which satisfies both criteria, and which exploits a combination of
spectroscopic decoupling and optical pumping of the ancillary qubit.

Figure B.20 (following page): Logical tree illustrating the complete excitation extraction proce-
dure for a 3-spin system with ideally a single excitation present,
and for various (unknown) initial states of the system spins. Blue
circles correspond to spin excitations (hardcore bosons) localized
on particular sites, whereas ellipses indicate situations where ex-
citations (hardcore bosons) can be delocalized over several lattice
sites. The error reduction takes place in six steps: By a QND
map (1) the information whether or not too many excitations are
present in the system, is mapped onto an ancilla qubit. (2) In case
of the ideal excitation number or too few excitations, the ancilla
is removed from the computational space and the protocol effec-
tively halts. In the opposite case, a swap operation (3) is applied
to try to extract an excitation from system site # 1. If successful,
after the subsequent removal of the ancilla (4) the protocol halts.
Otherwise, (5) an extraction by a swap of the ancilla with system
site # 2 extracts an excitation. (6) Finally, the ancilla is reset to
its initial state |0〉 for subsequent error reduction steps. See also
text for a more detailed explanation.
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Steps of the excitation extraction procedure

Let us now describe in more detail the steps of the excitation extraction procedure, which is
illustrated in Fig. B.4.6 for a system of three spins. In step (1) the mapping introduced above
is applied, so that the information whether a correctable error (i.e. too many spin excitations in
the system) is present (or not), is encoded in the ancilla state |0〉 (|1〉). If no correctable error
is detected (m ≤ m0) then the subsequent operations should not affect the system qubits. This
can be realized by removing the ancilla qubit incoherently from the computational subspace
(step (2)) as will be discussed below. In step (3) an extraction attempt on the first site of the
spin register is performed by swapping the ancilla, which is now in the state |0〉 corresponding
to an empty site (no spin excitation), with the first qubit of the system. In terms of spins this
operation corresponds to a swap (”flip-flop”) process, under which |0〉0|1〉1 → |1〉0|0〉1, i.e. the
spin excitation is coherently exchanged between the ancilla qubit and the first system spin.
In the language of hardcore bosons, the process can be interpreted as a tunneling of a boson
from the site #1 onto the previously empty ancilla site (see step (3) in Fig. B.4.6). If after
this process the ancilla qubit is in the state corresponding to an occupied site (spin excitation
present), a single excitation has been successfully extracted from the system and the process
should halt. As will be shown below, this can be performed by removing the population of the
ancilla qubit from the computational subspace (step (4)). However, if the ancilla is still in the
state |0〉 corresponding to an empty site after the swap operation, then the first system qubit was
in the state corresponding to an unoccupied site and thus no spin excitation (or hardcore boson)
could extracted, |0〉0|0〉1 → |0〉0|0〉1. Thus, this procedure is repeated (step (5)) until the ancilla
qubit is found in the state |1〉 corresponding to an occupied site. In the case of three sites at most
two extraction rounds are required (steps (3), (4), and (5)), before the ancilla is reset to |0〉 (step
(6)) for subsequent rounds of error reduction.

Open vs. closed-loop error reduction scheme – The described extraction (and injection) proto-
cols are realized in an open-loop fashion, i.e. the ancilla remains unobserved during the whole
procedure. This comes at the cost that all pulses (for steps (1) - (6) in the above example)
have to be physically applied in every run of the error reduction procedure, even if the ancilla
has been already be removed from the computational subspace and in principle no further op-
erations would be required. However, the described protocol could easily be modified into a
closed-loop control scenario: In this case one would perform individual measurements of the
ancilla qubit after the QND map (1) as well as after the coherent swap operations (steps (3) and
(5)). The outcomes of these ancilla measurements would then yield the classical information on
whether no error correction is required after step (1) or an excitation has already been extracted
successfully in steps (3) or (5). This information could then be used for classical feedback on the
quantum system in the sense that one can externally decide whether further steps are required
in the error reduction protocol, or whether one can stop the current run of the error reduction
protocol and no further operations have to be applied. An advantage of this modified scheme
is that dissipative removal operations of the ancilla qubit out of the computational subspace are
not required. Experimentally, the price to pay in this modified scheme would be a number of
fluorescence measurements, which are slow compared to the application of coherent gates, and
the requirement to recool the relevant external degrees of freedom of the ion chain after each
measurement as recently demonstrated in [95].
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Experimental implementation

In the experiment, the error reduction protocol for a system of three spins, using 3+1 ions was
implemented. We considered the case of having ideally m0 = 1 excitation present on the three
sites. For the extraction step, the four-qubit unitary U (3)

m>1 (cf. Eq. (B.40)) to detect whether too
many excitations (i.e.m = 2, 3) are present in the system or not, has been obtained by numerical
optimization. The resulting circuit consisting of 15 gates is listed in Table B.21. On the other
hand, for the injection part, the unitary

U
(N)
m<m0

= exp

(
−iπ

2

(
m0−1∑
j=0

P
(N)
j

)
⊗ σx0

)
(B.41)

which interrogates the system whether too few excitations are present, is required. For the case
m0 = 1 and N = 3, the unitary U (3)

m<1 realizes a spin flip of the ancilla qubit only if the three
system spins are in the state |000〉. This operation is equivalent to a triple controlled-NOT
operation with the three system spins playing the role of the control qubits and the ancilla the
target qubit. As we could not obtain a satisfying circuit decomposition for this unitary by means
of the usual numerical optimization algorithm, we did not try do directly optimize U (3)

m<1, but
allowed the unitary to add arbitrary phases to states lying outside the desired excitation number
subspace m0 = 1. Under these relaxed conditions, the numerical optimizer delivered a circuit
decomposition of 19 operations as shown in Table B.22.

Number Pulse Number Pulse
1 R(0.25, 0.5) 9 Sz(1.0, 3)
2 Sz(1.0, 3) 10 R(0.25, 0.5)
3 R(0.25, 0.5) 11 MS(0.5, 0.5)
4 MS(0.25, 0.5) 12 R(1.5, 0.5)
5 R(1.75, 0.0) 13 R(0.125, 0.5)
6 Sz(1.0, 3) 14 Sz(1.0, 3)
7 R(0.25, 0.0) 15 R(1.875, 0.5)
8 R(1.75, 0.5)

Table B.21.: Pulse sequence to implement the QND unitary U (3)
m>1 (cf. Eq. (B.40)) as part of the

excitation extraction protocol. It maps the information whether there are more than
m = 1 spin excitations present in a system of three spins, onto the ancilla qubit.

Implementation of the actual excitation extraction – We will now discuss the physical mech-
anism underlying the implementation of the removal of a spin excitation (or hardcore boson),
as described above and illustrated in Fig. B.21. This excitation removal step takes place after
the QND mapping (1) and a decoupling operation on the ancilla qubit (2) described below. As
mentioned above, the extraction step (3) relies on a swap operation exchanging the excitation
of the ancilla qubit with one of the system spins, say #1. This swap operation is realized by
applying a π-pulse, according to the ”flip-flop” Hamiltonian

H01 = σ+
0 σ
−
1 + σ−0 σ

+
1 =

1

2
(σx0σ

x
1 + σy0σ

y
1).
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Number Pulse Number Pulse
1 R(1.75, 0.5) 12 R(0.375, 0.0)
2 Sz(1.0, 3) 13 Sz(1.0, 3)
3 R(1.75, 0.5) 14 R(1.625, 0.0)
4 MS(0.25, 0.0) 15 Sz(0.5, 3)
5 R(1.875, 0.0) 16 MS(0.25, 0.0)
6 Sz(1.0, 3) 17 R(0.125, 0.0)
7 R(0.125, 0.0) 18 Sz(1.0, 3)
8 R(0.25, 0.5) 19 R(1.875, 0.0)
9 Sz(1.0, 3) 20 R(0.125, 0.5)
10 R(1.75, 0.5) 21 Sz(1.0, 3)
11 MS(0.25, 0.0) 22 R(1.875, 0.5)

Table B.22.: Pulse sequence to implement the QND unitary U (3)
m<1 (cf. Eq. (B.41)) as part of the

excitation injection protocol. It maps the information whether there are m = 0
instead of ideally m = 1 spin excitations present in a system of three spins, onto
the ancilla qubit.
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Figure B.21.: a, Schematic view of the error detection and excitation removal process
(cf. Fig. 4.3.2c of the main text). b, The excitation removal process on 3 sys-
tem qubits can be performed by swap operations and effective halting conditions
realized by a dissipative decoupling of the ancilla qubit. c, Swap operations (B.42)
between the ancilla qubit and one system spin are implemented by two effective
two-qubit MS operations, which are build up from 4 MS operations acting on three
ions, interspersed with refocusing operations.

The resulting unitary

U01 = exp
(
−iπ

2
H01

)
(B.42)

= exp
(
−iπ

4
σx0σ

x
1

)
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(
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4
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y
1

)
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Figure B.22.: The dissipative decoupling process of the ancilla qubit used in the injec-
tion/removal processes. The goal is to uni-directionally remove population in the
computational state |0〉 (red triangular marker) and add it to electronic popula-
tion that is possibly already present in the ”parking” state |2〉 (green rectangular
marker). Population in the computational state |1〉 (blue circle) should be left
unchanged. The sequence: (i) First, the population in states |1〉 and |2〉 is coher-
ently swapped by a π-operation. (ii) Population in |0〉 is coherently transferred
to the state 4S1/2(mj = +1/2). (iii) Optical pumping from this state towards the
|1〉 state. In this step, the populations that were at the beginning of the sequence
present in |2〉 and |0〉 are added up and temporarily accumulate in state |1〉. (iv)
Finally the populations in states |1〉 and |2〉 are again swapped coherently.

corresponds to the application of two fully-entangling x- and y-type MS gates (see Eq. (B.21))
applied to the ancilla ion and the first system ion. This two-ion MS gate can be realized by
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Number Pulse
1 MS(0.25, 0)
2 Sz(1.0, j)
3 MS(0.25, 0)
4 MS(0.25, 0.5)
5 Sz(1.0, j)
6 MS(0.25, 0.5)

Table B.23.: Pulse sequence for a swap operation used for excitation injection or removal, see
Fig. B.21c. Ion j is the spectator ion, which is not spectroscopically decoupled, but
is not intended to participate in the swap operation.

the global bi-chromatic light field, if all ions but the ancilla qubit and the system qubit #1 are
spectroscopically decoupled. However, since step (3) involves the ancilla qubit and system ion
#1, and step (5) the ancilla qubit and system ion #2, it is from an experimental point of view
more convenient to spectroscopically decouple only ion #3, but keep both ions #1 and #2 in
the ”active” qubit states during the extraction procedure. Doing so, each of the x− and y-type
MS-gates required for the operation (B.42) acting on the ancilla (index #0) and system ion #1
can be realized by two MS gates acting on the three ions, interspersed by a π-pulse SZ(1, 2)
applied to the second system ion, as shown in Fig. B.21. The application of the ”refocusing”
pulse in between the MS gates leads to an effective decoupling of ion #2 that is not supposed
to participate in the unitary (B.42) [55]. This technique is also applied to realize the swap
operation required in step (5), which acts on the ancilla qubit and the second system. Using
this decoupling technique based on refocusing pulses, no additional spectroscopic decoupling
operations are required between the two swap operations corresponding to steps (3) and (5). The
experimentally employed sequence of 6 gates is listed in Table B.23.

In Sec. B.4.6 we have outlined that the ancilla will be removed from the computational subspace
in step (2) if no error is to be corrected in the current error reduction round. In this case, if the
ancilla has been removed from the qubit subspace, the two-qubit MS interactions appearing in
(B.42) act only on a single qubit. However, in this ”pathological” case where the bi-chromatic
laser fields used for the generation of the effective spin-spin interactions of the entangling MS
gate of Eq.(B.21), are applied to a single ion only, these realize up to negligible corrections the
identity operation on this single ion [148, 187]. As a consequence, in this case – despite the fact
that the MS gate laser pulses of steps (3) and (5) are physically applied to the ions – they do not
alter the state of the systems spins, as desired.

Dissipative decoupling of the ancillary qubit – As explained above, the ancilla qubit shall be
removed from the computational subspace if either (i) no correctable error is detected in the cur-
rent round of error reduction, or (ii) a superfluous spin excitation has been successfully extracted
from the spin system. In these cases, the removal of the ancilla from the qubit subspace guaran-
tees that the error reduction protocol effectively halts (see the logical tree shown in Fig. B.4.6)
and the state of the system spins is no further modified, even though after the removal of the an-
cilla MS gate laser pulses are applied to the ion string. In steps (2) and (4) of the spin extraction
protocol, the ancilla qubit is removed from the computational state |1〉 into the ”parking” state
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|2〉, which we encode in the 3D5/2(mj = −5/2) electronic state (see Fig. B.22). This removal
into |2〉 takes place if the ancilla ion resides at these instances in |1〉, if it is in |0〉 its state remains
unaffected.

For this removal it is not possible to use the coherent spectroscopic decoupling technique as
used for the implementation of the elementary Kraus maps. The reason is that this would lead
to errors in the protocol: for instance, imagine no correctable error is present in the system
and thus the ancilla is brought to the decoupling state |2〉 in step (2). If then another ancilla
removal were performed coherently (step (4)), the ancilla would be transferred back from |2〉 to
the computational state |1〉. This is clearly unwanted as in this case with the ancilla returned to
|1〉, the subsequent swap operation (5) would be performed by mistake. This unwanted behavior
can be avoided if the transfer of the ancilla from |1〉 to |2〉 is realized dissipatively, by an optical
pumping process, which bares similarities with the incoherent reset of the ancilla qubit for the
elementary dissipative maps. Such uni-directional, incoherent pumping process from |1〉 to |2〉
guarantees that once the ancilla has reached the ”parking” state |2〉, it will in subsequent steps
never return to the computational subspace. This optical pumping process for a removal process
of the ancilla qubit from one of the computational basis states into |2〉 is illustrated and described
in more detail in Fig. B.22.

In the spin excitation protocol the ancilla is removed from |1〉 (corresponding to an occupied
site) to |2〉, whereas in the spin injection protocol it has to removed from |0〉 (empty site) to |2〉.
For both scenarios, the pulse sequence outlined in Fig. B.22 can be employed; a π-pulse reso-
nant with the qubit transition of the ancilla, applied before and after the dissipative decoupling
sequence, exchanges the roles of the two computational states |0〉 ↔ |1〉 and thereby allows one
to switch between the spin extraction and injection scenario.

Experimental results for the stabilization

The active excitation number stabilization procedure can be best tested when applying it to a
state that has a considerable amount of the population outside the subspace with the correct
excitation number m0. We applied Hadamard operations on the three system qubits initially
in |000〉 to prepare the initial state |ψ0〉 = 1/

√
8(|0〉 + |1〉)⊗3, which is an equal-weight su-

perposition of all eight three-qubit computational basis states, each occurring with probability
1/8. The measured and ideal density matrix of this initial state is shown in Fig. B.24a. For
m0 = 1 the states |001〉, |010〉, |100〉 span the subspace with the desired spin excitation number.
Thus, the initial fraction of population in this subspace is 3/8 as shown in Fig. 4.3.2d of the
main text. We then performed the excitation extraction protocol according to the protocol out-
lined above and summarized in Fig. B.4.6. Ideally this protocol extracts one excitation from the
components of the initial state, which contain two or three spin excitations, m = 2 → m = 1
and m = 3 → m = 2, thereby pumping the population corresponding to these states into the
subspaces with one excitation less. It is a crucial property of the error reduction protocol that
the coherences within the subspace of the ”correct” excitation number m = 1 are ideally pre-
served, as the dynamics within the desired simulation subspace should be affected as little as
possible. The component |000〉 of the initial state corresponds to a state with zero, i.e. too few
spin excitations, and thus to an error which is not corrected by the spin excitation procedure.
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In Fig. 4.3.2d in the main text, the ideal and the measured populations in all four excitation
number subspaces at the end of the extraction protocol are shown. From this information one
can deduce that the protocol within experimental accuracy realizes the pumping of populations
between the different excitation number subspaces as expected. To infer whether the coherences
are preserved, we measured the three-qubit density matrices after the first excitation extraction
attempt from the first site (step (3) in Fig. B.4.6) and after the second extraction attempt from
the second site (step (5)). The measured and the ideal density matrices are shown in Fig. B.24b
and c, where the relevant coherences within the m0 = 1 subspace are highlighted in red color.
From the comparison of measured and ideal density matrices it can be seen that the coherences
in the m0 excitation subspace are well-preserved.

The complete error correction protocol consists of the excitation extraction and injection pro-
cedures. For the same initial state |ψ0〉, we implemented the injection procedure, which ideally
only acts on the |000〉 state, and pumps the population from the m = 0 into the m = 1 subspace.
Again, the coherences within the m = 1 subspace should be preserved under this procedure,
yielding as a result of the injection protocol the ideal density matrix shown in the right part of
Fig. B.24d. Comparison with the measured density matrix shows that most of the population is
pumped out of the m = 0 subspace, and that the initially present coherences within the m = 1
subspace are reasonably well conserved.

The ultimate goal of any error reduction protocol is certainly to increase the performance of a
complex algorithm. As a step in this direction, we integrated the excitation removal protocol
into the simulation sequence for dynamics according to composite dissipative maps with 3+1
ions. In Fig. B.23 we compare the probabilities for all excitation numbers m when (i) no error
reduction technique is used (blue data points), (ii) with the post-selective QND measurement ap-
plied (red), and (iii) with the excitation removal procedure included in the simulation (green). It
can be seen that the removal procedure has a higher overhead due to its considerable complexity.
Nevertheless, as an indication of its usefulness, a slower decay of the probability of finding the
population in the desired subspace for m = 1 can be observed, for the case in which the stabi-
lization procedure is applied, compared to the case without any error correction. This indicates
that the stabilization procedure indeed works qualitatively as intended, when it is incorporated
into the actual simulation.

B.4.7. Additional experiments and data analysis for competing
dissipative and coherent dynamics

In Figs. 4.9 and 4.10 of the main text, the experimental results for systems of 3+1 and 4+1 ions
are depicted. The attentive reader noticed that in Fig. 4.10 in the main text the data point for 5
maps is missing. This is due to the fact that in view of the length of the algorithm, the memory of
the current experimental control system is not sufficient to generate the required pulse sequence
for 4 elementary dissipative maps and one composite Hamiltonian dynamical map. It is however
possible to generate the sequence for two elementary maps and one Hamiltonian dynamical map,
and to repeat this sequence twice (data point for 6 maps).

Here, we extend the experimental analysis that was omitted from the main text due to space
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Figure B.23.: Experimental study of the error reduction protocol, incorporated into the actual
quantum simulation of composite dynamical maps with 3+1 ions, with an ini-
tial and ideal excitation number of m = 1. The four plots show the fraction of
the population in the subspaces with zero, one, two and three spin excitations,
as a function of the number of elementary dissipative dynamical maps applied.
For comparison, blue data points corresponds to the population under dissipative
maps, without error detection or reduction technique applied. Red data points
correspond to the case where after the final elementary dissipative map the QND
post-selective measurement was applied. Green data points corresponds to the
case where the extraction protocol has been applied at the end of the simulation.
Bars are the theory, where depolarizing noise in the elementary dissipative maps
is taken into account (cf. Sec. B.4.3).

restrictions by showing different measures for the already presented data and also additional
datasets: In Figs. B.26 and B.25 we add the measures purity and off-diagonal order for the data
already presented in Figs. 4.9 and 4.10 of the main text. The purity Trρ2 is a measure for how
close the measured state is to a pure state. Off-diagonal order measures the coherences between
neighboring sites as the expectation value of the operator

∑
j σ

(j)
− σ

(j+1)
+ evaluated within the

m0-excitation subspace. This parameter emphasizes the effect of the competing Hamiltonian
dynamics as it changes the sign from positive to negative after the application of a Hamiltonian
map, as shown in figure B.26.

Figure B.27 shows an alternative dataset which demonstrates that the coherent competing Hamil-
tonian dynamical map in a system of three sites has - as physically expected - no effect if only
a single excitation is present in the system. Comparison with the data of Fig. 4.10 in the main
text, underlies the significance of the decrease in the overlap with the overlap with the target
Dicke state |D(2, 3)〉, and this effect is indeed caused by the competing Hamiltonian dynamics.

Figure B.28 shows a dataset with competition and two spin excitations present in the system.
Compared to the analysis in the main text, the competition strength is now set to φ = π/4
instead of π/2. As expected, this leads to a reduced effect of the competing Hamiltonian maps
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Figure B.24.: Reconstructed (left) and ideal (right) density matrices of the removal and injection
process in a 3+1 ion experiment. Populations and coherences within the desired
excitation number subspace withm = 1 are high-lighted by red bars. a, The initial
state is an equal-weight superposition of all eight computational basis states. b,
The state after the system after a spin excitation removal attempt from the first
site. c, The state of the system after the second swap operation to remove an
excitation from the second site. After both steps, the coherences shown in red are
well-preserved. d, The state of the system after a spin excitation injection attempt,
starting again in the equal-weight superposition state shown in a. The population
from the |DDD〉 = |000〉 state is depleted, and coherences within the m = 1
subspace are reasonably well preserved.
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Figure B.25.: Experimental results of dissipatively induced delocalization through compos-
ite dynamical maps with 3+1 ions. The results from an ideal model are shown
in light-blue bars whereas those from a model including depolarization noise are
indicated by dark-grey bars. Blue rectangles indicate the experimentally observed
dynamics without any correction scheme whereas red rectangles include a post-
selective error detection scheme (error bars, 1σ). Overlap fidelity, purity, popula-
tion in them = 2 subspace, and off-diagonal order in a 4-spin quantum simulation
with 4+1 ions, studying purely dissipative dynamics that induces pumping towards
the Dicke state |D(2, 4)〉 as shown in figure4.9 in the main text.

on the dissipatively created order.
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Figure B.26.: Experimental results for competing dissipative and coherent dynamics with
3+1 ions The results from an ideal model are shown in light-blue bars whereas
those from a model including depolarization noise are indicated by dark-grey
bars. Blue rectangles indicate the experimentally observed dynamics without any
correction scheme whereas red rectangles include a post-selective error detection
scheme (error bars, 1σ). Overlap fidelity, purity, population in the m = 2 sub-
space, and off-diagonal order in a 3-spin quantum simulation with 3+1 ions. The
dynamics corresponds to dissipative maps and coherent Hamiltonian competition
as shown in figure 4.10 in the main text.
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Figure B.27.: Experimental results for competing dissipative and coherent dynamics with
3+1 ions with a single excitation. The results from an ideal model are shown
in light-blue bars whereas those from a model including depolarization noise are
indicated by dark-grey bars. Blue rectangles indicate the experimentally observed
dynamics without any correction scheme whereas red rectangles include a post-
selective error detection scheme (error bars, 1σ). Data from simulated dynamics
with Hamiltonian competition for 3 spins (3+1 ions), but only a single spin ex-
citation present. As physically expected, the data confirms that in this case the
Hamiltonian dynamical map has no effect.
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Figure B.28.: Experimental results for competing dissipative and coherent dynamics with
3+1 ions with weak interaction The results from an ideal model are shown in
light-blue bars whereas those from a model including depolarization noise are
indicated by dark-grey bars. Blue rectangles indicate the experimentally observed
dynamics without any correction scheme whereas red rectangles include a post-
selective error detection scheme (error bars, 1σ). Data from simulated dynamics
with weaker competing Hamiltonian dynamics (φ = π/4) in a 3-spin system with
two spin excitations present in the system (3+1 ions).
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[33] V. Nebendahl, H. Häffner, and C. F. Roos, Optimal control of entangling operations for
trapped-ion quantum computing, Physical Review A 79, 012312 (2009).
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möchte ich mich bei Patricia Moser bedanken, die immer ein offenes Ohr für unsere Anliegen
hat.
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