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Abstract

This thesis reports on different experiments, from measurements of cavity QED ef-
fects to demonstration of feedback control of a motional state, conducted with a single
138Bat ion in an interference setup.

For these purposes a single barium ion is confined in a spherical Paul trap and
continuously excited and cooled by near-resonant lasers on its Py, — Sy/2 at 493 nm
and Py, — D35 at 650nm. A collimating lens and a distant mirror are placed such that
4% of the 493 nm resonance fluorescent light is retroreflected, resulting in interference
fringes. It leads also to a modification of the spontaneous emission rate on the P/, —
S1/2 transition and to an energy shift of the P/, state as well.

The modification of decay causes a modulation of the fluorescence at 650 nm with
the same period as that for the 493 nm interference fringes. The level shift of the
excited level results in the phase difference between 493 nm interference fringes and
the 650 nm modulation fringes which varies with the 650 nm laser detuning and takes
all values between correlation (phase close to 0 or 27) and anti-correlation (phase ).
The measured amplitude of the level shift is approximately equal to 240 kHz.

In the second part of the thesis the mechanical action of the fluorescence light which
is reflected back onto the Ba® ion is demonstrated. The energy shift of Py, state has a
sinusoidal dependence on the ion-mirror distance, thus leading to a spatially dependent
force on the excited ion which changes the trap frequency by up to 300 Hz. RF spectral
analysis of the resonance fluorescence allows sensitive and rapid measurement of the
ion’s 1 MHz oscillation frequency. We measure this sinusoidal variation of the trap
frequency with an error less than 10 Hz by positioning the ion with nm-accuracy relative
to the mirror.

The last part of the thesis is devoted to the control of an ion’s motion by using
active feedback. First, we use a phase-locked loop to synchronize the ion’s oscillation
to some external frequency generator. Secondly, we implement feedback based on
the "cold damping" technique to cool the ion below the Doppler limit, by creating
additional viscous force. We observe a reduction of the amplitude of the sideband while
increasing the gain of the feedback. For sufficiently high loop gain a 7dB Poissonian
noise suppression is reached.






Zusammenfassung

Diese Arbeit berichtet von verschiedenen Experimenten, die an einem einzelnen *¥Ba*
Ion in einem Interferenzaufbau durchgefithrt wurden. Die Messungen reichen von der
Untersuchung von QED Effekten bis hin zur Realisierung einer aktiven Riickkopplung
zur Kontrolle von Bewegungszustinden eines Ions.

FEin einzelnes Barium-Ion wird dazu in einer sphérischen Paul-Falle gespeichert und
kontinuierlich durch resonante Laser auf den Ubergiingen P12 — Si/2 bei 493nm und
P12 — D3/p bei 650 nm angeregt und lasergekiihlt. Eine Linse sammelt 4% der Reso-
nanzfluoreszenz des Ions auf und erzeugt einen kollimierten Strahl, der von einem 25 cm
entfernter Spiegel zuriickreflektiert wird. Dies fiihrt nicht nur zu Interferenz, sondern
auch zu einer Verdnderung der Spontanemissionsrate auf dem Py, — S/ Ubergang
und zu einer Energieverschiebung des P/, Zustandes.

Die Verdnderung der Spontanemissionsrate moduliert die Fluoreszenz bei 650 nm
mit derselben Periode wie das Interferenzmuster bei 493nm. Durch die Energiev-
erschiebung des angeregten Zustandes entsteht ein Phasenunterschied zwischen dem
Interferenzmuster bei 493 nm und der Modulation der Zerfallsrate auf dem Ubergang
bei 6560 nm. Dieser Phasenunterschied variiert in Abhingigkeit von der Verstimmung
des Lasers bei 650 nm und kann alle Werte von Korrelation (Phasenunterschied ca. 0
oder 27) bis zu Antikorrelation (Phasenunterschied von ) annehmen. Die Grosse der
Energieverschiebung liegt im Bereich von 240 kHz.

Im zweiten Teil dieser Arbeit wird gezeigt, wie das riickreflektierte Fluoreszenzlicht
das Ba+ Ton mechanisch beeinflusst. Die Energieverschiebung des P;/, Zustandes hat
eine sinusformige Abhéngigkeit von dem Abstand Spiegel zu Ion . Dies fithrt zu einer
rdumlich verdnderlichen Kraft, die auf das Ion wirkt und die Fallenfrequenz bis zu
300 Hz verschiebt. Die Analyse des Spektrums der Resonanzfluoreszenz erlaubt eine
schnelle und empfindliche Messung der Oszillationsfrequenz des Ions bei ca 1 MHz. Die
Verschiebung dieser Frequenz kann bis auf 10 Hz genau gemessen werden, indem das
Ion auf einige nm genau relativ zum Spiegel fixiert wird.

Im letzten Teil dieser Arbeit wird von der Kontrolle der Bewegung des Tons mit Hilfe
einer Riickkopplungstechnik berichtet. Als erstes wird ein phasenstabilen Regelkreis
verwendet, um die Ionen-Oszillation an einen externen Frequenzgenerator zu koppeln.
Danach wird eine Riickkopplung basierend auf der "cold damping" Technik eingesetzt,
um das Ion unter das Doppler Limit zu kiihlen. Wir beobachten eine Verringerung der
Fldche des Seitenbandspektrums mit zunehmender Stérke der Riickkopplung. Ab einer
bestimmten Verstirkung kann das Poisson Rauschen bis zu 7 db unterdriickt werden.
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1 Introduction

The simplest system which radiates electromagnetic waves is an oscillating dipole. This
is known as a Hertzian dipole, after H. R. Hertz who calculated first its electromagnetic
field and made the first experimental demonstration that electromagnetic waves can be
emitted by a current loop (dipole antenna) in 1888 [1].

It is known, that any radiating system can be imagined as a set of these elementary
dipoles [2]. The radiating properties (radiation pattern, resonant frequency, etc.) of
such a system depend on the properties of each dipole and on the surroundings of
that system, the latter change boundary conditions for the emitted radiation. If, for
example, the radiating dipole is brought in the vicinity of a reflector, the field which is
reflected back onto the dipole modifies its linewidth and its resonant frequency [3]. This
fact is used in the design of antennas in the RF range, where its emission diagram can
be changed by placing the radiating dipole antenna between passive reflecting elements.
It is well-known that such geometric modifications also change the resonance frequency
of the antenna [4]. It is important to point out that the same effects exist even if the
radiating system is described by quantum mechanics, i.e. in the case of an atom or an
ion, where the classical current is replaced by the transition probability.

An atom which sits in the vicinity of mirrors or reflectors experiences energy shifts of
its electronic states and a modification of the spontaneous decay rate. The experimental
observation of the spontaneous decay rate change was first made by K. Drexhage et.
al. [5], where radiators (Eu®* ions) were deposited as mono-layers at well controlled
distance (down to 2 nm) from a metal surface. The same effect has recently been
demonstrated in the case of a single laser excited Ba™ which is placed 25 ¢m from a
mirror [6].

The level shifts are known as the van der Waals [7], Casimir-Polder [8] and resonant
radiative shifts [3,9], the latter being caused by a retarded interaction of the atom with
its own radiation field. For an atom in its excited state and at distances from a mirror
much less than the transition wavelength, the level shift will be dominated by the van
der Waals interaction, whilst in the far field the level shift is attributed to the resonant
interaction with its own reflected field [9-12]. Such far-field shifts have been observed
with a beam of '¥¥Ba atoms traversing an optical resonator [13] and with atoms in
a microwave cavity [14]. The same effect has been predicted for a single trapped ion
whose emitted radiation field is reflected back by a single, distant mirror [15], and
recently this level shift has been observed with an indirect spectroscopic method [16].

A mirror-induced energy shift of an excited state, like a modified spontaneous decay
rate [6,17], is analogous to the effect observed in the case of a radiating antenna in front



of the reflector, and can be treated in terms of radiation reaction only, i.e. in terms
of the interaction with its own reflected field. The quantum electrodynamic picture
is quite different though, due to the presence of the vacuum field which also couples
to the atom [18]. The concept of the vacuum field forms the prevailing language in
the field of experimental cavity QED, see for example Refs. [13,14]. It was also used
in the proposals to trap an atom in a resonator [26, 27| to which our experiment is
closely related. Rigorously speaking, however, the vacuum field alone cannot account
for spontaneous decay or its modification by reflectors, but the radiation reaction must
also contribute [19-22]. The same is true for excited-state level shifts. In fact, the
degree to which vacuum fields and radiation reaction are seen to contribute depends
upon the ordering of operators in the Heisenberg equations of motion, the choice of
which has been called a "matter of taste" [18]. In what follows in the present thesis
work we will use the concept of vacuum fields as a convenient language but without
insisting on any particular distinction between vacuum fields and radiation reaction.

The far-field mirror-induced shift of an excited atomic level oscillates on the wave-
length scale when the atom-mirror distance is varied. Therefore, when the position of
the atom is controlled to the extent that it becomes sensitive to this spatial dependence,
then the level shift acts as a spatially varying potential U(7), and the atom feels its
gradient ~VU (7) as a force.

This mirror-induced force is a peculiar case of the mechanical effect of light. Forces
due to applied light fields were first demonstrated experimentally by Lebedev [23], and
the recoil of an absorbed photon on an atom was observed by Frisch who deflected an
atomic beam with incoherent light [24]. With the advent of the laser, such forces have
found many important applications, from decelerating, cooling and trapping atoms to
optical tweezers in biology [25].

The use of mirror-induced forces on individual atoms was first considered in con-
nection with cavity-QED experiments, and has been proposed to trap atoms in an
optical resonator [26,27]. A single, trapped and laser-excited ion is an ideal system
for the observation of such forces, as its position can be controlled on the nanome-
ter scale [6,28,29|, and interaction with a distant mirror has already been demon-
strated [6,16,17].

In this thesis we present different kind of experiments performed with a single Barium
ion placed in front of a single mirror. The resonance fluorescence of the laser excited
ion is collected with a high aperture objective and then reflected onto the ion with a
mirror which is placed approximately 25 cm distant. The advantage of our setup is not
only that it allows us to detect the effect of a mirror on the internal, electronic state of
an ion, which is the first objective of this work, but it is also possible to measure the
spectrum of the ion’s motion with a high signal-to-noise ratio (of approximately 7 dB),
which has not yet been achieved by performing RF spectral analysis of the resonance
fluorescence. We hence achieve a fundamentally new level of control over the total
state of the atom and of possibilities for its manipulation. The second objective of



this work was to reveal directly the action of the reflected field on the ion’s motional
degree of freedom. The work belonging to the first objective [16] has implications in, for
example, precision spectroscopy. Results from the second objective are important for
applications of single ions in quantum information processing, where logic operations
involve the coherent control of the vibrational motion in the trap [30-33]. Moreover,
the ability to measure an ion’s motion in real time allows us to set up a new class of
experiments for motion control with the help of active feedback. The long term goal
of these experiments could be control of the motional state of the ion on the quantum
level, i.e. to reach the standard quantum limit for measurements [34].

The objective of the chapter of this thesis work concerning feedback was to show
the ability of the frequency/phase control of the ion’s oscillation with the feedback
based on a phase-locking loop. Another goal was to introduce the electronic feedback
cooling of the ion’s motion based on a "cold damping" method [35|, when a viscous
force is applied in the direction of the ion’s oscillations, therefore slowing it down. As
has been recently demonstrated such a method can be used to cool down a vibrational
mode of the mirror by factor of 40 (from 300 K to approximately 8 K) [36]. The
thermal energy of the mirror’s mode is almost four orders of magnitude larger than the
energy of the vibrational quanta of that mode, which is about 0.1 mK, and hence it is
still far from the case when a harmonic oscillator (the mirror mode) behaves quantum
mechanically [37].

In the present work we demonstrate the experiment performed with a Doppler cooled
single ion which is confined in a Paul trap. The thermal energy of the ion’s oscillation
is only 10-20 times larger than the energy of its vibrational quanta. Therefore we be-
lieve this is the first demonstration of the feedback cooling based on "cold damping"
technique with a single particle at the quantum noise limit.

The thesis is structured as follows: Chapter 2 gives an overview of the experimen-
tal setup for trapping and detecting single *®*Ba™ ions, it also presents experimental
results obtained in an earlier interference experiment. A theoretical description of the
radiation properties of a classical antenna and an atom in front of a mirror is given in
Chapters 3 and 4. All types of level shifts for a two-level atom in front of the infinite,
perfectly conducting mirror are given as well as a comparison between an atom and an
antenna. Chapter 5 is devoted to the optical Bloch equation (OBE) formalism, which
allows calculation of the steady-state solution of the atom-field Hamiltonian. Emphasis
is given to the case when the frequency of the atomic transition and its decay rate are
modified by the presence of the mirror and these new values are then incorporated into
the OBEs resulting in a phase shift (correlation phase) between interference fringes and
red modulation. Experimental results which belong to the first objective are presented
in Chapter 6. These include measurements of the dependence of the correlation phase
on the detuning of the red laser at different laser intensities. Chapter 7 is dedicated
to the description of the interference method used to observe the motion of the ion
directly in the spectrum of its resonance fluorescence. Spectra of motion are measured



for different directions of the cooling beam. Measurements of the mirror-induced force
on the single ion are presented in Chapter 8 and include spectra of the sideband for
a different ion-mirror distances, measurements of the trap frequency shift at differ-
ent directions of the cooling beam and dependence of the trap frequency shift on the
excitation probability. Chapters 9 and 10 present recent experiments devoted to the
control of the ion’s motion with active feedback. These measurements present the op-
tical reconstruction of the trajectory of the ion’s macro-motion, phase-locking of the
ion’s motion to the primary signal generator and feedback cooling based on the "cold
damping" technique.



2 Earlier experiments with a single
Ba™ ion

The core components of the experimental setup used throughout this thesis work were
built by Ch. Raab and are mostly described in his PhD thesis [38]. A clear theoretical
description of how Paul traps work can be found, for example, in [39,40]. The laser
setup is described in [41]. This chapter describes a single Ba™ ion and the Paul trap
used. Also the first interference experiment will be briefly described.

2.1 The *®Ba™ ion

In our experiment we use a single *®*Ba* ion. The electron configuration of Ba™ is
similar to Xenon with an additional valence electron. The three energy levels 65 s,
6P /2 and 5D3/5 of the Barium ion form a A-System. There are two allowed dipole
transitions: the P/, to S1/2 channel with transition wavelength A\, — 493.409 nm and
natural linewidth I'g.ce, = 15.1 MHz, and the P/, to D3/, channel with transition
wavelength A, = 649.691 nm and natural linewidth I'..q = 5.3 MHz. The Dj/; to
S1/2 transition is dipole forbidden but quadrupole-allowed with a very narrow natural
linewidth of approximately 2 mHz (80 seconds lifetime).

Since a ®Ba™ ion has no nuclear spin there is no hyperfine splitting of atomic
levels. However, the presence of an external magnetic field of approximately 4.2 Gauss
splits the energy levels into eight Zeeman components. In our experimental setup we
work mainly with the o™ and o~ components of the ion fluorescence, and because of
the magnetic field, the laser beam direction and its linear polarization are mutually
orthogonal. The relevant level structure of ¥¥Ba™ with Zeeman components is shown
in Fig. 2.1.

2.2 The Paul trap

For precision optical measurements, for example in interferometric experiments with
single atoms or molecules one has to not only to slow them down but also to localize
their position in free space with nanometer precision. These requirements are still
difficult to fulfil in the case of a single neutral atom or a single molecule, but can be
relatively easily achieved if trapped ions are used instead.
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Figure 2.1: Level scheme for 1**Ba* used in the experiment. The dipole transitions
with wavelength and polarization are indicated by arrows. The Zeeman
substructure of the relevant Ba™ levels is also shown.

Charged particles can be confined with the help of a Paul trap invented by W.Paul
in 1958 [39]. The Paul trap forms a saddle-shaped quadrupole potential which is varied
sinusoidally in time with drive frequency €2g4,ipe:

D = (a,7* + ayy® + . 2%)(Vy + U, cos(Qarivet) )

The sum of all coefficients «; must be zero, i.e. a, + o, +a, = 0, as the spatial part of
the trap potential obeys Laplace’s equation. If the quadrupole potential is rotationally
symmetric about the z-axis, then a, = o, = —2a, and the motion of a single ion in
each dimension becomes independent from the motion in other dimensions.

The one-dimensional equation of motion for a single ion is:

1
¥+ (ay — 2q, cos(ﬁerwet))x =0 (2.1)

This equation is known as a Mathieu equation [42|. Parameters a; and ¢; depend
on the trap geometry, the mass of the ion, the amplitude of the driving field and its
frequency and are equal to

eV,

L= 0y, =m0 2.2

¢ oy MBargQ?irive ( )
4el,

q. = —2Qm,y — _MBQTQQZ o (23)

where r, is a radius of a trap.
The trap itself consists of a ring electrode with diameter of 1.4 mm and two end-cap
electrodes which are placed along the symmetry axis of the ring, with a spacing of
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Figure 2.2: Design of the Paul trap and orientation with respect to the two detection
channels and the direction of a main cooling beam (view from the top).

1.4 mm, see Fig. 2.2. The driving field, with a voltage up to 500 V at a frequency
Qarive = 19.27 MHz, is applied to the ring electrodes. The end-caps are grounded with
respect to this ac field. Additional dc offset voltages are applied to the end caps for
micro-motion compensation, see for details [38|.

In this case the parameters a and ¢ for all three axes are much smaller than 1, and
the ion’s motion can be approximated by the motion in an effective harmonic potential

Vo 1 2 2
o, = = _"Msg, 2.4
ff (I‘) 4MBaQ(erive 2 B wtrapr ( )

with trap frequency wy.q, ~ 1 MHz. The radial symmetry of the trap is not perfect
therefore the motion in the ring plane will have two frequencies, which are relatively
close together (1 and 1.2 MHz). Oscillations in the direction of the end-caps have a
frequency of approximately 2.2 MHz.

The energy of the ion motion in the trap can be reduced by means of laser cooling
to an energy on the order of AI'. The ion motion can then be quantized, and we can
estimate the width of the ground state wave function for a '*®Ba™ ion in our trap:
(0|a:2|0)% = \/h/2Mp,wirqp ~ 6.3 nm. This means that in principle, our atom can be
localized in space with an accuracy much smaller than the fluorescence wavelength.
In our experiment we use Doppler cooling to cool the motion of the ion in Paul trap.
Doppler cooling of the three-level atom is a rather complicated theoretical problem —
it is difficult to calculate analytically the cooling rate and the final thermal energy,
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Figure 2.3: Setup of the interference experiment

therefore we use results calculated for the two level atom [43|. For optimal cooling
conditions the ion’s thermal energy is then equal to AI'/2, which corresponds to a
mean phonon number of 7 ~ 10. The size of the ion’s wave packet is then

(n|2*)2 = (0]22]0)2v/2n + 1 ~ 29 nm (2.5)

2.3 An initial interference experiment with a single
Ba* ion

In this section we will describe the first interference experiment with a single **Ba™
ion and a distant mirror that was performed by our group, for further details see [6].
In the interference experiment, shown in Fig. 2.3, a single **Ba* ion is held in a
Paul trap and continuously excited and cooled by near-resonant lasers. Both lasers
have linewidths below 100 kHz. The laser beams are combined on a dichroic mirror
and focused into the trap. Both laser beams are linearly polarized and the intensities
of the lasers are set to near saturation. The red laser (650 nm) is tuned close to
resonance; the green laser (493 nm) is detuned by half of the transition linewidth
I';/2 for optimal Doppler cooling. A macroscope lens L2 (Ff = 2) collects part of the



resonance fluorescence, the green photons of which are detected on PMT1 at count
rates of around 15 x 10 cps. The resonance fluorescence emitted into the opposite
direction is collimated by lens L1 (f-number 1.1, wavefront abberations < A\/5). The
green part of this signal is retro-reflected by a piezo-adjustable plane mirror, while the
red part is transmitted and detected on PMT2 at around 25 x 10® counts per second.

Lens L1, placed inside the vacuum chamber, and the retro-reflecting mirror are posi-
tioned about 25 cm away from the ion, are arranged such that they image the ion onto
itself, i.e. the returning light is brought to a focus at the position of the ion. The ion
and its mirror image can be observed visually through the macroscope. Overlapping
the mirror image with the real ion leads to high-contrast interference fringes at PMT1
upon scanning the ion-mirror distance with a piezo actuator. Fine adjustment of the
overlap is critical in obtaining high-contrast interference fringes. The green fringe con-
trast can be as high as 72%, limited by the optical set-up (mirror and window flatness,
quality of L1), by the thermal motion of the ion [44], and by its micro-motion along
the ion-mirror axis.

Simultaneously with the green signal on PMT1 we record on PMT2 the red fluores-
cence transmitted through the mirror, see Fig. 2.4. Varying the mirror-ion distance,
which gives rise to the 493 nm fringes, also leads to the modulation of the red light
with the same period. Note that this modulation is not due to interference at the red
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Figure 2.4: Left-hand-side picture: interference fringes at 493 nm and the simultane-
ously recorded fluorescence at 650 nm transmitted through the mirror on
the left side. Right-hand-side picture: the view through the macroscope of
an ion and its image



wavelength, because interference would lead to a different modulation period.

The red fringes occur due to the back-action of the mirror on the atom, i.e. the
mirror modifies the vacuum field at the green wavelength and leads to enhancement
and inhibition of spontaneous decay from the Py, state. In the old interpretation one
could expect that enhancement of spontaneous decay at 493 nm leads to increased de-
population of the upper state and consequently decreases the rate of detected 650 nm
photons, while inhibited decay at 493 nm increases the 650 nm count rate.

However, by looking more carefully in Fig. 2.4 it is possible to see that there is a
small phase difference between green interference fringes and red modulation fringes.
This effect is due to a mirror-induced level shift of the P/, state which depends on
ion-mirror distance and this is one of the main topic of the present thesis work, and
different experimental methods to measure this effect will be described in following
chapters.

10



3 A classical antenna in front of a
single distant mirror

It is well known that an atom can be modelled as a classical dipole or a dipole an-
tenna [45,49]. The radiation properties of this dipole change if a body which reflects
radiation back to the dipole is brought into the vicinity [9]. There are two effects that
appear: first the dipole will oscillate with a slightly different frequency, secondly the
dipole’s damping rate or the radiation linewidth will be altered. The magnitude of the
effect depends on the distance between radiating dipole and reflector. In this chapter
we will discuss classical electrodynamics of a radiating dipole in front of a reflector.
The description will be limited to the a case of a perfectly reflecting wall, instead of
that of a general reflector.

These effects have been known for a long time in classical radio-physics [46,47|. The
effects are widely used, for example, in directional and microwave antenna design, some
principles of which will be outlined briefly as well.

3.1 Radiating dipole in free space

The simplest system which radiates electromagnetic waves is an oscillating point dipole.
This is known as a Hertzian dipole, after H.R. Hertz who first calculated its electromag-
netic field in 1888 [1]. The question: "How does a point dipole radiate in free space?"
is very important because any radiating system can be imagined as a set of these ele-
mentary dipoles, hence a total field emitted by this system will be a superposition of
fields from elementary dipoles.

The full theory of the Hertzian dipole can be found in [2,48|. Here we will use two
facts. The first fact is that radiated electromagnetic waves have the same frequency as
the dipole’s oscillation frequency. The second fact is that the oscillating dipole must
loose kinetic energy because of the radiation it emits: the total radiated power averaged
over the period of an oscillation of the dipole into a 47 solid angle being

2¢2 ,— 1é?

S = g%wéxz = g%ng?), (3.1)
where wy is the oscillation frequency of the dipole, x is the instantaneous position of
the dipole and z( is the amplitude of the oscillations. The amount of radiated power is
equal to the amount of kinetic energy which has been dissipated. This dissipation can
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be viewed as being induced by an external force arising from the radiation emission
process, which slows the dipole’s motion down, analogous to a friction or viscous force.
In other words there is a force produced by the emitted radiation that acts on the
dipole’s motion. Hence there is a reaction of the dipole to its own radiated field. This
self-reaction force is proportional to the second time derivative of the instantaneous
speed of a charge (a rotating electron around nucleus in our case) and equals

2e” .

This value for the force is correct when the emitted wavelength is larger than the
classical electron radius:

2mce e2

> — =19~ 3x 10 Pem, (3.3)
mc

A=
Wo
where m is the mass of an electron and r( is the classical electron radius.

Let us consider how the self-reaction force will change the motion of a dipole. If we
were to set this force to zero the dipole would oscillate for an infinite amount of time
with the same frequency. However, the radiation reaction is a damping mechanism for
a dipole and will cause a broadening of the resonance line. The equation of motion is

2
e
mr + mer = ——V. 3.4
If condition given by Eq. 3.3 is fulfilled then the self-reaction force is much smaller
than the restoring force of an oscillator. We can use a first order approximation for
Vv = X & —w?%, then the equation of motion for dipole motion is similar to the equation
of a damped harmonic oscillator and we have

4 wool + w’r = 0, (3.5)

where 7, is known as the natural linewidth of a dipole radiation and is equal to

Yo = = —=W5. (3.6)

For the optical domain the natural linewidth is on the order of 100 MHz.

Now we can see that the reaction of a dipole to its own ﬁeld leads to line broadening.
There is a small oscillation frequency shift as well of order 70 ~ 1 Hz. This shift is also
known as a Bloch-Siegert shift for harmonic oscillators, but in most optical experiments
it can be neglected, except for precision frequency standards or optical clocks.
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Figure 3.1: Radiating dipole drawn as antenna sitting in the vicinity of a perfectly
conducting wall. The wall reflects part of the radiation back onto the dipole
and causes an additional reaction force which drives or damps oscillations
depending on the dipole-mirror distance z.

3.2 Radiative reaction of a dipole on retroreflected
field

Let us consider how the radiation properties of dipole radiation will be changed if we
bring a dipole close to a plane mirror, as shown in Fig. 3.1. We assume that the dipole
is positioned at some finite distance z away from the mirror, the polarization of the
dipole is also assumed to be parallel to the plane of the mirror. The equation of motion
for this situation is the same as for the damped oscillator, see Eq. 3.5, but with the
addition of an external force caused by the retroreflected field E¢f:

F 4 WoYol + Wor = eEpet. (3.7)

The right-hand-side of this equation can be represented as product of time dependent
and z dependent functions, which yields:

Eper = er(t)k* W, s (2), (3.8)

where k = w,/c is the wave vector, and W,.s(z) is the normalizing function, which
depends on the radiation pattern of a dipole, the distance between the dipole and the
mirror, and the geometry of the mirror (see [50]). In our case, for a plane and perfectly
conducting mirror and for a vertically polarized dipole,

1 n 1 1 )
(2kz) ~ (2k2)2  (2kz2)37
where z is the distance between mirror and dipole. The first term in this function

corresponds to the dipole radiation in the far-field zone, while the last two terms belong
to the instantaneous Coulomb interaction of the dipole with its image in the near-field

Woes(2) =~ (3.9)
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zone. This expression for the normalizing function will be used later. Now let us rewrite
Eq. 3.7 in a slightly different form

3
F 4wyl + (W2 + §wo’yoWref(z))r = 0. (3.10)

This is a main equation for determining the dipole evolution in the presence of a mirror.
As can be seen from this equation the dipole will oscillate with a new or "perturbed"
oscillation frequency 2. To solve this equation we will use the following Ansatz:

r(t) = roe ¥, (3.11)

where (2 is the new oscillation frequency and r, is the amplitude of the dipole’s oscil-
lations. Substituting this Ansatz into Eq. 3.10 we obtain the new frequency 2 of the
dipole’s oscillations

=W — — — — — _/YOW’I‘Ef(Z)’ (312)

The first term in this equation is the unperturbed oscillation frequency. The second
and third terms are the damping rate and the oscillation frequency shift due to the
self-reaction. The self-reaction shift or Bloch-Siegert shift is usually neglected in the
optical domain, as mentioned above. The last term corresponds to radiative reaction
on the retroreflected field and can be separated into a shift of the oscillation frequency
and a change of the damping rate.

In atomic physics, shifts of the oscillation frequency correspond to atomic level shifts,
and the change of the damping rate corresponds to a modification of the spontaneous
emission rate. The change of the damping rate is given by

AT — Im{z%Wmf(z)}, (3.13)

and the resonance frequency is shifted by

AQ = Re{ 37 Wies ()} (3.14)

These two equations are solutions for the case of a single dipole in front of a perfectly
conducting wall. It is possible to solve the task simply by taking the value for W, s
from Eq. 3.9 and substituting it directly into Eqs. 3.13 and 3.14, we then find the dipole
damping rate change and the frequency shift as functions of the dipole-mirror distance:

3 sin2kz cos2kz sin2kz

ALG) = =375+ G ~ e

(3.15)

3 cos2kz sin2kz  cos2kz
AQ(z) = =
()= el ~ @ T @

(3.16)
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Figure 3.2: Decay rate of a classical dipole and resonance frequency shift normalized to
the free-space value as a function of its distance to the mirror. The dipole
is polarized parallel to the mirror (vertical polarization).

The dipole damping rate change and the frequency shift as a function of kz and
normalized to the free space value are presented in Fig. 3.2. Let us consider two
opposite cases. For kz < X or in the near field, the reflected field is 180° out of phase
with the emitted field and they interfere destructively, hence the radiative decay rate of
a dipole vanishes. This simply means that the dipole will not radiate in the horizontal
direction. The frequency shift bends down due to attractive Coulomb interaction of a
dipole towards its mirror image. In the case of an atom the attractive force towards
the mirror surface would be treated as a van der Waals force.

For kz > X or in the far-field zone, the decay rate and the frequency shift apparently
tend to the free space values which undergo oscillations with a spatial period of A\/2
with increasing z. The decay rate and frequency shift have a 90° phase shift with
respect to each other. This effect is caused by a force created by the reflected field
returning in phase or out of phase with the dipole oscillations.

3.3 Action of a lens

In our experimental setup there is a lens installed between the mirror and the single ion,
see Fig. 3.3. By considering our experiment classically the single ion can be replaced by
a radiating classical dipole. The lens collects a fraction € ~ 4% of the emitted light and
collimates it onto a mirror, positioned such that light is retro-reflected. The distance
between the mirror and the dipole is less than 27c¢/v, ~ 3 m and therefore the light
reflected back from the mirror is still coherent with the dipole’s oscillation.

The focal distance of the lens is much larger than the wavelength, hence the light
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Figure 3.3: The dipole antenna sits at some distance z from the mirror. Part of the
dipole radiation is collimated by the lens which subtends a solid angle ¢
and reflected back into antenna.

field radiated by the dipole can be regarded as a spherical wave, which is transformed
to plane waves travelling onto the mirror and then subsequently reflected back. Ne-
glecting some edge effects due to the finite aperture of the lens and the mirror, we can
approximate the reflected field by a Gaussian beam. Since all our measurements are
performed in the far-field, the beam goes through the focus and acquires an additional
90° optical phase (Guoy phase shift) with respect to the spherical wave, for details
see [51].

The focusing action of the lens together with the Guoy phase shift cancels the near-
field terms in Eq. 3.15, 3.16 and changes the phase of 1/2kz far-field term. Then for
the new frequency and decay rate we get the following expressions:

L(z) =7 — ;%5 sin(2kz), (3.17)

Q(z) = w, — %%g cos(2kz), (3.18)

where ¢ is the solid angle subtended by the lens. Here it is important to point out that
this result is valid only if the dipole sits in the focal point of the lens. If the distance
between the dipole and the focal point is more than one Rayleigh length of the focused
beam, the reflected beam will have a smaller amplitude and a different phase, resulting
in a decreased damping rate change and a decreased frequency shift.

A similar result, to within numerical coefficients % and % before the oscillation terms
in Egs. 3.17 and 3.18, was derived by Uwe Dorner et. al. [15]. In that work the authors
performed calculations for the level shift and modified spontaneous emission rate of an
atom in the presence of a mirror, using the theoretical framework of quantum optics.
Here we would like to emphasize again that these are well known Cavity QED effects,
i.e. inhibited and enhanced spontaneous decay and the energy shift of an excited level
are already present in classical electrodynamics and are widely used for example in

16



Reflector
Active element

Beam directior

- - —
" * // .-'-.-

Diractors

Figure 3.4: A Yagi-Uda antenna with one reflector and four directors. One often sees
this type of antenna on the roofs of houses.

design of antenna array, such as Yagi-Uda antenna or directive short wave antenna,
which has been invented by Shintaro Uda (1924, Japan), see for details [52].

3.4 Directive antennas and an atom inside the cavity

A directive antenna [4,52] consists of an active element, usually a quarter-wavelength
dipole, a reflector which sits behind the active element and which is a bit longer than
the dipole, and an array of directors, for example see Fig. 3.4. The array of directors
serves to create a particular emission pattern or emission diagram of an antenna.

A current is fed to only the active element, the other elements have a radiative
excitation from that element, and the phase of that excitation is determined by the
spacing between the elements and their length. It is well known that an element which
is a bit longer than half a wave length at the right spacing will act as a reflector. An
element which is shorter than half a wave length will reinforce the field travelling away,
so this element acts as director and forms a beam, see [4].

Let us compare the emission diagram of a directive antenna with four directors with
the emission diagram of a dipole antenna in free space. As one can see from the Fig. 3.5,
the emission diagram of the antenna is completely different from the radiating dipole in
free space. A beam appears due to the interference of several effective dipole emitters.

If we were to describe this effect in terms of decay rate we would say the decay rate of
a dipole is altered when it is placed inside an antenna array structure. The resonance
frequency of the antenna would be shifted as well.

The radiative properties of a directive antenna are analogous to the radiative prop-
erties of atom in a cavity or in front of a single mirror, but not completely. Although
an atom in a cavity has inhibited and enhanced spontaneous emission and shifts of its
levels in a cavity or even in the presence of a single mirror, to make a proper descrip-
tion of the atomic evolution and its radiation properties one must use the framework
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Figure 3.5: Figure a) is an emission diagram of dipole in free space. Figure b) is an
emission diagram of Yagi-Uda antenna with four directors.

of quantum electrodynamics. This will be the main topic of the next chapter.
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4 An atom in front of a single
distant mirror

In the previous chapter the radiative properties of an antenna located in front of a
perfectly conducting mirror was described. There the atom was approximated as a
dipole antenna and the electromagnetic field emitted by the dipole was also treated
classically. Under those assumptions two main effects appear: modification of the
damping rate and a shift of the dipole’s oscillation frequency.

In this chapter we will use a quantum-mechanical description of an atom coupled to
the electromagnetic field. The full treatment of that task can be found in [11,12,50].

The radiative decay is an irreversible process and can be described using perturba-
tion theory [53]. According to Fermi’s golden rule [54], the decay rate of an excited
atomic state is proportional to the density of the electromagnetic modes around the
resonance frequencies, while a radiative level shift or Lamb shift [55,57|, coming from
the absorption and emission of virtual photons across, potentially, the whole electro-
magnetic spectrum contributes to an energy shift of mainly the ground state. In other
words, the Lamb shift comes from a coupling of a bound electron to the vacuum field.

In our experiment we observe a shift in energy of an excited state which is induced
by a single distant mirror. In the framework of QED this level shift can be treated as
being partially caused by the mirror modified vacuum field and partially by radiative
reaction. The latter effect of radiation reaction is strongly analogous to the case of an
antenna in front of a mirror.

4.1 Atom-field interactions in the dipole
approximation

4.1.1 Field description

The quantized electromagnetic field is described by the vector potential A(r,t) [58],
which can be expanded over a set of transverse mode functions A(r) with angular
frequencies wy,

A1) = T o A e A ) (@)

Wk
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where a and a™ are the lowering and raising operators respectively. The mode functions
A(r) form an orthonormal set and are the ordinary solutions of the Helmholtz equation

V2A(r) + FA(r) = 0. (4.2)

Under these considerations the Hamiltonian of the electromagnetic field will be H =
> w, w(ata+ %), and by knowing the state of the electromagnetic field we can calculate
the expectation value of any field operator. For example, for the vacuum state the mean
electric field is (E(r,t)) = 0, whereas (E*(r,t)) # 0. Now let us suppose that the field
is in some state with a certain photon number |n). The intensity of the electromagnetic
field is then

(I) = (BE*(r,t)) = 47hw|A(r)[*n + (E* (1) yac)- (4.3)

The first term in the Eq. 4.3 is the intensity of the n-photon field. It is interesting
to note that the vector potential A(r) plays the role of the wave-function here. The
square of its magnitude is proportional to the probability of finding a photon in a given
volume which is on the order of A at a given point in a space. The last term describes
the energy of the vacuum fluctuations, and simply means that the electromagnetic field
has an energy even if there are no photons in it.

The vacuum field plays a major role in QED and some of the effects, such as the
Casimir force [8], the Lamb shift [55] and the anomalous magnetic moment of an
electron [56] can be treated as being caused by this field alone. For example the Lamb
shift can be calculated as a Stark shift of atomic levels due to the field associated with
vacuum fluctuations [18,61]. The theory which describes spontaneous emission of an
atom becomes mathematically inconsistent without the use of the vacuum fluctuations,
because vacuum terms preserve commutation rules [18]!

4.1.2 Atom-field interactions

We consider an atom coupled to the quantized electromagnetic field. In the non-
relativistic case and in dipole approximation, i.e. the magnitude of the field does
not change over the size of an atom, and by using the Coulomb gauge for the total
Hamiltonian of the system [59], the Hamiltonian can be split into atomic, field and
interaction parts:

Htot = Hatom + Hfield + Hint' (44)

The atomic part is:

p2
Hatom = % + U(re>7 (45)

where p is the momentum of an electron, r, is its coordinate and U(r.) describes the
Coulomb attraction of an electron by the nucleus of an atom. The field Hamiltonian is
exactly the same as in the previous section
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1
Hfield = Z hW(CLJrCL + 5), (46)

ke
where the sum is taken over all available modes of the electromagnetic field with wave
vector k and with polarization vector €. The interaction part will be

2
s =53 [ Braledr 5o (w) = = Alw) b, (4.7)
where r, is the position of an atom in space and p, is its momentum and FEj,g(r,) is
the instantaneous magnitude of the electric field at the atomic position. The first term
in the interaction part describes the instantaneous Coulomb interaction of an electron
with some external field, the second part can be treated as the kinetic energy of an
electron acquired from the action of the vacuum field. The third part represents the
dipole interaction of an atom with an external transverse electromagnetic field.

Perturbation theory can now be used to calculate the spontaneous decay rate and
level shift. Our starting point will be the eigenfunctions of the atomic Hamiltonian
|7), where the ground state of an atom will be denoted by |g) and the excited state by
le). The field state |0) is a vacuum state and the state |k) is the one-photon field, with
wave vector k.

The decay rate can be computed using Fermi’s golden rule [54,60], and ignoring the
first and second terms in the interaction Hamiltonian (see Eq. 4.7), as they contain
either only field or only atomic variables and therefore cannot change the state of an
atom or the field during a dipole transition, we obtain

D=2 S (g, kAGR) Bl 0) P — i), (19
k,e
Here, the spontaneous decay takes place between states |e) and |g) of an atom with
frequency wy.
To calculate the radiative level shift, let us consider an atom in state |a) in the
vacuum. The total shift will be a combination of first and second order perturbation
shifts. The first order shift comes from the first and second terms in the interaction

Hamiltonian and will be

Ainst = 550 EZQnst (I'a)d37“, (49)
from the first term, and
2
_ € } : 2
Avac - W <O‘A (k,r)]0>, (410)

k,e

from the second term.
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The last term of the interaction Hamiltonian will contribute to the second order level
shift and gives

(a,0]A(k, 1) - plj, k) |*
. 4.11
m02 ;Z E,— E; — hwy ( )

All these contributions to the total level shift are infinite. The term A;,s diverges
because the Coulomb energy becomes infinite at the center of an electron. The terms
Ayqc and Ay become infinite because the sum over the field modes >, A?(k, ) diverges
as wi. However, this description turns out to be incorrect, because if an electron or
an atom obtains relativistic momentum, the mass of the particle will also be increased
as well. All physical variables calculated in perturbation theory are inversely propor-
tional to the mass, hence the total contribution from relativistic terms can simply be
ignored [61].

In other words, from the diverging integrals which represent any physical variables
we have to subtract the energy of the free electron, and then the total value becomes
convergent. This procedure is called mass and charge renormalization and is well
described in the textbooks [18,62].

4.2 Spontaneous decay rate modification by a
perfectly conducting wall

Modification of spontaneous emission in the optical domain has already been observed
in Eu' ions on dielectric substrates of different thicknesses deposited on a silver mir-
ror [63]. In the present section we will consider the single atom sitting in front of a
perfectly conducting wall. This task is similar to the one described in Chapter 3. Let
us assume also that the distance from the atom to the wall is less than ¢/T" or the co-
herence length of the field emitted by an atom. The polarization of the atomic dipole
is vertical. The atom has only two levels: ground state |g) and excited state |e).

The decay rate of an atom can be calculated using Fermi’s golden rule, given by
Formula 4.8. In the case of a dipole transition we obtain

[() = £|A@) - disp(w), (4.12)

where A(z) is the wave function of a photon in the final state, i.e. after emission, dj,
is the matrix element of the dipole moment operator and p(w) is the density of the
final states. It has been shown in [64], that in the absence of losses, both quantum-
mechanical and classical approaches yield the same answer, as for the case of an antenna
in front of a wall (see Eq. 3.15), and the decay rate is given by

3 sin2kz cos2kz sin2kz

PE) =L =Sl 5=+ G ~ @i

(4.13)
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where I, is the spontaneous decay rate of an atom in free space.

This really implies that the modification of spontaneous emission of an atom in front
of a reflecting wall can be explained either in terms of the radiative reaction on the
retroreflected field or in terms of the coupling of an atomic dipole to the modified
vacuum modes. This is one of the "puzzles" of QED, where a real physical effect may
have several interpretations leading to the same numerical answer. Detailed analysis of
that problem can be found, for example, in articles [19-21,66]. The manifestation of the
quantum vacuum is beyond the scope of this thesis. However, I will briefly discuss the
different interpretations, and the confusions they can cause, in the following chapters.

4.3 Level shift induced by a perfectly conducting
wall

Let us now calculate the radiative level shifts of an excited two-level atom placed in
front of a perfectly reflecting wall and whose dipole moment is parallel to the mirror.
The level shifts are calculated with perturbation theory using Eq. 4.11. The total
expression for the radiative shift in the dipole approximation can be found in [11,67].
We will consider only two limiting cases: when the atom sits in the near-field zone, i.e.
z < A\/10, and when it sits in the far-field zone, i.e. z > \/10, see for details [22].

4.3.1 Ground-state level shifts

The ground state shift in the near-field zone (kz < 1) arises from the van der Waals
potential and is given by:

3h
Ay = 64(kz)3r0' (4.14)
This level shift can be understood as arising from the instantaneous Coulomb interac-
tion of the dipole moment of an atom with its mirror image.
When the atom is placed further away from a mirror, i.e. in the far-field zone, the
ground-state level shift will be induced by the Casimir-Polder interaction, which results
from a modification of the vacuum field by a conducting wall. In that case the ground

state shift is [22]:

__3h
167 (kz)4
The Casimir-Polder shift can be interpreted as a modification of the Lamb shift [11],

since in the presence of a mirror, modification of vacuum fluctuations causes a change

in the Bethe contribution to the Lamb shift of the atomic ground state [57].

These level shifts are both negative, hence an atom which sits in the ground state is
attracted to the mirror.

A, = (4.15)
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Figure 4.1: Decay rate (upper line) of an atom and its radiative level (red and blue
lines) shifts normalized to the free-space emission decay rate I', as a function
of its distance to the mirror. The red line corresponds to the excited state,
the blue one to the ground state.

4.3.2 Excited-state level shifts

In the near field zone, the oscillating dipole moment of an atom "sees" its image and
is attracted to it. As for the ground state atom in the near field the excited level shift
will be due to the van der Waals interaction, and is given by

3h
A, =———T,. 4.16
¢ 64(kz)3"° (4.16)
Here it is important to note that there is no total change in the resonance frequency of
an atom. This is valid, of course, only for an "ideal" two-level atom. Real atoms have
more levels, and do not reveal this feature. At large distances an excited-state level
shift will be dominated by the interaction of an atom with its own retroreflected field.

The behavior is similar to that of an antenna, and the level shift is given by

3h cos(2kz)

Be= = op 1o
More precisely this far-field oscillating shift may be interpreted as the radiation reac-
tion from the retroreflected field and modified vacuum fluctuations [11]. It is important
to add here that this level shift cannot be attributed to the action of the vacuum field

alone [18].

(4.17)
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Actually, there is a Lamb shift for excited levels as well [49]. Although it has a
positive sign, it is much smaller (by a factor of at least 1073) than the Lamb shift for
ground states. Therefore the contribution to the shift of the excited level due to the
Casimir-Polder attraction is negligible, compared to that of the ground state.

Level shifts and decay rate in units of I', of an atom in front of a perfectly conducting
wall are shown in Fig. 4.1 as a function of kz. Three physically different potentials
emerge that affect both the ground state and the excited state [22]. These are the
van der Waals [7], the Casimir-Polder [8] and resonant-radiative potentials [13]. It can
be seen also that the level shift of an excited state as well as the decay rate in the
far-field zone reveals the properties of a radiating dipole antenna in front of the wall,
see Fig. 3.2.

One possible interpretation of this effect would be that of the radiative reaction of the
excited atom with its own retroreflected electromagnetic field. This effect is completely
analogous to the case of an antenna and has been already described in the section 3.2.

The shift of the ground state in the far-field zone, which falls as 1/2*, can be treated
as the interaction of an atom with spontaneously polarized dipoles on the surface of
the wall [65].

In our experimental setup a lens is placed between the atom and the mirror. That
lens collects the fluorescence of the atom and focuses it back. The van der Waals and
Casimir-Polder contributions to the ground and excited level shifts vanish in our case
because of the large distance (in the experimental setup the mirror is about 25 c¢m from
the atom). This is why the modification of the spontaneous decay rate and the level
shift of the excited state will be due to only the radiative reaction on the back-reflected
field, and they behavior will be similar to the case of the classical dipole in front of a
mirror, see section 3.3.

4.4 1D theory of the excited state level shift
modified by a mirror

In the article [15] authors considered theoretically a system which modelled our exper-
imental setup, where a small part € ~ 4% of the light emitted from a laser excited Ba™
ion is collimated by the lens and then retroreflected by the mirror towards the ion.

They calculated the spontaneous decay rate modification and the excited level shift
of a two-level atom in front of a single mirror using perturbation theory for an atomic
Hamiltonian in the rotating wave approximation. The quantized field modes which
were used in that model are solutions of homogeneous 1-D Maxwell equations.

The modified decay rate and the atomic detuning from resonance (equivalent to the
level shift) will be

['(z) =T, — e, cos(2kz), (4.18)
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A(z) =A, — 5% sin(2kz). (4.19)

It can easily be seen that the answer which is derived in [15] differs by a factor of
3/2 from Equations 3.17 and 3.18, which are derived for the case of an classical dipole
in front of a mirror. It would be very interesting to perform an experiment to measure
the absolute magnitude of the effect and to compare the calculations for an antenna
and an atom.

As seen from Equations 4.18 and 4.19 the modified decay rate and the modified level
shift depend only on € and the ion mirror-distance, but do not depend on the intensities
of the exciting lasers. This is actually a consequence of the radiative reaction as in the
case of an antenna, but it can not be a sufficient argument for the action of the modified
vacuum field!

What is also interesting about their work, is that they succeeded in computing the
atomic evolution and field evolution in such a system, in the case when the atom-mirror
distance is much larger then the coherence length of the fluorescence, i.e. z > ¢/T" and
they even make numerical simulations for the intermediate case, when the atom-mirror
distance is of the order of the coherence length of an emitted photon.

The new decay rate and detuning can be substituted into the optical Bloch equations
to calculate steady state atom variables, such as population of an excited level.
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5 The modified Bloch equations

The shift of an excited level together with the modified spontaneous decay rate results
in a change of the resonance lineshape, which is impossible to measure directly from
the spectrum of resonance fluorescence. The indirect spectroscopic method used in our
experiment was to measure a phase shift between the green interference fringes and the
red fringes (correlation phase), which depends on the intensities of the green and red
lasers and their detunings.

The levels of 1¥®*Ba™ ion form a A-system, as shown in Fig. 2.1. The evolution of such
a system under laser excitation is described by the optical Bloch equations (OBE), see,
for example [69,70]. The OBE in our case are derived from the master equation for an
8-level atomic density operator [68] describing the internal dynamics of a laser driven
atom with dissipative processes such as spontaneous emission. The excitation spectra
can be calculated numerically and are used to fit experimental data.

The back action of a mirror can be incorporated into the OBE by taking into account
the modified spontaneous emission rate and the level shift from Equations 4.18 and 4.19.
The phase shift between red and green fringes can then be calculated numerically.

5.1 The optical Bloch equations

Let us consider a single three-level atom interacting with two laser beams, as seen in
Fig. 5.1. Rabi frequencies are defined using the matrix element for the dipole moment
of each transition

_ dPSEg

0, == (5.1)
E
Q, = dpg ! (5.2)

The intensities of both lasers are quite high, i.e. the Rabi frequency is on the or-
der of the spontaneous decay rate, hence the laser fields can be treated as classical
electromagnetic waves Egsin(w,t) and E,sin(w,t) with spectral widths dw, and dw,.

The atomic Hamiltonian in the basis of atomic states |S), |P), | D) is defined by

Hatom = Z hwl|z> <Z|7 (53)
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Figure 5.1: Three-level atom with eigenstates |S), |P), |D), laser fields E, and E,,
Rabi frequencies €2, and €Q,, green and red laser detunings A, and A,.

where i=5, P, D. Assuming a dipole interaction between the atom and the laser fields
we can write the total Hamiltonian using the rotating wave approximation (RWA), in
matrix form in the same basis as the atomic Hamiltonian |71, 72]

Q .
wgp ~ Stetdt 0
Q . .
H= Hatom + Hint =h Tge—ngt 0 %G—HWM . (54)
0 %€+lwrt wpp

Although this Hamiltonian does not describe dissipative processes, such as sponta-
neous decay from the P-level to S- and D-levels, the spontaneous decay can be invoked
as an interaction of an atomic dipole with the vacuum field. To follow this approach
one must use the quantized field in the description instead of classical fields, see sub-
section 4.1.1.

By following a different approach the spontaneous decay rate and finite laser fre-
quency width can be introduced as dissipation mechanisms due to the coupling of an
atom to the infinite number of vacuum electromagnetic modes, or, in other words, as
a connection to the external heat-bath. In that case the atomic states are no longer
pure states, and the system is described with a density operator p written as

p= > pili)(l (5.5)

,j=5,P,D

The diagonal elements of the density operator (i|p|i) are the probabilities of finding
an atom in state |i). For example, in our experiment the intensity of the fluorescence
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(or scattered) light is proportional to the probability of being in the excited state, and
is calculated as

Pe = (P|p|P) = pyp. (5.6)

The equation of motion for the atomic density operator obeys the Liouville equa-
tion [73],

dp )

— = ——[H, p| + Laam»(p)- 5.7

where the first term corresponds to the Schrédinger equation and Ly, describes dissi-

pative processes due to the spontaneous decay of the upper state. The operator Lgjomp
has the following general form

1
Liamp(P) = =5 D CiCunp + pC.Con = 2CmpC, (5.8)

m

where the operators (), describe different dissipation mechanisms. In particular, spon-
taneous decay is described by C' = v/To~. The operator ¢~ is a lowering operator and
denotes the transition from the upper level into the lower one. Also, decoherence due
to the finite laser linewidth can be included in Lggm,, and is given by C' = v/20w;|7)(i|.
Equation 5.8 can be transformed into a system of linear equations [72]. These linear
equations are known as the optical Bloch equations. Steady-state solutions of the
density matrix p(co) can be calculated numerically from these linear equations.

5.2 Excitation spectra

The three-level atom description which has been described in the previous section can
be expanded into an 8-level model to calculate the evolution and steady state level
populations of a real atom [68|, where the three original levels are now split into 8
levels due to the presence of the magnetic field.

An excitation spectrum is a record of fluorescence intensity versus the detuning of
the green or red laser. The intensity of the red or green fluorescence can be calculated
from the formulae

Ny = Tgppp, (5.9)

and
N, =T, ppp. (5.10)

The fluorescence light is measured with a photo-multiplier tube. By choosing a color
filter we are able to measure the intensity at a selected wavelength. The population
ppp for any set of parameters is a steady state solution of the OBE and can be used to
fit experimental spectra, see for example Fig. 5.2.
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Figure 5.2: Excitation spectrum of resonance fluorescence (blue circles) at 493 nm. Fit
of the 8-level OBE (green line) to the experimental data with parameters:
A, =—13.15 MHz, S, = 0.35, S, = 1.36, éw = 50 kHz, u = 4.34 MHz, «
= 90°.

As expected, the spectrum of resonance fluorescence has a Lorentzian shape with
four notches on it. These notches are known as dark resonances and appear when
detunings of the green and red laser coincide and the atom is optically pumped into a
superposition of the S and D states. Then the atom simply does not "see" the light.

The fit of the OBE’s to the experimental data enables the determination of a set
of parameters [68], namely: the saturation parameters of the green and the red lasers
(S = %), the detunings of the lasers relative to the atomic Bohr frequency (A =
Wiaser — Watom ), the Zeeman splitting (u = 0.14% X B), the line-widths of lasers dw
and the angle o between magnetic field and the polarization of the light fields.

5.3 Correlation phase

In our experimental setup, as seen in Fig. 2.3, a single mirror reflects a part of the
resonance fluorescence inducing a shift of the upper level together with a change of
the decay rate. Unfortunately, it is not possible to measure level shifts on the order
of several hundreds of kHz from spectra like that shown in Fig. 5.2 due to relatively
low (for this type of measurement) signal-to-noise ratio. Note, dark resonances remain
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Figure 5.3: Modified excitation spectra at different ion-mirror distances, when 2kz— 0
(red line), m/2 (green line), 7 (blue line), 37/2 (magenta line). Parameters
are ¢ = 0.4, A, = -15 MHz, S, = 0.5, S, = 1, 6; = 50 kHz, o = 90°.

at the same position in the excitation spectrum, regardless of the ion-mirror distance
because of their dependence on only the frequency difference between the red and the
green lasers. Of course, these dark resonance are much narrower than the line itself
and, perhaps, may be used in other precision optical experiments.

However, there is another way to make a more sensitive detection of the excited level
shift induced by a mirror. This level shift will change the detuning of both lasers with
respect to the atomic resonance, and the spontaneous decay rate on the green channel
will also be modified. The new detunings and spontaneous decay rate depend on the
ion-mirror distance and are

Iy — Iy —el'ycos(2kz), (5.11)

ANy — Ay, — (e, /2) sin(2kz). (5.12)

The modified detunings and decay rate can be incorporated into the Bloch equations.
The calculated excitation spectra versus detuning of the red laser and at different ion-
mirror distances are shown in Fig. 5.3. In this figure the value of ¢ is chosen to be large
(10 times more than the real experimental value) just to show the effect. As can be
seen from these spectra, the excited state population has a non-trivial dependence on
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ion-mirror distance. Depending on the ion-mirror distance the resonance will take a
different position across the detuning axis, and together with linewidth broadening or
narrowing it causes a phase difference between the phase of the green interference and
the population of the P-state, p,,. In other words, if we would measure simultaneously
the intensities of the green and red channels while scanning the ion-mirror distance,
as it is described in section 2.3, and the detunings of both lasers would be fixed, we
would see that the phase of the green interference fringes differs from the phase of the
red modulation fringes, while the periods of these fringes are the same and equal )\, /2.
This effect is shown in Fig. 5.4. The phase difference between the green interference
fringes and red modulation fringes determines the correlation phase.

Here we note again that in Fig. 2.4 the fringes have opposite phase, i.e. a maximum in
the green fringes corresponds to the minimum in the red signal. The explanation given
was that a minimum of p,, has to coincide with a maximum of I'; due to the increased
depopulation of the upper level [6]. Of course this explanation is oversimplified, and
that measurement was just a lucky example due to the fact that the correlation phase
in the vicinity of the resonance is equal to 180° for the normal laser parameters. Far
from resonance the correlation phase is presumed to be equal to —180° [38].

In the case of small ¢, the excited state population at fixed laser detunings and
intensities can be written in the following form

Ppp = A1 + €[As cos(2kz) + Az sin(2kz)], (5.13)

where quantities Ay, Ay, A3 depend on the laser intensities and detunings [15]. With-
out a level shift, the factor Az vanishes, and the population of the excited state p,, and

2
C
>
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|_
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—>| |[&—Correlation phase
2kz

Figure 5.4: This figure illustrates the definition of the correlation phase. The green
interference fringes and the modulated red signal are measured simultane-
ously while scanning the ion-mirror distance. The phase difference between
these two signal is called the correlation phase.
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Figure 5.5: Correlation phase between green and red fringes, calculated with the same
laser parameters as for Fig. 5.3.

green interference signal have opposite phase. However the existence of a level shift
leads to a shift of the correlation phase from +180°.

The correlation phase depends on the laser detunings: if, for example, the red laser
is detuned well below resonance and is stepped in frequency towards the blue side of
the resonance, then the correlation phase is seen to change by 360°.

The behavior of the correlation phase versus detuning of the red laser is shown in
Fig. 5.5. The change in the correlation phase is not uniform with laser detuning, and
is reminiscent of the behavior of the phase of a damped oscillator, with the addition
of four extra spikes to it. These spikes are associated with the dark resonances. For
certain laser parameters, for instance when the saturation of the red laser is high, the
correlation phase in the region of positive detuning bends down. The reason why this
happens is not yet clear, and requires further study.

Measuring the phase and the amplitude of the red fringes is a way of measuring the
level shift and modified spontaneous decay. The next chapter will be devoted to that
experimental study.
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6 Spectroscopic method of level
shift measurements

In the previous chapters we have shown that the level shift of the upper state of an
atom has two experimental signatures. One can be viewed as a mechanical action of
the retroreflected field on the atom, the other is a non-trivial excitation probability
versus detunings of the lasers.

In this chapter we will describe the experimental results from an interference ex-
periment in which the excited state population depends on laser detunings and the
on-mirror distance. The dependence of the correlation phase (between red and green
fringes) on laser detunings is experimental evidence of the P-level shift.

The experimental setup is the same as was described in Chapter 2, and is shown in
Fig. 2.3. At first we will describe some additional measurements, such as beam waist
measurement at ion position and FF'T of the green and red fringes.

6.1 The quality of the focusing retroreflected beam
onto the ion

The ion and its mirror image can be observed visually through the L1 port. Fine
adjustment of the overlap is critical in obtaining high-contrast interference fringes,
that is why there is an additional piezo actuator on the mirror holder for fine tuning
by an angle of 1072 rad. To scan through this angle we supply a DC-voltage to one
of the fine-tuning piezo translators, while the other piezo remains at the same voltage.
The tilt of a mirror is accompanied by a small amount of ion-mirror distance scan
in our setup. Therefore the appearance of the interference fringes upon tilting the
mirror indicates that the retro-reflected beam is focussed at the position of the ion.
The interference pattern during the angle scan is shown in Fig. 6.1. The profile of the
reflected beam at the position of the ion is clearly observable, and the beam waist size
can be estimated from the tilt angle of the mirror and the value of the contrast.

The theoretical diffraction limit for the HALO lens used in our experimental setup is
approximately 1.1 gm. The measured beam waist diameter is about 2 yum. We presume
that the actual beam size is bigger due to optical imperfections, i.e. aberration of the
HALO lens, optical misalignments, etc. For example, if the lens L1 and the HALO lens
have some axis mismatch, coma abberation also appears. The interference profile will
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Figure 6.1: The fluorescence rate from a single ion in interference experiment as a
function of a beam scanning distance in lateral direction (right). Scan
distance is calculated from a tilt angle of a mirror. The additional schematic
to explain experimental method (left).

then reveal more modulation features.

The quality of the beam focusing onto a single ion is associated with the coupling
strength between reflected field and an atom, as shown in Chapter 4, and thus strongly
affects the value of the red contrast. Here we must note that all formulas describing the
modification of spontaneous decay rate and the level shift of an atom or classical dipole
in front of a mirror, see Equations 4.18, 4.19, 3.17 and 3.18, have been derived under the
assumption of diffraction limited ideal beams. That means that the retroreflected beam
has a smallest possible diameter in the focus position. In the experimental situation
the real beam waist can differ from the theoretical calculation, hence the measured
value for the red modulation contrast or for decay rate modification will differ from the
theoretically expected one.

Let us estimate the value of the effect from the measured diameter of the beam waist.
The modification of a spontaneous decay rate AI'y ~ p(z), where p(z) is the density
of the electromagnetic modes of the retroreflected beam at the position of an ion. The
latter is inversely proportional to the area of the focused beam ~ 1/D? where D is
the diameter of the focused beam provided by the lens. Hence the amount of the effect
will differ from the theoretical predictions by the factor (Dy;s/Dyear)?, where Dg;f is a
diffraction limit for the diameter of a beam waist, and D,.,; is a real beam diameter of
a beam waist, which is provided by the HALO lens in our setup. Therefore we conclude
that the contrast of the red fringes measured in our experiment is equal not to 4% as
expected from the theoretical predictions, but will instead be approximately 1.2%.
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Figure 6.2: FFT transformation of the green and the red signal. The period of the red
fringes is equal to the period of the green interference fringes.

6.2 FFT of the red and the green fringes

Simultaneously with the green signal on PMT1 we record on PMT2 the red fluorescence
transmitted through the mirror. Varying the mirror-ion distance, which gives rise to
the 493 nm fringes, it is also seen to modulate the red light with the same period [6].
To prove this we record the green and red fluorescence rate whilst scanning the mirror
over 20 periods of an interference picture. After that, we take a FFT of the green and
red recorded scans and the result is shown in Fig. 6.2.

As one can see from Fig. 6.2, there is a spike in each spectrum at the same spa-
tial frequency, which is equal to 47/493 nm. Note that this modulation is not an
interference at the red wavelength, as this would lead to a different modulation period
equalling 47/650 nm. The red fringes are caused by the back-action of the mirror on
the atom, i.e. that the mirror modifies the vacuum field at the green wavelength and
leads to enhancement and inhibition of spontaneous decay from the P/, state. As a
consequence, the population of the P/, level is modulated. Since the mirror reflects
only the radiation at 493 nm, only the decay constant on the %Sy, to 2Py, transition
is modified, its variation being proportional to the green fringes.
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Figure 6.3: The green interference fringes (top) and the red modulation fringes (bot-
tom). Sinusoidal fit have the same period for both pictures. Note that red
and green fringes are not completely anti-correlated. There is a phase shift
of about 150° between the respective fringes, which is due to the level shift
of an excited state.

6.3 Measurement of the correlation phase

The detected red light is a measure of the P-state population, thus revealing the back-
action of the mirror on the atom. Then one could expect that enhancement of spon-
taneous decay at 493 nm leads to increased de-population of the upper state and a
decrease in the rate of detected 650 nm photons, while inhibited decay at 493 nm in-
creases the 650 nm count rate. However, instead of such an anti-correlation, we observe
a phase between the green and the red modulation which varies with the laser detuning
and takes all values between correlation (phase close to 0 or 27) and anti-correlation
(phase ).

The typical scan of green interference fringes and red fringes is shown in Fig. 6.3.
The red laser is tuned to the resonance of the line, the green laser is tuned to conditions
for optimal cooling (approximately — 20 MHz), the red intensity is adjusted to a level
where we observe maximum green fringe contrast for the given intensity of a green
laser. In this situation we found that the saturation parameter for the intensity of the
red laser S, (see Chapter 5) is about three times larger than for the intensity of the
green laser. This is the optimal intensity ratio for optical pumping of the excited state

38



21 =

3n/2

/2

Correlation phase between green and red fringes

-60 -éO -40 -éO -20 -%0 0 10 20 30 40
Red (650 nm) laser detuning (MHz)

493 nm signal

650 nm signal

Mirror shift

Figure 6.4: Large graph: Correlation phase between the observed fringes in the green
and in the red fluorescence versus detuning of the red laser. The line is a
calculation using 8-level Bloch equations, see Chapter 5. The narrow peak
structures are caused by dark resonances [38|. For the three data points
marked a), b), c¢), the smaller graphs display the simultaneously recorded
green (top) and red (bottom) fringes, showing how the correlation phase
varies between 0 and 2.

and equals the ratio of decay rates of green and red channels.

A plot of this correlation phase as a function of the detuning of the red laser is
shown in Fig. 6.4. For large negative or positive detunings, the green and red fringes
are in phase, while with the red laser close to resonance, anti-correlation is observed.
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As we will show now, this dependence of the correlation phase is a direct consequence
and an experimental verification of the energy shift of the P,y state (which is always
associated with a modified decay rate of this state).

The data in Fig. 6.4 represent 7 hours of near-constant interrogation of a single
barium ion. For each 650 nm laser detuning, up to 20 green and red interference
periods were recorded simultaneously while the ion-mirror distance was varied. The
correlation phase was then determined from a sinusoidal fit to red and green fringes
with the same period equalling the period of the green interference. The 493 nm laser
is stable to about 1 MHz over long periods whilst a red laser reference cavity drift
rate of ~ 2 MHz/hr limited the accuracy to which the 650 nm laser detuning could
be determined. The data in Fig. 6.4 have detunings accurate to within £1 MHz. The
detuning of the red laser had been checked every half hour by taking an excitation
spectra and by fitting it to 8-level Optical Bloch Equations. The green and red laser
parameters defined from this spectrum are: S, = 1.63 £ 0.07, S, = 0.75 £ 0.02, A, =
—20.4 £ 0.1 MHz.

The red fringe contrast also varies with red laser detuning. It reaches values up to
2.5%, but for the laser parameters that were used in the data of Fig. 6.4, it reaches a
minimum for a detuning of A, ~ + 20 MHz. This, in conjunction with poor Doppler
cooling at positive detunings, accounts for the large measurement errors in the corre-
lation phase in this regime. The measured variation of the red fringe contrast is shown

0.012 |
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Red fringe contrast

0.004 |
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60 50 40 30 20 10 0 10 20 30 40
650 nm laser detuning (MHz)

Figure 6.5: Red fringe contrast vs. detuning of the 650 nm laser for the data set of
Fig. 6.4. The curve is calculated from Bloch equations with an effective
solid angle of ¢ = 1.6% of 4r. The error bars are due to shot-to-shot
variations. The maximum observed contrast of a single shot corresponds to
e = 3%.
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Figure 6.6: Measurement of the correlation phase vs. red detuning in the case where

for large positive detunings the correlation phase decreases to zero rather

than reaching 2. Due to sub-optimal laser cooling, resulting from high red
laser power, the fringe contrast decreases which leads to large error bars.

in Fig. 6.5. From a comparison with the expected dependence, again calculated with
the Bloch equations, we estimate that optimally the mirror subtended an effective solid
angle of ¢ = 3.2% of 4m, but the typical value is about 2%.

6.4 Multilevel effects in correlation phase
measurements

While all observations are well described by the model, thus verifying that the level
energies and decay rates are indeed modified by the distant mirror, we also find peculiar
features which are due to the multi-level structure of the atom and would not appear
in a simple two-level system. The red fringe contrast can fall completely to zero for
a specific positive detuning of the 650 nm laser and a particular ratio of the laser
intensities. In other words, modification of the decay constant on the green transition
may have no effect on the excited-state population. If from that particular set of
parameters, the red laser intensity is increased further, the dispersive dependence of
correlation phase vs. detuning shown in Fig. 6.4 changes shape. At large positive A, it
is seen to return to zero instead of going up to 27. An example is displayed in Fig. 6.6.
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The laser parameters defined from the OBE for Fig. 6.6 are S, = 2.4 £ 0.07, S, = 0.8 &
0.02, A, = —20.4 £ 0.1 MHz. While it can be suspected that an interplay of modified
decay and optical pumping is responsible for this behavior, the detailed underlying
causes could be the subject of future study.
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7 Detection of macro-motional

sidebands

In this chapter we will describe how the macro-motion of a single Ba™ ion in a Paul
trap can be detected. The macro-motion is also known as the secular motion and
is associated with the thermal energy of an ion. The ion moves with an amplitude
of approximately 30 nm at a frequency of 1 MHz, see Eq. 2.5. As can be seen the
ion displacement is 16 times less than the ion’s emission wavelength (A, = 493 nm).
Apparently, it is not possible to observe its motion through a conventional microscope,
due to Abbe’s criterion, which claims that two objects can be resolved if they are
separated by a distance more than \/(2sin®), see [74], where O is the angle subtended
by the objective in the point of observation.

There are several techniques that allow the diffraction limit of optical observation to
be beaten. We will postpone at least part of this discussion until the chapter 9. Here
we will outline two experiments which have been performed so far in our laboratory
with a single Ba™ ion. In the first experiment a heterodyne technique, where a part
of the ion fluorescence was mixed with a strong laser field at a different frequency,
was used to observe a motional sideband, see [75]. A low signal-to-noise ratio was the
main problem of that experiment, therefore it was possible to measure only externally
excited sidebands.

A second experiment used the interference technique as described in section 2.3. In
article [6] such a configuration was proposed to act as a microscope to measure the
average position of an ion. This idea was later developed to make a sub-wavelength
probe for the optical fields [44].

Here we will show that our experimental setup allows us to directly observe macro-
motional sidebands explicitly with rather high signal-to-noise ratio (about 8 dB) with-
out any additional external excitation of this motion. Even in the regime of counting
photons the spectrum of the photocurrent contains all relevant information about the
spectrum of the incident light, and hence also of the ion’s motion. The limiting factor in
this measurement is photon or Poissonian noise appearing during the photon detection
process [58,76].
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7.1 Detection of ion motion

The motion of an ion can be detected using an interference technique as shown in
Fig 7.1. Let us calculate the photocurrent signal from the PMT using a classical
picture. The PMT signal will then be a continuous signal in time and reads

i(t) = I,(1 4+ Vsin 2k(z, + 2(t)), (7.1)

where [, is the average fluorescence level from the ion, V is the visibility of the
interference fringes, z, is the distance between the mirror and the center of the trap
and z(t) is the ion displacement from trap center.

The phase of the interference fringes, or in other words, the exact intensity on a
fringe depends sinusoidally on the ion-mirror distance. When the ion is placed in the
middle of a fringe slope, the intensity level will be proportional to the ion displacement
from the mid-position, provided such a displacement is much less then a spatial period
of the interference. In this case the motion of the ion appears in the photocurrent
intensity as an amplitude modulation, see Fig. 7.1. Then the photocurrent is given by

i(t) & I, + 2V Lkz(t), (7.2)

and the correlation function of the photocurrent will be

()it +T)) = I2 + 4(I,VE)* (z(t)z(t + T)). (7.3)
The first term in Eq. 7.3 is just a DC-signal of constant intensity level, the second term
depends on the instant position of the ion at time moment ¢, hence this term represents
the ion motion.

Using a quantum-mechanical description for that model yields a different picture.
The field will be described by the quantized vector potential, see Eq. 4.1. The total
electric field can then be written as E(t) = E(¢) + E*(¢). The intensity operator is then
defined by as I(t) = E*(¢)E(t). The photocurrent consists of a pulse train, where each
pulse is caused by a photon detection event. Assuming that the response bandwidth
of the photodetector is large, each photodetector click can be approximated by a 9-
function. Then the signal reads

i(t) = Z 5(t—t;), (7.4)

where counts appear at random moments of ¢;. Calculating the correlation function of
the photocurrent we obtain

(it +T) =Y > o(t—t)o(t —t; +T), (7.5)

where the averaging is taken over the distribution of the photo-counts. This expression
is calculated in [76], for example. Here we will write only the result
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Figure 7.1: The ion moves around the middle of the slope of an interference fringe. The
intensity of the interference fringe is proportional to the instantaneous ion
position. Therefore on the fringe slope the ion’s oscillations modulate the
fluorescence level.

(i(t)i(t + T)) = nl,6(T) + n*Ga(T), (7.6)

where Go(T) = (ET(1)ET (t + T)E()E(t+T)) = (: I(t)I(t+T) :) is a normally ordered
second-order correlation function for the light fields [77], I, = (I(t)) is an average
intensity, n is a quantum efficiency of the photodetector.

The first term in Eq. 7.6 is the Poissonian noise, the second term is a quantum corre-
lation function which has a direct correspondence to the classical correlation function.
Now it is possible to calculate directly the spectrum of the photocurrent for our setup.
The correlation function of the photocurrent will be

()it + T)) = io0(T) + i% + 4G, VE)2(2(t)2(t + T)), (7.7)

where 7, = nl, is the mean value of the photocurrent. Thus the quantum correlation
function for the photocurrent and the classical correlation function differ by the Poisso-
nian noise term only. According to the Wiener-Khinchine theorem the spectrum of the
signal is the Fourier transformation of its correlation function. Let us also introduce
the power-spectrum of the ion motion, which is given by:
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Figure 7.2: The spectrum of the interference signal when the ion sits in the middle
of a fringe. The power spectrum has a baseline which is equal to Pois-
sonian noise (PNL). The central spike is equal to the intensity squared
(DC-signal). The macro-motion and micro-motion sidebands are shown
schematically. The higher-order sidebands are omitted. The macro-motion
sideband broadening is due to laser cooling [38].

Sui(f) = 2 / ((8)2(t + T))e— 27T, (7.8)

Note here, that in the experiment we use units of Hz instead of radians per second,
that is why we are calculating the spectra in terms of the normal frequency f.

By taking the Fourier transformation of Eq. 7.7, and substituting into it Eq. 7.8, we
obtain for the expected spectrum of the photocurrent

(i2(f)) = 2miy + 2mi26(0) + 4(i, VE)2 S (f). (7.9)

The power spectrum of the interference photocurrent contains three components, see
Fig. 7.2. The first is the shot-noise or Poissonian noise which forms a baseline. The
second term is the DC-signal and it is associated with the intensity level. The third
term represents the ion motion and scales proportional to the square of production of
the mean intensity and the contrast of the interference fringe.

The ion oscillates in the trap with four different frequencies [38], three frequencies
Wz, Wy, w, corresponds to the macro-motion and €24, corresponds to the oscillation
with the frequency of the trap drive. If the motion with a certain frequency has a
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projection on the optical axis it will be revealed in the spectrum of the resonance
fluorescence in the interference experiment.

7.2 Experimental setup

The total experimental setup for measuring the ion’s motion is shown in Fig. 7.3.
The optical arrangement is very similar to the interference experiment described in
chapter 2, see for example Fig. 2.3. In the old experiment we used a mirror with a
diameter of 20 mm, which is slightly less than the output aperture of a HALO lens
(2lmm). In the present experiment we use a mirror with a diameter of 50 mm, as
we assumed the smaller diameter of the previous mirror could be an additional source
of wavefront distortions in the focus of the HALO lens because of diffraction on the

Mirror
on PZT e I PZT driver
HALO — ——
LPF
A
Cooling beam k Ba ion J_us_v
oV
| PC
- —
| 1
ens Counter
A
pulse train

PMT J-|—|—|->| Discriminator

Spectrum analysis,
FFT

Figure 7.3: Interference experiment to detect ion motion with a fringe-lock setup. The
optical setup is practically the same as used in earlier experiments, see for
example Fig. 2.3.
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mirror edges.

The mirror is 99.9% reflecting for the green light, and 4.3% reflecting for the red
light. The green part of the resonance fluorescence is reflected back to the ion, and
interferes with the light which is directly scattered from the ion. The red part of the
resonance fluorescence passes through the mirror. High contrast interference fringes
appear when the ion-mirror distance is scanned. The green light is focused with lens
1 and detected with a new photomultiplier tube Hamamatsu H7421. This tube has
a GaAs photocathode and built-in Peltier cooling element. The PMT has a 47.8%
quantum efficiency for 493 nm and an average dark count rate of 25 counts per second.
This allows us to measure the intensity of a single ion’s fluorescence with high signal-
to-noise ration: the signal-to-background intensity ratio is approximately 30.

The photocurrent is a TTL signal with pulse width of 30 ns. The signal first goes
to the TTL to NIM converter (as demanded by our data collection system), then to
the pulse discriminator. After the pulse discriminator the signal has a —1 V amplitude
and a 30 ns pulse width. The pulse width and amplitude can be varied by changing
the setting parameters of the discriminator.

In our experiment, the pulse discriminator is used as a standard demultiplexer, as it
has one input and five synchronized outputs. The first output goes to a photon-counter,
the second one goes to a TDC (time to digital converter) and that signal is used for the
micro-motion detection and compensation and the third is spectrally analyzed with an
FSP-13 (Rohde and Schwarz) spectrum analyzer.

To stabilize the ion-mirror distance or phase of an interference fringe we use a fringe-
lock technique, in fact we lock the ion-mirror distance to a certain intensity level of
interference fringe. The intensity level in our case is the number of counts per cer-
tain time interval (usually 100 or 200 ms) as determined by a pulse counter which is
controlled by our LabView interface programm.

The intensity lock-level is set in the program. When the intensity of the fringe differs
from the lock level, the program, depending on the lock polarity, writes 0 or 1 to the
DAQ-card buffer, and the output of the card will then be assigned to an amplitude of
0 or 5 V. To make the mean level of the signal equal 0 V, we shift the output signal
down by —2.5 V. Low-pass filtration with a time constant of approximately 5 seconds
is used to smooth voltage jumps. After filtration the signal is feed to the HV-piezo
driver.

After amplification by the high voltage piezo driver, the error signal has an average
amplitude of approximately 50 mV. This voltage corresponds to a 500 nm piezo dis-
placement and gives the tracking range for the control of the ion-mirror distance. The
experimental setup itself is found to be stable enough only to keep the interference
phase constant within several tens of seconds. With the fringe lock the ion-mirror dis-
tance is stabilized to within 5-10 nm accuracy and can be kept for up to 10-20 minutes,
which is sufficient time to perform our measurements.

The demonstration of the fringe lock functioning is shown in Fig. 7.4. As can be seen
in that figure, for the first 10 seconds the lock is switched off and the ion-mirror distance
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Figure 7.4: This figure shows the performance of the fringe-lock. Lock positions are
depicted as dashed lines.

is scanned, leading to the appearance of interference fringes. Then the fringe-lock is
switched on and the phase of the interference is set to a certain level of intensity equal
to 10000 counts per 100 ms. Practically, we can lock to any phase of the interference
fringes, or to any intensity level on the fringe. It can be seen also that the interference
phase can be locked almost to the maximum of the fringe (12000 counts per 100 ms)
down to the minimum of the fringe (7500 counts per 100 ms). The time constant for
the fringe lock is approximately one second. The actual intensity level when the lock is
on is about 5% less than the set point due to the imperfectly compensated integrator
in the low-pass filter.

7.3 Detection of the macro-motional sidebands

To detect macro-motional sidebands in our experimental setup, at first we have to
prepare an optimal interference picture from a single ion and its image, and this can be
achieved by slightly tilting the mirror and setting green and red laser intensity levels to
the predetermined values, see section 6.3. The mean intensity of an ion together with
its image is usually between 4000 and 8000 counts per 100 ms, and the contrast of the
fringes is typically about 40%. For these settings the laser intensities are quite close to
saturation. The trap operates at a power of 5 W. The ion-mirror distance is locked to
the middle of an interference slope.
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The second step is to detect the motional frequencies of the ion and to see these on a
spectrum analyzer. The initial position in frequency of the sidebands can be found by
supplying an external excitation to the end-caps at the frequency of 0.8 — 2.5 MHz (the
frequency range depends on the trap power). Excitation amplitude should be around
—-30 dBm. As soon as the excitation frequency starts to approach a sideband frequency,
the interference contrast goes down due to strong ion oscillations.

Once the sideband frequencies are roughly known, they can be seen directly on the
spectrum analyzer. For example, at 5 W trap drive power the frequencies of X and Y
modes lie at around 1 MHz and 1.2 MHz respectively. The mean frequency between
sidebands we assign as a central frequency on the spectrum analyzer, the frequency
span is set to 200 kHz, the resolution bandwidth (RBW) is equal to 100 Hz and the
RBW filter is set to FFT mode, in that situation the spectrum analyzer performs an
FFT analysis of the signal. The acquisition time of a single spectrum in the FFT mode
with these settings is 30 ms. The intrinsic noise of the spectrum analyzer is less than
—120 dBm. To remove video noise from the spectrum, the number of trace averages
(NAvg) can be set around 30 to 60. The spectrum of the resonance fluorescence is
shown in Fig. 7.5. The sidebands appear on the spectrum as sharp resonances above
the Poissonian noise baseline. The frequencies are equal to 1020 kHz and 1180 kHz
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Figure 7.5: RF-Spectrum of the resonance fluorescence when the ion sits in the middle
of the interference slope. X and Y sidebands are seen as sharp resonances
with amplitude of 6 and 5.5 dB respectively above the Poissonian noise
baseline.
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Figure 7.6: X-sideband of the macro-motion (blue curve) and Lorentzian fit (red curve).
Frequency width I' = 470 4+ 20 Hz. The spectrum analyzer frequency span
is 5 kHz, RBW = 10 Hz, NAvg = 30.

and the amplitude is about 6 dB above the noise floor.

To look at the macro-motional sidebands in detail, the frequency span and RBW have
to be reduced. For example, in Figs. 7.6 and 7.7, spectra of the X and Y sidebands
are shown respectively. The spectrum of a sideband looks like a resonance line with an
amplitude of 6 dB above the Poissonian noise and a frequency width of approximately
500 Hz and can be well approximated with a Lorentzian line. The central frequency of
this line is equal to the ion’s thermal oscillation frequency and after several seconds of
averaging can be determined to within 10 Hz accuracy. The amplitude of the sidebands
gives us information about the amplitude of the ion’s oscillations in the trap, whereas
the linewidth is equal to the cooling rate [79], which is in agreement with the expected
values [75].

Here we should mention that the sideband shape has a small asymmetry towards the
low frequency side due to the laser cooling of a trapped ion [78|.

7.4 Detection of the macro-motional sidebands with
different cooling beam directions

Our optical setup and the vacuum chamber allow us to illuminate the captured ion with
493 nm laser light from different directions, as shown in Fig. 7.8. The 650 nm laser

beam is always directed along the X-axis with vertical polarization. Beams F and B
are off-axis with respect to the main beam and are often used during the micro-motion
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Figure 7.7: Y-sideband of the macro-motion (blue curve) and Lorentzian fit (red curve).
Frequency width I' = 420 4+ 20 Hz. The spectrum analyzer frequency span
is 5 kHz, RBW = 10 Hz, NAvg = 30.

compensation process.

The X and Y oscillation modes lie in the plane of the ring electrode and are at the
angle of approximately 45° with respect to the horizontal plane. The Z mode is oriented
along the direction of the end cap electrodes.

The frequency of all modes can be detected by supplying the external excitation
signal (with an amplitude of about -30 dBm) to the end caps and by looking at the
interference fringes, as has been previously described. Due to the geometry of the setup,
the cooling process turns out to be different for each mode and given beam direction.
Therefore the sidebands which we observe on the spectrum analyzer have a different
amplitude and width for different beam directions. Nevertheless it is important to
mention that we did not find any substantial dependence of the amplitude and the
width of the sidebands on the polarization of the chosen cooling beam, whether the
beam goes along the F or B directions.

For example, if the front beam is used, denoted as beam F, the visibility of the fringes
in that case is about 20-30%. With the green laser is detuned by about —20 MHz from
the resonance, and red laser also detuned from the resonance by ~10 MHz, the sideband
spectra are shown in Figures 7.9 and 7.10. The amplitude of the X-sideband can be as
high as 12 dB above the Poissonian noise baseline, and it is always the largest of the
X-, Y- or Z-modes.

Here we have to point out that the X and Y-modes are seen if the ion is illuminated
from any direction. The spectra of X- and Y-sidebands are shown in Figures 7.11
and 7.12 and taken when the B-beam is used instead. However, the Z-mode is observ-
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able only if the B-beam is used, see Fig. 7.13 and has the smallest amplitude over all
beam directions and sidebands. The reason for that, perhaps, is that the direction of
the Z-mode as well as directions of the cooling beams corresponds to the most optimal
cooling conditions. Therefore the Z-mode has the smallest amplitude of all macro-
motional sidebands, and it can not be measured as effectively as the motion in other
directions, however this topic needs further investigation.

L2 L2ttt Mirror

ring

end cap

Figure 7.8: The spatial orientation of trap electrodes and green beams with respect to
coordinate system (i,j,k), see also Fig. 2.2. a) is a view of the setup from
above, b) is a front view, the i-axis corresponds to the main beam direction,
the j-axis is directed vertically, the k-axis points away from the PMT. The
direction of the red laser is always along the i-axis.
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Figure 7.9: X-sideband of the macro-motion (blue curve) and Lorentzian fit (red curve).
Frequency width I' = 313 + 5 Hz. The spectrum analyzer frequency span
is 5 kHz, RBW = 10 Hz, NAvg — 80. The F-beam is used to cool the ion.
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Figure 7.10: Y-sideband of the macro-motion (blue curve) and Lorentzian fit (red

curve). Frequency width T' = 730 + 40 Hz. The spectrum analyzer fre-

quency span is 5 kHz, RBW = 10 Hz, NAvg = 80. The F-beam is used to
cool the ion.
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to cool the ion.
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Figure 7.12: Y-sideband of the macro-motion (blue curve) and Lorentzian fit (red
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to cool the ion.
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8 Mechanical action of the
mirror-modified field on the
single atom

The far-field mirror-induced shift of an excited atomic level oscillates on the wavelength
scale when the atom-mirror distance is varied. Therefore, when the position of the atom
is controlled to the extent that it becomes sensitive to this spatial dependence, the level
shift then acts as a spatially varying potential U(7), and the atom feels its gradient
—VU (7) as a force. The use of such a force to trap atoms in an optical resonator was
proposed earlier [26,27]; it is this kind of trapping forces which we observed for the
first time in our experiment. A single trapped and laser-excited ion is an ideal system
for this observation, as its position can be controlled on the nanometer scale [6,28,29|,
and its interaction with a distant mirror has already been demonstrated [6, 16, 17].
In contrast to these earlier experiments which detected the effect of a mirror on the
electronic state of an ion, our new study reveals the action on its motional degree of
freedom.
The results presented in this chapter have recently been published in [80].

8.1 The experimental method

Before we start to describe the experimental part itself, we focus on the method which
was used to measure the mechanical action of the reflected field. The mirror stands at
zero position on the z axis, as shown in Fig. 8.1, the position of the trap center is z,,
and the instant ion position is z;. The ion moves in the two potentials: one is created
by the Paul trap and another one is a level shift potential U(z) = —h-sin(2kz). The
total potential energy for an ion can thus be written:

M hell
Burap = 5 W3 = 20)° = % sin(2kz;), (8.1)

where 0z = z; — z, is the amplitude of an ion’s oscillations around its equilibrium
position. The total energy can then be rewritten as:

M hel' .
E= 7wfmp5,22 - sin(2k(0z + z,)) (8.2)
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Figure 8.1: The experimental setup to detect the macro-motional frequency change
due to the presence of a mirror.

The mean amplitude of the ion’s oscillation is about 30 nm, therefore we assume that
0z < 1/k, and 0z < z,, 2, is about 25 cm. The second term for the energy can be
expanded in a 0z series and we obtain:

M hell
B = Sl 07 - %(21@52« cos(2kz,) + cos(2k82) sin(2kz,)). (8.3)
The final expression for the potential energy of an ion in the presence of a mirror then
has four terms:

E = —% sin(2kz,) — % cos(2kz,)2kdz + %wfmpdﬁ + helk? sin(2kz,)02%.  (8.4)

The first term is the constant energy shift, the second one is a push /pull force of light
pressure, the third is apparently the trap potential and the fourth is an extra potential
created by the modification of the field due to the mirror. Depending on z,, this total
potential creates different mechanical effects: around sin(2kz) = 0, a force is exerted
on the ion which points either towards or away from the mirror; around sin(2kz) £1, a
binding (+1) or anti-binding (~1) potential is formed. Since the atom feels that extra
potential only while it is in the excited state, the force exerted on an atom and hence
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the potential will be scaled by the probability P, for an atom to be in that state. The
trap potential then reads:

M 2P, heT'k?
E = 7{%27,&1, + Tg sin 2k 2, }62°. (8.5)

The binding/anti-binding potential at sin(2kz) = £1 is characterized by the oscilla-
tion frequency which an otherwise force-free atom would have in the respective potential
well, Wyee = (2P,eThk?/M)'/2. By taking typical values for our experiment P, ~ 7%,
e~ 1.5%, A =493 nm, and I = 27 x 15.4 MHz we get an estimation for that frequency,
Wyae ~ 20 kHz. This is three times larger than recoil frequency hk?/2M ~ 6 kHz, this
is why, in principle, one can trap an atom or an ion in this mirror potential, and it will
not be kicked out of the that trap during a photon emission process.

For an ion which is already confined with trap frequency w4, (typically around
27 x 1 MHz), the potential U(z) which is written above adds to the trapping potential,

thus changing the trap frequency according t0 wy,,, = (W3, + w2, sin(2kz))"/2. Since
the deviation dwyqp = wgmp — Wyrap 18 small, it is well approximated by
P.eThk?
SWirap(2) = ——— sin(2kz) . (8.6)
wtrap

It is this change of the trap frequency or macro-motional sideband frequency, a direct
mechanical action, which we measure in the experiment.

8.2 Level shift measurement via detection of an ion
motion

The experimental setup is shown in Fig. 8.1. The optical and electronic part of the
setup is fully identical to that which has been described in Section 7. The counting
signal on the PMT exhibits high-contrast interference fringes as the ion-mirror distance
is varied [6]. In the present chapter we will describe the situation, where the beam B was
used for the cooling and illuminating of the ion. In that case the interference contrast
is about 40%. The deviation of the count rate from a chosen offset value is used in a
feedback loop to control the position of the mirror such that the ion stays at a given
point on an interference fringe to within ~ 10 nm. The feedback loop has about one
second of integration time and compensates for slow drifts of the ion-mirror distance
but not for the ion’s oscillation in the trap. By switching the sign of the feedback
gain, we choose between the positive and negative slopes of the interference fringes.
This interference signal follows the — cos(2kz) dependence of the modified 493 nm
decay rate [15], such that the midpoints of the slopes correspond to sin(2kz) = +1,
i.e. to the maximum binding or anti-binding potential, as described above (see also
Fig. 8.7 below). The trap frequency is measured by spectrally analyzing the PMT
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Figure 8.2: Signal on the spectrum analyzer for the ion positioned on the positive (right
curve) and negative slope (left curve) of the interference signal. RBW =
10 Hz. The center frequency of a Lorentzian fit to the data is taken as the
trap frequency.

signal. It contains a spectral component at the trap frequency, around 1 MHz, because
the oscillation of the ion creates an intensity modulation of the scattered light. We
observe oscillations of the x-sideband at frequency w, =~ 27 x 1020 MHz. The signal on
the spectrum analyzer has, to good approximation, a Lorentzian line shape with width
Af of about 500 Hz. After a few seconds of averaging, the center frequency of the line
is determined with less than 10 Hz inaccuracy.

Fig. 8.2 shows two spectra which were recorded directly one after the other, with
the ion positioned at the midpoints of a positive and negative slope of the interference
signal, respectively. The averaging time for each spectrum is about 20 sec. The shift
is clearly visible and amounts to 310 Hz in this case. The value is within the range
expected from Eq. 8.6, which predicts around 350 Hz, taking typical values for our
experiment P, ~ 7%, ¢ ~ 1.5%, A = 493 nm, and I" = 27 x 15.4 MHz. We emphasize
that no changes are made to the setup between the recording of the two spectra, apart
from translating the distant mirror by /4.

It was found that the trap frequency is not constant in time due to thermal effects
and slow changes in the trap drive power. To measure the value of the frequency
shift in this situation we record about 60 spectra, alternating between the two slopes.
It takes about 10 seconds to record each spectrum, the number of averages on the
spectrum analyzer was set to 25. Each spectrum is fitted by a Lorentzian, and the
center frequency is plotted. An example is shown in Fig. 8.3. While the trap frequency
itself slowly varies, a constant difference is observed between the values measured on
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Figure 8.3: Trap frequency measured on the positive (full circles) and negative slope
(open circles) of the interference signal, vs. measurement time, using the B
cooling beam.
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Figure 8.4: Trap frequency measured on the positive (full circles) and negative slope
(open circles) of the interference signal, vs. measurement time, using the F
cooling beam.

the two slopes, dwi,qp— 284 £ 12 Hz.

The precise value of the shift depends on details of the experiment such as the
settings of the lasers, their directions, and the fine alignment of the back-reflecting
mirror. The trap frequency evolution when the ion is illuminated from F direction is
shown in Fig. 8.4. The value for the trap frequency shift is smaller for this case. For
the F beam dwy,qp— 195 &+ 5 Hz. For the main beam direction the frequency shift is less
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Figure 8.5: The trap frequency shift measured vs. measurement time. The main
cooling beam is used.

than even in the previous case. To measure the frequency shift we set the ion position
to the different slopes, just right one after the other. Sideband spectra are taken with
an averaging time of approximately 30 seconds. An example of the evolution trap
frequency shift is shown in Fig. 8.5, we can find that dwy.,— 60 £ 10 Hz.

We believe this essential difference in the trap frequency change occurs because the
cooling beam induces a dipole moment with different direction with respect to the
mirror’s plane and a different amplitude. And with our present theory it is hard to
obtain the numerical value for the shift when the ion is illuminated from different
directions. Nevertheless, we observe values between 50 and 350 Hz, all within the
range expected from Eq. 8.6. It is important to note that we always find the higher
trap frequency on the positive slope of the interference fringes (count rate vs. ion-mirror
distance), in agreement with the theoretical prediction [15].

8.3 Frequency shift versus probability to be an
exited state

As shown in Eq. 8.6, the trap frequency shift depends on the laser parameters through
the probability P, with which the ion is found in the excited state. This dependence
has been measured by recording the maximum shift for different laser parameters.
The mean fluorescence level, at the midpoint of the interference fringes, serves as
an indicator of P., to which it is strictly proportional. The result is displayed in
Fig. 8.6. The data agree well with the expected linear dependence. Nevertheless, for
laser intensities approaching saturation we find that the shift saturates, the reason
being that in this regime laser cooling becomes inefficient, and the ion’s excursion in
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Figure 8.6: Measured dependence of trap frequency variation on excited state popu-
lation P,. The peak-to-peak difference, between the midpoints of the two
slopes of the interference fringes, is plotted vs. the mean count rate. 10000
counts correspond to P, =~ 0.1. The line is a linear fit.

the trap averages out the mechanical potential.

A similar effect is observable in the RF domain, where the force is exerted on the
active and passive elements of the antenna. Note, that the resonance frequency shift of
the antenna does not depend on the current, however the force does! This frequency
shift depends only on the geometrical configuration of the antenna and arises as a
result of a back-reaction on its own field. Hence in the case of an atom near the mirror,
the argument that a frequency shift does not depend on the intensity of fluorescence
light, as in [15], cannot be used as a proof of action of the vacuum field. This effect
can be treated as a reaction on its own reflected field. We can drive the antenna with
the highest possible current (until it starts to melt down), the shift of the resonance
frequency still will remain the same, but the force which acts on antenna elements will
be proportional to the magnitude of the current. The situation with the frequency shift
for the atom is identical to the case of the antenna, but the force which exerts on the
atom can not exceed a particular value due to the saturation of the excited state.

8.4 Trapping forces
A further test is the dependence of the trap frequency on the position of the mirror.

We shift the ion between the maxima and minima of the interference fringes, by locking
its positions to different fluorescence levels (between 5000 counts to 11000 counts per
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100 ms) and measure the trap frequency as a function of this ion-mirror distance. The
result is shown in Fig. 8.7. The sinusoidal variation predicted by Eq. (8.6) is clearly
observed. The distance is adjusted by varying the signal level to which the ion’s position
is stabilized. This data set showed particularly small drifts of the trap frequency. The
calculated maximum force from that graph, acting when the atom is positioned on a
maximum or minimum of the dashed curve, corresponds to an acceleration of ~ 100 g.

Unfortunately in the present setup it is impossible to demonstrate the real trapping
effect, where the atom remains at the same place for a sufficient long time interval,
because the trapping potential induced by the mirror has a depth of only about 1 uK.
And this is very small compared to the thermal energy of the laser cooled ion. Never-
theless, trapping forces change the motional state of an ion in the Paul trap, i.e. its
oscillation frequency, and that can be easily observed by measuring the spectrum of
the intensity fluctuation.

Here we want to return again to the problem of the interpretation of the observed
effect. One may construct a semi-classical explanation for the observed effect. Namely,
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that a maximum in the interference fringes at the PMT indicates increased emission
caused by light returning from the mirror. This returning light stimulates additional ra-
diation towards the PMT thus yielding a small recoil towards the mirror. Conversely, a
minimum in the interference fringes corresponds to radiation returning from the mirror
being predominantly absorbed which therefore leads to a force away from the mirror.
However, quantum mechanical properties of the electromagnetic field are needed to
explain quantitatively the spontaneous emission rate from an atom [18,22,49|. For
example, without invoking the vacuum field the theory becomes mathematical incon-
sistent, due to breaking of commutation rules!

8.5 Vacuum versus self-reaction

The notion of the vacuum field seems to be an elegant way to describe many phenomena
in QED, such as enhanced and inhibited spontaneous decay, the Lamb shift, the Casimir
force, etc. For example, if we look at the experimental setup which is described in this
thesis: the vacuum fluctuations which are created somewhere in the space surrounding
the ion will be reflected back by the mirror, thereby standing waves of the vacuum field
appear. The inhibited and enhanced spontaneous emission can then be explained by
as being due to different coupling strengths between the atomic dipole and the vacuum
modes, which depends on the position of the atom in the standing wave.

One can look at atomic spontaneous decay itself more deeply and interpret it as
being induced by the vacuum fluctuations only. However, this point of view is an
oversimplification of the physical picture. Actually, the QED description of the atom
coupled to the quantized field allows us to interpret the spontaneous decay or level shift
in at least three ways, see [18| and references therein. For a deeper understanding at
the interpretation problem let us examine the Maxwell equation for the field.

The Maxwell equations have the same form in classical and quantum electromagnetic
theory, but in QED the field are operators in a Hilbert space. Moreover, field operators
commute with atomic operators resulting in a different physical interpretation during
the process of the formal solution of the Schrédinger equation.

The simplest Hamiltonian of the interaction two-level atom and single mode quan-
tized electromagnetic field is

1 2
H= 57%)@02 + hwiata + ihCla+ at]jo_ — o] + 6—2A2, (8.7)
me

where w, and w; are the atomic transition and the laser frequencies respectively, o, is
the atomic energy operator, o, and o_ are the atomic raising and lowering operators,
C' is the coupling constant between the atomic dipole and the field and A is the vector
potential of the electromagnetic field. The last A term in the Hamiltonian can be
neglected in the dipole approximation, since it does not cause an observable level shift
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or change of the spontaneous decay rate. From this Hamiltonian we formally get the
Heisenberg equations of motion

o = —iw,o + Cla + a*lo,, (8.8)
o, =-2Cla+a")|[oc+0o"], (8.9)
a=—iwa+Clo —o"]. (8.10)

Since the atomic and field operators commute, the Heisenberg equations 8.8 and 8.9
can be rewritten in different, but mathematically equivalent, ways by using different
operator orderings. For example, one can use normal ordering, then Eq. 8.8 reads

0 = —iw,o + Clo.a+a*o.], (8.11)

one can use anti-normal operator orderings, then the same equation will be given by

0 = —iw,o + Clac, + o.a™]. (8.12)

Another ordering of interest is symmetric ordering which yields

1
0 = —iw,o + 50[@(@ +a")+ (a+a™)o,]. (8.13)

To see how these different ordering schemes result in different interpretations, let us
write the formal solution of Eq. 8.10 for the field operator, a(t) = a(0)e™™'* + a(t).
Here, the first term is the source-free part which corresponds to the vacuum field and
the second term is the source field or the atomic radiation field. Then, by substituting
this solution into Equations 8.11, 8.12 or 8.13 and by taking the expectation values
for atomic operators over the atom-field state |i)|vac), where |¢) is the wave function
for the atom, and |vac) denotes the vacuum state for the field, we will see that the
contributions from the vacuum field and source field are different for different operator
orderings. For example, in the normal ordering scheme there is a contribution only
from the source field (SF), in the anti-normal scheme the complete answer is quite
exotic and equals 2xVac—SF and for the symmetric case the vacuum and source fields
contribute equally (i.e. 50% contribution from each field).

The numerical answer for all types of level shifts (Lamb shift, van der Waals shift,
resonance radiative shift) and for decay rates is the same regardless of the operator
ordering scheme. This suggests that these interpretations are in the physical sense
quite close. Perhaps, to find out what the true physical picture is, an experiment must
be made where the contribution of the source field and vacuum field can be separated.
For example, by taking our experimental situation — a single atom in front of a single
mirror — one can ask the question: "Does the atom see the mirror before it emits the
light?".
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Let us assume that the laser excited atom is placed at a distance L, close enough
to the mirror, i.e. the coherence length of the emitted photon is much larger than
the atom-mirror distance (¢/I" > L). The total field in the vicinity of the atom
equals F;,; = Eyg. + Egr. Then the excited level shift and the decay rate will have
contributions from the vacuum and from the source field (symmetric operator ordering
scheme). However, being in the excited state the atom will "see" the mirror after a
time 2L /c, and then the level shift and the decay rate change will get the contribution
from the retroreflected field as well, and then it is impossible to interpret the effect
unambiguously: either it comes from the vacuum field or from the source field. But it
would be possible to make a conclusion about the effect when the atom is still "blind"
or has not "seen" the presence of the mirror. This corresponds to the situation when
the atom is in its ground state. To measure that moment, an additional photodetector
can be installed near the atom, and when it "clicks" it will simply mean that the atom
has emitted the photon. Since this happens during a time 7 ~ ¢/I" we would have to
measure the level shift or the decay rate. If the answer in that experiment is the same
as for usual measurements (see the section 8.2), then we can conclude that there is no
vacuum field action, and all the contributions to the level shift and decay rate come
from the source field only [20]. If the answer is different, it would be interesting to
know numerically what would be the ratio between these two cases.

In our setup, we can use a photomultiplier to measure the intensity of the red light,
see Fig. 2.3, this could be the detector of the ground state. Then we can try to perform
the measurement of the trap frequency shift or the decay rate change (perhaps, via G?
function measurements) during a time when the atom does not "see" the mirror. A
similar experiment is discussed in article [81].

There is an interesting idea to separate the action of the vacuum field from the source
field in [22]. In that article the authors are discussing how to compare numerically the
force acting on a single atom placed in front of a mirror, in the near-field and far-field
zones. In the first case, the total force affecting the atom will be the sum of the Casimir-
Polder and van der Waals forces, whereas in the second case, the force is mainly the
resonant-radiative force or the reaction of the atomic dipole on it’s own retroreflected
field, i.e. exactly the force which has been measured in our experiment!

Perhaps, it would also be very interesting to use a light source which, depending on
certain parameters, could be considered either as a classical antenna or as an atom
obeying quantum mechanics. This may be possible for atoms in highly excited states,
or Rydberg atoms [82]. In that case we could compare numerically the total radiated
power of "the antenna" and "the atom", see [49]. If the dipole moments of these sources
are the same, then due to the coupling to the vacuum field the atom in free space will
radiate with twice the power of the antenna [18,22].
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O (Observation of an ion’s
macro-motion in real time

Spectral analysis in the RF-range of the resonance fluorescence of a single Ba™ ion
in the interference experiment has been described in chapter 7. It was shown that
macro-motional sidebands appear in the spectrum of the resonance fluorescence as a
sharp resonances, and the averaged frequency and amplitude of the ion’s motion can
be measured. Information about the ion’s instantaneous position as well as the phase
of it’s oscillation can be measured in the experiment which will be described in this
chapter. A homodyne technique was used, i.e. the photocurrent is mixed with some
carrier frequency down to a DC range to reconstruct the trajectory of the ion. The
signal of the ion’s motion after homodyne detection looks like noise, we therefore use
a feedback based on a phase locked loop (PLL) not only to prove that the signal
we observe is the ion motion in the Paul trap but to synchronize the phase of ion’s
oscillation to the phase of pure sinusoidal or FM-modulated external signal.

9.1 Experimental setup

The experimental setup is shown in Fig. 9.1. The optical setup is the same as described
in chapter 7. Ton oscillations occur at an angle of 55° with respect to the optical axis Z.
The fringe lock sets the ion-mirror distance such that the ion moves through the middle
of the slope of an interference fringe. The motion of the ion through this field leads
to an intensity modulation of the resonance fluorescence which can be measured in
the present experimental setup. By taking into account the fact that the ion oscillates
almost with the same frequency (the sideband is a narrow resonance line) Equation 7.2
can be rewritten as:

i(t) = I, + 2V Lkzx(t)e w=t+io®) (9.1)

where z is a unit vector along the optical axis, x(t) is the slowly varying amplitude
of the ion’s oscillations, and w, and ¢(t) are the frequency and the phase of the ion’s
macro-motion. The phase of the macro-motion is also a slowly varying function of time,
and its changes, or even jumps, are mainly due to the cooling process during which the
ion gets a momentum kick.

The photocurrent is fed to a quadrature detector, which consists of a local oscillator
(LO), a mixer stage and low-pass filters. The LO creates two signals with a frequency
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Figure 9.1: The experimental setup to detect the amplitude and the phase of the ion’s
oscillations with the help of an electronic homodyne technique.

equals to the frequency of the ion’s oscillation, and the phase of each signal is shifted
by 90° with respect to each other. The quadrature components of the photocurrent
is mixed to DC range and low-pass filtered it to remove signals at the doubled fre-
quency. After filtration the resulting quadrature signals are amplified using a 40 dB
gain amplifier stage, and is recorded on a two-channel digital oscilloscope.

The low-pass filter has a 3 dB bandwidth of about 25 Hz, and a 40 dB stop band of
about 700 Hz. The signals after demodulation and filtration can be written as

Xi(t) = x(t)coso(t) + na(t), (9.2)

Xo(t) = x(t)sing(t) + naa(t), (9.3)

where n,(t) and n,»(t) are quadrature components of the Poissonian noise which arose
during detection process. The signals X;(t) and X,(¢) contain all the information
about the amplitude and the phase of the ion’s oscillation. The amplitude of the ion
oscillations will then be x(t \/ X2(t) + X2(t) and its phase with respect to the phase
of the LO is ¢(t) = arctan(XQ( )/Xl( ).

After filtration the spectral density of the noise is not changed, but the bandwidth
of the noise will be equal to the bandwidth of the filter. The signal-to-noise ratio can
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be estimated from sideband spectra, see for example Fig. 7.6, and one can obtain SNR
~ 2.5.

The spectrum of motion has a Lorenzian shape, see Fig. 7.6, and occupies a suffi-
ciently large band (compared to the band of low-pass filter), therefore the signal-to-noise
ratio in the detector will be inversely proportional to the bandwidth of the filter. A
larger bandwidth of the low-pass filter transmits more noise. With a 25 Hz low-pass
filter we select only the top of the motional spectra, and then the signal-to-noise ratio
is about 7 dB for the measuring the ion trajectory oscillating on X-mode. It gives
approximately £ 20% error in the detection of the "instantaneous" position of the ion
after approximately 10 ms averaging.

9.2 Calibration of the motion

The first step is to observe externally excited motion of the ion, which can be done
relatively easily by supplying an ac-voltage near the ion’s resonant frequency from
an external generator to the end caps, as done in [75]. At first glance it seems that
this cannot be done because the oscillation lies in the ring plane, and the line which
connects the end caps (direction of the excitation field) will be orthogonal to the X-
and Y-modes of the ion’s oscillations, see Fig. 2.2. Nevertheless, we assume that due
to the small asymmetry of the position of the end caps with respect to the ring plane,
there will be a projection of the electrical field created by the end caps on the ion’s
motion along the ring plane. Therefore the ion starts to oscillate at the frequency
of the external excitation with an amplitude which depends on the amplitude of the
excitation voltage and its detuning from resonance. The spectrum of the sideband
which is resonantly excited by the external sinusoidal signal of an amplitude of —47
dBm is shown in Fig. 9.2.

The excitation spike is approximately 17 dBm above the Poissonian level and is
clearly observed on the sideband spectrum. In a linear approximation the signal size
is proportional to the amplitude of an ion’s oscillation multiplied by the interference
contrast. Here we assume that the amplitude of the externally excited motion is propor-
tional to the amplitude of the excitation AC-voltage. The visibility of the interference
fringes decreases with increasing size of the ion excursion, because of the ion motion
washes out the interference. Therefore, the fringe visibility decreases with increasing
excitation voltage. To calculate the contrast of the interference fringes V... during
external excitation the following formula is used [44]:

Vege = Voexp(—ZkQF), (9.4)

where V, is the visibility of the interference when no driving field is applied, and o
- is the amplitude of the excited ion’s oscillations (which is averaged over the period
of the oscillation). The amplitude of the excited oscillations can then be determined
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Figure 9.2: The sideband spectrum during external excitation, RBW = 30 Hz. The
black curve is a Lorentzian fit to the sideband taken when the excitation is
off.

from measurements of the interference contrast when the driving field is applied from
formula

N S TANAA) (9.5)

2

For example, if the amplitude of the driving field is 47 dBm then the interference
contrast drops from 46% to 30%. By using equation 9.5 the amplitude of the projection
of an ion oscillation onto the optical axis can be calculated. This amplitude is about 53
nm. The excited motion takes place in the direction of the X-mode, and the amplitude
of the excited motion is therefore equal to 93 nm.

These oscillations can be observed using a homodyne detection technique. For this
purpose the frequency of the LO is detuned by 1.5 Hz from the frequency of the
driving field, hence a beat-note waveform must appear as the signal. In Fig. 9.3 the
X -component of the detected signal is shown. The X5-component of the signal has a
90° phase difference. Therefore, the phase plot of the motion, i.e. the X,-component
versus the Xj-component, will be a circle in that case. The radius of the circle gives
the amplitude of the ion’s motion and is equal to 93 nm, the frequency of the motion
being the same as for the driving field. Oscillations take place along the X-mode of the
macro-motion.
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Figure 9.3: The observed X;-component of the excited ion oscillation using the homo-
dyne detector when the LO frequency is 1.5 Hz detuned from the resonance
frequency.

9.3 Observation of ion motion

To observe the ion’s thermal motion or its macro-motion the LO has to be tuned exactly
to the center of the sideband. The gain of the detector is the same as before in the
case of the motion calibration. This is in order to obtain the same voltage-to-distance
conversion coefficient. The X-component of the detected signal is shown Fig. 9.4.

The amplitude of the ion macro-motion can be calculated using the voltage-to-
distance conversion coefficient, known from the excited motion measurements, and also
by taking into account the decreased fringe visibility when the driving field is applied.

To extract full information about the ion motion, or to reconstruct the trajectory
of the ion’s macro-motion, the phase and amplitude must be observed simultaneously,
these measurements are shown in Fig. 9.5. The average amplitude of the macro-motion
calculated from the graph is A = 27 + 6 nm, which corresponds to a mean phonon
number 7 = 10, which is in good agreement with the expectation value for the size of
the wave packet during Doppler cooling. The temperature of the ion or more correctly
it’s thermal energy can be calculated from the average amplitude of the oscillations,
or from the mean phonon number: kT ~ hQ(n + 3) = $ Mp,Q*A%. This yields in our
case kT /h ~T1/2 =10 MHz.

The accuracy of the amplitude measurement is limited by the presence of Poissonian
noise and can be determined by taking measurements to those described above. To
pick up the noise signal the LO is detuned by about 3 kHz from resonance to avoid
the influence of the sideband signal. The detected signal is now due to the Poissonian
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Figure 9.4: The observed Xj;-component of the ion macro-motion using a homodyne
detector. The LO is tuned exactly to the center of the sideband.

noise only, and it’s RMS amplitude is approximately equal to 12 nm. This is the
detection limit for our measurement method, or standard quantum limit (SQL) in our
measurement scheme [34].

The SQL can be beaten by either increasing the intensity collected from a single ion,
or decreasing the width of the low-pass filter. The first solution could be implemented
in the future setup only. One can try to use an objective with a higher aperture, but
special cares must be taken to avoid optical aberrations, as they decrease the contrast
of the interference fringes. The second solution simply requires the increase of the
integration time for the reconstructed motional signal. Therefore, all the fast features
of the ion motion will be averaged, and the meaning of the "real time" measurement
in that case is the sequential measurements during time intervals which are inversely
proportional to the bandwidth of the low-pass filter.

The next step will be to introduce a control of the ion motion with the help of
an active feedback. The first step will be to introduce a feedback based on phase-
locked loop. This kind of feedback allows us to encode and decode phase/frequency
information into the ion motion.

9.4 Phase locking of ion macro-motion

9.4.1 Experimental setup

The experimental and electronic setup for PLL feedback is shown in Fig. 9.6. The
optical part is the same as for the interference experiment and for the experiments
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Figure 9.5: The amplitude of the ion’s macro-motion and its phase relative to the LO
measured by a homodyne detector (left side). To see the behavior in detail,
a smaller scale in the horizontal axis is used than in Fig. 9.4. On the left
side — the 50 ms phase plot of the part of the right handed graph.

which have been already described, see chapters 2 and 7. The electronics however is
quite different even from the experiment described just above (see section 9.1). In the
next three paragraphs some technical details of the PLL feedback are introduced.

The PMT pulse train from the pulse discriminator is split by a PSC-2-1 com-
biner/splitter. One part is spectrally analyzed with the FFT spectrum analyzer, an-
other part is low-pass filtered at 1.9 MHz (not shown on the figure for clarity) and
then sent into the phase-locked loop. The PLL used in our experiment has a standard
design [83], and consists of a phase detector, a voltage-controlled oscillator (VCO) and
a loop filter.

The phase detector in our setup is an analog modulator/demodulator AD630. We
found that this chip works quite well with a signal frequency up to 1.8 MHz and —65
dBm amplitude. The input amplifier stage in that chip has an impedance of 5 K¢2,
therefore we use the non-inverted buffer based on an AD811 to obtain the frequency
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Figure 9.6: The experimental setup for phase-locking the motion of an ion motion in
a Paul trap.

bandwidth on the order of a few MHz.

The measured input signal has a level of approximately ~54 dBm, that is why a high
quality VCO with a low SSB phase noise must be used. In the present setup we use
a signal generator (Rhode and Schwarz SMIL-01) in the external frequency modulation
regime. Our generator has about —123 dBm SSB phase noise 1 kHz away from the
signal frequency of 1 MHz. This measurement was performed with RBW = 10 Hz.
The sensitivity of the oscillator, i.e. the voltage to the frequency conversion coefficient
K,, can be tuned up to 200 kHz/Volt. The amplitude of the control signal must not
exceed 0.5 V (this is a demand of the modulation input of our signal generator or
VCO).

The loop filter can be switched between a third and second order low-pass filter with
different bandwidths. All filters have a flat amplitude response for frequencies below
3 dB level. The shape of the loop filter can be chosen so that more than 75% of the
sideband energy resides in the loop and the 45° cross-over point lies further than the
HWHM of the sideband. This is done to provide the best collection of the signal energy.
We use an active filter design using an OP-77 operational amplifier in multiple-feedback
configuration, see [84], for example. The actual filter response has been calculated by
using special programs, for example Micro-Cap 7.0.

Part of the PLL DC-output is used to control the power of the trap, hence it will
change the sideband frequency as well, depending on the frequency difference between
the sideband and the LO. The control signal has a small amplitude, on the order of
several millivolts. For example, the sideband frequency changes by 1 kHz if 7 mV
is applied to the trap power control (which is shown as an Amp in Fig. 9.6). The
amplitude of the control signal can be varied by the amplifier with variable gain just
after the loop filter (not to be confused with the trap power control). In the following
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sections the gain of that amplifier stage will be called the feedback gain.
Thus the PLL circuit described above can function in three different modes. These
modes are:

e Tracking of the instantaneous frequency of the ion.
e Phase-locking of the ion’s motion to the primary generator.

e Phase-locking of the ion’s motion to the center frequency of the sideband signal.

9.4.2 Tracking the instantaneous frequency of the excited ion
motion

To work in the tracking regime the switch "Feedback", see Fig. 9.6, must be off, and
"PLL internal" must be switched on. In the case of the ideal locking conditions the
VCO output frequency will follow the phase of the ion’s motion, and the VCO input
will be equal to the "instantaneous" frequency of the ion’s motion. By measuring the
VCO input voltage the frequency of the ion’s oscillation can be determined and the
phase of the output VCO signal reveals the phase of the ion’s oscillation.

To demonstrate this mode, we first excite the motion of the ion with an external
FM-modulated driving field of amplitude 40 dBm at a frequency which is 3 kHz away
from the sideband center. For that purpose a SRS-235 signal generator phase-locked
onto a 10 MHz time base signal supplied by the VCO (the time-base output at the rear
panel of the signal generator) was used. The spectrum of the ion’s excited motion is
shown in Fig. 9.7. The frequency span for the FM modulated driving signal is 30 Hz
and the frequency rate for that signal is 10 Hz.

From a technical point of view, the signal which we want to lock onto is about 15
dBm above the noise observed with a RBW = 3 Hz. This signal is quite small and the
presence of the noise will try to destabilize the PLL from lock conditions leading to a
phase error, see for example [85|. Therefore, to increase the performance of the PLL,
i.e. to decrease its phase error, the loop filter must have a smaller possible bandwidth.
On the other hand the smaller bandwidth means that the PLL can not reveal the
phase/frequency information as precisely as possible [83]. The rule of thumb would be
to take a filter with a bandwidth which is slightly larger than the frequency span of
the input signal. In our case a good choice for the loop filter is a Pl-regulator with a
2nd order low-pass filter with a bandwidth of about 40 Hz.

The response of the phase-locked loop, or the VCO input voltage vs time is shown
in Fig. 9.8. It is easily seen that the VCO input voltage tracks the instantaneous
frequency of the driving field. The motion excited with that external field also has the
same phase, hence the PLL locks onto the motional signal and follows the frequency of
the excited motion.

There is a constant phase mismatch between the two signals of approximately 30°,
which is due to a non-zero offset voltage inside the loop. The noise on the signal
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Figure 9.7: The spectrum of the ion motion during external excitation with an FM-
modulated signal. Higher order sidebands are clearly seen. RBW=3 Hz.

is Poissonian noise and arises from the detection of the resonance fluorescence, the
electronic noise of the circuit is approximately 40 dB less than the signal level.

The shot noise cannot be completely removed by lowering the bandwidth of the low-
pass filter, as in that case the performance of the the PLL would also be worse, and it
will not effectively follow the instant frequency of the signal.

To study the case when the instant frequency is changed quickly we tried to make a
phase lock to a complex signal which is FM-modulated with rectangular and sawtooth
waves. However, it was not as successful as using a sinusoidally modulated signal.
At the input of the VCO we expected to see a modulation signal, i.e. rectangular
or sawtooth, unfortunately due to the limited bandwidth of the loop filter it was not
possible to reveal these features.

The detected macro-motion signal looks like noise, see Fig. 9.4, hence the phase
detector output will also look like a noise. With this noise-like signal it would be hard
to prove that we do indeed measure the trajectory or the instant frequency (depending
on the experiment) of the ion rather than Poissonian noise. However, we are going to
use a PLL feedback to show that we really can control the frequency and the phase of
an ion oscillations. Therefore the next step is to synchronize the frequency of the ion
oscillation to the frequency of the external generator.
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Figure 9.8: The upper curve is the time scan of the response of the phase-locked loop
on the external FM excitation. K, = 160 Hz/Volt. The lower curve is
the time scan of the instantaneous frequency or frequency deviation of the
driving field. A spectrum of excited motion is shown in Fig. 9.7.

9.4.3 Phase locking of a mono-ion oscillator to sinusoidal signal

The aim is to synchronize the phase of the oscillations of the single ion in the Paul trap
to the phase of an external signal generator. Now we want that the sideband spectrum
occupy as much of the bandwidth of the feedback loop as possible to prevent the loss
of the phase information. For that purpose we use a single third order low-pass active
filter with a bandwidth of approximately 300 Hz. The switch "Feedback" is now turned
on, but the switch "PLL" is turned off.

This time, the oscillating signal of the ion motion will play the role of the VCO which
can be synchronized to the phase of the external signal, as in the case of the classical
design of the PLL [83]. The generator which was used as a VCO in the previous
subsection is now the primary generator and makes the base signal to lock the ion
oscillations onto it.

The first step in the PLL experiment is to lock the ion motion to the external
frequency source (again the signal synthesizer SML-01). The frequency of that signal
is kept constant and has to be around the sideband center (the motion response is
maximal there). The spectrum of the sideband when the PLL is in locking conditions
is shown in Fig. 9.9. It can be seen that the 7 dB narrow spike appears on the top
of the sideband showing that the ion motion becomes coherent. The pedestal around
that spike is treated as phase noise of the PLL. That spectrum is known to belong to
the phase-locked signal, see [83], and indicates that the PLL does function and the ion
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oscillations are synchronized to the external generator.

The sideband evolution with feedback gain is shown in Fig. 9.10. A small coherent
spike appears at low gain and increases as the feedback gain is increased, reaching it’s
maximum value at a gain of approximately 1. The coherent spike decreases again for
higher gain due to the saturation of the feedback loop. The wings of the sideband
become broader with increasing PLL gain, and although the sideband spectrum be-
comes about twice as broad in locking conditions, the total area (thermal energy) of
the sideband remains the same. Therefore, we conclude the PLL feedback does not
change the energy of the ion’s oscillation on the locked mode, and perhaps, could not
even be used for cooling or heating purposes.

The sideband spectrum taken with feedback gain G = 1, see Fig. 9.10 looks like
a classic servo signal under lock conditions. The coherent spike has an amplitude of
approximately 7 dB above the sideband floor, and 11 dB above the Poissonian noise
level, taken with a RBW = 10 Hz.

It is interesting to find out the bandwidth of the coherent spike. When measured
with the narrowest resolution of FFT spectrum analyzer (RBW = 1 Hz), the narrow
phase locking spike is observed with an amplitude of 20 dB above the noise pedestal,
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Figure 9.9: The red curve is the sideband spectrum of the free ion oscillation. The
blue curve is the sideband spectrum when ion oscillation is locked to an
external frequency generator. RBW = 10 Hz. Feedback gain = 1.
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Figure 9.10: The evolution of the sideband spectrum in locking conditions with differ-
ent feedback gains. RBW = 10 Hz.

and the measured width of that spike is less than 3 Hz, see Fig. 9.11. The non-zero
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Figure 9.11: The phase locking spectra taken with smallest resolution which is possible
on the spectrum analyzer, RBW = 1Hz. This is a detailed version of the
spectra which is shown in Fig. 9.10. Feedback gain = 1.

linewidth of the locked signal is determined not only by the resolution bandwidth of
the spectrum analyzer but also by the fact that FFT analyzer is not connected to the
10 MHz time-base network of the frequency source for the lock signal. This results in a
phase jitter between the primary generator and FF'T analyzer which explains the size
of the bandwidth of the locked signal.

9.4.4 Phase locking of a mono-ion oscillator to FM signal

Once the motion of the ion can be synchronized to a sinusoidal signal, it would be
also interesting to synchronize the frequency of the motion to the signal with varying
frequency, i.e. to the frequency modulated signal (FM-signal), as has been described
in subsection 9.4.2.

With the external generator switched to FM mode, the frequency span and the FM
rate are set to 56.3 Hz, hence the modulation index is equal to 1. The particular
value of the span and rate is chosen such that it is smaller than the bandwidth of the
loop filter and it is not equal to 50 Hz (power supply frequency) and harmonics of
that. The spectrum of the sideband in locking conditions and FM signal are shown in

84



-65 I I I
Motion locked to FM-signal

—~ -70 4 -
S
m
2
o
2
o)
Q -754 .
®©
C
2
B ]

-80 4 -

External FM-signal
56.3 Hz rate i
-85 ' " ' ! ' " '
1036 1037 1038 1039 1040
Frequency (kHz)

Figure 9.12: The sideband spectrum(blue curve) when locked to FM modulated sig-
nal(red curve) with the frequency span 56.3 Hz and the modulation index
is equal to 1. Feedback gain = 1. RBW = 10 Hz. FM modulated signal
is 60 dB attenuated.

Fig. 9.12. Four FM spikes are revealed in the sideband spectrum with frequencies equal
to the sidebands of the FM signal. Other FM sidebands disappear in the noise floor.
This measurement shows that in principle we can encode and decode phase/frequency
information into the motion of the single trapped atom.

9.5 The conclusion and outlook for PLL feedback
experiment

The temperature of an ion, or its kinetic energy is equal to the area under its sideband
spectrum and it does not change during the feedback operation. Nevertheless, the
shape of the sideband is not Lorentzian for feedback gains greater than 0.3. This means
that the part of the sideband energy inside the Doppler profile will be redistributed
by the feedback loop over its frequency bandwidth. Some part of the energy will be
transferred to coherent oscillations. This is reminiscent of the Mdssbauer effect, where
the recoil energy is absorbed by the crystal lattice. Therefore one could say that this is
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a direct analogy to the effect we observed, because during the feedback operation the
recoil momentum will be absorbed by the feedback giving an effective line narrowing.
Nevertheless, the physics behind this PLL control is different. The recoil frequency of
the photon during the Doppler cooling is about 6 kHz and it is absorbed by the trap.
We do not see the recoil on the sideband spectra! The ion can be represented as a wave
packet moving back and forth in the trap potential with the sideband frequency, and
the PLL feedback only stimulates the ion to move more coherently.

The size of coherent oscillations can be calibrated by using spectra of excited motion,
and the amplitude of the oscillations are then found to be approximately 25 nm. As
previously mentioned the ion motion in the trap can be represented as the motion of the
harmonic oscillator. The mean energy of that oscillator is set by the Doppler cooling
process. We can even say that the harmonic oscillator is connected to the thermal bath
with a temperature greater then the oscillation frequency (the case when kT > R,
see [34]). The width of the motional spectra is a damping rate and is due to the cooling
process. In that case the behavior of that oscillator can be treated classically, see [86].
Due to the action of the PLL feedback the harmonic oscillator (the single Bation)
starts to move more coherently, and the oscillation frequency is kept the same by the
PLL. Hence the temperature or kinetic energy also remains the same!

Here we want to mention some current task and make an outlook for future exper-
iments. The first task would be to determine the quantum state of motion, and how
this is connected to the spectrum of the sideband.

The PLL can recover only the phase/frequency information. It does not measure the
amplitude of the ion’s oscillations in a Paul trap. Therefore, the second task would
be to incorporate the quadrature detector into the PLL, in order to acquire complete
information about the ion’s motion.

Once the ion motion can be locked to an external generator, we could try to phase-
lock the motion of the ion to the motion of another ion which would be confined in
a different trap. This has recently achieved with frequencies of lasers, and perhaps it
would be illuminating to do the same for the motional phase/frequencies of a different
massive particles.
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10 Towards quantum feedback

It is known that a single trapped ion can be cooled by means of different optical
techniques: Doppler cooling, EIT cooling, sideband cooling. Doppler cooling can reduce
the thermal motion of the ion to temperatures of about kgT ~ Al'/2, while sideband
and EIT cooling, in principal, can be used to cool the ion’s motion down to the ground
state [87]. We demonstrate the alternative, electro-mechanical method to cool the
ion’s motion below its Doppler-limit by using "cold damping" or homodyne feedback
control [35,93].

We create an additional friction force, which is proportional to the "instantaneous
speed" of the ion in the trap, by supplying additional electric fields along the direction
of the ion’s motion. We observe a reduction of the thermal energy of the ion to 1/2
of the initial value. For sufficiently high loop gain the motion becomes correlated with
the Poissonian noise of the photocurrent, thus producing a hole in the noise spectrum.

While this kind of feedback technique been used earlier to cool a vibrational mode
of a mirror [36], we believe this is its first demonstration with a single particle at the
quantum noise limit. Here we present the first experimental results on this topic.

10.1 Thermally excited harmonic oscillator

As mentioned in Chapter 9 the motion of a single ion in the trap can be approximated
by the motion of a damped harmonic oscillator externally excited by stochastic forces.
The latter are often called Langevin forces and describes the coupling of the oscillator
to the thermal bath with some temperature 7" [88]. Let us take an oscillating mass on a
spring as a model for the ion’s motion in a Paul trap which undergoes Doppler cooling.
We can also say that the oscillator, which represents the motion of the trapped ion, is
now connected to the thermal bath with a temperature on the order of T' ~ hI'/2kp,
where I is the linewidth of the atomic transition and kg is Boltzman constant (see also
section 2.2).
The equation of the motion of the oscillator can be written as

i+t +wir = Fr(t)/M (10.1)

where 7 is the damping or cooling rate of the oscillator, wy, its mechanical frequency,
Fr(t) is the Langevin force and M is the mass of the oscillator. In the framework of
the linear response theory (for details see [88]) the spectrum of the resulting motion
can be expressed via the mechanical susceptibility of the oscillator x(w) and we obtain:
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FT(W)

r(w) = x(w)Fr(w) = MW}, —w? —iyw)

(10.2)

The power spectrum can be calculated through the power spectrum of the Langevin
force Sg,.(w) by

Sa(w) = [x(W)[*Spp () - (10.3)

Assuming that the oscillator is in thermal equilibrium with the thermal bath, Sg,.(w)
can be calculated using the fluctuation-dissipation theorem [88§]

Sp,(w) = —2ij1m[1 /x(W)] = 2M~kpT. (10.4)

Substituting this equation into Eq. 10.3, and assuming a high value of the quality
factor of the mechanical resonance (for the Ba™ ion in Paul trap in our experimental
conditions @ = wy;/v ~ 1000 kHz /0.5 kHz = 20000), we finally calculate the power
spectrum of thermally excited motion of the harmonic oscillator

W) = 5 -
2Mwi, (W —w)?+ T

(10.5)

The power spectrum of the oscillator motion excited at temperature 7" has a Lorentzian
shape, as has already been verified in our experiment (see Chapter 7). The width of
the spectrum is equal to the damping rate, and the area under the curve corresponds
to the thermal energy of the oscillations and obeys the equipartition theorem

%Mw%? = %Mw?w/Sm(w)dw = %kBT, (10.6)
where 22 is the averaged thermal variance of the oscillator position. If we look at
Eq. 10.5 it becomes clear that by increasing the damping rate of the oscillator we
decrease the area under the motional spectrum, and hence we also decrease the thermal
variance of the oscillator position or, slow down its motion, although this is not apparent
from Eq. 10.6. The reason is the damping rate from that equation cancels out because
it appears both in the mechanical susceptibility and in the spectrum of the Langevin
force.

10.2 Cold damping technique
To slow down the motion of the harmonic oscillator we will use a feedback loop which

applies an additional force in such a way that this force is proportional to the speed of
the oscillator but has an opposite direction

Frp(t) = —aMu(t), (10.7)
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where « is a constant and M is the mass of an oscillator. Thus the feedback loop exerts
a viscous force on the harmonic oscillator, therefore its motion can be slowed. The
Fourier spectrum of such a force will be then

Frp(w) = iwM~Gx(w), (10.8)

where G is the gain of the feedback loop.

The motion of the oscillator under feedback control arises from the action of the
Langevin force and viscous force created by the feedback loop. We can rewrite Eq. 10.2
as

z(w) = x(W)[Fr(w) + Fre(w)] = xrp(w) Fr(w), (10.9)

where xpp(w) is an effective mechanical susceptibility due to the action of the feedback
loop given by

1
Wi —w? —i(l+G)yw)

= 10.10
XrB(w) M( ( )
The additional viscous force exerted by the feedback loop increases the damping rate
of the harmonic oscillator. The Langevin force is not modified by the feedback, hence
the thermal energy of the motion is reduced. From Eq. 10.9 we obtain

SFB(CU) - 2Mw]2\/[ (WM i w)2 4 (1 4 G)Q'Z—Q . (10.11)

Performing the integration of Eq. 10.11 over the entire frequency range yields

1 — 1 T

§Mw§4x2 - §Mw§4/SFB(w)dw = #JFG) . (10.12)
Therefore the feedback control will reduce the temperature of the harmonic oscillator
by a factor of 1 + G. Note that the damping rate of the oscillator will be increased
by the same factor, while the temperature of the thermal bath remains unchanged!
This cooling method using the active feedback control is often called the cold damping
technique |35,89| or stochastic cooling. The latter method has been used to slow down
the transverse oscillations of the protons in accelerator beam [91]. The difference
between cold damping and stochastic cooling is that the latter method will shift the
oscillation frequency [90].

In the real experimental situation there is always noise which influences the system.
For example in our experiment there is Poissonian noise appearing during the photode-
tection process. In the theoretical description which we have just presented this is not
taken into account. However, a more detailed analysis can be found in [92,93].
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Figure 10.1: The experimental setup for feedback cooling of the ion oscillation in a
Paul trap.

10.3 Experimental setup

The experimental setup is shown in Fig. 10.1. The optical part of that experiment is
the same as has been described in Chapter 7. The motion of the single Ba™ ion is
detected in an interference experiment, and this procedure has also been described in
Chapter 7.

The resonance fluorescence of the Ba™ ion has a level of approximately of 6000 counts
per 100 ms. The green laser is detuned to half of the linewidth, the red laser is kept
on resonance. The contrast of the interference fringes is 40%. The mirror position is
set by the fringe lock to the middle of the interference slope for better detection of the
ion’s motion. The motional sideband signal is observed on a FFT-spectrum analyzer
and has a frequency f, ~ 1200 kHz (Y-mode) with a signal-to-noise ratio of 6-8 dB
above the Poissonian noise level. The width of the sideband is determined by the laser
cooling process |75] and is in agreement with the expected value of about 400 Hz.

The resonance fluorescence is detected by PMT, and the part of that signal is going
to the electronic feedback loop which consists of the local oscillator (LO), mixer stages,
crystal bandpass filter (BPF), phase rotator (Phase), amplifier with variable gain. The
input signal is mixed up with the LO (signal synthesizer SML-01) to match the trans-
mission frequency band of the bandpass filter. We use a crystal filter with the center
frequency of f, = 10.7 MHz and 3 dB bandwidth of about 30 kHz. The 60 dB stop
bandwidth is equal to 130 kHz. The phase characteristic of such a filter on a maximum
transmission is rather steep, thus +90° phase cross-over points limits the efficiency of
a feedback loop to a bandwidth of about 6 kHz.
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After filtration the signal is again mixed down with the local oscillator and thus
acquires its phase. Upper sidebands while appeared during mixing are rejected with a
low-pass filter (omitted for simplicity) and the signal then goes to the amplifier. The
output signal has an amplitude of approximately 1 mV, is resonant again with the
ion’s oscillation frequency and is supplied to the end cap electrodes (see Chapter 9).
The phase of the output signal can be tuned from —220° to +220° with respect to the
input signal. Therefore the force applied to the ion’s motion could be the viscous force
(cooling mode) or accelerating force (heating mode).

10.4 Experimental results

The sideband spectra measured without feedback action and with a different value of
feedback gain are shown in Fig. 10.2. Here the phase of the feedback loop is equal to
—90° and creates a viscous force for the ion motion. The presented curves are obtained
after averaging 200 scans of the spectrum analyzer with a resolution bandwidth of 30
Hz. The baseline for each spectrum corresponds to the Poissonian noise level which
remains at the same level, because the feedback does not influence the intensity of the
resonance fluorescence.
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Figure 10.2: Sideband spectra recorded without feedback (curve a), with feedback G
= 0.3 (curve b), and with G = 0.7 (curve c).
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In Fig. 10.2 the curve a) corresponds to the spectrum of the Y-mode of the ion’s
oscillations, with a center frequency of wy; = 2w x 1211.8 kHz and a width of v = 27 x
380 Hz. Curves b) and ¢) are obtained under feedback action with increasing gain.
The area under the sideband spectrum is strongly decreased while its width becomes
approximately 6 times larger, which corresponds to further cooling of the Y-mode of
the ion motion.

The thermal energy of the ion motion cannot be calculated from the Eq. 10.12 because
of the presence of the Poissonian noise, which also influences the motion. Nevertheless,
the measured spectrum of the motion in the presence of background noise can be

described by (for details see [36,92]) by:

§¥p() = [1 — 5x=G2 + C)|Srp(w) + Spra(w) (10.13)

where SN R is the signal-to-noise ratio at resonance, Spp(w) is the spectrum calculated
from Eq. 10.11, and Spyr(w) is the spectrum of the Poissonian noise. The feedback
gain in Fig. 10.2 is calculated by fitting the measured spectra with Eq. 10.13 and is less
than the electronic gain of the amplifier by a factor of 3. The spectrum shape remains
Lorentzian with the baseline equal to the Poissonian noise level, but the measured area

Signal power (dBm)

764

' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1
1204 1206 1208 1210 1212 1214 1216 1218
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Figure 10.3: Sideband spectra recorded without feedback (curve a), with feedback G
= 1.2 (curve b), and with G = 2.2 (curve c).
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of the sideband is less than in the case of noiseless feedback described in section 10.2.

The sideband spectra without feedback action and with higher feedback gain than
in Fig. 10.2 are shown in Fig. 10.3. The gain of the feedback is calculated again from
the fit of the measured spectra. One can see, that for high gain the sideband spectrum
is completely eliminated by the feedback action, furthermore the feedback digs a hole
in the background noise floor (it happens when the first term in Eq. 10.13 becomes
negative). The Poissonian noise suppression achieved in our experiment is about 7
dB. This reflects the fact that the cold damping feedback starts to work against the
background noise.

The feedback loop which cools the ion’s oscillation works also as an intensity sta-
bilizer. The theory and experimental results obtained for this kind of feedback loop
can be found in [76,94]. The authors have also measured the the Poissonian noise
suppression up to 12.5 dB inside the feedback loop with the gain of the feedback (this
is the case of the intensity stabilizer based on the electro-optical modulator), whereas
the noise of the light which has been measured outside the feedback loop becomes 2
dB larger.

In our case, the phase of the ion’s motion induced by the feedback loop with respect
to the input signal is equal —90° (coming from the phase shift) —90° (response on the
resonance) giving a total phase shift of —~180°. If the input signal is due to intensity
fluctuation, then the feedback tries to keep the intensity at the constant level by supply-
ing the signal proportional to the amplitude of the fluctuations but with the opposite
phase. Therefore the current state and the light fluctuation are anti-correlated inside
the feedback loop, which results in Poissonian noise suppression, and this effect cannot
be associated with the light squeezing.

During the measurement the motional spectrum appears as a resonance line on the
top of the noise floor, see Chapter 7, because the oscillation of the trapped ion is
uncorrelated with the Poissonian noise. The action of the feedback loop will decrease
the level of the Poissonian noise inside the band of the feedback loop as described
above. Therefore, the measurement of the motion inside the loop is strongly affected
by suppressed light fluctuations. To separate contributions of the light fluctuations
and the actual ion’s motion to the measured spectrum one has to measure the spectra
outside the loop, as has been done in [94].

In a future experiment we are going to split the light beam coming from the ion into
two parts. One beam will be used for the feedback purposes, the other beam will be
used to detect the actual motional spectrum and will therefore allow us to measure the
thermal energy of the single ion.
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11 Summary and conclusions

The work presented here started with a description of the experimental setup which
has been already built in [38]. The Ba* is cooled to the Lamb-Dicke regime and can
be reliably stored in the trap for a sufficient long time (more than 5 hours). The
interference experiment [6,38| described in Chapter 6 demonstrated the interference of
the ion with its mirror image was demonstrated with a visibility of more than 70%.
The mirror induced modification of the spontaneous decay rate on the Py, — Sy
transition was measured by observing fringes in the fluorescence on the Py, — Djs.
The value of this decay rate change is approximately 1.5% and is determined by the size
of the beam waist on the focal point of the HALO 25/04 lens which is approximately
1.8 times larger than the optical diffraction limit for that lens.

The modification of the spontaneous emission rate of an atom is always accompanied
by the shift of the excited atomic state. In Chapter 6 the shift of the P, state of a single
Ba™ ion was measured in an interference experiment. The main signature of the level
shift is that the phase between the green interference fringes and the red modulation
(correlation phase) is not constant with regard to dependence of the detuning of the 650
nm laser and it was experimentally demonstrated. The level shift has been calculated
from the fit of theoretically calculated contrast of the red fringes versus the detuning of
the 650 nm laser to the experimental data. The level shift has a magnitude of 240 4+ 60
kHz, and as in the case of the modification of the spontaneous decay rate is also limited
by the quality of the focus of the HALO 25/04 lens. It has been also demonstrated
that for certain parameters of the 650 nm laser (blue detuning, high intensity) behavior
of the correlation phase becomes non-trivial. This effect is assumed to be due to the
interplay of the modified decay and optical pumping. The detailed underlying causes
could be the subject of future study.

Chapter 7 showed that RF spectral analysis of the resonance fluorescence from an ion
in the interference experiment is one of the most sensitive methods to detect an ion’s
macro-motion ever shown so far. In our experiment we measured the spectrum of all
three macro-motion sidebands with a signal-to-noise ratio from 1.5 dB to 12 dB with a
resolution bandwidth up to 100 Hz. It was found that a particular size of the sideband
signal is mainly determined by the direction of the cooling beam. The noise floor is
determined by the Poissonian noise level arising from the photo-detection process. We
assume the signal-to-noise ratio can be improved in a future setup by either increasing
the fluorescence collection from the single ion or by mixing the fluorescence with the
strong local oscillator, i.e. by introducing a homodyne or heterodyne technique.

The energy shift of the P/, state has a sinusoidal dependence on the ion-mirror
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distance, thus leading to a spatially dependent force on the excited ion which changes
the trap frequency by up to 300 Hz. We measure this variation of the trap frequency
with < 10 Hz error by positioning the ion with nanometer accuracy relative to the mirror
and detecting the intensity modulation in the scattered light due the ion’s oscillation
in the combined trap and the mirror induced potential. The trap frequency shift is
also measured by observing the dependence of the level shift on the fluorescence rate
(excitation probability of the upper state). As predicted this relationship is linear.

The level shift of the excited state can be treated from the classical point of view,
i.e. in terms of the reaction of the ion to its own retroreflected field. The valid descrip-
tion of the atom-field interaction demands use of an adequate apparatus of quantum
electrodynamics, in which vacuum field appears. Although it is impossible to separate
the action of the real field from the action of the fluctuations of the electromagnetic
vacuum in the present experiment, we believe that the action of the pure vacuum
field would be revealed only in either relativistic experiments or by introducing some
asymmetry into the system, i.e. squeezed states, strong magnetic or electrical fields,
fast moving boundaries, dielectric boundaries, etc. The interesting proposal of how an
atom or molecule can acquire momentum from the vacuum field has been proposed
recently in [95|. Nevertheless, the question "What is the vacuum field really?" remains
unsolved.

It is possible to optically reconstruct the trajectory of the ion’s motion in the inter-
ference experiment. This measurement is described in Chapter 9. The phase plot of
the ion’s trajectory in the X oscillation mode was measured with an accuracy of 12
nm (limited by the presence of the Poissonian noise). Furthermore we demonstrate for
the first time phase locking of the ion’s oscillation in the Paul trap not only to the
pure sinusoidal signal but also to the FM signal with a frequency span of 56.3 Hz and
modulation index of 1. The phase-locking spike of 8 dB above the noise floor appears
on the sideband spectrum showing that the oscillation becomes more coherent.

In the last chapter 10 we demonstrated the alternative, electro-mechanical method
of cooling the ion’s motion below its Doppler-limit by using "cold damping" or ho-
modyne feedback control. It is shown that the spectrum of the ion’s oscillation with
feedback control still remains Lorentzian and its area decreases with increasing the gain
of the feedback. For sufficiently high loop gain the motion becomes correlated with the
Poissonian noise of the photocurrent, thus producing a hole which is 7 dB less than
the noise floor. While this kind of feedback technique has been used earlier to cool a
vibrational mode of a mirror, we believe that this is its first demonstration with a single
particle at the quantum noise limit. The thermal energy of the ion’s oscillation is not
yet known and we plan to measure this in the near future outside of the feedback loop.
The cooling limit for that kind of feedback is still the subject of future theoretical and
experimental studies.
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