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Abstract

This thesis reports on the experimental realization of quantum gates and algorithms with
an ion trap quantum information processor. “°Cat ion strings are stored in a linear Paul
trap. The ions are cooled and excited by laser light, and observed by detection of their flu-
orescence on a photomultiplier and on a CCD camera. The motion of a string (or a single
trapped ion) can be described by vibrational modes (i.e. normal modes of the ion crystal).
The Sy /5 ground state and the metastable D5/, state are used to encode one quantum bit in
each ion (internal qubits). The lowest two quantum states of a selected vibrational mode are
identified as an additional qubit (vibrational qubit).

A new linear ion trap is designed and built based on experiences made with previous traps.
Resonant photoionization as a new trap loading technique is investigated using a setup of two
blue laser diodes. This technique presents many advantages over traditional electron impact
ionization in terms of trap operation and electric stray field compensation. Strings of up to
three ions are spectroscopically investigated. Further experimental prerequisites for ion trap
quantum computation such as motional ground state cooling, optical addressing and laser
phase control are implemented.

For quantum phase control, a compensation method for unwanted AC-Stark shifts is devel-
oped and the technique of composite pulses is adapted from NMR technology. The composite
pulse technique allows the implementation of arbitrary rotations of the vibrational qubit. This
enables the use of a single trapped ion together with a vibrational qubit as a universal two-
qubit quantum information processor. With the help of these techniques, the Deutsch-Jozsa
algorithm is implemented. This represents the first complete quantum algorithm realized with
an ion trap quantum computer. Moreover, a novel method based on off-resonant laser-ion cou-
pling is employed to implement a universal quantum gate between internal and vibrational
qubit. The type of coupling is dispersive, i.e. it creates conditional phase shifts but leads
to no population transfer. Finally, preliminary experiments on the realization of a two-ion
controlled-NOT gate according to Cirac and Zoller are carried out.






Zusammenfassung

Diese Dissertation berichtet iiber die experimentelle Realisierung von Quantengattern und
-algorithmen mit einem Ionenfallen-Quanteninformationsprozessor. “°Ca* Ionenketten wer-
den in einer linearen Paulfalle gespeichert. Die Ionen werden mit Laserlicht gekiihlt und
angeregt und ihre Fluoreszenz wird mit Hilfe eines Photomultipliers sowie einer CCD-Kamera
beobachtet. Die Bewegung einer Ionenkette (oder auch eines einzelnen gefangenen Ions)
kann durch Vibrationsmoden (d.h. Normalmoden des Ionenkristalls) beschrieben werden. Der
S1/2-Grundzustand und der metastabile Dj5/o-Zustand werden verwendet, um ein Quantenbit
(Qubit) in jedes Ion einzuschreiben (interne Qubits). Die untersten zwei Quantenzustinde
einer ausgewdhlten Vibrationsmode werden als ein zusitzliches Qubit identifiziert (Vibra-
tionsqubit).

Auf der Grundlage von Erfahrungen mit friitheren Ionenfallen wird eine neue lineare Falle
entworfen und gebaut. Resonante Photoionisation als eine neue Technik zum Laden einer
Tonenfalle wird untersucht. Dafiir wird ein Aufbau aus zwei blauen Laserdioden verwendet.
Diese Methode zeigt verschiedene Vorteile gegeniiber der traditionellen Ionisation durch Elek-
tronenstof beziiglich Fallenbetrieb und der Kompensation elektrischer Streufelder. Ketten
von bis zu drei Tonen werden spektroskopisch untersucht. Weitere experimentelle Voraus-
setzungen fiir einen Ionenfallen-Quantenrechner wie z.B. Bewegungs-Grundzustandskiihlung,
optische Adressierung and Kontrolle der Laserphase werden implementiert.

Ein entscheidendes Element bei der Implementierung eines Quantencomputers ist die gezielte
Kontrolle iiber Quantenphasen. Dazu wird eine neue Methode zur Kompensation unerwiin-
scher AC-Stark-Verschiebungen entwickelt sowie die Methode zusammengesetzter Pulse aus
der Kernspinresonanztechnik ibernommen. Mit Hilfe zusammengesetzter Pulse ist es méglich
beliebige Rotationen des Vibrationsqubits zu implementieren. Das wiederum erlaubt es, ein
einzelnes gefangenes Ion zusammen mit einem Vibrationsqubit als einen universellen zwei-
Qubit-Quantenrechner zu verwenden. Mit Hilfe dieser Techniken wird der Deutsch-Jozsa-
Algorithmus implementiert. Dies stellt die erste Realisierung eines vollstdndigen Quanten-
Algorithmus mit einem Ionenfallen-Quantenrechner dar. Dariiber hinaus wird eine neuartige
Methode, welche auf nichtresonanter Laser-lon-Kopplung basiert, verwendet, um ein uni-
verselles Quantengatter zwischen internem und Vibrationsqubit zu implementieren. Es han-
delt sich hier um eine dispersive Kopplung welche konditionelle Phasenverschiebungen erzeugt
jedoch zu keinem Populationstransfer fiihrt. Schlieflich werden vorbereitende Experimente
zur Realisierung eines zwei-Ionen controlled-NOT-Gatters nach Cirac und Zoller durchgefiihrt.
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1 Introduction

The foundations of quantum mechanics were laid at the beginning of the twentieth century [1].
From that time until the 1970s, approaches to quantum mechanics were based on observations
of the behaviour of nature. During that time, practical applications obeying quantum me-
chanics typically involved bulk devices containing an enormous number of quantum systems,
none of them directly accessible (e.g. the laser [2] and the semiconductor transistor [3]). Over
the last thirty years, the idea of quantum state control and quantum engineering [4,5], has
emerged. The question “How can we achieve complete control over single quantum systems
and how can we make use of this control?” is asked. Around the same time, the concept
of guantum computation emerged from similar thinking. The important question to ask was
“How can information processing be accomplished using quantum mechanical systems and can
this new type of information processing be more efficient than computers based on the clas-
sical laws of physics?”. These questions are conceptually new compared to earlier approaches
since here quantum mechanical features of nature (such as entanglement [4]) are regarded as
resources which may be exploited to tackle unsolved problems [6,7]. The first steps towards
quantum computation were taken in 1982 by Richard Feynman [8] when he observed that a
simulation of a system’s quantum dynamics on a classical computer will grow exponentially
in terms of computational effort with the size of the quantum system. He pointed out that
another quantum system which is under sufficient control concerning its preparation, unitary
evolution and measurement (something which we would call a quantum computer today) could
be used to mimic and thus simulate the dynamics of the given quantum system (see also [9]).
In this case the number of required computational resources grows only linearly with the size
of the system to be simulated. Soon after, David Deutsch [10,11] gave an explicit model of
quantum computation by defining quantum Turing machines and quantum circuits. Since
then, a large field of quantum information research, both theoretical and experimental, has
grown with various sub-disciplines such as quantum computation and quantum communica-
tion [12]. For an overview, see the book of Nielsen and Chuang [13|, or [14]. The following
introduction focuses on quantum computation and its practical implementation.

The basic element of quantum information is the quantum bit, or qubit, which replaces the
bit of classical computer science. A physical qubit is simply a two-level system, i.e. a spin-1/2
system. The two quantum states are identified as the logic “0” and “1” of binary information
and are therefore denoted |0) and |1) here. A crucial difference to the classical bit is that
a qubit can be in a superposition of its two logic states. A certain set of qubits form the
computational space, quantum mechanically speaking, the Hilbert space, in which all oper-
ations take place. The set of qubits is referred to as the qubit register. A general quantum
computation consists of

e Preparation of the qubit register in a well defined, pure initial state.
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e Application of a sequence of unitary transformations in this Hilbert space which, anal-
ogous to logic gates in classical computer science, are called quantum gates.

e Readout of the final result. This corresponds to a measurement of the qubit register.
In certain quantum algorithms only a subset of the qubit register needs to be read out.

The demands on a physical implementation of a quantum computer are:

e The proposed implementation must feature a suitable set of two-level systems and be
scalable.

e There must be experimental procedures at hand to implement the above operations -
preparation, general unitary transformation, measurement - with sufficient fidelity.

e (oherence must be preserved during the course of the computation. Note that on top
of the coherent properties of the freely evolving qubit register there is also decoherence
introduced by coupling to the system (which is necessary to implement quantum gates).

DiVincenzo [15,16] was the first to assemble such a list of criteria. Note that a (projective)
measurement procedure for the individual qubits may also serve as a preparation tool.

The advantage of quantum algorithms over their classical counterparts lies in “quantum
parallelism”, i.e. the possiblity to run the quantum computer with superpositions as input
states. This feature can be utilized to solve certain computational problems more efficiently
than is possible on a classical computer. Quantum algorithms which outperform their classical
counterparts will be referred to as efficient quantum algorithms.

It has been shown that there exist two-qubit gates which, in combination with single-qubit
operations, allow the generation of arbitrary unitary transformations [17] (see also section
2.2). These gates are called universal, the controlled-NOT gate (the quantum analogy of the
XOR gate) being a prominent example.

The first efficient quantum algorithm was presented by David Deutsch in his 1985 paper [10]
and is known today as the Deutsch-Jozsa algorithm [13]. The underlying problem is to find
out if a given Boolean function f is constant (has always the same output, independent of the
input) or balanced (has both 0 and 1 as possible outputs). While classically two evaluations
of f are necessary, Deutsch’s algorithm can yield the result in just one evaluation. Several
modifications of the problem have been developed [18,19]. Details of the Deutsch-Jozsa algo-
rithm and its history are given in section 4.3.

Another type of efficient quantum computations are Quantum search algorithms, the
most well-known being the Grover algorithm [20]. It concerns the search of a data base for
a particular entry. The “travelling salesman” problem also falls into this class of algorithms:
imagine you are given a map containing many cities, and wish to determine the shortest route
passing through all cities of the map. For a data base of magnitude N, a classical search pro-
cedure requires O(N) steps while the quantum algorithms find the correct entry after O(v/N)
operations.

One of the most spectacular efficient quantum algorithm is the Shor algorithm [21]. It
allows one to factor a large integer number N into its prime factors in polynomial time. This
means that the number of computational steps scales polynomially with the number of digits
of N. In classical computation the only known procedure is to try one prime number after



the other and check if it is a divisor of N. The number of steps that this procedure requires
grows exponentially with the number of digits of N. Shor’s finding is of great relevance
to cryptography because most public key encryption systems in use (in particular the most
widely developed, the RSA cryptosystem [22]) rely on the fact that prime factorization of
large numbers is exponentially difficult. There are other public key cryptosystem which are
based on the difficulty of (classically) solving the discrete logarithm problem [23]. Also for
this problem, Peter Shor presented an efficient (i.e. polynomial time) quantum solution in his
1994 paper |21].

Finally, quantum computers can be used for simulations of quantum dynamics. Since
Feynman’s seminal work [8], several procedures have been developed to efficiently simulate
systems on a quantum computer, with no known efficient counterpart on a classical computer.
The proposal of Abrams and Lloyd [24] for simulating many-body Fermi systems is just one
example. To cite Nielsen and Chuang: “It is very likely that one of the major applications
of quantum computers in the future will be performing simulations of quantum mechanical
systems too difficult to simulate on a classical computer, a problem with profound scientific
and technological implications”.

There are a large variety of proposals for the physical implementation of a quantum com-
puter. These include

e Photon quantum computers [25,26].

e Cavity QED [27,28].

e NMR [17].

e Josephson junctions [29,30].

e Electrons floating on helium [31].

e Quantum dots [32].

e Spin-1/2 nuclei in a semiconductor matrix [33].

e Ion traps [34].
This list and the given references, which point to seminal works in the respective fields, are by
no means exhaustive. The requirements defined above set very high technological demands
and consequently all experimental attempts face considerable challenges. Until recently, com-
plete quantum algorithms have only been realized with NMR techniques [35-37]. It should be
noted that there is certain criticism about to what extent present day NMR quantum com-
putation fulfils the specified requirements completely [38—41]. These concerns relate mainly
to scalability and the fact that the system is in a highly thermal, separable state.

In ion trap quantum computers, quantum information is stored in two long-lived internal
states |g) and |e) of trapped ions. In this way each ion contains one qubit. Under the influ-
ence of an external trapping potential in combination with the mutual Coulomb repulsion,
the ions, if cooled, freeze into a crystal-like structure. In a linear Paul trap, the trapping
potential is cigar-shaped and for strong radial trap confinement the crystal structure is a lin-
ear string of ions. This configuration is particularly suitable for the manipulation of the ion
qubits with external laser fields. The ion string exhibits normal modes of motion (vibrational
modes). Two-qubit operations are mediated by one selected vibrational mode (the quantum
bus mode). The proposal of Cirac & Zoller [34] requires the quantum bus mode to be pre-
pared in its lowest quantum state and is based on resonant excitations of optical transitions.
Several other schemes have been proposed which also utilize a common vibrational mode to
implement quantum gates between ion qubits [42,43], [44], [45]. Moreover, ion trap quantum
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computation schemes exist where the two-qubit coupling is mediated differently. One example
is an array of microtraps, each trap containing one ion [46]. In this proposal two-qubit gates
are mediated by the Coulomb interaction between ions in neighboring microtraps. In another
proposal the ion qubits are coupled via a mode of the electromagnetic field of an optical res-
onator [47].

Over recent years a great deal of progress has been made in experimental ion trap quantum
computation, in particular in the group of D.J. Wineland at NIST in Boulder. A fundamental
quantum gate, the controlled-NOT between a single trapped ion and a vibrational mode, has
been demonstrated [48]; two ions [49] and subsequently four ions [50] (the latter employing
the methods of [42]) have been entangled.

In our group, several prerequisites for quantum computation, such as motional ground state
cooling, individual ion addressing and elementary coherent manipulations have been previ-
ously demonstrated [51], [52], [4]. Recently, we have experimentally realized the Deutsch-Jozsa
algorithm [53]. This represents the first implementation of an efficient quantum algorithm on
an ion trap quantum computer and the first such implementation outside NMR. The Deutsch-
Jozsa experiment represents the main achievement of this thesis. Preliminary results on a
two-ion controlled-NOT gate are also reported. Besides several technical improvements, these
experiments followed the methods proposed by Cirac & Zoller. We also realized a novel type of
quantum gate, reported in section 8.1, where purely dispersive laser-ion coupling (off-resonant
coupling which induces no population transfer) was employed to implement a universal quan-
tum gate.

The thesis is structured as follows: Chapter 2 introduces the formalism of the basic quantum
operations required for a quantum computer, i.e. single qubit rotations and two-qubit logic
gates. Chapter 3 focuses on the theoretical foundations of the experiment, i.e. the function of
Paul traps, the mechanics of a (linear) ion crystal and the interaction of ions with light. Spe-
cial attention is paid to °Ca™, which is the ion used in our experiments, and to the effect of
non-resonant interactions. Chapter 4 describes how quantum computation can be performed
in ion traps. Chapter 5 is concerned with the various elements of the experimental setup.
This chapter includes a description of the design process of the current trap based on the
experiences made with previous trap constructions. Chapter 6 deals with the technicalities
of operating the trap. In this context a new trap loading scheme by photoionization, which
has significantly improved on the trap performance, is presented. In chapter 7 experimental
achievements such as motional ground state cooling, optical addressing and laser phase con-
trol which represent prerequisites for our ion trap quantum computer are discussed. Chapter
8 discusses the major results of this thesis, i.e. the implementation of quantum gates and
algorithms. Finally, chapter 9 summarizes the work presented here and gives an outlook on
future goals.



2 Quantum Gates

2.1 Single Qubits

The most general state of a qubit reads
i) = e (cos %]O) +e7 sin%]l)) . (2.1)

Note that normalization to 1 is already included in this representation. In a pure spin-1/2
system, the overall phase v has no observable effect and can thus be ignored. Consequently
the state vector can be rewritten as

) = <Cos %|0> +e sin%|1>) . (2.2)

A sometimes useful visualization of the qubit state of eqn. (2.2) is the Bloch vector. The
latter is defined by a point on the unit sphere, the Bloch sphere, corresponding to the 3D
angles o and 3, as shown in Fig. 2.1.

A state |¢) = a|1) + b|0) (with complex coefficients a and b) of a qubit can also be written

as a vector
=5

Quantum operations in this single qubit space are represented by matrices, for example the
quantum NOT which flips the qubit state,

01
NOT—X—[1 0]

The X-matrix is in fact one of three fundamental matrices which are particularly useful in the
description of a two-level system, the other two being

0 —i 1 0
[ S ezl 0]

These are the three Pauli matrices which, outside quantum information, are normally denoted
o,=X, oy=Y and o, =7

There are two important theorems concerning unitary transformations in the two-level Hilbert
space [13]:
1) An arbitrary unitary operation U in the single qubit space can always be expressed as a
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Figure 2.1: Bloch sphere representation of a qubit state [)).

rotation about a certain axis n in the Bloch sphere by a certain angle 6, modulo a possible
global phase k: .
U=¢e"R;(0).

2) Given two non-colinear axes n; and no, an arbitrary rotation can always be decomposed
into a series of rotations about 11 and 7.

In physical realizations of qubits, the two levels typically have different energies and sin-
gle qubit operations are resonant excitations between these energy levels. The excitation
pulse is typically some electromagnetic wave. The “static” qubit representation from above
(see for example eqn. (2.2)) is obtained by a transformation into the rotating frame. In ion
trap experiments qubits are normally encoded into two long-lived internal levels of each ion.
Transitions between these energy levels are optically driven with laser radiation.

Independent of the precise physical qubit realization, the unitary transformation describing
the action of a pulse of an electromagnetic wave resonant to the qubit transition (e.g. see
section 3.3.3) reads

R(6,¢) = e'3(c 7ot HeTtoT), (2.3)

where
0 1 00
+ _ ; — T = — 9 =
0" = (0p +ioy)/2 = [ 0 0 ], and o~ = (0, —ioy)/2 [ 1 o ]

are the raising and lowering operators, respectively. R(f, ¢) can be written as

[% [ 010 qin @
R(0,6) = €os 3 i€e'? sin 3
’ ie " gin g cos g ’

It turns out that such a resonant excitation R(f, ¢) corresponds to a rotation! of the Bloch
vector about an axis 1. which lies in the x-y plane, see Fig. 2.2. The parameter ¢ defines the

1To within a possible global phase which does not directly show up in the Bloch sphere picture.
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Figure 2.2: A resonant (carrier) excitation R(6, ¢) corresponds to a rotation of the qubit state
about an axis 7. which lies in the x-y plane; the angle ¢ defines the position of 1.
within that plane.

position of this axis within the z-y plane as shown in Fig. 2.2. Experimentally, ¢ is defined by
the phase of the exciting radiation. Experimental control of ¢ will be discussed in section 5.3.
The parameter 6 represents the pulse strength, defined as Rabi frequency times the duration
of the pulse (cf. section 3.3.3). In the Bloch sphere picture, 6 is the angle by which a given
state vector gets rotated (about 7).

The phases ¢ = m and ¢ = 7/2 correspond to rotations about the z-axis and the y-axis
respectively. The corresponding matrices read:

[ . 0
-  ibx coss  —ising
R;(0) := R(0,7m) = e 27 = [ » sing cosg } (2.4)
and ; o
— _ —ify _ | cos5 —sing
Ry(e) : R(@, 7T/2) e 2 I: Sing cos g :| (25)
A rotation about the z-axis has the matrix form
0 *ig 0
R.(6) = e 157 — [ ¢ oo ] . (2.6)

Lower indices 7, 7, Z (as opposed to z,y, z) denote the negative axes (or, equivalently, rotations
in the opposite sense).

According to the above statement regarding the decomposition of an arbitrary rotation,
any unitary single qubit transformation can be implemented as a series of R, () and R,(0)
operations. Carrier laser pulses with the appropriate phases thus represent a complete single
qubit toolbox. Example: a m/2-rotation about the z-axis,

T
R =00 |

i
e 4
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can be realized as
R.(m/2) = Ry(m/2) Ry(m/2) Ry(m/2).

Note that throughout this thesis concatenated operations are written down in the standard
notation of matrix multiplication, i.e. chronologically sequences of operations like the above
must be read from right to left. The operations X and Y correspond to —iR,(7) and —iR, (),
respectively.

2.2 Multi-Qubit Operations

Consider the composite system of n qubits. It has been proven that an arbitrary unitary
operator in the combined 2" dimensional Hilbert space can be expressed as a product of
pairwise and single qubit operations [17,54-57|. This requires the availability of universal
two-qubit gates on which the rest of this section will concentrate. A set of operators in a
two-qubit computational space is called universal if any arbitrary operator in that space can
be expressed as a product of them. It follows from the above that a “universal” two-qubit set
is also universal for the whole n-qubit space. Note, however, that this statement says nothing
about effciency, i.e. how many (polynomially or exponentially many) gates must be composed
in order to create a given unitary transform.

An important two-qubit gate is the controlled-not gate (CNOT). The CNOT operation
flips one of the two qubits (the target qubit) if the other one (the control qubit) is in state |1)
and leaves the target qubit unchanged if the control qubit is in |0). An example for a CNOT
is given by the matrix

o O =

CNOT =

o O = O
— o O O
o= O O

0

where the notation of the matrix (just like all following two-qubit matrices) refers to the basis
order {|0,0),|1,0),]0,1),|1,1)}. In case of this CNOT, the second qubit (right in the bra-ket
notation) controls the NOT-operation on the first. It can be shown that the CNOT gate in
combination with single qubit operations, forms a universal set of operators. In this sense the
CNOT is called a universal two-qubit gate.

The CNOT itself can be decomposed as

CNOT = H, & H; (2.7)

where H denotes Hadamard gates which are single qubit operations, given by
1 1 1
i=glh 4]

The lower index 1 denotes that the matrix is extended to the composite space and that the
gate acts on the first qubit. In the 2-qubit Hilbert space it thus reads

1 1 0 0
1|11 -10 0
H1_5001 1
0 0 1 —1
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® is a phase gate reading

100 0
010 O
¢ = 001 0 (2:8)
000 -1
Consequently ® (sometimes called a controlled-Z gate) also represents a universal two-qubit

gate.

It should be mentioned that the Hadamard gate, although frequently used in the literature,
is not particularly well suited for a physical implementation: It has been stated above that any
unitary operation can be expressed as a rotation U = e**R;(0). In case of H, the rotation
axis 7 is the diagonal of the z-z-plane, namely (z,y,2) = 1/v/2(1,0,—1) and the rotation
angle 0 is w. Consequently, it does not correspond to a resonant excitation of the qubit which
is always a rotation about an axis lying in the z-y-plane (see above). H can therefore not be
implemented by a single resonant (laser) pulse. However, it can be decomposed, into a series
of z-y-rotations, for example:

H=1i-Ry(m) Ry(n/2), or H = —i-Ry(n/2) Ry(m),

which correspond to a total of three rotations by 6 = /2. Note that if the matrix is ex-
tended to a multi-qubit space the phase factor of ¢ remains global, and is thus of no physical
importance. In other words, a Hadamard gate acting on qubit number 1 in a Hilbert space
composed of arbitrarily many qubits can be written as

Hy =—i-Ry(m/2) Ryi(m).

Fortunately, three m/2-pulses are not normally needed to implement a Hadamard gate ap-
pearing in some given algorithm; the overall sequence can typically be compiled into a shorter
one. For example, ® can be transformed into a CNOT also by the sequence

CONOT = Ry1(n/2) ® Ry (n/2).

Thus, the Hadamard gates of eqn. (2.7) can be replaced by suitable single 7/2 laser pulses.

Note that @ itself is symmetric with respect to an exchange of the qubits. Only the sur-
rounding (single qubit) pulses specify which one is the target qubit (here: number 1).

Various (universal) phase gates exist. The —1 of the gate ® can, for example, be anywhere
on the diagonal and the gate will still serve essentially the same purpose: If the gate is sand-
wiched between two Hadamard gates as in eqn. (2.7), then varying the positioning of the —1
on the diagonal of the phase gate will, at most, invert the role of |0) and |1) of the control
qubit, thus resulting in a zero-controlled-not

10
00
0-CNOT = 01

o O = O
_ o O O

0 0

0 — CNOT and CNOT can always be transformed into each other by two NOT operations
on the control qubit:
0—CNOT = NOT» CNOT NOT,;.
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Another phase gate which we have actually implemented experimentally (®(7) of section 8.1)
reads

o =

O = O O

0
0
0

o O O
O O = O

—1

This clearly deviates from the “classical” phase gate ® but it is still a universal two-qubit gate:
The equation
O = —i-R,o(n/2) D*,

which is easy to verify, shows that ®* can be directly transformed into ® by a 7/2 rotation of
qubit 2 around the z-axis. This proves the universality of ®*, as it can be transformed into a
well known universal two-qubit gate using only a single qubit rotation. The ®* gate can also
be transformed into a universal gate C' similar to the well known CNOT using the sequence

1 00 0

« 01 0 O
C=Ra(n/2) O Raln/2) = | o o o _1
001 0

It is important to note that, while quantum algorithms are often written down using “stan-
dard” gates like CNOT, they can always be rearranged to instead incorporate (for example)
Cor (.

Finally, an intriguing feature of a driven two-level system, namely its 47 periodicity, shall
be discussed. A look at equations (2.3) through (2.5) shows that it is the angle g instead of
0 which appears in the functions. Consequently their true period is Af = 4. Rotations by
0 = 27 bring any state vector back to itself on the Bloch sphere, but a phase factor of —1 is
acquired: R(2m,¢) = —I, where [ is the identity operator.

This —1 on a first view is a global phase factor and it has been argued above (cf. eqn. (2.1))
that it can be dropped. This is in general only true if the two coupled states form a pure and
separate two-level system, the Hilbert space of which will be denoted by H;. If this system
is combined with others Hs, Hs, ... (which could be two-level systems as well, or also larger

systems) the composite system is discribed by the Hilbert space
H=Hi1QHsQH3® ...

It is clear that the —1 phase factor in this case is global in H; and also in an arbitrarily large
extension H.

If, however, H; contains more than two levels or if transitions are driven selectively between
certain level pairs of the combined system H, then the acquired phases are, in general, not
global any more. Such non-global phases are made use of for the implementation of quantum
logic with trapped ions, see section 4.2. Note that the Bloch sphere picture does not directly
display the two-level global phase.

10



3 Ion Trapping and Interaction with Light

3.1 Linear Paul Traps

According to the Laplace equation A® = 0, confinement of a charged particle in three dimen-
sions with static electric fields alone is not possible. Take for example an electric quadrupole
field E = —V® which originates from a quadratic potential

D = OZI$2 + ayy2 + aZZQ.

Applying the Laplace equation yields o, + o + o, = 0. Consequently, at least one of the
three coefficients must be negative which corresponds to a repulsive potential in this direction.
Paul traps and mass filters make use of time-dependent, oscillating fields to confine charged
particles in all three dimensions.

Paul mass filters are based on two dimensional quadrupole fields, i.e. a, = 0. This potential
shape can be experimentally realized by an electrode structure as depicted in Fig. 3.1. The
Laplace eqation in this case gives o, = —a, which means that ® can be written as

2 2

z® —y
Du(r) = Vg (3.1)
0

where r = (x,y,z). A trap structure as in Fig. 3.1 where the minimum distance from the
trap axis to an electrode is 79 and where voltages Vi o = £V/2 are applied to diagonally
opposite rods respectively, produces exactly this potential if the inner electrode surfaces are
hyperbolically shaped!.

For radial confinement of charged particles, the potential &, is modulated sinusoidally:

O(r,t) = Ps(r) cos() ,

where (2 typically is in the radiofrequency range of several MHz. This means experimentally
that an RF voltage Vi(t) = V cos(Qt) must be applied to one pair of diagonally opposite
electrodes and a 180° phase shifted voltage Va(t) = —Vi(¢t) to the other pair (see Fig. 3.1).
This configuration was actually the starting point of all radiofrequency traps, and was invented
by Wolfgang Paul in 1953 as a mass filter. Only a few years later it was realized that the same
setup could serve as a trap for charged particles [58], by adding DC-electrodes which confine
the axial motion. When used as a mass filter, typically an additional offset DC voltage is
applied to one of the diagonally opposite rod pairs. In the experiments presented here such an

!The situation is essentially the same if, as in our experiments, a voltage Vi = V is applied to one of the
diagonally opposite rod pairs, while the other pair is held at ground potential (V2 = 0)

11



3 Ion Trapping and Interaction with Light

2
o 0
A
o 0
;

Figure 3.1: Schematic diagram of a quadrupole mass filter. Hyperbolically shaped inner sur-
faces (grey contours) guarantee a pure quadrupole potential inside the electrode
structure. For better optical access, rod-shaped electrodes (black circles) are usu-
ally chosen.

offset voltage was never used and therefore will not be taken into account in this treatment.

The classical equations of motion for an ion of mass M and charge e in the potential ®(r,t)
are F = —eV® = Mt. They are special versions of the Mathieu equations and can be written
in the following simple form:

d2
d—:; —2qcos(2T)r = 0
d2
dTg+2qcos(2T)y =0
d2
2z
dr?
where ) 2V
e

These equations have stable solutions for 0 < ¢ < 0.908 [59]. In this parameter range the ion
is confined radially, i.e. in « and y, and moves freely along z.

In the experiments presented here, a high degree of optical access from many directions
is desirable, in particular because single ion addressing and read out is required. Therefore,
electrodes with smaller cross sections are chosen. They could for example be blade- or rod-
shaped (Fig. 3.1). In this case, the assumption that the electric potential is quadrupole-like
is only valid in a region near the trap axis. Further away from the trap axis, higher order
multipole contributions must be taken into account to describe the actual potential. These
multipole potentials lead to nonlinear resonances [60] which can cause trapping instabilities for
values 0.5 < ¢ < 0.908. The exact pattern of nonlinear resonances and their strength strongly

12



3.1 Linear Paul Traps

Figure 3.2: A linear Paul trap for charged particles. RF-voltages Vi and V5 produce radial
confinement while the end-cap voltages V.., confine the axial motion.

depends on the individual trap design. The resonances become more densely spaced towards
larger g-values near 0.908 [60]. The higher the order of a multipole causing a resonance, the
smaller the effect near the trap center. Consequently, the instability problem is reduced if,
as in our experiments, the ions are cooled close to their motional ground state because then
the ions’ wavefunctions only extend about ten nanometers from the trap axis. If a trap like
ours, with non-hyperbolic electrodes, is still perfectly machined in a four-fold mirror symmetry
and potentials +V and —V are applied to diagonally opposite pairs, then the first (lowest)
multipole correction which occurs is a 16-pole (hexadecapole) [60]. Geometric imperfections
on the other hand, also lead to lower order contributions.

For full 3D confinement the Paul mass filter is turned into a linear Paul trap by additional
electrodes, called “end-caps”, to which DC-voltages are applied. Fig. 3.2 shows a possible linear
trap configuration where the end-caps are rod-shaped and placed on the trap axis. Such end-
cap geometries have been experimentally realized [61] but also other end-cap configurations
such as ring-shaped end-caps around the RF-rods [62] or segmented RF-rods [63-65]. It
will be shown that axial confinement by DC-voltages has a defocusing effect on the radial
confinement. The new equations of motion near the trap center are given by [66] :

A2z
= + (b—2qcos(27))z = 0 (3.3)
@ + (b+2qcos(27))y = 0 (3.4)
dr? q vo= )
d?z
where v
_eaVeap
b= 1202 (3.6)

(see Fig. 3.2) with a numerical factor a which depends on the geometry of the trap configu-
ration. It is straightforward to show that the axial motion is harmonic with a frequency (in

b eaVeap
w, = \/;Q =\ (3.7)
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3 Ion Trapping and Interaction with Light

An analysis [59], [66] of the Mathieu equations (3.3) & (3.4) for the radial motion shows that
an ion’s motion in this potential separates into a slow secular motion around the trap center
and a faster driven oscillation called micromotion at the frequency €2 around the trajectory of
the secular motion. Moreover, for b, ¢ < 1 the secular motion is harmonic. In other words the
ions can then be considered to move in a harmonic quasi-potential which is produced by the
RF-drive. This treatment holds even in the quantum mechanical limit [67], i.e. the harmonic
oscillator of the secular motion can be quantized just as in a normal (non-quasi) potential.
The frequency of this secular radial motion is

Q
Wr =wp =wy =3 §q -b

This shows the previously mentioned defocussing effect of the axial confinement on the radial
trapping: when operating a linear trap at a certain RF-drive power, i.e. a certain RF-amplitude
V, and at very low end-cap voltages Veqp (= b~ 0) one finds the “pure” radial frequency

qf2

wr) = ——= 3.8

=57 (3.8)

and by increasing the end-cap voltages, i.e. increasing the axial frequency w,, the radial
frequency is reduced to

1

wr = /w2
It can be seen from this equation that for w, < w,o the defocussing is negligible. In the
other limit however, where b < 1 no longer holds, it has effects on trapping stability and the
configuration of ion crystals (see also section 3.2.2). In fact, the b-¢-stability diagram [66]
shows that with axial confinement, i.e. for non-zero w,
a) w, can no longer be arbitrarily low.
b) ¢ can be above the limit for a linear mass filter without end-caps (0.908). Moreover,
for high enough w, in principle arbitrarily high radial frequencies could be reached. In this
limiting case, however, the parameter range for stable trapping becomes increasingly narrow
and furthermore the axial frequency always has to be larger than the radial frequency which is
not suitable for trapping linear ion strings as necessary for the type of experiments presented
here.

3.2 Linear Ion Crystals

3.2.1 Equilibrium Positions

The potential energy of NV ions of mass M and charge e confined in the 3-dimensional harmonic
trap potential with (angular) frequencies w,,w, and w, is given by [67]

MY 2 X 1
2 2.2
E _|_ + + E 3.9
m#n
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3.2 Linear Ion Crystals

where r,, = (zy,Yn, 2n) is the position vector of the nth ion. The first term is the trap
potential, while the second describes the mutual Coulomb interactions. In a linear trap
where w, denotes the axial frequency, the two radial frequencies are degenerate if the trap
construction is perfectly symmetric:

Wy = Wy = Wy .

The following treatment of equilibrium positions assumes a linear ion chain configuration. This
is true only if the radial confinement is sufficiently stronger than the axial confinement and if
the number of ions N is not too large, otherwise the ions will assume a zig-zag or even more
complicated 3-dimensional geometric configurations. The exact conditions for the transition
from linear to zig-zag configuration will be discussed in section 3.2.3. A linear configuration

0,0

implies that z, = 0, where the upper index () denotes the ions’ equilibrium positions.

(0)

The axial equilibrium positions zp’ are then determined by the following equation:

oUu
[8_%} (0) =0

Zn=2n ", Tn=yn=0

For N =2 and N = 3, they can be solved analytically [67,68]:

N=2: z=—(1/2?51, 2z =(1/2)*31 (3.10)
N=3: z1==(B/)Y31, =0, z3=(5/4)"31,

where

o2 1/3
l=(—— 3.11
(47‘(‘60ng) (3:11)

represents the natural length scale of the problem. The experiments presented here work with
axial trap frequencies on the order of w, = 27 -1 MHz. For “°Ca* ions this amounts to inter-
ion-separations of Az = 5.6 um and Az = 4.8 ym for N = 2 and N = 3, respectively. For
more than three ions the problem must be solved numerically. The spacing between adjacent
ions then increases in size from the center to the outside of the string, hence the minimum
separation Az, in the crystal occurs between the central ions. Numerical simulations yield
[68]
A Zmin ~ 2.0 IN7057

This approximation remains accurate for the entire ion number range of interest and even up
to N ~ 1000. For quantum computing purposes individual ion addressing is required. This
addressing is obviously most difficult for the most closely spaced central ions.

3.2.2 Normal Modes

For small oscillations around the equilibrium positions (y,(LO) =0, x%o) =0, 27(10)) the La-

grangian L =T — U of the system (7 being the kinetic energy) takes the form [69]

N N

L= S (@) < Y oo |

i=x,y,z \n=1 n,m=1
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3 Ion Trapping and Interaction with Light

where 04, Oyjn and o), are the displacements of the nth ion from its equilibrium position
in x, y and z direction, respectively. The coupling matrices are given by

1 + 2 Z W lf n=m,
thm = lzé;ém
_9 .
90T fnzm
and
T y 1 1 z
Cn,m:Cn,m: E—i_g 5 - Cnm?

where 8y, ,, is the Kronecker delta and @ = (w,/w;)? is a parameter describing the anisotropy
of the trap potential. It can be seen that the motions in z, y and z direction are coupled. The
radial directions = and y are assumed to be degenerate. As a consequence, the solutions of the
problem, obtained by diagonalization of the C*, C% and C* matrices, are two independent
sets of normal modes. One set contains normal modes in the axial direction, the other in the
radial direction, the latter being two-fold degenerate corresponding to z- and y-directions.
There are N axial and 2N radial modes.

The principal mode of the axial modes is the center-of-mass mode in which all ions move
parallel in the axial direction with the same amplitude. This will be called the axial COM
mode, and has the frequency w, (the axial frequency of a single ion). Higher order axial modes
always have higher frequency. The second axial mode is the breathing mode, where the ions
oscillate with amplitudes proportional to their distance from the trap center - in magnitude
as well as in sign. This means that for uneven ion numbers the center ion stands still in the
breathing mode. The frequency of the breathing mode is v/3w., independent of the number
of ions in the chain. The motional behaviour of higher order modes is described by more
complicated eigenvectors. The frequencies of these modes have to be determined numerically
and depend slightly on the total ion number. This dependence, however, is so weak that, for
example, for all N < 10 the axial mode frequencies are described with very high accuracy by
the list {1, v/3, 1/29/5, 3.051, 3.671, 4.272, 4.864, 5.443, 6.013, 6.576} in units of w, [68].
The spatial extension of the ions’ wavepackets is described by the standard deviation of the
Gaussian ground state probability distribution of the axial COM mode, which is given by

h

OZcom =\ SN

This estimate is only reasonable, if the ions are cooled very close to the ground state, which,
however, is possible in our experiment (as will be shown in chapter 7.2). For two *°Ca* ions
and w, = 27 - 1 MHz one finds dz.om, = 7.9 nm which is three orders of magnitude smaller
than the separation between the two ions.

The principal radial mode is again the center-of-mass mode, all ions oscillating radially in
phase and with equal amplitude at the frequency w,. This mode is referred to as the radial
COM mode. In contrast to the axial modes, however, every higher order mode is at a lower
frequency [69]. The eigenvectors of the radial modes point radially instead of in the z-direction
but are otherwise formally identical to the eigenvectors of the axial modes. As with the axial
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."’ .—> axial COM ? ‘ rocking
<—. .—> breathing ? ? radial COM

Figure 3.3: Normal modes of a two-ion crystal. The frequencies are: axial COM w,, breathing

V3w,, radial COM w;., rocking /w2 — w2.

t ° 1

[axial COM] |wobble| [rocking

radial COM

zig-za
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o 1 2 3 4
Mode frequency/2n in MHz

Figure 3.4: Mode frequency spectrum of a crystal of three °°Ca™ ions in a linear trap with w, =
27-4.5 MHz and w, = 27-1 MHz (which are typical parameters for the experiments
presented here). The frequencies are wyziqiconm = 27 - 1 MHz, Whreathing = 2T -
1.73 MHz, wyopbbte = 27 - 2.41 MHz, w.ig—zqg = 27 - 4.22 MHz, wyocking = 27 -
4.39 MHz and w,qgicicom = 27 - 4.5 MHz. The modes are labeled with schematic
pictures of their eigenvectors.

modes, the frequency of the second, often called rocking, mode can be determined analytically
and does not depend on the number of ions in the chain:

Wrock = V W% - wg .

The frequencies of higher order modes must be calculated numerically and again depend only
very slightly on N.

The normal modes of two ions are depicted in Fig. 3.3, while Fig. 3.4 shows the mode
structure? of a linear three-ion crystal in a trap potential typical for our present experiment.

2There is no clear convention for the naming of higher order modes; the names chosen here (in particular

“wobble mode”, “zig-zag mode”) are descriptive of the motional behaviour.
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3 Ion Trapping and Interaction with Light

3.2.3 Stability of a Linear String

One method to characterize the tranisition from a linear ion chain to a zig-zag crystal are
numerical molecular dynamics simulations of the equilibrium crystalline configurations as
done by Schiffer [70]. An alternative approach, offering a more physical picture of the process,
is a stability analysis of the radial oscillations [69]: The radial mode of highest order (and
therefore lowest frequency) is always the zig-zag mode where each ion moves in the opposite
direction of its neighbor(s). The frequency of this mode decreases with increasing N and
with increasing anisotropy parameter a. An instability occurs when w.i4..qq = 0, i.e. the
corresponding oscillation freezes out and the new equilibrium configuration is a zig-zag.

For the critical anisotropy parameter where the transition occurs a power-law scaling ariy =
¢N7 is accurate for ion numbers of up to 1000 [68]. Of the two approaches mentioned above,
molecular dynamics simulations have been performed more extensively, i.e. on a greater set of
values, and therefore their results for the constants ¢ and ~ are probably the most reliable3:

2
(‘“-) = 253N 173, (3.12)

Wy crit

This scaling for the transition from linear to zig-zag configuration has been investigated ex-
perimentally by Enzer et al. [69].

Quantum computational applications must have the ions in a linear chain since in a zig-zag
configuration they would encounter too much micromotion. This would, for example, lead
to excessive motional heating. Typical parameters of our experiment are far from such a
geometric transition. This can be seen for example in Fig. 3.4 from the fact that the zig-zag
mode frequency is still far from zero. Eqn. (3.12) can be used to calculate the maximum ion
number before the crystal becomes zig-zag-shaped for those trap frequencies and the result is
N < 10. In practice, however, one is limited to smaller ion numbers. This is mainly related to
the fact that the Lamb-Dicke parameter decreases with the number of ions (cf. section 4.4).

3The values of the parameter c in Schiffers paper [70] appear to be misprinted as the reciprocals of their true
values.
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3.3 Spectroscopy

3.3 Spectroscopy

3.3.1 Level Scheme and Laser Manipulation of “°Ca™

Figure 3.5: Electronic levels of *°Ca*. The transitions indicated by solid line arrows are
actively driven by laser radiation in the experiments. Note that all states indicated
here split up into several Zeeman-substates.

The ion of choice for our quantum computing experiments is °Ca®. Fig. 3.5 shows all
levels which ever get populated in the experiment. In the following, the first two terms of the
spectroscopic notation (electronic shell quantum number and the multiplicity) are omitted.
The 729 nm transition will be used for coherent manipulations. In other words, the levels
S1/2 and D5/ will be associated with the logic states of a qubit. To be more specific, one
of the Zeeman substates m = {—1/2,+1/2} of S;/, is selected as the logic |0), and one of
the Zeeman substates m = {—5/2,—3/2,-1/2,+1/2,43/2,+5/2} of D55 as the logic |1).
The optical transition between the two states is an electric quadrupole transition (dipole-
forbidden). Accordingly, the Ds/, state has a rather long lifetime (=~ 1 s) which ensures
coherence of the qubit over this time scale. The particular features of this transition will be
discussed in section 3.3.5. The qubit is coherently manipulated by narrow bandwidth laser
radiation at 729 nm (cf. chapter 4).

A quantum computing protocol also requires a qubit measurement procedure. For this, the
dipole transition at 397 nm is employed which connects to only one of the qubit states, namely
S1/2- Therefore we can apply an electron shelving technique [4] to measure the qubit state:
Suppose the ion is in a superposition of S|/, and Ds/5. Light at 397 nm is applied, driving
the Sy/5 <> Py, transition, and thereby projecting the atomic state to either .Sy, or Dj 5.
No fluorescence is detected if the ion is in the Ds/y state, while in the opposite case light is
scattered on the Sy <> Py transition. By repeatedly preparing the ion in the same state
and measuring the fluorescence as described, the Ds/, state occupation can be determined.
Details of this electron shelving procedure have been discussed previously [4]. The detection
efficiency is limited only by the finite lifetime of the Dy, state and can be as high as 99.9%
with the present experimental setup.
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3 Ion Trapping and Interaction with Light

The S} /9 <> P /5 transition is additionally used for Doppler cooling (cf. section 7.2.1) by red-
detuning the laser at 397 nm by about half a linewidth. Whenever resonant light is scattered
on this transition (for state detection or for Doppler cooling) the ion sometimes decays from
Py 5 into the D3y state. Therefore a repumping laser at 866 nm is always applied along with
the 397 nm light. The branching ratio is 15:1 between the P, — S/, and the P/, — D35
decay.

Finally, a laser at 854 nm can be used to repump a possible D5/, population to the S;/;
state or to quench the Dj/, level if required. Quenching is necessary for sideband cooling on
the S/, <> D5,y transition (cf. section 7.2.2).

In the following, the interaction of a harmonically trapped two-level atom (or ion) with
light will be discussed and the S} /3 <> D55 qubit transition will by analysed.

3.3.2 Laser-Ion Interaction

The following two sections are based on the discussion of laser-ion interaction in the PhD
thesis of Christian Roos [4]. A main difference here is that the relative phase ¢ between the
laser field and the atomic polarization is included throughout the discussion.

An ion trapped in a harmonic potential with frequency w, interacting with the travelling
wave of a single mode laser tuned close to a transition that forms an effective two-level system,
is described by the Hamiltonian [71,72]

H o= Hy+H, (3.13)
2

Hy = —21;0 + %mngxQ + %hwaaz (3.14)

Hi = inQ(ct +07) <€i(kr_wlt+¢) + €_i(kx_w’t+¢)) ) (3.15)

where k is the wave number, w; the frequency and ¢ the phase of the laser radiation; see
section 2.1 for a definition of the matrices o.,0" and o~ . Finally, mq is the mass of the ion.
The part Hp of the Hamiltonian describes the state of the ion while the laser-ion interaction
is contained in Hj, its strength being given by the coupling constant (2. Here it has been
assumed that only a single transition (w, being the atomic transition frequency) is close to
resonance and that the laser is directed along the x-axis to the ion. The Pauli operators act
on the internal atomic states, |S) and |D). Defining the Lamb-Dicke parameter?,

: (3.16)

the ion’s external degrees of freedom, i.e. its harmonic oscillation, can be expressed in terms
of creation and annihilation operators as

Hy = hw(a'a+ 1)+ Shw,o. (3.17)
H = %hQ (ein(a+af)a+e*i(wzt+¢>) +€*in(a+aT)U*ei(wzt+¢)) ) (3.18)

“If the laser is at an angle 3 to the oscillation axis, the definition has to be replaced by 1 = k cos 8+//2mw.
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Here, the rotating wave approximation 73] has been made. In the interaction picture defined
by U = e"0t/" the Hamiltonian H; = UTHU takes the form

H; = %hQ (em(‘”{ﬂ)UJreid)(fiAlt + e*m(d*‘it)a*e*weim) , (3.19)

with @ = ae™? and A = w; — w,. The laser couples the state |S,n) to all states |D,n’),
where n,n’ are vibrational quantum numbers. If the laser is tuned close to resonance of
a transition |S,n) < |D,n + m) with fixed m and n = 0,1,2,3,... (which corresponds to
(W — wa) &= mw), coupling to other levels can be neglected, provided the laser intensity is
sufficiently low (€2 < w). This assumption is valid for all experiments presented in this thesis®.
In that case, the laser induces a pairwise coupling between the levels |S, n) and | D, n+m). The
time evolution of the state W(t) = >, (cx(t)|S, k) +dy(t)| D, k)) is governed by the Schrédinger
equation i70; ¥ = HV which is equivalent to the set of coupled equations

—i DBt e=i0 (v /2) dim (3.20)
— (M) g=i8teid (0 /2) e (3.21)

Cn

dn—l—m
0 = A — mw accounts for a detuning of the laser from the transition, the constant
Qymn = Q[ (n+ mle D) | (3.22)

is called Rabi frequency. Solutions to these equations show an oscillatory and complete ex-
change of population between the coupled levels. On resonance, this oscillation takes place
with a frequency equal to the Rabi frequency €2, 1., . When the laser is detuned from reso-

nance, the population transfer is no longer complete (amplitude Q2 ., /(6% + Q2 ), yet

it takes place at a higher frequency (= /6% + Q2 ) [4].

n+m,n
Transitions that do not change the number of vibrational quanta (< m = 0) are called car-
rier transitions. A transition is termed blue sideband if an absorption process is accompanied
by an increase in the motional quantum number (< m = +1) while it is termed red sideband
if it decreases upon absorption (< m = —1).

3.3.3 Lamb-Dicke Regime

For a given Lamb-Dicke parameter 7, the coupling strengths €2, Q,—1, and Q,41, of
carrier, red and blue sideband, respectively, as a funtion of n can be calculated [4] using
eqn. (3.22) , see Fig. 3.6. This calculation considerably simplifies in the so-called Lamb-Dicke
regime defined by the condition 7%(2n 4+ 1) < 1. In this regime, the atomic wavepacket is
confined to a space much smaller than the wavelength of the transition. A first order Taylor
expansion in eqn. (3.22) is then a very good approximation:

M@+ = 1 1 in(a’ +a) + O(?) .

SIn principle, with our setup conditions could be reached, where  and w are on the same order. The
particular properties of this regime are made use of in the proposal by Jonathan, Plenio & Knight [44] for
a special type of quantum gate.
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Figure 3.6: Relative coupling strength €4, /€ for n = 0.05 on carrier and first and second
sideband (from [4]). The value of 7 = 0.05 represents a typical order of magnitude
for our experiments. On the scale of this graph the difference between red and blue
sideband is so small that it is not visible. The Lamb-Dicke regime corresponds to
the region of low n < 100 where the carrier coupling is considerably stronger than
all sideband couplings.

Explicitly, the coupling strength on the carrier is well approximated by
Qi = (1 —10*n)Q (3.23)
On resonance, the interaction Hamiltonian (3.19) reduces to
H; = %hQn’n(aJﬂei‘zs + U_e_i‘b) .

Note that in the resonant case the time dependence of H; vanishes. If the laser is pulsed, then

this interaction is only on for a certain pulse duration ¢. The action of such a carrier pulse is
described by the unitary operator

R(6, ¢) = etit/h — gis(Pottetor),

where 6 = 2, ,t. This is the unitary operator representing an elementary single qubit rotation
which has already been introduced in section 2.1 (eqn. (2.3)).

Sideband Coupling is given by
Qn—l,n == n\/ﬁQ (324)

on the red sideband and
Qi1 =V T 19 (3.25)

on the blue sideband. On the red sideband (|S,n) < |D,n — 1)), the Hamiltonian takes the
form ' '
Hy = 1mQ(acTe™® — aloe ) (3.26)
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which can also be written as
Hp = 401 (a0 te — alo"e )

with the “normalized” creation and annihilation operators a, = a//n and a} = a!/y/n. This
definition ensures that the operators a,c™ and ato~ do not change the norm of a state vector.
Accordingly, the matrix of a resonant laser pulse of duration ¢t on the red sideband is given by

(0 ¢) g z¢>o-+ar e g aT)7 (327)

where 0 = €, nt.
On the blue sideband (|S,n) < |D,n + 1))

H; = %th(aTa+ei¢ —ao e %),
By the same argument as for red sideband coupling, this Hamiltonian can be rewritten as
H; = %hQnJrl,n(aZJ‘Few — aba_e_id’) ,

where a;, = a/v/n+ 1 and GZ = a'/y/n +1. A resonant laser pulse on the blue sideband is
given by
R+(9, ¢) — eig(ei‘ba+az—e*i¢07(1b), (328)

where 0 = €, 1 nt.

3.3.4 Generalizations of the Model

Three-dimensional potential: For the sake of notational simplicity, the previous discus-
sion was limited to the simple case of an ion confined in a one-dimensional harmonic potential.
Generalization to the case of a three dimensional harmonic potential is straightforward and
only amounts to replacing kx by the scalar product k - r. The operator exp(in(af +a)) is then
replaced by exp(ik -r) =[[,, exp(inm(al, + am)), thereby allowing processes that change the
quantum numbers of two or even all three oscillators simultaneously.

Multi-ion crystal: A similar calculation can be performed in the case of an crystal of N
ions. In this case the interaction Hamiltonian H; is given in the Schrédinger picture by

= %Z tha;‘r exp ( an +am ) exp(—i(wit — ¢;)) + h.c., (3.29)
J

where ain and a,, are the creation and annihilation operators for the normal modes of oscil-

lation labeled by m, while the index j = {1,..., N} refers to the individual ions. Note that
the phases ¢; and coupling strengths €); for the different ions are not necessarily equal.

In the two-ion case, the modulus of the Lamb-Dicke factors ]777]%\ =: 1, depends only on
the mode (m), while the sign of 77, in general depends on j. The 7, are given by

h
Nm = k cos B8 , (3.30)

MeWm
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3 Ion Trapping and Interaction with Light

where m, = 2myg; w,, denotes the frequency of the respective mode, cf. eqn. (3.16). As
mentioned, 3 is the angle between the addressing laser beam and the oscillation axis e of
the ion. Note that in a linear crystal, € points in axial direction for all axial modes and in
radial direction for all radial modes, independent of which ion in the string is addressed. In
general, the Lamb-Dicke factors scale with the square root of the total mass m, = N - mg of
the crystal. This property can pose problems when an ion trap quantum processor is to be
scaled up in ion number. In the two-ion experiments presented here, typically only one of the
two ions is optically addressed at one time. Consequently, to a good approximation, the sum
over j can be dropped. '

Note that for more than two ions the modulus |n7,| in general depends on both the mode
(m) and the ion (j) [67], depending on the eigenvector of the mode (cf. section 3.2.2).

3.3.5 The Quadrupole Transition

The model for laser-ion interaction developed in the previous sections (3.3.2 to 3.3.4) is now
applied to the qubit transition: In the experiments presented here a quadrupole transition,
from the ground state to the Dy, state in 40Cat at 729 nm, was chosen for coherent quantum

manipulations. The induced electric-quadrupolar moment Q couples to the gradient of the
electromagnetic field:
Hp = QVE(t)

This type of interaction takes the shape of eqn. (3.15) when the Rabi frequency is defined
as [67]

0= |20 ml(e ) )| D,y (3.31)
where Fj is the electric field amplitude, r is the operator describing the position of the valence
electron relative to the atomic centre of mass and m, m’ indicate the magnetic quantum
number®. In a quadrupole transition, changes in the magnetic quantum number from Am :=
m’ —m = 0 up to Am = +2 are allowed. In our case, going from the S,/ ground state with
two Zeeman-sublevels m = +1/2 to the D5/, state with six sublevels m' = —5/2,...,4+5/2,
this selection rule leaves a total of ten quadrupole allowed transitions. In principle any of these
transitions could be used for coherent manipulations of the ion’s quantum state. These various
transitions have different coupling strengths 2 which depend on the (m,m’) combination and
on the geometry, i.e. on the relative directions of the magnetic field, the polarization € and
the wave vector k of the laser. The following equation for {2 represents a suitable formulation
for our case (derived in Appendix A.1):
€E(]

%@1/27 m|(e-r)(k-r)|[Ds/5,m')

A
= KEO\/%A(W, m)g 4™ (6,7) (3:32)

QO =

with

e (15 12 12y7—1 —1/2
=g (5) = 3.089 x 10V~ *(sm) ,

5For the sake of notational simplicity, possible lower indices ;, indicating that the magnetic quantum numbers
refer to the total angular momentum J, are dropped, writing m and m' instead of m; and m/.
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Figure 3.7: Zeeman substructure of the S/, < Dj/, transition (from [4]). (a) In a non-zero
magnetic field the Sy 5 <> D5/, quadrupole transition splits into ten components.
The corresponding spectral positions are drawn in units of ugB/h (where pp is
Bohr’s magneton). The height of the bars represents the specific Clebsch-Gordan
coefficients A2. (b) Allowed transitions in the case € L B L k (¢ =~y = 90°). The
height of the bars indicates the relative line strengths (Ag(4"))? (c) Same as (b)
but for the geometry ¢ = 45°, v = 0°.

where A is the spontaneous decay rate of the Dy, state. The specific Clebsch-Gordan co-
efficients A(m,m’) are shown in Fig. 3.7 (a) (respectively their squares) and listed in the
appendix A.1. The functions g™ contain the geometry-dependence of Q, where ¢ is the
angle between the laser beam and the magnetic field and ~ the angle between the polarization
and the magnetic field vector projected into the plane of incidence. They are listed in the
Appendix A.1. It is thus possible to suppress some of the transitions by a proper choice of
the geometry. Additionally, in the experiment o~ polarized light on the dipole transition at
397 nm is used to pump the ion into the m = —1/2 substate prior to coherent manipulations
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3 Ion Trapping and Interaction with Light

on the quadrupole transition’. The following two configurations are particularly useful [4].

¢ = 90°,~v = 90°: If the polarization, the beam axis and the direction of magnetic field are
mutually orthogonal, only the Am = £2 components are excited.

¢ = 45°, v = 0°: In this configuration, the Am = 0 transitions are excited most strongly while
the Am = %1 transitions do not couple to the laser.

Figs. 3.7(b)&(c) show the relative line strengths (oc Q2) of the various transitions in the two
cases. In fact, all experimental results presented in this thesis have been obtained in one of
these two configurations. The first configuration offers the simples spectrum with the smallest
possible number of allowed transitions. It has, however, the disadvantage that the allowed
transition are far outside in the spectrum, hence their frequencies depend strongly on the mag-
netic field. Magnetic field noise shifts the resonance frequencies randomly, thus contributing
to decoherence. This effect is five times weaker on the S o(m = —1/2) < Dy /5(m’ = —1/2)
transition. As magnetic field fluctuations are an issue in the present setup (see section 7.3),
all experiments directly related to quantum computing employ the states S)/o(m = —1/2)
and Dj/o(m’ = —1/2) to represent the internal qubit. For notational simplicity, these two
states will usually be denoted

|S) == Sipp(m=-1/2)
|D) = Dsjp(m’=-1/2)

throughout the rest of this thesis.

An experimental challenge for quantum computation is the availability of an appropriate
light source. In our case the lifetime 1/A of the metastable D5/, level is 1.17 s [61]. The
coherence time of our experiments, however, is not as long as that, which is due to several
mechanisms such as fluctuations of the magnetic field. In our present experiment it turns
out that the sum of all contributions amounts to a coherence time of at about 600 us (see
section 7.3). The laser at 729 nm must have a linewidth of 100 Hz or less in order to maintain
coherence over that time scale.

3.3.6 Non-resonant Interactions

So far, all non-resonant processes have been neglected, assuming that their coupling strength
Q; is much smaller than the detuning. It turns out that in our experiments, especially in
the Lamb-Dicke regime and when the laser excites sideband transitions, off-resonant coupling
to the carrier has to be considered. Two different processes can be distinguished and will
be discussed in the following: population transfer and light shifts. Taking those effects into
account is particularly important in the “design” of quantum algorithms and in the evaluation
of their limits.

Population Transfer There is always a small transfer of population to the non-resonantly
coupled levels. If, for example, the sideband transition |S,0) < |D,1) is driven with all the
population initially in |S,0), then the populations of the levels |D,0) and |S, 1) oscillates

"Pumping into m = 41/2 with o -light is equally possible.

26
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quickly at a frequency of Q2 + AZ (off-resonant Rabi oscillations) with an amplitude of [73]

0\ 2
= (3)
(for A > Q). Hence, p is a measure for off-resonant excitations. If the sideband transition is

driven resonantly, the detuning A from the carrier is A = w,,, where wy, is the frequency of
the corresponding vibrational mode, thus off-resonant carrier excitations are given by

()

According to eqn. (3.25), the Rabi frequency Qg = €2 o of the sideband transition (|.5,0) <
|D, 1)) is
Qs =n.

In quantum computation with trapped ions, sideband transitions are an essential ingredient
(cf. section 2.1 and chapter 4). In view of a limited coherence time, which is always given
in real systems (cf. section 7.3), it is of interest to drive these sideband transitions as fast
as possible, in order to accomplish as many gate operations as possible within the coherence
time. The upper limit for the sideband Rabi frequency g is set by off-resonant excitations.
In other words, for a sufficient quality of the quantum gate operations, off-resonant excitations
are required to be smaller than some value pg, which is typically on the order of a few percent:
p < po. The limit for g is therefore given by the inequality

Qs \?
b= < ) < po,
NWm,

Qg < Nwm+/Do - (3.33)

Moreover, the Lamb-Dicke factor is proportional to the inverse square root of the vibrational
frequency, 7 o (wy) /2 (see equations (3.16) and (3.30)). Consequently, if we assume the
ion number, the beam geometry (/) and the maximum allowed off-resonant excitation pg to
be fixed (constant), inequality 3.33 can be written as

which can be rewritten as

Qg < const. - /W, . (3.34)

This means that the maximum allowed sideband Rabi frequency increases with /w,,. Con-
sequently, if there is a choice between several vibrational modes which can be employed for
quantum computation, it is advantageous to chose the mode with the highest frequency wi,.

Light shifts In general, any two atomic levels (with an energy difference £ = hw) are
shifted by the dynamic Stark effect if (off-resonant) light of frequency w; is shone onto the
atom (respectively ion) [73]. In this case, the energetically lower level is shifted® by Q2/4A
and the upper level by —Q2/4A, where A = w; — w and € denotes the Rabi frequency of

8 All level shifts are given in units of angular frequency.
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3 Ion Trapping and Interaction with Light

the transition between the two levels (if the transition was driven resonantly with light of the
same intensity and polarization). If, for example, the light is red-detuned, i.e. A < 0, then
the lower level is shifted down, while the upper level is shifted up. This picture holds only in
a regime where the detuning A is large enough so that very little population transfer takes
place, i.e. for A > Q.

In the case of trapped ions in the Lamb-Dicke regime, usually only light shifts due to
coupling to carrier transitions must be taken into account while sideband transitions produce
only minor light shifts as their €2 is relatively small. However at specially chosen detunings
and if the AC-Stark shift due to the carriers is compensated for, sideband-induced level shifts
can be experimentally detected. The corresponding experiments are presented in section 8.1.

In a typical spectroscopy experiment on our qubit transition(s) the AC Stark effect appears,
for example, in a shift of the observed sideband resonance frequency: Let us assume that we
have cooled an ion to its motional ground state and then try to drive the blue sideband
|S,0) < |D,1) resonantly by setting the detuning A = w; — w, to the vibrational mode
frequency wy, (note that w, is the frequency of a carrier transition). The |S,0) level is
then Stark shifted up due to off-resonant coupling to the carrier transition |S,0) < |D,0)
by 01 = €§,/4A, while coupling to the carrier |S,1) « |D,1) shifts the |D,1) level down
by 6o = 9%71/4A. In the Lamb-Dicke regime, ;1 ~ Qpo = € and the total shift of the
sideband transition becomes 6y = —(J; + d2) = —Q?/2A. In general, sidebands are always
shifted towards the carrier, meaning that red sidebands are shifted up while blue sidebands
are shifted down in frequency. In the example above, the laser light would be detuned from
the sideband resonance by dy although A is set exactly to the vibrational mode frequency wy,.

So far only the strongest source of level shifts, i.e. coupling to the nearest carrier of the
Zeeman-manifold is taken into account. In reality, every carrier contributes to the overall level
shift with its respective coupling strength (2, and detuning A,. Moreover, coupling to the
S1/2 — D52 quadrupole transition(s) is not the only source of level shifts: dipole transitions,
to which the detuning is much larger (when working (near) resonantly on the S;/,5 — D59
transition) compensate this by approximately seven orders of magnitude stronger coupling (in
terms of 02).

In the experiment, we can use a Ramsey-type spectroscopic method (see section 7.6) to
measure AC-Stark shifts. This method probes the relative shift § 4¢ of two atomic levels A
and B which is produced by off-resonant light at a laser frequency w?® shone onto the ion. In
other words,

dac = 5 [(By — Bp) — (Ba — Ep)], (3.35)

where E4 and Ep are the energies of the two levels for the isolated, unperturbed atom /ion,
while £% and E are the AC-Stark shifted energy levels under the influence of laser radiation
at frequency w?.

In the following, a formula for 4o will be developed. In the experiment as it has been
carried out, the first level (A) was [S) (= Sy/9,m = —1/2). Tt will be assumed that w* is
near resonant to the Sy; < Ds/o transition(s) but at the same time far enough from any
resonance so that no population transfer takes place. Moreover, the geometric configuration
¢ = 45° v = 0° (cf. section 3.3.5) was chosen. This means that only transitions to the
states D59, m’ = {—5/2,~1/2,+3/2} (which will be denoted here as |D_5),|D_1) and |D3),
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Figure 3.8: AC-Stark shifts of individual atomic levels in *°Ca*t (see also text) induced by
off-resonant light at frequency w?®. Individual shifts are indicated by grey arrows.
Each grey-scale corresponds to the shifts induced by coupling to one of the three
optical transitions. In the experiment, the relative level shift 0 4c between |D_q)
(level A) and |S) (level B) is probed. Consequently, the experiment is double
sensitive to the shifts indicated by medium grey arrows, which accounts for the
factor of 2 in eqn. (3.36). In practice there are also motional sidebands to each of
the three carrier transitions but these can be neglected here as they are relatively
weak.

respectively®) are allowed. The state |D_;) was chosen as the second level (B). The situation
is depicted in Fig. 3.8. The notation 2, is used for the coupling (in terms of Rabi frequency) of
the off-resonant light (w®) to the |S) < |D,) transition. Accordingly, A, denotes the detuning
of w* from the |S) < |D,) resonance at wg, thus A; = w® —w,. The light of frequency w® now
shifts all levels involved in different ways: off-resonant coupling to the |S) <> |D_5) transition,
for example, shifts |S) by Q2,/4A_5 and the state |D_5) by —Q2./4A_5. Note however,
that our probe method is sensitive only to shifts of the |S) < |D_;) resonance. Moreover,
coupling to various dipole transitions will also shift the levels |S) and |D_;), each dipole
transition contributing with a shift proportional to Q%mi /Adipi- The index i counts all dipole
transitions. The respective coupling strengths 24;,; are, just like each €2, of the quadrupole
transitions, proportional to the light intensity. Consequently, each thm is proportional to,
for example, 2 ;. Under the conditions of our experiment, where we always work near the
S1/2 — D59 resonance(s) to within a several MHz, we can assume the detunings Ay to
be constant. Taking all this into account, we can write the total light shift between |S) and
|D_1) as

Q2_1 a_s5 2 a43
ac = 2L <d— a2 A+3> , (3.36)

where the a, are the squares of the relative coupling strengths with respect to the probe
transition |S) < |D_;), which for the given geometry read a_5 = 0.278 and ay3 = 0.0556

“Note that the state |D) which has been defined in section 3.3.5, is denoted |D_;) here for the sake of clarity.
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(a—1 being one by definition), cf. Fig. 3.7(c). The constant d contains the (squared) relative
coupling strengths of, as well as the detunings to, all dipole transitions. Note that d really is
a constant because the sum of relative line strengths of a transition’s Zeeman-manifold does
not depend on the geometry. Therefore d in principle is a direct function of fundamental
constants - a complicated one, however.

In practice the beam geometry is never perfectly realized, i.e. a_5 and a3 will differ slightly
from their theoretical values. The Ramsey-type measurement for § 4o mentioned above, where
now the frequency w?® is varied over a wide range, allows one to map eqn. (3.36). As men-
tioned, the corresponding experiment is described in section 7.6. A fit to these data yields
values for d, a_5 and a43. Knowledge of these three parameters then allows one to predict
and “engineer” level shifts.

This is particularly important for the levels |S) and |D) = |D_;) which are used to encode a
qubit. A level which is AC-Stark shifted in frequency by ¢ for a time ¢, acquires a phase factor
et Tn the implementation of quantum algorithms such phase factors cannot be tolerated
(unless they are well controlled) as the quantum phase is the essential carrier of quantum
information.

If, for example, the blue sideband of the |S) < |D) transition is driven resonantly, then this
shifts the |S) < |D) resonance according to eqn. (3.36). Problems due to unwanted AC-Stark
shifts exist also in precision spectroscopy [74] and with optical clocks [75,76]. Our solution for
the compensation of such unwanted AC-Stark shifts consists of simultaneously applying
an additional light field. The detuning and intensity of the latter is chosen such that the addi-
tional field produces the opposite AC-Stark shift (i.e. opposite in sign and equal in magnitude)
and thus nulls the overall shift. The detuning is chosen far from any resonance so that no
additional population transfer occurs. Our method is related to [77], where the inhomogenous
broadening of a hyperfine transition of ®®Rb-atoms was suppressed using a bichromatic dipole
trap.
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4 Quantum Computation with Trapped Ions

4.1 General Concepts

As mentioned before, in our experiment two Zeeman-sublevels |S) and |D) (see section 3.3.5)
are chosen as the two internal qubit states of a *°Ca™ ion. Section 2.1 discussed how arbitrary
rotations of this internal qubit can be accomplished by resonant excitations R(6, ¢) and section
3.3.3 showed how the latter can be implemented by (addressed) carrier pulses (eqn. (3.3.3)).
The trick to make efficient ion trap quantum computation possible proposed by Cirac and
Zoller [34] is to employ one of the vibrational modes, more precisely its lowest two quantum
states [n = 0) and |n = 1), as an additional qubit, the wvibrational qubit. The situation is
illustrated in Fig. 4.1. In this way even a single trapped ion in combination with a vibrational
mode represents a two-qubit quantum information processor. Section 4.2 discusses in detail
how universal two-qubit gates between internal and vibrational qubit can be implemented
using laser pulses on the red sideband R~ (6, ¢) (eqn. (3.27)) and on the blue sideband R (0, @)
(eqn. (3.28)) in addition to carrier pulses. Section 4.3 discusses the Deutsch-Jozsa algorithm
and how it can be implemented on such a two-qubit quantum computer.

Section 4.4 shows how the quantum computation scheme can be extended to a string of
trapped ion qubits.
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Figure 4.1: The elementary two-qubit system - the internal (electronic) degree of freedom of
an individual ion, combined with a vibrational mode. The mode represents a
harmonic oscillator (frequency v). Its two lowest levels |n = 0) and |n = 1) are
identified as the wvibrational qubit. The computational basis states of the combined
system (drawn in black on the right hand side) will be denoted like |S, n). Dashed
arrows: red and blue sideband transitions; Solid arrows: carrier transitions.
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4.2 Single Ion Gates and Composite Pulse Techniques

This section deals with a single ion coupled to a vibrational mode. Note, however, that the
same formalism applies if the ion is part of a string and the mode is a common vibration of
the entire crystal - as long as only this one ion is optically addressed.

Using a single trapped ion as a complete two-qubit quantum computer requires a universal
set of quantum gates (cf. section 2.2). This includes single qubit rotations of the vibrational
qubit. Such rotations of the vibrational qubit pose certain problems arising from the fact
that the mode has many equidistant oscillator levels, not just the qubit levels |n = 0) and
|n = 1). These rotations cannot be directly driven by resonant radiation (which would be in
the radiofrequency range of a few MHz): Such a resonant excitation would, for example, not
only excite the |S,0) < |S,1) transition, but the |S,1) population would simultaneously be
transferred on to |S,2), |S,3) and so on. In other words, the computational space would not
be conserved.

Single qubit operations on the internal state, on the other hand, can be efficiently performed
by carrier pulses. Thus, a natural approach is to swap the internal and vibrational qubit
information, then perform the desired operation on the internal qubit and finally swap back.
The desired swap operation should interchange the populations of |D,0) and |S,1) and leave
the populations of the other two computational basis states (]S,0) and |D,1)) unaffected.
Accordingly, the corresponding matrix in the basis order {|S,0),|D,0),|S,1),|D, 1)} reads

SWAP =

o O O
o= O O
S O = O
— o O O

A red sideband m-pulse R~ (7, ¢) would interchange the populations of |D,0) and |S,1) as
desired (modulo certain phase factors which depend on ¢). However, such an operation would
also (partially) transfer a possible | D, 1) state population (which is supposed to be unaffected)
to the | S, 2) state. Again the problem is the conservation of computational space. The task of
implementing a SW AP operation, which may seem impossible at first, can in fact be fulfilled
by the technique of composite pulses, which in the framework of NMR have been in use for
several years [78,79]. This technique takes advantage of the fact that the Rabi frequency
of a sideband transition depends strongly on the motional quantum number, cf. eqn. (3.24).
In particular, the |D,1) < |S,2) Rabi frequency is larger by a factor of v/2 than the Rabi
frequency of the |D,0) < |S, 1) transition (cf. Fig. 4.2). Using this, it is possible to construct
a series of pulses which fulfills the above requirements:

s 27 s
V2 V2’ V2

with @gupap = arccos(cotQ(%)) ~ 0.3037 [80]. The meaning of ¢ will be explained below. The
rotation angles 6 here refer to the |D,0) < |S, 1) transition. The same light pulse sequence
corresponds to the operation

stap(¢0) = R_( 7¢0) R_( gbO + d)swap) R_( 7¢0)7 (41)

Rlswap(gi)o) = Ri(ﬂ-v ¢0) R~ (27T7 ¢0 + ¢swap) Ri(ﬂ-a QZ)O)v
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Figure 4.2: (a) Blue sideband coupling. (b) Red sideband coupling. The Rabi frequencies of
the lowest sideband transitions B1 and R1 are equal, while the Rabi frequencies
of B2 and R2 are bigger by a factor of v/2 (see section 3.3.3).

on |D, 1) « |S,2), where the rotation angles 6 are larger by v/2. The Bloch sphere trajectories
of the state vector are depicted in Fig. 4.3. It is important to note that a sideband transition
does not correspond to a single qubit rotation, rather a pairwise coupling between certain
levels of the combined system H composed of the internal qubit and the motional states |n).
Red sideband operations between |D, 1) < |S,2) as depicted in Fig. 4.3 (right), for example,
change both motional and internal degree of freedom. According to the concluding remark
of section 2.2, if the quantum dynamics of such a subsystem (|D, 1) and |S,2)) is calculated,
phase factors which appear global in the subsystem can not be dropped as they are not
global in the complete system . The Bloch sphere picture directly displays only relative
phases. The complete quantum phase evolution due to a series of rotations can be revealed
by multiplying the matrices of the individual rotations.

In the case of our swapping pulse sequence, varying only the angle ¢g rotates the whole
trajectories about the z-axis of the Bloch spheres. This changes nothing in the |D,1) < |S,2)
subspace: the overall sequence RY,,, always acts like an effective 47 pulse, hence like the
identity operation I. In fact, any pulse sequence R’ = R~ (m,¢1)R™ (27, ¢2) R~ (m, ¢1) with
arbitrary ¢; and ¢2 meets this requirement. On the |D,0) < |S,1) transition, ¢g plays a
similar role as ¢ in a single m-pulse R~ (7, ¢). As in that case, no angle ¢ exists which would

correspond to a perfect swapping operation. Choosing ¢ = %W ~ (.707 yields a “good

approximation” [80], i.e.
|D,0) — —|S,1) and |S,1)+— |D,0),

so that the complete matrix of this SWAP operation reads

o O

SWAP(%W) =

-1
0

o O o
O O = O
_ o O O

Note that the notation SWAP(¢g) for the overall operation as a function of ¢y has been intro-
duced. The unwanted minus sign in SWAP (%ﬂ') could, in principle, be compensated for by
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Figure 4.3: Bloch sphere trajectories for the composite SWAP operation with ¢g = 0.7077.
Left: Bloch sphere of the quasi-two-level-system |D,0) < |S,1). The initial state
is assumed to be |D,0), which is marked by the black arrow. Pulse number 1 of
the sequence (R‘(%, 0.7077)) rotates the state vector more than half way down.
Pulse number 2 brings it back up to its mirror image about the z-y-plane. The
angle Gspap = arccos(cot%%)) is precisely chosen to accomplish this. Clearly,
pulse number 3 then rotates the state vector all the way down to the bottom of
the sphere. The final state (grey arrow) thus is |S,1), times some phase factor
which is not visible in the Bloch sphere picture. Right: The same laser pulse
sequence and its action on the |D, 1) < |S,2) subspace. All individual pulses of
Rpap(#0) are multiples of 7 in length. It is easy to understand that the overall
sequence brings the state vector back to its starting point (black arrow; say |D, 1)
for example) and that the acquired phase factors cancel out. In other words, the

sequence here corresponds to a true identity operation.

an appropriate series of single qubit rotations added before and after SWAP(¢p). As in the
case of implementing Hadamard gates (see section 2.1), there is a simpler, “compiled” version:
In the complete sequence of an algorithm, the SWAP operation will typically appear in pairs.
The problem of the unwanted phase factor —1 is solved by swapping the two qubits first with
some arbitrary ¢g (for example SWAP(0)) and swapping back later with a ¢ different by =
(SWAP(7)). With the help of the composite SWAP operation it is possible to perform all
single qubit rotations in our computational space.

The last missing building block to make our single ion quantum gate toolbox complete is
a universal two-qubit gate between internal and vibrational qubit. This will typically be a
universal phase gate (like ® of section 2.2). At present in our experiment, there are three
different methods at hand to implement universal phase gates:
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Figure 4.4: Two different methods to implement a phase gate experimentally. (a) The aux-
iliary level method requires an additional internal level D*. A single 27 pulse on
the red sideband of the auxiliary transition applies the phase factor of —1 to the
state |S,1). (b) A composite sequence of pulses can be found which effectively
acts like a 27 pulse on both blue sideband transitions Bl and B2, cf. Fig. 4.2.

e The method employed in the Cirac-Zoller proposal [34] based on using an auziliary level,
which will be discussed in the following.

e The composite pulse technique, which will also be detailed below.

e The method of quantized AC-Stark shifts which will not be discussed here but in section
8.1 along with its experimental realization.

The auxiliary level scheme is depicted in Fig. 4.4(a). The —1 phase on one of the basis
states is acquired by a 27 rotation on the red sideband of an auxiliary transition. Only the
|S, 1) state population undergoes a transition, while |S,0), |D,0) and |D, 1) are not affected
(if off-resonant excitations are negligible). The method requires, of course, the availability of
an auxiliary level. In our case, auxiliary levels are readily at hand in form of other Zeeman
sublevels of the D5/, state. Note, however, that magnetic sublevels other than |D) are more
sensitive to magnetic field fluctuations as detailed in section 3.3.5.

How can a phase gate be implemented with the help of composite pulses? Fig. 4.4 shows
that a pulse sequence which effectively corresponds to a 2m rotation, i.e. to —1 - I, on the
|S,0) <> |D,1) and on the |S,1) < |D,2) transition (despite the difference in Rabi frequency
by a factor v/2) would do the trick. The states |5, 0), |S,1) and | D, 1) then acquire a —1 sign,
while | D, 0) remains unaffected. The corresponding matrix reads

1 0 00
, o -1 00
=10 0 10
0 0 01

Note that a phase factor of —1, which is global in the computational space, has been dropped.

A composite pulse sequence which meets these requirements is
T T T s
=RY(m, =) R"(—=,0) RT(r, =) RT(—=,0 4.2
Rphase (7T, 2) (\/5’ ) (7T7 2) (\/§7 ) ( )
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4 Quantum Computation with Trapped Ions

Figure 4.5: Bloch sphere trajectories for the composite phase operation ®'. Left: Bloch

sphere of the quasi-two-level-system |S,0) <> | D, 1). The initial state is assumed to
be |5, 0), which is marked by the black arrow. The pulse sequence is Rppqse- Pulse
number 1 of the sequence (R“‘(%,O)) rotates the state vector about the z-axis
by % Pulse number 2 accomplishes a m-rotation about the y-axis. It therefore
transforms the state to its mirror image about the z-y-plane. Consequently, laser
pulse number 3, which is identical to number 1, rotates the state vector all the way
down to the bottom of the sphere. Pulse number 4, just like number 2, represents
a m-rotation about the y-axis. The final state thus is identical to the initial one,
modulo some phase. It turns out that the acquired phase factor of the overall
operation is —1, hence the sequence acts like a single 27-rotation: |5, 0) — —|S,0)
and |D,1) — —|D,1). Right: The same laser pulse sequence and its action on
the |S,1) < |D,2) subspace. It is easy to understand that the overall sequence
brings the state vector back to its starting point (black arrow) modulo some phase.
Multiplying the matrices of the individual pulses reveals that the acquired phase
is again —1. Thus, R, .. also acts like a single 27-rotation: [S,1) — —|S,1) and
|D,2) — —|D,2).

hase

on the |S,0) <> |D, 1) (blue) sideband. On the |S, 1) < |D,2) subspace it reads

phase = R (V2m, 3) R¥(x,0) R (v2r, 2) R (x,0).

Fig. 4.5 illustrates the sequences in the Bloch sphere picture. No auxiliary level is required,
which makes the method more universal. The sequence takes a total of 3.4w of sideband
rotations. A technical difficulty of the composite pulse technique consists in the controlled
switching of the laser phases, see section 5.3.

36



4.3 The Deutsch-Jozsa Algorithm with a Single Ion

4.3 The Deutsch-Jozsa Algorithm with a Single Ion

4.3.1 The Algorithm

In the beginning of this section, the underlying problem of the Deutsch-Jozsa algorithm is
presented. The problem has first been defined by Deutsch [10] and is therefore commonly
referred to as “Deutsch’s problem”.

Consider an unknown Boolean function f(a) which accepts one (classical) bit as input and
produces one (classical) bit as output. There exist four such functions altogether, which are
described by the truth table

| a || fila) | fala) | f3(a) | fa(a) |
0 0 1 0 1
1 0 1 1

The first two functions, f; and fo, yield always the same output, independent of the input a
and are therefore be called constant. Each one of the other two, f3 and fy4, has both 0 and 1 as
a possible output. They are called balanced functions. The problem is now to determine which
class (constant or balanced) a given unknown function belongs to; how many computational
steps are needed? Note that we are not asking for the particular values f;(0) and f;(1) but
for a global property of f;.

The classical version of the problem can be formulated as follows: Given a one-bit computer
as a “black box” which calculates one of the functions f; (the software) but it is not known
which. The goal is to determine, which type of program (i.e. which type of function, constant
or balanced) is running on the computer. With a classical computer the function must always
be evaluated twice (the program must be run twice) to find out: If, for example, the input
1 is chosen and the output turns out to be 0, then the function could be f; (constant) or f4
(balanced). A second evaluation, this time with 0 as input, is necessary to determine if the
function is constant or balanced.

It will now be shown how with a simple quantum computer the symmetry (constant or
balanced) of an unknown function is obtained in just one run. The quantum procedure
outlined in the following was proposed by Cleve, Ekert, Macchiavello and Mosca [19] (for a
history of the Deutsch-Jozsa algorithm, see the end of this section). The quantum problem
requires adaptation of the functions. This is necessary as not all functions of the set fi-
f4 are unitary, when they are read as operations which map from one qubit to one qubit.
In particular, the constant functions are not. The generic procedure to adapt such non-
unitary classical operations for quantum computation is to add an ancilla qubit [13,19]. The
computational space thus consists of two qubits, their quantum state will be denoted |a,w).
It will be shown that a suitable way to extend the functions f; to the two-qubit space is to
replace them by wunitary transformations U; which are defined by the map

Ui @ |a,w) — |a,w & fi(a)), (4.3)

where @ indicates addition modulo two. Equivalently to the classical case, the quantum
problem can now be expressed as follows: Given a (black box) two-qubit quantum computer
on which one of the “programs” U; is implemented and it is not known which. The goal
is to determine in only one run of the quantum computer if the program corresponds to a
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Figure 4.6: Quantum circuit representation of the Deutsch-Jozsa algorithm.

constant or a balanced f;. A key feature of the algorithm is to evaluate U; with the two
qubits in superpositions at the input, this way allowing quantum interference of different
computational paths [19]. More precisely, the procedure starts with the state |a,w) = |0,1)
and then the sequence of operations

Upy = Hy Hy U; Hy H, (4.4)

is applied. The first two Hadamard gates create the superpositions, while the two Hadamard
gates after U; serve to recombine different paths and make them interfere. The complete
algorithm is depicted in Fig. 4.6. Let us follow the quantum state of the system through the
algorithm. The input state [1)9) = |0,1) is transformed by the first two Hadamard gates into

o = [0 [0

_ %[|o,o>—|0,1>+|1,0>—\1,1>]-

Now U; is applied, resulting in the state

[h2) = S [I0)[£i(0)) = [0)[£i(0) © 1) + [1)[ fi(1)) — [1)[fi(1) & 1)]
(=15 0)(10) = 1)) + (=)D (j0) — [1))]

(=)o) + (=1)"M]1) . [!0> - |1>}
V2 V2

The last two single qubit rotations yield the final state before the measurement:

[(—1)f'i(°)(!0> + 1) + (=D"O(j0) — 1))

N =N =

3) =

® |1)

[\

—1)fi(0) — (—1)f:(D)

® |1).
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4.3 The Deutsch-Jozsa Algorithm with a Single Ion

A closer look at the final state of the first qubit reveals that (modulo a possible (global) factor
of —1) it reads |0) if f;(0) @ f;(1) = 0, which is the case if (and only if) f; constant. On the
other hand the first qubit’s state reads |1) if f;(0)® f;(1) = 1, which is the case if (and only if)
fi balanced. This is the desired result: The value of the first qubit (qubit a) at the end of the
sequence is |0) or |1) depending on the symmetry of f;. Accordingly, the algorithm finishes
with a measurement of the first qubit. The result of this measurement indicates with certainty
wether f; is constant or balanced. Note that in this protocol the function f; is evaluated only
once, unlike in the classical case. In addition, only one qubit measurement is necessary, while
the classical protocol requires two measurements.

The last Hadamard operation on the second qubit (Hs) is not required for the performance
of the algorithm but was introduced here for reasons of symmetry. This will simplify the
translation of the algorithm into laser pulses acting on a trapped ion.

The above algorithm represents an improved version [13,19] of the original quantum algo-
rithm proposed by Deutsch [10], which represents only a probablistic solution: In the original
algorithm the function f; is evaluated only once but there are three possible outcomes: “con-
stant”, “balanced” and “inconclusive”. For any f;, the algorithm will output with a probability
of 50% either “constant” or “balanced” and the output then correctly describes f;. In these
cases, the symmetry of f; is obtained in a single evaluation, which can not be accomplished
by classical computation. In the other 50% of cases, i.e. when the output is “inconclusive”, no
information is obtained.

There exists an extension of Deutsch’s problem, which was first presented by Deutsch and
Jozsa [18]: Given a function F'(a) which accepts a string of n input bits, i.e. a number from
0 to 2™ — 1, and produces one bit as output. Moreover, F' is of one of two kinds; either F'(a)
is constant for all values of a, or else F'(a) is balanced, that is, equal to 1 for exactly half
of all possible a, and 0 for the other half. In their first proposal Deutsch and Jozsa present
a quantum algorithm which requires two evaluations of F'. Also in this case Cleve, Ekert,
Macchiavello and Mosca [19] have found an improved quantum algorithm. The latter requires
only a single evaluation of F' and a single measurement (this time of an n-qubit register)
to reveal the global symmetry property of F'. A direct comparison of performance with the
classical solution is, however, more difficult than for Deutsch’s original problem: Clearly, a
classical computation will require 2"~! 4 1 evaluations (each evaluation including a single-bit
measurement) to prove with certainty that the unknown function is constant. Hence, the
classical solution scales exponentially with n. In the best case, however, two evaluations are
enough (i.e. if the first two evaluations of F' with two randomly chosen a yield 0 and 1, hence
F is known to be balanced). A probabalistic classical computer which evaluates F'(a) for
a few randomly chosen a, could quickly determine with high probability if F' is constant or
balanced.

Although, as presented, improved versions of the original proposals exist, all quantum algo-
rithms discussed here are commonly referred to as “Deutsch-Jozsa” algorithms [13] in honour
of the crucial discoveries contained in the original papers: Deutsch’s algorithm was the first
concrete demonstration that a quantum computer could do something faster than a classical
computer; the extension by Deutsch and Jozsa was the first example of a scalable problem
where the quantum algorithm outperforms the classical solution regarding the scaling of the
time required to solve the problem (at least for suitably chosen criteria of comparison).
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4 Quantum Computation with Trapped Ions

4.3.2 Adaptation for an Ion Trap Quantum Processor

In this section the Deutsch-Jozsa algorithm is translated of into a series of laser pulses acting on
a single trapped ion, which according to section 4.2 represents a two-qubit quantum processor.
It has been outlined in section 2.2 that Hadamard gates are not particularly well suited for a
physical implementation but that they can typically be translated into suitable 7/2 rotations.
Accordingly, in the case of the Deutsch-Jozsa algorithm, the sequence of eqn. (4.4) can be

translated into
Upy = Ry1(7/2) Rya(7/2) U; Rya(1/2) Ry1(7/2). (4.5)

It can be easily verified that this sequence (with the same input |¢9) = |0, 1)) yields the same
final result as the sequence of eqn. (4.4).

Next, the matrices of the transformations U; are calculated according to their definition
(4.3) and translated into suitable operations which can be implemented in our experiment:
U, is the identity

1 0 00
0100
Ui=lo9010|=h
0 0 01
i.e. Uy can be implemented by “doing nothing”.

0 010
00 01
=11 00 0
0100

A closer look at this matrix shows that Us is a NOT operation on the second qubit, hence
Us = —iRya(m) (cf. section 2.1).

Us =

o O O
= o o o
o = O O
O O = O

Us obviously represents a CNOT operation controlled by the first qubit, which according to
section 2.2 can be written as Us = Ry2(7/2) ® Rya(m/2).

Uy =

O = OO
OO = O
S O O
o O O

Uy turns out to be a 0-CNOT operation, again controlled by the first qubit. It can thus be
written as U4 = Rzl(ﬂ) RyQ(W/Q) (0] R@Q(W/Q) le (7()

The next step is to identify the qubits. The first qubit (a) is the one that has to be measured.
Clearly, the internal qubit is preferably used for this task as our electron shelving technique
precisely distinguishes between |S) and |D). A direct read-out of the vibrational qubit on the
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Figure 4.7: The complete Deutsch-Jozsa algorithm adapted for the experiment.

other hand is not possible in a single shot measurement. The algorithm requires the input
|0) for the first qubit and the ion naturally is in the |S) state at the beginning of a sequence.
Therefore the levels are identified as follows: |S) = |0) and |D) = |1). The vibrational qubit
then has to be taken as the second qubit (w) of the algorithm. w is supposed to be in the
logic state |1) at the beginning of the sequence. The vibrational mode at this point (after
sideband cooling) is in the |n = 0) state. It therefore comes naturally to make the association
In=1) =10) and |n =0) = [1).

A slight modification of the algorithm is made by specifying the black box as being slightly
larger than U;. The new black box corresponds to the dashed box in Fig. 4.7 such that it
includes the two /2 pulses on the second qubit. This is just a conceptual change made to
simplify the overall sequence. This change corresponds to a U; which on the second qubit
operates in the (|0) + |1)), (|0) 4 |1)) basis, rather than in the |0), |1) basis.

The two /2 rotations of the first qubit in the overall sequence (eqn. (4.5)), Ryi(7/2) and
Ry1(m/2), can conveniently be implemented as carrier pulses with the appropriate laser phases.
What remains are the four different (black box) operations Rya(7/2) U; Ry2(m/2), which can
be implemented as follows:

o i =1: Ryp(n/2) Uy Ry(m/2) = Rya(m/2) I Ryo(mw/2) = I is the identity operator.

o i =2: Ry(m/2) Uy Rya(n/2) = Rya(m/2) Rya(m) Ry2(m/2) modulo an irrelevant global
phase (—i). This is a series of single qubit rotations, which may seem easy to implement.
We are, however, concerned with rotations of the second, that is, the vibrational qubit.
The way to implement this has been outlined in section 4.2: operations on the vibrational
qubit are achieved by sandwiching the operation, applied to the internal qubit, between
two SWAP operations with well defined relative phase, i.e.

Ryo(m/2) Uy Rya(1/2) = SWAP(m) Ryi(7/2) Ryi(m) Ryi(m/2) SWAP(0).
The corresponding series of laser pulses reads

Ruuap(m) Byt (7/2) Rar (1) Ryn (7/2) Ry 0).

41



4 Quantum Computation with Trapped Ions

Case 1 : :
—— o> {Rm2m2)f HrRev2 w224

1>

1>

Case 2 0> -IR(n/Z,n/Z)HR(n,n) HR(n/Z,—n/2)|-

| SWAP©) SWAP@)| !
1> : ; [1>
Case 3
0> Rz HrRev2 w224
| o 5
1> : 1>

___________________________________________

Case 4 : !
B2 s ey T

1>

1>

Figure 4.8: Complete sequence for all four cases ¢ = 1...4 of the Deutsch-Jozsa algorithm.

o i =3: Ry(m/2) Us Ryo(m/2) = Rya(m/2) Rya(m/2) ® Ryo(m/2) Ryo(w/2) = ®. So the
black box corresponds to a phase gate.

e i=4: Ryp(n/2) Us Rya(m/2) = Rya(m/2) Rur(w) Rya(m/2) @ Rya(w/2) Rt () Ry (/2)
= Ry1(m) ® R,1(w). Note that single qubit rotations acting on different qubits com-
mute. Thus, in case 4 we get a phase gate, surrounded by two m-rotations of the internal
qubit.

Section 4.2 discussed that for the implementation of a phase gate ® we have the choice between
three different methods. To implement the Deutsch-Jozsa algorithm we decided to use the
composite pulse technique for ®. Remember that for the vibrational qubit here the qubit
identification |n = 1) = |0) and |n = 0) = |1) was chosen. In this basis of logic states, the
composite phase gate sequence of eqn. (4.2) precisely implements the desired phase gate ®
(eqn. (2.8)) since it applies a phase factor of —1 to the logic state |1,1) (= |D,0)). The SWAP
operation of eqn. (4.1), however, must modified due to this particular qubit identification. A
closer analysis reveals that it suffices to use blue instead of red sideband pulses, so that the
sequence to be used here reads

s

V2

2

V2

™

7¢0 + (Z)swap) R+(\/§7

stap(¢0) = R+( 7¢0) R+( (bO)
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4.4 Quantum Computation With Two and More Ions

A quantum circuit representation of the complete sequences is shown in Fig. 4.8 !. In the
actual experiment the black box boundary is of course a formal construct as the experimenter
knows which kind of function is being performed. In principle, however, a third party is
invited into the laboratory to set the “black box” (choose the computer program) while the
experimenter is not present, and after this the experimenter runs the whole algorithm by
adding the two 7/2 pulses to the sequence and reading out the internal qubit.

4.4 Quantum Computation With Two and More Ions

In a string of trapped ions direct spin-spin type coupling between (neighboring) internal
qubits is negligible as the ions are separated by several micrometers while their individual
wavefunctions extend over several nanometers only (cf. section 3.2). In order to perform
a quantum gate between two internal qubits (ion 1 and ion 2) the proposal of Cirac and
Zoller [34] uses one of the vibrational modes to mediate the coupling. This vibrational mode
is identified as a qubit just as in the previous sections and has to be prepared in the |n = 0)
state. The experimental protocol then reads:

e Step 1: Map the (quantum) information of ion 1 to the vibrational qubit.
e Step 2: Perform the desired gate between the vibrational qubit and ion 2.
e Step 3: Map (back) the information from the vibrational qubit to ion 1.

For the mapping of quantum information from an ion to the vibrational mode (and back),
a single m-pulse on the red sideband, optically addressed on ion 1, is applied [34]; the corre-
sponding operation is illustrated in Fig. 4.9 and will be denoted MAP:

MAP(¢o) = R~ (7, ¢o).

As the mode is initially in the |n = 0) state, the |D, 1) state never becomes populated in
the overall procedure and so its coupling to the |S,2) state outside the computational space
via the red sideband does not come into play. All experimental techniques required for step 2
have been discussed in section 4.2. Note that in contrast to section 4.2 where the vibrational
qubit is fully used as an independent qubit, here it only serves as a transfer qubit and is
therefore often referred to as the quantum bus. This vibrational qubit repeatedly stores and
passes on quantum information, but comes back to the state |[n = 0) after completion of a
two-ion gate. Individual rotations of the vibrational qubit are not needed. A beautiful feature
of the Cirac-Zoller protocol is that two-qubit gates can be performed directly between any two
ions in a string of, in principle, arbitrarily many ions. Just as when the SWAP(¢p) sequence
was used for single ion quantum logic, unwanted phase factors can be avoided here by using
different laser phases ¢g = 0 and ¢g = 7 for the two surrounding MAP operations. For step
2, the laser has to be addressed on ion 2, while the laser focus must be switched to ion 1 for

!Note that in the complete sequences given in [53] the phases ¢ of the carrier pulses R(6, ¢) are different.
This is because in [53] the notation R, was chosen for 7 /2-rotations around the z-axis of the Bloch sphere.
This corresponds to a z-rotation by 7/2 of the Bloch sphere of the internal qubit throughout the whole
algorithm, which changes nothing on its overall performance.
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Figure 4.9: Step 1 and step 3 of the Cirac-Zoller protocol. Both figures display the internal
qubit states of son I combined with the states of the vibrational mode. (a) Step
1: The mode has been prepared in |n = 0) while the internal qubit in general is
in some superposition. Accordingly the combined system is in a superpositition of
|S,0) and | D, 0) which is indicated by a black and a grey circle. The mapping red
sideband m-pulse completely transfers the |D,0) population to |S,1) (grey circle
with dashed boundary). After this operation, the internal qubit is in the |S) state
while the superposition is now encoded in the motional states |n = 0) and |n = 1).
(b) Step 3: in the meantime (step 2) a quantum gate between the vibrational qubit
and ion 2 has been performed, which in general changes the state amplitudes of the
vibrational qubit, while the internal state of ion 1 remains unaffected, i.e. is |.S).
Thus the combined system is in a new superposition of |S,0) and |S, 1), indicated
by circles of different grey-scale. The red sideband w-pulse for the back-mapping
transfers the |.S, 1) population completely to |D,0) (circle with dashed boundary).
In this way the quantum information which was encoded in the vibrational qubit
is transfered back to the internal qubit of ion 1, while the vibrational mode returns
to the |n = 0) state.

the surrounding MAP gates.

Note that this procedure allows the implementation of any quantum gate between the two
internal qubits. If this quantum gate is, for example, a CNOT gate, the standard method of
implementing step 2 (CNOT between vibrational and internal qubit) is to sandwich a phase
gate ® (between vibrational and internal qubit) between two single qubit 7/2-rotations on
ion 2 (see section 2.2). This yields a CNOT controlled by the quantum bus:

CNOTmode—2 = Ry2 (7r/2) D nodes? R§2 (77/2)‘

Thus the overall sequence for a CNOT between the two ions, where ion 1 is the control qubit,
reads
CNOT\ 2 = Ry (7, 7) Ry2(7/2) Prmode—2 Ry2(m/2) Ry (m,0).

As in the single ion case (section 4.2), the remaining freedom lies in the method applied to
implement ®04es2. In the first experiments on the two-ion CNOT, the composite pulse
technique was employed. For the composite phase gate @ of eqn. (4.2), coupling on the
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blue sideband is used. From an experimental point of view it is desirable to use a minimum
number of different laser frequencies. Accordingly, the whole sequence is rearranged in order
to comprise only blue sideband and carrier pulses. One can, for example, implement the
MAP operations by m-pulses on the blue sideband R™ (, ¢) instead of the red sideband and
compensate for this change by applying a 0-CNO T 0de—2 instead of the CNOTyode—2 gate.
The latter can be realized as (see sections 2.2 and 4.2)

0-CNOTmode—2 = Ry2(7/2) Ppyoqecsz Ry2(7/2)
The complete sequence for this two-ion CNOT, expressed in laser pulses, thus reads:
CNOT, 5 = R{ (7, 7) Ry2(7/2) ®, Rya(n/2) Ry (m,0), (4.6)

with
@) = B (r,5) B (75,00 B (n, 5) RE(5,0),

Quantum computation experiments with two (or more) ions are, in general, more difficult
than with a single ion. The major reason for this lies in the reduced quantum gate speed which
is explained in the following. It is outlined in Appendix A.3 that for two-ion experiments the
Lamb-Dicke factor 7 inevitably is smaller than in the single-ion experiments, i.e. n = 1.8%
(compared to n = 6.8% in single-ion case). This is ultimately due to the need for individual
addressing in the multi-ion case. According to inequality 3.33, a smaller 7 corresponds to a
smaller {2g, hence a reduced gate speed.

Note that with composite pulses we have a technique at hand which allows the realization
of a real SWAP operation. Therefore, we can, in principle, use the mode as a complete qubit
even in the multi-ion case. This again means that with two trapped ions we could perform
arbitrary three qubit quantum computations. One could even conceive of using several modes
of a multi-ion string as additional qubits. At present, we can not fully profit from this option
because with two or more ions we are forced to operate at fairly low sideband Rabi frequencies
for reasons given above. Therefore, at most two SWAP operations are possible at present.

If a two-ion quantum gate has been implemented, a natural goal is to probe the phase
coherence of the gate. This can be done by recording quantum oscillations [49,50,81]. This
typically involves probing the quantum gate with qubit superpositions as inputs (prepared by
Ramsey-type /2 pulses) and reading out the interference pattern with additional Ramsey-
type 7/2 pulses added after the gate operation (the phase of which is scanned). Note that such
an interferometric method [19] is conceputally equivalent to the way the operations U; are
probed in the Deusch-Jozsa algorithm. By the same type of procedure, the quantum phases
of an implemented gate operation can be measured, in this way performing a quantum gate
tomography [82-84|. For a CNOT gate, a particularly interesting case arises if the control ion
is in a superposition at the input. For this kind of input the quantum gate produces entangled
states, i.e. Bell-States, as an output. For example, an input state (|S) + |D))|S) (where the
first ion represents the control qubit) is transformed into the Bell state |S,S) + |D, D) by an
ideal CNOT operation.
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5 Experimental Setup

5.1 Design of the New Linear Trap

The first one and a half years of this PhD work used a linear ion trap which had been designed
and prepared (but not yet used) by Hanns-Christoph Né#gerl in his PhD [51] and it will be
referred to it as the “old trap”. The work and the results obtained with this trap are reported
in the PhD thesis of Harald Rohde [52]. A schematic picture of the old trap is shown in
Fig. 5.1. Here the end-caps were made as rings around the RF-rods. The end-cap voltage
was limited by the specifications of the corresponding feed-throughs of the vacuum vessel to
Veap < 2000 V. At V4, = 2000 V an axial frequency w, = 27 - 700 kHz was reached. From
this experimental result a geometry factor & = 0.81 can be deduced (eqn. (3.6)). Radial
frequencies w, of up to 27 - 1.8 MHz were obtained with RF-drive powers of up to 5 W at a
frequency 2 = 27 - 16 MHz.

A new trap design, called the “new trap”, was envisaged in the year 2000 to improve on
several problems encountered with the old trap. These problems and the design path towards
the new trap will be elaborated in the following.

When loading a trap by ionizing Ca-atoms from an atomic oven via electron impact ion-
ization!, many stray electrons are deposited on electrically insulating surfaces, for example
on ceramic support structures of the trap construction. Special effort to focus the ionizing
electron beam well into the trap center is futile because the presence of the trapping radio-
frequency fields causes a large defocussing of the beam. Deposited charges create DC fields at
the trap center which must be compensated for. This is achieved by additional compensation

1At the time the new trap was designed, trap loading was still carried out by electron impact ionization.
This method was later replaced by photoionization, see section 6.4

Figure 5.1: Design of the old trap. L is 10 mm and rg - the shortest distance from the trap
axis to the RF-rod surfaces - is 1.2 mm. The RF-rods have a diameter of 0.6 mm.
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electrodes around the trap to which appropriate DC voltages are applied. Finding the right
compensation voltages is a quite tedious and time consuming procedure (see also chapter 6.2).
The old trap was held together by relatively large uncovered ceramic plates which collected
large amounts of electrons. For the new trap design ceramic parts were to be minimized and
covered by metal wherever possible.

It was found experimentally with the old trap, that the radial mode at 27 -1.8 MHz as well
as the axial mode at 27 - 700 kHz after Doppler cooling were left with mean phonon numbers
n of about 45 [52] which is still relatively high. The envisaged experiments, however, require
good cooling in terms of a low 7 for all vibrational modes (cf. section 7.2). A low 7 of a mode
is most easily reached by a high mode frequency. For the radial frequencies there is essentially
no limit and in a sense “the higher the better”. The axial frequency, however, cannot be too
high as optical single ion addressing is required. When the new trap was designed, the waist
of the addressing beam at 729 nm was measured to be about 3.7 pm [52]. This limits inter-ion
separations to a minimum of about 7 pym which again limits axial frequencies to not more
than 700 kHz (by chance the limit of the old trap). The new trap was intended to yield axial
frequencies of up to 1.5 MHz because possible future improvements of the addressing optics
would then allow the operation of the trap with a stronger axial confinement. This is advan-
tageous because it facilitates ground state cooling of the axial mode(s) and also increases the
speed of quantum gates (see eqn. (3.34)).

When optimizing the trap design for higher radial frequencies several aspects must be
taken into account. Firstly, the stability parameter ¢ should be clearly below 0.9. In order
to avoid potential nonlinear resonances (see section 3.1) it is desirable to keep ¢ below 0.5.
From eqn. (3.8) it is found, for example, that with the old trap the typical working point
(wro = 27 - 1.8 MHz, Q = 27 - 16 MHz) was ¢ = 0.32. Eqn. (3.8) also shows that with a
limited ¢ the only way to increase wy further is to go to higher drive frequencies 2. At the
same time it is found (inserting eqn. (3.2) into eqn. (3.8)) that

v

— 5.1
X T(Q]Q (5.1)

Wro
which indicates that increasing €2 in the first place decreases the radial frequency. This must
then be compensated for either by an increased RF amplitude V or a decreased linear dimen-
sion rg of the trap. Increasing V means increasing the RF drive power P, but as V scales
as VP and P is limited? to a few Watts one cannot expect to reach values of V far above
the ones reached with the old trap (up to about 1000 V). Therefore the only solution is to
down-size the trap. When down-sizing the trap one has to worry about heating of the ions
caused by nearby electrode surfaces as observed in other experiments [64] (see also chapter
6). Those experiments, with distances ro on the order of 0.1 mm, suffered serious heating
problems, while at the same time experiments in Innsbruck with ro = 0.7 mm showed only
negligible heating rates [4]. Consequently, a moderate size-reduction with respect to the old
trap by a factor 1.5 - i.e. from rg = 1.2 mm to 0.8 mm - was envisaged.

To summarize the design guidelines for the new trap:

e Down-size the radial structure by a factor 1.5 with respect to the old trap.

2The RF-power is limited essentially by a heating up of the electrical feed-throughs and the trap itself (see
chapter A.2).

48



5.1 Design of the New Linear Trap

e In order to increase the axial frequency from 700 kHz to about 1.5 MHz, i.e. by a factor
of 2, according to eqn. (3.7) the distance L between the end-caps has to be reduced by
approximately the same factor (depending also on the new end-cap geometry, i.e. the
new «).

e All ceramic surfaces (or insulators in general) facing towards the trap should be mini-
mized in size.

Down-sizing the radial structure and keeping the electrodes rod-like poses problems of fab-
rication in a machine shop, especially as a high relative accuracy is required. A blade-like
construction could be fabricated with more precision at these small scales.

Finally, the design must incorporate electrodes to compensate for stray DC fields at the
trap center pointing in the radial directions x and y. These compensation electrodes must
not be too close to the trap volume, as their presence may distort the trap fields. They must
also leave optical access for photon counting and addressing. At the same time the compensa-
tion electrodes must be near and large enough to produce sufficiently strong DC fields at the
trap center. The design guideline was that they should produce field strengths comparable to
the compensation electrodes of the old trap using voltages of about 100 V. This leaves some
safety margin as the overall set-up (including electrical feed-throughs) was designed to allow
for voltages up to at least 3000 V. It is not possible to calculate analytically the electric field
strength produced by a given compensation electrode configuration at the center of a certain
trap geometry nor is it possible to analytically calculate the geometry factor a of a given trap.
Therefore simulations of different trap configurations, including compensation electrodes were
performed with the software SIMION. Demonstrative pictures of such numerical simulations
are shown in Fig. 5.2. The final design of the new trap taking into account all these con-
siderations is presented in Fig. 5.3, while Fig. 5.4 shows photographs of the complete setup
including support structures and electric connections. The typical machining precision for all
measures is 10 ym, down to 5 pum for critical parts. The support structures, which can be
seen in the overall pictures (front view and side view) are made of Macor® ceramics. As much
Macor® as possible has been milled off. Additionally, the end-caps have a 8 mm diameter
base plate which covers most of the central Macor® surface. As can be seen in the draft of
the end-caps, this base plate is machined such that it touches the Macor® only around the
center, while the outer ring of it has a 0.2 mm gap. This is because in previous experiments it
has been observed that Macor® surfaces mediate voltage shorts much better than free ultra
high vacuum gaps. In fact, the outer edge of the base plates come as close as 1.5 mm to the
blades and voltages of around 3000 V between them occur when the trap is operating. The
blades, as well as the compensation electrodes, are made of stainless steel. Molybdenum was
used for the end-caps. The blades were machined by a wire erosion technique which ensures
very high precision, in particular for the holes which run through the whole length of 30 mm.

The trap is suspended in the vacuum chamber on four steel rods. In fact, Fig. 5.4 shows
upside-down views. Note that the RF-blades are connected to the helical resonator by OFHC
copper braids, while all DC connections are coaxially shielded steel wires. Chapter 7 shows
that the performance of the real trap is very close to what is expected from the simulations
(e.g. to within 5% in terms of trap frequencies).
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Figure 5.2: a) Simulation of the compensation electrode set-up of the old trap as a cross-check
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for the simulation procedure. In the center: the four RF-electrodes of the trap.
The two other rods are connected to the same potential and form one electrode
for horizontal compensation. Vertical compensation is performed by another rod
pair which is not included here. b) Compensation electrodes of the new trap
(approximation of the final design). The electrode for horizontal compensation
was split up into two rods in order to leave optical access open for fluorescence
counting. For vertical compensation, a single rod was used. ¢) Simulation for the
axial trapping strength of the new trap. The simulation is 3-dimensional, this
picture showing a 2D cut along the trap axis. This geometry, which is close to the
final design, yielded an axial frequency of about 1.5 MHz for an end-cap voltage
of 2000 V in the simulation.
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Figure 5.3: Construction of the new trap. Numbers without units are in millimeters.



5 Experimental Setup

Figure 5.4: Photographs of the new trap setup. Top: sideview. Bottom: space diagonal view
from the other side; note the compensation electrodes.
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5.2

Laser Systems for *°Ca™
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Figure 5.5: General setup, in particular laser sources. The individual elements are discussed
in the text.

5.2 Laser Systems for “°Ca*

The experiments presented here use lasers at 397 nm, 729 nm, 866 nm and 854 nm (cf. section
3.3.1). An overview of the optical setup is given in Fig. 5.5. Only the essential optical
elements are shown. The experimental setup is spread over two tables. Optical table 2, along
with all laser sources and a CCD camera for ion observation, is shared with our calcium
cavity-QED experiment. The ion trap setup will be explained in the next section. Each
laser is frequency locked to its individual optical reference cavity using the Pound-Drever-
Hall method [85]. Every reference cavity is placed in a temperature stabilized vessel. The
vessels for the 729 nm and the 866 nm lock consist of two layers inside each other, each one
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being independently temperature stabilized. The cavity for the 729 nm laser is additionally
placed in a vacuum chamber and made of ultra low thermal expansion material. Details of
the specific lasers and their frequency locks have been presented in previous PhD theses on
the Innsbruck calcium experiments [51], [4], [52]. No principal changes have been made since,
although most components - including optics, lasers and electronics - have been improved or
replaced by better versions during the last two years.

The optical element labelled “overlapper” in Fig. 5.5 is a glass substrate with high reflectivity
coating for 397 nm on one side while both sides are anti-reflection coated for light around
860 nm. This allows superimposing laser beams at 866 nm and 854 nm onto a 397 nm beam.
A single 50:50 beam splitter is used to split the laser beams at 866 nm and 854 nm and at
the same time overlap the resulting beams. Subsequently each of these double wavelength
infrared beams is overlapped with a 397 nm beam. The resulting triple wavelength beams are
called Dopl and Dop2.

It can also be seen that each laser beam can be switched on and off with either a single or
a double pass acousto-optical modulator (AOM) labelled AO1...A06. AO2, AO3, AO4 and
AQ5 are driven at fixed frequencies (either 80 or 270 MHz) and are used for switching and
light intensity control. Frequency tuning of the corresponding lasers at 397 nm, and 854 nm is
achieved by scanning the length of their reference cavities using piezos. The reference cavities
for 866 nm and 729 nm do not feature piezos - and consequently are not scannable - in order
to achieve minimum linewidth and frequency drift, in particular for the 729 nm light. Their
frequencies are tuned with the help of the double pass setups by controlling the RF drive
frequencies of AO1 and AO6. For the optical channel called 3970 circularly polarized light is
produced and then shone in parallel to the magnetic field vector at the position of the trap
center in order to provide o~ polarized 397 nm light. AO2 represents an additional switch to
provide optimum cancelling of 397 nm light during periods of coherent manipulation on the
729 nm transition. Residual 397 nm light would otherwise broaden the )/, ground state(s)
significantly and thus destroy coherence on the qubit transition at 729 nm.

In addition to what is shown in Fig. 5.5, small fractions from all wavelength sources are sent
to home built wavemeters, allowing for coarse wavelength measurements with an accuracy of
about 1076,

The light at 729 nm is either sent to the 729A or the 729N channel, while the respective other
channel is then blocked. The 729A light passes through a special optics producing a tightly
focussed beam at the trap center designed to address individual ions of a chain (see section
7.4). The 729N light is focussed onto the ions by single lens producing a comparatively large
laser waist of about 20 ym. Lasers in the channels Dopl, Dop2 and 397¢ are also focussed by
just a single lens. The corresponding laser waists at the trap center are on the order of 50 pym
for all 397 nm beams and about 300 pym for the 854 nm and 866 nm beams.

5.3 Frequency and Phase Control at 729 nm
The quantum computation protocols presented in chapters 2 and 4 require not only a precise
laser power and frequency but also special phase control, in particular for the application of

composite pulse operations (cf. 4.2). A complete quantum gate protocol in our experiment
typically requires at least five different laser frequencies at 729 nm for ground state cooling
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Figure 5.6: Network for laser power, frequency and phase control at 729 nm. The elements
F1-F5 are signal generators running at constant frequency and power during one
data acquisiation scan; s1-s10 denote TTL controlled RF switches, c1-c4 are power
combiners and m is a mixer. The local oscillator LO is operated at ~ 600 MHz
and the sources F1-F5 at around 370 MHz. The output frequency is thus ~
230 MHz (the sum frequency of ~ 1 GHz is strongly suppressed by the following
RF amplifiers and the 729 nm AOM).

and coherent manipulations. Composite pulse operations can be simplified but even then
require several well defined switchable laser phases at certain frequencies. The manipulation
of 729 nm light in the experiment is achieved by applying suitable pulse sequences in the
RF range around 230 MHz to the corresponding double pass AOM (AO1 in Fig. 5.5). The
ultimate tool for the required timing, power and frequency control would be a single RF
pulse source, which has just one output channel and can be computer controlled. Such an
instrument would need to be specially designed and produced for the particular application,
nevertheless in the long term the experiment will require such a device.

For the experiments presented here we have built a radio-frequency network which solves
these problems for the time being. Fig. 5.6 shows the network and should be seen as a generic
representation. The real setup is subject to continual modifications to meet the requirements
of each individual experiment. The resonances in the Sy /5 <> D55 spectrum are very stable
with respect to each other, typically better than 1 kHz. The only change arises from the drift
of the 729 nm reference cavity. Therefore we use frequency mixing to produce the output
signal. The advantage is that the frequency sources F1-F5 can be fixed, while the overall
drift is compensated for by the local oscillator (LO) alone. F4 and F5 are used for sideband
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cooling. Laser phases are controlled by switching between different signal paths using the
switches s7-s9. The lengths of the cables denoted ¢g-¢3 are carefully tailored to implement
the desired phases, which depend on the experiment to be performed. Hence for a certain
experimental protocol preparation of the appropriate set of cables ¢g-¢3 is required. This
method has served as an interim solution of the phase switching problem for the experiments
presented in this thesis. Custom-made phase switching devices for the required radiofrequency
range are commercially available, but feature long delivery times. The network of phase-cables

and switches (between s6 and c4) is currently being replaced by such a (single) device®.

5.4 Vacuum Vessel and Optical Access

The different laser beams discussed in the previous chapter are directed to the trap center at
various angles with respect to the trap axes and the magnetic field. Fig. 5.7 shows the geom-
etry of the vacuum chamber. The linear trap is at the center of the vessel construction, i.e. of
the 2’-y/-z’ coordinate system, and is indicated by two solid bars. Note that this coordinate
system differs (by a rotation) from the x-y-z coordinate system employed to describe the trap
itself (cf. section 3.1). The trap axis (z) is horizontal, i.e. it lies in the a’-y’ plane, and is
represented by a dash-dotted line. The RF electrode blades are at 45° with respect to the
2’-y’ plane. Tt can be seen that the trap axis is tilted with respect to the 2’-axis by an angle
a = 22.5°. The reason for this is that in our present scheme the 729A beam must address
individual ions but at the same time have some projection along the trap axis in order to
couple to sidebands of axial motion (see also Appendix A.3).

For the experiments we need a well-defined magnetic field to split the Zeeman-sublevels
of the Sy/o <> Ds/y transition. The circularly polarized 397¢ light drives o transitions and
thereby provides optical pumping into one magnetic sublevel of the S/, state. For this the
laser beam must point along the magnetic field axis. In the experiments presented here, two
different magnetic field configurations have been used (the motivation for this is detailed in
Appendix A.3). In the first configuration, which was used for single ion experiments, the
magnetic field points along the 2’-axis (B1) and is produced by the coil* Cx. The other coils
are used to null all external magnetic fields perpendicular to /. Accordingly, the 397 light
was directed along the 39701 channel. For two-ion experiments, another configuration (B2),
where the magnetic field points along a 45° diagonal axis in the 2’y plane, was used. The
field B2 is produced by the coil Cd. Perpendicular fields were compensated for with the help
of the vertical coils (Cz1&Cz2) and Cy. The latter has a contribution along the Cd axis,
which slightly complicates the magnetic field compensation procedure. In this configuration,
the 39702 channel is used for optical pumping.

One arm of the vessel is used for all equipment related to the vacuum. The different elements
are “IGP”- ion getter pump, “TSP”- titanium sublimation pump, “VG”- pressure gauge® and
“V”- full metal corner valve. The latter was used to connect a turbo pump for the bake-out.

In a first design, some of the vessel’s conventional viewports were replaced by quartz sub-
strates of high optical quality and anti-reflection coated for 397 nm. The purpose of this

3LORCH Microwave, digital phase shifter.
“For notational simplicity, the prime is not used in labels, writing, for example, Cx instead of Cx'.
5Varian UHV-24 Tonization Gauge

56



5.4 Vacuum Vessel and Optical Access

Bottom

PMT

| DC
HR

w0 o
O
215
&
O&E N O&E y

Figure 5.7: Schematic of the vacuum vessel and laser channels. Dashed lines indicate optical
viewports while all other ports are used as electrical feed-throughs.

was to reduce stray light when the ions’ fluorescence is detected and thus speed-up the qubit
read-out. Helicoflex® seals were used for this purpose. Unfortunately, most of those windows
were carved in by the sharp blades of the seals and broke during bake-out. Probably suitable
seals could be fabricated but we found the personnel of Helicoflex®, respectively its distrib-
utors, fairly unwilling to consider the case. Consequently, these windows were replaced by
conventional quartz viewports anti-reflection coated for 397 nm.

With the old trap we observed that at background pressures of several 10~ mbar even
permanently cooled ions sometimes spontaneously left the trap, while at 1-1071 mbar (which
was the best achieved) this happened only rarely. However, even at 1-10~'? mbar, ions would
still get lost within about 15 minutes when left uncooled. We conclude that pressures in the
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10~'! mbar range are recommendable and make experimental work easier.

Therefore, special care was taken in the design and bake-out of the new setup in order to
achieve a good vacuum. The vessel was baked out at 320°C for four days with the quartz
viewports replaced by blanks as they are only specified to a maximum temperature of 200°C.
All baking out was carried out in a self-built computer-controlled 1 mx1 mx1 m oven which
has been optimized for a homogeneous temperature distribution. Furthermore, temperatures
were always ramped up or down slowly at +£7°C per hour. Next, the quartz-viewports were
installed. During this procedure, the vessel was permanently vented with nitrogen at a slight
overpressure in order to exclude ambient air. In a second session the vessel was then baked
out at 200°C for four days.

The final pressure is below the range of the pressure gauge, i.e. below 2 x 10~ mbar. No
background-pressure-related loss of ions has ever been observed during permanent laser cool-
ing. The trapping stability of uncooled ions has not been studied systematically. However,
sometimes trapped ion samples were left uncooled for several (up to eight) hours, without
ion loss. It has thus been possible to work up to 100 hours continuously with the same ion
sample.

The drive voltage for the Paul trap is generated using a helical \/4-resonator, denoted
“HR”. Helical resonator design is discussed in Appendix A.2. Unlike earlier vessel designs,
a separate feed-through was used for the connection of the helical resonator to the trap in
order to avoid possible RF pick-up on the DC-voltage leads through capacitive coupling in a
common feed-through. For the same reason, the leads for DC-voltages from the feed-through
(“DC”) to the trap were coaxially shielded (cf. Fig. 5.4).

The ovens and the electron guns (two of each) are mounted directly onto their feed-through
(“O&E”). Each oven consists of a thin-walled 1.8 mm diameter stainless steel tube which is
heated by sending an electric current through and which is directed towards the trap center.
The atomic calcium beam is screened by an additional, short 4 mm diameter tube placed over
the end of the oven tube. This produces a beam with an angular divergence of 17°. The
screening tube has a distance of 1.5 cm from the trap center, where the atomic beam then
has a diameter of 6 mm. Oven designs are discussed in more detail in the diploma thesis of
Daniel Rotter [86].

The elements denoted “O” in Fig. 5.7 are microscope objectives®. They have a working
distance of about 65 mm and are therefore mounted into inverted viewports to place them
close enough to the trap center. One objective collects fluorescence for the photomultiplier?
(PMT). The trap center region is imaged to a focal plane about 45 cm from the objective.
At that point in front of the PMT the image is spatially filtered by a diaphragm consisting
of four individually adjustable blades. In this way the rectangular aperture can be adjusted
for maximum fluorescence and minimum scattered light at 397 nm. Ideally, only light at
397 nm is to be detected. In particular, addressing light at 729 nm which hits the PMT
head-on must be suppressed. The bialkali photo cathode by itself already strongly suppresses
light above 650 nm and below 300 nm, while at 397 nm it has a specified quantum efficiency
of 28%. Additionally, the PMT window is covered by stained glass filters, type BG39 and
BG3. In order to reduce reflective losses all filters have been anti-reflection coated for 397 nm.

6

5Nikon MNH-23150 ED Plan 1.5x
"Electron Tubes, PMT type 9111.
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The BG39 filter strongly suppresses light above 650 nm, while most light in the visible range
(480-680 nm) is filtered out by the BG3 glass. The latter is used to allow for working on the
experiment with some normal room light on.

The other objective images the ions onto the CCD camera®. In previous experiments the
camera was always read out continuously. It served only for the experimenters to monitor
the ion crystal. We recently started to read out the camera locally at the ion positions (see
section 7.4), gate the read-out and synchronize it with pulsed experiments. This is important
when conditional dynamics and quantum algorithms are performed with two or more ions. It
is likely that the read-out of pixel arrays associated with different ions will eventually replace
the PMT.

5.5 Addressing Optics

To address the ions with 729 nm light we use the same viewport and objective as for imaging
the 397 fluorescence light onto the CCD. As can be seen in Fig. 5.8, we use a telescope-like
imaging system consisting of two lenses, L1 (f=25 mm) and L2 (f=500 mm), and an electro-
optic deflector® (D) to tailor the 729 nm beam and to steer the focus at the ion position. The
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Figure 5.8: Addressing optics setup. For a legend see Fig. 5.5, cf. also Fig. 5.7. DM is a
dichroic mirror which has a high reflectivity at 729 nm and a high transmission
for 397 nm light.

4

quality of the focus profile at the ions is determined by the aberrations of all optical elements.
This includes the lenses, the objective, the viewport window, the deflector, mirror surfaces and
the A\/2 plates. These aberrations typically lead to a deviation from a Gaussian focus profile.
While a large fraction of the light still goes into the Gaussian center part, the rest forms a
more weakly focussed and often irregular background. It is this background which typically
limits the quality of our addressing. The present system leaves some room for improvement.
Some of this improvement, however, will involve major changes like an objective placed inside
the vacuum chamber.

8Princeton Instruments I-PentaMAX
9Laser Components, ED 2-730
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Another issue besides optimizing the quality of the optics is the question, how many ions
can be addressed in principle by such a setup. An analysis of the ideal (aberration free and
diffraction limited) system has been performed. One interesting result is that all parameters
of the imaging system drop out of the equations. This includes the fiber collimator, the
telescope and the objective as well as their spatial arrangement. The crucial equation for the
displacement dr of the ion focus per voltage applied to the deflector is

dr = ngwFoz, (5.2)
where « is the angle (per voltage applied) by which the deflector bends a beam; wp is the
waist of the beam where it passes through the deflector, while wg is the waist of the laser focus
at the ion position (trap center). wp is limited by the aperture a of the deflector. Looking
at the specifications of our (and other) deflector type(s), one finds that for different models,
a - « is essentially a constant which is determined by the type of deflector crystal. Apart from
better electro-optical crystals, which may be developed in the future, this sets an upper limit
of wp - @ ~ 4 pum-kV~!. Substituting this value into eqn. (5.2) one finds that for a given
wavelength A, dp is proportional to wg. This, however, means that the number of ions which
can be individually addressed with such a system is independent of how close the ions are
(there is, of course, a limit because wp can not be smaller than the absolute diffraction limit
A/2). If we assume that for reasonable addressing, the distance /A\; between two neighboring
ions!® should be four times wp, one finds with A\ = 729 nm, that

dr _1

Ki =22kV™".

The requirement of fast switching, as well as the electric breakdown specifications of the
deflector set a limit of about +1 kV to the deflector voltage. Thus this type of system allows
for the addressing of about five ions. Deflectors with larger aperture permit higher voltages.
Optimizing the system with present day technology would probably enable the addressing of
up to 10 ions. Thus for the near future, the experiment is not limited here.

10Tn reality the ions in a linear crystal are not exactly equidistant (cf. section 3.2.1) but the assumption is
valid here.
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6 Operating the Trap

This chapter describes the typical procedures of loading the ion trap and adjusting the trap
parameters, in particular the compensation of stray electric fields. For the first two and a
half years of this Ph.D. work, ions were produced by bombarding an atomic Ca beam with an
electron gun, as in essentially all other experiments (cf. section 6.4). It will become clear in
sections 6.1 to 6.3 that the electron impact ionization method has several disadvantages, for
example a charging up of surfaces near the trap center, causing severe experimental problems.
To cure these problems, a setup for resonant photoionization was developed consisting of two
diode lasers, see section 6.4. This development has allowed for efficient trap performance,
without which the experiments presented here would not have been possible. In fact, loading
by photoionization was used for all experiments presented in this thesis. Electron beam
ionization is nevertheless discussed in the following chapters in order to make clear where its
disadvantages lay.

6.1 Trap Loading

Calcium ions produced in the trapping volume are cooled by the Doppler laser beams and
crystallize into their equilibrium positions. Ion numbers of several hundreds have been crys-
tallized in the new trap and various three dimensional crystal structures were observed. The
experiments detailed in this thesis focus on (linear) crystals of up to three ions. CCD pictures
of ion crystals are shown in Fig. 6.1.

RF-drive powers of up to 15 W were used resulting in radial trap frequencies wyg of up to
5.0 MHz. At these relatively high input powers, the whole resonator (including the trap) heats
up. As a consequence, the resonance frequency of the system drifts down from 23.505 MHz
(at low drive powers < 2 W) to 23.450 MHz (at 15 W). This process extends over about 40
minutes. A second effect of the heating-up is that the position of the trap center is shifted,
which can be clearly observed by a displacement of the ion image on the CCD camera. The
main shift of about 80 pm occurs on the same time scale as the A/4 resonance shift. The trap
center (hence the ion), however, keeps moving at a rate of approximately 1 ym per 15 min-
utes for a few hours before being stable. This long term process is probably due to a very
slow heat transfer from the RF-electrodes to the ceramic support structure and from there
to the stainless steel rods on which the trap is suspended. Precision experiments that require
individual ion addressing can only be carried out after such thermal drifts have subsided since
the focus of the addressing laser is as small as 2.5 pym.

According to eqn. (3.8), if a radial trap frequency w,o of 5.0 MHz is obtained at a RF drive
frequency of /2w = 23.5 MHz, the stability parameter is ¢ = 0.60. We have observed that
at drive powers higher than 15 W the trapping of a single ion appears to become unstable.
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6 Operating the Trap

Figure 6.1: Fluorescence images on the CCD camera of a single trapped ion as well as a linear
two-, three- and four-ion crystal taken with an exposure time of about two seconds.
The axial trap frequency w, was 27 - 1.01 MHz (end-cap voltage Viqp = 700 V),
corresponding to ion distances Az, (cf. section 3.2.1) between 4 pum and 6 pm
(characteristic length [ = 4.4 ym). On the CCD camera the ions appear closer
since they are observed under an angle of 67.5° with respect to the trap axis,
cf. section 7.4.

For two ions, these instabilities already begin at a drive power of 13 W. Instabilities appear
as an occasional melting-up of the ion-crystal. Re-crystallization of the ions is then difficult
with the ions sometimes even leaving the trap. These effects are accounted for by trapping
instabilities due to nonlinear resonances (cf. section 3.1).

When loading the trap by electron impact, in principle all atoms and molecules present
in the trap volume - including those from the background gas or impurities in the atomic
Ca-beam - can be ionized and trapped. These impurity ions can be seen as dark spots in the
ion crystal and have been observed in the new as well as in all previous setups [51].

It was also observed that the new trap was particularly stable compared to other Ca-traps
previously used in Innsbruck, like the old linear trap or ring traps [4]. This manifests in
long storage times and is, at least partially, due to the improved vacuum (cf. section 5.4). It
is also possible that the different trap construction (end-caps made as tips instead of rings
around the RF electrodes) contributes to the improved performance. Further analysis of this
assumption would require numerical simulations. The enhanced trapping stability represent a
significant advantage since it takes about an hour to reload the trap and re-adjust all param-
eters. Moreover, for reloading the trap with electron impact ionization, the drive power must
be reduced significantly. This is probably due to trapping instabilities (cf. section 3.1) leading
to a reduced volume of stable trapping at strong RF drive. The momentum transferred to an
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ion by the ionizing electron impact may kick the ion out of the stable trapping volume. In
practice ions had to be loaded into a weak trap of about 500 kHz radial and 200 kHz axial
frequency. Subsequently, the trapping potential is ramped up and several hours of waiting are
required before thermal drifts of the trap have completely subsided.

6.2 Compensation of Micromotion

If, on top of the RF quadrupole field, electric DC fields in the radial direction are present
at the trap center, then those DC fields will shift the ions from the RF-node into a region
of enhanced RF-drive. This results in enhanced micromotion which, via the Doppler effect,
modulates the coupling of the ion to the laser fields. This has several negative effects [4], [52],
for example, an effective broadening of the Doppler cooling transition resulting in an increased
cooling limit temperature.

There are two different origins for radial stray fields and these can be distinguished as:

e “charge fields” which are created by localized surface charges on trap electrodes and
support structures.

e “geometric fields” which are due to geometric imperfections of the trap construction, in
particular a misalignment of the end-caps with the trap axis (as defined by the RF-
electrodes).

There are two major differences between these two sorts of unwanted fields:

First, charge fields are independent of the trap voltages while geometric fields have a con-
tribution proportional to the end-cap voltage. This effect is shown in Fig. 6.2 where the
voltages necessary to compensate for vertical and horizontal stray fields are plotted versus
end-cap voltage. Methods to determine the appropriate compensation voltages are described
below. Even geometric fields are independent of the RF amplitude as the nodal line of the
RF quadrupole field remains unchanged if the RF amplitude is varied.

Second, geometric fields are reproducable whilst charge fields change between two experi-
mental runs or even within one experimental session. This is due to the deposition of new
charges on insulating surfaces in the trap loading process by electron impact ionization and
slow migrations of these charges which we have observed to take place on the time scale of
hours. Accordingly, the compensation procedure had to be renewed several times after elec-
tron impact ionization. At first, one might assume that charges deposited on the metallic
surfaces of the trap electrodes will immediately be conducted away. There are, however, small
patches of oxides even on thoroughly cleaned steel or molybdenum surfaces where electrons
can be localized [87]. Moreover, oxides can form from metallic calcium depositions within a
few days even in a vacuum environment of 10~! mbar [88].

There are four different methods that have been used in the presented experiments to
compensate micromotion (see also [4]):

e Position compensation. Here, the position of an ion, viewed on the CCD camera, is
observed while the strength of the RF potential is varied. If the micromotion compen-
sation is good, i.e. there are no DC fields at the trap center, then the position of the ion
remains the same under this variation of RF power. If not, the ion moves away from the
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Figure 6.2: Compensation protocol of one ramping-up procedure of the trap. The two sets
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of voltages were fitted linearly like Viomp = Vorfset + cVend—cap- The results are
Voffset = —44.5 V, ¢ = 0.0667 and V,trset = —7.7 V, ¢ = —0.126 for the vertical
and horizontal compensation, respectively. The c-values, related to geometric
fields, are constant as long as the trap geometry is stable, while the Vs s, related
mostly to charge fields, change with every trap loading procedure.

trap center in the direction of the DC field as the radial potential is lowered and vice
versa. Starting from the strongest possible RF potential and marking the position of
the ion, the radial potential is subsequently lowered and at each step the ion is pushed
back to the marked position with the help of appropriate voltages on the compensation
electrodes.

Linewidth compensation. The width of the Sy, «<» Py transition at 397 nm is broad-
ened by micromotion sidebands. The corresponding method of compensation is to tune
the laser at 397 nm to the red side of the resonance fringe (by slightly more than half a
linewidth) and to optimize the compensation voltages for minimal fluorescence at this
point. The underlying effect is that narrowing the linewidth increases the fluorescence
rate on resonance but decreases fluorescence on the outer fringe whilst the total line
strength remains constant. The laser at 397 nm must be desaturated otherwise the
linewidth is dominated by power broadening.

Correlation compensation. The back and forth movement of an ion with the drive
frequency {2 causes the scattering rate to be modulated at the same frequency via the
Doppler effect. The compensation method works best where the photon scattering rate
depends strongly on the detuning of the laser, i.e. if the laser at 397 nm is tuned to
the point of the steepest gradient of the fluorescence curve. Once again, saturation
broadening of the transition must be avoided. The signal is obtained in form of a
histogram of photon counts with respect to the RF phase. Although the total scattering
rate, being ~ 60 MHz at that point of the fluorescence curve, is larger than the RF
frequency of 23.5 MHz, the average number of photons collected in one RF period is
much smaller than 1 as only about 1/2000 of all scattered photons are collected and



6.2 Compensation of Micromotion

B horizontal
397nm laser

vertical
397nm laser

Figure 6.3: Cross section of a linear rod trap. The dashed lines respresent the quadropole
field along which micromotion takes place. C is the the trap center. A and B are
vertically and horizontally displaced ion positions caused by stray fields pointing
in the same respective directions.

detected. Therefore a time counting method is applied in which a time interval counter®
is triggered by the arrival of a count pulse from the photomultiplier and stopped by a
pulse synchronized to the RF drive frequency. From 10000 measurements, each obtained
from a single photon count, a histogram of time intervals is built up. A reasonable signal,
i.e. a visible modulation in this histogram, is obtained only if the stray light background
is at least five times smaller than the fluorescence count rate. If a signal is observed,
i.e. the histogram is not flat, one tries to minimize this modulation in the histogram by
tuning the compensation voltages.

e Micromotion sideband reduction. On the Sy <> Ds/o transition at 729 nm, motional
sidebands (including micromotion sidebands at a frequency 2 away from the carrier)
can be resolved. The method consists in minimizing these sidebands by tuning the
compensation voltages.

Position compensation is the crudest method, linewidth compensation is more sensitive whilst
correlation compensation and micromotion sideband reduction are the most sensitive tech-
niques. They allow the compensation voltages to be determined to within about 1%.
Two important features of stray field enhanced micromotion shall be discussed:

1) A radial stray field pointing in some direction e, will, in general, lead to micromotion in
some different direction e,,. Fig. 6.3 illustrates a typical situation: the directions z* and y*
open for optical access are tilted by 45° with respect to the connection lines between diag-
onally opposite electrodes. A wertical stray field displaces an ion in the same direction, for
example to position A, where it undergoes horizontal micromotion. Hence in this case the two

!SR620, Stanford Research Systems
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directions e, and e, are actually perpendicular to each other. This horizontal modulation
will now be “seen” best by the horizontal laser. For the laser-based compensation methods
(linewidth compensation, correlation compensation and micromotion sideband reduction) this
means that a signal obtained with a horizontal laser illuminating the ion(s) is associated with
the vertical stray field component and accordingly has to be corrected with the vertical com-
pensation electrode.
2) In order to increase the amplitude of micromotion caused by some stray field, the RF-drive
power has to be decreased. An increased amplitude, i.e. an enhanced micromotion modulation
is particularly desirable in the case of correlation compensation, where we found that a good
correlation signal could only be obtained by turning down the RF-drive significantly. For
example from the typical working parameters of the new trap - 15 W RF power and 600 V
end-cap voltage leading to axial and radial trap frequencies of 1 MHz and 5 MHz respectively
- the RF power had to be turned down to about 1.5 W in order to see any correlation sig-
nal. The fact that the RF-modulation amplitude goes up when the RF drive is turned down
is counterintuitive and therefore a short derivation of this effect is given here: The spring
constant associated with the macromotion, i.e. the secular motion at a frequency w,q is pro-
portional to 1/w?,. From eqns. 3.8 and 3.2 it follows that w;,, o V, the amplitude of the RF
voltage. This means that a given constant force F = eEg caused by some radial stray field Eg
displaces the ion radially from the trap axis by
1

Tq X W . (61)
The amplitude A(r) of the ion’s micromotion at some distance r from the trap center is
proportional to the amplitude Eq(r) of the quadrupole field at this distance. The amplitude
of the quadrupole field is simply the gradient of the quadrupole potential of eqn. (3.1) and it
is straightforward then to derive that

Eq(r) ocrV . (6.2)

Hence, a given stray field Eg causes a displacement r; which leads to enhanced micromotion
of amplitude (eqn. (6.1) into (6.2))

1 1
X = X —— .

vV P
This means that to increase the micromotion modulation caused by a given stray field one has
to decrease the RF-drive power P.

A(r)
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6.3 Patch effects

It was found after the first few months of good operation of the new trap (using electron gun
ionization) that charge fields became increasingly dominant. At first, micromotion compen-
sation became more and more difficult and time consuming as after every loading stray fields
were completely different in an arbitrary way. Soon stray fields were so large that they could
not be nulled any more, even with compensation voltages of up to 2000 V. Observation of ion
motion on the CCD camera under variation of the axial and radial trap frequencies (just as
in position compensation) allows a quite accurate estimate of the magnitude of those stray
fields. With this method it was found at some point that in order to compensate the given
stray fields, compensation voltages of several ten thousand volts would have been necessary.
It should be mentioned that such effects are not particular to our setup but have occurred in
other experiments [64,89] and caused serious problems there, in some cases even bringing the
experiment to a complete halt.

The ceramic support structures of the new trap are further away from the trap center than
the compensation electrodes and their surface is greatly reduced with respect to the old trap.
This led to the conclusion that such strong stray fields could not be produced by charges on
the ceramics but must stem from charges on surfaces much closer to the trap center, i.e. on
the RF electrodes or on the end-caps. The fact that the trap had been operating nicely over
the first months and that the background pressure of the vacuum chamber had always been
as good as 107! mbar suggested that the patches on which charges were localized had to be
(oxidized) depositions of material from the oven beam. An optical port (beam channel Dop2)
was used to observe the trap from below, where the oven beam hits the RF electrodes. There
was indeed a 6 mm diameter round patch of of (grey) calcium deposit visible, distributed
over two blades and just touching the tips of the end-caps. Evaporating this patch by laser
heating was the only option to solve the problem without opening up the vacuum system. For
this, the argon ion laser was used. The laser beam was used unfocussed with a diameter of
about 2 mm in order not to produce too much local heat which might melt the steel. A CCD
camera was installed to monitor the beam position on the trap. The light power was ramped
up in steps until an increase in vacuum pressure was observed indicating the evaporation of
material. Bursts of gas were observed at several discrete light power levels, on the order of
a few Watts, probably corresponding to the evaporation of different types of material. The
beam was scanned slowly over all patched areas at each of these power levels. The maximum
laser power applied was 10 W. After that, all visible depositions were gone. It was found
in the next experimental run that, indeed, the patches had been evaporated successfully and
that the trap could be operated normally again. Before storing ions again, however, a setup
for resonant photoionization to replace electron impact ionization was prepared in order to
avoid patch problems in the future. This setup is presented in the following section.
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6.4 A New Trap Loading Scheme by Photoionization

Resonant photoionization can cure many experimental prob-
lems as described in the previous sections of this chapter:
There is essentially no charging up of surfaces due to the

Corm&__ loading process as the number of free electrons produced is
== negligible compared to the number necessary for ionization
1T by electron impact. No more impurity ions are produced as,

T —— 390nm due to the resonant nature of the process, only atomic cal-
cium will be ionized. In fact, our photionization scheme is
4p'R -_— even isotope selective, as will be shown below. Essentially, no
3d' Dyt patches of material from the oven beam are deposited on the
electrodes. The reason for this is that photoionization is so
much more efficient than ionization by electron impact that
423nm . .
the atomic calcium flux could be greatly reduced (see below).
4s1So The levels of atomic calcium relevant for the resonant pho-
toionization are shown in Fig. 6.4. In fact, photoionization
Figure 6.4: Atomic Ca. for loading a Paul trap has been demonstrated previously by

Kjeergaard et al. [65] (grey arrows in Fig. 6.4). These authors
use a resonant transition at 272 nm followed by a spontaneous decay and an excitation with
the same light at 272 nm far into the continuum. In our scheme (black arrows in Fig. 6.4),
the resonant excitation from the 4s'Sy ground state to the 4p' P, state (That = 34.7 MHz) at
422.791 nm (vacuum wavelength, from tables in [90]) is directly followed by an excitation with
light at about 391 nm to Rydberg states from where the atom is field-ionized by the varying
electric fields present in the trap volume at any given time. The primary advantage of this
scheme is that the wavelengths are accessible to room temperature laser diodes which have
been commercially available for two years?. The setup consists of two laser diodes in Littrow
configuration. Details are presented in [86,91]. The laser light at 272 nm in the experiment
of Kjaergaard et al. had to be produced by a frequency doubled argon ion laser pumped dye
laser which requires significant cost and maintenance as compared to diode lasers?.

For the second step the exact wavelength from the 4p! P; level to the continuum threshold is
389.808 nm - again taken from the tables in [90]. Exciting high lying Rydberg levels which are
subsequently field ionized can yield a higher ionization cross section than direct excitation into
continuum [92]. Moreover, the efficiency of direct excitation into continuum decreases even
more the further the exciting laser aims above continuum threshold. For the electric fields
present in the trapping volume which are on the order of 1000 V/cm, the highest ionization
efficiencies were expected roughly around 391 nm [92], which corresponds to the excitation of
Rydberg states with principal quantum number n ~ 30 [86]. The strongly varying fields in
the trap “wash out” all resonant structures hence the wavelength of the second step laser is
expected not to be critical within £0.5 nm around 391 nm.

In the test phase of this scheme, a variety of calcium crystals and clouds ranging from single
to several thousands of ions were loaded into the trap. After optimizing the wavelength of

2Nichia Co., Japan.
31t should be mentioned that in the experiments of [65] the laser system for 272 nm was available anyhow
because light in that wavelength range is used in the Aarhus labs for magnesium spectroscopy.
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the first step (423 nm) laser for maximum ion production, the wavelength was measured with
the wavemeter. The measured value of 422.792(2) nm (vac.) is in very good agreement with
the value reported in literature (see above). The other laser was varied between 390.5 and
391.4 nm with ionization occurring at any wavelength.

Quantitative measurements of the ion yield [86,91] show that photoionization is over five
orders of magnitude more efficient than the electron bombardment method, hence patch ef-
fects can be greatly reduced. Due to this and the negligible amount of stray electrons the
introduction of photoionizationis has lead to considerably more stable stray field compensa-
tion voltages, see [86] for a detailed account.

There is a peculiar feature of photoionization which has never been observed with electron
gun loading: Ions only appear on the camera and photomultiplier one after the other over the
course of minutes after the ionization lasers are blocked. This suggests that ions are produced
in higher orbits (corresponding to certain electric field strengths) where they are outside the
Doppler cooling beams hence do not fluoresce. Ions produced by electron impact do not seem
to be stable in such higher orbits, probably due to the larger momentum absorbed in the
ionization process. In addition, photoionization allows direct loading into a tight trap which
is most likely also due to the smaller momentum transfer in the ionization process.

Working with a well compensated crystal of two or more ions is impossible with electron
gun ionization. This is because in order to achieve a high micromotion modulation (hence
a good compensation signal) the RF drive of the trap has to be turned down significantly
(see section 6.2). Doing so with two ions it shows that at the onset point of, for example,
a correlation signal the radial trap frequency has become so weak, that the ions flip into a
configuration where they are placed perpendicular to the trap axis. In this configuration, the
ions encounter strong RF fields of opposite phases, thus the correlation signal disappears. The
only solution is then to determine the compensation voltages with one ion in the trap and then
load two ions. This is possible with photoionization while with electron impact ionization the
new loading would make the just determined compensation values obsolete.

At every loading run we have only ever seen pure crystals, never any non-fluorescing ions.
In a separate experiment [86] an atomic Ca beam was illuminated with 423 nm light. The
emitted fluorescence was observed with a photomultiplier while the laser at 423 nm was tuned
over the resonance, see Fig. 6.4. Five clearly resolved resonances, each corresponding to a
different calcium isotope (*°Ca, #2Ca, 43Ca, **Ca, *¥Ca), were observed [86,91], which proves
the ability of isotope selective photoionization. Consequently, isotopes other than *°Ca can
be loaded into the trap, even if they have a somewhat low abundance in the oven sample.
This option is particularly interesting for 3Ca which is a promising future qubit candidate,
cf. chapter 9.
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Results: Prerequisites

he Qubit Transition

Fig. 7.1 recalls the °Cat level scheme and the transitions
driven by lasers in the experiment. In an experimental run,
the lasers for Doppler cooling (397 nm and 866 nm) as well
as the lasers at 729 nm and 854 nm are first adjusted for op-
timum spatial overlap with the ion(s), spectral detuning and
light power. This is done in a continuous fluorescence observa-
tion mode. The procedures have been discussed in the theses
of Hanns-Christoph Négerl [51], Christian Roos [4] and Har-
ald Rohde [52]. In contrast to continuous excitation, coherent
manipulations on the qubit transition S/, <> D5y are done
in a pulsed mode. Fig. 7.2 shows a generic pulse sequence
used to interrogate this transition. The sequence starts with

00+ 2 ms of Doppler cooling. At the end of this period, a short
pulse of 397 nm ¢~ polarized light is applied which prepares
the ion(s) in the Zeeman sublevel S} /5, m = —1/2. Following next is the period of coherent

manipulations on the Sy, < Ds/, quadrupole transition. The series of pulses at 729 nm
applied in this period will be referred to as the “probe sequence”. During this time, all other

lasers are off, with the exception

of 866 nm light. This is allowed, as the latter does not couple

Doppler

cooling probe detection
397 nm |
866 nm
854 nm |
397 nm ¢~
729 nm [
counter

0 20 23 5.0 ms

Figure 7.2: 5 ms pulse sequenc

e for coherent dynamics. Different grey scales for the same

laser indicate different laser powers.

71



7 Experimental Results: Prerequisites

50 T T T T T T
(b)

; 2401 .
g =
o >
5 230 -
Gy
15 8 Thl Th2
5 o I
2 S0 1 ' ]
g g
5 3
Z, Z

10 1

0 L filn e L A 1
0 50 100 150 200 250 300
Counts in 3 ms Counts in 3 ms

Figure 7.3: Fluorescence histograms of (a) a single ion and (b) a two-ion crystal. The grey
arrows indicate where thresholds would be set for fluorescence discrimination. The
average count rate per ion in (a) is slightly larger than in (b) because the 397 nm
laser was detuned closer to resonance. In (b), above Th2 both ions fluoresce, thus
are in the Sy/y state. Between the two thresholds only one ion fluoresces, while
the other is dark (thus in Ds /). Below Thl finally, both ions are in the D5/, and
only scattered light is detected.

to the quadrupole transition (cf. section 7.3).

The overall sequence finishes with the detection period where the electron shelving tech-
nique (cf. section 3.3.1) is applied to determine the quantum state of the ion. For this, the
S1/2 <> Py/; dipole transition is again driven. This way the ion is either projected into the
D5, state or cycles on the Sy /5 < P/, transition. In the first case, the ion is dark to the laser
radiation and hence only stray light at 397 nm is collected on the PMT, with count rates of
approximately 2 kHz. If, however, the ion cycles on the Sy /5 <> P/, transition, a flourescence
rate of 35 to 40 kHz (per ion) is obtained. This yields a very good discrimination (> 99%)
between “ion fluoresces”(« 5 /5) and “ion dark”(« Dj /o) within the 2.7 ms of detection time.
Fig. 7.3(a) shows a single ion histogram of photomultiplier counts collected over many exper-
imental sequences. In this case, the ion was excited resonantly at 729 nm during the probe
period. A threshold Th is set between fluorescence ON and fluorescence OFF.

We typically perform 100 such experiments with the same parameters to record one data
point. The latter is calculated as the fraction of fluorescence OFF events. It represents the
Ds 5 state probability and will be denoted Pp in the following. Note that in the Doppler
cooling period, 854 nm light is on. This is done to repump a possible Dj/, state population
(from the previous sequence) to S /2-

The short 5 ms pulse sequence has the advantage that recording one data point only takes
about 700 ms, including the setting of various devices and their communication with the con-
trol computer. It is used as long as motional ground state cooling is not required. Moreover,
as it is not synchronized to the power line frequency of 50 Hz, the effective magnetic field
fluctuations (during the probe periods) are somewhat larger if line synchronous fluctuations
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Figure 7.4: Single ion excitation spectrum on the quadrupole transition. The five carrier
transitions Sy/5(m = —1/2) < Ds/5(m’) are denoted by C,,, where m’' =
{-5/2,-3/2,—1/2,41/2,+3/2}. They are split by a magnetic field of 2.50 Gauss.
Axial sidebands are labeled by A, radial sidebands by R; + signs indicate blue side-
bands while — signs refer to red sidebands. For this scan, the axial frequency was
tuned to w, = 27 - 1.715 MHz by applying an end-cap voltage of V., = 2000 V.
On the strongest carrier C_;/, also higher order axial sidebands (£2A) can be
seen. The radial trap frequency is w, ~ 27 -4.9 MHz. The transitions C_3/,
and C,/; which should be forbidden by geometrical selection (see text) are in-
deed rather weak, hence motional sidebands cannot be seen; residual excitation
of these transitions is due to slight imperfections in the beam geometry (direction
and polarization).

are present (see section 7.3). A line synchronous pulsed spectroscopy requires a minimum
length of 20 ms, see section 7.2.2 for a generic pulse sequence.

The simplest type of a probe sequence is a single pulse at 729 nm, which is characterized
by its duration t, its frequency w; and the light intensity. Two generic types of scans can then
be recorded: In a frequency scan, t is kept constant and wj; is scanned, while in a pulse length
scan we scan t at constant wj.

A frequency scan yields an ezcitation spectrum of the Sy 5 <> D5/ transition. An example
of a single ion excitation spectrum over the whole Zeeman-manifold is shown in Fig. 7.4. Only
five of the ten transitions appear as, prior to each excitation, the ion has been prepared in the
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Figure 7.5: Single ion spectrum of motional sidebands around the Sj,(m = —1/2) «
Dsjo(m' = —5/2) transition. R and A denote axial and radial and axial side-
bands, respectively. The axial trap frequency is w, = 27 - 960 kHz. Note that the
radial sidebands at w, ~ 27-4.95 MHz are two-fold with a splitting of ~ 27-70 kHz.
This is a result of a slight geometric imperfection of the trap lifting degeneracy
in radial direction. The defocussing effect of the radial frequency due to the axial
confinement (see eqn. (3.1)) is rather small in this case as w, was much smaller
than the “pure” radial trap frequency wyg ~ 27 - 5.05 MHz.

S1/2,m = —1/2 state, eliminating 5 possible transitions. In addition, here the ¢ = 45°,y = 0°
configiration (see section 3.3.5) was chosen for the geometry between 729 nm laser and mag-
netic field, which allows only Am = 0 and Am = %2 transitions. Note that the 729 nm laser
detuning is calculated as twice the drive frequency of the corresponding double-pass AOM
(see section 5.3) which, at first, yields frequencies on the order of 27 - 460 MHz. For 729 nm
laser frequency scans (such as excitation spectra) displayed in this thesis, the frequency axis
is recalibrated such that its origin (zero detuning) coincides with one (typically the strongest)
carrier resonance.

Fig. 7.5 shows a better resolved scan (taken with weaker excitation compared to Fig. 7.4)
around one of the carriers, revealing details of the motional sideband structure. The same
type of scan with two ions and slightly different trapping parameters is shown in Fig. 7.6. In
general we evaluate two-ion fluorescence data by setting two thresholds for photomultiplier
counts, see Fig. 7.3. The Dy, state probability Pp is then calculated by weighting events
below Thl with a factor 1, events between the two thresholds with 0.5 and events above Th2
with a factor 0. The excitation probability calculated like this has a maximum value of 1
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Figure 7.6: Two-ion spectrum around the Sj/5(m = —1/2) < Dj)5(m’ = —5/2) transition.
The various sidebands correspond to different vibrational modes (see section 3.2.2):
A=axial COM, B=Breathing, Rk=rocking, R=radial COM. The axial parameters
are again w, = 2w - 960 kHz, V.4, = 600 V while the radial frequency was w, ~
27 - 3.0 MHz. The radial splitting is hardly visible because the step size of the
scan is too coarse.

which corresponds to both ions being in the Dj/, state. The axial sidebands, in particular
those of the breathing mode, are rather weak in this scan, as the exciting pulse was applied
through the optical channel 729A (cf. 5.4), which has a quite small projection onto the trap
axis direction. This results in small Lamb-Dicke parameters, thus weak coupling to the axial
modes. Three-ion sideband scans will be shown in section 7.4 in the context of addressing.

With two ions and for events between the two thresholds, with a PMT it cannot be dis-
tinguished which of the ions fluoresces and which is dark. For two-ion quantum computation
experiments, however, it is indispensible to discriminate between |S, D) and |D,S). In this
case we need to read out the fluorescence of each ion individually, which can only be done on
the CCD camera. The CCD readout procedure will be presented section 7.4.

If, in contrast to such exciation spectra, we perform pulse length scans, Rabi oscillations
are observed. For the latter we typically set w; to one of the lines of the excitation spectrum,
driving in this way the corresponding transition resonantly. In the experiments presented here,
we avoid off-resonant excitations (cf. section 3.3.6) of other transitions as much as possible
by keeping the coupling (i.e. the light power) sufficiently small. Examples of Rabi oscillations
are shown in the following section.
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Figure 7.7: Pulse length scans using a 5 ms sequence (Doppler cooling only) with a single ion
trapped at a radial frequency of 5 MHz and an axial frequency of 960 kHz. (a)
shows Rabi oscillations on the S /o(m = —1/2) «» D5 /5(m’ = —5/2) carrier, while
in (b) the laser frequency was set to the red axial sideband. From a comparison
of (a) and (b), a thermal state with 7 ~ 20 is estimated for the axial mode.

7.2 Laser Cooling

7.2.1 Doppler Cooling

An important feature of the new trap is the stronger confinement by a factor of about two in
terms of trap frequencies. It is to be expected that this reduces the mean phonon numbers 7
in the vibrational modes after Doppler cooling by roughly the same factor, down to values
between 10 and 20. These values are well in the Lamb-Dicke regime for our trap frequencies, see
Fig. 3.6. In this regime, the carrier Rabi frequencies depend only weakly on n. Therefore pulse
length scans on a carrier transition after Doppler cooling are expected to show a oscillatory
behaviour with a frequency close to € (i.e. the carrier Rabi frequency when starting from
the motional ground state). An example is shown in Fig. 7.7(a). Our standard method
to characterize the quality of Doppler cooling consists of comparing such carrier oscillations
with pulse length scans on a sideband transitions, performed with the same laser intensity.
Sideband Rabi frequencies depend strongly on the motional quantum number n, even in the
Lamb-Dicke regime. We therefore expect the observed Rabi oscillations to damp out quickly
as long as only Doppler cooling is performed; an example scan is shown in Fig. 7.7(b). Fits to
both carrier and sideband Rabi-oscillations yield the mean thermal occupation number n of
the corresponding mode (here: axial mode). A detailed description of the evaluation method
is given in ref. [4]. Here, the assumption is made that Doppler cooling results in a thermal
probability distribution over the motional states. We find from such scans, that at typical
axial and radial trap frequencies of about 1 MHz and 5 MHz, respectively, we achieve Doppler
cooling to mean phonon numbers of Tiax =~ 15 for the axial mode(s) and 7,9 ~ 4 for the radial

mode(s). To within the precision of this method, we find that this holds equally for single
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Figure 7.8: Fine scan over the radial COM modes of a single ion using 5 ms experimental
sequences. Note the break in the z-axis. The outer mode R1 has a frequency
of 2 - 4.7456(2) MHz, while the inner one R2 is at 27 - 4.6767(2) MHz, which
means that the radial degeneracy is lifted by 27 - 68.9(2) kHz. The R2 sidebands
are slightly weaker, which suggests that the exciting laser beam at 729 nm has a
somewhat better geometric projection onto the direction of R1. In both cases, the
red sideband (-) is weaker than the blue (+) by a factor of about 0.83.

and for two-ion crystals. These values are even more than a factor of two better than what
has been achieved with the old trap, in particular for the radial cooling. One reason for this
is that we have improved on Doppler cooling by varying different parameters like intensity
and polarization of the Doppler beams, for example. In particular, we found that the lowest
temperatures are reached by strongly desaturating the Doppler cooling transition. In this way,
power broadening of the resonance is avoided, resulting in a narrower line and thus in a lower
Doppler cooling limit. Best conditions were reached by desaturating the Doppler cooling light
at 397 nm down to about one third of the peak fluorescence. For the detection period in the
experimental sequence we want stronger fluorescence on the Sy /5 <> P/ in order to be able
to discriminate between S/, and D/, within the shortest time possible. Therefore we use
a somewhat higher laser power at 397 nm (at the same detuning) in that period (dark grey
shading in Fig. 7.2).

In general the line strength of a red sideband is smaller than of the corresponding blue
sideband, because the n = 0 population does not contribute to the red sideband. This
effect becomes detectable only in the low temperature range m < 8. The radial modes are
in that range after Doppler cooling and therefore we have performed comparison scans as
shown in Fig. 7.8. The strength of a resonance is proportional to the (fitted) area under
the corresponding line. In order to detect the small imbalance which is to be expected, the
statistical error was minimized by accumulating 1000 instead of 100 experimental sequences
per data point. In addition, the scan step size was reduced to 100 Hz for high resolution. In
can be seen that for both sidebands R1 and R2, the blue one is slightly stronger than the red.
A m of 5+ 1 can be derived from this imbalance. We have recorded Rabi oscillations on the
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Figure 7.9: Principle of sideband cooling. (a) Ladder of states (introduced already in section
2.1 in the context of quantum computation) visualizing the combined system of
the internal quasi-two-level system |S) < |D_5) and a vibrational mode. Cooling
is achieved by absorption on the red sideband followed by spontaneous decay on
the carrier. (b) For a sufficient cooling rate, the |D_5) — |S) decay is effectively
enhanced by a quenching laser which drives the dipole transition at 854 nm.

radial sidebands and the carrier under the same conditions and compared them according to
the method explained above. This analysis yielded 7 = 7+ 1 which is fair agreement with the
line strength comparison method.

7.2.2 Sideband Cooling

For the quantum computation protocols outlined in chapter 4, motional ground state cooling
represents an indispensible requirement. Sideband cooling under our experimental conditions
has been previously discussed in detail [4] and the general procedures are the same for the
experiments presented here. The principle of sideband cooling is depicted in Fig. 7.9. For
sideband cooling of a mode, the 729 nm laser is tuned to the corresponding red sideband of a
Zeeman-subtransition of the S}, <+ D5/, manifold. More precisely, the S} /5(m = —1/2) «
Ds5(m’ = —5/2) transition is chosen as it offers a nearly closed cooling cycle (see below). As
in section 3.3.6, the D5 5(m’ = —5/2) state is denoted |D_5) here, see Fig. 7.9.

The sideband transition is resolved only if the trap frequency is large compared to the laser
linewidth and the decay rate of the excited state, which is clearly the case in our system. If the
decay takes place vertically, that is without change in phonon number n, then each excitation
to the upper level is accompanied by a reduction of n by 1. The requirement of preferably
vertical decay is fulfilled in the Lamb-Dicke regime, namely for 1n?(2n + 1) < 1 (cf. section
3.3.3). Note that in our experiment after Doppler cooling the ions are in the Lamb-Dicke
regime. Hence essentially every cycle of absorption followed by spontaneous emission takes
one motional quantum out of the system until the ion reaches the ground state of motion which
is decoupled from the laser radiation, see Fig. 7.9(a). In a real system, cooling always competes
with heating rates caused by the environment. Using the 729 nm quadrupole transition alone
would yield a decay-limited cooling rate of only 1 Hz, which is much too slow for practical
purposes. In order to increase the cooling rate, the Dj 5 state is quenched with laser radiation
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Figure 7.10: Generic 20 ms pulse sequence for coherent dynamics. Different grey scales for
the same laser indicate different laser powers and/or detunings.

at 854 nm, see Fig. 7.9(b).

There is a certain probability for the ion to decay into the Sy o(m = +1/2) state (instead
of Si/3(m = —1/2)) and hence to be withdrawn from the cooling cycle. This probability
is minimal if the S)/5(m = —1/2) < Ds5/5(m’ = —5/2) transition is selected for sideband
cooling [4]. Then the ion ends in S;/p(m = +1/2) after 80-160 cycles on the average, the
exact value depending on the polarization of the 854 nm quenching laser. As described in
section 7.2.1, the axial modes (which are to be sideband cooled) start from phonon numbers
on the order of 15 due to previous Doppler cooling. Consequently, in most cases the ion never
leaves the cooling cycle before the motional ground state is reached. In order to repump a
possible Sy /5(m = +1/2) population to S;/p(m = —1/2) in the other cases, a few short o~
polarized pulses at 397 nm are applied during sideband cooling, see Fig. 7.10.

Sideband cooling requires additional time in the experimental sequences. Therefore we work
with a 20 ms pulse sequence, shown in Fig. 7.10, if sideband cooling is required. One way
to probe the efficiency of ground state cooling is to compare red and blue sideband of the
vibrational mode which is being cooled, see Fig. 7.11(a). In the motional ground state, the
red sideband disappears completely. Probing the red sideband resonantly is used as an online
method to tune the various parameters, namely power and detuning at 729 nm and 854 nm,
for minimal red sideband excitation, hence optimum cooling. From such measurements we
find that we achieve reliable cooling to ground state probabilities p,—g of 98% or higher for any
mode of a single or two-ion crystal and for all trap frequencies in the range of our experiments.
Typical ground state cooling times are on the order of 5 ms.

In order to probe the motional heating after ground state cooling, a waiting time between
cooling and probe pulse is introduced. The results are shown in Fig. 7.11. A motional heating
rate on the order of 140 ms per phonon is derived from these measurements. It will be shown
in section 7.3 that at present coherent manipulations are restricted to a duration of about
600 us by laser and magnetic field fluctuations leading to internal decoherence. On this time
scale the experimental performance is thus not limited by motional heating.
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Figure 7.11: Probing the quality of sideband cooling on a single ion by a comparison of red
and blue axial sideband. The radial modes at 27 - 4.9 MHz are only Doppler
cooled, while additional sideband cooling is applied on the axial mode for 6 ms.
In (a), the sideband cooling period finished immediately before detection. An
axial ground state probability p,—o of 94% is derived from the difference in line
strength between -A and +A. In (b), a waiting time of 7 ms between sideband
cooling and detection was introduced and the scans were performed immediately
after (a) with the same experimental parameters. For (b) the comparison of -A
and +A yields p,—g = 89%. Consequently the axial mode has heated up by 0.05
phonons in 7 ms, which corresponds to a heating rate of 1 phonon per 140 ms.

Rabi oscillations with ground state cooled ions do not suffer from damping due to the
occupation of higher phonon number states as has been observed after Doppler cooling only
(Fig. 7.7). Examples of Rabi oscillations where the axial mode is sideband cooled, are shown
in Fig. 7.12. In this case, the radial mode had a mean phonon number 7 ~ 6 due to Doppler
cooling. It can be seen that the damping due to this thermal occupation is negligible for Rabi
oscillations on the carrier and on the axial sideband. Based on quantum dynamics simulations
performed by Hartmut Héaffner, we estimate that the quality of these Rabi oscillations would be
noticeably affected for mean radial phonon numbers 7 2 10. Axial sideband Rabi oscillations
are very sensitive to any population in states of the axial mode with n > 0. The scans
shown in Figs. 7.12(b)&(c) prove that the motional ground state probability was as high as
Pn—o = 99 £+ 1% in this case.
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7.3 Coherence on the Qubit Transition
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Figure 7.12: Rabi oscillations with a single ion at w, = 27 -4.9 MHz and w, = 27 - 1.7 MHz.
The radial mode is Doppler cooled while additional 6ms of sideband cooling are
applied on the axial mode. (a) shows carrier oscillations, while in (b) and (c) the
laser frequency was set to the blue axial sideband. Solid lines are fits with the
function sin?(7t/w), which assumes a motional ground state probability of 100%
and zero decoherence. The excellent agreement of the data with the fits confirms
these assumptions. The fit parameter w corresponds to the 27 period of the Rabi
oscillation (w = 27 /) and the results are (a) w = 40.8 us, (b) w = 72.2 us, (c)
w = 58.5 us.

7.3 Coherence on the Qubit Transition

The first and fundamental coherence limit in our quantum computational schemes is set by
the lifetime of the D55 state, which is 1.17 ms [61] in case of an unperturbed 40Cat ion. We
recently observed that in our experiment this lifetime is slightly shortened by the effect of
residual 854 nm light during coherent manipulations (probe period), which is due to insuffi-
cient switching-off of the RF power going to the 854 nm double-pass AOM. Even weak light
at 854 nm is sufficient to quench the Dy, level(s) via the D5/, < P35 dipole transition. In
order to quantify this effect, D5/, state lifetime measurements were carried out recently. The
experiments were supported by Axel Kreuter from the “°Ca* cavity QED experiment of our
group and the experimental method was copied from there. The measurement result was a
lifetime of 750 ms. It has been verified in the “°Ca™ cavity QED experiment (which uses the
same laser sources) that this lifetime shortening is indeed due to light from the 854 nm diode
laser. This was done by greatly reducing the RF power going to the RF switch for the 854 nm
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Figure 7.13: Excitation spectrum of the Sy /5(m = —1/2) < Djo(m’ = +3/2) carrier reso-
nance (data points). The pulse at 729 nm had a duration of 1 ms. A Lorentzian
fit (solid line) yields a linewidth of Aw = 27 - 1.17(7) kHz.

double-pass AOM. The result was a measured lifetime equal to the value reported in [61] (to
within the error bars of about 30 ms). Note that under these (weak RF) conditions the ion
can still be repumped from the D5/, at the beginning of a sequence but that the 854 nm power
is then insufficient for the quenching necessary for sideband cooling. A better RF switch will
cure the problem.

Note that all experiments presented in this thesis were carried out with the present setup
corresponding to an effective Dj /o state lifetime of 750 ms. It will, however, become clear
in the following that this is long enough for the performance of our experiment only to be
slightly affected (cf. section 7.4).

The coherence on the qubit transition is additionally limited by fluctuations of both the
729 nm laser light and the magnetic field, the latter leading to fluctuations of the electronic
energy levels. These two effects both lead to phase noise and an effective broadening of the
transition frequency and are therefore difficult to distinguish in a typical experiment. We have
recently installed an active AC magnetic field compensation system' which has improved the
coherence on the qubit transition. The following begins with a description of the performance
of our system without active compensation of magnetic field fluctuations. Next, the benefits
of this compensation will be discussed.

A type of experiment which probes the frequency broadening of the qubit transition is a di-
rect linewidth measurement as shown in Fig. 7.13. The Sy /5(m = —1/2) «» D5 )o(m' = +3/2)
transition has the strongest magnetic field dependence, namely a relative g-factor of 2.8, see
Fig. 3.7, and is therefore strongly broadened if magnetic field fluctuations are present. Such
measurements were carried out on various carriers of the Zeeman manifold and at different
delays of the probe pulse with respect to the power line phase. The S/, (m = —1/2) «
Dy /Q(m’ = —1/2) transition has the weakest magnetic field dependence, namely a relative g-
factor of 0.4, which is seven times smaller than for the ) /5(m = —1/2) < Dj5(m’ = +3/2)

LGATAN FCS12 Field Cancelling System.
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Figure 7.14: Line center of the Sy /o(m = —1/2) <> D5/9(m’' = —5/2) resonance (data points)
and corresponding linewidths (bars) at different delays of the exciting 729 nm
probe pulse (duration 1 ms) with respect to the power line phase. The origin
of the y-axis represents the average of all data points. Note that error bars on
the line centers are smaller than the linewidths, namely by a factor of about
three. The S/5(m = —1/2) < Dj5(m' = —5/2) transition was chosen here as
its spectral position depends strongly on the magnetic field (relative g-factor 2).

transition. If laser fluctuations were negligible, hence if the lines were broadened uniquely
by magnetic field fluctuations, a seven times narrower line (linewidth 27 - 170 Hz) would be

expected for the Sy o(m = —1/2) < Ds5/p(m’ = —1/2) resonance. We observe, however,
a linewidth of about 27 - 400 Hz (for the same line trigger delay). We conclude that the
Si/2(m = —1/2) < Djsjo(m’ = —1/2) resonance is broadened by magnetic field and laser

fluctuations to almost equal parts, while for all transitions with a higher relative g-factor the
line broadening is dominated by magnetic field fluctuations. The linewidth of a given transi-
tion depends strongly on the line trigger delay, as shown in Fig. 7.14. It can be seen that the
line is particularly narrow at certain delays. It is therefore advantageous to set the trigger
of our 20 ms pulse sequences such that the probe period (where coherent manipulations are
performed) falls to such a delay. Unfortunately the pattern of Fig. 7.14 is not stable over
long time scales as shown by similar experiments which we have carried out at intervals of a
few months. Nevertheless, these experiments reveal that there are line-synchronous, periodic
fluctuations present in our system.

Non line-synchronous fluctuations can be probed by Ramsey spectroscopy as explained in
Fig. 7.15. It can be seen that for 7 = 100 us the observed Ramsey fringes have very high
(99%) contrast. The same type of scans recorded for different waiting times 7 reveal the phase
decoherence which leads to a loss of contrast with increasing 7, see Fig. 7.16. For quantum
computation experiments a minimum contrast of about 80% is required. Our experiments
show that the contrast is reduced to 80% after 7 = 450us, which accordingly sets the time
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Figure 7.15: Ramsey spectroscopy. (a) The probe sequence consists of two identical short
pulses of fixed duration at an interval of 7. The light power is adjusted such that
each pulse represents a 7/2 rotation if the laser frequency is resonant to a certain
carrier transition. For a Ramsey spectrum, the laser frequency w; is scanned
around this carrier while all other parameters are fixed. Ideally, i.e. without phase
decoherence, Pp should exhibit a modulation between zero and one around the
resonance. (b) Ramsey spectrum on the S)/5(m = —1/2) < D5p(m’ = —1/2)
carrier. The laser detuning is given with respect to this carrier. The two pulses
of length 9.5 us were separated by 7 = 100us.
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Figure 7.16: Contrast of the S/ (m = —1/2) < Dj5)5(m’ = —1/2) Ramsey pattern as a
function of 7. Solid circles: data taken without magnetic field compensation.
Open circles: date taken with compensation but with a single field sensor only
(see text). Solid line: Gaussian fit with e~ (/™) yielding 7o = 0.94(5) ms.
Dashed line: exponential fit with e=7/7 yielding 7o = 1.4(2) ms.
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limit for coherent manipulations. Assuming a white noise model for the spectral density
of frequency fluctuations, one would expect an exponential decay of contrast, e~"/™, with
70 = 1/Aw. This model predicts a Lorentzian resonance line of width Aw. Fig. 7.16 shows,
however, that an exponential fit to our data is very poor whilst a Gaussian fit is in good
agreement with the results. From this we conclude that an excess of fluctuations compared
to a white noise model is present in our system for frequencies > 1.5 kHz.

As mentioned, an active cancellation system for magnetic field fluctuations has recently
been installed on the experiment. From direct carrier scans we find that with the active com-
pensation in use, the resonance frequencies of different carriers are essentially constant with
respect to the power line delay. This has the advantage that triggering of the pulse sequences
on the power line is not critical any more and that we achieve in a 5 ms pulse sequence a
similar frequency stability as in a line triggered 20 ms pulse sequence. However, linewidths
were only slightly reduced by the cancellation system. Moreover, Fig. 7.16 reveals that the
contrast of Ramsey spectra as a function of the waiting time 7 was essentially the same if
recorded with or without the active compensation. This is attributed to a limited bandwidth
of the compensation system: we have measured that the magnetic field noise suppression was
sufficient only in a frequency range from 50 Hz to 1 kHz.

All experiments presented so far were carried out without magnetic field compensation or
with a single magnetic field sensor for the compensation system. Due to the construction of
the vacuum vessel and the size of the shielded sensor box (about 10 cm), the sensor can only
be placed at a distance of about 15 cm from the trap center, hence does not pick up magnetic
field fluctuation exactly where they are to be cancelled. In order to improve on this short-
coming a second sensor has been installed on the opposite position of the trap trap center.
An averaged signal from the two sensors is then fed to the cancellation system. This average
is expected to represent a somewhat improved measure of the actual fluctuations at the trap
center. In addition, measures were taken to reduce electronic noise on the laser lock. We
have observed that with these changes, the Ramsey contrast has indeed improved, being now
80% after about 700 us. However, systematic studies on the performance of the cancellation
system with two sensors have not yet been undertaken. In particular, it is not clear how
important in the present setup the contribution of laser fluctuations at different frequencies
of the noise spectrum is compared to magnetic field noise. Further experiments are planned
to investigate these issues. For the following experiments, in particular the quantum compu-
tation experiments of chapter 8, the compensation system was used.

Most of the results presented in this section are detailed in [93]. This reference addition-
ally discusses preliminary measurements we have carried out employing a Raman transition
technique. In these experiments, Raman transitions are driven between the two magnetic
sublevels (m = £1/2) of the S/, ground state. This technique allows the determination of
magnetic field fluctuations alone and remains immune to laser fluctuations.

7.4 Individual Ion Addressing and Read-Out

One method to probe the addressing quality of the 729A channel (cf. section 5.5) is based
on sweeping the laser focus over the the ions using the deflector. The ion is probed with a
single pulse of fixed duration resonant to one of the Sy, <> D5/, carriers. At each deflector
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Figure 7.17: (a) Single ion deflector scan. The Gaussian fit yields a waist of 2.50(8)mum. (b)
A two-ion deflector scan serves to calibrate the z-axes (see text). In this case,
the axial trap frequency was w, = 27-940 kHz, from which an ion distance Az =
6.3 um is calculated; this corresponds to a projected distance Az, = 5.8 um.

voltage, i.e. at each lateral focus position, the excitation probability Pp is measured, which
yields a profile of the laser focus. Before that, the laser focus is adjusted onto the ions by
tuning the addressing optics for maximum excitation. In a second step, Rabi oscillations are
recorded. For these experiments, Doppler cooling is sufficient and so a typical pulse length
scan looks like Fig. 7.7(a). Following next, we select a pulse duration to which is somewhat
below the 7-time of the oscillation, in case of Fig. 7.7(a), for example, t) = 4 us. Now a
deflector scan is performed: w; and ¢y are kept fixed while the voltage on the beam deflector is
scanned. Each deflector position corresponds to a certain light intensity I on the ion(s). The
intensity is proportional to the Rabi frequency squared, thus Q = av/I with some constant a
(cf. section 3.3.5). Moreover, the first oscillation of Pp from zero to one (see Fig. 7.7(a)) is
given by Pp = sin?(Qt/2) to a very good approximation. It follows that Pp = sin?(av/Tty/2).
Using this formula, the excitation probability profile can be rescaled into an intensity profile.
Examples of deflector scans are shown in Fig. 7.17. If we perform such a scan with a two-ion
crystal (Fig. 7.17(b)) we can calibrate the deflector voltages into lateral translations of the
laser focus. To do so, the axial trap frequency w, is determined from an excitation spectrum;
w; gives the distance Az between the ions using formulas 3.11 and 3.10. As shown in section
5.4, the trap axis is not perpendicular to the addressing beam channel 729A as the trap is
tilted by 22.5°. Consequently, the effective (projected) ion distance is

Nzp = Az - c0s22.5° . (7.1)

From single ion deflector scans as in Fig. 7.17(a), a Gaussian focus waist of 2.5 pm is de-
termined using this calibration. The value of 2.5 um represents the optimum achieved by
adjusting the addressing optics. This optimization is done by performing single ion deflector
scans at different longitudinal positions of lens L2 of the addressing optics (see section 5.5),
which corresponds to shifting the laser focus at the trap center in longitudinal direction.

Another method to characterize the addressing consists of driving carrier Rabi oscillations

86



7.4 Individual Ion Addressing and Read-Out

P_ o7 P ]
DO71 (a) f D071 (b)
/ ]
0.6 1 /\ / 0.6 R
S T e e 0
0.4 1 \ / \ : \\ l" 0.4 1 // \ y/ \ f‘ * \" \ | \\ r" “‘\
/ " ! \\\ r \ fﬁ [ = \‘( ‘\ ?‘ 1 ’( ‘W | \‘\
0.3 1 ;r" \\ ;'J * ff / 0.3 1 “ + ‘ \ ‘ ‘ ‘ ‘ / ‘ i‘ .
/ \a / \ / I Y B T | | | 1\
021 = v o244/ L/ L .o e \
/ L | \ \ ‘ \ v/ .
/ | + | \ / \ \s
0.1 _/Z 0.17r v W
O'O-I T T T T T T T T T 0-0_|’ T |u' T \'/. T T T T T T T T T T
0 20 40 60 80 100 0O 20 40 60 80 100 120 140

Excitation time f in ps Excitation time £ in ps

Figure 7.18: Addressed carrier Rabi oscillations performed on a two-ion crystal in a 20 ms
pulse sequence including ground state sideband cooling of both the axial COM and
the breathing mode. In (a) the laser was addressed onto one of the two ions, in
(b) onto the other. It can be seen that for the given adjustment of the optics, the
addressing qualities differ significantly depending on which ion is addressed: (a)
0y =27 - 35.5(1) kHz, Qo = 27 - 2.46(7) kHz, addressing quality AQ = 6.9(1)%,
ratio of light intensities 1:210. (b) Q; = 27 - 39.7(2) kHz, Qo = 27 - 1.16(5) kHz,
addressing quality AQ = 2.9(1)%, ratio of light intensities 1:1200.

in a two-ion crystal where the 729 nm laser is addressed onto one of the ions. The addressed
ion will undergo oscillations with a Rabi frequency €21 while the other ion oscillates at a much
slower frequency ) due to residual light intensity at its position. In the experiment, pulse
length scans are performed and the two-ion excitation probability Pp is determined from the
photomultiplier counts as explained in section 7.1. Exemplary scans are shown in Fig. 7.18.
The data are fitted with a sum of two sin? functions (amplitudes 0.5), the periodicities of
which yield the Rabi frequencies 2; and 9. From these fit results the addressing quality AQ
is calculated, which we define as AQ = Q2/€Q;. Note that Rabi frequencies are proportional
to the electric field amplitude, hence proportional to the square root of the light intensity.
Consequently, the ratio of light intensities on the two ions is given by AQ?.

Aberrations of the addressing optics typically do not so much broaden the focus waist,
rather lead to a background carpet of light around the Gaussian profile. In our case, this
background dominates over the Gaussian behaviour at distances > 5 pum from the center of
the focus. As a consequence, we observe that the addressing quality AQ does not signifi-
cantly improve for ion distances? Az, > 5 pm. This poses considerable problems in quantum
computational protocols: the best addressing qualities we have achieved are on the order of
AQ =2.9(1)% as in Fig. 7.18(b). Note that this corresponds to very good addressing in terms
of residual intensity on the non-addressed ion, which is smaller by a factor of 1200 (!) as
compared to the addressed ion. The property of Rabi frequencies to be proportional to the

2For very large ion distances Az, > 15 um, AQ would probably eventually improve noticably. Such large

distances, however, correspond to very low axial trap frequencies w, < 27-200 kHz which are not practicable
for quantum computation.
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Figure 7.19: Excitation spectra of a three ion crystal around the S),(m = —1/2) <
Ds/9(m’ = —1/2) resonance. The 729 nm laser was addressed on (a )the center
ion, and (b) an edge ion. The axial trap frequency was w, = 27 - 940 kHz. Only
the three axial sidebands, labeled A (axial COM mode), B (breathing mode), W
(wobble mode), are visible, see also Fig. 3.4. Radial sidebands lie outside the
scan range. On the right hand side, the eigenvectors of the three axial modes are
depicted.

square root of the light intensity, however, leads to significant excitation of the non-addressed
ion after only a few Rabi cycles of the addressed ion. This addressing error is particularly
harmful on sideband transitions, where motional states with n > 1 may become excited in the
process. Addressing errors, in principle, can be partially compensated for by additional pulses,
where the light is focused onto the originally non-addressed ion and the unwanted excitation
amplitude is rotated back to zero by choosing the appropriate laser phase and pulse duration.
This procedure, however, requires considerably more complex pulse sequences and has not yet
been tested in the experiment.

We have undertaken an additional test of the addressing with a linear three-ion crystal. As
mentioned in section 3.3.4, the strength of a sideband transition, characterized by the corre-
sponding Lamb-Dicke factor, in general depends on which ion in the string is addressed. This
can be easily understood for the breathing mode of a three-ion crystal. As depicted in Fig. 7.19,
the center ion does not participate in the motion of the breathing mode. Consequently, the
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1S, S > |S,D >
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Figure 7.20: CCD camera snapshots of a two-ion crystal at an axial trap frequency w, of
27 - 1.215 MHz, corresponding to a (projected) ion distance Az, = 4.9 pm. Due
to prior excitation of both ions with light at 729 nm, the ions (independently)
are sometimes projected into the (dark) state |D) when illuminated with 397 nm
light (electron shelving, cf. section 7.1). Consequently, in some cases both ions
fluoresce (corresponding to the state |S, S)), in others only one fluoresces (|S, D)
or |D,S)) and finally sometimes both ions are dark (|D, D)).

corresponding Lamb-Dicke factor is zero if this ion alone is addressed. Hence the coupling
to the breathing mode sideband transition vanishes. This is confirmed by the scan shown
in Fig. 7.19(a) where the sidebands of the breathing mode disappear almost completely, the
residual excitation being due to the addressing error. For a comparison, we recorded the same
type of scan but now with an ion on the edge of the crystal addressed, see Fig. 7.19(b). It
can be seen that now the breathing mode sidebands are clearly visible and comparable in line
strength to the other sidebands.

For individual fluorescence read-out in the case of two or more ions we use the CCD camera.
The fluorescence count rates achieved on the CCD are somewhat lower than on the PMT
(details see below). Therefore, more time is required for a good (99%) discrimination between
ON and OFF for each ion, i.e. about 10 ms instead of 3 ms on the PMT. Longer read-out
times are not recommendable, because the decay probability of the Ds/, state (effective life-
time 750 ms, see section 7.3) grows by 1.3% per 10 ms, which reduces the read-out efficiency
by the same amount. Fig. 7.20 shows fluorescence snapshots of a two-ion crystal where the
ions have been excited on the |S) < |D) qubit transition at 729 nm into roughly a 50:50
superposition prior to illumination with dipole light at 397 nm. The pictures were taken with
the same trap parameters, in particular the same w,, at which two ion quantum computing
experiments were carried out (see Appendix A.3). Compared to Fig. 6.1 these pictures look
more coarse because the exposure time is considerably shorter. Note that as the imaging onto
the CCD camera employs the same optical channel as the addressing, the ions appear at a
reduced (projected) distance Az, (see eqn. (7.1)) on the CCD.

Two regions of interest are defined, which contain an array of CCD pixels (typically 4 by
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Figure 7.21: Camera histogram of fluorescence counts from a single ion in a two-ion crystal.
As in Fig. 7.20, the trapping parameters were those of the two-ion standard
configuration (Appendix A.3). The total number of events represented in this
histogram is 1800.

4), each region corresponding to one of the ions. The two regions are read out independently.
The signals from the pixels of each region are binned and taken as the fluorescence signal of
the corresponding ion. A histogram of counts from one ion (one binned region) in a two-ion
crystal is shown in Fig. 7.21. The histogram represents 1800 experiments, each taken in a
40 ms pulse sequence.

This is our standard sequence for two-ion experiments if individual fluorescence read-out
is required. The 40 ms sequence is very similar to the 20 ms sequence of Fig. 7.10 with two
modifications. First, the two-ion experiments typically require sideband cooling of both axial
modes (axial COM and breathing), see section 8.3. Consequently, the sideband cooling period
is divided into two parts, the first being about 4 ms of sideband cooling of the axial COM
mode and the second about 8 ms of sideband cooling of the breathing (=quantum bus) mode.
Second, as explained above, the fluorescence read-out on the camera requires at least 10 ms
for sufficient discrimination. Consequently, the detection period extends from about 16 ms to
26 ms in the pulse sequence. The next (50 Hz) line trigger then arrives at 40 ms, where a new
sequence is started. Note that this leaves a dead-time of 14 ms which is unused.

In the histogram of Fig. 7.21, there are no events with less counts than 97 and there is a
sharp and high peak of events between 97 and 99 counts. The offset of 97 is because each
pixel has a well defined signal offset of about 0.6 per millisecond®. The dark count rate (on
top of this offset) per pixel is essentially zero. Moreover, scattered light at 397 nm (from the

3This value depends on the gain of the micro-channel plates of the camera. The value given here corresponds
to the camera gain we found optimum and which was used in the experiments.
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Doppler beams) is much less on the camera pixels than on the PMT as the latter integrates
over a much larger surface area (about 1 mm? as compared to a CCD pixel size of about
4-10~* mm?). Consequently, the peak between 97 and 99 counts, which corresponds to both
ions being dark, is very sharp. There is an additional signal peak between 100 and 120 counts.
This peak corresponds to residual fluorescence light on the pixel array attributed to the ion
of interest stemming from the neighbor ion. In other words these count rates correspond to
events where the ion of interest is dark, while the neighbor ion fluoresces. Finally, the peak
between 130 and 200 counts corresponds to events where the ion of interest fluoresces (regard-
less of the state of the neighbor ion). In this case a possible fluorescence from the neighbor
ion is too small to define a visibly distinguishable peak.

Just as in the experiments where the photomultiplier is used for read-out, a threshold Th
is set to discriminate between fluorescence OFF and fluorescence ON (of the ion of interest).
The specified quantum efficiency of the CCD is very similar to that of the PMT (close to 30%).
However, a comparison of Fig. 7.21 with the PMT histograms of Fig. 7.3 shows that the effec-
tive count rate per ion (i.e. counts minus offset) is considerably smaller (remember that the
counting times are different by a factor of 3.3) and therefore the discrimination is worse on the
CCD. It is not yet clear, if the reason for this lies in a poor imaging of the ions onto the CCD
chip (which would smear ot the ion images) or if the true quantum efficiency of the CCD at
397 nm is lower than specified. Tests are currently undertaken to clarify this issue. Note that
the few events in the threshold area of Fig. 7.21 (between 120 and 130 counts) correspond
mostly to cases where the ion of interest has decayed from |D) to |S) during the detection
process. As mentioned above, a detection time of about 10 ms is found to be the optimum
trade-off between such unwanted decay processes and the need of fluorescence discrimination.
The best detection efficiency currently achieved is 99%.

7.5 Switching the Laser Phase

Quantum algorithms imply a complete control of the qubits’ degrees of freedom, namely am-
plitude and phase. This, first of all requires low phase noise on the qubit states as well as on
the corresponding laser at 729 nm over the time of coherent manipulations. Phase stability
is, of course, intrinsically connected to frequency stability which has been discussed in sec-
tion 7.3.

A quantum gate can then be realized by a set of laser pulses of certain intensities, durations
and phases. Phase control entails consideration of two issues: production of laser pulses of
well defined relative phase and control over AC-Stark shifts. This section details on the former
while the role of AC-Stark shifts will be addressed in sections 7.6 and 7.7.

Experimental protocols as, for example, for the Deutsch-Jozsa algorithm require rather com-
plex phase sequences. To begin with, the laser switch network (see section 5.3) and the quality
of our self-made phase-defining cables were tested in a comparably simple experiment with
a single ion. In this case, laser phase switching by 7/2 was tested. For the experimental
settings, the single ion standard configuration was used (see appendix A.3). In a first scan,
Rabi oscillations on the S /9(m = —1/2) < Dg/9(m' = —1/2) carrier transition were driven
resonantly at constant laser phase, see Fig. 7.22(a). In the scan shown in Fig. 7.22(b), the
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laser phase was switched forward by /2 at point A where the two-level system is in a 50:50
superposition. At this point, a laser phase jump of 7/2 “locks” the Bloch vector (cf. section
2.1) on the equator of the Bloch sphere (rotating frame). The excitation probability remains
at 50% although the ion is still constantly illuminated with resonant laser light! At point
B the phase was switched back? to 0. One can see that the two-level system resumes the
evolution which had been stopped at point A. In the next scan, shown in Fig. 7.22(c), the
7 /2-leaps forward and back were set to points where they should not disturb the sinusoidal
Rabi oscillations, namely C and D. A detection scheme which is sensitive to the relative phase
of the two-level system, however, would reveal that something in fact is changing at C and

4There is no absolute laser phase origin, so 0 is just defined by one of the cable paths, for example ¢.
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—1/2). The solid lines are sin? fits to the data.
In (b) and (c), the laser phase was switched forward by /2 (points A and C)
and back to 0 (points B and D) during the excitation period. Over the course of
this experiment, the laser power slowly decreased. Therefore the Rabi-frequency
dropped from 27 - 34.7 kHz in scan (a) to 27 - 31.0 kHz in scan (c) (45 minutes
later) which for these test experiments does not represent any problem. For the
implementation of more complex dynamics as presented in the following sections
and chapters, however, special care had to be taken to operate the system under
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D: the first excitation period from 0 us to C rotates the Bloch vector all the way from the
bottom to the top of the sphere, say about the x-axis. At point C the rotation axis is changed
by 90° and so the vector rotates back down to the bottom of the Bloch sphere, but now about
the y-axis. In our experiment, where only Pp is measured, only the latitude so-to-say of the
Bloch vector is probed and no difference (to Fig. 7.22(a)) is seen. With the phase switched
back to 0 at point D, the Bloch vector resumes the original rotation about the z-axis. These
and similar experiments confirmed that we are able to implement any phase difference with a
precision of +0.05 radians, that is +3°.

7.6 AC-Stark Shift Measurement and Compensation

In section 3.3.6, equation (3.36) is derrived, which describes the relative AC-Stark shift d4¢
of the levels |S) and |D) induced by off-resonant light of frequency w®. Moreover, a compen-
sation method for AC-Stark shifts is proposed. This section features experiments in which
equation (3.36) is mapped, i.e. d4¢ is measured as a function of w®, and the AC-Stark shift
compensation method is presented.

Measurement Method. In order to probe AC-Stark shifts, a Ramsey-type method is
applied. The absolute positions of atomic levels can never be observed but only their relative
positions, i.e. the transition frequency between some level pair. We are especially interested
in the pair of levels |S) and |D), which form the internal qubit (cf. section 3.3.5). In order
to measure the relative level shift d 4o between these two levels (cf. eqn. (3.35)) induced by
off-resonant light at frequency w®, we apply two resonant Ramsey 7 /2-pulses on the |S) < |D)
transition (frequency w_1), see Fig. 7.23. If nothing else happens, then the two pulses add
up to one m-pulse, i.e. the ion is simply excited from |S) to |D) in the overall process. If,
however, in the time between the two pulses the |S) < |D) resonance frequency is shifted to
w_1 4 da¢c by the effect of non-resonant light shone in over a duration 7', then a phase shift
@ = Tdsc between the laser source and the two-level system is acquired. Consequently, the
second Ramsey pulse will for example bring the system back to state |S) if ¢ = 7 or even
have no effect at all, which is the case if ¢ = 7/2. The experimental method now consists of
scanning the duration 7" and measuring the excitation probability (|D) state probability Pp)
at each T-value. The result is an excitation probability varying sinusoidally as a function of
T with a frequency 6 4¢. Fig. 7.23 shows an example of such a scan. Many scans for various
“shifter” frequencies w® yield an AC-Stark shift spectrum d4¢(w®), thus mapping eqn. (3.36).
It is assumed here, that the same experimental configuration, in particular in terms of beam
geometry, is chosen, for which eqn. (3.36) has been derived, namely the single ion standard
configuration (Appendix A.3). If we define A as the detuning of the shifter from the |S) < |D)
resonance, namely as A = w® — w_1, the latter equation transforms to

e N 1 D R : B 92
Sac(d) = (d e A—Am%,)’ (7.2)

where B
B z
Amag = 27 - 2.4“T — 27 3.36B Mz
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Figure 7.23: Left: Probe pulse sequence for Stark Shift measurements. Two Ramsey m/2-
pulses (white) are applied on the |S) < |D) transition (duration 8 us, separation
7 = 200 ps). Between the two pulses, off-resonant “shifter” light (grey) at a
detuning A is applied for a time 7. Right: Example of a scan recorded at a
detuning A = —1.20 MHz; the fit yields a period of 16.3(1) us, thus dac =
27 -61.5(5) kHz. The reduced contrast (=~ 90%) is due to decoherence caused by
laser as well as magnetic field fluctuations over the waiting time 7, see section
7.3.

is the Zeeman splitting between the states Dy o(m’ = —1/2) and D jo(m’ = —5/2) (respec-
tively between D) o(m’ = +3/2) and D;jo(m’ = —1/2)), cf. Fig. 3.7. As mentioned, A
(respectively w®) should always be far enough from any carrier or sideband resonance in order
to avoid population transfer. For the laser intensities used in this experiment, it was sufficient
to avoid a range of +27 - 400 kHz around each carrier and a range of +27 - 50 kHz around
each sideband in order to fulfill this off-resonance criterion.

Experimental Results. The experiments were performed in the single ion standard con-
figuration (appendix A.3). The 7/2 carrier pulses on the |S) < |D) transition had a duration
of 8 pus. The time interval 7 between them was set to 200 us. Drifts of our reference cavity
during the acquisition time result in a slightly faster or slower oscillation, depending on their
sign. They can be compensated for if the drift is uniform over the time scale of acquisition
(about two minutes) - which to our knowledge is a justified assumption - by doing every scan
twice: once forward, scanning 7" from zero to some suitable 7,4, and then another scan from
T.,q down to zero. The average of the two oscillation frequencies then represents an improved
value for d 4¢.

It is important for these measurements that the laser power is constant over all scans or at
least that one keeps track of different powers. In our experiment, the 729 nm laser is actively
intensity stabilized to within better than 1%. The efficiency of the double pass AOM setup
which is used to switch and frequency-tune the light, however, has a certain frequency char-
acteristic. For the Ramsey pulses this is not a problem as they remain at the same frequency,
while the shifter which is scanned over as much as 2w - 70 MHz changes greatly in intensity
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Figure 7.24: Transmitted light power through the double pass AOM setup used to tune and
switch laser light at 729 nm. The S j5(m = —1/2) « D5 5(m’ = —1/2) resonance
corresponds to an AOM frequency of 230 MHz. By a simple recalibration of the
frequency axis, the laser power P(A) as a function of detuning A is obtained
from this plot.

over this spectrum. In order to correct for this effect, the frequency dependence of the light
power through the double pass AOM was recorded. This was carried out for the exact same
RF drive power going to the AOM as in the experiment. The light power was measured di-
rectly in front of the ion trap to make sure that effects of different coupling out of the double
pass AOM into the fibre transmitting the light to the experiment are also taken into account.
The recorded curve is shown in Fig. 7.24. The |S) < |D) resonance corresponds to an AOM
frequency of 230 MHz.

A total of 68 back and forth scans were recorded resulting in 34 d4¢ values for different A.
Additionally, Rabi oscillations on the |S) < |D) transition were recorded in order to determine
the frequency Q_; of eqn. (7.2), the result being _; = 27-376(7) kHz. All obtained § ¢ val-
ues were renormalized to the same laser power by dividing them by P(0)/P(A) (cf. Fig. 7.24).
The complete data set is shown in Fig. 7.25 except for two data points at large detunings,
which where omitted in order to keep the plot compact. They read d4c = 27 - 5.88 kHz and
27 - 8.49 kHz for detunings A of 27 - 40.0 MHz and 27 - 60.0 MHz, respectively.

Note that this measurement procedure only yields the modulus but not the sign of dac.
The signs were attributed to the measurement results according to the theoretical curve to
be expected, that is eqn. (7.2). The spectral positions of the three carrier resonances where
determined directly from an excitation spectrum (cf. Fig. 7.4). From this, A,,q, was deter-
mined to be 27 -8.40 MHz which corresponds to a magnetic field of B = 2.50 G. The expected
values for the relative line strengths (cf. section 3.3.6) are a_5 = 0.278 and a43 = 0.0556.

The only complete unknown for the fit of the data with this equation was d. Therefore
in the fitting procedure, at first only d was varied and then subsequently also _1, a_5 and
ats. Fig. 7.25 shows an excellent agreement of the measured values with the final fit, which
yields the following values: Q_; = 27 - 357(3) kHz, a_5 = 0.318(15), at+3 = 0.051(17) and
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Figure 7.25: Stark shift d4¢ as a function of shifter detuning (A). Data points (squares) are
calculated from T-scans (as in Fig. 7.23) and by renormalizing the obtained d4¢
values to one reference laser power. The fit using eqn. (7.2) (solid line) is in very
good agreement with these data.

d = 0.224(10)/27 (MHz)~!. Tt can be seen that the shift due to dipole transitions, in other
words d, is relatively small. The fitted §2_; differs from the value measured by direct Rabi
oscillations by 5% which is larger than the error bars of each value, which are on the order of
1-2%. This deviation could be explained by slow changes in the laser power over the course of
the experiment. Such power drifts can be caused, for example, if the optical fiber transmitting
the light at 729 nm slowly rotates the polarization® due to thermal effects. At the polarizing
beam splitter after the fiber, a possible polarization rotation is directly transformed into a
change in the transmitted intensity. The fit result for a_5 lies above the theoretical value by
about 10% which can be explained by a deviation from the ideal geometry on the order of
10° in beam direction or polarization. By theory the ratio between a_5 and a3 is constant
under all conditions. Thus, if a_5 lies above the theoretical value, the same should be true
for a3, which is not the case. However, the experimental value for a3 contains a large error
as the coupling to the corresponding transition is very weak and only few data points have
been recorded in the vicinity of the —1/2 «» +3/2 transition.

In order to cross-check the obtained values for a_5 and a3, Rabi oscillations on the three
carriers were recorded under the same conditions (beam geometry; single ion, sideband cooled)
in a separate experiment. Light powers at 729 nm were measured for the three different (AOM)
frequencies. The obtained values were used to normalize the obtained Rabi frequency values

50ur experience shows that such rotations occur even if fibers specified as “polarization maintaining”are used.
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Figure 7.26: Rabi oscillations on the 3 possible carrier transitions when starting from the
S1/2(m = —1/2) state in the beam geometry ¢ = 45°,v = 0°. The corresponding
729 nm light powers and the Rabi frequencies from the fits are (a) 158 uW
27 - 32.15(12) kHz (b) 137 uW 2 - 50.20(10) kHz (c) 128 pW 2 - 10.71(6) kHz.

to the same light intensity. The three scans are shown in Fig. 7.26. The relative squares of
the normalized Rabi frequencies yield the values a_5 = 0.357(17) and a3 = 0.049(5), which
are in agreement with the values obtained from the fit to the AC-Stark shift data.

AC-Stark Shift Compensation. The implementation of quantum algorithms in our ex-
periment entails sequences of carrier and sideband pulses. Coupling to a carrier transition is
relatively strong, which paradoxically amounts to Stark shifts induced by carrier pulses being
negligible compared to the effect of sideband pulses. The reason for this is that a resonantly
driven transition does not shift itself. When driving a sideband transition resonantly, the
nearest other transition is typically a carrier, which produces strong Stark shifts. When, on
the other hand, a carrier is driven then the neighboring transitions are typically sidebands.
Additionally, a sideband transition in order to get, say, a full m-pulse must be driven longer
by a factor 1/n if the same light power is applied. For quantum algorithms as they can be
realized with our experimental parameters, this means that carrier induced AC-Stark shifts
are negligible while sideband induced shifts must absolutely be compensated for.

Applying a laser on the blue axial sideband of the |S) < |D) transition (“gate laser”) at a
detuning of A/2w= +1.7 MHz results in a negative AC-Stark shift §4¢. Shining in a second
light field (called “compensator”in the following) at a laser detuning which yields a positive
AC-Stark shift can null the overall shift. We typically set the compensator frequency to the
red side of the Sy /o(m = —1/2) <> D5/5(m = —5/2) resonance by 27-800 kHz. At that point it
produces reasonably large shifts and at the same time is too far from any resonance to induce
off-resonant excitations. Our method to determine the optimum setting of the compensation
laser consists of the following steps: First we detune the gate laser by ~ 27 - 80 kHz from
the sideband resonance to avoid excitation into the |D) state (its AC-Stark effect however is
still almost identical to that of a laser field resonant with the sideband). Then we minimize
the total AC-Stark effect by adjusting the intensity and detuning of the compensation laser
field such that the oscillations in a T-scan disappear. Both light fields are generated by ap-
plying two RF-frequencies simultaneously to the 729 nm double-pass AOM (AO1 in Fig.5.5).
Since both light fields are derived from the same laser, intensity fluctuations do not affect
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Figure 7.27: Example of online Stark shift compensation data. The time between the Ramsey-
pulses was 200us. Black squares: data points with 77 = 0, white squares: data
points with 75 = 200us.

the compensation. The accuracy to which the AC-Stark effect can be nulled is proportional
to (2 Tr)~! S/N, where Tk denotes the Ramsey interrogation time (here 200 us) and S/N
the signal to noise ratio of the state measurement. Integrating this measurement for long
times to improve S/N is limited by the frequency drift of the laser source near 729 nm (typ-
ically < 1 Hz/s), since a drift of the relative phase of the Ramsey pulses mimics a residual
AC-Stark effect. To overcome this problem we optimize the intensity of the compensation
laser by alternating Ramsey experiments with 77 = 0 and 75 ~ 200us. Thus, a slow drift is
discriminated against a residual phase shift due to imperfect compensation. Limited by the
shot noise of Pp(T), any AC-Stark effect can be cancelled to within ~ 27 - 30 Hz in 60 s. In
practice, we first use quite short alternations, for example between 77 = 0 and 75 = 20 us and
try to minimize the difference between alternating data points by adjusting the power of the
compensator. Then we step up 7» and fine tune power and detuning of the compensator at
each step. Starting directly with a relatively long 75 of 200 us carries the risk of adjusting the
accumulated phase to some multiple of 27 rather than 0. Fig. 7.27 shows compensation data
over the course of time, each data point corresponding to 100 repetitions of the experimental
sequence with an acquisition time of 2 s. During the acquisition of these data no aspect of
the experiment was changed in order to check the stability of the compensation.

7.7 Testing the —1 Phase of a Sideband 27 Rabi Rotation

This sections shows an example of a coherent quantum manipulation, in which the AC-Stark
shift compensation method introduced in the previous section is applied.

As explained in section 2.2 a resonantly driven two-level system transforms into its initial
state only by a 4x rotation. This 47 periodicity is experimentally demonstrated here. A mere
27 rotation leads to a sign change of the wavefunction. This phase shift is the central part
of the Cirac-Zoller proposal [34] for quantum gates with trapped ions [?]. Similarly, Ramsey
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Figure 7.28: Pulse sequence and levels of interest for the “-1 phase” measurement. R1 and R2
are 7/2 carrier pulses.

experiments on Rydberg atoms have been performed in the microwave regime to investigate
the AC-Stark shift of the electromagnetic vacuum field [94] and to perform a tunable phase
gate [95]. It will be shown how the experiment in our ion trap system deteriorates in terms
of acquired phases without proper AC-Stark shift compensation.

As in the previous section, this experiment has been performed with a single ion in standard
configuration (see Appendix A.3). This procedure focuses on the qubit levels |S) and |D).
The probe sequence, see Fig. 7.28, looks very similar as in section 7.6, only that now the laser
pulse in between the two 7/2 carrier pulses is resonant to the blue azial sideband. Another
minor difference is that the phase of the second carrier pulse R2 is set to m with respect to
the first so that for 7" = 0 the Dj/o-state probability Pp is zero. The duration 7' of the
intermediate pulse was scanned.

What pattern does one expect from such a scan? The level scheme in Fig. 7.28 illustrates
the situation. Remember that the starting point is always |.S,0). Let us assume that AC-Stark
shifts during the sideband pulse are negligible (for example due to appropriate compensation
with our “additional light” method). Then this interference experiment will yield a sinusoidal
variation between 0 and 1, but with twice the oscillation period compared to just Rabi oscil-
lations on the sideband. This behaviour can be easily understood for certain specific times T'.
If, for example, T corresponds to a 27 rotation on the blue sideband, the | S, 0) state acquires a
phase —1. This —1 sign corresponds to a phase shift of 7, which compensates for the m-phase
of the second carrier pulse. Consequently, R2 pulse brings all the population up to the |D,0)
state. Only the 47 sideband rotation leads back to the initial state.

In the experiment, first the compensation laser was set in frequency and intensity as ex-
plained in section 7.6. The setting was kept and for the rest of the experiment (unless otherwise
stated) the compensation light was always on simultaneously with the blue sideband light.
Next, the Rabi frequency of the sideband transition was measured under these conditions.
Fig. 7.29(a) shows the corresponding Rabi oscillations, which are recorded by simply omitting
R1 and R2 in the probe sequence. The solid line is a sin? fit yielding a period (i.e. a 27 time)
of 130.6(3) pus. Now R1 and R2 were inserted again and the result is presented in Fig. 7.29(b):
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Figure 7.29: (a) Resonant Rabi oscillations on the blue sideband of the |S) < |D) transition.
Period 130.6(3) us as found from the fit. (b) Ramsey 7/2 pulses on the |S) < |D)
carrier transition enclose the Rabi flopping on the sideband. The phase of the
|S) state has a full cycle period of 257(2) us. (c) Same procedure as in (b) but
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with the AC-Stark shift compensation turned off.

The 27 rotation, near 131 us interaction time, shows up as a —1 phase shift (D-state proba-
bility ~ 1), while after about 260 us a full period, corresponding to a sideband 47 rotation, is
completed. The fit in this case yields 257(2) us. The ratio of fitted periods is 1.96(3) which

agrees well with the expected value of 2.

In this example, the compensation laser had to correct for an AC-Stark shift of d4c ~
27 - 3.5 kHz. This shift alone would have resulted in an additional phase (between |S,n)
and |D,n) independent of n, cf. section 8.1) of ~ 0.827 in 131 us. To show how detrimental
this would be to the phase evolution, the scan of Fig. 7.29(b) was repeated, but now the
compensator was simply turned off, so the blue sideband light was on alone. The T-scan thus
obtained is shown in Fig. 7.29(c). The fit function is a weighted sum of two cos? functions,
allowing for some phase between them. It is not based on a physical picture but just serves
to identify the two principle frequencies of oscillation. They come out to be 27 - 6.41(8) and
27 - 16.0(1) kHz. Neither of these frequencies coincide with d4¢c ~ 27 - 3.5 kHz or with the
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7.7 Testing the —1 Phase of a Sideband 2m Rabi Rotation

sideband Rabi frequency wy, = 27 - (131 ps)~! = 27 - 7.6 kHz. On the other hand, this is
not to be expected as by turning the compensator off the sideband transition is also shifted
by dac. In the experiment, we did not not adjust the sideband laser to this change, so that
it was now detuned from resonance by d4c. Thus, the sideband Rabi oscillations are off-
resonant. Therefore, their amplitude is expected to be 0.86 instead of 1 and their frequency
~ 27 - 8.2 kHz instead of 27 - 7.6 kHz.

Such unwanted AC-Stark shifts and the corresponding phases could of course be reduced
by working at lower Rabi frequencies. This, however, slows the algorithms down which (in
view of a limited coherence time) is not desirable.

Note that there is an alternative to the compensation for AC-Stark shifts by additional light
fields. Alternatively, the laser power and hence the Rabi-frequency on the sideband transition
could be adjusted to a value where a sideband 27 rotation corresponds to an acquired phase
due to AC-Stark shifts which is a multiple of 27. In this way AC-Stark shifts would be intrin-
sically cancelled. These “magic Rabi frequencies” can be predicted using the results of section
7.6. In such an experiment, the frequency of the sideband laser would have to be adjusted
to the Stark-shifted sideband resonance. Quantum computing experiments employing this
method of eliminating AC-Stark shifts are in preparation.
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8 Experimental Results: Quantum Gates and
Algorithms

In the first two sections of this chapter, 8.1 and 8.2, quantum operations are performed in
the 2-qubit computational space, composed by a single ton’s electronic and motional degree
of freedom. In state vectors like |S, 0) state, the right hand entry denotes the state (n) of the
arial mode. All experiments were carried out in the single ion standard configuration (see
appendix A.3). The axial mode was sideband cooled to ground state probabilites of ~ 98%.

For all experiments of this chapter AC-Stark shift compensation as explained in sections 7.7
and 7.6 was an indispensable ingredient. This means that along with every sideband pulse,
suitable light to compensate for level shifts had to be applied, even though it is not always
marked in the pulse sequences or in the text.

8.1 Sideband Induced Stark Shifts - a Dispersive Phase Gate

The following describes experiments probing the comparably small AC-Stark shifts induced
by coupling to a motional sideband. In order to detect Stark shifts due to this relatively weak
transition the experiment had to be carried out in the special regime of rather small detuning
Ag from a motional sideband. However, Ag must still remain large enough for the sideband
coupling to produce no, or a very small amount of, population transfer. In order to detect
these small level shifts, first residual AC-Stark shifts due to coupling to various other transi-
tions have to be compensated for by the method explained in section 7.6. Light shifts induced
by sideband coupling are particularly interesting as they are proportional to the motional
quantum number n of the mode. This feature, namely the possibility of inducing well defined
state dependent level shifts, allows the implementation of a CNOT-type universal quantum
gate in the 2-qubit space of a single trapped ion.

The probe sequence is shown in Fig. 8.1. The pulses labelled R1 and R2 are 7/2 pulses
on the carrier of the |S) <> |D) transition with a fixed waiting time of 260 us between them,
composing a Ramsey-type spectroscopy setup. During the “AC” period, two laser fields are
applied simultaneously, namely one “shifter” which is (blue-)detuned by only Ag = 60 kHz
from the blue axial sideband of the |S) < |D) transition, along with its compensator. Both
laser fields, the shifter and compensator, ideally do not induce any population transfer but
only level shifts.

Fig. 8.2 shows the levels of interest. Captions below each level indicate how the level is
shifted under the action of the shifter only: On one hand, the shifter couples off-resonantly
to other Zeeman-transitions (carriers) at 729 nm as well as to dipole allowed transitions. The
corresponding shift is the same for all levels |S, n) because carrier-type coupling in the Lamb-
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Figure 8.1: Generic probe sequence for the measurement of sideband induced Stark shifts
and the implementation of a quasi-CNOT gate. The central part, in solid lines,
is always applied, while the dashed sequences are used for certain measurements

only.
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Figure 8.2: Ladder of equidistant oscillator levels n = 0 to n = 3 of the axial mode mixed
with the ion’s electronic degree of freedom, |S) and |D).

Dicke regime is independent of n. The same holds for all |D,n) levels. The corresponding
shifts are denoted dg and dp, respectively. Coupling to sideband transitions, however, strongly
depends on the motional quantum number: the (resonant) Rabi frequency of the blue side-
band between |S,n) and |D,n + 1) is Q, n11 = vV + 19y (see section 3.3.3). Here Qq is
the carrier (|S) < |D)) Rabi frequency and 7n the Lamb-Dicke factor of the axial mode, in
this case n = 6.8%. As discussed in section 3.3.6, the AC-Stark effect induced by off-resonant
coupling to some transition shifts the upper and lower level by —Q?/4A and +Q?/4A, respec-
tively. Consequently, sideband coupling produces additional n-dependent level shifts, which
are multiples of 0 := (7€)?/4Ag, cf. Fig. 8.2.

In a first series of experiments the compensator was optimized. According to the results
from section 7.6, its detuning was set to 860 kHz to the red side of the S /5(m = —1/2) «
Ds /2(m = —5/2) resonance. The goal was now to adjust the intensity of the compensator
such that it exactly nulls this relative shift. In general, this is only possible modulo some
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Figure 8.3: Ramsey pattern probing the relative AC-Stark shift between |S,n) and |D,n)
with optimally adjusted compensator. The oscillation frequencies are expected to
be n - 04

offset shift common to all levels in Fig. 8.2. Such an overall shift, however, does not result in
a relative phase between laser and ion, hence is not detectable, and therefore this overall shift
will be ignored in the following. The experimental procedure now uses only the central part of
the probe sequence (solid lines), where the duration 7 of the AC period is scanned. Just as in
section 7.6, the frequency of the resulting oscillations is exactly the relative level shift (between
|S,0) and |D,0)) induced by shifter and compensator applied simultaneously. The goal then
is to find the compensator intensity where this frequency becomes zero, i.e. where there is
no more oscillation. For this process we detune the Ramsey-pulses slightly from resonance so
that with 7 = 0 we end up in the middle of a Ramsey-fringe, at Pp ~ 50%. This regime is the
most sensitive to phases acquired in the time between R1 and R2. An example scan where the
compensator power is well set is shown in Fig. 8.3 at the label “n = 0”. Residual fluctuations
can be seen. These are due partially to random magnetic fields as well as laser frequency and
power fluctuations. Note however, that by making 100 electron shelving experiments for one
data point we always face residual statistical (shot noise limited) fluctuations of 10%. The
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8 Experimental Results: Quantum Gates and Algorithms

average excitation probability, however, only changes with a ramp of —6(2)-10"%us~! (linear
fit) which gives an estimate of ,.s < 27 - 180 Hz for the residual relative level shift of this
scan. As in the experiments of section 7.6, drifts of the reference cavity of the 729 nm laser are
compensated for by performing every scan twice, one forward and then another scan backward
from 7 = 250 ps down to 7 = 0 ps. From our data we calculate that with this method we
can null the relative level shift to within 27 - 300 Hz. This optimum adjustment of shifter
and compensator power was kept for all following experiments. The individual level shifts
under these conditions are indicated in Fig. 8.2 with labels above each level: the compensator
effectively reduces the shift of all |S,n) and |D,n) levels by dg + 0 and dp, respectively.

In the next step of the experiment the ion is transferred into the |S, 1) state in the Prepa-
ration period, with the rest of the procedure remaining the same. This preparation is carried
out by applying a resonant blue sideband m-pulse followed by a resonant carrier m-pulse, the
transfer efficiencies of which are 98% and 99%, respectively. The same type of 7T-scans as
above are performed. We now expect to actually see an oscillation with a frequency d,. = 20
when scanning 7, as we now probe the relative phase between |S,1) and |D,1). For this
measurement, that is for the frequency of the oscillation, it is not essential for the pulses R1
and R2 to be exactly on resonance. Consequently, slight detunings on the order of a few
hundred Hz were accepted, as permanent control of the resonance condition is time consum-
ing. Therefore the following scans do not necessarily start at Pp = 1. An exemplary scan is
shown in Fig. 8.3 (n = 1). By the same method, the |S,2) and the |S, 3) states have also been
prepared by appropriate combinations of resonant blue sideband and carrier pulses, expecting
frequencies of 26,. and 3d,. in our 7-scans. Fig. 8.3 also shows examples for these cases.

A total of 35 back and forth scans were recorded
10 ; ; ; ; for n = 0,1,2 or 3 as input states. Fig. 8.4 shows
the evaluation of the whole data set. It can be seen

%\ 8 3 that the measured AC-Stark effect really is “quan-

%’ 64 | tized”, as expected. A linear fit of this plot yields
& dac = 27 - 2.71(6) kHz.

g 4- 1 The following will describe how this experimental

8 scheme can be used to implement a quantum gate in

< 27 1 the two-qubit computational space composed of the

oL . . . states {|S,0), |D,0), |S,1), |D,1)}. The arrange-

0 1 2 3 ment of operator matrices refers to the latter order

Fock state |n> of basis states. Let ®(7) be the unitary matrix rep-

resenting the action of just the shifter+compensator

Figure 8.4: pulse of length 7. After a suitably chosen 7y, namely

such that d4. - 79 = m, the states |S,1) and |D, 1)

have acquired phases of e¥™/2 = £i_ respectively, whilst |S,0) and |D,0) do not acquire any

phase (cf. Fig. 8.2), thus

(P(To) =

o O O
O O = O
O = O O

o O O

Moreover, the surrounding Ramsey pulses were from now on carefully kept on resonance to
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8.1 Sideband Induced Stark Shifts - a Dispersive Phase Gate

within £100 Hz. In a first experiment, the laser field of pulse R2 was set to have a phase of 7
with respect to R1. They can therefore be seen as R;1(7/2) and Rz1(7w/2) pulses. Note that
the lower index 1 is used to indicate the internal qubit, see section 4.2. The corresponding

matrices read
1 £ 0 O

L + 1 0 0
V2l 0 0 1 i}’
0O 0 =4z 1
where the + signs refer to R1= Rzi(7m/2) and the — signs to R2= R,1(7/2). The main
sequence then reads

100 0
010 0
C = Ry1(7/2) - ®(70) - Rz (7/2) = 000 —1
001 0

Except for the one minus sign, which will be discussed below, C' represents a CNOT gate
where the vibrational qubit controls the internal qubit, with the more intuitive allocation
|0) = |n =0) and |1) = |n = 1). If R1 and R2 have the same laser phase (R1=R2=R,(7/2)),
then the operation reads

01 0 O
, . ' 110 0 o0
C' = Ry1(m/2) - ®(19) - Rp1(m/2) = 00 -1 0
0 0 0 1

This is (again except for the minus sign) a CNOT gate with the inverse allocation |0) = |n = 1)
and |1) = |n = 0) for the control qubit. It can, of course, also be seen as a 0-CNOT-like gate
with the intuitive allocation from above. The properties of the operation C' in particular the
fact that it is a universal two-qubit quantum gate, have been discussed in section 2.2. The
same reasoning holds for C".

The fit of Fig. 8.4 gives 79 = (2-2.71 kHz)~! = 185 us. During the running experiment 7o was
determined from a reduced set of data, the result being 200 us. For the following experiments
7 was thus fized to 200 us. We have then probed the probability truth table of the gate C by
subsequently preparing the 4 possible input states (again with appropriate combinations of
resonant carrier and sideband m-pulses in the Preparation period) and by performing resonant
Rabi oscillations on the blue sideband in the “Rabi” period as a state readout. The resulting
scans of the “Rabi time” T" are shown in Fig. 8.5. The data were analysed by first performing
reduced contrast sinusoidal fits to the cases A, C and D in order to determine the principal
frequencies of oscillation. The results are wgq = (27)11.9(1), we = (27)12.0(2) and wp =
(2m)16.95(5) kHz. The ratios wp/w4 and wp/we are expected to be v/2, which is very well
confirmed by the fit results: (wp/wa)? = 2.02(4), (wp/we)? = 1.99(7). All four data sets
were fitted again fitted taking these frequencies as fixed. This time a superposition of all four
states was allowed as a final state of the gate. The applied fit function reads

1
Pp(T)=1- §(a2 + a3 + aq — (ag — a3) cos(wy - T) + a4 cos(wa - T)),
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Figure 8.5: Probing the universal quantum gate C.

with w1 = (27)12.0 kHz and wy = (27)16.95 kHz. The fit parameters a; are the probabilities
of the four states. The function contains only the parameters as (corresponding to |D, 1)),

as (]S,0)) and a4 (|S,1)). The probability a; of |D,0) is determined from the normalization
condition

a1+ as+as+ay = 1.

The solid lines in Fig. 8.5 correspond to these fits. The following table lists the obtained a; and
can be regarded as the truth table of the implemented quantum gate in terms of probabilities:

| linput | [5,0) | [D,0) | [S,1) | [D,1) |
1S,0) | 0.90(1) ) 10.01(2) )
|D,0) | 0.09(1) | 0.89(1) | 0.00(1) | 0.02(1)
) ) ) )
) ) )

(
1S, 1) || 0.00(1 0.16(2
ID,1) || 0.07(1 0.84(2) | 0.09(2

In fact, by using this fit function the assumption is made that the “leakage of probability” into
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8.1 Sideband Induced Stark Shifts - a Dispersive Phase Gate

“unwanted” states, i.e. the deviation from the perfect table, namely

[ linput [[ [S,0) [ [D,0) [S,1) [ [D,1) |

15,0) 1 0 0 0
D0y || 0 1 0 0
1S,y || o 0 0 1
D, 1) || 0 0 1 0

is due to incoherent processes. Taking unwanted coherent processes into account, would have
required additional fit parameters, namely the phases acquired due to these processes as well
as the ratios between coherent and incoherent leakage processes. This was not possible, as
one data set as shown in Fig. 8.5 does not contain enough points for a reasonable fit with so
many parameters. It should be stressed, however, that such a “perfect” fit in our case could
only result in small corrections of the probability table on the order of 1%.

The a; determined above are in fact pessimistic estimates of the gate performance because
they also include the imperfections of the input state preparation. If one assumes a carrier
m-pulse fidelity of 99% and 98% for the sideband m-pulses of the Preparation period, one gets
the following corrected probability truth table. It describes the fidelity of the quantum gate
itself.

‘ linput H 1S, 0) ‘ |D, 0) ‘ 1S, 1) ‘ |D, 1) ‘
15,0y [ 0.90(1) | 0.06(1) | 0.01(2) | 0.03(1)
1D,0) || 0.08(1) | 0.90(1) | 0.00(1) | 0.02(1)
1S,1) [ 0.00(1) | 0.01(1) | 0.15(2) | 0.84(2)
1D, 1) || 0.05(1) | 0.00(1) | 0.86(2) | 0.09(2)

In a second series of experiments, the C’ gate has been implemented by using equal phases
for the Ramsey pulses and again with 7 = 200 us fixed. The same procedure was applied,
including Rabi oscillations and their fits as a state read-out. The resulting probability truth
table, not corrected for imperfect input state preparation, reads

| linput | [S,0) | [D,0) | [S,1) [ [D.1) |

1S,0) |1 0.10(1) | 0.87(1) | 0.01(1) | 0.02(1)
|D,0) || 0.88(1) | 0.08(1) | 0.00(1) | 0.04(1)
1S, 1) || 0.07(1) | 0.00(1) | 0.85(2) | 0.08(2)
1D, 1) |[0.02(2) | 0.04(2) | 0.14(2) | 0.80(2)

Both gate performances (uncorrected) are depicted in Fig. 8.6 in a bar diagram representation.
The fidelity of C' and C’ as they were implemented is reduced by a not perfectly chosen 7y,
phase noise between the two Ramsey pulses, and off-resonant sideband excitations during the
AC period which were measured to be on the order of 4%.

A nice feature of this type of gate is that it naturally conserves the computational space: the
off-resonant sideband coupling in principle induces only quantum phases but no population
transfer. This dispersive coupling is reminiscent of NMR quantum computation. In NMR,
qubits are identified as nuclear 1/2-spins of neighboring atoms in a molecule. Under the
conditions in which NMR quantum computing is performed today [13], namely in a liquid
and when couplings are weak, the two-qubit coupling required for quantum gates has the
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Figure 8.6: Experimentally measured probability tables for the CNOT-like operation C' (left)
and the 0-CNOT-like operation C’ (right).

form H i] 9 %ZlZQ where J denotes the coupling strength and the lower indices refer to the
two neighboring spin-1/2 nuclei. Just as our off-resonant sideband interaction, the coupling
H i] o does not lead to any population transfer and realizes a universal phase gate if applied for
a well-defined time. The major difference is that in the case of NMR this coupling is always
present. A large component of NMR quantum computing sequences is therefore required just
to effectively cancel the action of H i] 5 at times when it is not wanted, using a technique known
as refocussing [13]. In comparison, our ion trap system has the considerable advantage that
the (sideband) two-qubit coupling can easily be switched on and off.
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8.2 The Deutsch-Jozsa Algorithm

Let us first write out the complete pulse sequences P;, expressed in pulse durations and phases,
for the four cases, which were developed in section 4.3.2.

e P =R(n/2,—7/2) R(w/2,7/2)

o P, =
R(m/2,—m/2) | Rswap(m) R(7/2,—7/2) R(m,7) R(7/2,7/2) Rswap(0) | R(7/2,7/2)

o P3=R(m/2,—7/2) | Rphase | R(7/2,7/2)
o Py=R(r/2,—7/2) | R(m,7) Rphase R(m,m) | R(7/2,7/2)

Vertical dashes | mark the boundary of the black box operation, which in Case 1 consists just
of a pure waiting time. The two-qubit operations, which are all implemented by using blue
sideband pulses, read

— R¥(m, =) R*(<=,0) R*(m, =) R (~=,0
Rphase R (7T72) (\/5’ ) (7772) (\/§7 )

and
T 2

stap(d)O) = R+(ﬁ7 (Z)O) RJF(%; ¢0 + ¢swap) RJF(%; ¢0)

In our experiment, those sideband operations represent the critical part of a sequence. This is
due to the fact that our Lamb-Dicke parameter is relatively small (6.8% in this experiment).
In order to avoid off-resonant carrier excitations, sideband transitions may only be driven
slowly (cf. eqn. (3.33)). This makes sideband pulses long (7-times on the order of 100 us)
which soon conflicts with our coherence times on the order of! 400 ps. With 5.7, Case 2 is
clearly the longest in terms of total sideband pulse time.

Before implementing the complete Deutsch-Jozsa sequences, the two critcal components,
namely the SWAP operation and the phase gate ®, were tested separately. Our standard
method for verification of the correct functioning of a sequence is to trace the complete op-
eration in terms of Djo-state probability Pp. For this, we truncate the pulse sequence at
a certain time ¢ and reveal Pp equal to (1]a(t)), see Fig. 4.7. In the experiment, the laser
powers for sideband and carrier excitation must be adjusted for the desired Rabi frequencies.
Moreover, AC-Stark shift compensation has to be arranged for the blue sideband excitation
and used along with every pulse. Fig. 8.7 shows experimental traces of the ® gate and of
the SWAP(¢y = 0) operation alone. Note that in the absence of other pulses, ¢ is not well
defined, but can always be set to 0 by definition. The data agree well with the calculated
ideal evolution. The latter contains no fit parameters and assumes no errors (as decoherence
or off-resonant excitations).

Subsequently the complete sequences of all four cases were implemented and traced by the
same method, see Fig. 8.8. In a “standard” run of the Deutsch-Jozsa algorithm, Pp would
only be read out at the end of the sequence and ideally would be 1 in cases 3 and 4 (balanced

!This number corresponds to the time when we implemented the Deutsch-Jozsa algorithm. Soon afterwards,
with the help of an active compensation system for magnetic field fluctuations, we were able to prolong
the coherence time to 600 us, see section 7.3.
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Figure 8.7: Experimental implementations of two major building blocks for the Deutsch-Jozsa
algorithm. LEFT: SWAP(0) operation; the laser power was adjusted for a blue
sideband 27 Rabi period T. 25;3 of 57.7 us. RIGHT: Phase gate ® with TQ*S;FB =
94.9 us. The dashed lines mark the switching points of the laser phase. Solid grey
lines are numerical simulations of the ideal evolution which contain no adjustable
parameters.

functions) and 0 in cases 1 and 2 (constant functions). The tracing was extended somewhat
beyond the end of the actual sequences (see Fig. 8.8) in order to acquire a good statistics on
the output. The mean value of these final points corresponds to the readout |(1|a)|? of the
algorithm. The results are listed in the following Readout Table:

expected | measured || expected | measured
lease | [(Ua)[* | [(Ua)[* || [(Aw)]* | [Lw)]?
f1 0 0.019(6) 1 -
fo 0 0.087(6) 1 0.90(1)
f3 1 0.975(4) 1 0.93(1)
fa 1 0.975(2) 1 0.98(1)

It can be seen that the algorithm works with good fidelity in all four cases.

In order to characterize not only the final state of the first (internal) but also that of
the second (vibrational) qubit, the same method as for the AC-Stark shift based quantum
gate C of section 8.1 was employed: Resonant Rabi oscillations on the blue sideband were
appended to the sequences. The scans are shown in Fig. 8.9. This was carried out for only
the “non-trivial” cases 2, 3 and 4. The fits were performed with the same type of 4-component
fuction as in section 8.1. These fits yield estimates for the individual probabilities of the four
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Figure 8.8: Experimental trace of all four cases of the Deutsch-Jozsa algorithm. The dashed
lines mark the black box part of the sequences. Solid lines are numerical simula-
tions of the ideal evolution which contain no adjustable parameters.

computational states at the end of the algorithm, which are listed in this table:
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Figure 8.9: Experimental trace over the appended blue sideband Rabi oscillations for the
cases fo, f3 and f4. As expected, in cases 3 and 4 essentially no oscillation takes
place, because the final state |D,n = 0) is dark for the blue sideband. Likewise,
case 2 shows an oscillation with a Rabi frequency corresponding to the transition
|S,n =0) < |D,n = 1). For the results of the fits (solid lines), see text.

| lcase | [5,0) | [D,0) | [S,1) | |D,1) |
f [ 0.87(1) [ 0.03(1) | 0.00(2) | 0.10(1)
f5 [ 0.00(1) [ 0.93(1) | 0.06(1) | 0.01(1)
f1 | 0.03(1) [ 0.95(1) | 0.01(1) | 0.01(1)

The sum of the probabilities of |.S,0) and |D, 0) gives the probability |(1|w)|? of the vibrational
qubit being in the |n = 0) state (logic state |1)) which is the expected output state in all four
cases (see Fig. 4.8). Those values are also listed in the Readout Table above.
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8.3 The Cirac-Zoller Gate - First Results

First Experiments. Work on the implementation of the Cirac-Zoller gate is in progress.
First results are shown here, while the complete work will be presented in the thesis of Mark
Riebe. Section 4.4 explains that there are various possibilities for the implementation of a
Cirac-Zoller type quantum gate and that for the first realization we have chosen a composite
pulse technique. The corresponding pulse sequence is given in eqn. (4.6) and visualized in
Fig. 8.10. The grey shaded pulse P represents the preparation period in which one of the four
computational basis states |S,S),|S, D), |D,S),|D, D) is prepared as an input state. The
other pulses represent the actual gate sequence of eqn. (4.6): M labels the M AP operations
(RIr pulses) which map the state of ion 1 to the bus mode and back, ® denotes the pulse
sequence of the phase gate @/, (consisting of four concatenated pulses) and the two (Ramsey-
type) carrier pulses on ion 2 (Ry2(7/2) and Rys(m/2)) are labeled by R. The input state
preparation in period P is carried out by suitable and addressed carrier m-pulses. Note that
we can also prepare an arbitrary superposition of basis states as an input. For the bra-ket
notation (ex. |D,.S)) the following convention is chosen: the control ion comes first (left) and
the target ion second (right).

The experiments were carried out in the two-ion standard configuration discussed in Ap-
pendix A.3. Note that for individual ion read-out a 40 ms pulse sequence is employed as
detailed in section 7.4. Switching the addressing beam from one ion to the other requires
switching of the high-voltage on the beam deflector. The time required for this switching is
15 ps in the present setup. Note that in the actual gate sequence, the beam must be switched
twice and that additional switching is possibly necessary in the preparation period, depending
on the desired input state. In a first implementation, comparably low sideband Rabi frequen-
cies 0g = 27 - 5.6 kHz were used resulting in a rather long gate sequence of about 600 us.
Results are shown in Fig. 8.11. The procedure of tracing the experimental sequence by trun-
cating it at times ¢ is the same as, for example, in the Deutsch-Jozsa experiments of section
8.2. Note that the solid lines in Fig. 8.11 do not represent a fit but the calculated evolution of
probabilities?. Input parameters for these calculations are the independently measured Rabi
frequencies on the carrier and sideband transitions as well as the addressing error. The date
agree well with the calculated ideal evolution. Deviations occur mainly at the end of the
sequence where all phase errors have accumulated.

The performance of the gate operation is currently limited primarily by phase noise due
to laser and magnetic field fluctuations: according section 7.3, the loss of contrast over the
time of the implemented gate sequences is 15% leading to a loss of gate fidelity of the same
magnitude. Other relevant error sources are laser intensity fluctuations, laser detuning er-

2Calculations performed by Hartmut Héffner.
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Figure 8.10: Complete pulse sequence for the implementation of a Cirac-Zoller gate.
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Figure 8.11: Experimental traces over the implemented Cirac-Zoller gate for different input
states. The four cases correspond to the input states (a) |S,S), (b) |S, D), (c)
|D,S), (d) |D, D). The fluorescence data were evaluated separately for each ion
here, which yields the individual Dj/,-state probabilities Pp across the sequence.
The solid lines indicate the theoretically expected behaviour (see text). The input
state preparation is indicated by the grey shaded areas and drawn for negative
time values t. The actual gate sequence starts at ¢t = 0.

ror, residual thermal excitation of the quantum bus mode, adressing error and off-resonant
excitations, each contributing with roughly 2% to the gate fidelity reduction. Increasing the
gate speed by using higher Rabi frequencies is expected to reduce the loss of phase contrast.
This will, however, lead to increased off-resonant excitations so that the gate fidelity increase
excpected from the use of higher Rabi frequencies is only about 5%.

Further characterization of the implemented gate

Note that in each experimental sequence, 100 of which yield one data point per ion, both
fluorescence values for ion 1 and ion 2 are read out. Instead of evaluating such 100 exper-
iments for the two ions separately (as in Fig. 8.11), also the individual probabilities of the
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four basis states, namely ||(1,|S, S)| |2, |[{(¥o]S, D)||?, ||(10|D, S)||? and ||{x)o| D, D)||?, can be
determined. Here, |1),) denotes the quantum state of the two ions at the output of the gate.
This yields a truth table of the implemented gate operation in terms of probabilities.

Another goal is to read out the state of the quantum bus mode at the output of the gate.
The bus mode is ideally expected to return to its ground state |[n = 0). This can be probed
just as it has been done for the single-ion gates of sections 8.1 and 8.2, namely by appending
Rabi oscillations on a sideband transition to the gate sequence.

Finally, a gate tomography as outlined in section 4.4, where quantum phases are measured,
is envisaged. As explained, superpositions of the control qubit/ion are particularly interesting
gate inputs because Bell states are then expected as outputs. An observation of sinusoidally
varying probabilities (quantum oscillations) as a function of the phase ¢ of the read-out laser
pulse would then also serve as a proof that the quantum state produced by the gate operation
really is an entangled state and not a statistical mixture of |S,S) and |D, D). This cannot be
distinguished by reading out fluorescence on the camera directly after the gate and measuring
correlations.
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9 Summary and Outlook

The work of this thesis started with experiments using a trap of existing design. Using
the experience gained with this trap [52], a new trap was designed and built. The new trap
has been shown to reliably store linear crystals of various ion numbers with a greater stabil-
ity than the old setup. In previous Innsbruck experiments [4,51,52], motional ground state
cooling and laser addressing had been demonstrated. These two prerequisites for our ion trap
quantum computation schemes have been confirmed with the new trap and both have been
improved. For example, due to improvements on Doppler cooling and also due to higher trap
frequencies, mean phonon numbers (after Doppler cooling) of the radial modes of m ~ 5 are
reached, compared to @ ~ 25 in the old trap experiments [52]. This makes an important
difference since for mean phonon numbers 7 2 10 of the radial modes the performance of our
quantum computation schemes would be seriously affected (cf. section 7.2) and therefore ad-
ditional (sub-Doppler) cooling of these modes would be required, which would complicate the
experiment. The measured motional heating rates after ground state (sideband) cooling are
on the order of one phonon per 140 ms which is low enough to be neglected [4]. As explained
in chapter 6, when loading the trap by electron impact ionization, serious problems occur due
to the large number of electrons scattered over the trap construction and due to the deposi-
tion of atomic calcium from the high oven flow that is required. These problems impeded the
proper operation of the trap. As a solution, resonant photoionization was investigated and a
system consisiting of two laser diodes was set up, which successfully cured the problems.

For quantum computation, additional issues needed to be addressed. AC-Stark shifts had
to be taken into account and controlled. An AC-Stark shift spectrum was measured and a
method based on an additional light field to compensate for unwanted AC-Stark shifts was
developed. In particular for single-ion experiments, a way of using a vibrational mode as
a complete qubit had to be found. Single qubit rotations of the vibrational qubit are par-
ticularly difficult to realize. The solution to this problem was to employ the technique of
composite pulses. This enables, for example, the implementation of a SWAP operation be-
tween internal and vibrational qubit, which makes rotations of the vibrational qubit possible.
With the help of these techniques it was possible to implement the Deutsch-Jozsa algorithm,
the first efficient quantum algorithm implemented on an ion trap quantum computer. The
work with a single trapped ion has led to the idea of using off-resonant sideband coupling to
induce motional state dependent, and therefore quantized, AC-Stark shifts. This possiblity
enabled a new method of implementing a universal quantum gate, the dispersive phase gate
of section 8.1. After these single-ion experiments, the experimental focus was switched to two
ions. Preliminary results on the Cirac-Zoller CNOT gate have been achieved. Note that the
techniques developed before (AC-Stark shift compensation and the technique of composite
pulses) are also very helpful for such multi-ion experiments.

Work in progress focuses on experimentation with the two-ion Cirac-Zoller CNOT gate.
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These experiments will be subject of the Ph.D. thesis of Mark Riebe [96]. It has been outlined
in section 8.3 how this quantum gate may be further characterized (read-out of the probabil-
ity truth table, measurement of the quantum bus mode, quantum oscillations and quantum
tomography). As mentioned, a two-ion Cirac-Zoller gate produces Bell-states if the control
ion at the gate input is in an appropriate superposition. A simpler procedure than employing
a Cirac-Zoller gate exists to create Bell-states, which employs a total of only 1.57 of sideband
rotations [51]. The fidelity of creating a Bell state using this method is expected to be well
above 90%. Such a high quality Bell state will be a good testing ground for quantum tomog-
raphy. Section 4.4 discusses that with the present experimental setup the composite pulse
technique is only one out of three methods that can be used to implement a two-ion CNOT
gate, the other two being the aquziliary level scheme and the quantized A C-Stark shift method.
We are planning to implement and characterize the latter two methods for two-ion gates.

A goal for the near future is to prepare GHZ-states [97]| of three trapped ions. Another
interesting objective is the implementation of quantum error correction (QEC) [98]. The sim-
plest QEC protocol involves three qubits. As mentioned in section 4.4, the use of a vibrational
mode as a complete qubit turns a two-ion crystal into a three qubit quantum computer. A
simple QEC protocol for such a three-qubit processor [99] would require an enhancement of
the product “gate speed xcoherence time” by a factor of two compared to the present achieve-
ments, which appears feasible.

New experimental setups are in preparation. Section 6.4 shows that resonant photoion-
ization opens up the possibility to selectively load isotopes other than 4°Ca into the trap such
as #3Ca, for example. This option is particularly interesting as “3Ca is a promising future
qubit candidate |68,93]. The reason for this is that it has a hyperfine structure that offers
the possibility of storing a qubit in extremely long-lived hyperfine states [100,101]. Qubit
manipulations would then be performed by Raman transitions. *3Ca provides a Raman tran-
sition from mp = 0 to mp = 0, going from the F' = 3 to the F' = 4 hyperfine ground state.
These magnetic substates show only a quadratic Zeeman effect [102] and hence they are not
perturbed by magnetic fields, at least for low field strengths on the order of a few Gauss, as
are used in these experiments. Consequently, magnetic field fluctuations, which in the present
experiments represent a major decoherence mechanism, would have no negative effects if these
two states were used to encode the qubit. Experiments with “3Ca are in preparation.

Finally, the development of a segmented linear trap is underway; the design is being carried
out by Thomas Deuschle [103]. This trap is designed to allow separation of a two-ion crystal
along the trap axis into two individual potential minima, each containing one of the ions. The
long term goal of this experiment is to fabricate an array of microtraps. In such an array ion
qubits can be brought together in pairs for two-qubit gates, separated and then redistributed
for further mutual gate operations with other ion qubits of the system [104].
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A.1 Coupling Strengths on the Quadrupole Transition

D.F.V. James finds [67] for an electric quadrupole transition E2 going from a state 1 to a
state 2 with total angular momenta j and ;' and magnetic quantum numbers m and m/’,
respectively, a Rabi frequency

\/ k:3 (25" +1) Z( m g m)cg])emj , (A1)

where the normal vector n indicates the direction of the wave vetctor k; c is the speed of light
and « the fine structure constant. The total decay rate A of state 2 takes into account the
decay channels to all m-substates of the lower lying state 1. The five different 3 x 3 tensors
c\9) are listed in ref. [67]. The term containing six numbers in round brackets is not a matrix
but a so-called Wigner 3-j symbol, representing a number. It is related to the Clebsch-Gordan
coefficients by the equation [105]

S . j1—ja+ms 1/2 J2 73
Girs syl ) = (1) (2 R
In our case, state 1 and 2 are magnetic sublevels of the S} /5 ground state and the metastable
D5y state, respectively, in other words j = 1/2 and j' = 5/2. With this, and by replacing in
eqn. (A.1) the Wigner 3-j symbols by Clebsch-Gordan coefficients, taking into account that a
=+1 sign in our case makes no difference because in the end the modulus is taken, we get:

6E0 15A
- \/cak32’<” qui_m>

A property of the Clebsch-Gordan coefficients is that they differ from zero only if ms =
m1 + mso. This condition, reading ¢ = Am := m — m/ in our case, makes the sum over ¢ in
eqn. (A.2) obsolete, as the only non-zero term in the sum is:

Dein, . (A.2)

A(m, m’)cgfm)emj

with the “specific” Clebsch-Gordan coefficients
/ 1 5.
A(m,m') := 5;2; —m;AmH;—m .

The A(m,m’) of interest here are (see for example tables in ref. [106]):
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m 2] 172 | 1/2 | 1/2 | 12
m’ 52| 3/2 | 1/2 | -1/2 | -3/2
A(m,m') | 1 475 [ \/3/5 | \/2/5 | V/1/5

Only the cases with m = 1/2 are listed as the A(m,m’) are invariant under the inversion
(m — —m; m’ — —m/), so that the m = —1/2 set can be easily derived by symmetry.
The geometry-dependent part is contained in the quadratic form

(@)

ij

(@) .

g =lc

emj‘ .

The polarization and the wave vector can be parametrised by the angle ¢ between the laser
beam and the magnetic field and by the variable v describing the angle between the po-
larization and the magnetic field vector projected into the plane of incidence. Choosing
B = By(0,0,1) one obtains k = k(sin¢,0,cos ¢)! and € = (cos~ycos ¢, sin~y, — cosysin ¢).
The functions ¢(? depend only on the modulus of ¢ and are given by:

§O = Llcosysin(26)
g(il) — \/ig |cos 7y cos(2¢) + i siny cos ¢|
g F) = \/Lg |% cos 7y sin(2¢) + i sin~y sin qﬁ‘ .

Taking all these results and notations into account, eqn. (A.2) can be written as

eEy [ 15A

S ey il
2h V cak3

A(m,m')g>™ (¢,7) -

A.2 Radio-frequency trap drive

The drive voltage for the Paul trap is generated by connecting one RF-electrode pair to the
open end of a helical resonator [107] (quality factor ~ 200) driven at its resonance frequency,
thus enhancing the RF amplitude. The unloaded resonator is shown in Fig. A.1. The other
blade pair of the trap is connected to the ground of the resonator setup. The input power
is produced by a signal generator? and an RF amplifier®. A variable attenuator allows one
to change the trapping frequencies continuously by adjusting the RF power. The helical
resonator is mounted on top of the vacuum chamber inside a metal shield that prevents the
electronics, for example the diode lasers, from picking up the drive frequency. All other electric
connections exiting the vacuum system are low-pass filtered for the same reason. The power
going into the resonator as well as the reflected power are measured*. The resonance frequency
is adjusted by minimizing the reflected power.

The design of a helical resonator for the new trap posed considerable problems compared
to other traps that have been used in our group through the last years. The usual procedure
was to build a bare resonator with a resonance frequency slightly higher than the desired one

!The y-component of k can be chosen to be zero due to cylindrical symmetry.
>Marconi 2019A.

3Mini Circuit LZY-1. Maximum power 50 W, low distortion up to 20 W.
4Power meter Daiwa CN-410M.
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Figure A.1: Helical resonator. The copper cylinder and the copper helix form a quarter wave
resonator.

(typically 15 MHz). Connecting it to the trap shifted the resonance down by values of only
2 MHz or less. For the new trap, a somewhat higher drive frequency of about 24 MHz was
aimed for (cf. section 5.1). Following the above procedure, a helical resonator with a bare
resonance frequency of 28 MHz was built. However, when connected to the trap, the resonance
of the overall system was as low as 18 MHz. As building a helical resonator can be quite time
consuming, this observation suggested to first develop a model for the combined system and to
design the resonator according to this model. In the following, such considerations concerning
helical resonator design are discussed.

As an ansatz to describe the helical resonator without load the following assumptions are
made [107]:

e The setup behaves like a coaxial conductor with the coil as the core and the cylinder as
the shield.

e The resonance frequency is determined by a A/4-condition just like in a conventional
coaxial quarter wave resonator.

The (phase) velocity along the coil is given by v = v/ LC, where £ and C are its inductance and
capacitance per unit length, respectively. The A/4 resonance condition reads b = A\/4 = v /4 fy,
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Figure A.2: a) Simple circuit diagram for the “extension” comprising the trap its radio fre-
quency connection. It shows the capacitances of the feed-trough (Cy), the wire
(Cyw) and the trap (C}) as well as the inductance of the wire (L,,). P; and P» are
the pins of the electrical feed-through to the vacuum vessel. The ground line in
reality consists of the whole vacuum vessel as well as everything which is grounded
inside. b) Loaded resonator. Its resonance frequency f is defined by [ = A/4. The
grey scales represent different phase velocities

where fy is the resonance frequency. Formulae for £ and C are derived in ref. [107]. In that
paper, a dimensional ratio d/D = 0.55 is suggested for an optimum (high) Q factor. Taking
this into account and putting all formulae together, one finds the simple relation

fo= % MHz - cm, (A.3)
where N is the total number of windings of the helix. Note, that now D ~ d/0.55 is essentially
fixed with the choice of d. The Q of the resonator is now determined by all resistive losses in
the system. The use of high conductivity materials, in particular for the helix, yields high Q
values. For the same reason, scaling up the setup enhances Q as it reduces the total (surface)
resistance. In order to keep the whole setup compact, a compromise was chosen using a copper
cylinder with D = 10 cm for the outer conductor. Consequently, the coil was wound with
a diameter d ~ 5.5 cm. In ref. [107], an optimum range 1 < b/d < 4 for the ratio between
height and diameter of the coil is given. Thus, a coil height b ~ 2d = 11 cm was envisaged.
Given these dimensions, in particular d, eqn. (A.3) determines the parameter N for a desired
Jo-

What is now the resonance frequency f of the combined system, i.e. the helical resonator
with the trap as a load? When the trap is connected to the open end, it simply represents
an extension of the resonator. The entire lead from the end of the helix to the trap can
be viewed as a transmission line and can be represented in a lumped circuit diagram as in
Fig. A.2a). It is assumed that the wavelength of the RF signal traveling along that line (for
the frequency range of interest) is much larger than all individual pieces of the circuit. Its
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elements can therefore be regarded as continuously distributed. In other words the line has a
length /s and an inductance and capacitance per unit length of Lo = Ly/ls and Co = Cy/ls,
respectively. Lo and Cy are the sums of all individual inductances and capacitances in this
system. This includes lumped elements, for example the capacitance of the trap, as well
as more continuously distributed elements such as the inductance of the leads through the
vacuum vessel to the trap electrodes. The extension by itself can thus be treated in the same
way as the helical resonator above and its own A/4 resonance could be calculated according
to fo = /L2Co/4lo, if Lo and Cy were exactly known. The Q value would be determined by
electrical resistances to ground or along the line (which are omitted in Fig. A.2a) for the sake
of simplicity). Fig. A.2b) represents a simplified picture of the loaded helical resonator. For
the \/4 resonance of the overall system one finds:

1 1 + 1

ffo fo
This formula can be interpreted in our context: As long as fy is much higher than fy, con-
necting the trap to the helical resonator will not change the resonance frequency considerably,
as has been the case in former setups used in our group. For the new trap, two things were
different: the desired final frequency was higher than before and at the same time fo was
apparently lower, probably due to the higher capacitance C; of the trap. From the above
mentioned observation (the loaded resonance f was 18 MHz for fy = 28 MHz) an f; of about
50 MHz was calculated. As the desired f was 24 MHz, the new helical resonator was now
designed for fo ~ 46 MHz.

According to eqn. (A.3), this requires a coil with N ~ 11 windings. Ref. [107] suggests that
the clearing between two coil windings should be roughly equal the diameter of the coil wire.
If only 11 windings are to be distributed over b = 11 cm, this requires a wire diameter of as
much as 5 mm, which in fact was used for the new helical resonator. The latter turned out
to have a bare resonance of fy of 41 MHz. When connected to the trap setup, it resulted in
a final frequency f of 23.5 MHz (which is in rather good agreement with the circuit model
made).

A.3 Standard Configurations of the Experiment

Note that we have to use an axial mode for the vibrational qubit. The use of radial modes
(radial or rocking for instance) is not possible in a standard linear trap, which is radially
symmetric. This means that the radial trap structure has a four-fold symmetry which leads
to degenerate radial modes. There are two orthogonal, degenerate radial modes and likewise
two rocking modes®. Using a radial mode would therefore correspond to a motional qubit
distributed over two quasi-two-level systems in a rather uncontrolled way, which is undesirable.
Consequently, we have to use (one of) the axial mode(s).

There is a large number of setup parameters which can be varied in the experiment. These
include, for example

e the magnitude of the magnetic field,;

5In the real trap this degeneracy is lifted (see section 7.1), which, however, changes essentially nothing about
these considerations as the splitting of the radial frequency is very small (~ 1%).
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e the relative directions of magnetic field, 729 nm beam and its polarization (angles ¢ and

7, see section 3.3.5);

e the trap parameters, namely RF drive power P, and end-cap voltage Vi ;

e the angle 3 between the 729 nm beam and the trap axis.

Over the course of this PhD work, many different combinations of these parameters have been
used and tested. As a matter of fact, however, only two different configurations have been
employed to achieve the major results of this thesis - one for single ion and the other for
two-ion experiments.

In both cases we found the combination {¢ = 45°,4 = 0°} most useful, because the tran-
sition with the weakest magnetic field dependence, namely Sy o(m = —1/2) « Djp(m’ =
—1/2) is maximally strong. The latter is then used to encode the qubit. At the same time,
the Sy /o(m = —1/2) < D5 /o(m’ = —5/2) transition in this setting is still strong enough to be
used for sideband cooling. The differences of the two settings are discussed in the following:

Single-ion standard configuration Cooling in terms of the mean occupation number of a vi-

brational mode becomes easier the higher the frequency of the mode. In addition, a high
axial trap frequency is recommended for fast gate operations (eqn. (3.34)). Therefore,
in a single-ion experiment where individual addressing is not an issue, we turn the trap
parameters as high as possible. This is in our case® P, §=13-15 W and V.4, = 2000 V,
resulting in radial trap frequencies w, of 27 - 4.4 — 4.7 MHz and an axial frequency

w, =2mw-1.715 MHz .

Moreover, we want the best projection possible of the 729 nm k-vector onto the trap
axis in order to have maximum coupling () to the axial mode, which is used for the
motional qubit. The smallest angle 5 between 729 nm beam and the trap axis in our
setup is achieved by using the optical channel 729N (cf. section 5.4), namely 5 = 22.5°.
This yields a Lamb-Dicke parameter

n = 6.8%

for the axial mode. The angle ¢ = 45° between 729 nm beam and the magnetic field is
then achieved by applying the magnetic field in z-direction (B1 of Fig. 5.7). A magnetic
field of 2.50 G is applied. The 729 nm polarization is rotated into the z-y plane in
order to provide v = 0°. All experiments were performed in a 20 ms line triggered
pulse scheme, including sideband cooling of the axial mode to ground state probabilities
greater than 98 %.

Two-ion standard configuration In the multi-ion case we obviously need to choose a direction

of the 729 nm laser with respect to the trap axis which allows for individual addressing.
The optimum for this is of course perpendicular to the ion string (8 = 90°). This,
however, corresponds to 7 = 0 for the axial modes which would make it impossible

5We could, in principle, work with slightly higher values, but this would very soon deteriorate the trapping
stability.
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to drive sideband transitions and encode a vibrational qubit into one of these modes.
Consequently, a compromise must be made. In our present setup, the angle between the
addressing 729 nm channel (729A) and the trap axis is § = 67.5°, which is defined by
the construction of the vacuum vessel. In order to comply with ¢ = 45° we apply the
magnetic field diagonally with the help of coil Cd (B2 of Fig. 5.7). Just as in the single
ion standard configuration, the 729 nm polarization lies in the z-y plane (y = 0°). A
magnetic field of 3.0 G is applied. As discussed in section 6.1, with a two-ion crystal
the RF trap drive power had to be reduced to P.y = 12 W for stable trapping. For
the same reason it was advantageous to reduce the end-cap voltage to V.4, = 1000 V.
These values yield an axial COM frequency w, of 27 - 1.215 MHz (as expected from the
/Veap scaling) and a radial COM frequency w, of 27 -4.35 MHz. Note that in our trap
the degeneracy between the two radial COM modes is lifted. The w, values given here
represent average values. At any rate, the precise position of the radial modes is not
relevant for our experiments.

As outlined in section 3.3.6, it is advantageous to use the vibrational mode of highest
possible frequency as the quantum bus, see eqn. (3.34). At the same time, it has been
argued above that only axial modes are allowed. Consequently, the highest axial mode
will be chosen for the quantum bus, which in the two-ion case is the breathing mode at
a frequency wy = v/3w,, hence

wp = 27 - 2.104 MHz .

According to eqn. (3.30) the Lamb-Dicke factor of the breathing mode for an excitation
through the addressing channel is then

n=18%.

Note, that this value is considerably smaller than in single-ion experiments (6.8%). This
is due to the higher mass of the ion crystal as well as the larger angle .

We have previously observed that sideband cooling of a vibrational mode heats up the
other modes by roughly one phonon each [52]. For our quantum computation exper-
iments, optimum ground state cooling (near 100%) is required only for the quantum
bus, hence for the breathing mode. For all other modes, mean phonon numbers of up to
n = 10 are tolerable (cf. section 7.2.2). Therefore, in the pulse sequence sideband cooling
was first performed on the axial COM mode for 4 ms yielding a motional ground state
probability of about 90%. Next, sideband cooling on the breathing mode was applied
for 8 ms resulting in a ground state probability greater than 98 %. As mentioned, this
heats the axial COM mode to 7 &~ 1. Note that the radial modes (radial COM, rocking)
are at m ~ 5 due to Doppler cooling.
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