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Abstract

This thesis reports on experiments with trapped 40Ca+ ions related to the field of precision
spectroscopy and quantum information processing.

For the absolute frequency measurement of the 4s 2S1/2 − 3d 2D5/2 clock transition of
a single, laser-cooled 40Ca+ ion, an optical frequency comb was referenced to the trans-
portable Cs atomic fountain clock of LNE-SYRTE and the frequency of an ultra-stable
laser exciting this transition was measured with a statistical uncertainty of 0.5 Hz. The cor-
rection for systematic shifts of 2.4(0.9) Hz including the uncertainty in the realization of the
SI second yields an absolute transition frequency of νCa+ = 411 042 129 776 393.2(1.0) Hz.
This is the first report on a ion transition frequency measurement employing Ramsey’s
method of separated fields at the 10−15 level. Furthermore, an analysis of the spectroscopic
data obtained the Landé g-factor of the 3d 2D5/2 level as g5/2=1.2003340(3).

The main research field of our group is quantum information processing, therefore it is
obvious to use the tools and techniques related to this topic like generating multi-particle
entanglement or processing quantum information in decoherence-free sub-spaces and ap-
ply them to high-resolution spectroscopy. As a first realization, the quadrupole moment
θ(3d, 5/2) of the 40Ca+ 3d 2D5/2 state was measured with especially designed states that
are sensitive to electric field gradients but insensitive to the linear Zeeman effect and re-
lated noise. Measurements with Ramsey-type experiments could be performed at the sub-
Hertz level despite the presence of strong technical noise, yielding θ(3d, 5/2) =1.82(1) ea2

0.
In addition, the measurement technique was also used in preliminary experiments to de-
termine the linewidth of the narrowband interrogation laser.

While entanglement leads to enhanced signal-to-noise ratios, it is not an essential ingre-
dient for this kind of method. The measurement result obtained with classically correlated
but un-entangled states confirms the measured value previously obtained with maximally
entangled states. This might be interesting for experiments suffering from short single-
atom coherences where experiments with correlated atoms could substantially enhance the
coherence time and thus allow for precision spectroscopy with high resolution.
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Zusammenfassung

In dieser Arbeit werden Messungen auf dem Gebiet der Präzisionsspektroskopie und Quan-
teninformationsverarbeitung an gefangenen und Laser-gekühlten 40Ca+ Ionen vorgestellt.

Zur Messung der Absolutfrequenz des 4s 2S1/2− 3d 2D5/2-Übergangs von 40Ca+ wurde
ein optischer Frequenzkamm auf eine transportable Atomuhr in Form einer Cs-Fontäne
stabilisiert und die Frequenz des hochstabilen Anregungslasers relativ zur SI-Definition
der Sekunde mit einer statistischen Unsicherheit von 0.5 Hz gemessen. Eine genaue Ana-
lyse der systematischen Verschiebungen ergab eine Frequenzkorrektur von 2.4(0.9) Hz, so-
daß die absolute Übergangsfrequenz mit νCa+ =411 042 129 776 393.2 (1.0) Hz angegeben
werden kann. Das entspricht einer relativen Unsicherheit von 2.4 × 10−15 und liegt in-
nerhalb eines Faktors 3 bezüglich der Ungenauigkeit der verwendeten Realisation der
SI-Sekunde. Zusätzlich konnten die Spektroskopie-Daten zur Bestimmung des Landé g-
Faktors des D5/2 Zustandes zu g5/2 = 1.2003340(3) genutzt werden.

Zur Demonstration der Anwendbarkeit von Methoden der Quanteninformations-Verar-
beitung in der Spektroskopie konnte das Quadrupolmoment des 3d 2D5/2-Niveaus mit Hilfe
von speziell für diesen Zweck konstruierten, verschränkten Zuständen bestimmt werden.
Dabei wurde ein Bell-Zustand aus magnetischen Unterzuständen des metastabilen D5/2-
Niveaus erzeugt und die Oszillationsfrequenz unter Verwendung von verallgemeinerten
Ramsey-Experimenten als Funktion des elektischen Feldgradienten präzise vermessen.
Nach Berücksichtigung von systematischen Effekten ergab sich ein elektrisches Quadrupol-
moment von θ(3d, 5/2) =1.82(1) ea2

0. Weiters konnte die Linienbreite des Spektroskopie-
Lasers mit Hilfe dieser Technik ermittelt werden und demonstriert somit eine weitere
Anwendungsmöglichkeit.

Während verschränkte Zustände Messungen bei maximalem Kontrast erlauben, ist diese
Eigenschaft für die Meßmethode an sich nicht zwingend erforderlich. Man kann alternativ
auch Produktzustände mit klassischen Korrelationen verwenden, allerdings unter einem
Kontrastverlust von mindestens 50%. Die Messung des Quadrupolmomentes liefert, wie
zu erwarten, ein ähnliches Resultat wie die Messung mit Bell-Zuständen. Damit eröffnen
Messungen mit korrelierten Atomen die Möglichkeit von Präzissionsmessungen auch unter
ungünstigen Bedingungen mit ansonsten (zu) kurzen Kohärenzzeiten einzelner Atome.
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Chapter 1

Introduction

From its very beginning until today, mankind was concerned with the measurement of time.
Periodic astronomical events fascinated people more than 5000 years ago and incited them
to build stone rings like in Stonehenge or to make the artful sky disk of Nebra which is
the oldest depiction of the sky worldwide. With these devices people were able to directly
observe solstices, equinoxes, and other astronomical phenomena. The first civilizations
used periodic astronomical events to predict the times for planting and harvest which was
vital for their survival. Therefore, the keeping of time was actually reserved to priests and
closely related to religion. Even today we find remnants of the Neolithic or Bronze Age
calendar in some of our festival days, although in a christianized form.

As early civilizations developed, the need for joint efforts in many parts of every day
life became more important concerning not only farming but also construction work like
building of cities, fortresses, or temples just to name a few. This required a division of
the day into smaller units. A natural choice was the division of the daylight into twelve
hours. Twelve, because this is approximately the ratio between the frequency of the
moon’s phases and the Earth’s orbit. The measurement device for this task: a simple
stick where the movement of its shadow cast by the sun can be observed on a clear day
- the sundial was invented. However, it has some practical limitations: the most obvious
one the fact that it doesn’t work at night or on a cloudy day. Another one is that the
length of the hour strongly depends on the latitude of the observing site and is additionally
subjected to seasonal changes, i. e. hours in summer are longer than in winter. By applying
these corrections, modern sundials are able to reach an impressive relative (in-)accuracy
of 7× 10−4.

Among the oldest and commonly used timekeeping devices for millennia were water
clocks and sandglasses. With these devices, time was measured as a function of water
or sand flow, respectively. Remarkably, the underlying principle does not depend on the
observation of celestial bodies and would also work at night or inside rooms. Furthermore,
the length of an hour did not depend on the season in contrast to the case for sundials.
The accuracy could be fine-tuned by controlling the water pressure including complex
gearing, and some of them became quite sophisticated. The water clocks were calibrated
by sundials. Through the centuries, these clocks were used for timing speeches and other
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events, times for prayers and masses in church, though never reaching the accuracy of
modern clocks.

The first clock which incorporates an oscillatory device depending on its natural reso-
nance frequency, was the pendulum clock. The original concept had been developed by
Galileo Galilei when he discovered that a pendulum’s oscillation period depends on its
length only. Christiaan Huygens, however, was credited as the inventor of the pendulum
clock for his design described in 1658. Later refinements reduced the clock errors to below
10 s per day enabling the discovery of variations in sundial time depending on the time
of the year and time of the day. Figure 1.1 shows the artful clock-face of a pendulum
clock donated to the Institute of Experimental Physics of the university of Innnsbruck by
empress Maria Theresia in the year 1798. It is kept in the institute’s inventory catalog as
item number 4.

As mankind began to travel across the seas, the need for more accurate clocks became
apparent. Precise time-keeping is the starting basis for an exact calculation of a ship’s
longitude. John Harrison built a marine chronometer with a spring and balance wheel
escapement in 1761 which would only loose a few seconds on transatlantic passage of
many days on board a rolling ship.

The discovery of the piezoelectric effect by the end of the 19th century led to the a
revolution in the development of clocks without gears or escapements which disturb their
regular frequency. Time is measured here by observing induced electrical vibrations of
a quartz crystal and displaying them through appropriate electronic circuits. A typical
quartz wristwatch generates a signal which is an order of magnitude more accurate than
good mechanical clocks. The best of the early crystal oscillators were already accurate to
within 1 ms a day (10−8/day) [1]. With this level of accuracy, variations of the earth’s
rotational frequency caused by melting ice caps, changes of the Earth’s internal structure,
or on its surface could be measured.

The dramatic improvement of quartz clocks over pendulum clocks can be explained by
two fundamental principles in frequency metrology: the first being that a clock operating
at a higher frequency has the advantage of higher precision because of a larger number of
clock ”ticks” for a given measurement time (stability), the second principle being that a
clock oscillator should be chosen for a low sensitivity to external perturbations and should
be well isolated from the environment (accuracy). Unfortunately, the long-term behavior
of crystal oscillators is less exciting and it is impossible to reproduce two crystals with
exactly the same properties. There is also a third principle which applies to any kind of
standard, that is, a practical realization of a base unit should be possible anywhere, at
any time, and as close as possible to the definition (reproducibility).

Atomic systems are close to an ideal realization of these three requirements. The idea
of an atomic clock was first conceived in 1945 by I. I. Rabi [2] using his technique of
measuring nuclear magnetic moments [3]. The pendulum for such a clock consists of the
electromagnetic signal associated with a quantum transition between two energy levels of
an atom. The narrow transitions typically used require fairly low excitation energies in
the microwave or optical domain, thus fulfilling the criterion of stability. The immunity
against a perturbing environment provides for high accuracy and since atoms of the same
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Figure 1.1: The pendulum clock of the Institute for Experimental Physics in Innsbruck
donated by empress Maria Theresia in 1798.
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species have the same properties all across the universe - at least according to the Standard
Model - it is possible to have many identical copies.

The great success of thermal cesium beam clocks employing Ramsey’s method of sepa-
rated fields [4] has led to the following definition of the SI base unit of one second [5]:

The second is the duration of 9,192,631,770 periods of radiation corresponding
to the transition between the two hyperfine levels of the ground state of the
cesium 133 atom.

The advent of laser cooling techniques [6] significantly reduced errors due to Doppler shifts
by reducing the thermal velocities from hundreds of m/s to the cm/s scale [7] and led to the
realization of Zacharias’ idea of a fountain clock [8]. Currently, the best cesium fountain
clocks [9–11] have uncertainties of 5×10−16 or even better. The instability of a shot-noise
limited clock in terms of the Allan deviation is given by [12, 13]

σy(τ) ∼
1

πQ

√

Tc

τ

(

1

N

)1/2

, (1.1)

where Q = ν0/∆νFWHM is the line quality factor, Tc the cycle time, N the number of
atoms (shot noise), and τ the measurement time. From this equation it is clear, that one
would prefer to operate at the highest possible atomic frequency ν0 at a given linewidth
∆νFWHM . Therefore, optical clocks are the logical extension of microwave-based atomic
clocks but it requires means to count optical frequencies.

Fostered by the invention of the optical frequency comb technology [14], complicated
frequency chains [15] needed to compare optical frequencies to primary Cs standards be-
came obsolete, which only existed at a few places worldwide and would only work for a
limited time due to their complexity and number of stabilization loops. An optical fre-
quency comb generator representing the analogue of a mechanical ”clockwork” allows for
the direct conversion of the very fast optical oscillations at frequencies of a few 100 THz
down to frequencies in the radio frequency domain on the order of 1GHz where they can
be handled by conventional electronics.

Currently, there is a lot of effort put into the development of optical frequency standards
that are expected to replace the current microwave standard in cesium as the basis of the
definition of the SI second in a few years from now. Recently, evaluations of systematic
shifts of the best optical frequency standards, based on single trapped ions and neutral
atoms held in optical lattices respectively [16, 17], have demonstrated a relative frequency
uncertainty of 10−16 or even better, thus surpassing the systematic error budgets of the
best cesium fountain clocks. But nevertheless, there is no clear indication for the optimal
choice of atom or ion. For an optical ion clock, several candidates have been thoroughly
investigated such as Hg+, Al+, Yb+, In+, Sr+ [18–23]. Ca+ has been proposed and
theoretically analyzed as well [24, 25], but no serious measurement had been accomplished.

Confinement of single atoms or ions in electro-magnetic fields opens up the possibility
of studying single or a few charged particles in a very well defined environment. Wolfgang
Paul invented a radio frequency (RF) mass filter for mass-selecting charged particles in
1953 [26]. A modified design of his experimental setup [27] makes it possible to confine
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ions in all three dimensions. Such traps have become widely used in many fields of physics,
contradicting Erwin Schrödinger’s famous statement from 1952 [28]:

. . . we never experiment with just one electron or atom or (small) molecule. In
thought experiments we sometimes do; this invariably entails ridiculous conse-
quences. . .

In 1980, the first trapping and laser cooling of a single ion was reported by Neuhauser et
al. [29]. Since then, Paul traps have played an important role not only in mass spectro-
metry but also in atomic physics, because these systems allow for trapping and controlled
manipulation of single or a few ions and extensive studies of their properties [30]. The
possibility for laser cooling [31] in an ion trap offers the perspective of developing an op-
tical frequency standard [32] because Doppler effects due to thermal motion are almost
eliminated when operating in the Lamb-Dicke regime [33]. Together with efficient state
preparation [34, 35] by optical pumping and the readout of the quantum state by the obser-
vation of quantum jumps (electron shelving technique) [36–38] with a detection efficiency
close to 100%, the signal-to-noise ratio is greatly enhanced.

For precision spectroscopy and atomic clocks, an advantage of using an ion trap lies
in the decoupling of the particle to a large extent from a disturbing environment leading
unperturbed transition frequencies and therefore to high accuracies. Thereby, the dis-
advantage of a small atom number (see Eq. (1.1)) can be overcome due to practically
unlimited interaction times and the observation of narrow atomic transition lines, almost
free of external energy shifts caused by unwanted interactions. As the trapping potential
near the trap center is close to zero, systematic frequency shifts caused by electric fields
are small. On the other hand interaction with magnetic fields can be well characterized
in a reproducible way, minimizing the associated systematic effects as well. Finally, ion
traps are usually operated in an ultra-high vacuum environment, causing collision rates
with background atoms or neighboring particles (if more than one ion is in the trap) to
be very low in contrast to the case of neutral atoms. In summary, optical clocks based on
single, trapped ions have the potential to reach an uncertainty limit of 10−18 and maybe
beyond [32].

With the potential of optical clocks reaching uncertainties of 10−18, the question natu-
rally arises: What is it actually good for? The obvious reason is of course that any
realization of a standard unit should be performed at its ultimate limit. The fact that
frequencies are the quantities which can be measured most precisely, makes it appealing
to find ways to turn measurements of other fundamental base units (volt, ampere, ohm,
meter) into frequency measurements [39]. Furthermore, clocks play an important role in
terrestrial navigation. Satellite navigation systems like GPS, Glonass, or the European
GALILEO system, rely on the precision and accuracy of atomic clocks [40]. Therefore,
these systems would greatly benefit from improved clocks. Also extra-terrestrial navigation
of deep space probes would not be possible without the existence of high-performance
clocks. Another important aspect of atomic clocks is the test of fundamental theories
like special and general relativity or extensions of the standard model. Time dilation and
gravitational redshift effects have already been observed by comparing clocks subjected
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to high altitude or velocity differences [41, 42], yet the direct detection of gravitational
waves is a task still to be done, where clocks could be helpful [43]. At the same time,
geodesy applications and probing Earth’s gravitational potential are expected to benefit
greatly from clocks at the 10−17 level [43]. Another important task for atomic clocks is the
detection of a possible time variation of fundamental constants [44–46] predicted by some
theories beyond the Standard Model and suggested by astronomical observations [47–50]
with partially contradicting results or investigations of fission products of the Oklo reactor
[51–54]. Atomic transition frequencies depend on various parameters [55] like the Rydberg
constant, the electron-to-proton mass ratio, or the fine structure constant α. Of course,
the dependency is specific to the particular atom under examination. Therefore, by the
measurement of many atomic transition frequencies, the different contributions can be
separated. Finally, there is a less exotic application of clocks, namely the synchronization
of networks reaching from data synchronization in computer networks and synchronization
of different power plants for electricity, to astronomical telescopes. Here, a synthetic
aperture of the size of their separation is created by linking two telescopes to increase the
spatial resolution. In principle, this would also work for telescopes in space where atomic
clocks could be used for maintaining their relative positions [56].

The main research focus within our group lies on quantum information processing with
Ca+ ions and one can use methods and techniques from that field in order to improve the
performance of optical clocks [57] and other types of precision spectroscopy. The ability
of deterministically generating entanglement is generally accepted as a key element for
quantum computation [58] and quantum cryptography [59]. For the purpose of quantum
metrology, the use of entangled states for an enhanced signal-to-noise ratio due to spin-
squeezing [60] has been discussed [61–63] and demonstrated [64, 65] thereby beating the
standard shot noise limit [66]. In addition, entangled states of two ions of different species
have been used in the context of atomic clocks for efficient quantum state detection [67, 68]
where electron shelving wouldn’t work for technical reasons and for the measurement of
scattering lengths [69].

Quantum information processing allows for the tailored design of specific states by the
manipulation of individual quantum bits. Such states can be insensitive to the detrimen-
tal influences of an environment [70]. The existence of decoherence-free subspaces [71],
which protect the delicate quantum information with respect to specific sources of noise,
yield significantly enhanced coherence times [72] in the presence of strong technical noise
which would render experiments with single or uncorrelated particles impossible on the
same time scale. Therefore, entangled states with long lifetimes become very useful for
high-precision spectroscopy. In this work, the use of a decoherence-free subspace with
specifically designed entangled states [73] for precision spectroscopy is demonstrated. The
electric quadrupole moment of Ca+ in its metastable D5/2 state is obtained, which is of
use for frequency standard applications and for refined theoretical calculations of atomic
properties. The technique makes explicit use of multi-particle entanglement and provides
an approach for designed quantum metrology. Furthermore, it can be shown that entan-
glement is not a necessary ingredient for these measurements and classically correlated
states can be used instead, although at a 50% loss of contrast.
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This thesis is structured as follows. In chapter 2 the basic spectroscopic properties of
40Ca+ are presented with a theoretical description of the ion’s interaction with external
fields and main focus on Ramsey experiments. The experimental setup including the ion
trap and the laser sources is described in chapter 3, followed by the optical frequency comb
used for the absolute frequency measurement in chapter 4. Basic experimental procedures
like state preparation are listed in chapter 5. Chapter 6 is dedicated to the absolute
frequency measurement of the 4s 2S1/2 − 3d 2D5/2 transition. Finally, spectroscopy with
correlated states are used in chapter 7 to determine the quadrupole moment of the D5/2

level. At the end, a brief summary and an outlook of future plans are given in chapter 8.
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Chapter 2

Ion trapping and interaction of an
ion with external fields

In this chapter the basic theory of ion trapping and interaction of an ion with external
fields is described. First, the general atomic structure of 40Ca+ is given with a more
detailed view on the 4s 2S1/2 − 3d 2D5/2 clock transition. Then, a short review on ion
traps and their operation principle is presented. Basic laser-ion interaction with focus on
Ramsey experiments is followed by an overview on the interaction of the ion with external
fields.

2.1 Level scheme of 40Ca+

The level structure of 40Ca+, like for all singly ionized earth-alkali atoms, is similar to
the energy level scheme of neutral alkali atoms, in particular to atomic hydrogen. The
diagram in Fig. 2.1 shows the three lowest energy levels for the single valence electron.
The ground state is formed by the 4S state, the lowest excited state by the metastable
3D level, which has a lifetime of ∼1 s [74]. This corresponds to a natural linewidth of
<0.16 Hz. Spin-orbit coupling splits the D-state into two fine structure components with
total angular momentum J = 3/2 and J = 5/2 and a frequency difference of 1.8 THz.
The narrow S −D transitions can be excited by electric quadrupole radiation at 732 nm
and 729 nm, respectively. The next-higher lying excited state is the 4P level with a fine
structure splitting of 6.7 THz. Lifetimes of ∼7 ns [75] for both J = 1/2 and J = 3/2 states
and corresponding linewidths of 20 MHz make these levels well suited for laser cooling.
In our case, we use the S1/2 − P1/2 electric dipole transition at 397 nm. There is a small
probability - one out of 17 - for a decay of the P into the D-levels with branching ratios
given in [76, 77]. The transition wavelengths are 854 nm from P3/2 − D5/2 and 866 nm
for the P1/2 − D3/2 transition. Additionally, there is an allowed transition from P3/2 to
the D3/2 level with a wavelength of 850 nm which has a transition probability of about
one tenth of the other two. More precise wavelengths for the transitions mentioned above,
transition probabilities, oscillator strengths, and more are given in [78].
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Figure 2.1: The level scheme of Ca+ and the most important transitions with their re-
spective wavelengths.

2.2 The electric quadrupole transition of 40Ca+

The 4s S−3d D transitions are dipole-forbidden giving rise to rather long lifetimes (∼1 s)
as compared to dipole allowed transitions which typically decay on a ns timescale. The
long lifetimes of the 3d D states thus make these transitions ideal candidates for precision
spectroscopy and optical clocks because their natural linewidth is given by the inverse of
the lifetime. Furthermore, the |S〉 and |D〉 states can be used to implement a qubit where
the logical information associated with logical states |1〉 and |0〉 is represented by these
levels. The qubit can be manipulated by laser light as the 4s S and 3d D states radiatively
couple by an electric quadrupole interaction. The field of quantum information processing
is not directly part of this thesis but the tools are the same for both fields, quantum
information processing and precision spectroscopy. For further information on how Ca+

ions are used for quantum computing, the reader is referred to [79–81].

For a trapped ion in a magnetic field of a few Gauss, the dominant systematic shifts
are caused by the Zeeman effect (∝ 10MHz) induced by the static magnetic field defining
the quantization axis and by the electric quadrupole shift (∝ 10Hz) which is resulting
from an interaction of the quadrupole moment of the 3d 2D5/2 level with static electric
field gradients induced by the DC-trapping electrodes or spurious field gradients of patch
potentials. The net nuclear spin of 40Ca+ is I = 0, therefore this isotope does not have
hyperfine structure and the 4s 2S1/2−3d 2D5/2 transition splits into ten components of the
Zeeman multiplet shown in Fig. 2.2. The measurement of these six transitions shown in
Fig. 2.2 is sufficient to cancel these systematic effects because they are symmetric around
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Figure 2.2: Level scheme of the 4s 2S1/2− 3d 2D5/2 transition in 40Ca+ : For the absolute
frequency measurement the six possible transitions were probed in the order indicated by
the number.

the line center of the transition. The corresponding transition frequencies are defined as
the energy differences between the magnetic sublevels mJ of the ground and excited state:

f1 =
1

h
(ED(|mD = −1/2〉)− ES(|mS = −1/2〉)) ,

f2 =
1

h
(ED(|mD = −5/2〉)− ES(|mS = −1/2〉)) ,

f3 =
1

h
(ED(|mD = +3/2〉)− ES(|mS = −1/2〉)) ,

f4 =
1

h
(ED(|mD = +1/2〉)− ES(|mS = +1/2〉)) ,

f5 =
1

h
(ED(|mD = −3/2〉)− ES(|mS = +1/2〉)) ,

f6 =
1

h
(ED(|mD = +5/2〉)− ES(|mS = +1/2〉)) . (2.1)

For the absolute frequency measurement, these transitions have been measured in the
order indicated by the numbers.

2.3 Operation principle of ion traps

This section will concentrate on the classical motion of a single particle to keep the discus-
sion simple. The results, however, can be generalized to more ions in the trap if collective
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motion of the ions is included in the equations of motion. More detailed information can
be found in a multitude of Refs. [80, 82–85], just to name a few.

y

x

2R

GND

V V

GND

(a)

y

z

x

2Z

endcaps

(b)

Figure 2.3: Schematic diagram of a linear Paul trap. (a) 2D view of the electrode con-
figuration. In color: potential lines for a negative voltage V. (b) 3D view of the trap: a
constant voltage applied to the endcap electrodes creates a static quadrupole potential for
axial confinement.

Figure 2.3 shows a schematic diagram of a linear Paul trap. One pair of the hyperboli-
cally shaped electrodes (Fig. 2.3(a)) is grounded while the other pair is kept at a voltage
V = V0 cos(ΩTrapt). This configuration creates a potential near the axis of the trap of the
following form:

V (x, y, z, t) =
V0

2

(

1 +
x2 − y2

R2

)

cos(ΩTrapt), (2.2)

where R is the distance from the trap center to the electrodes. With the corresponding
electric field of this (pseudo-)potential, radial confinement of the ion is achieved. To confine
the ion also in axial direction, two endcap electrodes are added as depicted in Fig. 2.3(b)
and kept at a fixed potential U0. The resulting static potential can be approximated by

U(x, y, z) =
κU0

Z2

(

z2 − 1

2

(

x2 + y2
)

)

. (2.3)

Z is the distance from the trap center to an endcap electrode and κ(<1) a geometrical
factor. The total electric field derived from the potentials (2.2) and (2.3) is

Ê(x, y, z, t) = V0

(

xêx − yêy
R2

)

cos(ΩTrapt)−
κU0

Z2
(2zêz − xêx − yêy) , (2.4)

êi are the unit vectors for the directions i=x,y,z. The equations of motion for a single
particle of mass M and charge Q in this field are given by Mathieu equations

d2xi

dt2
+

ΩTrap

4
(ai + 2qi cos(ΩTrapt)) xi = 0, (2.5)
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where ai and qi are defined as

ax = ay = −1

2
az = − 4QκU0

MZ2Ω2
Trap

, (2.6)

qx = −qy =
2QV0

MR2Ω2
Trap

, qz = 0. (2.7)

For |qi| ≪ 1 and |ai| ≪ 1, stable solutions to Eqs. (2.5) exist and can be approximated by

xi(t) ≈ x1i cos(ωit+ ϕi)
(

1 +
qi
2

cos(ΩTrapt)
)

, (2.8)

where x1i is the amplitude of the harmonic oscillation of frequency

ωi = βi
ΩTrap

2
and βi =

√

ai +
1

2
q2i , (2.9)

and ϕi is a phase determined by the initial position and velocity of the ion. The motion
of the particle can be decomposed into two components:

• secular motion: harmonic oscillation with frequency ωi about the trap center,

• micromotion: fast oscillation driven by the cos(ΩTrapt) term corresponding to the
trapping RF field.

Additional electric fields may exist the shift the ions out of the node of the trapping
field, causing excess micromotion. If an ion in the trap is illuminated by a light field, this
additional micromotion creates sidebands in the excitation spectrum. The upper state
population Pe in this case is proportional to:

Pe ∼
∞
∑

n=−∞

J2
n(βmicro)

(ωA − ωL + nΩT )2 + (1
2γ)

2
. (2.10)

Here, the atomic transition frequency is given by ωA, the frequency of the light field by
ωL and the transition linewidth by γ. The n-th sideband power is described by the Bessel
function J2

n(βmicro) with a modulation index βmicro.

2.4 Laser-ion interaction

2.4.1 Two-level atom interacting with light

For the description of a complicated atom interacting with a light field, certain approx-
imations are necessary. Let’s consider the hypothetical case of an atom having only a
ground |S〉 and an excited state |D〉 separated by an energy difference of

~ωA = ~(ωD − ωS). (2.11)
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This system is called two-level atom (2LA) and is an ideal test bed for quantum mechanics.
In many cases, this a very good approximation to real systems and therefore widely used.
The laser is described as a classical electro-magnetic field with

E(r, t) = E(r)e−i(ωLt+ϕ) + c.c., (2.12)

where E(r) is the spatial dependence of the electric field, ωL the frequency of the light,
and ϕ the phase of the traveling light wave. The frequency difference between the laser
and the atomic transition is defined as

∆ = ωL − ωA. (2.13)

The undisturbed Hamiltonian for the two-level atom without the presence of light is simply

H0 =

(

~ωS 0
0 ~ωD

)

. (2.14)

The state |ψ〉 = cS |S〉 + cD |D〉 of an atom interacting with the classical light field of
Eq. (2.12) obeys the Schrödinger equation

i~
d

dt
|ψ〉 = H |ψ〉 (2.15)

with the Hamiltonian H = H0 +H(i) where H(i) contains the details of the interaction.
Generally, the time evolution of the state |ψ(t)〉 is given by [86]

|ψ(t)〉 = U(t) |ψ(0)〉 = e−
i
~

Ht |ψ(0)〉 , (2.16)

yielding a system of equations for the coefficients ci(t):

ċS = − i
~
〈S| |H(i)| |D〉 e−i(ωAt+ϕ)cD,

˙cD = − i
~
〈D| |H(i)| |S〉 ei(ωAt+ϕ)cD. (2.17)

The coupling strength is proportional to the matrix element 〈S| |H(i)| |D〉 ≡ ~
ΩR
2 and ΩR

is usually referred to as the Rabi frequency.

To transform into a rotating frame, the Hamiltonian H is replaced by UHU †, where U
has the form

U =

(

e−iωLt 0
0 1

)

. (2.18)

By neglecting terms oscillating at e−i2ωLt and a redefinition of the ground state energy,
the Hamiltonian in rotating wave approximation (RWA) [87] is transformed to

HRWA = ~

(

0 ΩR
2

ΩR
2 ∆

)

. (2.19)
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If the excited state can decay, or in order to take decoherence effects like a finite linewidth
of the laser into account, one has to use the density matrix formalism. The Schrödinger
equation is then replaced by

d

dt
ρ̂ =

i

~
[H, ρ̂] + L(ρ̂), (2.20)

where L(ρ̂) contains the relaxation terms.

The dynamics of the two-level atom with a spontaneous decay rate γ is described by
the optical Bloch equations:

ρ̇DD = −ΩR Im(ρDS)− γρDD

ρ̇SD = −iΩR

2
(ρDD − ρSS) + (i∆ − γ

2
)ρSD

ρDD = 1− ρSS

ρDS = ρ∗SD. (2.21)

The steady state solution for ρSS(t = 0) = 1 for the excited state population is

ρDD(t→∞) =
(ΩR/2)

2

∆2 + (γ/2)2 + 2(ΩR/2)2
. (2.22)

For low saturation (ΩR ≪ γ), the excitation probability is ρDD ≪ 1 and yields a Lorentzian
line shape

ρDD(∞) =

(

ΩR

γ

)2 1

1 + 4(∆/γ)2
. (2.23)

In the coherent regime, i. e. ΩR ≫ γ, the solution exhibits damped oscillations of the

population between the ground and excited state with a frequency of Ω =
√

Ω2
R + ∆2.

This is known as Rabi oscillations. It can be interpreted as a rotation of the Bloch vector
defined as





U
V
W



 =





2Re(ρSD)
2 Im(ρSD)
ρDD − ρSS



 . (2.24)

The evolution of the system for a laser pulse of length θ, given the initial conditions
U(0), V (0), and W (0), has the following matrix representation [86]:





U(θ)
V (θ)
W (θ)



 = R(ΩR, φ,∆, θ)





U(0)
V (0)
W (0)



 , (2.25)
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where the transformation matrix is given by

R(ΩR, φ,∆, θ) =







cos(Ωθ) +
Ω2

R
Ω2 (1− cos(Ωθ)) cos2 φ

∆
Ω sin(Ωθ)− Ω2

R
Ω2 (1− cos(Ωθ)) cosφ sinφ

−ΩR∆
Ω2 (1− cos(Ωθ)) cosφ− ΩR

Ω sin(Ωθ) sinφ

−∆
Ω sin(Ωθ)− Ω2

R
Ω2 (1− cos(Ωθ)) sinφ cosφ

cos(Ωθ) +
Ω2

R
Ω2 (1− cos(Ωθ)) sin2 φ

−ΩR
Ω sin(Ωθ) cosφ+ ΩR∆

Ω2 (1− cos(Ωθ)) sinφ

−ΩR∆
Ω2 (1− cos(Ωθ)) cosφ+ ΩR

Ω sin(Ωθ) sinφ
ΩR
Ω sin(Ωθ) cosφ+ ΩR∆

Ω2 (1− cos(Ωθ)) sinφ

1− Ω2
R

Ω2 (1− cos(Ωθ))







(2.26)

with the generalized Rabi frequency Ω2 = Ω2
R + ∆2. Equation (2.25) represents nothing

else than Rabi oscillations. The time θ describes how long the atom is exposed to the
interaction. An atomic oscillator is usually interrogated near the resonance, for which
∆≪ Ω. In this case, R simplifies to

R(ΩR, φ, 0, θ) =




cos(Ωθ) + (1− cos(ΩRθ)) cos2 φ −(1− cos(ΩRθ) sinφ cosφ sin(ΩRθ) sinφ
−(1− cos(ΩRθ) sinφ cosφ cos(ΩRθ) + (1− cos(ΩRθ) sin2 φ sin(ΩRθ) cosφ

− sin(ΩRθ) sinφ − sin(ΩRθ) cosφ cos(ΩRθ)



 .

(2.27)

The rotation angle is given by ΩRθ. An angle of ΩRθ = π corresponds to a population ex-
change from |S〉 → |D〉 and is called ”π-pulse”, a ”π

2 -pulse” creates an equal superposition
of the ground and excited state of the form |ψ〉 = 1√

2
(|S〉+ eiφ |D〉).

The effect of far-detuned laser light on the transition frequency can be treated by per-
turbation theory in second-order of the electric field. For non-degenerate states, the inter-
action Hamiltonian of Eq. (2.19) leads to a frequency shift often referred to as AC Stark
shift, that is [88]

∆νStark(|i〉) =
∑

i6=j

| 〈j|HRWA |i〉 |2
ωi − ωj

. (2.28)

Considering real atoms again, two types of atomic transitions are considered in this
thesis: electric dipole and quadrupole transitions.

Electric dipole transition

For an electric dipole-allowed transition like the S − P transition, the Rabi frequency is
defined via the dipole matrix element

〈S| ~d · ~E |P 〉 = ~
ΩR

2
, (2.29)

16



where ~d = e~r is the induced dipole moment and ~E the electric field of the light at the po-
sition of the atom. The spontaneous decay rate Γ is related to the Einstein A21 coefficient
and the dipole matrix element by

Γ =
1

τ
= A21 =

ω3
A| 〈S| ~d · ~E |P 〉 |2

3πǫ0~c3
(2.30)

with the speed of light c, and ǫ0 the permittivity of vacuum. Therefore, the Stark shift by
far detuned light can be calculated by using Eq. (2.28) and becomes

∆νStark(|i〉) = ±| 〈S|
~d · ~E |P 〉 |2

∆
= ±Ω2

R

4∆
= ±3πc2

2ω3
A

Γ

∆
I, (2.31)

with the optical intensity I = 1
2µ0c |E|2.

Electric quadrupole transition

The reason for using dipole-forbidden transitions in experiments is the long lifetime of
the metastable states and the fact that decoherence due to spontaneous emission will
greatly be suppressed. The transition for the absolute frequency measurement considered
here is the electric quadrupole-allowed 4s 2S1/2 − 3d 2D5/2 transition. Details about the
using quadrupole transitions for quantum computation are discussed in detail in [89]. The
transition can be excited by a coupling of the induced quadrupole moment Q1 and the
gradient of the electro-magnetic field ∇E(t). The corresponding Hamiltonian to this type
of interaction is

HQ = ∇E(t)Q. (2.32)

For a more specific derivation of this interaction Hamiltonian the reader is referred to
[90, 91]. The interaction strength is given by the Rabi frequency defined as

ΩR =

∣

∣

∣

∣

eE0

2~
〈S,mS | (ǫ · r)(k · r) |D,mD〉

∣

∣

∣

∣

, (2.33)

where ǫ is the polarization of the light with a propagation vector k and an electric field
amplitude E0, r is the position operator of the valence electron relative to the atomic
center of mass. The coupling strength can be estimated by using 〈S,mS | r2 |D,mD〉 ≈ a2

0

and one obtains [84]

ΩR ≈
kE0

2~
ea2

0. (2.34)

As a consequence, an electric field of 40 kV/m is required for a Rabi frequency on the order
of ΩR/(2π) ∼100 kHz. To achieve field strengths like this, the laser needs to be tightly
focused onto the ion. In our experiment, the beam waist at the focal point is less than
2.5µm thus the required optical power is 40µW only.

1The individual components of the quadrupole tensor are Q
(2)
k = r2C

(2)
k (θ, ϕ) with renormalized spher-

ical harmonics of the form C
(l)
m =

q

4π
2l+1

Yl,m(θ, ϕ).
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The Einstein coefficient A12 describing the decay rate of the excited state is related to
the reduced matrix element

〈

S1/2

∥

∥r2C(2)
∥

∥D5/2

〉

by [89]

A12 =
cαk5

90

∣

∣

∣

〈

S1/2

∥

∥

∥
r2C(2)

∥

∥

∥
D5/2

〉∣

∣

∣

2
. (2.35)

The reduced matrix element can be calculated using the Wigner-Eckart theorem [92]
(see also Sec. A.2). Substituting the matrix element in Eq. (2.33) by the expression
in Eq. (2.35), the coupling strength can be further evaluated in terms of the ”specific”
Clebsch-Gordan coefficients ΛJ,J ′(m,m′) for the particular total angular momenta J, J ′

of the states and a part containing the geometrical dependence g(∆m)(φ, γ). The Rabi
frequency therefore is expressed as:

ΩR =
e

2~

√

15

cα
E0

√

A12

k3
ΛJ,J ′(m,m′)g(∆m)(φ, γ), (2.36)

where α denotes the fine structure constant, φ the angle between the laser’s k-vector and
the magnetic field, and γ is the angle between the laser polarization and the projection of
the magnetic field onto the incident plane. Explicit expressions for these functions can be
found in [79]. For the specific geometry of our trap, i. e. φ = 45◦ and γ = 0◦, the values
of the prefactors Λ(m,m′)g(∆m)(φ, γ) for ∆m = 0 and ∆m = 2 are given in Tab. 2.1.
Transitions with ∆m = 1 do not couple to the laser in the configuration above, leading to
the six possible transitions mentioned in Eq. (2.1) and Fig. 2.2.

Table 2.1: The transition factors and relative coupling strengths according to the definition
of the individual transitions given in Eq. (2.1).

# Transition |S,m〉 ↔ |D,m′〉 Λ1/2,5/2(m,m
′)g(∆m)(φ, γ) Rel. strength

1,4 ±1/2↔ ±1/2
√

3
5

1
2 1

3,5 ±1/2↔ ∓3/2 1√
5

1√
24

0.24

2,6 ±1/2↔ ±5/2 1 1√
24

0.53

2.4.2 Trapped two-level atom interacting with light

For a trapped atom laser-cooled to near the motional ground state, the motion of the
particle has to be treated quantum mechanically. According to [93] the Hamiltonian for a
two-level atom of mass m in a one-dimensional, harmonic trap of frequency ω interacting
with a traveling light field of a single mode laser near the atomic resonance is given by

H = H(m) +H(e) +H(i), (2.37)

H(m) =
p2

2m
+

1

2
mω2x2, (2.38)

H(e) =
1

2
~ωAσz, (2.39)
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where p and x are the momentum and position operators for the particle, and σ+, σ−, σz

are the Pauli spin matrices. H(m) and H(e) describe the atomic motion and the electronic
state of the atom. The interaction term with the classical light field of frequency ωL and
wave vector k can be expressed as

H(i) =
~

2
Ω(σ+ + σ−)

(

ei(kx−ωLt) + e−i(kx−ωLt)
)

. (2.40)

The interaction strength is given by the Rabi frequency Ω. The model has a similar form
to the Jaynes-Cummings model [94, 95] describing the interaction of a two-level system
with a single cavity mode except that the role of the quantized radiation field is replaced
by the quantized motion of the atom in the trap.

Because the trap is harmonic, the position and momentum operators can be replaced
by the creation and annihilation operators a† and a for the trap quanta. Introducing the
Lamb-Dicke parameter2

η = k

√

~

2mω
(2.41)

which relates the classical recoil energy of the photon to that of one trap quantum, the
interaction Hamiltonian is given by

H(i) =
1

2
~Ω

(

eiη(a+a†)σ+e−iωLt + e−iη(a+a†)σ+eiωLt
)

. (2.42)

In the interaction picture,

HI =
1

2
~Ω

(

eiη(a+a†)σ+e−i∆t + e−iη(a+a†)σ+ei∆t
)

. (2.43)

Here, the rotating-wave approximation [87] was applied and terms oscillating at twice the
optical frequency were neglected. Depending on the detuning ∆, this Hamiltonian will
couple certain electronic |g, e〉 and motional states |n, n′〉.

In the Lamb-Dicke limit, i. e. for the condition η2(2n + 1) ≪ 1, the exponential in
Eq. (2.43) can be expanded in terms of η

HI =
~

2
Ωσ+

(

1 + iη(ae−iωt + a†eiωt)e−i∆t +O(η2)
)

+H.c. (2.44)

As a consequence, transitions which change the vibrational quantum number by more
than one are greatly suppressed. Transitions |S〉 |n〉 − |D〉 |n〉, which do not change the
motional state (∆ = 0) are called carrier transitions and have a coupling strength Ω. A
detuning of ∆ = −ω gives rise to red sideband transitions of the type |S〉 |n〉 − |D〉 |n− 1〉
with a Rabi frequency of η

√
nΩ. On the blue sideband for ∆ = ω the coupling strength is

η
√
n+ 1Ω.

2In case of an angle ϑ between the oscillation and the laser: η = k cos ϑ
p

~/2mω.
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2.4.3 The Ramsey experiment

For the purpose of frequency measurements with Ramsey’s method of separated fields,
an atom is probed by two π

2 -pulses separated by a waiting time τR. The rotation caused
by these pulses are described by the transformation matrix given in Eq. (2.25). During
the time where the atom is left to evolve freely and does not experience the interrogation
field, a special case for the transformation matrix R applies, where ΩR = 0. Therefore, R
reduces to

R(0, 0,∆, θ) =





cos(∆θ) − sin(∆θ) 0
sin(∆θ) cos(∆θ) 0

0 0 1



 . (2.45)

In contrast to atomic fountain clocks or conventional Cs beam tubes, where the atoms
pass through two interaction zones and travel through a microwave-free region, trapped
atoms are interrogated by separating the laser pulses in time. In between, the light is
switched off and the transition frequency ωA is constant over the whole time.

The atom is usually prepared without any coherences (U(0) = V (0) = 0), but in a
certain initial state characterized by the population difference W (0) = −1 or W (0) = +1
depending on wether the atoms were initialized in the ground or excited state. The modifi-
cation of the atomic quantum state by the two laser pulses is given by Ri = (ΩR, φi,∆, τ),
with i = 1 the first and i = 2 the second pulse. The evolution during the Ramsey waiting
time τR the is represented by R(0, 0,∆, τR). The state of the atom at the end of the
Ramsey experiment is simply described by a multiplication of the transformation matrices
for the individual steps, so that the Bloch vector becomes





U(τ, τR, τ)
V (τ, τR, τ)
W (τ, τR, τ)



 = R2(ΩR, φ2,∆, τ)R(0, 0,∆, τR)R1(ΩR, φ1,∆, τ)





0
0

W (0)



 . (2.46)

At the end of the experiment, the state of the atom can then be detected for instance
by electron shelving. The detector signal is proportional to the probability P (τ) that
the atom has made a transition between the |g〉 and the |e〉 state. Taking Eqs. (2.27),
(2.45), and (2.46) and replacing the individual phases φi of the pulses by φ = φ2−φ1, the
transition probability is

P (τ) =
4Ω2

R

Ω2
sin2

(

1

2
Ωτ

)[

cos

(

1

2
Ωτ

)

cos

(

1

2
∆τR + φ

)

−∆

Ω
sin

(

1

2
Ωτ

)

sin

(

1

2
∆τR + φ

)]2

.

(2.47)

The appearance of the fringes with a periodicity of 1/τR is characteristic for the so-
called Ramsey pattern [4] and an example is shown in Fig. 2.4. The parameters for this
plot are a Ramsey time τR =1 ms, a pulse length of τ =50µs, and a Rabi frequency
ΩR/(2π) =4.6 kHz. The dashed line marks the average value of the excitation profile and
can be obtained by replacing the rapidly oscillating terms in Eq. (2.47) by their mean
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values. This yields

PRabi =
Ω2

R

2Ω2

(

sin2(Ωτ) +
∆2

Ω2
(1− cos(Ωτ))2

)

, (2.48)

independent of the pulse phase difference φ. It can be shown, that Eq. (2.48) is the Fourier
transform of the rectangular pulse distribution. The central part of the Ramsey pattern
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Figure 2.4: The Ramsey pattern (solid line) for a Rabi frequency of ΩR/(2π) =4.6 kHz
and a pulse separation of 1 ms. The Rabi pedestal is indicated by the dashed line.

is of special interest as it provides the practical information about detuning of the laser
from the transition line center. For ∆≪ ΩR, Eq. (2.47) can be simplified to

P (τ) =
1

2

[

1 + cos

(

∆(τR +
4τ

π
) + φ

)]

sin2(ΩRτ), (2.49)

where (τR + 4τ
π ) can be interpreted as an effective Ramsey time, taking into account the

precession of the Bloch vector around the z-axis during the Ramsey pulses. This is in
agreement with a slightly different approach discussed in [81]. Equation (2.49) is further
reduced to

P (τ) =
1

2
[1 + cos(∆τR + φ)] sin2(ΩRτ) (2.50)
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under the condition τ ≪ τR, which is typically used in the context of text book examples
of Ramsey experiments. The error for an insufficient near-resonance condition is given by
a first order expansion of

∆P (τ) = −2∆

ΩR
tan(

1

2
ΩRτ) sin(∆τR + φ) sin2(ΩRτ). (2.51)

For φ = 0 there is a maximum of Eq. (2.47) at ∆ = 0, when the frequency of the laser
equals the atomic transition frequency. The value for the maximum also depends on the
Rabi frequency and reaches the upper limit of unity at ΩRτ = π

2 . If we have φ = ±π
2

the pattern is shifted by half a fringe and the excitation probability reaches 50%. At this
point, the pattern has the steepest slope with respect to the detuning, the ideal case for a
frequency discriminator. The two excitation probabilities Pi obtained for the two different
phase settings φ = π

2 for i = 1 and φ = −π
2 for i = 2 can be combined to calculate the

detuning to the laser with respect to the atomic resonance in the following way:

∆/(2π) = arcsin

(

P2 − P1

(P1 + P2)C

)

/

(

2π(τR +
4τ

π
)

)

, (2.52)

where C is introduced to describe a loss of the fringe contrast caused by decoherence
effects or insufficient state preparation.

Please note, that the crossing point for the two cases φ = ±π
2 lies at a detuning of

∆ = 0 and - for a fixed pulse time τ - does not depend on the actual Rabi frequency ΩR.
Errors due to a change of the excitation strength caused by a drift in the laser intensity,
are relevant only if the transition is probed at a non-zero detuning. As an example, for
a pulse length of τ =54µs necessary to realize a π

2 -pulse at ΩR/(2π) =4.63 kHz and a
Ramsey time of τR =1ms, an offset in Rabi frequency of 6% leads to a frequency error
that can be approximated by

∆νintensity ≈ 2.2× 10−3∆/(2π). (2.53)

The result above can be interpreted in terms of a rotating spin. A time-dependent
change of any two-level quantum system may be described as an effective spin-1

2 particle
placed in a static magnetic field [96]. For simplicity, φ = 0 and ΩRτ = π

2 is assumed and
the atom is prepared in the ground state. The evolution of the Bloch vector is illustrated
in Fig. 2.5. The Bloch vector for an atom in the ground state is pointing along the z-
direction. During the first interaction pulse the spin rotates along an axis x into the x-y
plane. In between the Ramsey pulses the Rabi frequency ΩR = 0 and the spin precesses
around the y axis. The rotation angle is given by

ϕ0 = ∆ · τR (2.54)

if the detuning of the laser ∆ = ωL − ωA is constant during the period of free precession.
The second pulse rotates the spin again along the x-axis (φ = 0!). The population change
can now be measured by a projection of the Bloch vector onto the z-axis.
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(a) (b) (c)

Figure 2.5: Bloch sphere pictures for a Ramsey experiment. First, the spin is rotated into
the equatorial plane by the π

2 pulse (a), then the system can evolve freely for a time τR
where the precession angle determined by the frequency detuning (b), and the second π

2
pulse rotates out of the xy-plane again (c). The precession angle can now be measured by
a projection onto the z direction.

2.4.4 Ramsey contrast

The Ramsey experiment was treated so far without taking decoherence effects into account
which occur for real experiments. In Eq. (2.52) the contrast C was introduced without
giving a more detailed explanation. In 40Ca+, two effects can lead to a loss of contrast
due to decoherence, when probing the 4s 2S1/2 − 3d 2D5/2 transition. One effect is of
course related to frequency fluctuations of the interrogation laser, the other one is caused
by magnetic field fluctuations which affect the different transitions according to their
magnetic quantum numbers. Mathematically, these effects can be treated identically as
they both lead to a fluctuating detuning ∆ of the transition. In order to calculate the
contrast as a function of the waiting time τR, we have to assume a certain noise model.

First a Gaussian ”shot-to-shot” noise is considered with the following distribution of
frequency fluctuations

P (∆) =
1

σ
√
π

exp

(

−∆2

σ2

)

, (2.55)

where σ is the half width at the 1/e-point. Therefore, each individual Ramsey experiment
will accumulate a different phase factor exp(i∆τR). The contrast can be calculated by the
average of the phase fluctuations, that is

C(τR) = |〈exp(i∆τR)〉| =
∣

∣

∣

∣

∫ +∞

−∞
d∆P (∆) exp(i∆τR)

∣

∣

∣

∣

= exp

(

−σ
2τ2

R

4

)

. (2.56)

The FWHM of the frequency fluctuations for the above definition of σ is

2π∆νFWHM = 2
√

ln 2 σ. (2.57)

Taking this into account, C(τR) can be expressed as

C(τR) = exp

(

−π
2∆ν2

FWHMτ
2
R

4 ln 2

)

. (2.58)

23



Let τ1/2 be the time for which the contrast reaches 50% of the initial value, the corre-
sponding FWHM of the laser frequency is given by

∆νFWHM =
2 ln 2

π

1

τ1/2
. (2.59)

Analogous to Gaussian frequency fluctuations, the contrast can be calculated in case of
a Lorentzian distribution

P (∆) =
1

π

γ

γ2 + ∆2
(2.60)

with a half width at half maximum of γ. The contrast then decays exponentially with the
waiting time given by

C(τR) = exp (−γτR) . (2.61)

The laser linewidth is related to the time τ1/2 where the contrast has decayed to 50% by

∆νFWHM =
γ

π
=

ln 2

π

1

τ1/2
. (2.62)

Measurements of the Ramsey decay are therefore a valuable means for an investigation
of the laser linewidth of an ultra-stable laser, particularly interesting for experiments where
no second ultra-stable laser system for an optical beat measurement is available.

2.5 Interaction with magnetic and electric fields

2.5.1 Zeeman shift

The total angular momentum J of the valence electron is given by

J = L+ S. (2.63)

Each of the fine structure levels J consists of (2J + 1) sublevels which are related to the
angular distribution of the electron wave function. They are labeled by the magnetic
quantum number mJ = −|L+S| ≤ J ≤ L+S. The degeneracy of the magnetic sublevels
is lifted in the presence of a non-zero magnetic field B. The Hamiltonian describing the
interaction of the magnetic moment µ of the atom with the magnetic field in first order
perturbation theory is

HZeeman = −µB. (2.64)

If the energy shift of the magnetic field is small compared with the fine structure splitting,
the magnetic moment can be written in terms of the total angular momentum of Eq. (2.63)
and the interaction Hamiltonian becomes

HZeeman = −µBgJJB, (2.65)
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where µB is the Bohr magneton and gJ the Landé g-factor, which is given by [97]

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

≃ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

(2.66)

Here, gL and gS are the g-factors for the orbital and spin magnetic moments and the second
expression is an approximation for gL ≃ 1 and gS ≃ 2. Equation (2.66) does not contain
QED effects and corrections for the complicated multi-electron structure of 40Ca+ . The
g-factor in the ground state of 40Ca+ has been precisely measured by Tommaseo et al.
[98] to be gJ(4s 2S1/2) = 2.002 256 64(9) while gJ (3d 2D5/2) ≃ 1.2.

For B = Bez and J = mJez, where ez is the unit vector in the quantization direction,
the frequency shift of a magnetic sublevel can be calculated as

∆νlinZ = mJgJ
µBB

~
(2.67)

to lowest order in B. This is called the anomalous Zeeman effect. The higher order
contribution to the Zeeman effect has a quadratic component which shifts the levels which
couple to the sublevels of the 3d 2D3/2 state. By using second order perturbation theory
[99], the quadratic Zeeman shift is

∆νquadZ = K
(µBB)2

h2νFS
, (2.68)

where νFS is the fine structure splitting and h the Planck constant and K a constant
depending on the magnetic sublevel given by

K =
6

25
for mD = ±1

2 ,

K =
4

25
for mD = ±3

2 ,

K = 0 for mD = ±5
2 . (2.69)

In most cases this correction of a few Hz is negligible compared to the linear contribution
which is on the order of MHz but for the clock measurement it represents the largest shift
in the error budget after the cancellation of the linear Zeeman effect and the quadrupole
shift.

There is also a non-zero mean-square magnitude of the magnetic field caused by black-
body radiation. According to [100], it can be expressed as

〈B2(t)〉 = (28 mG)2
(

T

300 K

)4

. (2.70)

At room temperature, the estimated shifts for the individual transitions would be well
below 1mHz and therefore completely masked by other magnetic fields.
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2.5.2 Electric quadrupole shift

The non-spherical charge distribution of the upper D level gives rise to an electric quadru-
pole moment that can interact with any electric field gradient present in the trap, for
example those gradients generated by the DC electrodes of a linear Paul trap or by patch
potentials on the trap electrode structure. According to [91], the electric quadrupole mo-
ment Θ(γ, J) of an atom in the electronic state |γ, J〉 having a the total angular momentum
J in the magnetic sublevel with maximum magnetic quantum number mJ is defined as

Θ(γ, J) = −e
〈

γ, J,mJ = J

∥

∥

∥

∥

∥

N
∑

i=1

r2iC
2
0(θi, φi)

∥

∥

∥

∥

∥

γ, J,mJ = J

〉

, (2.71)

where the sum is taken over all electrons i with the radial coordinate ri and angular

coordinates θi, φi and the renormalized spherical harmonic C
(2)
0 (θi, φi) =

√

4π
5 Y2,0(θi, φi).

The interaction Hamiltonian for the atomic quadrupole moment coupled to an electric
field gradient is given by Eq. (2.32). Here, the components of the tensor describing the
gradient of the external field ∇E for a electric trapping potential given in Eq. (2.3) is

∇E(2)
0 = −A,

∇E(2)
±1 = 0,

∇E(2)
±2 =

√

1

6
ǫA, (2.72)

where the term proportional to ǫ takes into account a possible field gradient which is not
oriented along the trap axis, e. g. created by a patch potential. The trapping potential
therefore is modified by an extra component U ′(x, y, z) = ǫA(x2 − y2). The Hamiltonian
then takes the form

HQ = −AQ(2)
0 +

√

1

6
ǫA(Q

(2)
2 +Q

(2)
−2). (2.73)

The magnitude of the electric field gradient in z-direction can be calibrated by the trap
frequency ωz and is given by

A = ∇E =
Mω2

z

e
(2.74)

using the gradient of the electric field from Eq. (2.4) and inserting Eqs. (2.6) and (2.9).
Comparing the results obtained by [101] for the quadrupole shift in Sr+, the shift for

the 3d 2D5/2 levels in 40Ca+ can be calculated as

∆νQuad =
eA

h
〈3d| r2 |3d〉

(

1

4
− 3

35
m2

)

[(3 cos2 β − 1)− ǫ sin2 β(cos2 α− sin2 α)], (2.75)

where the orientation of the quantization axis and the electric field gradient has been
parameterized by a set of Euler angles {α, β, γ}.

Theoretical calculations for the 3d 2D5/2 levels in 40Ca+ predicted a quadrupole moment
of 1.89 ea2

0 and 1.92(1) ea2
0 [24, 102, 103], recent calculations with 1.85(2) ea2

0 [104] and
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1.82 ea2
0 [105] lie closer to the experimentally obtained result described in Chp. 7. For

typical field gradients in our linear Paul trap of 25 V/mm2 at a tip voltage of 1000 V and
assuming that the gradient direction is along the trap axis, but at an angle of 30◦ with
respect to the quantization axis, the expected shifts are on the order of ∆νQuad=10 Hz.
Taking the sum over the factor

(

1
4 − 3

35m
2
)

for all possible values of m, the shift adds to
zero. This means, that for an absolute frequency measurement of the 4s 2S1/2− 3d 2D5/2

transition, averaging of transitions involving all sublevels of the 3d 2D5/2 state completely
cancels the quadrupole shift [23]. The same can be achieved by averaging over three
mutually orthogonal directions of the quantization axis which was proposed in [91].
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Chapter 3

Experimental setup

In this chapter a description of the experimental setup is given. After a complete overview
a part is dedicated to the ion trap setup followed by a brief review of the laser systems
used for cooling and repumping which have recently been remodeled. The setup for the
laser at 729 nm and the fiber noise cancellation are explained in more detail. And finally,
the detection of optical beat notes for the analysis of the laser’s spectral properties is
presented.

3.1 Overview

For most of the measurements in this thesis except for the optical frequency comparisons
and measurement of the 4s 2S1/2 − 3d 2D5/2 transition in 43Ca+, the linear ion trap
dedicated to quantum information processing at the labs of the University of Innsbruck was
used. The mentioned frequency comparison and the measurement with 43Ca+ was done
with the help of an additional ion trap experiment located at the Institut für Quantenoptik
und Quanteninformation (IQOQI). An aerial image of the campus with the location of the
labs and the optical fiber link can be seen in Fig. 1. In Fig. 3.1 a sketch of the experimental
setup with focus on the measurement of the optical frequency of the two spectroscopy
lasers at 729 nm is shown. The setup at the University consisted of five major building
blocks: the ion trap, a frequency comb with the transportable Cs atomic fountain clock
from LNE-SYTRTE in Paris (Fig. 3.2), the laser systems, and the computer controls (not
shown). The lasers were set up on two optical tables, one carrying two solid-state laser
pumped1 Titanium:sapphire lasers2 and a frequency doubler3 (SHG) to generate light
at 397 nm for cooling and at 729 nm for spectroscopy, the other one carrying the lasers
for repumping at 854 and 866 nm as well as the reference cavities for the Pound-Drever-
Hall stabilization of the cooling and the repumping lasers. The spectroscopy laser was
locked to an ultra-stable, high finesse cavity mounted on a vibration isolation platform4

1Coherent 10 W Verdi lasers
2Coherent 899 Ti:sa ring lasers
3LAS Wavetrain
4Minus-K BM-4

29



-80 MHz

University main lab

IQOQI

Ti:Sa

729 nm

Ti:Sa

729 nm

AO2

AO1

AO5

AO3

AO4

frequency

comb

Cs

fountain

RF

counter

optical

beat note

detection

optical

beat note

detection

AO6

-80 MHz

-77.76 MHz

~ 540

  MHz

~1.1 GHz

40Ca+

ion trap

Ti:Sa

794 nm

SHG

397 nm

diode lasers

854 & 

866 nm

PI lasers

fs lab

AO8

AO7

40Ca+/43Ca+

ion trapAO9

A
O

1
0

A
O

1
1

RF

counter
80 MHz80 MHz

500 m

500 m

~ 487 MHz

~1.3 GHz

IQOQI lab

Figure 3.1: Overview of the frequency measurement setup: Two similar ion experiments
can be compared via 500 m long polarization maintaining fibers. A single experiment
setup consists of a linear Ca+ ion trap and Ti:Sa lasers stabilized to an ultrastable high
finesse cavity. The numbers show the AOM (yellow blocks) frequencies in MHz.
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Figure 3.2: The transportable Cs atomic fountain clock (FOM) of LNE-SYRTE in the lab
at Innsbruck in 2007. Photo: IQOQI.

by the Pound-Drever-Hall method. The lasers needed for photo-ionization (PI lasers) were
located on a small breadboard next to the optical table with the ion trap system and the ion
detection was composed of a photo multiplier tube (PMT) and a sensitive CCD camera5.
All laser beams are transported via polarization maintaining fibers except for the photo
ionization light which only requires a single mode fiber. The fibers for transportation of
729 nm light are stabilized to compensate for optical path length changes due to stress
induced by acoustic vibrations or temperature changes. One of these fibers leads into a
different room (fs lab) where a frequency comb is residing and also the transportable Cs
atomic fountain clock that was used to reference the frequency comb and all RF sources
to the SI standard of the second. An additional ion trap located at IQOQI served as a
reference system for frequency comparisons of Ca+ ions as well as for an absolute frequency
measurement of 43Ca+. A detailed description of that experiment can be found in Jan
Benhelm’s PhD thesis [81]. The two buildings are connected through two 500 m long,
length stabilized polarization maintaining fibers for 729 nm light and optical beat notes
can be detected independently at each site. Both lasers can be referenced to calcium ions at
their experiment by feeding back onto the frequency of acousto-optic modulators (AOM)
for cancellation of slow drifts of the reference cavities (AO2 and AO7) and to compensate
for changes of the magnetic field and addressing of individual Zeeman transitions (AO4
and AO10).

5Andor iXon DU860AC-BV
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3.2 Linear ion trap

The linear ion trap at the University lab consists of four blade-shaped electrodes for radial
and two endcaps for axial confinement. A picture and a sketch with the exact dimensions
are given in Fig. 3.3. This trap has been designed by Stephan Gulde and a more thorough
description can be found in his PhD thesis [79]. The details about the ion trap at IQOQI
are discussed in [81]. For typical operation conditions of the University trap, a radio
frequency ΩTrap/2π =23.5 MHz from a (up to) 50 W power amplifier is coupled into a
helical resonator with a quality factor Q = 250 to boost the voltage V=V0 cos(ΩTrapt) at
one of the blade pairs to V0 ∼1 kV while the other pair is connected to ground. The static
potential applied to the end caps is provided by a stable high voltage supply6 with 10−6

stability. For a radio frequency power of 9 W and a tip voltage of 1000 V we typically get

(a) Picture of the trap.
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(b) Dimensions of the trap.

Figure 3.3: The ion trap of the University of Innsbruck. The dimensions are given in mm.

secular trap frequencies of ωa/2π = 1.2MHz in the axial and ωa/2π = 3.4MHz in the
radial directions.

3.2.1 Vacuum vessel and optical access

The ion trap is mounted in a vacuum vessel shown in Fig. 3.4. The trap axis is tilted
with an angle of β0=28◦ with respect to the magnetic field defining the quantization axis
produced by the main coil pair Cσ. The tilt of the field is necessary since the optical
access along the trap axis is blocked by the end-cap tips. This is also the direction of a
beam of σ-polarized light at 397 nm for optical pumping into the desired |S,ms〉 state.
To control the field in horizontal direction there is another pair of coils CD along the
direction of the Doppler cooling beam which also contains the repumping lasers at 854
and 866 nm. The magnetic field gradient can be changed by a single coil at the viewport

6ISEG EHQ F020p
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Figure 3.4: The optical access and magnetic field coils. The dashed lines indicate the
quantization magnetic field and the trap axis.

between the Doppler and σ ports. Also shown are the two objectives (O) for imaging of
the ion’s fluorescence at 397 nm onto a photo-multiplier (PMT) or onto the CCD camera.
The latter objective’s main purpose though is to focus the 729 nm spectroscopy light
tightly onto the ions with a spot-size of less than 3µm [80]. The beam can be steered
along the ion string for individual addressing with the help of an electro-optic deflector.
Along the vertical direction the magnetic field can be controlled by a third pair of coils Cz.
Additionally, there is an auxiliary port for light at 729 nm at an angle of 45◦ to the vertical
axis and the horizontal plane. It is used for micromotion compensation and simultaneous
coherent operations on all ions of the ion string. The whole apparatus is covered by a
µ-metal box for shielding of surrounding magnetic stray fields, for example produced in
the lab by power supplies or a BEC experiment next door. The damping factor at the
line frequency of 50 Hz which is the dominant contribution to the magnetic field noise is
∼ 200. A magnetic field sensor sensitive in all three spatial directions placed inside this
shielding box shows an RMS magnetic field of 37µG. An estimation using Eq. (2.58) and
the obtained Ramsey contrasts in Sec. 6.1 confirms a residual magnetic field amplitude at
the position of the ion of 25µG.

3.2.2 Measurement of the trap temperature

For the error budget of the 4s 2S1/2 − 3d 2D5/2 transition frequency measurement it is
necessary to measure the trap temperature because of the AC Stark shift induced by
black body radiation. Unfortunately, with the current setup it is not possible to have
direct access to the temperature since there are no sensors built in and the viewports are
opaque for light with a wavelength larger than 2µm so a thermal camera could not be
used. Therefore, a test trap with unused leftover-parts had to be built including two PT100
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Figure 3.5: The temperature of a test trap vs. the radio frequency drive power.

temperature sensors glued directly onto one of the RF blades and to the Macor R© holder
next to one of the ground blades. The trap was mounted with similar thermal conductivity
as the real experiment trap and connected to a helical resonator with Q = 280. The setup
was driven by an RF synthesizer7 and a power amplifier8. The frequency was adjusted
by minimizing the reflection with a standing wave ratio meter9 which was also used to
measure the power in forward direction. The resistance of the PT100 temperature sensors
was measured with a precision multimeter10 and the temperature could be calculated by
using standard parameters for PT100. Fig. 3.5 shows the trap temperature as a function
of trap power. The fitted line is a simple model combining heat conduction through the
feed-throughs and thermal radiation. The temperature T as a function of RF power P
can be approximated by T (P ) = 25 + 14P − 0.003P 2 − 0.002P 3 − 0.0004P 4. At the
typical operating power of 9 W a trap temperature of 150 ◦C can be inferred according
to this model. The uncertainty of the measurement on the test trap is a few ◦C but
for the real experiment trap an error of 50◦C is assumed for the following reasons: The
resistance measurement could only be performed with the RF switched off. The time delay

7HP Network Analyser 3577B
8Minicircuits ZHL-10W
9Daiwa CN-801HP

10Keithley DMM 2000
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between the switch off and the measurement is responsible for a few ◦C lower temperature.
Furthermore, the cable diameters and materials necessary for the estimation of the heat
conductivity for the real trap could only be guessed from pictures since this information
has not been documented. This is one of the reasons why the comparison of the two traps
and the temperature at the real trap is somewhat difficult. Another reason is that the
helical resonator for the test trap had a quality factor of 280 instead of 250 as for the
experiment trap. This might lead to slightly different trap temperatures due to a different
amount of resistive heating.

Overall, it is quite safe to assume such a large error because there is already a hint for
the real temperature of the trap. When the trap power is changed from <2W to 15 W
a displacement of the ions in vertical direction on a CCD camera of ∆l = 80µm can be
observed [79]. Together with the thermal expansion coefficient of 16×10−6 K−1 for the
10 cm long stainless steel rods suspending the trap the change of the mean temperature
is ∆T=50◦C. The end of the rods is assumed to heat up to about 100◦C assuming that
the trap setup at 2 W power is already 50◦C. This is reasonably close to the temperature
obtained with the test trap given the fact that the exact dimensions and materials of the
mounting structure are not well known and that there might be a temperature difference
between the Macor R© holder and the trap itself due to the different thermal conductivity.

3.3 Laser sources for the dipole transitions

Ion trap experiments with Ca+ ions have a great technological advantage. All the laser
sources needed for photo-ionization, laser cooling, optical pumping, and detection, re-
pumping of the D-levels and spectroscopy are nowadays commercially available as diode
lasers. At the time when the experiment at University was built, this was not the case yet,
so the lasers for cooling/detection at 397 nm and for spectroscopy of the 4s 2S1/2−3d 2D5/2

transition at 729 nm are still generated from Titanium:Sapphire lasers (Ti:Sa) pumped by
diode pumped solid-state laser systems (DPSS). For laser cooling, the output of the second
Ti:Sa at 794 nm is frequency doubled. The wavelengths of the laser systems can be mea-
sured by a commercial wavemeter11 with 60 MHz accuracy. Also, the optics like lenses,
mirrors, polarizers, optical fibers, etc. are mostly standard, off-the-shelf components.

3.3.1 Laser system at 397 nm

The Ti:Sa at 794 nm is locked to a reference cavity by the Pound-Drever-Hall method and
can be adjusted in frequency by changing the voltage of piezoelectric transducers (PZT)
holding one of the mirrors of the cavity. The mirror is mounted on two PZT rings similar
to the method described in [81]. This way, thermal drifts caused by the thermal expansion
of the piezo material, which is two orders of magnitude higher than for the Zerodur R©
spacer, are highly suppressed.

The light is frequency doubled by a Lithium triborate crystal (LBO) in a resonator stabi-
lized by the Hänsch-Couillaud method. It generates about 100 mW of light at 397 nm which

11HighFinesse WS-7

35



is distributed to three independent 40Ca+ experiments by polarizing beam splitters (PBS)
and half-waveplates. Each experiment has its own AOM12 in double pass configuration
with separate amplitude and frequency control (center frequency 80 MHz). In front of the
cat’s eye prism for retro-reflection of the beam a mechanical shutter is placed to block
the zeroth order from the AOM. If needed like in the event the ion crystal has melted or
for easier loading of the trap, the far red-detuned (160 MHz) light from the zeroth order
helps in (re-)crystallizing. The light is then focused into a polarization maintaining optical
fiber13 and transported to the vacuum vessel housing with the ion trap. The light can be
switched off by a factor of <10−5 with two RF switches14 and a mechanical shutter for
the zeroth order.

At the experiment table the light gets split into two parts: one part for optical pumping
and one for cooling and detection of the ion. Each branch includes an AOM in single pass
configuration (center frequency 80 MHz) for individual amplitude and frequency control.
The light can be switched off with more than 60 dB in each branch. The light is finally
made overlapping with the repumping light at 854 and 866 nm and transmitted to the
viewports via photonic crystal fibers15 and focused onto the ion string.

3.3.2 Laser systems at 854 and 866 nm

The light at 854 nm for resetting the D5/2 level and 866 nm for repumping the D3/2 level is
generated by two commercially available, grating stabilized diode lasers16. Both lasers are
stabilized to separate reference cavities by the Pound-Drever-Hall method. The resonators
share the same Zerodur R© spacer together with the cavity for the stabilization of the 794 nm
laser and the same temperature stabilized vacuum vessel. The frequency of the lasers can
be tuned by changing the cavity length with mirrors mounted on PZTs the same way as
mentioned above. Again, these laser sources are shared by all 40Ca+ experiments at the
University and each beam line has it’s own double-pass AOM17 for individual amplitude
and frequency control. When the lasers are switched off, the light levels of both lasers
after the polarization maintaining fibers18 on the experiment table are less than 0.1 nW
each.

3.3.3 Lasers for photo-ionization

In order to load ions into our trap a beam of neutral calcium atoms is ionized near the
trap center. In the past, this was achieved by electron bombardment causing a bunch of
problems like creating stray charges on the trap electrodes and the supporting structure,
the necessity of a high calcium flux, or the ionization of impurities like background atoms.
This can be avoided by photo-ionizing the calcium atoms using two laser sources at 423 nm

12Brimrose QZF80-20-397
13Schäfter & Kirchhoff OXF-SM-400-125-P
14Minicircuits ZYSW-2-50DR
15Crystal Fibre PM-9
16Toptica DL-100
17Crystal Technologies 3200-121
18Schäfter & Kirchhoff PMC-850-5,5-NA011-3-APC
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for driving the 4s 1S1 − 4p 1P1− transition and 390 nm for transferring the electron into
the continuum as described in [106]. Both are grating stabilized diode lasers19 without any
further stabilization. The frequency of the 423 nm laser can be tuned by a PZT changing
the grating position or the diode temperature.

3.4 The spectroscopy laser at 729 nm

At the heart of the experiment is the ultra-stable laser at 729 nm used for spectroscopy of
the 4s 2S1/2 − 3d 2D5/2 transition. In addition, the laser is used for:

• frequency resolved optical pumping,

• sideband cooling to the motional ground state,

• coherent manipulation of qubits for quantum information processing,

• precision spectroscopy on the 4s 2S1/2 − 3d 2D5/2 transition.

Since the natural linewidth of the transition is ∆ν0 =140 mHz, it requires a narrow-band
laser for optimal state manipulation. The laser system is based on a Ti:Sa ring laser
pumped by a DPSS laser at 532 nm. The standard Coherent 899 ring laser provides high
output power (600 mW at 7W pump power) with a linewidth of roughly 500 kHz. In order
to improve the performance the system had to be upgraded by an intra-cavity electro-optic
modulator (EOM) [107] and stabilized to an external reference. More details about the
stabilization of a Ti:Sa at 729 nm and the setup at IQOQI can be found in [108].

3.4.1 The Titanium:Sapphire ring laser

In the following, the system used for the absolute frequency measurement of the 4s 2S1/2−
3d 2D5/2 transition is explained in more detail. Figure 3.6 shows a sketch of the Coherent
899 ring laser with the intra-cavity elements. The three elements used for the external fre-
quency stabilization are highlighted with dashed circles. To increase the servo bandwidth
an EOM20 was inserted into the upper beam which led to a boost of the bandwidth from
a few kHz to more than one MHz.

Though the Ti:Sa crystal has a very broad gain profile (650 to 1100 nm), the geometry
of the laser cavity ensures single transverse mode operation. To ensure single-mode oper-
ation also in longitudinal direction and to provide for frequency tuning, several frequency-
selective intra-cavity elements are required. The birefringent filter (BF) consists of three
birefringent plates with a thickness ratio of 1:4:16. Only those modes survive for which the
optical path length for the ordinary as well for the extraordinary direction match integer
multiples of the wavelength. By tuning the angle of the BF this optical path length can be
adjusted but the transmission peak is very broad and the resulting frequency selectivity
is still insufficient. In order to fully achieve longitudinal single mode operation two prisms

19Toptica DL-100
20Linos PM25
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Figure 3.6: Optical setup of the Ti:Sa laser at 729 nm. Feedback can be applied to a mirror
mounted on a piezo (”tweeter”), to an angle tunable glass plate around the Brewster angle
(”woofer”), and an intra-cavity EOM for fast corrections.

and a glass plate called thick and thin etalon are used for further frequency selection. De-
pending on the optical path length l in these elements, only laser modes are transmitted
with wavelengths λ = N l which are integer multiples N of the optical path length. Single
mode operation occurs when all transmission functions have overlapping maxima at one
particular frequency. Therefore, the thick etalon is internally locked to a transmission
maximum by lock-in detection of a 2 kHz signal to a piezo transducer to ensure long term
stability. The angle of the thin etalon can be galvo-controlled manually for coarse tuning
of the laser frequency (FSR∼8GHz). Since the Ti:Sa crystal can emit both in forward
and backward direction an optical diode is inserted into the beam to select a particular
direction and to ensure stable operation without mode-competion.

For fine tuning of the laser frequency with the Coherent electronic control box, the laser
can be locked to the side of a fringe of a low finesse reference cavity using the difference of
the signals from the photo detectors PD1 and PD2. The reference cavity can be scanned
over 30 GHz by a galvo plate and the signal is fed forward to most of the other elements to
maintain single mode operation. The feedback is applied to the piezo of one of the mirrors
(”tweeter”) and the Brewster plate (”woofer”). The ”woofer” can be angle tuned with a
frequency response of 400 Hz and a range of 15 GHz. The tuning range of the ”tweeter”
is 1GHz with an eigenfrequency of 5 kHz. The effective bandwidth is increased to about
18 kHz by a passive two-fold notch filter (”tweeter trap”) that suppresses the two largest
mechanical resonances. The laser as delivered from the manufacturer has a linewidth on
the order of 500 kHz.
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Figure 3.7: Schematic of the laser lock. The external error signal is split into three parts: a
slow part with an integrating amplifier for frequencies lower than 20 kHz, a mid-frequency
part with a high voltage amplifier for frequencies up to 150 kHz and a fast part for larger
frequencies (>150 kHz). The latter two branches feed back onto the two electrodes of the
intra-cavity EOM, the integrating part is combined with the internal error signal of the
Coherent lock and fed to the ”woofer” and ”tweeter”. The circuit marked ”TT” is the
”tweeter trap”, a two-fold notch filter to suppress the largest mechanical resonances of the
”tweeter”.

3.4.2 Locking of the spectroscopy laser to an external reference

For applications requiring a linewidth of less than 500 kHz, the laser has to be locked to
an external reference with higher stability. A diagram showing a simplified sketch of the
electronic feedback signals is given in Fig. 3.7. The external error signal can be added
to the internal feedback loop by a modification of the original electronic circuit which
incorporates a single extra operational amplifier adding the two signals. Furthermore, the
loop bandwidth has to be increased by the insertion of the intra-cavity EOM as mentioned
above (see Fig. 3.6). It can provide an extra frequency tuning range of 200 kHz/V with a
3 dB bandwidth of 100 MHz. Since it is difficult to build fast high voltage amplifiers with
a bandwidth exceeding a few 100 kHz the signal is split into two parts: a high voltage
branch21 (± 200 V max., bandwidth 300 kHz) and a low voltage fast branch (± 15 V
max.) with a commercial amplifier22 having a nominal bandwidth of 10 MHz. The signals
are separately fed onto an electrode of the EOM each sharing a common ground. The
overall loop bandwidth of the fast branch is 1.2 MHz because the signal has to travel back
and forth to the external reference cavity which is set up at a quiet corner of the lab and
connected through a 15 m long optical fiber and a BNC cable. Therefore, the phase change

21The circuit design is described in [107].
22Femto HVA-10M-60-B
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due to the time delay reaches π already for a frequency of 3.3 MHz. The high voltage part
has a loop bandwidth of 140 kHz. With this setup it is possible to substantially narrow
the linewidth of the laser to much less than 100 Hz. The necessary parts to achieve this
goal are explained in the following.

3.4.3 The external high finesse resonator

The construction of an ultra-stable laser necessitates an ultra-stable frequency reference.
For laser stabilization an optical reference cavity formed by two mirrors attached to a rigid
spacer is a good choice because of the exceptionally good short term stability that is on
the order of 10−15 and even better over time intervals ranging from 1 to 100 s for some of
these systems. The most stable lasers have been achieved with stabilization schemes to
high finesse cavities [109–114].

The vertical cavity design and setup

The crucial point for a stable reference is its sensitivity to external perturbations. For an
optical cavity the frequency stability is determined by the stability of the mirror distance.
Vibrations caused by acoustics in the vicinity of the cavity or seismic vibrations caused
by a shaking building can change the mirror distance. The goal therefore is to build a
reference cavity with low sensitivity to external accelerations and to shield the system as
much as possible from the environment. The cavity design developed by Notcutt et al. [110]
at JILA realizes this principle by mounting the cavity vertically exactly at the mid plane
between the mirrors. This way, length changes due to vertical acceleration which are
most likely in a typical lab environment cancel to first order. Fig. 3.8 shows a picture
of the cavity used for the laser stabilization of the laser at the University incorporating
this design. If the cavity is accelerated upwards the upper part gets compressed and the
lower part sags so that the net length change is zero and vice versa. The cavity spacer
as well as the mirror substrates are made out of ultra-low expansion glass (ULE R©) with
a thermal expansion coefficient of below 10−8 K−1. The mirrors are optically contacted
to the spacer of 7.75 cm length. The upper mirror has a curvature of r =50 cm while the
lower is planar. To avoid standing waves within the mirror substrates or etalon effects
with any parallel optical surface, the back sides of the mirrors were antireflection coated
to less than 0.1%. The cavity is mounted at the mid-plane by three PTFE rods which
are themselves resting in a Zerodur R© base plate. Since the cavity stability is determined
by the mirror distance, also length changes due to thermal fluctuations or changes of the
index of refraction have to be avoided. The cavity needs to be placed into a temperature-
stabilized vacuum system as sketched in Fig. 3.9. The vacuum vessel is mounted in a
box of 5 mm thick aluminum which is covered by heating mats23 and thermal insulation
material. Six temperature sensors are placed at each side of the box and the temperature
can be stabilized at temperatures between 25◦C to 30◦C where the ULE R© was specified to
have a minimum of the thermal expansion coefficient. Unfortunately, some part of the ion

23available at RS components
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Figure 3.8: Picture of the external reference cavity. The cavity is mounted at the sym-
metry plane between the two mirrors to compensate for length changes due to vertical
acceleration.

41



PD

CCD

P
D

EOM

λ/4

PBS

ION PUMP

THERMAL INSULATION

ZERODUR

TEFLON

HEATING MATS

BREADBOARD

MINUS-K BM-4

VIBRATION ISOLATION PLATFORM

Figure 3.9: Details of the cavity setup

42



pump is not covered by the aluminum box and an extra temperature stabilization of the
flange is necessary. In fact it turns out, that this is the limiting factor of the temperature
stability which is about 1 mK or less per hour measured at the vacuum vessel. Glass plates
glued to the openings of the outer box prevent air convection caused by the temperature
difference to the outside. These plates have wedges and are mounted at various angles
including the vacuum windows such that no unwanted etalons can be formed by parallel
optical surfaces. On top of the setup, a CCD camera and a photo diode are placed to
monitor the cavity transmission. The cavity and the necessary optics are mounted on a
breadboard which is screwed onto the top of a vibration isolation platform24. It has a very
low natural frequency of 600 mHz. The platform is resting on a 250 kg block of granite
with 16 semi-spheres of Sorbothane R© for vibration isolation. The whole setup is covered
by a wooden box with the walls enhanced by lead mats and acoustic foam. Additionally,
the box is temperature stabilized by cooling water.
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Figure 3.10: The breadboard with the cavity setup and the optics for locking and frequency
tuning of the laser.

The optical setup is shown in Fig. 3.10. The light is transported via a polarization
maintaining fiber and fed through two consecutive AOMs25 in double pass configuration
for frequency tuning before it is sent to an EOM26 for the modulation of sidebands at
11.5 MHz. The light polarization is filtered beforehand at a Glan-Thompson polarizer27

and is aligned with the principal axis of the EOM. If the polarization of the light does not
match the axis of the EOM the light becomes polarization modulated at the modulation
frequency Ω. This polarization modulation is converted to an unwanted amplitude mod-
ulation at the subsequent polarizing beamsplitter and has to be avoided. The particular

24Minus-K BM-4
25Brimrose TEF-270-100-800
26Linos PM 25
27manufactured by B. Halle Nachfl. GmbH, exctinction ratio 10−8
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EOM used has the advantage that it consists of two matched crystals which compensate
for a modulation of the beam pointing caused by the electro-optic properties of the crystal
material which would also lead to amplitude modulation by a change in coupling efficiency.
The only disadvantage of the model is that it requires a rather large voltage of 1000 V for
a phase change of λ/2. The modulation signal at a power of 7 dBm from a synthesizer28 is
therefore amplified by 29 dB with a power amplifier29 and further amplified by a resonant,
home-built LC circuit (Q ∼ 60) to reach a modulation depth of a ∼20%. The light is
then sent through a quarter waveplate and coupled to the cavity. We typically lock to a
TEM00 mode and all other modes are suppressed by more than 90%. The back-reflected
light passes the waveplate again and is detected by a fast photodiode with a bandwidth
of 125 MHz at the output of the polarizing beam splitter.

Cavity parameters

An optical cavity consisting of two highly reflecting mirrors at a distance L can be charac-
terized by two parameters: the free spectral range FSR depending on the mirror distance
and the finesse F depending on the reflectivity R, transmission T and the mirror losses A.
A detailed theoretical description can be found in [115]. The most important parameters
are shortly discussed in the following.

The FSR is the frequency distance of two neighboring longitudinal modes of the same
kind. The FSR is given by the inverse of the roundtrip time

FSR =
c

2L
, (3.1)

where c is the speed of light and L the resonator length. In the case of a 7.75 cm long
cavity this corresponds to a FSR =1.934(2) GHz as was verified by [108] at IQOQI with
an identical cavity. The linewidth of the cavity is related to the finesse F

F =
πτc

L
=
FSR

∆ν
=

π
√
R

1−R, (3.2)

which therefore is a measure for the photon storage time τ of the cavity. Equation (3.2)
can be modified to include also losses A by the relation R = 1−A− T

F =
π
√

1−A− T
A+ T

. (3.3)

The cavity linewidth is important for the slope of the error signal as will be shown
later. It is difficult to be measured directly since this requires a laser with a bandwidth
smaller than the cavity linewidth from the beginning. Instead, it is easier to measure
the photon storage time by a ring-down measurement. Fig. 3.11 shows the result of such
a measurement for the University cavity. The laser was locked to the old cavity setup
[107] and tuned into resonance with the help of the two double-pass AOMs mentioned

28SRS DS345
29Minicircuits ZHL-1-2W
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Figure 3.11: Measurement of the cavity ring-down with a fast photo diode (125 MHz).
After the light has been switched off at t = 0, the decay time τ= 39.5(1) µs is obtained by
an exponential fit. The finesse therefore is 479500(1600).

above. At time t = 0 the driving RF was switched off and the transmission of the
cavity measured with a fast photo diode (bandwidth 125 MHz). The experimental data
is fitted by an exponential decay with a lifetime of τ =39.5(1) µs. This corresponds to
a finesse F =479500(1600) and a cavity linewidth of ∆ν =4034(19) Hz. The combined
losses for the measured finesse are 6.55(3) 10−6 and the reflectivity of the cavity mirrors
is R = 0.999 993 45(3).

Temperature dependence of the TEM00 mode frequency

The vertical cavity has a FSR of approximately 2GHz meaning that the 4s 2S1/2−3d 2D5/2

transition could have a maximum offset from the nearest TEM00 mode of 1 GHz. Since the
thermal expansion coefficient is 10−8 K−1 the frequency tuning by changing the tempera-
ture would have required an unrealistic temperature variation over 240◦C. For this reason,
the frequency of the laser can instead be tuned by two AOMs in double pass configuration
centered at 270 MHz. With the AOM bandwidth of 100 MHz each one can cover almost
the whole required frequency range of 1 GHz.
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Figure 3.12: AOM frequency versus temperature of the vertical cavity.

Figure 3.12 shows the measurement of the AOM driving frequency versus temperature
of the vertical cavity. The laser was locked to a horizontal high-finesse cavity which was
previously used in the experiment [79]. The AOMs for the vertical cavity were driven
by a frequency synthesizer30 and adjusted that also this cavity was resonant with the
laser. A quadratic fit represented by the line yields a minimum of the frequency change
at a temperature of T0 =9(12)◦C. Despite the large fitting error due to lack of data for
temperatures lower than 24◦C, this is within 4◦C of the result later obtained with similar
cavities [114]. They were produced from the same batch of material and both results
for the minimum in the thermal expansion coefficient are contrary to what was specified
by the manufacturer. To operate at the optimum temperature would require a complete
redesign of the setup including thermo-electric cooling of the cavity. We decided that
this was not necessary because the achieved temperature stability of better than 1mK/h
allowed for laser drift rates of less than 1Hz/s which we regard as sufficient for our purpose.
Additionally, the SML-01 frequency synthesizer can be phase-coherently switched with a
minimum step size of 0.1 Hz. It is used to successfully compensate the cavity drift as will
be explained later.

3.4.4 Pound-Drever-Hall stabilization method

The laser stabilization method developed by Hall et. al. is a simple, but efficient way to
stabilize a laser to a Fabry-Perot type optical resonator. It combines the advantage of
a large locking range with a very steep slope at the zero-crossing of the error signal as
compared to other methods [116] and both parameters can be chosen independently. The
error signal is generated by detection of a reflected signal of a phase-modulated laser beam
as shown in Fig. 3.13. The laser beam is phase modulated at a frequency Ω with the help
of an EOM and for a modulation index m≪ 1 the electric field of the light E(t) becomes

E(t) = E0 e
i(ωt+m sin(Ωt)) ≈ E0

(

J0(m)eiωt + J1(m)ei(ω+Ω)t + J−1(m)ei((ω−Ω)
)

(3.4)

30Rohde & Schwarz SML-01
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Figure 3.13: Pound-Drever-Hall locking scheme. The laser beam is phase-modulated by
an EOM driven from a RF source at 11.5 MHz. The light reflected by the reference cavity
passes the quarter wave plate twice and is therefore deflected by the PBS. The beat signal
of the sidebands with the carrier is detected by a fast photodiode and mixed with the RF
source to obtain a phase sensitive error signal which is subsequently processed by the loop
filter and fed back to the laser.

with the Bessel functions of the first kind Ji(m) and ω the carrier frequency. The car-
rier and the sidebands are reflected from the cavity depending on the relative frequency
difference with respect to a particular longitudinal mode of the cavity. Their respective
amplitudes and phases are given by

F (ω) = r
ei

ω
F SR − 1

1− r2ei ω
F SR

, (3.5)

where r is the amplitude reflection coefficient of the mirrors and FSR the cavity mode
spacing in frequency. The quarter-wave plate acts as an effective half-wave plate on the
way back and forth and the reflected light is deflected by a polarizing beam splitter (PBS)
onto a fast photodiode where the sidebands and the carrier can interfere and produce an
electronic signal proportional to the light intensity

I(t) ∝ J0(m)J1(m)
(

Re
{

F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)
}

cos(Ωt)

+Im
{

F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)
}

sin(Ωt)
)

.
(3.6)

The phase of the signal can be measured by mixing it with a local oscillator of frequency
Ω and phase θ to produce the error signal ǫ(∆) which depends on the detuning from the
cavity mode ∆ and the cavity linewidth Γ:

ǫ(∆) ∝ ∆ΩΓ2(Γ2 + ∆2 + Ω2)

(Γ2 + ∆2)(Γ2 + (∆ + Ω)2)(Γ2 + (∆− Ω)2)
cos(θ)

− ∆ΩΓ2(Γ2 −∆2 + Ω2)

(Γ2 + ∆2)(Γ2 + (∆ + Ω)2)(Γ2 + (∆− Ω)2)
sin(θ).

(3.7)
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Figure 3.14: Pound-Drever-Hall error signal calculated for two different phases of the local
oscillator with a cavity linewidth of 100 kHz and a modulation frequency of 10 MHz. The
solid line corresponds to a phase θ = 0◦, the dashed line to θ = 90◦.
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The phase of the local oscillator can be adjusted by building an electronic phase shifter or
simply by changing the cables to the right length and therefore the appropriate time
delay. The resulting shape of the error signal is displayed in Fig. 3.14 for a cavity
linewidth of Γ/(2π) =100 kHz and a modulation frequency Ω/(2π) =10 MHz at a phase
of θ =0◦(solid line) and θ =90◦ phase (dashed line). The interesting case for laser stabi-
lization is θ =0◦ where the slope of the error signal at the center is inversely proportional
to the linewidth. Therefore, in order to increase the slope one has to decrease the cav-
ity linewidth and the need for a high finesse cavity becomes apparent. Furthermore, the
capture range of the signal, i. e. the range of frequency excursions that produce an error
signal with correct sign only depends on the modulation frequency and can be chosen
independently. Finally, the feedback loop is closed by passing the error signal through an
appropriate loop filter with integrating characteristics (PI controller) to keep track of long
term drifts. Thereby, feedback is provided onto the frequency sensitive elements described
above.

3.4.5 Laser stabilization

In this section the stabilization of the spectroscopy laser to the high finesse cavity by
the method of Pound-Drever-Hall (see Sec. 3.4.4) is discussed and the performance of
the system is analyzed. Additionally, minor improvements concerning the laser lock are
mentioned. Since a huge number of sidebands were created at multiples of the thick etalon
modulation frequency in the Coherent setup, they had to be eliminated by building an
external lock. Finally, fluctuations of the laser intensity were be reduced by intensity
stabilization.

Frequency stabilization

The optical setup for the frequency stabilization has already been discussed in Sec. 3.4.3.
The signal modulated at Ω/(2π) =11.5 MHz is detected by a fast photodiode, amplified
with a gain of 20 dB31 and mixed32 with part of the radio frequency signal as mentioned
above to generate the error signal. It is split up into three different branches as described
in Sec. 3.4.2 with an individual loop filter each to increase the total servo bandwidth
to about 1MHz. The relative performance of the lock can be investigated by analyzing
the residual error signal. Figure 3.15 shows a combination of spectrum analyzer traces
of different span normalized by the square-root of the filter bandwidth so that they can
be combined independent of the spectrum analyzer settings. It clearly shows that the
noise between 200 Hz and 5 kHz is dominating the spectrum where the lock is not able to
completely eliminate the perturbations.

The maximum peak to peak amplitude of the error signal is 490(10) mV when scanning
over the resonance. Using the calibration of the Minicircuits ZAD-1 mixer in [108], this
corresponds to a true amplitude of 1000(260) mV due to non-linearities of the mixer. The
slope of the error signal at the line center therefore is D =2.0(5) mV/Hz. The residual

31Minicircuits ZFL-1000LN
32Minicircuits ZAD-1
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Figure 3.15: Fast Fourier transform of the residual in-loop error signal. Four different
servo bumps can be identified: the ”woofer” at 700-800 Hz, the ”tweeter” at 3 kHz, the
high voltage part of the EOM at 300 kHz, and the low voltage part of the EOM at 1.2 MHz.

error signal can be measured with an oscilloscope and is URMS =9(1) mV indicating a

relative linewidth of ∆νLaser =
πD2U2

RMS
B =0.5(4) Hz.

New stabilization of the thick etalon

An analysis of the residual error signal revealed a series of distinct frequencies with a
spacing of exactly the drive frequency of the thick etalon lock ranging from a few kHz to
more than 200 kHz and amplitudes considerably larger than the background noise. This
”frequency comb” is generated internally by the Coherent control electronics. It uses an
amplifier driven into saturation in order to produce a rectangular signal for the internal
lock-in detector starting from a sinusoidal signal. It is responsible for feeding back high
harmonics of the modulation signal onto the supply voltage where it affects all other
control electronics especially around resonances of the system. Fig. 3.16 shows a Fourier-
transform of the error signal up to 100 kHz. The dashed line represents the error signal
obtained with the internal (Coherent) lock, the solid line shows considerable improvement
as a result of the external servo loop. Note that around 93 kHz the signal hits a resonance
and exceeds neighboring peaks by orders of magnitude.

The thick etalon error signal is created by a lock-in detection of an amplitude-modulated
intensity signal using the photodiodes of the Coherent reference cavity (see Fig. 3.6). As a
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Figure 3.16: Spectral components of the error signal. The solid line is a Fourier transform
of the signal when the thick etalon is stabilized with the external lock-in detector, the
dashed line is the signal when locked to the Coherent internal circuitry. One can clearly
see that the high harmonics of the drive frequency disappear for the external lock.

replacement we use an external photodiode33 PD1 as shown in Fig. 3.17 and a commercially
available lock-in amplifier34 for the generation of the error signal. As the loop filter we
use a standard lock box built by our electronic workshop and set the integration constant
to 3 ms. The final stage is a home-built HV amplifier similar to the one used for the PDH
stabilization. The amplified signal was inserted into the circuit replacing resistor R85 of
the Coherent electronic board 1-A1. By careful adjustment of the proportional gain we
achieve a mode-hop free scanning range of the laser of more than 10 GHz which is more
than enough for our purpose.

Intensity stabilization

The output power of the Ti:Sa laser exhibits power fluctuations of up to 10% on the
time-scale of a few ms to seconds. Furthermore, even polarization maintaining fibers can
have slow variations of the output polarization and thereby create additional amplitude

33Thorlabs DET110
34Femto LIA-MV-150
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modulation when polarization sensitive optics is used. Amplitude modulation can cause
two main problems: First, it causes a variation of the Rabi frequency at the position of the
ion and second, amplitude noise is converted into frequency noise at the PDH stabilization
by a fluctuating error signal amplitude.

The solution to this problem is rather simple. For the intensity and polarization sta-
bilization of the fiber guiding light from the laser to the experiment table (see Fig. 3.1)
we take a reflex of a wedge used for the fiber noise cancellation (see section below) placed
after a polarizing beam splitter. The light intensity is monitored with a fast photodiode
(bandwidth 120 MHz). The error signal is created by subtracting a constant offset voltage
from the PD signal with a PID controller35 and fed to a variable attenuator36 controlling
the radio frequency power of the fiber noise cancellation AOM. The attainable servo band-
width is 92(1) kHz. The intensity stabilization for the reference cavity light is set up in a
slightly different way. Here, the transmission of the cavity is used for stabilization with
the same kind of equipment but the servo bandwidth is of course limited by the cavity
bandwidth. Both systems are capable of reducing the amplitude noise to below 1%.

3.4.6 Fiber noise cancellation

The optical setup for the distribution of the 729 nm light is outlined in Fig. 3.17. The main
part of the light (300 mW) is sent to the experiment table by a polarization maintaining
fiber after passing a 2:1 telescope for adjusting the beam size to the fiber collimator37 and
AO1 for stabilizing the optical path length described below. A few mW are sent to the
high finesse cavity and the frequency comb, the rest of the light is guided through the
500 m long fiber to IQOQI (see Fig. 1) for the beat note detection. All these beams pass
AOMs and the -1st diffraction order is sent to the fiber couplers. The AOM frequencies
are indicated in the figure by the numbers in MHz.

The light transported by optical fibers is affected by acoustic vibrations, thermally or
air pressure induced stress. These effects cause changes in the index of refraction and
therefore the optical path length. The resulting broadening of the laser spectrum can
be quite severe and leads to an increased linewidth of about 1 kHz in case of the 500 m
long polarization maintaining fibers. This is not tolerable for precision spectroscopy and
especially bad if the light is sent to the stabilization cavity because the fiber-induced noise
would be transferred onto the laser. It is therefore necessary to interferometrically stabilize
the optical path length. We used the approach developed by Ma and coworkers [117].

The setup consists of a beamsplitter, an AOM and a fast photodiode (PD) as shown for
each beam in Fig. 3.17. The (minus-)first diffraction order of the AOM is sent through
the fiber and is affected by fiber noise. Part of the light (typical 4% glass reflection) is
back-reflected at the 0◦ angle-polished fiber end and sent back through the fiber thereby
picking up the noise twice. In case of the at both ends angle-polished fiber guiding light
to the experiment, we use a glass wedge after a polarizing beam splitter to retro-reflect
the light. The beamsplitter is used for polarization cleaning. After passing the AOM the

35SRS SIM960
36Minicircuits TFAS-2SM
37Schäfter & Kirchhoff 60FC
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second time the light is combined with part of the unmodulated light at the beamsplitter
in front of the AOM. A beat note at twice the AOM frequency can be detected with a
fast photodiode. The electronic beat signal is mixed down with a reference signal from a
stable RF synthesizer38 to produce an error signal at DC. The phase difference between
the beat signal and the reference is fed to a voltage-controlled oscillator (VCO) driving
the AOM after passing an integrating loop filter. This closes the loop and the fiber noise
is compensated by a phase-locked loop (PLL). The servo bandwidth depends on the VCO
bandwidth (typically 300 kHz) and on the signal delay by the optical path length. Even
for the 500 m long fiber a loop bandwidth of 35 kHz was achieved.

The effect of fiber noise broadening the light used for the laser stabilization is shown
in Fig. 3.18. The fiber39 to the high finesse cavity is 15 m long. At typical noise con-
ditions in our lab the spectrum broadens to a full width at half maximum (FWHM)
∆νFWHM=557(7) Hz indicated by the Gaussian fit in Fig. 3.18(a). When the stabiliza-
tion is active the noise gets significantly reduced to below 1Hz as it has been demonstrated
in [108]. A comparison of the unstabilized to the stabilized case is shown in Fig. 3.18(b).
The central peak has a linewidth of 0.9 Hz and is limited by the resolution bandwidth of
the spectrum analyzer40. The loop bandwidth of the stabilization is 170 kHz.

3.4.7 Optical beat note detection

In the previous sections the frequency stability of the laser was only analyzed with respect
to the reference cavity. The analysis of the residual error signal provides a means to
evaluate the quality of the laser lock relative to the resonator. The true spectral properties
of a laser cannot be investigated this way. Instead, comparison to an independent system
is necessary, like for instance by detecting a beat note with a second laser system. An
alternative could also be to compare the laser frequency with the transition frequency of a
narrow atomic transition as described in Sec. 7.2, or at the side of a fringe from an optical
resonator.

For a beat note detection, the spectroscopy laser of the 40Ca+ experiment at the uni-
versity was compared against the laser system of the 40/43Ca+ experiment at IQOQI. The
light of the two lasers can be transported to both sites by two 500 m long, polarization
maintaining fibers equipped with fiber noise cancellation. The two lasers are overlapping
on a non-polarizing beam splitter (BS) and sent to a photodetector, that measures the
interference of the two light fields. The resulting photo-current is proportional to the
optical intensity:

I(t) ∼ |E1(t) + E2(t)|2 = |E1(t)|2 + |E2(t)|2 + 2Re{E∗
1(t)E2(t)}. (3.8)

The power spectrum of the beat signal is a convolution of the power spectra of the two
lasers, that is

SE∗
1E2(f) = SE1(f)⊗ SE2(f). (3.9)

38Marconi 2023A
39Oz Optics PMJ-3A3-633-4/125-3-10-1
40Rohde & Schwarz FSP-13
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Figure 3.18: The effect of the noise of the cavity fiber on the laser frequency. The
unstabilized signal shown on a linear scale in the upper graph has a linewidth of
∆νFWHM=557(7) Hz. The lower graph demonstrates the effect of the stabilization com-
pared to the unstabilized case on a logarithmic scale.
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The spectral properties of the convoluted signal can be investigated with a spectrum
analyzer. For Gaussian laser frequency noise, the resulting spectrum is Gaussian with
∆νFWHM =

√

∆ν2
1 + ∆ν2

2 . If the lasers are dominated by white noise, the spectrum is
Lorentzian where the FWHM of the convoluted signal is the sum of the two individual
widths ∆νFWHM = ∆ν1 + ∆ν2.

-2 -1 0 1 2

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

beat frequency - 55.782475 (MHz)

p
o
w

e
r 

s
p
e
c
tr

u
m

 (
d
B

c
)

laser 1
laser 2

FN

HV EOM

Figure 3.19: The beat signal spectrum for 5 MHz span. The arrows mark the servo bumps
of the fast EOM part for laser 1 (solid), laser 2 (dotted), of the high voltage EOM part of
one of the lasers (dashed-dotted), and one of the fiber noise cancellations for the reference
cavity (dashed).

In the experiment, the light power in each beam was on the order of a few mW. A GaAs
photodiode41 with a bandwidth of 16 GHz serves as a fast optical detector followed by a
6 GHz bias tee42 and a broadband amplifier43. Such a high bandwidth is required if the
4s 2S1/2 − 3d 2D5/2 transition between the isotopes 40Ca+ and 43Ca+ is compared due to
the isotope shift of 5.5 GHz [118]. The beat note signal is mixed down with various stages44

41Hamamatsu G4176
42Minicircuits ZBFT-6GW
43Miteq AFS42-00101000-20-10P-42, bandwidth 10GHz
44synthesizer: Rohde&Schwarz SML-03, mixer: Minicircuits ZMX-10G and ZLW-1, optional frequency

doubler: Miteq MAX2J010060, appropriate low-pass filters
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to a frequency of ∼10MHz in order to match a narrow-band bandpass filter45. The filter is
used to improve the signal-to-noise ratio for the counting electronics. The measured signal
is either analyzed by a spectrum analyzer46 or sent to the frequency counter47. Fig. 3.19
shows such a spectrum with ±2.5 MHz span around the line center at 55.782475 MHz. The
characteristics of the servo electronics is clearly visible and marked by the arrows. The
solid and the dotted arrows mark the location of the ”servo bumps” for the individual
lasers at 1.2 and 1.6 MHz. Closer to the center, at 310 kHz, one can find the fingerprint
of the high voltage servo part of one of the lasers feeding back to the intra-cavity EOM.
Another servo bump stems from the fiber noise cancellation of the fiber to the university’s
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Figure 3.20: The beat signal spectrum for a span of 20 Hz at 51.806800 MHz. The averaged
data set consisting of 5 individual scans (aquisition time 1 s each) with overlapped centers
is fit by a Lorentzian with a FWHM of 0.95(2) Hz.

reference cavity which has a bandwidth of 170 kHz and is in fact oscillating in this case.
Nevertheless, more than 99.97% of the power is concentrated inside an interval of ±2.5 kHz
obtained by integrating the power spectral density.

45Minicircuits BBP-10.7
46Rohde&Schwarz FSP-13
47Kramer+Klische FXM
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In order to measure the linewidth of the lasers, both of them were referenced to a
40Ca+ ion to cancel slow drifts. The beat signal was analyzed on the spectrum analyzer
with an integration time of 4 s to achieve a resolution bandwidth of 1Hz. For Fig. 3.20 five
scans were combined by overlapping the individual centers and taking the average. The
data (dots) is fitted by a Lorentzian with a FWHM of ∆νFWHM =0.95(2) Hz. Neglecting
the contribution of the spectrum analyzer, an individual linewidth of ∆νFWHM/2 can be
attributed to each laser, if both contribute equally to the signal. Please note, that this
measurement represents a collection of the best shots.
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Figure 3.21: Beat signal analysis. The upper graph shows the frequency of the optical beat
signal measured with an RF counter for more than two hours. The lower graph represents
the Allan standard deviation for this data set.

On the time scale of less than a second, the linewidth is typically limited by the spectrum
analyzer’s bandwidth. For durations of a few seconds, the linewidth is most of the time
close to 10-20 Hz and on the order of 50 Hz FWHM when observed over the course of
more than two hours. The frequency counter results for a measurement with a similar
setup as described above at IQOQI [81] are shown in Fig. 3.21 in the upper graph. The
Allan deviation [119] in the lower graph has a pedestal at a few 10−14 before decreasing
with τ−1/2. This indicates that after 120 s, the lock of the lasers to the atomic transition
comes into effect and is able to dominate frequency jitter most likely caused by seismic
noise of the reference cavities. The solid line is a fit with σy(τ) = 1.8(2) × 10−13τ−1/2.
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This is expected to improve dramatically for reference cavities with less sensitivity to
seismic vibrations and lower drift rates. At the moment, the time required for frequency
comparisons at the 0.1 Hz level (2.4 × 10−16) as required for a more precise investigation
of systematic effects of the 4s 2S1/2 − 3d 2D5/2 transition, is longer than six days. A
histogram of the data set yields a FWHM of ∆νFWHM =41(1) Hz for a Gaussian fit and
is shown in Fig. 3.22.
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Chapter 4

The frequency comb

The development of self-referenced frequency combs in 1999 [120, 121] opened a new era in
optical metrology and ultra-fast physics. It allows for a direct link of optical frequency and
microwave standards [14, 22, 122, 123] as well as for the production of ultra-short, phase
stable light pulses of a few cycles [124–127] of the electric field. This opens up a new field in
the direction of optical waveform synthesis [128] and investigation of ultra-fast processes
like in semiconductor physics [129]. Frequency combs can be also used for wavelength
calibration of astronomical spectrographs [130]. On the frequency metrology side, the
most striking feature is the simplicity of the system as compared to the complicated and
unreliable frequency chains [131] previously used for absolute frequency measurements.
Instead of trying to keep many different oscillators and phase-locked loops (PLL) under
control, it suffices to stabilize the fs oscillator with two PLL’s which stands for a major
simplification of optical frequency metrology.

This chapter contains a short review of the operation principle of frequency combs, a
detailed description of the setup and the stabilization scheme, and the tools for a mea-
surement of an optical frequency.

4.1 Principle of operation

The workhorse for the optical frequency metrology are mode-locked laser which emit a
train of ultra-short pulses. Upon first glance, it seems rather counter-intuitive that a
pulsed laser can be used to measure the frequency of a continuous wave laser. But a
closer look at the spectrum reveals that a pulse is formed as a coherent superposition of
numerous, equally spaced optical frequencies. The pulses emitted by a mode-locked laser,
which are separated in time by one cavity round-trip time trt, are illustrated in Fig. 4.1.
As a consequence, the Fourier spectrum consists of a series of delta functions in frequency
with each spectral component separated by frep ≡= 1/trt = c

L , with the speed of light c
and the length of the cavity L.

Modelocking of the laser spectrum, which is required for the formation of an ultra-short
light pulse, is forcing each longitudinal mode fn = n frep of the laser cavity to have a
common phase relationship. This carrier-envelope phase φCE defines the phase of the

61



time

a
m

p
lit

u
d

e

1/f
rep

=t
rt

∆φ
CE

(a) Time domain.

frequency

intensity

f
repf

CEO

ν
m

=m f
rep

+f
CEO

(b) Frequency domain.
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electric field with respect to the pulse envelope and results in a spectral shift fCEO of the
entire frequency comb by the relation

fCEO =
1

2π

dφCE

dt
≈ ∆φCE

2πtrt
. (4.1)

The phase change is related to the difference of the group (vg = c/ng) and phase (vp = c/n)
velocities of the laser cavity, which according to [132] is given by

∆φCE = lcωc

(

1

vg
− 1

vp

)

, (4.2)

where lc is the cavity length and ωc the carrier frequency. The average group index
of refraction can be expressed as ng = n + ω dn

dω , therefore connecting the carrier offset
frequency fCEO to the cavity dispersion properties.

As a result of the strong mode-locking condition, in particular for the Kerr-lens mode-
locked Titanium:Sapphire laser used, each comb element in the spectrum may be charac-
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terized by only two frequencies, the carrier offset frequency fCEO and the laser repetition
rate frep [14], that is

νm = mfrep + fCEO, (4.3)

where m is an integer number on the order of ∼ 106. For further details, the reader is
referred to [133]. Both frequencies, frep and fCEO, lie in the radio frequency domain.
Therefore, the frequency comb provides a direct link between optical and microwave fre-
quencies. Application of single frequency laser stabilization techniques allow for simple,
but very efficient stabilization methods, thus making the frequency comb the ideal tool
for high precision measurements of optical atomic transitions. This explains the major
impact the advent of the optical frequency comb had on optical frequency metrology.

4.2 The fs oscillator: a Kerr lens mode-locked (KLM) laser

The frequency comb used for the absolute frequency measurement of the 4s 2S1/2−3d 2D5/2

transition in 40Ca+ is a commercial system sold by MenloSystems1. It consists of three
major building blocks: a 5 W DPSS pump laser system, the KLM laser2 producing a train
of ultra-short pulses, and the stabilization and frequency detection unit. A detailed sketch
of the experimental setup is shown in Fig. 4.2. The intensity of the pump light at 532 nm
can be controlled by diffracting a small amount of light into the first order of an AOM and
varying the RF power driving the AOM operated at 40 MHz. The green light is focused
tightly into the Ti:Sa crystal where it generates light centered around 810 nm as shown in
Fig. 4.3. The laser cavity is formed by six mirrors. Five of them are so-called ”double-
chirped” mirrors for dispersion compensation [134]. Pulsed operation is achieved by passive
mode-locking of the laser spectrum. This requires that the longitudinal modes of the laser
cavity are equally spaced. However, the bandwidth of the cavity is limited by dispersion of
the intra-cavity elements so that dispersion compensation is needed. Negative dispersion
in the ”chirped” mirrors is obtained by a stack of dielectric coatings where the penetration
depth of the light depends on the wavelength. As a result, pulse broadening by the Ti:Sa
crystal can be compensated over a broad range. The process of the pulse formation in a
KLM laser is a complicated matter, but the basic idea can be summarized by invoking the
concepts of self-focusing and self-phase modulation. The transverse intensity profile of the
light pulse results in the formation of a intensity-dependent lens (Kerr lens) inside the Ti:Sa
crystal due to a nonlinear index of refraction (self-focusing). This nonlinear effect is used as
a passive saturable absorber meaning that the mode-locked operation has a better spatial
overlap with the pump beam as compared to the CW mode [135, 136]. The temporal effect
of a high-intensity laser pulse is a time change in the refractive index leading to a phase
modulation at the pulse edges [137]. This coherently generates new frequency components
in the pulse (self-phase modulation) and together with the dispersion compensation yields
a shorter pulse. Knocking on one of the mirrors starts mode-locking by the formation
of a weak pulse which is then amplified by the nonlinear effects. The mirror without

1MenloSystems FC8003
2Gigaoptics Gigajet
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Figure 4.2: The frequency comb setup.

the dispersion compensation coating acts as the output coupler (OC). The output of the
Ti:Sa oscillator is a train of light pulses with pulse lengths on the order of 30-50 fs and a
repetition rate of 825 MHz.

The output of the laser is tightly focused into a microstructured fiber for spectral broad-
ening by a microscope objective mounted on a motorized XYZ translation stage3 which
can be computer-controlled4. The broadening technique makes use of the high intensity
maintained in the core of a photonic crystal fiber with a small mode field diameter5. The
fiber is composed of a honeycomb structure of air holes surrounding the core, creating
a periodic potential which is preventing the light from penetrating into the cladding for
a bandwidth of more than one octave (photonic crystal) [138]. Spectral broadening is
obtained once again by self-phase modulation and other highly nonlinear effects [139].
The zero dispersion point of this fiber was optimized for the central wavelength of the fs
laser output resulting in a spectral broadening ranging from 500 to 1100 nm. This octave

3XYZ translation stage with Thorlabs PE4
4Thorlabs MDT693
5core diameter ≈2µm
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spanning frequency comb allows for self-referencing of the offset frequency fCEO as will be
explained in the next section. Geometrical imperfections of the fiber during its production
process lead to a preferred polarization direction for optimal broadening. The 20 cm fiber
piece is glued into a holder, which makes it susceptible to changes of its birefringence in-
duced by thermal stress. The slow degradation of the efficiency due to polarization drifts
can be compensated by a motorized half-wave plate at the fiber input.

At the output of the microstructure fiber the light is split into two parts by a dichroic
mirror. The ”red” part ranging from 650 to 850 nm is used for the absolute frequency
detection with external lasers, while the infrared and green light enters the nonlinear
interferometer for the fCEO and frep detection and stabilization. The beat note signals
for fCEO and with the external lasers are detected by avalanche photodetectors6, the
repetition rate detection uses a fast Ga:As photodiode7 on a bias tee8 followed by an
20 dB amplifier9. For better signal-to-noise of the weak beat signals the corresponding
beams are spectrally separated by diffraction gratings with 1200 gr/mm. Details of the
stabilization schemes and the optical beat note detection are presented in the following
sections.

6MenloSystems APD210
7Hamamatsu G4176
8Minicircuits SFBT-4R2GW-FT
9Minicircuits ZEL-0812LN
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Figure 4.4: The output spectrum of the photonic crystal fiber ranging from 500 to 1100 nm.

4.2.1 The stabilization of the carrier offset frequency

The breakthrough of optical frequency combs was marked by the advent of the self-
referencing technique and the use of microstructured fibers for octave-broadening [140–
142]. Up to now, there exist no electronic detectors which are capable of directly detecting
the electric field of a fs pulse which would be necessary for a direct measurement of φCE.
By nonlinear self-comparison of spectral harmonics of comb components [143], it is possible
to observe an optical beating signal which is proportional to fCEO, that is

|N(nfrep + fCEO)−M(mfrep + fCEO)| Nn=Mm
= |N −M |fCEO. (4.4)

In the simplest case, N = 2 and M = 1, the spectrum of the frequency comb is required to
span at least one octave. Then, the low-frequency part of the spectrum can be frequency-
doubled (ν1 = 2×(mfrep + fCEO)) and compared to the high frequency part ν2 = 2mfrep+
fCEO, yielding a frequency difference of

ν1 − ν2 = fCEO. (4.5)

The optical setup of the nonlinear interferometer in Mach-Zehnder geometry is shown in
Fig. 4.2. A fast photodetector detects the beat note at fCEO. A prism pair (not shown in
the figure) in the green arm of the interferometer serves to compensate possible path length
differences. The motorized half-wave plate in the red arm is used to adjust the polarization
of the infrared light to the polarization axis of the frequency doubling crystal. The radio
frequency signal is amplified and band-pass filtered at 20 MHz. The offset frequency can
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be tuned with the help of a motorized quartz wedge in the fs oscillator. The error signal
is generated by mixing the beat signal with 20 MHz obtained from frequency doubling10

of the 10 MHz reference. The feedback is established by a PI controller modulating the
amplitude of the RF source for the AOM placed into the pump beam. Part of the fCEO

signal is split off by a directional coupler and used to monitor the signal-to-noise ratio
which is usually better than 40 dBc in a 100 kHz bandwidth. It is also used to optimize
the position of the motorized wave plates and the coupling into the microstructure fiber.

The mechanism behind the stabilization is the highly nonlinear index of refraction n(x, t)
inside the laser crystal which is dependent on the spatial and temporal intensity I(x, t)
and is given by

n(x, t) = n0 + I(x, t)n2, (4.6)

where n0 is the linear and n2 the nonlinear index of refraction. Taking Eq. (4.2) and the
intensity sensitive index of refraction from Eq. (4.6), it can be shown that fCEO becomes
related to the optical intensity [144]. Amplitude modulation of the pump power changes
the index of refraction and thus the group velocity which in turn induces a change of φCE .

With the setup as it was delivered, stable locking of the offset frequency and even mode-
locking at all is only achieved for a couple of minutes. Large part of the problem stems
from the fact that the housing of the laser and the baseplate are thermally not stable. For
instance the pumping beam hit the back wall of the housing after passing the two curved
mirrors and the crystal holder was temperature stabilized with the same water which is
used for cooling the pump laser’s base plate. The water chiller used for this purpose
is by no means designed to provide a stable temperature. For better thermal stability
two improvements made a huge difference. First, the pump light was guided into a beam
dump outside the frequency comb housing. A modification a bit more complicated was the
temperature stabilization of the Ti:Sa crystal. Here, a temperature sensor was glued onto
the crystal holder and used to stabilize water temperature from a home-built chiller. A PI
controller with a integration time constant of 800 s controls the current through a thermo-
electric element heating or cooling the water. After settling, the achieved temperature
stability was below 0.01 ◦C/h. Fig. 4.5 shows the correlation between the temperature and
fCEO during the ringing after switching on the temperature stabilization. From this, the
temperature sensitivity for this laser system can be estimated to be 4(1) MHz/◦C. Together
with the external beam dump, these improvements were able to extend the typical duty
cycle of operation from a few ten minutes to more than three hours maximum.

4.2.2 Stabilization of the repetition rate

The heart of the frequency comb stabilization is the frequency lock of the repetition rate.
For an optical frequency measurement, the necessary measurement time for a given level of
precision depends also on the stability of the frequency comb, provided the (in-)stability of
the laser to be measured is negligible. Since the errors in frep are multiplied by 106 in the
optical domain, this is the critical parameter. The measurement of the repetition frequency
is quite simple, because for typical cavity lengths of 30 cm it is directly measurable by a

10Minicircuits FD-2 followed by a bandpass filter BBP-21.4
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Figure 4.5: fCEO and crystal temperature.
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Figure 4.6: The frequency reference for the repetition rate stabilization.

fast photodiode. Neighboring modes produce a strong heterodyne signal when shining part
of the comb light onto a detector with excellent signal-to-noise as many modes contribute
to the signal. The stabilization scheme is similar to the one used for fCEO. The RF
signal is amplified and compared with a synthesized frequency reference. The error signal
is shaped by a loop filter and corrections of frep are applied to one of the laser cavity
mirrors mounted on a PZT to stabilize the cavity length. Thereby, the repetition rate is
phase-locked to the reference.

During the absolute frequency measurement of 40Ca+ the frequency comb was locked to
a transportable Cs atomic fountain clock. The clock had two outputs with 10 and 100 MHz
derived from an ultra-stable quartz crystal with an amazing short term stability of 8×10−14

in 1 s. This offered two possibilities to generate a frequency reference at 800 MHz for the
stabilization of frep. A schematic diagram of the two methods is displayed in Fig. 4.6. The
first method uses the 10 MHz signal isolated from other ports by a distribution amplifier11.
The multiplication chain consists of two low noise frequency quadruplers12 and a low noise
odd-order multiplier13 with internal amplifiers. For the second method, simple frequency
doublers14, bandpass filters made of lowpass and highpass filters15 and amplifiers16 were
combined to generate the 800 MHz from the 100 MHz reference. The photodiode signal
at 825 MHz was mixed17 with the reference to produce an intermediate signal at 25 MHz
which was compared to the signal from a tunable synthesizer18 with a second mixer19 to
finally generate the error signal. In case of method 2, the intermediate frequency was first
mixed with the 10 MHz reference before mixing it with the synthesizer signal.

Fig. 4.7 presents a comparison of the two different methods to generate a frequency
reference for the frep stabilization. The signals are optical beat notes at 35 MHz of the
frequency comb with a laser stabilized to a 40Ca+ ion. Details of how these signals are
obtained are discussed in the next section. For the moment, the important thing to notice
is that the two methods have significantly different widths, for method 1(dark blue) the

11TimeTech 10274
12Wenzel Assoc. LNHQ
13Wenzel Assoc. LNOM-5
14Minicircuits FD-2
15Minicircuits BLP and BHP
16Minicircuits ZFL-500HLN and ZFL-1000LN
17Minicircuits ZEM-2B
18SRS DS345
19Minicircuits ZAD-1
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FWHM is ∆ν1 =790(10) Hz, for method 2 (light blue) it is ∆ν2 =420(10) Hz. This is no
surprise, as more phase noise is expected for method 1 due to a higher multiplication factor.
Please note, that a factor of two in the noise means a factor of four in measurement time
for a given level of precision. Still, the achieved level of stability of 4.3× 10−13 is a factor

0 1000 2000 3000 4000 5000
-1500

-1000

-500

0

500

1000

1500

time (s)

fr
e

q
u

e
n

c
y
 d

e
v
ia

ti
o

n
 f

ro
m

3
5

 M
H

z
 (

H
z
)

Figure 4.7: The beat signal of the frequency comb with an external laser for two different
references for locking the repetition rate.

of five higher than it would be expected from the stability of the Cs clock reference. Here,
more dedicated RF parts could lead to a significant improvement or for the best possible
result, stabilization of the repetition rate to the optical beat note would be required.

4.3 Optical beat note detection for the absolute frequency
measurement

The self-referenced frequency comb stabilized as described in the section before can be used
to measure the frequency of an external laser by detection of a beat note signal with the
nearest comb line. For this purpose, the laser and part of the frequency comb are aligned
on a beam splitter for maximum overlap as shown in Fig. 4.2 and spectrally separated by
a diffraction grating for a better signal-to-noise ratio. Both light fields interfere on a fast
photodetector and generate a beat note signal proportional to the difference and the sum of
the frequencies. The latter is an optical frequency and can therefore not be detected. The
difference frequency ∆νL lies in the radio-frequency domain and is limited to ∆νL 6 frep/2.
In fact, the frequency comb is split into two branches by a 50:50 beamsplitter, so that two
external lasers can be measured at the same time with two similar setups. To enhance
the signal-to-noise ratio, the beat signals are amplified and band-pass filtered because
the frequency counters used did not count reliably if the signal-to-noise ratio was below
30 dB in a 100 kHz bandwidth. The counters are designed for frequencies below 40 MHz,
therefore it was required that one of the beat signals was mixed to a detectable frequency
with the help of an RF synthesizer20. The other beat signal was tuned to a range between

20Marconi 2023A
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35 to 40 MHz by changing the frequency of the tunable synthesizer of the repetition rate
lock. Thereby, the cavity length of the fs laser gets adjusted.

In order to detect cycle slips, i. e. events when the counters lost track of the signal, an

0 500 1000 1500 2000 2500
-4

-2

0

2

4

time (s)

o
p

ti
c
a

l 
b

e
a

t 
- 

c
o

m
b

 

fr
e

q
u

e
n

c
y
 d

if
fe

re
n

c
e

 (
H

z
)

Figure 4.8: Counter difference: comparison of the two optical frequencies measured by the
frequency comb against the signal obtained from an optical beat measurement.

optical beat note of the two lasers was measured directly on a fast photodiode21. The
difference of the optical frequencies measured by the frequency comb was compared to the
frequency of the direct beat signal. Any counting error would show up as a difference of
>1Hz, given the counting interval of 1 s. An example of such a trace is shown in Fig. 4.8.
This simple technique is also applicable for systems, where only a single laser is measured
by a frequency comb. Comparing for instance, the external laser against itself but detuned
in frequency by an AOM, could yield a reliable tool to detect cycle slips.

21Hamamatsu G4176 on a Minicircuits bias tee ZBFT-6GW followed by a Miteq AFS42-00101000-20-
10P-42 amplifier
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Chapter 5

Experimental prerequisites and
techniques

In this chapter a few experimental techniques and requirements are described which are
necessary for the absolute frequency measurement of the 4s 2S1/2− 3d 2D5/2 transition in
40Ca+ and for the measurement of the electric quadrupole moment of the 3d 2D5/2 level. It
contains information about micromotion compensation, calibration of the magnetic field,
an alternative method for optical pumping, and the prerequisites for Ramsey spectroscopy
like frequency and phase control of the laser exciting the quadrupole transition, Ramsey
experiments with switched phase, and the stabilization of the laser to the ion.

5.1 Compensation of excess micromotion

Electric stray fields may exist which shift the ion from the zero-point of the RF field to
a region where the ion motion is driven by the trapping field in contrast to unavoidable
micromotion caused by secular motion (see Eq. (2.8)). These fields can be generated
by localized surface charges (patch potentials) on the trap structure or by geometrical
imperfections of the trap like misalignment of the DC end caps. As a result, enhanced
micromotion modulates the coupling strength of the ion to laser fields. The resulting first-
order Doppler shift can significantly broaden the line of an atomic transition leading to an
increased cooling limit. The final temperature TD for Doppler cooling is determined by

the effective linewidth γeff of a transition (TD ≈ ~γeff

2kB
). It is even possible that heating

occurs for a laser which is detuned near, but above a micromotion sideband [82]. Therefore,
compensation of excess micromotion is an essential ingredient for efficient laser cooling and
important for experiments with cold ions, for example experiments in quantum information
processing. From a high-accuracy spectroscopy point of view, excessive micromotion is
responsible for large AC Stark as well as for second-order Doppler shifts [82]. In our case,
the compensation is achieved by applying voltages to additional electrodes placed in the
vicinity of the trap as shown in Fig. 3.3 (b). Please note that a voltage applied to the
vertical electrode shifts the ion vertically but affects the horizontal micromotion and vice
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versa as the electric field lines near the trap center are aligned perpendicular to the axes
of the trap (see inset of Fig. 5.1).

There exist three important methods commonly used for coarse compensation. One is
to minimize the position change of an ion observed by a camera when the RF power is
changed, another one is to optimize the scattering rate on resonance for a cooling transi-
tion. A bit more precise than the two methods before is the correlation method. Here, the
correlations of photon arrival times from light scattered at the cooling transition with the
phase of the driving RF field are minimized. The correlations are caused by the Doppler
effect due to micromotion which is modulating the scattering rate. Further details of these
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Figure 5.1: The modulation index βmicro of the first micromotion sideband in horizontal
direction depending on the vertical compensation voltage. The inset shows a cross sec-
tion of the trap and the micromotion directions associated with electric field lines of the
quadrupole field.

methods are discussed in [79, 84]. However, the best results can be achieved by directly
observing the micromotion sideband on a narrow transition. With the correlation method
the necessary compensation voltages can be reliably determined to achieve a modulation
index within βmicro ≈1% [79]. Starting from that point, the compensation is further im-
proved by detecting the micromotion sideband on the 4s 2S1/2− 3d 2D5/2 transition with
the help of two beams from two different directions so both components of the micromo-
tion can be minimized. The dependence of the horizontal micromotion compensation on
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the applied voltage with respect to the vertical electrode is shown in Fig. 5.1. For this
measurement the Rabi frequency on the micromotion sideband was measured at different
compensation voltages and compared to the value on the carrier. In the case of optimal
compensation we can achieve a modulation index as low as βmicro =0.004(1), but the de-
termination of the Rabi frequency becomes more and more difficult. The decoherence due
to fluctuations of the magnetic field and the laser frequency limits the contrast of the Rabi
flops after a few milliseconds. Experience shows that with the photoionization technique
to create ions in the trap we do have to check the micromotion compensation every few
months only and the applied voltage corrections are usually a few volts. Therefore, the
uncertainty of the micromotion modulation index for the absolute frequency measurement
of the 4s 2S1/2 − 3d 2D5/2 transition can conservatively be assumed to be well below
∆βmicro < 0.1.

5.2 Frequency resolved optical pumping using the laser at
729 nm

For most of the experiments in quantum information processing or for spectroscopy with
our setup it is necessary to initialize the ion(s) in a well defined electronic state. Some-
times there is even need for a defined state of the motional degrees of freedom for which
normal Doppler cooling is not sufficient (e. g. Bell state creation). Optical pumping with
σ−polarized light at 397 nm along the quantization axis is used to initialize the electronic
state of the ion into

∣

∣S1/2,mS = −1/2
〉

. Given the geometry and the optical access of
our trap, this is a simple and efficient solution as the state population ends up in the
right state with an efficiency of better than 99% after 60µs of pumping with σ− light.
Unfortunately, the particular method of optical pumping leads to restrictions related to
the freedom of choosing the orientation for the quantization axis. It would be very incon-
venient and sometimes even impossible to realign the σ beam path each time the angle
of the magnetic field is changed which was necessary for the measurement of the electric
quadrupole moment described in chapter 7.

Therefore, we investigated whether initialization of the ion in a particular Zeeman
ground state can be achieved using the laser at 729 nm. Instead of relying on selection
rules related to the polarization of the laser exciting the broad S1/2−P1/2 transition, we
can make use of the frequency-selective pumping on the narrow quadrupole transition.
The main advantages are:

• The pumping should be insensitive against imperfect polarization.

• The optical pumping beam does not need to be aligned with the B-field defining the
quantization axis.

For testing the optical pumping, we first prepared the ion in themS=-1/2 state by standard
optical pumping using a beam of σ− polarized light at 397 nm (dashed lines in Fig. 5.2).
Then, we switched on the laser at 729 nm with a Rabi frequency of Ω/(2π) =18(1) kHz
resonant with the mS=-1/2 to mD=+1/2 transition as well as the resetting laser at 854 nm
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Figure 5.2: Involved levels in frequency resolved optical pumping. For testing, the ion was
initialized in |S,mS = −1/2〉 by pumping with σ−-light at 397 nm. Light resonant with
the |S,mS = −1/2〉−|D,mD = +1/2〉 transition together with light at 854 nm pumps into
the |S,mS = +1/2〉 level. The remaining S-state population is probed after transferring
the population from |S,mS = +1/2〉 into the D-manifold by means of a π-pulse.

with its power set to ”quench” the level i. e. shorten the effective lifetime of the D5/2 state
(solid lines). The laser pulses should pump the ion to the mS=+1/2 state. Finally,
we applied a π-pulse on the mS=-1/2 to transfer the remaining mS=-1/2 population to
the 2D5/2 level (dashed-dotted line). The following detection reveals how much of the
population is in one of the S1/2 levels. Fig. 5.3 shows the remaining D5/2 state population
as a function of the pumping time. The exponential fit yields a pumping constant of
τ =86(3) µs. After an excitation time of 600µs at least 99% of the population should have
been pumped into the mS =+1/2 state.

When the pumping time constant is plotted against the Rabi frequency as shown in
Fig. 5.4, the pumping time is inversely proportional to Ω2

R. This is expected since for low

saturation the scattering rate of an atomic transition is proportional to
Ω2

R
∆2 [88]. It can

be seen that optical pumping can be achieved within 100µs but for higher laser power
non-resonant excitations spoil the efficiency. That is most likely the reason for the rather
large deviation from the fit for the two data points with the highest Rabi frequency. In
order to avoid this effect we set the Rabi frequency to moderate ΩR/(2π) ≈20 kHz and
with a pumping time of 1 ms we made sure that we were not limited by insufficient optical
pumping.

5.3 Calibration of magnetic field coils

The magnetic field at the center of the trap can be adjusted by changing the current of
mutually orthogonal coil pairs in Helmholtz configuration as shown in the inset of Fig. 5.5
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Figure 5.3: Frequency resolved optical pumping as a function of pumping time.

(see also Fig. 3.4) for the horizontal plane. The quantization field is mainly produced by
the σ-coils (Cσ) while the other two pairs (CD and Cz) are typically used to compensate
the earth’s and laboratory’s bias fields. To achieve good optical pumping, sideband cool-
ing on the quadrupole transition, and small AC Stark shifts due to neighboring Zeeman
transitions, a magnetic field of 3 G is applied. The currently chosen geometry of the laser k-
vector, laser polarization, and magnetic field favors transitions with |∆m| = |mD−mS|=0
or 2. For this reason only six of the ten possible transitions have good coupling strength.
During the measurement of the quadrupole moment of the 2D5/2 level, however, measure-
ments had to be carried out for various angles of the magnetic field. In order to maintain
a certain field magnitude the magnetic field produced by the coils had to be calibrated.

The magnetic field ~B = ~BD + ~Bσ is the sum of the individual fields produced by the
Doppler ( ~BD) and σ ( ~Bσ) coil pairs. By setting the current for one of the pairs to a
particular value first and readjusting the other, one is able to find two alternative settings
of the second current (positive and negative) where the total magnitude of the magnetic
field B = | ~B| is the same. If a laser is resonant with a transition sensitive to the linear
Zeeman effect for the given B, this can easily be probed.
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Figure 5.4: Optical pumping as a function of Rabi frequency ΩR. The solid line is a fit
that shows the pumping time is inversely proportional to Ω2

R as expected. The error bars
are shown for data points where they are actually larger than the point size.

The calibration measurements were carried out on the |mS = −1/2〉 − |mD = −1/2〉
transition at a fixed magnetic field magnitude of 2.957(1) G. The laser frequency was kept
constant as described in Sec. 5.4.1. The excitation pulse lengths were ranging from 400µs
to 2 ms, depending on the excitation strength for the actual laser-magnetic field geometry.
Apart from a constant laser frequency one has to make sure that the chosen value of the
first coil current does not produce a magnetic field which is already larger than the desired
magnitude. Figure 5.5 shows those values of the coil currents (Iσ, ID) that brought the
transition into resonance for the given magnetic field of 2.957(1) G. The magnetic field
produced by these currents can be described by following equation:

B2 = (ID − ID,0)
2η2

D sin2 α+ [(Iσ − Iσ,0)ησ + (ID − ID,0)ηD cosα]2 , (5.1)

where the conversion coefficients of current into magnetic field are given by ηD,σ and bias
fields (Earth’s field and lab environment) are cancelled by offset currents ID/σ,0. Here,
α denotes the angle between the coil pairs which would be 90◦ in the ideal case. A
fit using the data shown in Fig. 5.5 yielded bias currents of Iσ,0 =+58(1) mA in σ and
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Figure 5.5: Calibration of the magnetic field. The measurement points show combinations
of coil currents where a modulus of the magnetic field of 2.957(1) G is achieved. The inset
indicates the configuration of magnetic field coils and the trap in the horizontal plane.

ID,0 =-237(2) mA in Doppler direction. The conversion coefficients were determined to be
ησ = 2.006(1) G/A and ηD = 1.305(2) G/A, respectively. The angle between the coil pairs
was fitted to be α =89.3(1)◦.

The calibration of the coil currents finally allows for turning the magnetic field in the
horizontal plane of the trap into any necessary direction according to

(

ID
Iσ

)

=

(

ID,0

Iσ,0

)

+

(

B sin β/(ηD sinα)
(B cos β − (ID − ID,0)ηD cosα)/ησ

)

α≈90◦≈
(

ID,0 +B sin β/ηD

Iσ,0 +B cos β/ησ

)

,

(5.2)
where β denotes the angle between the axis of the σ-coil and the magnetic field as shown
in the inset of Fig. 5.5. For the vertical direction the same method can be applied but
since it is only necessary to keep the magnetic field in the horizontal plane only the bias
field of the laboratory environment was compensated.
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5.4 Ramsey experiments

At the heart of the absolute frequency measurement of the 4s 2S1/2−3d 2D5/2 transition are
Ramsey experiments to infer the detuning of the laser relative to the atomic transition. The
method is named after Norman Ramsey who developed the technique for the interrogation
of a beam of thermal atoms in a microwave oscillator to serve as an atomic clock [4]. The
Ramsey method consists of two laser pulses R1,2(θ = π

2 , φ) separated by a time τR. The
first laser pulse of length τ with Ωτ = π/2 creates an equal superposition of ground and
excited state. Then, the system is let alone for a free evolution during the Ramsey waiting
time τR. In a rotational frame with respect to the transition frequency of the atom, the
Bloch vector picks up a phase according to the frequency difference of the laser with respect
to the transition. The second laser pulse projects the system back onto the measurement
basis and the phase can be detected as a variation of the state population. Fig. 5.6
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Figure 5.6: Ramsey pattern with an excitation pulse length of 9.7µs and a Ramsey waiting
time of τR = 417µs.

shows an experimental Ramsey pattern obtained on the |S,mS = −1/2〉−|D,mD = −1/2〉
transition with the laser frequency swept across the resonance over a range of 100 kHz.
The actual data is indicated by the dots, the solid line is obtained directly from Eq. 2.47.
The parameters for this scan were a pulse length of 9.7µs, a relative phase φ = 0 of the
Ramsey pulses, and a Ramsey time of τR = 416.9µs which was the only fit parameter. Also
shown in this plot as a dashed line is the underlying Rabi pedestal (Eq. 2.48). The insets
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demonstrate the remarkable agreement between theory and experiment. The line center
of such a Ramsey pattern in an atomic clock is usually measured by probing the transition
at a detuning of ±half a fringe width around the central fringe. The goal is to get 50%
excitation in both cases. At these points the sensitivity of the method to frequency errors
is maximal. A difference in excitation probability yields information about the magnitude
and sign of the frequency difference. In order to avoid lightshifts due to the interrogation
laser at such a detuning, we use a slightly different method. Instead of red and blue
detuning of the excitation pulses the relative phase φ of the two π

2 pulses gets switched by

90◦. Two alternating phase settings R1(
π
2 ,0)

τR←→R2(
π
2 ,π2 ) and R1(

π
2 ,π2 )

τR←→R2(
π
2 ,0) allow

for a measurement at the line center and at the maximum of the sensitivity again. By
this technique an error by an incorrectly set phase is cancelled. Ideally, the experiment
should end up at an excitation probability of 50% for each setting if the laser is perfectly
on resonance. An excitation difference provides information not only about the magnitude
but also about the sign of the required frequency correction.
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Figure 5.7: Ramsey patterns around the line centers of two interleaved, simultaneous
Ramsey phase experiments on two different transitions of two ions detected with a CCD
camera. (a) excitation time τ = 2.6µs and Ramsey waiting time τR = 123µs, (b) excita-
tion time τ = 2.6µs and Ramsey waiting time τR = 50µs.

Fig. 5.7 shows detailed scans of the laser frequency for this technique around the line
center of two different transitions. In this case the experiment was done on two ions
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simultaneously. A Ramsey phase experiment on a transition from |S,mS = −1/2〉 −
|D,mD = −1/2〉 on ion 1 was sandwiched into another Ramsey phase experiment on
|S,mS = +1/2〉 − |D,mD = +1/2〉 on ion 2. Detection with a CCD camera provided
information about the excitation of the individual ions. Such a scan can be used to infer
the contrast of a particular transition which is necessary for the precise calculation of the
frequency deviation from the center. For these scans the contrasts were 95(3)%.

5.4.1 Locking the laser to the 4s 2S1/2 − 3d 2D5/2 transition

The result of a Ramsey experiment yields information about the frequency difference of
the interrogation laser with respect to a particular transition of 40Ca+ as was mentioned
before. The individual transition frequencies of the 4s 2S1/2 − 3d 2D5/2 clock transition
mainly depend on two parameters: the undisturbed center frequency of the transition
(≈ 4×1014 Hz) and the (linear) Zeeman shift depending on the magnetic sub-levels involved
(≈1-12 MHz for a magnetic field of 3 G). The frequency of the laser is stabilized to the
reference cavity which is subject to long-term drifts of the cavity length and therefore
the laser frequency. A measurement of two transitions can be used to determine the
current frequency difference of the reference cavity relative to the atomic line center,
as well as the current strength of the magnetic field. By changing the frequencies that
drive AOMs in the beam path of the laser, i. e. AO2 and AO4 in Fig. 3.1, the necessary
frequency corrections can be applied. For our purpose, this model is a little bit too
simple as it neglects the electric quadrupole shift, which is an interaction of the D5/2-
level with electric field gradients on the order of 10 Hz. The quadrupole shift cannot
directly be determined by the measurement of two different transitions but enters the
model as a fixed parameter and has to be determined beforehand. How this can be done
is described in section 7.2. This simple model though neglects the quadratic Zeeman shift.
Since both the electric quadrupole and the quadratic Zeeman shift are parabolic in the
magnetic quantum number mD of the excited state such a model can still lead to quite
accurate predictions, provided the Landé g-factors are known well enough. In total, the
quadratic Zeeman effect produces a systematic offset of the mean laser frequency from
the transition’s center. For a magnetic field of 3 G the offset is 2.5 Hz but since also the
quadrupole shift is underestimated due to the quadratic Zeeman shift for the particular
preparation measurement (-1.2 Hz deviation), the net shift is 1.3 Hz. On the other hand,
the offset is completely irrelevant for the absolute frequency measurement because the laser
frequency is continuously measured by the frequency comb and the applied RF frequencies
and the measured frequency differences are recorded simultaneously and do not depend
on the applied model.

The actual measurement procedure is explained in the following. From time to time,
typically every couple of minutes, service measurements of a particular pair of Zeeman
transitions are taken. A pair of Zeeman sublevels symmetric around the line center like
transitions 1 and 4 (|mS = −1/2〉 ↔ |mD = −1/2〉 and |mS = +1/2〉 ↔ |mD = +1/2〉) is
a good choice since their linear Zeeman effect cancels and quadrupole shift is the same. To-
gether with precise knowledge of the g-factors, and the prediction for the quadrupole shift
obtained in independent measurements, one can extract an effective current magnetic field
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Figure 5.8: Allan standard deviation of the total frequency comb measurements.

and the current frequency difference between the reference cavity and the clock transition.
Additionally, a quadratic fit to the history of these service measurements is used to predict
the laser and magnetic field drift until the next service measurement. The laser frequency
correction is applied to the radiofrequency synthesizer (Rohde & Schwarz SML01) driving
the two double pass AOMs going to the reference cavity, while the magnetic field correc-
tions are applied by adjusting the various transition frequencies for the AOM in the beam
path to the ion trap. Additionally, the frequency synthesizer for the reference cavity can
be phase continuously stepped in 0.1 Hz steps to compensate the cavity drift according to
the fitted drift rate. Typical parameters for the absolute frequency measurement were a
time interval of 23 s between the measurements and a history length of 10 minutes. This
locking method is good enough to get rid of long term drifts as shown in Fig. 5.8 by the
overlapping Allan deviation [119] of the laser frequency measured by the frequency comb
over the whole measurement time. The red line is a fit with 3.1(1) × 10−13τ−1/2. It is
clear that the method is not optimized in any way to achieve the best lock of the laser to
the ion as it would be necessary for an optical clock, but we regard the residual laser drift
with −2± 600 × 10−8 Hz/s still remarkable.

This simple model together with the measured contrasts, the quadrupole shift, and the
Landé g-factors was good enough to probe the transitions near the line centers within their
respective statistical errors. Histograms of the deviations from the predicted line centers
for 455600 individual measurements are shown in fig. 5.9. The mean deviations from the
predicted line centers were 0.1(3) Hz and 0.2(3) Hz for transitions 1 & 2, 0.3(3) Hz and
-0.4(3) Hz for transitions 2 & 6, and -0.4(3) Hz and 0.4(4) Hz for transitions 3 & 5, where
a large part of the error can be attributed to quantum projection noise (0.2 Hz). The rest
is assumed to be due to fluctuations of the magnetic field and laser frequency noise.

83



-100 0 100
0

0.2

0.4

0.6

0.8

1

#1: -1/2 to -1/2

frequency deviation (Hz)

n
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

-100 0 100
0

0.2

0.4

0.6

0.8

1

#2: -1/2 to -5/2

frequency deviation (Hz)
-100 0 100
0

0.2

0.4

0.6

0.8

1

#3: -1/2 to +3/2

frequency deviation (Hz)

0 100
0

0.2

0.4

0.6

0.8

1

#4: +1/2 to +1/2

n
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

frequency deviation (Hz)
-100 0 100
0

0.2

0.4

0.6

0.8

1

#6: +1/2 to +5/2

frequency deviation (Hz)
-100 0 100
0

0.2

0.4

0.6

0.8

1

#5: +1/2 to -3/2

frequency deviation (Hz)

Figure 5.9: Histograms of the frequency deviations from the expected line centers. The
maximum offset was 0.4(4) Hz.

5.5 Frequency and phase control of the 729 nm light

The radio frequency feeding the double-pass AOM for coherent manipulation of the 40Ca+

ions with laser light at 729 nm is generated by a programmable pulse generator (PPG)
developed as an open source project in collaboration with various groups. Documentation
can be found in the thesis of Philipp Schindler [145]. For our experimental setup it
consists of two direct digital synthesizers (DDS) for the frequency synthesis, a variable
gain amplifier (VGA) for pulse shaping and amplitude control, and a digital-to-analog
converter (DAC) for the conversion of the amplitudes into an analog voltage. The device
has a frequency resolution of 0.18 Hz and digital phase control. It is capable of phase
coherent and phase continuous switching.

The phase accuracy of the Ramsey pulses is extremely critical for Ramsey experiments
where the phase of the pulses is switched. In the measurement scheme used for the
absolute frequency measurement, the phase θ of the Ramsey pulses is switched by 90◦. A
phase error of only 1◦ would lead to a systematic shift of the Ramsey pattern by 2.8 Hz
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Figure 5.10: The setup for the investigation of a possible phase shift of the AOM due to
the RF pulses.

for a pulse separation time of 1 ms. By repeating the Ramsey experiment with reversed
pulse order, an error by a systematically incorrect setting is cancelled though. What’s
still important is the phase reproducibility because timing jitter of the PPG can lead
to phase errors in spite of the fact that the phase register has 12 bit resolution. To
fully profit from such a high resolution, this jitter would have to be smaller than 1 ps
at typical operation frequencies around 270 MHz. In order to investigate this effect, a
train of RF pulses with relative phase 0◦ and 90◦ was created, centered at 270 MHz and
varied about the frequency range which was necessary to probe the individual Zeeman
transitions for the absolute frequency measurement. The RF was mixed down1 to 5 kHz
with the second, phase stable output of the PPG. The output of the mixer was recorded
with a fast oscilloscope2 and sinusoidal functions were fitted to each pulse with variable
amplitude, frequency, and phase. The phase reproducibility for 13,668 sets of pulses as it
was used for the absolute frequency measurement of the 4s 2S1/2 − 3d 2D5/2 transition in
this case was 0.003◦ which corresponds to a frequency uncertainty of 8 mHz at a Ramsey
time τR =1ms or 2× 10−17 relative uncertainty for the absolute frequency measurement.
The corresponding timing jitter is <3 ps.

There is another effect that could cause a systematic frequency shift if the AOM used
for frequency and phase shifting of the laser beam would introduce phase shifts that are
unequal for the first and the second laser pulse. Errors of this kind might arise because

1Minicircuits ZAD-1
2LeCroy WP7300A

85



-10 -5 0 5 10
0

100

200

300

400

500

600

700

800

angle difference (°)

c
o

u
n

ts

Figure 5.11: Investigation of a possible heating effect of the AOM. The histogram of
28,000 measurements is fitted by a Gaussian centered a 0◦ and a standard deviation (1-σ)
of 1.6◦. The relative phase change of two 50µs long pulses separated by 100 µs therefore
is 0.0001±0.009◦ .

of thermal effects in the device. For an investigation of this effect an interferometer
comparing the light entering and coming out of the double pass AOM was built as shown
in Fig. 5.10. The AOM was driven by pulses with similar length (49µs) and power as it
was used for the absolute frequency measurement and the beat note was detected with a
fast photodiode3. Again, the signal was mixed down4 to a lower frequency (5 MHz) by the
second frequency output of the PPG with a fixed phase relation, low-pass filtered with
200 MHz 3dB-frequency5 and finally compared to a third source at 5 MHz from a frequency
synthesizer6. Both signals, the pulsed beat signal and the continuous reference at this

3MenloSystems APD210
4Minicircuits ZAD-1
5Minicircuits BLP-200
6Marconi 2023A
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frequency were recorded with a fast oscilloscope7 and multiplied on a computer. The mean
values for the obtained beat signal frequencies and the fitted amplitudes of the original
signals were used to calculate the corresponding phase. For 28000 experiments with a
pulse length of 50µs and a pulse separation of 100µs the relative phase change was only
∆θ =0.0001◦±0.009◦. The phase change was also measured for pulse separations of 50µs,
250 µs, 500µs, and 1000 µs but for a smaller number of repetitions. The average phase
change and the corresponding standard deviations were -0.05(7), 0.002(66), -0.14(12), and
0.14(8). This measurement was done to make sure that a possible phase change does
not depend on the Ramsey time, at least not starting from a pulse separation of 50µs.
Especially for the longer Ramsey times the amount of collected data for the fixed resolution
of 1 GS/s started to become large, and also interferometric stability was beginning to play
a role, noticable in an increased standard deviation. For this reason the measurement
statistics is worse than for the 100µs data. Nevertheless, the thorough investigation of the
relative phase shift at 100µs allows for a reliable interpolation of the phase error to 1 ms
and was reassured by the additional measurements at different waiting times. Moreover,
the effect of differential heating - which is the most likely cause for a change in the optical
path length - of the Ramsey pulses should be much worse at shorter pulse separation than
is actually used in the experiment.

7LeCroy WP7300A
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Chapter 6

Absolute frequency measurement
of the 4s 2S1/2 − 3d 2D5/2 clock
transition

Building an ion clock based on Ca+ has the technological advantage that all necessary
wavelengths for laser cooling and state manipulation including lasers for photo-ionization
can nowadays be generated by commercially available diode lasers. In order to show that
clocks based on Ca+ ions are a suitable candidate for an optical ion clock, Ca+ has to
be compared against the Cs frequency standard on which the current definition of the SI
second is based. In the first part of this chapter the absolute frequency measurement on
40Ca+ ions will be presented which was performed when a transportable Cs fountain clock
with an accuracy of < 10−15 was present in our lab. The interrogation lasers probing
40Ca+ and 43Ca+ ions were compared against Cs through a frequency comb. The next
part contains an analysis of the expected frequency shifts and presents the final result for
40Ca+ with a detailed error budget. It represents the first absolute frequency measurement
on Ca+ at the level of 10−15. Finally, a comparison of the 40Ca+ results for different trap
powers and a preliminary measurement of the isotope shift of 43Ca+ are quickly discussed.

6.1 Spectroscopy on the 4s 2S1/2 − 3d 2D5/2 transition

There are two commonly used techniques of measuring the line center of an atomic tran-
sition:

• simple Rabi excitations, or

• Ramsey’s method of separated fields.

In terms of frequency determination both schemes - Ramsey and Rabi excitation - are
almost equivalent. Peik et al. [146] have investigated both schemes in consideration of
building an optical clock with a single ion as reference and concluded that the Ramsey
scheme can be slightly better (30% for optimal parameters) regarding the highest possible
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stability. We have chosen the latter method for the following reason. Our initial goal was to
perform spectroscopy with entangled states where Ramsey spectroscopy is the only choice.
The Bell state preparation required individual addressing of the ions for which we used
an electro-optical deflector (EOD). Unfortunately, the deflector induced significant phase
errors on the order of 50 Hz when switching back and forth between the ions. Therefore we
had to do the frequency measurement with a single ion and simply kept the measurement
strategy in order to demonstrate that it actually is suitable for measurements in the 10−15

regime.
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Figure 6.1: Total frequency measurement data at a trap power of 9W: fre-
quency comb readings combined with the ion trap data and the mean frequency of
411 042 129 776 395.6 Hz substracted.

The frequency measurement of the 4s 2S1/2 − 3d 2D5/2 transition consisted of probing
the six transitions shown in Fig. 2.2 by Ramsey phase experiments and the simultaneous
measurement of the probe laser’s frequency by the frequency comb. The Ramsey phase
experiments were done for a waiting time of τRamsey = 1000µs at the assumed center of the
transition of interest calculated by the model discussed in the Sec. 5.4.1. The experiments
with a cycle time for a single Ramsey phase experiment of 18 ms were repeated for 100
times to minimize the error by quantum projection noise. As a result these experiments
yielded a stream of data containing the mean measurement time, the mean frequency for
each transition, and a mean excitation difference of the two phase settings to calculate the
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Figure 6.2: Histogram of the total frequency measurement data. It fits a Gaussian distri-
bution with 23(1) Hz standard deviation shown as the solid line.

line center. In order to calculate the correct frequency deviations the contrast for each
transition had to be calibrated. The calibration was frequently checked during periods
where the frequency comb wasn’t operating by scanning the phase of one of the Ramsey
pulses and fitting a sinusoidal to the data. The mean values of the contrasts during the
whole measurement time were {95(1)%, 90(1)%, 88(1)%, 92(1)%, 87(1)%, 90(1)%} for the
transitions {1, . . . , 6}. The laser powers for the individual transitions were adjusted to get
similar excitation times of τ ≈ 54(5)µs. These values were also checked every couple of
hours and turned out to be constant to better than 6%. According to Eq. (2.53), that
source of error is only important if the transition is probed detuned from the line center.
The error for a 6% change of the Rabi frequency as was observed during the course
of the absolute frequency measurement at 0.4 Hz maximum offset from the line center
(see Sec. 5.4.1) leads to a frequency error of ∆νintensity =0.9 mHz only and is therefore
negligible.

For the determination of the absolute transition frequency, the data of the ion trap ex-
periment were combined with the frequency comb data for which the computers for data
taking had to be synchronized. This was achieved by a program called Automachron1

1http://oneguycoding.com/automachron/
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Figure 6.3: Allan standard deviation of the total frequency measurement data with sta-
tistical error bars. The solid line is a fit with σy(τ) = 2.9(1) × 10−13 τ−1/2.

which synchronized the internal clock of each computer with the signal of a time server
provided by the University of Innsbruck2 over internet. The synchronization could be
checked by comparison of the individual log files so we can safely assume computers were
synchronized to better than 0.1 s. Since the laser drift was compensated by our measure-
ment and feedback scheme a timing error on this order of magnitude was not limiting us
at this point. Valid data points for the optical frequency measurement where combined
in the following way: The optical frequency measured by the comb was preprocessed. At
first, obvious frequency errors due to events where the laser or the comb were out of lock
were removed by setting a maximum allowed deviation from the median of a few kHz.
Then, points with deviations of more than 3 σ different from the resulting mean value
were rejected. The second ion trap experiment at IQOQI could be used to check the va-
lidity of the counter results as well by the method described in Sec. 4.3. The optical beat
note of the two lasers at 729 nm was compared to a beat note obtained by the difference
of the two optical frequencies measured by the comb. It provided an additional means
of detecting cycle slips of the counters if the deviation of the two beat signals was larger
than 0.5 Hz. The frequencies and frequency deviations calculated from the excitation dif-
ferences using Eq. (2.52) of six consecutive Ramsey phase experiments for the transitions
1-6 were averaged together with the mean optical frequency obtained by the comb. If the

2time2.uibk.ac.at
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frequency comb was producing valid data during 50% within that time window the data
point was accepted and the frequency corrections for the Cs reference were applied. At
the end remaining outliers were removed by rejecting points which were more than 3 σ
different from the mean value.

Measurement result at a trap power of 9 W

A plot of the total frequency measurement data for a trap power of 9W finally used to
determine the 40Ca+ 4s 2S1/2 − 3d 2D5/2 transition frequency is shown in Fig. 6.1. It
consists of 2278 combined measurements which had an acquisition time of 22 s each. A
histogram of the deviations is shown in Fig. 6.2. The solid line is a Gaussian fit with a
standard deviation of 23(1) Hz. The stability of the frequency measurement, however, is
shown by the fractional overlapping Allan deviation [119] in Fig. 6.3. Here, the solid line
is representing a fit with σy(τ) = 2.9(1) × 10−13 τ−1/2, suggesting white frequency noise
as the dominant noise source. The expected Allan deviation from quantum projection
noise was σQPN (τ) = 5.2 × 10−14 τ−1/2. The difference can be attributed to the lock
of the frequency comb’s repetition rate to the Cs clock. The final mean frequency of
the 4s 2S1/2 − 3d 2D5/2 transition of 40Ca+ without correction for systematic shifts was
determined to be 411 042 129 776 395.6(5) Hz.

Comparison of measurements at different trap powers

The frequency measurements were done at a trap power of 9W. At this power the trap
heats up to about 150◦C. In order to check for systematic effects related to the trap
temperature or the RF field we repeated the frequency measurements for a lower trap
power of 3 W. Figure 6.4 shows the result of that comparison. The circles indicate the
average frequency of the 4s 2S1/2−3d 2D5/2 transition accumulated over one day with their
respective statistical uncertainties, the squares are the results for the reduced trap power on
the last two measurement days representing a total of 456 individual measurements. The
solid line is the mean value of all the 9W-measurements which represents 2278 individual
measurements with a precision shown by the dashed line.

The mean value of the 4s 2S1/2 − 3d 2D5/2 transition for the reduced trap power is
411 042 129 776 393.6(1.0) Hz. The mean values for the two power settings differ by
2 Hz with an error of 1.5 Hz. At this level, no significant difference is apparent as the
expected frequency difference due to the change in black body radiation is on the order of
-0.4(4) Hz. Taking this into account, the measured frequency difference at 3W and 9W is
1.6(1.6) Hz. The two frequency results are therefore still in agreement. Unfortunately, the
limited operation time of the frequency comb did not allow for a systematic investigation
of the transition frequency depending on the trap power for a long enough time in order
to reduce the statistical error to make meaningful statements.
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Figure 6.4: Mean values of the transition frequency on different days. The total average is
marked by the solid line with the statistical uncertainty as dashed lines. The daily results
at normal trap power are indicated by the circles, the average frequency at low trap power
by the squares.

6.2 Systematic shifts

The great attraction of optical frequency standards lies in the superior resonance line
quality factors allowing for higher stability and shorter averaging times. Another advan-
tage is the low sensitivity to external perturbations and therefore higher accuracy. In the
following section a summary of the most important systematic shifts for 40Ca+ is given as
well as an analysis of their repective uncertainties.

6.2.1 The Zeeman effect

The dominant shift of the 4s 2S1/2 − 3d 2D5/2 transition is caused by the Zeeman effect.
The total nuclear magnetic moment of 40Ca+ ions is zero, so there is no hyperfine structure.
The two 4s 2S1/2 ground, as well as the six 3d 2D5/2 excited states, are shifted by the
Zeeman effect in the presence of an external magnetic field. The linear frequency shift can
be calculated by Eq. (2.67). The level shift of adjacent Zeeman levels is 2.8 MHz/G for the
ground and 1.7 MHz/G for the excited state. There is also a small quadratic contribution
from coupling of the D5/2 sublevels with |mD|≤3/2 to the D3/2 level but it is rather small
due to the fine structure splitting of 1.819 THz. The average shift over all six levels is
0.19 Hz/G2, see Eq. (2.68).

Cancellation of the linear Zeeman shift

For a transition frequency measurement at the 10−15 level, it is necessary to have control
over the Zeeman effect. By averaging the transitions 1-6 the linear dependence on the
magnetic field completely cancels because they are symmetric with respect to the line
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center. The error is limited by the number of measurements only. In order to calculate the
statistical error for the data the individual AOM frequencies and the respective frequency
deviations were used. The laser was locked to the ion by the method described above
and its frequency can be regarded as constant over time. This is a valid assumption as
demonstrated by the Allan standard deviation in Fig. 6.3. For the actual data we obtained
a statistical error of ±0.2 Hz for the averaged line center. The shot noise limit for an atomic
clock using Ramsey’s method the frequency error is given by [66]

∆νQPN =
√

p(1− p) 1√
N

fR

π
, (6.1)

where p is the excitation probability, fR the Ramsey fringe spacing, and N the number
of measurements. The total amount of data finally used for the absolute frequency deter-
mination was 2278 sets of measurements of all six transitions. For each set we repeated
a single Ramsey phase experiment for 100 times and probed the transition twice with
reversed phase to get rid of phase errors as mentioned before. This corresponds to a total
number of measurements Ntot = 2278×100×2×6 =2,733,600 at an excitation probability
p = 0.5. The expected error from quantum projection noise therefore is ∆νQPN ≈ 0.1Hz.
The experimental excess noise can be explained by line frequency noise of the magnetic
field and laser frequency fluctuations.

Unfortunately, the magnetic field was not always constant. Probably due to temperature
changes in the lab, the current for the magnetic field coils was slowly changing, resulting
in an average magnetic field drift of 2(1) 10−8 G/s. This led to a measurement offset of
28(14) mHz because this effect is not completely canceled by averaging of the six transitions
without changing their order.

Measurement of the g5/2-factor

The measured transition frequencies 1-6 and the frequency deviations can be used to
calculate the Landé g5/2-factor of the D5/2 level, provided the g-factor of the S1/2 level is
precisely known. For a prediction of the transition frequencies with sub-Hertz precision
in the presence of a magnetic field of a few Gauss, the g-factors have to be known to
better than 10−7. Also, here it was sufficient to use the spectroscopic data only because
the laser frequency was constant as the laser was locked to the ion. Three transitions
starting from one Zeeman ground state and one from the other ground state form a
system of equations with three free parameters that can be determined unambiguously:
the magnitude of the magnetic field B, the quadrupole shift q, and the g-factor g5/2. The
necessary g-factor of the S1/2 ground state has been measured by Tommaseo et. al. [98] with
10−8 accuracy. Using two different combinations of transitions increases the measurement
statistics. Transition frequency differences are defined as

fij = fi − fj. (6.2)
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Figure 6.5: The measured g5/2 value for two sets of transitions (see text).

Transition set 1 consists of {f12, f31, f41}, set 2 of {f45, f64, f41}. The equation system for
the first set then is:

f12 =
6

25

(µBB)2

h2δFS
+ 2g5/2

µBB

h
+ δq(1, 2),

f31 = − 2

25

(µBB)2

h2δFS
+ 2g5/2

µBB

h
+ δq(3, 1),

f41 = (g1/2 + g5/2)
µBB

h
, (6.3)

and for set 2 it is

f64 = − 6

25

(µBB)2

h2δFS
+ 2g5/2

µBB

h
+ δq(6, 4),

f45 =
2

25

(µBB)2

h2δFS
+ 2g5/2

µBB

h
+ δq(4, 5),

f41 = (g1/2 + g5/2)
µBB

h
, (6.4)

where δq(i, j) denotes the difference of the quadrupole shifts of individual transitions i, j.
Using the data for an RF trap power of 9 W and both sets of transitions, the Landé g-
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factor of the D5/2 level is then g5/2 = 1.2003340± 2.5× 10−7, where the error comes from
an assumed frequency error on the transitions of 1Hz while the statistical error is on the
order of 10−8. The result for the data taken at a RF trap power of 3 W yields a consistent
result of g5/2 = 1.2003342 ± 2.8 × 10−7. A plot of the deviations from 1.200334 of the
measured g-factors for the 9W and 3W data is shown in Fig. 6.5.

2nd-order Zeeman shift

Coupling of the inner Zeeman levels of D5/2 to the D3/2 levels is responsible for a small
quadratic frequency correction on the order of a few Hz. It can be calculated by us-
ing second-order perturbation theory. The average magnetic field during the frequency
measurement was 3.087(2) G. The |mD = 3/2| levels were shifted by 1.642(2) Hz, the
|mD = 1/2| levels by 2.462(3) Hz while the outer levels were unaffected. These shifts are
not symmetric around the baseline at zero magnetic field and therefore are not cancelled
by our measurement technique. The total shift averaged over transitions 1-6 is 1.368(2) Hz
which is actually the largest shift in the whole error budget. But for the given uncertainty
of the magnetic field and the large fine structure splitting (1.8196 THz) the error is only
2 mHz or 5× 10−18 in relative uncertainty.

There is also a contribution from the non-zero mean-square magnitude of the magnetic
field from black body radiation (see Eq. (2.70)) but this effect is small compared to the
shift by the quantization field. The magnetic black body shift, which is maximum for
the mD = ±1/2 levels, is 1 mHz only at a temperature of 150◦C. Taking into account
that most of the surrounding environment (∼ 2/3) of the ion is at room temperature, the
relative shift and the relative uncertainty are on the order of 10−18 and below.

6.2.2 Electric quadupole shift

The electric quadrupole moment of the D5/2 levels couples to static electric field gra-
dients caused by either the DC-trapping fields and possible spurious field gradients of
patch potentials. For axial confinement we applied a voltage of 1000 V to the tips of
our trap creating a static electric field gradient of 25 V/mm2. This led to shifts of
∆νQ = Q (3 m2

J − J(J + 1)) where Q ≈ 1.15(3)Hz was the shift at this particular
field gradient and orientation of the quantization axis. But the effect completely can-
cels when averaging over all transitions [23] because the shift for mD = ±5/2 is equal to
the combined shifts of mD = ±3/2 and mD = ±1/2 which have opposite sign. Similar
to the linear Zeeman effect the error is determined by the statistical error of the sum
of the measurements. Therefore, the electric quadrupole shift cancels with ±0.2 Hz and
a relative uncertainty of 5 × 10−16. The individual measured shifts were 10.1(3) Hz for
the |mD = ±5/2〉 states, -2.0(3) Hz for the |mD = ±3/2〉 states, and -8.2(2) Hz for the
|mD = ±1/2〉 states.

In order to take the effect into account when predicting the individual transition fre-
quencies, the quadrupole shift parameter Q had to be measured beforehand. The method
designed to extract the quadrupole shift will be described in the next chapter. As a re-
sult it led to Q = 0.98(1)Hz. The result does not take the quadratic Zeeman effect into
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account. At a mean magnetic field of 3.100(1) G, the corrected value was Q = 1.05(1)Hz.
Alternatively, the transition frequency data can be used to calculate the quadrupole shift.
It is one of the three parameters determined by the set of Eqs. (6.3). The result was
Q = 1.15(3)Hz and is in reasonable agreement with the shift obtained from the previous
measurement.

6.2.3 AC Stark shifts

All laser beams have to be switched off during the waiting times of a Ramsey experiment
in order to avoid AC Stark shifts caused by laser light. In our experiment, this can be done
by switching off the RF sources of AOMs used for detuning the individual lasers. Since this
cannot be done perfectly, the residual light fields coming from stray light and incompletely
switched off RF are expected to cause AC Stark shifts. Additionally, micromotion and
black body radiation from the environment can also be responsible for frequency shifts.

Light at 729 nm

The AC Stark shift caused by the probe laser has been thoroughly studied in our experi-
ment [147]. The result of this investigation is summarized by the following equation:

∆νAC
729 =

Ω2
R

8π

(

2b−
a±5/2

∆±5/2
−
a±1/2

∆±1/2
−
a∓3/2

∆∓3/2

)

, (6.5)

where ∆i denotes the detuning from the transition |mS〉 = ±1/2 − |mD = i〉 and b the
coupling to far detuned dipole transitions. Please note, that Eq. (6.5) is only valid for
the chosen geometry of magnetic field, laser polarization, and k-vector and also other
transitions of the Zeeman mulitplet have to be taken into account. The coefficients ai are
the squared relative coupling strengths from Tab. 2.1 and the dipole contribution has been
measured to be b =0.112(5)/(2π) MHz−1.

There are two contributions of probe light to the Stark shift during the probe time of a
Ramsey experiment. The first is simply the leakage of 729 nm light when the double pass
AOM is switched off. This light has a detuning of ∆/(2π) =540 MHz with respect to the
S−D transition. In the case of the absolute frequency measurement, a residual background
light of 0.7(1) nW was measured. Compared to the light level of 7.4µW necessary for a
Rabi frequency of ΩR/(2π) =8.3 kHz on the |mS〉 − |mD = −1/2〉 transition, a shift of
34(1) mHz can be expected. The second part of the Stark shift stems from the fact, that
the condition τ ≪ τR is not fulfilled well for our parameters. This means, the phase
picked up during the Ramsey experiment (see Eq. (2.54)) is modified by an additional
component equal to the product of the effective pulse time τ 4

π from Eq. (2.49) and the
corresponding Stark shift calculated from Eq. (6.5). Taking Eq. (2.54) and using a pulse
time of 54(5) µ, the shift amounts to 80(4) mHz. The total shift by light at 729 nm then is
∆νAC

729 =0.11(4) Hz which corresponds to 2.7× 10−16 relative uncertainty for the absolute
frequency measurement.
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Light at 854 nm

The laser at 854nm is used to quench/reset the 2D5/2 level. It it is sent through a double
pass AOM which can be attenuated by 70 dB to compensate for reference cavity drifts.
Unfortunately, there might still be some light leaking through. At normal experimental
conditions, the residual light level is below the sensitivity of our power meter. Since this
light acts on the D5/2−P3/2 dipole transition, it may cause considerable light shifts. There
are two possibilities, either:

• the light is coming from the AOM’s zeroth order by not completely blocking the
light, or

• the light is near resonant due to insufficient switch-off of the RF.

In order to distinguish between these effects we performed two measurements. The first
experiment was to investigate the effect of zero-order light. Therefore, we had to deliber-
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Figure 6.6: Effect of off-resonant light at 854 nm with a detuning of 200 MHz on locking the
probe laser to the atomic transition. A jump in the frequency difference of the reference
cavity and the ion is visible when the light is blocked at a certain time. The average drift
has been substracted for the lower graph.

ately send a given amount of the zeroth order light to the ion to detect a measurable shift
and extrapolate to the level at normal operating conditions. We locked the laser to the
ion with 3.4(1) µW of zero-order light arriving at the experiment table and let the lock
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settle down for about 20 minutes to get a reliable signal of the cavity drift due to slowly
changing Stark shifts. We then blocked the light and observed a jump of the cavity-ion
difference frequency. Again, we then continued measuring for 15 minutes to measure the
frequency drift. We used linear fits for each data set to measure a shift of -170(40) Hz
when the light was blocked as shown in Fig. 6.6. The power meter reading at normal
operation was 0.1 nW, which was limited by background light. Therefore, the expected
shift for zero-order light is -5(2) mHz.

The second experiment was a measurement of the lifetime of the 2D5/2 state. The
presence of near-resonant light would result in a reduction of the lifetime due to scatter-
ing events. The ion was initialized in the |S,mS = −1/2〉 state and transferred into the
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Figure 6.7: A lifetime measurement of the metastable D5/2-state yields a decay constant
of 1.16(4) s.

|D,mD = −1/2〉 level by a π-pulse resonant with this transition. After a variable wait-
ing time the remaining D-state population was detected as shown in Fig. 6.7 (points).
An exponential fit (solid line) yielded a lifetime of 1.16(4) s which is within the errorbars
identical to the lifetime measured by [148, 149]. In other words, there is no observable
reduction of the D-state lifetime. The error of the lifetime can be used to set a limit on
the possible scattering rate of 0.03(1) /s caused by the unwanted light. The corresponding
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shift according to Eq. (2.31) would be 2 mHz so that the total shift for light at 854 nm is
∆ν854 =5(4) mHz with 1× 10−17 relative uncertainty.

Light at 866 nm

The shift by the repumping laser at 866 nm is estimated by making the following as-
sumptions: the residual amount of light which could be detected by the power meter
(0.1(1) nW) is tightly focused onto the ion. We assume a beam waist of 15µm which is
probably much tighter than in reality. The corresponding shift on the D5/2 − P3/2 transi-
tion using Eq. (2.31) and the decay rate from [75] is below 10 mHz. For light intensities
similar to the light level at 854 nm we expect a shift of much less than 20µHz. The shift
can safely be estimated to be ∆ν866 =0(10) mHz with 2.4×10−17 fractional uncertainty.

Light at 397 nm

The shift by the laser at 397 nm on the cooling transition can be estimated by a worst-
case scenario: the residual amount of light is assumed to be focused onto the ion with
a detuning of half a linewidth where the shift would be maximum. The light from the
laser can be switched off in two ways. First, there is a double-pass AOM on the laser
table and single-pass AOMs on the experiment table for each branch (optical pumping
and cooling). The maximum amount of light detected in front of the vacuum window
was 0.3 nW and the attenuation factor of the double-pass AOM could be measured to be
better than 105. At a beam waist of 15 µm the worst case shift would be 0.1 Hz. Since
the residual light is probably scattered light from all kinds of surfaces like AOM crystals,
lenses, beam cubes, etc. while the RF sources are switched off pretty well (>80 dB) it is
likely to be detuned by 3×80 MHz. This would cause a shift of only 4 mHz. The total shift
for light at 397 nm is then ∆ν397 =0.004(0.1) Hz and a relative uncertainty of 2.4×10−16.
Furthermore, extremely long coherence times exceeding 30 s of a Bell-state consisting of
the two ground states

∣

∣S1/2,mS = −1/2
〉

and
∣

∣S1/2,mS = −1/2
〉

could be demonstrated
with this apparatus [150]. From that measurement an average photon scattering rate of
one in 8 minutes could be estimated, indicating that the error mentioned above can be
considered as a conservative estimate.

Black body radiation

The largest uncertainty in the error budget however, stems from the AC Stark shift in-
duced by black body radiation. The ion is exposed to thermal fields emanating from the
surrounding vacuum vessel at room temperature and the ion trap which gets heated up by
the applied RF power. The mean-square of the frequency-dependent electric field emitted
by a black body at temperature T is given by [151]

〈E2(t)〉 = (831.9 V/m)2
(

T

300 K

)4

. (6.6)

The total black body radiation shift can be calculated as the difference between the shifts
of the individual levels involved. The static scalar polarizabilities of the S1/2 and D5/2
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states are taken from [152], that is α0(4S1/2) = 76.1(1.1)4πǫ0a
3
0/h and α0(3D5/2) =

32.0(1.1)4πǫ0a
3
0/h, respectively. There is also a tensorial part [24, 91] for the D level,

but this contribution is averaged out if the thermal radiation field is isotropic, or as in
our case, if all sublevels with the tensorial contribution are measured similar to the can-
cellation of the electric quadrupole shift. Therefore, the blackbody radiation shift can be
written as

∆νBBR = − 1

2h
〈E2(t)〉(α0(3D5/2)− α0(4S1/2)). (6.7)

The actual trap temperature as a function of the applied RF power can only be roughly
estimated with the help of the test setup mentioned in Sec. 3.2.2. At the input power of 9W
that was applied for the frequency measurement, the trap heats up to about 150±50 ◦C.
The trap only covers about one third of the total solid angle while the rest is covered by
the surrounding vacuum vessel at a temperature of 25±2 ◦C. Using Eqs. (6.6) and (6.7)
and taking into account both contributions and their respective solid angles, we estimate
the black body shift to be ∆νBBR =0.9(7) Hz with a fractional uncertainty of 1.7×10−15.
The uncertainty has two main contributions, the first being the 50% uncertainty in the
solid angle and the already discussed estimation of the temperature.

Micromotion and thermal motion

Thermal secular motion and excess micromotion cause the ion to be exposed to non-zero
mean-square electric fields from the trap. The resulting Stark shift for excess micromotion
can be calculated by [82]

(∆νS)micro ≃ 2α0

(

2MΩT

ek cosφk

)2 R1

R0
, (6.8)

with the ratio of the micromotion sideband powers R1
R0

=
J2
1 (βmicro)

J2
0 (βmicro)

, the angle between the

micromotion and the incident light φk, the mass of the ion M , and the Stark shift rate
α0 [152] from the section above. Typically, we achieve micromotion compensation with
modulation indices βmicro < 0.004 in both directions. In the limit βmicro ≪ 1, the power
in the micromotion sidebands can be expanded in terms of the modulation index

R1

R0
≈

(

1

2
βmicro

)2

. (6.9)

Using Eqs. (6.8) and (6.9) and assuming βmicro = 0.004(±0.1), the expected Stark shift due
to micromotion therefore becomes (∆νS)micro =0.2 mHz. Again, the tensorial contribution
is averaged to zero by the measurement of all 3D5/2 levels.

We hardly have to correct the compensation voltages on a time scale of months. There-
fore it is safe to assume an error of well below 0.1 for the modulation index. An estimate
of the expected uncertainty is then <125 mHz, given that the direction is not well known
(73◦±10◦). The relative uncertainty of this contribution to the error budget is 3× 10−16.
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The Stark shift contribution of the thermal motion can be calculated by [101]. For a
Doppler cooled 40Ca+ ion (T ≈0.5 mK), the expected shift

(∆νS)thermal = α0
3MΩ2

TkBT

e2
, (6.10)

is on the order of 1 mHz so that the total Stark shift due to motion is clearly dominated
by the micromotion contribution.

6.2.4 Gravitational shift

A gravitational potential difference between two clocks gives rise to a frequency difference
due to general relativity. For earth-based clocks, the relative frequency shift is approx-
imately given by the height difference ∆h and the gravitational acceleration g provided
the clocks are almost at the same height [40]

(

∆ν

ν

)

g

=
g∆h

c2
, (6.11)

leading to a sensitivity of 1.1 × 10−16 m−1. The vertical distance between the Cs foun-
tain and the 40Ca+ trap could be estimated to be less than 0.5(1) m. The gravitational
frequency shift is therefore estimated by ∆νg =0.023(5) Hz.

The difference between the lab levels at the university and IQOQI has been measured by
the university’s civil engineering department to 4.41 m with a precision of 1 cm [153]. The
ion trap difference is 4.5(5) m. Therefore, the expected shift between the two experiments
should be 0.20(2) Hz. This can be important for future experiments at the 10−17 level
dedicated to a more detailed analysis of systematic shifts, e. g. a comparison of the two
experiments at different trap powers to investigate the blackbody radiation shift.

6.2.5 2nd-order Doppler shift

Another relativistic effect is caused by excess micromotion or the thermal motion. It can
shift the transition line center by the relativistic Doppler effect. This shift is produced
due to the ion motion relative to the laboratory frame. For a Doppler cooled 40Ca+ ion
(T ≈0.5 mK), the shift can be estimated by

(

∆ν

ν

)

therm

= −3kBT

2Mc2
(6.12)

and is -0.7(7) mHz. The contribution to the relativistic Doppler shift of the micromotion
given by [82] is

(

∆ν

ν

)

micro

= −
(

ΩT

ck cosφk

)2 (

1

2
β

)2

(6.13)

and depends on the micromotion modulation index. In our case, the expected shift is
much smaller than -1(3) mHz so the total effect of the 2nd-order Doppler shift is -1(4) mHz
with 1× 10−17 relative uncertainty.
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6.2.6 Errors related to the Ramsey phase experiments

As already mentioned in Sec. 5.5, the total phase error for the Ramsey experiments is
<0.01◦, corresponding to a frequency uncertainty of 28 mHz. Another source of error
could be an incorrectly determined Ramsey contrast if the transition is probed off-center.
Taking the maximum offset from a transition center from Sec. 5.4.1 and a 5% error in the
contrast, the frequency error becomes 21 mHz on the transitions with the lowest contrast.
The total error therefore is 35 mHz or 8.5× 10−17 relative uncertainty.

6.2.7 Uncertainty of the Cs fountain clock

The relative accuracy of the mobile Cs fountain clock (FOM) is stated as 7.7×10−16 [10].
Nevertheless, the frequency of the clock was influenced by various effects and has been
evaluated carefully by Rovera et al. [154]. The systematic frequency correction for a
change in temperature, atom number (collisions), and magnetic field was -9.1(1)×10−15

on average and was applied to the frequency measurement data. The fountain clock was
characterized by comparisons with the ensemble of fountains (FO1 and FO2) in Paris

Figure 6.8: Comparison of the mobile Cs atomic fountain clock (FOM) of LNE-SYRTE
vs. the stationary Cs clocks of LNE-SYRTE FO1 (triangles) and FO2 (disks). The squares
show FO1 vs. FO2. Image by courtesy of Michel Abgrall, LNE-SYRTE.
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before and after the experiment. As shown in Fig. 6.8 the deviations of FOM vs. FO2 lie
within 10−15 so that the accuracy for the 40Ca+ frequency measurement can be taken as
better than 1× 10−15.

6.2.8 Total error budget and result

The errors sources described in detail in the sections above lead to the overall error bud-
get shown in table 6.1. The total shift is 2.4 Hz with an error of 1.0 Hz which is the
square root of the sum of the individual errors squared. The corrected value of the
4s 2S1/2 − 3d 2D5/2 transition taking into account these systematic shifts is νCa+ =
411 042 129 776 393.2(1.0) Hz which corresponds to 2.4 · 10−15 relative uncertainty. To
our knowledge this is the most accurate of any Ca+ transition frequency measurement so
far. There is a preliminary measurement which claims 10−14 precision by Matsubara et
al. [155]. Their measurement differs from our measurement by -8 Hz with an uncertainty of
18 Hz. In contrast to our measurement, the transition was investigated by the Rabi method
on two transitions for a set of 48 measurements only, namely |mS = −1/2〉−|mD = −1/2〉
and |mS = 1/2〉 − |mD = 1/2〉. Thereby the linear Zeeman effect is canceled but not the
quadrupole shift. Since the quadrupole shift has never been measured in their trap, there
is need for further investigation.

6.3 The measurement of the 43Ca+ 4s 2S1/2− 3d 2D5/2 transi-
tion

For the absolute frequency measurement of the 43Ca+ 4s 2S1/2 − 3d 2D5/2 transition the
light of the laser exciting this transition was sent to the frequency comb through a length-
stabilized optical fiber. An overview of the setup is shown in Fig. 3.1. The laser was
referenced to the

∣

∣S1/2, F = 4
〉

−
∣

∣D5/2, F = 6
〉

transition by probing the |S,mF = 4〉 −
|D,mF = 6〉 sublevels and feedback was applied in a similar way as in the experiment
at the university by changing the frequency of AO7. The transition frequencies were
interrogated employing the Ramsey method just as for the 40Ca+ measurement. The
setup and the measurement technique is described in more detail in [81]. From the model
mentioned there, the center frequency of the transition was calculated and extrapolated
to zero magnetic field according to

E|F,mF 〉 = µBgFmFB (6.14)

together with the hyperfine energy shift

∆Ehfs =
1

2
AhfsK +Bhfs

3
2K(K + 1)− 2I(I + 1)2J(J + 1)

2I(2I − 1)J(2J − 1)
, (6.15)

where gF is the hyperfine g-factor, Ahfs and Bhfs the hyperfine constants with their values
given in [118], I, J the nuclear and electron angular momenta, F = J+I the total angular
momentum, and K = F (F + 1)− I(I + 1)− J(J + 1). The remaining frequency difference
to the 40Ca+ transition frequency is attributed to the isotope shift.
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Effect Shift Error Fractional
(Hz) (Hz) error (×10−15)

Statistical error - 0.5 1.2
1st-order Zeeman 0 0.2 0.5
Magnetic field drift 0.03 0.01 0.024
2st-order Zeeman: quantization field 1.368 0.002 0.005
2st-order Zeeman: black body <0.001 <0.001 <0.002
Electric quadrupole 0 0.2 0.5
AC Stark: probe laser 0.11 0.02 0.05
AC Stark: quenching laser -0.005 0.004 0.01
AC Stark: repumping laser 0 0.01 0.02
AC Stark: cooling laser 0 0.1 0.2
AC Stark: black body radiation 0.9 0.7 1.7
AC Stark: motion 0 0.1 0.2
2nd order Doppler -0.0007 0.0007 0.002
Graviational shift 0.023 0.005 0.01
Ramsey phase error 0 0.03 0.07
Cs uncertainty 0 <0.4 <1

Total shift 2.4 1.0 2.4 × 10−15

Table 6.1: 40Ca+ error budget. A list of the most important effects with their size and error
in Hz and the fractional uncertainty in units of 10−15. The total offset of the frequency
measurement is 2.4 Hz with an error of 1.0 Hz which is the square root of the sum of the
squared individual errors. This corresponds to 2.4× 10−15 relative uncertainty.

The frequency of the 4s 2S1/2 − 3d 2D5/2 transition of 43Ca+ compared to 40Ca+ was
measured at four different magnitudes of the magnetic field and the results of the obtained
isotope shifts with the average value subtracted are listed in Tab. 6.2. At each setting
of the magnetic field the statistical errors for their mean values are on the order of a
few Hertz but the center frequencies differ by 1.6 kHz minimum-maximum. Therefore,
an average isotope shift of 4,134,711,040(700) Hz is obtained as the mean value of the
complete data set. This result is in reasonable agreement with the value obtained by
[118] in a previous measurement which yielded 4134.713(5) MHz. On the other hand,
the measurement reported here does not contain any analysis of systematic effects and
therefore has to be treated with care. The close agreement is a little bit surprising, given
the fact that the transition frequencies differ quite a lot for the various magnetic fields,
indicating an unknown systematic effect related to this. The most likely explanation for
the differences are AC Stark shifts induced by the trapping field as some of the hyperfine
states lie close to the 25 MHz drive field of the trap. At this stage, the precision of the
43Ca+ 4s 2S1/2 − 3d 2D5/2 transition frequency measurement is 1.2 × 10−11 due to the
precision in the isotope shift. All other sources of systematic shifts and related errors
are expected to be much smaller and similar to the case of the 40Ca+ measurement.
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Table 6.2: The isotope shift of the 43Ca+ 4s 2S1/2 − 3d 2D5/2 transition with the average
value of 4,134,711,040(700) Hz subtracted for different magnetic fields.

Magnetic field (G) Frequency difference (Hz) Stat. Error ∆f (Hz)

0.55 +421 4
1.13 +652 3
1.69 -931 6
3.04 -143 3

Nevertheless, the 43Ca+ isotope represents another good candidate for an optical clock
transition and a rich field for further investigation. Especially, considering that an atomic
transition linewidth of 16 Hz at the transition S(F = 4,mF = −4) ↔ D(F = 3,mF = 3)
with vanishing differential Zeeman shift around B =4G has been observed [81].
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Chapter 7

Precision spectroscopy with
correlated atoms

The creation of entangled atoms is recognized as a key resource for quantum cryptography
and quantum computation. In this field, ion trap experiments have enabled spectacular re-
sults in processing quantum information [156–158] or the creation of entanglement of up to
8 ions [159, 160]. But entanglement is also of interest in the context of metrology and laser
spectroscopy. Maximally entangled states can be used for efficient quantum state detec-
tion by entangling an atom which is difficult to detect with another atom that is easier to
detect [67] and it has been demonstrated that entangled states provide a means of improv-
ing the signal-to-noise ratio in precision spectroscopy experiments [60, 65, 66, 161, 162].
In addition, it is sometimes possible to identify specific states in the state space of many-
particle quantum systems that are immune to decoherence [71] with respect to noise sources
otherwise dominating single-atom systems [70]. Such decoherence-free subspaces protect
quantum information and yield enhanced coherence times. Therefore these subspaces of-
fer the prospect of high resolution spectroscopy even in the presence of strong technical
noise. The question arises whether entanglement is a mandatory ingredient for this kind
of measurement. As will be shown later it turns out that measurements with classically
correlated atoms can be used in a similar way even if the atoms are not entangled.

In this chapter, experiments with two entangled 40Ca+ ions will be presented, which
were used to determine the electric quadrupole moment and the magnetic field gradient
at the position of the ions. It will be shown how entangled states can be used to measure
the linewidth of a narrow-band laser. The second part of this chapter is dedicated to
measurements with a pair of correlated, but not maximally entangled 40Ca+ ions used to
verify the measurement results with entangled ions.

7.1 Spectroscopy with entangled states

In a Ramsey experiment, information about an atomic transition frequency is obtained
from a measurement of the relative phase ϕ = ϕL + ∆τ (determined by the phase ϕL of
the exciting laser and the detuning ∆ from the transition) of a superposition of the ground
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and excited state 1√
2
(|g〉+eiϕ |e〉) by mapping the states 1√

2
(|g〉± |e〉) to the measurement

basis {|g〉 , |e〉}. This is done by the application of the second π/2-pulse.

Spectroscopy with entangled states can be realized by a generalized Ramsey experiment
where the relative phase of a Bell state Ψϕ = 1√

2
(|g〉1 |e〉2 + eiϕ |e〉1 |g〉2) is measured in

analogy to a single-ion Ramsey experiment. Here, the phase ϕ = ϕ1 − ϕ2 is measured by
applying the π/2-pulses to both atoms followed by state detection. For π/2-pulses with
the same phase the singlet state 1√

2
(|g〉 |e〉 − |e〉 |g〉) is mapped onto itself, whereas the

triplet state 1√
2
(|g〉 |e〉+ |e〉 |g〉) is mapped onto a state 1√

2
(|g〉 |g〉 + eiϕ |e〉 |e〉).

A measurement of the parity operator σ
(1)
z σ

(2)
z yields information about the relative

phase ϕ of the Bell state’s constituents by

〈σ(1)
z σ(2)

z 〉 = cosϕ. (7.1)

If the atomic transition frequencies for both ions are not exactly the same, the phase
will evolve according to ϕ(τ) = ϕ0 + ∆τ , where ∆ = ∆1 ±∆2 and ∆i are the frequency
differences of the laser from the individual transitions. The + sign applies if the Bell state
is a superposition of both atoms in the excited and both atoms in the ground state, the −
sign is for the state where an atom in the ground state is associated with the other atom
being in an excited state and vice versa. Thus, a measurement of the phase evolution rate
directly yields information about the difference frequency ∆ of the constituents of the Bell
state. If the atomic transition frequency is the same for both ions, the phase evolution
will be twice as sensitive to the phase ϕ(τ) = 2ϕ0 + 2∆τ as compared to a single ion
measurement.

7.1.1 Measurement of the quadrupole moment

Ramsey experiments with a two-ion Bell-state Ψ = 1√
2

(|m1〉 |m2〉+ |m3〉 |m4〉), where

the magnetic quantum numbers mi of the state |mi〉 ≡
∣

∣D5/2,mi

〉

fulfill m1 + m2 =
m3 + m4 are to first order insensitive to fluctuations of the magnetic field. Both parts
of the Bell-state are shifted by the same amount due to the linear Zeeman effect. This
means, that a state like Ψ is suitable for spectroscopy in a decoherence free subspace
with respect to the magnetic field if the inter-ion distance d is much smaller than the
scale on which the magnetic field varies, i. e. the magnetic field is the same for both ions.
The measurement strategy is especially useful where magnetic field noise would otherwise
render a measurement scheme with single ions difficult. Also, frequency noise of the probe
laser is only relevant during the relatively short preparation of the Bell-state and the
read-out analysis but not during the long Ramsey interrogation period making sub-Hertz
spectroscopy feasible even with a laser that has a linewidth on the order of a few ten Hz.
Since the states |mi〉 are sensitive to the electric quadrupole shifts these Bell-states can
be designed to measure the electric quadrupole moment of the 3d 2D5/2 level.

The Bell state ΨQ = 1√
2

(|−5/2〉 |+3/2〉 + |−1/2〉 |−1/2〉) is used for the measure-

ment of the quadrupole shift. The level diagram with respect to the two most im-
portant energy shifts for this state (linear Zeeman and electric quadrupole effect) is
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Figure 7.1: Level diagram for the state ΨQ. The left part shows the linear Zeeman shift
of the D5/2 level for a magnetic field of ∼3G and the right part the quadrupole shift at
∼25 V/mm2 for the involved levels. The state ΨQ is sensitive to the electric quadrupole
shift but completely symmetrical with respect to the linear Zeeman shift.

shown in Fig. 7.1. The state ΨQ is created by applying additional carrier π-pulses to
Ψ±

SD = 1√
2

(|S,−1/2〉 |D,−1/2〉 ± |D,−1/2〉 |S,−1/2〉) which can be generated with three

laser pulses and a fidelity of 90% [72]. The sensitivity of the state ΨQ to a static electric
field gradient is ~∆Q = 24/5 ~δ where ~δ is the shift that a single ion in states |±5/2〉
would experience. The two-ion shift is bigger because the presence of a second ion increases
the electric field gradient at the location of the first ion by a factor of two. For the shift
measurement, we applied a method using generalized Ramsey experiments. The state ΨQ

is prepared and let to evolve into ΨQ(τ) = 1√
2
(|−5/2〉 |+3/2〉 + exp (i∆Qτ) |−1/2〉 |−1/2〉)

for waiting times τ ranging from 0 to 300 ms. After that, ΨQ(τ) is transferred back to
Ψ±

SD(τ) and the phase of the parity is measured according to (7.1). The resulting parity
oscillations with a frequency of ∆Q = (2π)33.35(3) Hz are shown in Fig. 7.2(a). The deco-
herence due to spontaneous decay is responsible for the damping of the oscillations with
a damping time constant of τd=590(70) ms. This is in agreement with the expected value
of 1

2τD5/2
=584(4) ms [148, 149].

Any difference of the magnetic field at the position of the ions leads to an additional
contribution to the oscillation frequency of the parity. In order to distinguish the effect
of the electric quadrupole shift and the magnetic field gradient in the direction of the ion
crystal another state ΨQ′ = 1√

2
(|+3/2〉 |−5/2〉 + |−1/2〉 |−1/2〉) has to be investigated

where the states of the ions have been interchanged. Fig. 7.2(b) shows the parity oscilla-
tions of the state ΨQ′(τ) with a frequency of ∆Q′ = (2π)36.52(4) Hz and a decay constant
of τd=530(60) ms. Both contributions to the phase oscillations can be determined sepa-
rately by taking the average ∆ = (∆Q + ∆Q′)/2 and the difference ∆B′ = |∆Q −∆Q′|/2
of the two signals. The parity oscillations were taken at a tip voltage of 750 V and five
different data sets were combined for each plot. Data for waiting times up to 20 ms were
repeatedly taken to exclude slow drifts of the initial parity. The magnetic field gradient
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Figure 7.2: Ramsey experiments with two entangled ions for a measurement of the electric
quadrupole shift with states ΨQ and ΨQ′ at a tip voltage of 750 V. A sinusoidal function
with exponential damping is fitted to the data.

was ∆B′ = (2π)1.41(7) Hz and the electric quadrupole shift ∆ = (2π)34.94(7) Hz.

Near the trap center, the DC voltage applied to the tip electrodes creates a rotationally
symmetric static elelectric quadrupole potential. Generally, it cannot be guaranteed that
this potential has perfect rotational symmetry. In this case, the geometry factor 3 cos(β)2−
1 has to be expanded into

(

3 cos(β)2 − 1
)

− ǫ sin2(β) cos(2α), where the asymmetry is
characterized by a parameter ǫ and its direction α. The second term of the geometry factor,
however, vanishes for β = 0◦. For a precise measurement of the quadrupole moment, the
magnetic field direction has to be well aligned with the principal trap axis. This can
be done by changing the driving currents of two sets of horizontal, orthogonal coils as
described in section 5.3 and requires the different method of optical pumping demonstrated
in Sec. 5.2 because the usual method with a σ-polarized laser at 397 nm is not possible for
the current setup due to limited optical access. Fig. 7.3 shows the angular dependence of
the measured quadrupole shift ∆/(2π) at a tip voltage of 1000 V. For an angle β0 = 28(3)◦

the shift has a maximum. To make sure the overlap of the magnetic field with the trap axis
is optimum, another measurement was performed in perpendicular direction by changing
the current in a third pair of coils orthogonal to the horizontal plane and again maximizing
the shift. With these measurements performed the calibration of the system was finished
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Figure 7.3: Quadrupole shift as a function of the magnetic field orientation at a tip
voltage of 1000 V. The fitting function φ = φ0 + φ1 cos2(β − β0) yields the angle β0 where
the quadrupole shift is maximum.

and the measurement of the quadrupole moment was ready.
At the angle of the maximum shift β0, the quadrupole shift was measured as a function

of the electric field gradient dEz/dz. By applying tip voltages ranging from 500 to 2000 V,
the axial center-of-mass (COM) mode frequency ωz/(2π) could be varied from 850 to
1700 kHz. Using Eq. (2.74) the electric field gradient can be calibrated by measurements
of the COM mode frequency. The quadrupole shift as a function of the electric field
gradient is shown in Fig. 7.4. Fitting a linear function ∆/(2π) = ∆0/(2π) + adEz

dz to
the data, the slope a=2.975(2) Hz mm2/V and the offset ∆0/(2π) =-2.6(1) Hz can be
determined. The offset is well explained by the second-order Zeeman effect which is -
2.9 Hz at a bias field of 2.9 G. The remaining difference can be attributed to electric field
gradients created by stray charges. The slope a is proportional to the quadrupole moment
Θ(3d, 5/2) = 5

12ha and could be measured with an uncertainty of less than 10−3. Together
with the uncertainty of the angle ∆β =3◦, the quadrupole moment is determined to be

Θ(3d, 5/2) = 1.83(1) ea2
0 .

The best theoretical prediction before our measurement was 1.92 ea2
0 [102, 103], recent
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Figure 7.4: Quadrupole shift as a function of the applied field gradient.

improved calculations seem to confirm our measurement results as their results 1.85(2) ea2
0

[104] and 1.82 ea2
0 [105] are closer to the experimentally obtained values.

7.1.2 Measurement of the magnetic field gradient

In experiments dedicated to quantum information processing using optical qubits a gradi-
ent of the magnetic field along the trap is undesirable because it leads to different Zeeman
shifts for all ions in the string. Performing identical operations on different ions would
require different laser frequencies. Therefore, the gradient caused by stray fields of the
ion getter pump or asymmetrically installed magnetic field coils has to be minimized. A
Ramsey experiment with the Bell state Ψ+ = 1√

2
(|S〉1 |D〉2 + |D〉1 |S〉2) can be used to

detect a gradient of the magnetic field at the position of the ion string. This state is in-
sensitive to fluctuations of both the magnetic field and to deviations of the laser frequency
from the atomic transition as both constituents of the Bell state have the same energy.
In case of a magnetic field gradient this degeneracy is lifted and the sensitivity for the
chosen levels |S〉 ≡ |S,mS = −1/2〉 and |D〉 ≡ |D,mS = −1/2〉 is dν/dB =560 kHz/G.
For a measurement of the magnetic field gradient, the parity oscillations were recorded
for waiting times ranging from 0 to 300 ms. They are shown in Fig. 7.5 and fitted by
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Figure 7.5: Ramsey experiment of an entangled state |SD〉 − |SD〉 for a measurement
of the magnetic field gradient. The phase evolution rate is 7.2(1) Hz and the decay time
550(50) ms.

an exponentially damped sinusoidal with a frequency of 7.2(1) Hz and a damping time of
550(50) ms. This indicates that the coherence of the state Ψ+ is mainly limited by the life-
time of the excited state τD5/2

=1.168(7) s [148, 149]. With the help of an additional coil
on one of the main magnetic field coils the parity oscillation frequency could be reduced
to below 1 Hz. This corresponds to a magnetic field difference of 1.8 µG at the position of
the ions and to a residual gradient of below 0.4 G/m. The precision of this method can be
increased by using a transition more sensitive to the linear Zeeman effect and operating
the trap at lower axial confinement in order to increase the distance between the ions.

As already mentioned, the difference frequency of the frequencies ∆Q and ∆Q′ used
for the quadrupole shift measurement is proportional to the magnetic field gradient. It
represents another possibility to gather information about the magnetic field gradient but
slightly complicates the measurement procedure as it takes two measurements of the parity
oscillation frequency. The frequency difference caused by a magnetic field gradient ∆B′ is
displayed in Fig. 7.6. Since the inter-ion distance d decreases from 6.2 to 3.9µm for higher
tip voltages applied ranging from 500 to 2000 V, the magnetic field gradient B′ decreases
as well, because B′ ∝ d ∝ (dEz/dz)

−1/3.

7.1.3 Measurement of the linewidth of the laser exciting the quadrupole
transition

For frequency standard applications, measurements with entangled states can provide a
means which is insensitive to otherwise dominant sources of noise like fluctuations of the
magnetic field for atomic transitions with even isotopes. By using a state like Ψmetro =
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Figure 7.6: The shift caused by the magnetic field gradient as a function of the applied
electric field gradient and the residuals of the fitted function. The fitted line is inversely
proportional to the cube root of the applied electric field gradient.

1√
2
(|S,m = −1/2〉 |S,m = +1/2〉 + |D,−m′〉 |D,m′〉) with m′ = {1

2 ,
3
2 ,

5
2} the 4s 2S1/2 −

3d 2D5/2 transition in 40Ca+ can be probed in the absence of decoherence due to magnetic
field noise and by averaging over all three combinations of m′ the electric quadrupole shift
can be cancelled as well. As a preliminary measurement, a state Ψmetro with m′ =1/2 was
used to investigate the linewidth of the probe laser at 729 nm. The phase of the analyzing
pulses for different waiting times was scanned from 0 to 2π and the parity signal recorded.
To each scan sinusoidals of fixed period were fitted to infer the contrast of the parity
oscillations. The contrast as a function of waiting time is shown in Fig. 7.7. The contrast
is fitted by a Gaussian with a half-life of τ1/2 =1.8(2) ms and an initial contrast of 80%.
According to Eq. (2.59), this corresponds to a laser linewidth of ∆νL =123(14) Hz. At
Ramsey times larger than 4 ms, where the contrast should have already decayed to zero
there is still some coherence left. A closer investigation revealed that the loss of contrast
cannot be explained by decoherence only. For some data sets with initially low contrast
the sinusoidal pattern showed a different oscillation period which is the reason for the
fitting routine being unable to correctly fit the data set.
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Figure 7.7: The fitted Ramsey contrast as a function of the waiting time is indicated by
the circles while the crosses mark the peak-to-peak amplitude of the parity oscillations.
Error bars of the fitted contrasts are given for a few representative points while the error
bars for the peak-to-peak values are on the order of 1%. A Gaussian fit to the contrast
yields a lifetime of τ1/2 =1.8(2) ms corresponding to a laser linewidth around 123(14) Hz.
The peak-to-peak values are fitted best by an exponential decay with a time constant of
16(5) ms and an estimated linewidth of 9.8(3.2) Hz.
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Especially for longer Ramsey times, the phase pattern gets distorted by slow frequency
fluctuations of the interrogation laser which happen on the same time scale it takes to
record a phase scan. Since it is difficult to adjust the fitting routine by a frequency chirp,
the peak-to-peak amplitude ∼ (max−min)/(max + min) of the parity signal is also shown
in Fig. 7.7. This way, sometimes even for Ramsey times as large as 10-15 ms, a clear
sinusoidal variation of the parity signals is recognizable with contrasts larger than 50%.

The peak-to-peak amplitude is best fit by an exponential decay with a time constant of
16(5) ms. Using Eq. (2.62), this would indicate a laser linewidth of ∆νFWHM =9.8(3.2) Hz.
It should be pointed out that this result is rather preliminary. The peak-to-peak amplitude
is probably not the best measure for the contrast because it does not distinguish between
periodic and non-periodic behaviour. But still, it produces a reasonable result when
compared to the beat measurement or the measurement with unentangled states (see
Sec. 7.2.2). Particularly the Allan variance of the beat measurement (see Fig. 3.21) shows
that the laser frequency is fluctuating by ∆νFWHM =40 Hz on time scales of a few seconds
to hours which agrees with the change of the oscillation period during the phase scans.

7.2 Spectroscopy with correlated but unentangled states

The question is, whether entanglement is really necessary for the measurement technique
described in the section above. In fact, it can be even applied to completely unentangled
ions because the product state

Ψp =
1

2
(|S〉+ |D〉)1 ⊗ (|S〉+ |D〉)2 =

1√
2
|Ψ+〉+

1

2
|S1〉 |S2〉+

1

2
|D1〉 |D2〉 (7.2)

contains the Bell state Ψ+. This state will quickly decay into the mixed state described
by the density operator

ρp =
1

2
|Ψ+〉 〈Ψ+|+

1

4
|SS〉 〈SS|+ 1

4
|DD〉 〈DD| (7.3)

under the influence of collective phase noise like fluctuating magnetic fields. A measure-
ment of the parity operator will produce the same result as for a maximally entangled
state given in Eq. (7.1) apart from a reduced contrast of 50%. This is a very promising
result because the creation of entangled states in the presence of strong decoherence might
be difficult, but the question still remains if both methods yield the same result.

7.2.1 Measurement of the quadrupole moment

In order to check the validity of the quadrupole moment measurement and to prove that the
measurement can be done with classically correlated, but unentangled ions, we prepared
the state

Ψp =
1

2
(|D,−5/2〉+ |D,−1/2〉)1 ⊗ (|D,+3/2〉 + |D,−1/2〉)2 (7.4)

which contains the Bell state ΨQ as it was used for the measurement of the quadrupole
moment with entangled ions. This state quickly turned into a mixed state by fluctuations
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Figure 7.8: Parity oscillations for a product state Ψp sensitive to a static electric field
gradient. The quadrupole shift is inferred from the oscillation frequency.

of the magnetic stray fields. After Ramsey waiting times of up to 200 ms the π/2 pulses
were applied and the parity was measured just as for the Bell state measurements. An
example for the resulting parity oscillations is shown in Fig. 7.8 for a tip voltage of 1000 V.
A sinusoidal fit where the first data point was neglected as the initial state may not yet have
completely decayed into a mixed state yields an oscillation frequency of 38.6(2) Hz. The
parity signal decays with a time constant τd =730(540) ms consistent with the damping
time constant of 584(4) ms expected from the lifetime of the D5/2 state [148, 149].

The measurement of the quadrupole moment was done in a similar way as for the
entangled state measurement. The quadrupole shift was again measured for different
tip voltages and the electric field gradient was calibrated by measurements of the axial
COM oscillation frequency. Also for this measurement, the direction of the magnetic field
coincided with the trap axis. Fig. 7.9 shows the quadrupole shift as a function of the
electric field gradient. Fitting a straight line to the data allows for a calculation of the
quadrupole moment provided the angle between the quantization axis and the electric
field gradient is known. The configuration was the same as for the measurement with
entangled states. Shown in the inset of Fig. 7.9 is the maximization of the quadrupole
shift as a function of the angle of the vertical magnetic field by varying the current driving
the vertical coil pair. The slope of the linear fit α ∝ dE/dz=2.977(11) Hz/(V/mm2) is in
close agreement with the result obtained with entangled states (α=2.975(2) Hz/(V/mm2))
and confirms that both measurements with entangled states as with product states give
the same result. Deviations of the data from the fit obtained with entangled states are
shown in Fig. 7.10. The dots indicate the residuals of the measurements with entangled
states and the squares show the deviations obtained with the classically correlated states.
As expected, the error bars are much larger for the product state measurements because
of the reduced Ramsey contrast and the higher quantum projection noise. Nevertheless,
this method is attractive because it is much easier to realize as it does not require ground
state cooling on the quadrupole transition and a narrow-band laser for the quadrupole
transition. The measurement of the quadrupole moment is not limited by measurement
statistics but rather by systematic errors, the alignment of the magnetic field with the
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Figure 7.9: Measurement of the electric quadrupole shift with a pair of ions in a product
state. The shift varies linearly with a change of the electric field gradient. The inset shows
the maximization of the shift by changing the vertical magnetic field.

trap axis being the most important effect.

7.2.2 Measurement of the laser linewidth

Often, the linewidth of a narrow-band laser is investigated by setting up an identical
system and analyzing the beat note of the two. In the case where no second laser is
available, Ramsey experiments can be used as a tool to infer the laser linewidth. However,
this requires an atomic transition which is not broadened by phase noise to an extent
comparable to that of the laser to be investigated. In 40Ca+ this is difficult to achieve
because the transitions depend on the magnetic field in first order. Again, a pair of ions
in a correlated product state can be a solution to this problem.

In order to investigate the linewidth of the Ti:Sa laser exciting the 40Ca+ 4s 2S1/2 −
3d 2D5/2 transition we prepared the state defined by

ΨL =
1

2
(|S,−1/2〉 + |D,−1/2〉)1 ⊗ (|S,+1/2〉 + |D,+1/2〉)2. (7.5)
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Figure 7.10: Residuals of the electric quadrupole measurements: The deviations of the
measurements with correlated, but unentangled ions (squares) from the fitting result with
entangled ions (circles) are shown. The deviations from the fit achieved with entangled
states are indicated by the dots.
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Figure 7.11: Pulse scheme for a randomization of the phase: By using two independent
sources indicated by the shading for the Ramsey pulses a Ramsey experiments with two
unentangled ions for a measurement of the laser linewidth can be realized.

The phase of a single-ion Ramsey signal is composed of three contributions: (a) the phase
accumulated due to a detuning of the laser from the atomic resonance ϕL = ∆τR, (b)
the phase shift ϕB arising from fluctuations of the magnetic field around its mean value,
and (c) the relative phase of the Ramsey pulses ϕi, i denotes the number of the ion. A

projective measurement of 〈σ(i)
z 〉 = 〈cos(ϕL + (−1)iϕB + ϕi)〉 results in the well known

Ramsey fringe pattern. Please note that the magnetic field phase contributions ϕB have
opposite sign for the chosen magnetic substates. The two-ion parity signal is therefore
given by

〈σ(1)
z σ(2)

z 〉 = 〈cos(ϕL − ϕB + ϕ1) cos(ϕL + ϕB + ϕ2)〉

=
1

2
(〈cos(2ϕL + ϕ2 + ϕ1)〉+ 〈cos(2ϕB + ϕ2 − ϕ1)〉) .

(7.6)

By choosing the phases ϕ1,2 to be random variables but with a fixed relation it is possible
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to make either the first or second term vanish and detect either fluctuations of the laser fre-
quency or the magnetic field. If the phases are chosen to be ϕ1 = ϕ0 +ϕX and ϕ2 = −ϕX ,
where ϕX is a random variable uniformly distributed over [0, 2π[, the magnetic field de-

pendent term averages to zero and the parity signal becomes 〈σ(1)
z σ

(2)
z 〉 = 〈cos(2ϕL +ϕ0)〉,

since the sum ϕ1 + ϕ2 = ϕ0 is not a random number. By setting ϕ1 = ϕ0 + ϕX , ϕ2 = ϕX

the signal becomes insensitive to laser fluctuations and is detecting decoherence caused
by magnetic field fluctuations only. Two independent RF sources were used to drive an
AOM in double pass configuration to create the laser pulses for the two-ion Ramsey exper-
iments. Therefore, the relative phase between the two sources ϕX is randomly distributed
over [0, 2π[ for each experiment. For a Ramsey experiment sensitive to magnetic field
fluctuations the first and the second pulses on the ions have to be from the same source
while for the laser-sensitive method the second pulse on the first ion and the first pulse of
the second ion need to be produced by the same source. The pulse configuration shown in
Fig. 7.11 realizes the situation needed for a laser-sensitive Ramsey experiment. The shad-
ing indicates by which source the pulses are produced. By varying the phase ϕ0 ranging
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Figure 7.12: Ramsey experiment with two unentangled ions for a measurement of the
laser linewidth: The phase of the second Ramsey pulse on ion 1 is scanned ranging from
0 to 8π. In the upper graph oscillations of the two-ion parity signal are shown while the
single-ion coherences show no correlation as they are completely random.
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from 0 to 8π parity oscillations can be recorded as shown in Fig. 7.12 in the upper graph.
The single ion coherences displayed in the lower graph are completely flat as result of the
randomization of the phase. The Ramsey waiting time was τR =1.5 ms.
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Figure 7.13: Measurement of the laser linewidth by a two-ion Ramsey experiment with
unentangled ions. The Ramsey contrast is plotted against the waiting time and fits a
Gaussian function with half-width τ1/2 =4.6(2) ms. This corresponds to a laser linewidth
of 48(2) Hz.

A series of Ramsey experiments was performed with waiting times from 0 to 10 ms. In
Fig. 7.13 the contrast is plotted against the waiting time. As the broadening of the laser
line is dominated by low-frequency noise the data can be fitted by a Gaussian function
with a half-width of τ1/2 =4.6(2) ms. The decay is twice as fast as compared to standard
Ramsey experiments with a single ion because of the factor 2ϕL in Eqn. 7.6. From this
decay constant, we infer a laser linewidth of 48(2) Hz on the time scale of several minutes.
This is in agreement with observations of the beat note with another laser system located
at IQOQI labs.
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Chapter 8

Summary and outlook

In this thesis, precision spectroscopy with trapped 40Ca+ ions could be demonstrated.
The absolute frequency of the 4s 2S1/2 − 3d 2D5/2 transition was measured to 1 Hz to-
tal uncertainty with the help of a frequency comb referenced to a transportable cesium
fountain clock. It was clearly shown that correlated states, maximally entangled or even
classically correlated, are suitable for high-resolution spectroscopy in the presence of a
noisy environment if these states are designed such that they are immune against these
perturbations.

First, before starting spectroscopy experiments, an ultra-stable laser system had to be
constructed in order to be able to perform Hz-level measurements. The Ti:Sa laser used
for this purpose was locked to a vertical reference cavity and short-term linewidths of well
below 10 Hz and a ∆νFWHM=40 Hz over more than one hour could be observed. The
frequency drift of the reference cavity can be compensated by phase-contiuously switching
the frequency applied to two double pass AOMs between the laser and the resonator.

The optical frequency was measured by a commercial frequency comb which was en-
hanced for better operating stability. The repetition frequency and the carrier-envelope-
offset frequency were stabilized to a radio frequency signal obtained from the mobile Cs
fountain clock FOM of LNE-SYRTE from Paris with an accuracy of better than 10−15. By
simultaneous detection of the optical beat note from two independent lasers and compar-
ison to the frequency comb readings of the two, cycle slips can be efficiently be detected.

The absolute frequency of the 40Ca+ 4s 2S1/2 − 3d 2D5/2 transition was measured to
νCa+ =411 042 129 776 393.2 (1.0) Hz including a statistical uncertainty of the measurement
of 0.5 Hz and the five largest systematic uncertainties of the Stark shift by black body
radiation (0.7 Hz), the Cs uncertainty (<0.4 Hz), the cancellation of the linear Zeeman
effect and the quadrupole shift (0.2 Hz each), and the Stark shift by the cooling laser
(0.1 Hz). A total systematic shift of 2.4 Hz was taken into account. This represents the
first absolute frequency measurement of an optical transition applying Ramsey’s method
of separated fields at the 10−15 level. In addition, the spectroscopy data could be used for a
precise determination of the Landé g-factor of the D5/2 level g5/2 = 1.2003340±2.5×10−7 .

Processing quantum information is a field of research closely related to metrology: By
high-resolution spectroscopy with two 40Ca+ ions we have shown how Bell states can
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be used for difference frequency measurements with sub-Hertz precision. Thereby, the
quadrupole moment of the D5/2 level was determined to be Θ(3d, 5/2) =1.83(1) ea2

0 by
designing a state insensitive to magnetic field noise. These experiments show that measure-
ments with correlated ions prepared in decoherence-free subspaces allow for substantially
longer coherence times than experiments limited by single-ion coherences. While the use of
entangled states achieves the optimum signal-to-noise ratio, substantial improvements can
already be obtained by experimenting with classically correlated but not entangled ions.
Additional measurements of magnetic field gradients and the linewidth of the narrow-band
spectroscopy laser demonstrated the versatility of this method.

Possible improvements and further experiments

One of the goals of this thesis was the application of quantum information processing
techniques to precision metrology other than increasing signal-to-noise [60] or quantum
state readout [67]. For the development of an optical clock it appears realistic that an
experiment with Ca+ especially designed for metrology could lead to an accuracy of 10−17

or even better. Ca+ represents a technological alternative for an optical frequency standard
because all required lasers including those for photo ionization can be generated by diode
lasers and no deep-UV light with all its technical complications of the optical setup is
necessary.

Nevertheless, there are some improvements necessary to reach this level. As a first
step improved light attenuation with fast mechanical shutters would completely eliminate
AC Stark shifts caused by the cooling and repumping lasers. Only the AC Stark shift of
the probe laser during the Ramsey pulses would still exist but could be avoided by lower
excitation power. Another minor improvement which could be immediately implemented
concerns the magnetic field drift. In order to eliminate a systematic frequency offset
caused by a linear drift in the magnetic field, the transition frequencies would have to be
measured in a different order.

Part of the largest errors of the error budget are statistical errors due to limited averaging
time. This has two reasons: one is the stability of the frequency comb and the other
the stability of the clock laser itself. Improvement on both systems could substantially
shorten the required measurement time. For the current stability of the frequency comb
it would take 84 (!) days to get down to < 10−16. The lock of the comb’s repetition
rate to the external reference needs improvement. This could be realized by choosing
a higher harmonic of the repetition rate to increase the sensitivity and a more careful
way of generating the reference. On the probe laser side an improved cavity setup could
make investigating systematic effects a lot more efficient by comparison of the two ion trap
experiments. At the moment it would take 5 days of averaging to reach the 0.1 Hz level. A
laser with 1Hz stability can get to 0.01 Hz in 10 000 s. Additionally, better laser stability
would allow for longer Ramsey waiting times and reduced averaging times due to quantum
projection noise. At the same time, lower power of the excitation pulses affordable due to
longer waiting time could improve on the Stark shift by the probe laser.

The most difficult improvement is related to the Stark shift by black body radiation. A
direct measurement of the trap temperature with the current setup is not possible. The
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only possibility for a reduced error would require a frequency comparison of the two ion
trap experiments at different trap RF powers but needs a laser with improved stability
in order to keep the measurement time at a reasonable scale. An alternative would be a
completely new trap design with the possibility to measure the trap temperature exactly.
Additionally, operating the trap in a cryogenic environment [45, 91] would dramatically
reduce the frequency uncertainty due to the black body shift.

Employing entangled states for frequency measurements has been considered yet as a
means to improve the signal-to-noise ratio [61] and for read-out of the clock ion’s quantum
state [67]. States like Ψ =

∣

∣S1/2,mS

〉 ∣

∣S1/2,−mS

〉

+
∣

∣D5/2,mD

〉 ∣

∣D5/2,−mD

〉

are to first
order immune against magnetic field fluctuations and represent a kind of ”super-atom”
especially designed for cancellation of the largest systematic effect in this system. They
could be used for generalized Ramsey experiments with probe times limited only by the
probe laser stability and spontaneous decay of the metastable state and by averaging over
all combinations of possible transitions, the electric quadrupole shift is cancelled as well.
First tests with these states, however, revealed significant phase errors caused by changes
in the optical path length when our electro-optical deflector is used to steer the beam
for addressing of individual ions. To overcome this problem, beam steering of a strongly
focused laser could be avoided by generating high-fidelity entanglement [158] with a laser
beam collectively interacting with the ions, and combining this wide beam with a second
strongly focused laser beam inducing phase shifts to make the ions distinguishable for
carrying out coherent operations on a single ion.

The same measurement principle could be applied for a measurement of the isotope shift
in an ion crystal consisting of different isotopes. Another possible application would be a
measurement of the tensor polarizability of theD levels by exposing the ions to a transverse
static field and a measurement of the quadratic Stark effect as presented in [163, 164]. It
has been shown that Bell pairs of ions can be separated in a segmented trap without
loss of coherence [165]. Then, one ion could be transported close to a surface/object and
experience a frequency shift induced by local electromagnetic fields acting as a microscopic
sensor. Finally, a Bell state consisting of two ions with similar transition frequencies but
different dependence on fundamental constants might be interesting in the search for a
possible time variation of fundamental constants.
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Appendix A

A.1 Fundamental constants

Table A.1: Fundamental physical constants used in this thesis according to the 2006
CODATA recomended values [166].

speed of light c 299,792,458 m/s

magnetic constant µ0 4π × 10−7 N/A2

Planck constant h = 2π~ 6.626 068 96(33)×10−34 Js

permittivity of vacuum ǫ0 8.854 187 817×10−12 F/m

elementary charge e 1.602 176 487(40)×10−19 C

Bohr magneton µB 9.274 009 15(23)×10−24 J/T

Bohr radius a0 0.529 177 208 59(36)×10−10 m

atomic mass unit u 1.660 538 782(83)×10−27 kg

electron mass me 9.109 382 15(45)×10−31 kg

Boltzmann constant kB 1.380 650 4(24)×10−23 J/K

A.2 Reduced matrix elements

The matrix elements of an irreducible tensor operator Tq,k can be calculated using the
Wigner-Eckart theorem [167, 168], such that

〈

J,mJ ‖Tq,k‖J ′,m′
J

〉

= (−1)J−mJ
√

2J + 1

(

J q J ′

−mJ k m′
J

)

〈

J
∥

∥

∥T (q)
∥

∥

∥ J ′
〉

, (A.1)

with

(

J q J ′

−mJ k m′
J

)

denoting Wigner 3-j symbols involving purely geometrical proper-

ties and
〈

J
∥

∥T (q)
∥

∥ J ′〉 the reduced matrix element containing the physical nature of the
tensor operator. The reduced matrix element can be found by evaluating Eq. (A.1) for
special values of Tq,k.
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In the case of the quadrupole operator Q2,k = r2C
(2)
k (θ, ϕ) with renormalized spherical

harmonics of the form C
(l)
m =

√

4π
2l+1Yl,m(θ, ϕ), the reduced matrix element can be found

as

〈

J,mJ

∥

∥

∥r2C
(2)
0

∥

∥

∥J ′,m′
J

〉

=

〈

J,mJ

∥

∥

∥

∥

r2
3 cos2 θ − 1

2

∥

∥

∥

∥

J ′,m′
J

〉

= (−1)J−mJ
√

2J + 1

(

J 2 J ′

−mJ 0 m′
J

)

〈

J
∥

∥

∥
r2C(2)

∥

∥

∥
J ′

〉

.

(A.2)

A.3 Effective Ramsey time

For ∆≪ ΩR and φ = 0 Eq. 2.47 can be expanded yielding

P (τ) = sin2(ΩRτ) +
∆2

4Ω2
R

sin(ΩRτ) [4(τ + τR)ΩR cos(ΩRτ)

−4τRΩR − (4 + τ2
RΩ2

R sin(ΩRτ))
]

+O(∆3)

=
1

sin2(ΩRτ)

{

1 +
∆2

4Ω2
R

csc(ΩRτ) [4(τ + τR)ΩR cos(ΩRτ)

−4τRΩR − (4 + τ2
RΩ2

R sin(ΩRτ))
]

+O(∆3)
}

.

(A.3)

Under the condition ΩRτ ≈ π
2 , this is reduced to

P (τ) = 1 +
∆2

4Ω2
R

(τ2
R + 4τRΩR + 4) = 1 +

1

4

(

2∆

ΩR
+ ∆τR

)2

. (A.4)

Because ∆→ 0, this can be further simplified to

P (τ) =
1

2

[

1 + cos(∆(τR +
2

ΩR
))

]

=
1

2

[

1 + cos(∆(τR +
4τ

π
))

]

, (A.5)

since ΩRτ = π
2 .
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Appendix B

Journal publications

The work of this thesis resulted in a number of publications:

1. ”Absolute frequency measurement of the 40Ca+ 4s 2S1/2−3d 2D5/2 clock transition”,
M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler,
A. S. Villar, W. Hänsel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D.
Rovera, Ph. Laurent, Phys. Rev. Lett. 102, 023002 (2009).

2. ”Precision spectroscopy with two correlated atoms”, M. Chwalla, K. Kim, T. Monz,
P. Schindler, M. Riebe, C. F. Roos, R. Blatt, Appl. Phys. B 89, 483 (2007).

3. ”’Designer atoms’ for quantum metrology”, C. F. Roos, M. Chwalla, K. Kim, M.
Riebe, and R. Blatt, Nature 443, 316 (2006).

Additional articles have been published related to the general context of this thesis:

4. ”Realization of the quantum Toffoli gate with trapped ions”, T. Monz, K. Kim, W.
Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, R. Blatt,
Phys. Rev. Lett. 102, 040501 (2009).

5. ”Deterministic entanglement swapping with an ion trap quantum computer”, M.
Riebe, T. Monz, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, R. Blatt,
Nature Physics 4, 839 (2008).

6. ”Teleportation with atoms: quantum process tomography”, M. Riebe, M. Chwalla,
J. Benhelm, H. Häffner, W. Hänsel, C. F. Roos and R. Blatt, New J. Phys. 9, 211
(2007).

7. ”Scalable multiparticle entanglement of trapped ions”, H. Häffner, W. Hänsel, C. F.
Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe,
P. O. Schmidt, C. Becher, O. Gühne, W. Dür and R. Blatt, Nature 438, 643 (2005).

8. ”Robust Entanglement”, H. Häffner, F. Schmidt-Kaler, W. Hänsel, C.F. Roos, T.
Körber, M. Chwalla, M. Riebe, J. Benhelm, U. D. Rapol, C. Becher, R. Blatt,
Appl. Phys. B 81, 151 (2005).
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[147] H. Häffner, S. Gulde, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-
Kaler, and R. Blatt, Precision measurement and compensation of optical Stark shifts
for an ion-trap quantum processor, Phys. Rev. Lett. 90, 143602 (2003).

143



[148] P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, and D. N.
Stacey, Measurement of the lifetime of the 3d 2D5/2 state in 40Ca+, Phys. Rev. A
62, 032503 (2000).

[149] A. Kreuter, C. Becher, G. P. T. Lancaster, A. B. Mundt, C. Russo, H. Häffner,
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