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Abstract
Over the last two decades, quantum information science has made significant progress, both theoret-

ically and experimentally, evolving into a prosperous field with potential commercial applications

within the next decade. This PhD thesis reports on four different experiments, performed over

the last few years, all investigating various aspects of quantum information science. 40Ca+-ions

trapped in a macroscopic, linear Paul trap serve as a qubits encoding quantum information that

are coherently manipulated with laser light fields.

These four experiments utilise an existing experimental arrangement, adapted to allow coherent

manipulation of long ion strings, thus demonstrating the capabilities of the current setup.

Two of the experiments presented in this thesis are focused on quantum simulations of interacting

many-body systems. In the first experiment, the propagation of entanglement in such a many-body

system is experimentally observed for the very first time. Additionally, the system’s response is

investigated as the spatial range of the interactions is tuned. The following experiment employs a

novel spectroscopic method for probing these interacting many-body systems.

The third experiment focuses on quantum computation, specifically the measurement-based quan-

tum computation approach. Here, the deterministic generation of cluster states in trapped ions is

demonstrated for the first time. Moreover, certain cluster states are used to implement error cor-

rection codes of different sizes, granting, to the author’s knowledge, the first experimental evidence

that larger code words are indeed capable of better protecting quantum information, despite the

higher complexity of their preparation.

The fourth and last experiment explores a type of quantum correlation present in mixed states,

known as quantum discord. The generation of quantum discord via two different, noisy processes -

that is, amplitude damping and correlated magnetic field noise - is investigated, and the generated

discord is quantified by different measures.

In the last part of this thesis, the limitations of the current setup are presented and, if possible,

potential solutions are discussed. Furthermore, open questions encountered in the experimental

setup are addressed for future investigations in order to obtain a better understanding of further

limitations.

A brief outlook on possible improvements to the experimental setup, as well as ideas for future

projects, conclude this manuscript.



Zusammenfassung
In den letzten zwei Dekaden hat sich die Quanteninformationswissenschaft zu einem blühenden

Fachgebiet entwickelt, in dem grossartige Fortschritte, von theoretischer und experimenteller Seite

her, in Richtung kommerziellen Anwendungen stattgefunden haben. In dieser Dissertationsschrift

werden vier Experimente vorgestellt, die sich mit unterschiedlichen Aspekten der Quanteninforma-

tionswissenschaft beschäftigen. Als physikalische Plattform um Quanteninformation zu kodieren,

dienen 40Ca+-Ionen, gefangen in einer makroskopischen, linearen Paulfalle, die mit Hilfe von La-

serlicht kohärent manipuliert werden können.

Aufbauend auf einem existierenden Experiment, wurden Techniken entwickelt und angewandt um

lange Ionenketten kontrolliert zu manipulieren. Hierbei werden die Möglichkeiten des gegenwärtigen

Aufbaus aufgezeigt.

Zwei der Experimente, die in dieser Arbeit vorgestellt werden, beschäftigen sich mit der Quan-

tensimulation von wechselwirkenden Vielteilchensystemen. Im ersten der beiden Experimente geht

es um die erstmalige Beobachtung wie sich Verschränkung in einem solchen Vielteilchensystem

ausbreitet. Des Weiteren wurde die Abhängigkeit dieser Ausbreitung für unterschiedliche Wechsel-

wirkungslängen untersucht. Das nachfolgende Experiment befasst sich mit einer neu-entwickelten

spektroskopischen Methode, um ebendiese wechselwirkenden Systeme auf ihre Eigenschaften zu

untersuchen.

Der Fokus des dritten Experimentes liegt auf einem spezifischen Model der Quantenrechnung, das

sogenannte messbasierte Quantenrechner-Model. Dabei wurden die grundlegenden Bausteine des

messbasierten Quantenrechners, sogenannte Cluster-Zustände, erstmalig deterministisch erzeugt.

Darüber hinaus wurden Cluster-Zustände unterschiedlicher Grösse im Hinblick auf Fehlerkorrek-

turcodes erzeugt, die, unseres Wissens nach, erstmalig nachweisen, dass längere Codewörter in

der Tat Quanteninformation besser beschützen können, trotz der höheren Komplexität bei deren

Herstellung.

Das vierte und letzte Experiment erforscht eine grundlegende Art von Quantenkorrelationen in

gemischten Zuständen, die man auch als “Quanten-Zwietracht” (Quantum discord) kennt. Hier wird

die Frage untersucht, wie Quanten-Zwietracht durch unterschiedliches Rauschen erzeugt werden

kann, genauer gesagt durch Amplitudenzerfall und korreliertes Magnetfeldrauschen. Hierbei wurde

die Quanten-Zwietracht durch unterschiedliche Metriken quantifiziert.

Im letzten Kapitel dieser Arbeit werden die Limitierungen des derzeitigen Aufbaues bezüglich lan-

ger Ionen-Ketten erläutert und wenn möglich, werden Lösungen diskutiert. Darüber hinaus werden

offene Fragen voergestellt, die in Zukunft untersucht werden müssen, um ein besseres Verständnis

der Limitierungen zu erhalten.

Zum Abschluss folgt ein kurzer Ausblick auf mögliche Verbesserungen des experimentellen Auf-

baues und Ideen für zukünftige Projekte werden vorgestellt.
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1. Introduction

Quantum mechanics, and the advancements it provides, are one of the fundamental pillars of mod-

ern day life, guiding and expanding our understanding of nature. Many present-day technological

advances, from chemistry to GPS-navigation, rely in one way or another on the understanding of

the microscopic world, an understanding gained from quantum physics.

In the early days of quantum mechanics most, if not all, of its founders thought of it as a mere

theoretical construction to describe the microscopic world. Despite being fruitful in explaining

many experimentally observed phenomena, none of the founding fathers ever dared to dream of

observing quantum mechanics on the single particle level, not to mention to fully control them. Or,

as to put it into Schrödinger’s famous phrase “[. . . ] we never experiment with just one electron or

atom or (small) molecule. In thought-experiments we sometimes assume that we do; this invariably

entails ridiculous consequences . . . we are not experimenting with single particles, any more than we

can raise Ichthyosauria in the zoo.” [1]. Almost as if it was a prompt to prove Schrödinger wrong,

only a year later in 1953, W. Paul suggested trapping charged particles with electric fields [2]1.

Another 25 years had to pass by before Neuhauser, Hohenstatt, Toschek and Dehmelt succeeded

in trapping, and laser cooling, a cloud (N < 50) of barium ions in a Paul trap [3]2. The same team

was successful in trapping a single barium [5] only two years later in 1980, demonstrating the (once

thought ‘unimaginable’) possibility of isolating a single quantum system for the first time. This

achievement led into a new era of experimental quantum physics and, six years later, a long lasting

question regarding light-matter interactions, namely the existence of quantum jumps, was proven

to be true [6–8].

At around the same time experimentalists succeeded in trapping single particles, the concept of

quantum computation was introduced by Benioff [9], Manin [10] and Feynman [11]. In contrast

to classical computers based on transistors where the information is encoded in distinct values,

termed bits, the information in a quantum computer can be in any superposition of two states and

is stored in quantum bits (qubits) [12]. However, at the time those ideas emerged it was considered

experimentally unrealistic to use single quantum systems, such as atoms, to encode and manipulate

information. In one of his lectures in 1986 Feynman said “[. . . ] we are to be even more ridiculous

later and consider bits written on one atom instead of the present 1011 atoms. Such nonsense is

very entertaining to professors like me. I hope you will find it interesting and entertaining also.”

1Wolfgang Paul and Hans G. Dehmelt received the Nobel prize in 1989 “for the development of the ion trap
technique”, and in the same year, Norman F. Ramsey received it “for the invention of the separated oscillatory
fields method and its use in the hydrogen maser and other atomic clocks”.

2In the same year, Wineland, Drullinger and Walls, succeeded in laser cooling 5 × 104 Mg-ions stored in a Penning
trap [4].
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2 1. Introduction

And, once again, a famous Nobel laureate3 was going to be proven wrong.

About 15 years later, Peter Zoller and Ignacio Cirac wrote their seminal paper [13] proposing

trapped ions as qubits and using their common motion as a bus system to couple those ions

and generate entanglement. With the experimental advances in controlling single ions, such as

state preparation and ground state cooling of motional degrees of freedom [14], Monroe et al.

demonstrated for the first time a quantum logic gate, the so-called controlled-NOT gate or C-NOT,

with a single ion4 based on the Cirac-Zoller proposal. Over the last two decades, trapped ions have

arisen as a prime candidate5 for quantum information processing, due to the tremendous control

that is available over those systems. On the way towards a fully functional quantum computer,

many roadblocks have been overcome with ions, such as high-fidelity two-qubit gates [16, 17] for

fault-tolerant computation, error correction [18, 19], entanglement purification [20], creation of

large entangled states [21, 22] and the proof of principle implementation of different algorithms,

such as the Deutsch-Josza algorithm [23], Grover’s search algorithm [24] and Shor’s algorithm [25].

Nevertheless, there are still obstacles which need to be overcome before a genuine quantum

computer can be achieved; for example, scaling to large numbers of qubits as well as combining

all basic building blocks together are but a few of the challenges to be addressed. However, an

attractive alternative approach are quantum simulators. Quantum simulations may be able to

outperform classical simulations far earlier than quantum computers, due to their lower constraints

on system size and the quality of quantum logic gates required.

Over the last decade, many proof of principle experiments have been demonstrated on various

platforms6. Here in this work, a particular Hamiltonian - namely the transverse field Ising Hamil-

tionian with tunable spin-spin interaction range - is implemented on up to 15 ions. Moreover, the

experiment presented in chapter 5 goes beyond proof of principle, as for the first time it was possible

to observe how entanglement spreads out in a many-body interacting system after quenching [26].

The dependence of this spreading on the spin-spin interaction range was investigated and compared

to so-called Lieb-Robinson bounds [27], i.e. upper bounds on the speed of correlation propagation

in interacting systems. In addition, a spectroscopic technique is demonstrated for probing the low-

lying energy states of the Ising Hamiltonian by creating superpositions of its eigenstates [28]. This

allows the dispersion relation of the given Hamiltonian to be deduced, revealing information about

the dynamical behaviour of the system under consideration. In fact, this spectroscopic method is

generic and can be applied to other Hamiltonians that show certain symmetries in their eigenstates.

In the quest to develop a quantum computer, not only experimental progress has been made,

but also theoretical developments have led to new insights into quantum information theory over

the past two decades. A prominent example is the realization that quantum information can be

processed in ways other than in the standard model, or gate model, of quantum computation

[12]. In 2001 Raussendorf and Briegel formulated their idea of a measurement-based quantum

3Richard Feynman was awarded the Nobel prize in 1965 jointly with Sin-Itiro Tomonaga and Julian Schwinger
“for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of
elementary particles”.

4The target qubit was encoded in the hyperfine ground state of a 9Be+-ion and the control qubit is spanned by the
first two states of the harmonic oscillator.

5A short overview of different experimental implementations of qubits can be found in [15].
6For an incomplete list of the most prominent experiments see 5.



3

computer (MBQC) [29], where the computation is driven by measurements and feedforward on a

large entangled state, specifically a cluster state, instead of quantum gates. From an experimental

point of view, it is prudent to test out the various forms of quantum computation - such as the gate

model or the MBQC model - as they all possess different advantages and disadvantages. An early

proof of principle experiment was demonstrated with photons in the group of Zeilinger in 2005,

where the individual building blocks of MBQC - i.e. arbitrary single-qubit rotations and two-qubit

gates - were showcased7. In this thesis the first implementation of MBQC with trapped ions is

demonstrated, where the generation of different cluster states is shown in a deterministic way [30].

In addition to the demonstration of the MBQC-equivalence of a universal set of gates, it was also

confirmed that certain graph states8 can be used for error correction schemes specifically, in this

case for, phase flip errors.

Amongst the quantum information community it is undoubted that the advantage of quantum

computers over classical ones originates from quantum correlations, especially entanglement. In

their effort to generalise quantum correlations to mixed states, Ollivier & Zurek [31], and indepen-

dently Henderson & Vedral [32], introduced the notion of quantum discord in 2001. Three years

prior to that Knill & Laflamme [33] coined the term ‘power of one bit’, where they proved that

a single pure qubit coupled to an arbitrary number of completely mixed qubits can solve certain

tasks faster than any known classical counterpart. Later it was realized that such a system has a

vanishingly small amount of entanglement, however, it does contain quantum discord [34]. Bear-

ing in mind that quantum discord might be another source to reaching ‘quantum advantage’, it

is necessary to investigate it under experimental conditions such as noise. Here in this work it is

shown how different types of noise, specifically amplitude damping and correlated dephasing, can

generate discord between two qubits, with the discord being quantified with different measures for

various initial states.

The structure of the presented thesis is the following:

Chapter 2 provides the reader with an introduction to quantum information science in order to

understand the basic theoretical concepts regarding this thesis.

Chapter 3 is a brief summary of the theoretical framework regarding ion trapping, laser-ion inter-

action and the quantum gates used for the projects presented in later chapters.

Chapter 4 details the original experimental setup, and the subsequent alterations implemented

during the course of this PhD work, such as stabilisation of the radial mode frequencies.

Additionally, the techniques of most importance for manipulating long strings of ions are

presented.

Chapter 5 reports on two experiments regarding quantum simulation of interacting spin models

with tunable spin-spin interaction lengths. A theoretical discussion with respect to spin

models and Lieb-Robinson bounds allows the reader to understand the physics underpinning

7However, in this publication feedforward was not implemented as only certain outcomes that do not require
feedforward are post-selected. In addition, with the presented setup, generation of cluster states was only possible
in a probabilistic manner.

8A more general form of cluster states, see 6.



4 1. Introduction

this aspect of quantum simulation. Furthermore, a following section details the experimental

techniques required to setup a quantum simulation with our experimental arrangement.

Chapter 6 showcases our work on measurement-based quantum computation. Additional theoret-

ical and experimental details are presented in order to allow the reader to obtain a more

thorough understanding of the subject.

Chapter 7 summarizes the experiment related to discord. A short theoretical overview details the

terminology used in this chapter, and the following sections discuss how quantum discord can

be generated via amplitude damping and correlated noise.

Chapter 8 outlines the current limitations of the experimental setup with regards to scaling of the

number of ions, and discusses possible solutions to these limitations.

Chapter 9 concludes the thesis with a brief summary and outlook for future work.



2. Quantum information science

The term quantum information science (QIS) is often used as a umbrella term covering the theoret-

ical and experimental subgenres, best known as quantum information theory (QIT) and quantum

information processing (QIP). While the former is focussed on extending classical information the-

ory to quantum mechanics and developing the fundamental understanding of, for example, quantum

bits (qubits), quantum algorithms and quantum computation (QC), to name just a few, the latter

is centred around the question of how quantum information is controlled in an experimental system.

As this thesis deals with different aspects of both QIT and QIP the aim of this chapter is to

introduce the basic concepts and to bring down the different chapters to a common denominator.

Starting from a single qubit, so to say the basic unit in QIS, a brief overview of the most relevant

aspects regarding quantum correlations, quantum computation and quantum simulation will be

provided [12].

2.1. Quantum Bits

Analogous to classical information theory, where a bit is regarded as the smallest unit of informa-

tion, its quantum counterpart is the quantum bit or qubit. In contrast to classical bits, which can

take values ‘0’ or ‘1’, a qubit can be in a coherent superposition of both states

|ψ〉 = α |0〉 + β |1〉 = α |↓〉 + β |↑〉 , (2.1)

where α and β are two complex numbers fulfilling the relation |α|2 + |β|2 = 1 and the probabilities

to find respective states are |α|2 and |β|2. Throughout this text the notation |0〉 / |↓〉, as well

as |1〉 / |↑〉, will be used equivalently. However, the notation |0〉 is more common for quantum

computation and |↓〉 is more convenient in the context of quantum simulations, where it is referred

to as pseudo spin. The ‘Bra-ket’ notation, also known as Dirac-notation, is a short form for a vector

|0〉 =
(

1

0

)

and 〈0| = (1 0), |1〉 =
(

0

1

)

and 〈1| = (0 1).

A convenient way to rewrite equation 2.1 is to use spherical coordinates

|ψ〉 = e−iφg

(

sin

(
θ

2

)

|0〉 + cos

(
θ

2

)

e−iφ |1〉
)

(2.2)

where φg, θ and φ are real numbers. Since the global phase φg has no absolute reference point

it can be set to any arbitrary value, in general φg = 0. A visual representation of equation 2.2

is the Bloch sphere with angles φ and θ as shown in figure 2.1 and it is mostly useful to describe

single-qubit (pure and mixed) states.

In order to capture all aspects of a mixed state in multi qubit systems, that is a statistical mixture

5
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Figure 2.1.: The Bloch sphere, a visual representation of a single-qubit pure state.

of pure states as given by equation 2.1, the density matrix formalism provides convenient means.

Any quantum state can be expressed as

ρ =
∑

i

pi |ψi〉 〈ψi| . (2.3)

Here, |ψi〉 is the ith pure state with probability pi, where the relation
∑

i pi = 1 must hold. The

set 〈pi |ψi〉 is also known as an ensemble of pure states.

By choosing a set of orthonormal bases spanning a Hilbert space H, for example the Pauli group

I =

(

1 0

0 1

)

, σx =

(

0 1

1 0

)

, σy =

(

0 i

−i 0

)

and σz =

(

1 0

0 −1

)

, (2.4)

has been chosen here for convenience - a pure state as defined by Eq. 2.1 can be written as

ρ = (I+ þn · þσ) with þn =







〈σx〉
〈σy〉
〈σz〉







and þσ =







σx

σy

σz







. (2.5)

Here, 〈σi〉 denotes the ith expectation value given by the trace Tr (σiρ) = 〈σi〉. Equations 2.2 and 2.5

are equivalent descriptions in the context of pure states and they will be used interchangeably to

best suit the situation.

In order to describe N qubits the total Hilbert space HN is expanded by taking the tensor product

over all individual Hilbert spaces Hn

HN =
N⊗

n=1

Hn = H⊗N
n = Hn ⊗ Hn−1 ⊗ · · · ⊗ H1, (2.6)

where the qubits are counted from left to right in accordance with the computational, binary

representation of numbers. The purity P (ρ) ∈
[

1, 1
2N

]

is an absolute measure of a quantum state

offering information with regards to the amount of mixture. For an N -qubit state it is given by

P (ρ) = Tr
(
ρ2

)
indicating a pure state for P (ρ) = 1 and a completely mixed state for P (ρ) = 1

2N .
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There are many other absolute and relative measures; for a brief overview see [12, 35, and references

therein].

2.2. Quantum Correlations

A frequent misconception regarding quantum speed-up is that superposition of quantum mechanical

states1 alone is the core resource. However, it has been shown that pure product states [37] and

quantum states with ‘little’ entanglement can be simulated efficiently on a classical machine, i.e.

the required computational resource increases linearly with the system size [38, 39]. This indicates

that entanglement distinguishes between classically computable and classically intractable systems

and, hence, it could be thought of as the resource for any quantum algorithm. However, doubts

were soon raised that entanglement alone is responsible for quantum speed-up [33] and the notion

has been stretched to more general quantum correlations [34, 40].

This section will provide a brief introduction to quantum correlation as a resource for quantum

computation, with a main focus on entanglement. The notion of quantum discord [31, 32], as

a wider class of correlation, will only be briefly mentioned as chapter 7 [and references therein]

provides a detailed introduction.

Classical correlations The concept of correlation is encountered in everyday life; a hot plate and

burned hands is a very useful one However, it is important to note that correlation and causality

are not equivalent. The increase of global average temperature is anti-correlated with the decrease

of pirates in the Caribbean sea, nevertheless there is no causal chain. Correlations, therefore, are

a necessary but not sufficient condition for causal connections.

A formal framework for understanding information and correlations is provided by Shannon’s

information theory [41]. Consider two random variables X and Y with two sets of possible outcomes

{xi} and {yj}, respectively, and the joint probability distribution defined as P (X = xi; Y = yj) ≡
p(xi; yj) with the individual probabilities P (X = xi) ≡ p(xi) =

∑

j p(xi; yj) and P (Y = yj) ≡
p(yj) =

∑

i p(xi; yj) [42]. The uncertainty, or amount of information about X is expressed by the

Shannon entropy2

S(X) = S(p(x)) = −
∑

i

p(xi) ln p(xi) (2.7)

and analogously for Y . Regarding correlations between X and Y , the joint probability encodes to

what degree they are correlated, and the joint Shannon entropy

S(X, Y ) = S(p(x, y)) = −
∑

i,j

p(x, y) ln p(x, y) (2.8)

1Even though a single qubit can ”store an infinite amount of information”, due to the infinite points on the surface
of a Bloch sphere, the amount of accessible information is bound by Holevo’s theorem [36]. In fact, n-qubits can
maximally carry n classical bits of retrievable information.

2Information in Shannon’s information theory is understood as the unpredictability of information content or the
surprise value: Suppose having a ‘fair’ coin with equal probability for head/tail. In such a case we can not predict
the outcome of any future coin toss and the uncertainty/entropy has its maximal value (for the example of a coin)
of S(X) = 1 (here, log2 is used which is more common for binomial distributions). Every additional coin toss
provides us with the maximal amount of information. On the other hand, a fake coin with only heads is fully
predictable, i.e. S(X) = 0, and additional coin tosses do not provide any additional information.



8 2. Quantum information science

quantifies the uncertainty of X having full knowledge about Y , and vice versa. With these defini-

tion, one can define the mutual information as

I(X : Y ) = S(X) + S(Y ) − S(X, Y ). (2.9)

The mutual information is a quantity that measures ‘how much the knowledge about one random

variable tells us about another random variable’. It is zero iff the two random variables X and Y are

statistically independent and it reaches a maximum value if the two variables are fully correlated.

Imagine having two completely random, but equally long, strings of text A & B where reading

one of the strings does not reveal anything about the other. In other words, the joint entropy

(uncertainty) equals the sum of the individual entropies, S(X, Y ) = S(X) + S(Y ), and the mutual

information is I(X : Y ) = 0. However, if they are perfect copies of each other, i.e. perfectly

correlated S(X, Y ) = S(X) = S(Y ) = I(X : Y ), it is enough to possess one string of text in

order to have complete knowledge about the other. An important lesson to learn here is that even

for perfectly correlated systems, the correlations do not increase the total amount of information

contained in both systems individually.

This is quite different for quantum mechanical correlations, especially for entanglement. One of the

most important relations in the quantum theory of correlations is the Araki-Lieb inequality [43]

SN (ρA) + SN (ρB) ≥ SN (ρAB) ≥ |SN (ρA) − SN (ρB)| (2.10)

stating that the uncertainty of a composite system is less (or equal) than the uncertainty of the

sum of its two individual subsystems: “The whole is greater than the sum of its parts”. Here,

SN (ρ) = − Tr (ρ ln ρ) denotes the von Neumann entropy, ρAB is the density matrix of the composite

system and ρA (ρB) is the reduced density matrix of subsystem A (B).

Entanglement A composite quantum state, that is a state consisting of more than one subsystem

(e.g. qubits), is called entangled iff it can not be written in the separable form of a product state

[44]

|ψN 〉 = |ψn〉 ⊗ |ψn−1〉 ⊗ · · · ⊗ |ψ1〉 . (2.11)

With regards to the Araki-Lieb inequality, consider a two qubit state

|ψAB〉 = cos

(
θ

2

)

|0A 0B〉 + sin

(
θ

2

)

|1A 1B〉 , (2.12)

which is entangled for 0 < θ < π and separable only for θ = {0, π}. Calculating the von Neumann

entropy S(ρAB), S(ρA) and S(ρB), indeed reveals that the inequality holds. For a completely

separable state the von Neumann entropy of the whole system and the reduced matrices is identical

to zero. In contrast, a fully entangled state, that is cos(θ/2) = sin(θ/2) = 1/
√

2, has still zero

uncertainty of the composite system but the reduced states are maximally mixed. This implies even

though the whole state might be known with certainty, the individual subsystem can be completely

unknown or in the words of Schroedinger “The best possible knowledge of a whole does not include
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the best possible knowledge of its parts” [45].

It becomes clearer that entanglement is different from classical correlations when the mutual

information of a maximally entangled state I(ρA, ρB : ρAB) = 2ln2 is calculated, which is twice

the maximum possible mutual information between two classical variables. These stronger-than-

classical correlations are generally regarded as the resource for QI. Note that for other values of θ,

that is less entangled states, the von Neumann mutual information might not exceed the maximal

value of Shannon’s mutual information.

The characterization, classification and measurement of entanglement is a wide field of research

with still many open questions [44]. In the following only the most popular classes of entanglement

are presented. For a two-qubit system the Bell states are the only maximally entangled states:

∣
∣Φ±〉

=
1√
2

(|00〉 ± |11〉) ,
∣
∣Ψ±〉

=
1√
2

(|01〉 ± |10〉) . (2.13)

The classification becomes richer for N ≥ 3 qubits, with the two most prominent classes of entan-

glement, GHZ -states and Dicke states:

|GHZ〉 =
1√
2

(

|0〉⊗N + |1〉⊗N
)

, |Dm〉 =
1

√
(N

m

)

N∑

k

Pk

∣
∣
∣0⊗(N−m) 1⊗m

〉

. (2.14)

Here, Pk denotes the permutation operator generating all possible permutations of the states |1m〉
and

∣
∣
∣0(N−m)

〉

. Important examples of Dicke states are the W -states with m = 1 such that

|W〉 =
1√
N

(

|10 . . . 00〉 + |01 . . . 00〉 + · · · + |00 . . . 10〉 + |00 . . . 01〉
)

. (2.15)

These two classes of states, GHZ-state and W-states, are very distinct not only in terms of their

properties, but also in terms of preparing them, as these states can not be transformed into each

other by means of local operations and classical communication (LOCC) only [46].

Yet another class of entangled states, graph and cluster states, will be introduced in the context

of measurement-based quantum computation in chapter 6.

So far only pure states have been considered in the discussion. In the case of mixed states, finding

criteria for full separability [44, 47], that is to answer the question if a mixed state is entangled or

not, is a complex task and is beyond the scope of this thesis.

Nevertheless, mixed states bear an interesting extension of quantum correlations beyond entan-

glement known as quantum discord [31, 32, 48]. A brief introduction of quantum discord and its

main properties is provided in chapter 7 [and references therein].
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2.3. Quantum Computation

A quantum computer is a machine exploiting the laws of quantum mechanics in order to perform

certain computational tasks notably3 faster than any classical computer. Instead of using classical

bits based on ordinary transistors, the data is encoded by qubits, which can be realized into many

different physical systems [see 15, for a comprehensive list]. The field of quantum computation,

which is based on the initial work of Benioff [9], Manin [10], Feynman [11] and Deutsch [50] and was,

at that time, a mere ‘Gedankenexperiment’, gained a huge boost after the discovery of Shor’s algo-

rithm [51], showing that a quantum computer can indeed factorize a number exponentially faster

than any known classical counterpart. Deutsch’s seminal paper in 1985 [50] proved that quantum

computation is universal in the sense that the ‘Church-Turing thesis’ is not violated [12, Section

4.5.5 and references therein]. In other words, a quantum computer can solve any algorithm which

is solvable on a classical machine, and vice-versa a classical computer can simulate any quantum

device, given unlimited resources (energy, time etc.). As an important consequence, undecidable

problems, which are in principal not solvable by a Turing-machine can not be solved on a quantum

computer either; a famous example is that of the ‘halting-problem’ [52].

The main purpose of this section is to give a brief overview of the different quantum computa-

tional models, rather than a thorough introduction into the field of quantum computation which

can be found in books [12, 53, 54]. A comprehensive list of known quantum algorithms and their

original references can be found here [49].

Regardless of the computational model, a universal quantum computer has to fulfill the so called

DiVincenzo criteria [55] in order to be functional. These are given as follows:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a fiducial state with high fidelity.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A ‘universal’ set of quantum gates.

5. A qubit-specific measurement capability.

These five criteria are enough for computation alone, however DiVicenco added two more require-

ments regarding quantum communication and networks:

6. The ability to interconvert stationary and flying qubits

7. The ability to faithfully transmit flying qubits between specified locations.

Over the past few decades many different models of quantum computation evolved, some of them

sharing similarities or being almost identical up to some details, others being conceptually com-

pletely distinct. It seems impractical to list and categorize all of the existing theoretical models,

nevertheless a few prominent ones shall be quickly summarized.

3The quantum speed-up can range from constant, polynomial, super-polynomial to exponential depending on the
compared (classical and quantum) algorithms, see [49].



2.3. Quantum Computation 11

H

H

S

T

T T

T

C
N
O
T

C
N
O
T

Adiab.

Evol.

T
im

e

Space

GS GS

a) b)

c) d)

Figure 2.2.: Visual representations of different quantum computation models: a) The circuit or gate array
model, b) the measurement-based or one-way quantum computational model (reprinted from [56, ©Nature
Publishing Group]), c) the adiabatic and d) the topological quantum computational model.

Quantum circuit model The quantum circuit model, also known as the quantum gate array or

network model, is the model taught in most classes related to QI. It is the closest model to the

classical description of a computer [12, Chapter 4], and is often also referred to as the standard

model of quantum computation. In this model, the quantum information is stored in an array of

n-qubits called a quantum register, in analogy to a classical n-bit register. At the beginning of a

computation the register is initialized into its initial state. A universal set of unitary (reversible)

quantum gates acts on the register, or a subspace of the register (e.g. single qubits), and executes

the computational steps. Such a set of gates allows for the implementation of all necessary logic

gates and thus no other operations are required. The gates are applied in a time-ordered fashion

defining a direction of information flow. At the end of the computation the quantum register is

read out by performing measurements on the qubits. A visual representation of the circuit model

is given in figure 2.2 a).

In contrast to classical computers, where universal computation can be implemented only by

a single type of gates (for example a NAND, NOR or the Toffoli gate) its quantum counterpart

needs at least one two-qubit gate and a set of single qubit gates to allow arbitrary rotations to be

performed. Although the choice of a universal set of gates is not unique, a particular choice allows

an optimal set of gates for a given hardware implementation to be chosen. A possible choice is

the so called standard set [12] consisting of a Hadamard gate H, phase gate S, π/8-gate T , and a
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controlled-not gate CNOT :

H =
1√
2

[

1 1

1 −1

]

S =

[

1 0

0 i

]

T =

[

1 0

0 eiπ/4

]

CNOT =










1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0










. (2.16)

For quantum computation with trapped ions interacting with laser light fields (see chapter 3.2.1),

where the interaction time t and the laser phase φ can be precisely controlled, the following set of

unitary transformation is much more suitable than the standard set given above:

U(θ, φ) = e−i θ
2

σφ =




cos

(
θ
2

)

−ie−iφ sin
(

θ
2

)

−ieiφ sin
(

θ
2

)

cos
(

θ
2

)



 , Uz(θ) = e−i θ
2

σz =




e−i θ

2 0

0 ei θ
2





UMS
x

(
π

2

)

= e−i π
4

σx
1 σx

2 =
1√
2










1 0 0 −i

0 1 −i 0

0 −i 1 0

−i 0 0 1










, (2.17)

where σφ = cos(φ)σx +sin(φ)σy and θ ∝ t is directly proportional to the pulse length. The MS-gate

UMS
x

(
π
2

)
is a fully entangling gate, see chapter 3.3, and is equivalent to a CNOT-gate up to local

unitary transformations.

Measurement-based quantum computation In terms of quantum computation, the measurement-

based quantum computation4 (MBQC) is a conceptually completely distinct approach, compared

to the quantum circuit model described above. For a detailed introduction see chapter 6 and

references therein.

In contrast to the previous model, where the initial state is a simple product state and two-qubit

gates create entanglement, in the MBQC-framework the initial state is a highly entangled cluster

or graph state [57], which provides the necessary computational resource from the beginning. The

computational steps (or gates, to stay in the language of the circuit model) are performed solely

by single-qubit measurements in certain bases. The measurements are performed sequentially,

and in this way, define the information flow, see fig 2.2 b). Due to the randomness of quantum

measurements, the measurement outcomes of each qubit have to be fed forward and the subsequent

measurement bases have to be adjusted accordingly in order to guarantee a deterministic quantum

gate.

It has been proven that an MBQC-device is equivalent to the circuit approach [58], i.e. it is uni-

versal and hence can efficiently simulate, up to a polynomial overhead, any algorithm implementable

in the circuit framework and vice-versa. In fact, in some specific instances the MBQC-approach is

superior to the gate-based model as it requires less resources [58].

4Nowadays set synonymously with the one-way quantum computer [29], for more information see Chapter 6.
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The most notable difference between the two approaches is the creation of the resource used

for the computation, that is entanglement. While in the circuit model, entanglement is created

via unitary gates and the creation happens along the line of computation, in the MBQC-approach

the initial state is highly entangled and provides the computational resource. The question which

model is more feasible depends on the physical system used to implement QC.

There are a few schemes related to the MBQC-approach and the gate model:

• The teleportation-based scheme by Gottesmann [59], where single-rotations and Bell mea-

surements are used to perform the computational steps. This model is a hybrid approach

combining the circuit and the MBQC-model.

• Another scheme sharing properties of the two models is proposed in the context of linear

optics by Knill, Laflamme and Milburne [60]. They realized that measurements of individual

photons are non-linear processes that can be used to efficiently implement universal quantum

computation.

• An idea introduced by Nielsen is based on projective (non-destructive) measurements and

quantum memory [61] and is closely related to the proposal [29] described in the main text.

Adiabatic quantum computation The idea of an adiabatic quantum computer (AQC) was initially

proposed by Farhi et. al [62] and relies on the adiabatic theorem. It is closely related to quantum

annealing, a metaheuristic to find the ground state of a given Hamiltonian by exploiting quantum

superposition.

The basic concept of AQC goes as follows: first, a potentially non-trivial Hamiltonian is engi-

neered whose ground state describes the solution to a computationally hard problem of interest. In

the next step, a quantum system is initialized in the trivial ground state of a simpler Hamiltonian

which allows for an easy implementation. Finally, the simple Hamiltonian is adiabatically trans-

formed into the engineered one and, by the principle of the adiabatic theorem, the system stays in

the ground state during the entire evolution, hence yielding the desired solution. For visualization

of this process see figure 2.2 c).

A prominent example is the adiabatic evolution of a transverse field Hamiltonian Hz = B
∑

i σi
z,

whose ground state is a trivially polarized spin-state along the B-field axis, into a transverse Ising

Hamiltonian HIsing =
∑

i,j Jijσi
xσj

x + B
∑

i σi
z with long range coupling Jij . Such a Hamiltonian

has a highly non-trivial, entangled ground state exhibiting spin frustration in the case of antiferro-

magnetic coupling Jij < 0 [63], which can not be easily prepared. An experimental demonstration

of the adiabatic evolution has been shown by Islam et al. [64] in which they started from a Hz

Hamiltonian and slowly increased the spin-spin coupling.

An AQ-computer is often thought as a quantum device only capable of finding the solution to an

optimization problem rather than as a universal quantum computer. However, it was shown that

the AQC-model is polynomially equivalent to the circuit model and thus it is universal [65].

The AQC-model has been recently brought into the spotlight by claims of D-wave having built

the first commercially available quantum computer on the market. Although, as of now, it is not
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yet clear how much of D-wave’s devices is indeed quantum [66], it has been repeatedly shown that

it does not outperform classical computers with the best possible algorithms [67].

Topological quantum computer The topological quantum computer (TQC) is yet another in-

trinsically different concept of computation proposed by Kitaev in 1997 [68]. Compared to the

previously introduced models, TQC is the most distinct one, as the quantum information is not

stored in physically located or trapped particles but is encoded into quasiparticles, specifically

anyons [69, 70].

Anyons are quasiparticles which can only exist confined in a 3-dimensional space-time, that is

two spatial dimensions and one time dimension. In contrast to Fermions and Bosons, they do

not obey the Fermi-Dirac statistics nor the Bose-Einstein statistics; that is under the exchange of

identical anyons the global phase factor is different from φ = 0 (Bosons) and φ = π (Fermions)

|ψ1ψ2〉 = eiφ |ψ2ψ1〉 . (2.18)

Nevertheless, anyons behave in a similar way to Fermions, as two identical particles can not occupy

the same quantum state; consequently, the world lines of anyons can not cross or merge. However, it

is possible to braid the world lines in the 3 dimensional space-time and this allows for implementing

a computational circuit. In 2003 it was shown that certain non-abelian anyons can make up

a complete set of universal gates and hence can simulate any other quantum computer model

efficiently [71]. In contrast to abelian anyons, where the global phase factor changes under particle

exchange, non-abelian anyons have the additional property that their quantum state also depends

on the particle permutation. There is evidence of experimental observation of non-abelian anyons

in the 5/2-fractional quantum Hall effect [72, 73], although this is not yet completely conclusive.

The advantage advantage the TQC has over the qubit based models is that the braids are

topologically protected, as external noise does not change the topological properties of braids. This

makes the TQC-model more resilient against experimental errors and error correction might be less

of an issue. However, in certain cases, namely the case of Ising anyons that arise at the end of the

so-called Kitaev wire, the topologically protected gates are not sufficient for universal computing.

In order to perform the remaining gates, the topologically protected subspace must be left. Once

this subspace has been left, the system is subject once again to noise. From this view point, TQC

with Ising anyons might be less suitable for computation but for quantum memory.

DQC1 Deterministic quantum computation with one quantum bit is not a full scale quantum

computational model, as it is not universal and surely less powerful compared to the others, but

rather a concept broadening our understanding of quantum information and necessary quantum

resources.

Even though the model assumes only one single qubit is available for QC, or equivalently, one

pure qubit and n-arbitrary bits in a completely mixed state, it was shown that, for certain tasks,

such as spectral density estimation, it outperforms any (known) classical algorithm [33].

Despite the lack of entanglement as a resource, it was soon suggested that these states exhibit

quantum discord which delivers the necessary resources [34, 40]. It was the first model to show
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that entanglement is not the only useful source of quantum correlations, and the model is often

seen as a bridge between classical computation and the ‘standard’ quantum computers.

2.4. Quantum Simulation

For almost a century, quantum mechanics has served as one of the most fundamental theories

available. Despite its capability to explain an enormous range of phenomena, when it comes down

to actually computing a problem, very soon insurmountable limits are reached. This is due to

the exponential growth of the Hilbert space as the system size is increased. An ordinary desktop

computer might handle 20-30 particles with only two degrees of freedom (provided no clever tricks

are used) and the worldwide most powerful computer-clusters might manage a few tens more.

Compared to the number of particles in actual physics and chemistry (and even biology) problems,

where hundreds, thousands, and more is still a low number, one realizes how limited our capabilities

are.

With the onset of the quantum computational idea, Feynman soon realized that a quantum

computer shows the same exponential growth of the Hilbert space, with desirable consequences:

“Let the computer itself be built of quantum mechanical elements which obey quantum mechanical

laws” [11]. However, he was not very specific about how such a device could compute or simulate

any other quantum system, and it was more than a decade later when Lloyd [74] showed that an

universal quantum computer can efficiently solve any arbitrary Hamiltonian with local interactions

i.e. interaction strengths decaying fast enough with distance.

Over the past two decades quantum simulation (QS) has been implemented in a variety of

systems, and a vast amount of theoretical and experimental literature has been produced; a com-

prehensive list of implementations and publications (as of 2014) can be found in [75].

A common classification found in literature is to separate quantum simulations into two kinds:

analogue quantum simulations (AQS), often also referred to as emulations, and digital quantum

simulations (DQS), which are closely related to quantum computation in general.

Analogue quantum simulation The basic principle behind the AQS approach is to use a highly

controllable quantum system mimicking (emulating) another quantum system of interest, by di-

rectly mapping the system Hamiltonian Hsys onto the simulator Hamiltonian Hsim [75, 76]

Hsys ↔ Hsim. (2.19)

In fact, mapping is nothing else than finding the one-to-one correspondence of the operators in Hsys

and Hsim and equating coefficients if necessary. An example with regards to trapped ion simulators

is presented in chapter 5.

The advantage here is that parameters of Hsim are precisely controllable, such that Hsim can be

tuned into regimes which are impossible or impractical to be reached and observed in a real-world

system, Hsys. Evolving the simulator under U = e−iHsimt/~ yields the dynamics of the system to

be investigated. Despite the power of this approach, an AQS is always a special purpose device
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designed to solve one specific problem, as the mapping is obviously not universal. Moreover, the

accuracy (or fidelity) of the simulation depends strongly on the mapping, since in most instances

approximations have to be made; barely any Hamiltonian describing the simulator is identical to

a system Hamiltonian. In addition, experimental errors and noise will affect the simulation in a

manner which can not be quantified and therefore can not be corrected for (think of error correction

in QC). The question really is, as soon as quantum simulators solve classically intractable problems,

how can we trust or verify the results? A possible solution to this epistemological problem is to

perform cross-checks on different platforms, which are subject to different kinds of errors and

mapping. But finding a suitable mapping is not always trivial, sometimes clever schemes involving

additional external control fields and an ancillary system to mediate the interaction are required.

Nevertheless, even though AQS might suffer from errors diminishing the fidelity, in many instances

quantitative results are not required. For questions like, ‘will a certain parameter regime lead to a

quantum phase transition?’, a qualitative answer is still of high value and can be obtained despite

the errors.

Digital quantum simulation The time evolution of a state under a given Hamiltonian Hsys is

nothing but a unitary transformation of an initial state. As mentioned in the previous section, any

unitary operation can be decomposed into a set of universal gates, that is single-qubit and two-

qubit gates, and in principle anything can be simulated. From this perspective, a digital quantum

simulator (DQS) is nothing different from a ‘ordinary’ quantum computer, however the term DQS

is more common in the context of simulating the time dynamics of a physical system compared

to an abstract algorithm solving a purely mathematical problem. It shall be noted that not all

unitaries can be efficiently (with polynomial resources) implemented, but only those with local

character - that is, a Hamiltonian whose interactions decay quickly enough over distance.

Consider a Hamiltonian H =
∑m

j Hj written as a sum of local interactions. If the individual

terms commute [Hj , Hi] = 0 then the unitary time evolution can be written as

U(t) = e−iHt/~ = e
−i

∑m

j
Hjt/~

=
m∏

j

e−iHjt/~. (2.20)

In such a case, the decomposition into the universal set of gates is straightforward. However, this is

rarely the case as for most interesting Hamiltonians [Hj , Hi] , 0 holds. The solution to this problem

is to break up the evolution into smaller time steps U(t) = {exp (−iH∆t/~)}t/∆t. The exponent

can be approximately decomposed into local gates by the first order Trotter approximation [12]

U(∆t) = e
−i

∑m

j
Hj∆t/~

=
m∏

j

e−iHj∆t/~ + O
(

(∆t)2
)

. (2.21)

As ∆t → 0 the approximation becomes exact. Unfortunately, the drawback is that the smaller ∆t is,

the more gates have to be applied to simulate a certain time evolution U(t). Since every experimen-

tal gate has a non-vanishing amount of errors, it is always a trade-off between good approximations

and low cumulative errors. However, it is possible to find more efficient decompositions in certain

instances by taking higher order approximations into account.
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One very important advantage of the DQS-approach in comparison to AQS, is the possibility to

quantify errors and apply error correction schemes if necessary.





3. Theoretical framework

The experiments presented in this thesis are based upon the interaction between trapped ions and

laser fields. It is thus necessary to introduce the theoretical framework regarding ion trapping

and atom-light interactions. Many of the subjects discussed in this chapter, such as ion traps,

(quantum) harmonic oscillators, and matter-light interactions serve only as a short reminder to

the reader as they are treated extensively in a number of books and theses. Others, however,

will be presented in more detail, such as the vibrational modes of multi-ion strings modes and

tunable spin-spin interaction, since they present key features for the techniques used in this thesis.

Even though all derivations presented here can be found in the literature, they are scattered across

different publications and the main purpose of this chapter is to provide a coherent overview for the

reader. Furthermore, appendix B.1 will supply detailed and extended derivations of the spin-spin

interaction specifically for our experiment.

3.1. Trapped ions

In this section, the reader will be briefly reminded of the basic concepts regarding ion trapping

with radio frequency (RF) traps. Following this, the notation of the quantum harmonic oscillator

is introduced, which accurately describes the motion of the laser-cooled ion in such a trap. An

extended part of this section is dedicated to the description and derivation of collective (normal)

motional modes, which play an important role in the quantum simulation experiments described

in chapter 5.

3.1.1. Paul trap

As most of the following discussion regarding ion trapping has been treated in great detail, see

[77–79, and others], only the most important parts will be recapped. In freespace, electrostatic

potentials must obey the Laplace equation, ∇2Φ = 0, stating that the divergence of electrostatic

fields has to add up to zero. In other words, electrostatic fields have to ‘flow’ from a source to a

drain. As a consequence, a static quadrupole potential of the form:

Φ(x, y, z) =
∑

i=x,y,z

Φ0kir
2
i (3.1)

has a metastable saddle point, as one of the coefficients ki must be negative. However, by allowing

the potential to be time-varying in one or more directions, it is possible to generate a stable trapping

potential1. The potential Φ can be divided into a dynamical radial part Φrad and a static axial

1Wolfgang Paul and Hans Georg Dehmelt received the Nobel prize “for the development of the ion trap technique”.

19
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Figure 3.1.: Schematic of a linear radio frequency trap, also known as a Paul trap, shown from two
perspectives. The tips create a static quadrupole potential and confine the ions in the axial or z-direction,
and the RF-blades generate a potential confining the ions in the xy-plane often referred as the radial direction.

part Φax [79], see also figure 3.1:

Φrad(x, y, z, t) =
VRF cos (ΩRF t) + Ur

2

(

αxx2 + αyy2 + αzz2
)

(3.2)

Φax(x, y, z) =
UDC

2

(

βxx2 + βyy2 + βzz2
)

. (3.3)

Here, VRF and ΩRF are the amplitude and the frequency of the RF field, respectively, Ur is a

splitting voltage applied to the RF-blades and UDC is the voltage applied to the tips for the axial

confinement.

In order to satisfy the Laplace condition at any instant in time, the geometric factors, αi and βi,

must obey the relation
∑

i αi =
∑

i βi = 0. In a linear Paul trap, this leads to the following relations

αx = −αy, αz = 0, (3.4)

− (βx + βy) = βz > 0 . (3.5)

The motion of a trapped particle with mass m and charge Q is described by Mathieu’s differential

equation [79]. Stable solutions can be found for 0 < ai < qi < 1, with the dimensionless parameters

given by

ax,y =
4βx,yQUDC

mR2
axΩ2

RF

= −1

2
az , qx = −qy =

2αxQVRF

mR2
radΩ2

RF

, qz = 0 , (3.6)

where Rrad (Rax) corresponds to the ion-blade (ion-tip) distance. Finally, the particle’s trajectory

can be approximated by

ri(t) ≈ r̃i cos(ωit)

(

1 +
qi

2
cos (ΩRF t)

)

, (3.7)

consisting of two motions: a harmonic motion with amplitude ri and freqency ωi, called secular

motion, and an additional driven amplitude modulation, with frequency ΩRF , called micromotion.

The secular frequency is given by

ωi =
ΩRF

2

√

ai +
q2

i

2
. (3.8)
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Using equation 3.6 and 3.8 results in

ωz = ωax =

√

2βzUDCQ

mR2
ax

, ωx = ωy = ωrad =

√

(qxΩRF )2

8
− ωz

4
. (3.9)

From equation 3.9 we can directly see how the axial trapping potential influences the radial poten-

tial, i.e. increasing the axial confinement lowers the radial frequency.

The secular approximation neglects the micromotion and reinterprets the secular motion as being

generated by a harmonic potential Ψ =
∑

i
1

2Qmωir
2
i , where Ψ is often referred to as the pseudopo-

tential.

3.1.2. Quantum harmonic oscillator

The low temperatures of a trapped ion achievable by laser cooling require a quantum description of

the harmonic pseudopotential introduced in the previous section. The quantum equivalent is known

as the quantum harmonic oscillator (QHO), one of the most important model systems in quantum

mechanics, and is treated in almost every textbook regarding basic quantum mechanics [80–82].

A classical particle of mass m set in a one-dimensional harmonic potential V (xc) = 1
2mω2x2

c is

described by its position coordinate, xc, and angular oscillation frequency, ω. A convenient way to

describe the periodic oscillation of the particle is to express its motion in the complex phase space

plane spanned by the position xc and momentum coordinate pc. The particle follows a circular

trajectory centred at the origin (Fig. 3.2 a). In order to realise a quantum mechanical description,

t
2

t
1

x
c

p
c

t
2

t
1

ω

E
0

hω

E
1

E
2

a) b)

Figure 3.2.: a) A classical particle with mass m swings on a pendulum described by a harmonic potential.
The periodic oscillation can be mapped onto the phase space spanned by the position xc and momentum co-
ordinate pc. The particle’s trajectory follows a circle centred around the origin. b) The quantum mechanical
counterpart has a quantized energy with equidistant spacing En = ~ω (n + 1/2).

xc and pc are replaced by their corresponding operators x̂ and p̂ = −i~ ∂
∂x . These operators are

Hermitian and obey the following commutation relation

[x̂, p̂] = i~ . (3.10)

In analogy to the classical case, the energy of the system is described by the Hamiltonian

HQHO =
p̂2

2m
+

1

2
mx̂2ω2. (3.11)
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Instead of solving Schrödinger’s differential equation, it is more convenient to directly extract the

energy eigenvalues with the ‘creation/annihilation’ operators introduced by Paul Dirac

a =

√
mω

2~

(

x̂ +
i

mω
p̂

)

, a† =

√
mω

2~

(

x̂ − i

mω
p̂

)

. (3.12)

By rearranging equation 3.12, x̂ and p̂ can be expressed as

x̂ =

√

~

2mω

(

a† + a
)

, p̂ = i

√

~mω

2

(

a† − a
)

. (3.13)

Finally, combining Eq. 3.11 and 3.12 we get the familiar form of the QHO Hamiltonian

HQHO = ~ω

(

a†a +
1

2

)

= ~ω

(

n̂ +
1

2

)

, (3.14)

where n̂ = a†a is the number operator. The energy spectrum of this Hamiltonian has a ladder-

like structure with equidistant spacing ~ω, and a zero point energy E0 = 1
2~ω (Fig. 3.2 b). The

eigenstates |n〉 are called number states or Fock states and the following relations are valid

a |0〉 = 0, (3.15)

a |n〉 =
√

n |n − 1〉 ,

a† |n〉 =
√

n + 1 |n + 1〉 ,

n̂ |n〉 = n |n〉 .

Each Fock state can be generated by applying the creation operator n-times onto the vacuum state

|0〉

|n〉 =
1√
n

a† |n − 1〉 =
1√
n!

(

a†
)n

|0〉 . (3.16)

For a trapped ion, the spatial extent of the ground state wave function, x0 =
√

~/2mω, can range

from a few to tens of nm, depending on the choice of secular trapping frequency ω (set by the

electrode voltages). When working with the ladder operators it useful to know their commutation

relations:

[

a, a†
]

= 1 ,
[

n̂, a†
]

= a† and [n̂, a] = −a. (3.17)

Driven QHO Consider an external time-dependent force

Fd(t) = Ad sin (ωdt + φd) =
Ad

2i

[

ei(ωdt+φd) − e−i(ωdt+φd)
]

(3.18)

of amplitude Ad, frequency ωd and phase φd. When such a force is applied to a QHO, the Hamilto-

nian given in Eq. 3.14 has to be extended by an additional interaction energy Hd = −x̂Fd(t), and

the new Hamiltonian becomes H = HQHO + Hd(t). The effect of the time-dependent perturbation

caused by the oscillating force can be best seen in the interaction picture. Here, the transfor-
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mation U = exp(−iHQHOt/~) is used to rewrite the state vector ΨI(t) = UΨ(t), the observable

〈AI(t)〉 = 〈U †A(t)U〉 and the Hamiltonian

HI = U †HdU =
(

ae−iωt + a†eiωt
)

xoF (t). (3.19)

If the drive frequency is resonant with the secular frequency, ωd = ω, a rotating wave approximation

(RWA) can be applied and the Hamiltonian reduces to

HI =
Adxo

2i

(

ae−iφd + a†eiφd

)

. (3.20)

The unitary time evolution under this Hamiltonian, U = exp(−iHIt/~), can be expressed in terms

of the displacement operator

D(α) = eαa† − eα∗a (3.21)

with a dimensionless amplitude α = Adx0t
2~ e−iφd . The action of the displacement operator on the

x
c

p
c

t
1

t
2 ω

Im{α}

Re{α}

|α|

Φ
d

a) b)

Figure 3.3.: a) The effect of a resonant driving force in the classical case. The particle moves on a spiral
trajectory with ω starting from the origin at time t1, to its final position t2, steadily increasing in amplitude.
b) In the co-rotating frame, the displacement operator D(α) pushes the ground state |0〉 on a straight line
to a coherent state |α〉. The phase φd determines the angle of the trajectory.

ground state |0〉 creates a displaced coherent state |α〉 (Fig. 3.3 b)

D(α) |0〉 = |α〉 = e−|α|2/2
∑

n

αn

√
n!

|n〉 . (3.22)

The probability to find a certain Fock state pα(n) = α2n

n! e−|α|2 follows a Poisson distribution with

a mean phonon number n̄C = |α|2 and a variance σ2 = |α|2. A coherent state |α〉 is the closest

analogy to a classical state in a quantum harmonic oscillator, and it obeys the following relations

a |α〉 = α |α〉 , (3.23)

〈α| a† = α∗ 〈α| .
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In addition to Fock and coherent states, a very important class of states are thermal states. Thermal

states are completely mixed and lack any coherence. They arise by coupling the quantum harmonic

oscillator to an external thermal reservoir; in the case of trapped ions, this could be electric field

noise (see section 4.6.3). For a thermal state, the probability to find a certain Fock state with a

mean phonon number n̄ is given by a geometrical distribution

pn(n̄) =
n̄n

(n̄ + 1)n+1 (3.24)

with a variance σ2 = n̄2 − n̄. Figure 3.4 compares the distributions of a Fock state |n〉 = |10〉 (a),

a coherent state |α〉 =
∣
∣
∣

√
10

〉

(b) and a thermal state with n̄ = 10 (c).
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Figure 3.4.: The probability pn to find a fock state |n〉 is shown for three different states: a) Fock state
|n〉 = |10〉, b) Coherent state |α〉 =

∣
∣
√

10
〉

and b) Thermal state with n̄ = 10

3.1.3. Normal/collective motional modes

Up to now the simple case of a single trapped ion has been treated. However, multiple ions confined

in the same trapping potential will influence each other, due to their charged nature. This leads to

a set of 3N motional modes describing the motion of the ion string in 3 dimensions.

The section is divided into two parts: first, the equilibrium positions of N ions trapped in a

harmonic potential are calculated. Once these positions are obtained, they are used to derive the

collective or normal motional modes of motion. The discussion here will go along the lines of

[83, 84].

Equilibrium positions Consider a chain of N ions trapped in a linear Paul trap with a highly

anisotropic potential, ωrad ≫ ωax such that the ions are strongly bound in the transverse direction

and form a linear chain in the z-direction (axial). The position of the ith ion is denoted by zi(t).

Due to the Coulomb interaction between charged particles, the motion of each ion will be influenced

by its neighbours and the external trapping potential. Hence, the potential energy of the ion chain

is given by

V =
mω2

z

2

N∑

i=1

zi(t)
2 +

(Ze)2

8πε0

N∑

j,i=1
n,i

1

|zj(t) − zi(t)|
(3.25)
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where m is the ion mass, ωz is the axial trapping frequency, Z is the degree of ionization, e is the

electron charge and ε0 is the permitivity of free space. Assuming that the ions are sufficiently cold,

the position zi(t) can be approximated by

zi(t) ≈ z
(0)
i + ξi(t) (3.26)

where z
(0)
i is the equilibrium position and ξi(t) is a small displacement. After defining the length

scale l by

l3 =
(Ze)2

4πε0mω2
z

, (3.27)

the dimensionless equilibrium position can be expressed as ui = z
(0)
i /l. In order to find the equi-

librium positions the following equation has to be solved

[
∂V

∂zi

]

zi=z
(0)
i

= 0 ⇐⇒

ui −
i−1∑

j=1

1

(ui − uj)2 +
N∑

j=i+1

1

(ui − uj)2 = 0 (3.28)

where i = (1, 2 . . . N). For two and three ions the equation above can be solved analytically leading

to equilibriums positions for N = 2

u1 = −u2 = 2− 2
3 , d2 =

(

(Ze)2

2πεmω2
z

) 1
3

(3.29)

where dN denotes the minimum distance, and for N = 3

u1 = −u3 =

(
4

5

)− 1
3

, u2 = 0, d3 =

(

5 (Ze)2

2πεmω2
z

) 1
3

. (3.30)

For N > 3 ions, solutions can only be found numerically using solvers for non-linear equations.

However, the authors in [85] developed useful empirical formulas for z
(0)
i

z
(0)
i = 3.94N0.387 sin

(
1

3
sin−1

{

1.75N−0.982
[

m − N + 1

2

]})

l

≈ 2.29

(

m − N +
1

2

)

N−0.596

(

(Ze)2

4πεmω2
z

) 1
3

(3.31)

where the approximation holds for ions close to the center of the trapping potential. Using equation

3.31 the minimum ion-ion separation dN can be derived as

dN ≈ 2.29N−0.596

(

(Ze)2

4πεmω2
z

) 1
3

. (3.32)
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These formulas are especially useful as a rule of thumb estimate regarding single ion addressability

and imaging.

Normal motional modes Similar to the section above, the ions’ movement in 3 dimensions is

described by a small displacement ξ from the equilibrium position ρi,λ(t) = ρ
(0)
i,λ + ξi,λ(t), where

the subscript λ denotes the dimension x, y, z = 1, 2, 3 and i = 1, 2 . . . N is the ion index. The

Lagrangian describing the ion motion is then given by

L = T − V =
m

2

3∑

λ=1

N∑

i=1

ξ̇2
iλ − m

2

3∑

λ=1

N∑

i=1

ω2
λ

(

ρ
(0)
iλ + ξiλ

)2

− Z2e2

8πε0

N∑

i,j=1
i,j

{
3∑

λ=1

(

ρ
(0)
iλ + ξiλ(t) − ρ

(0)
jλ − ξjλ(t)

)2
}− 1

2

. (3.33)

Using a Taylor expansion2 around the equilibrium position, and neglecting constant terms as they

do not affect the dynamics, leads to

L =
m

2

3∑

λ=1

N∑

i=1

ξ̇2
i,λ − 1

2

3∑

λ=1

N∑

i,j=1

ω2
λ

∂2V

∂ρiλ∂ρjλ

∣
∣
∣
∣
∣
0

ξiλξjλ + O
[

ξ3
iλ

]

. (3.34)

In a highly anisotropic trapping potential

(
ωax

ωrad

)2

=

(

ω3

ω1,2

)2

≕ α ≪ 1, (3.35)

the Lagrangian given in Eq. 3.34, may be approximated [86] and expressed in terms of the axial

trapping frequency ωz = ω3 as

L ≈m

2





N∑

i=1

ξ̇2
i3 − ω2

3

N∑

i,j=1

Ajiξi3ξj3





+
m

2

2∑

λ=1





N∑

i=1

ξ̇2
i3 − ω2

3

N∑

i,j=1

Bjiξi3ξj3



 . (3.36)

The first term in brackets describes the movement along the axial direction and the second term

along the transverse direction. Using the dimensionless equilibrium positions ui derived in the

2Here, only the first order expansion is relevant. Higher order terms describe mode cross-coupling as described in
[86].



3.1. Trapped ions 27

previous section, the tensors Aji and Bji can be expressed in terms of the ui

Aji =







1 + 2
N∑

m=1
m,i

1

|ui − um|3
if i = j

−2

|ui − uj |3
if i , j

(3.37)

Bji =

(
1

α
+

1

2

)

δji − 1

2
Aji (3.38)

where δji is the Kronecker delta. Since the matrix Aji is real, symmetric and positive definite, its

eigenvalues µm must be positive. Thus, the eigenvectors b
(m)
i are defined by

N∑

j=1

Ajib
(m)
j = µmb

(m)
i , m = 1, 2, . . . N (3.39)

where the eigenvectors are numbered in order of increasing eigenvalue. The eigenvectors build a

complete basis and, if properly normalized, it follows that

N∑

m=1

b
(m)
j b

(m)
i = δji ,

N∑

i=1

b
(m)
i b

(n)
i = δmn. (3.40)

From equation 3.38 it is evident that the transversal modes have the same eigenvectors as the axial

modes, but different eigenvalues γm, which can be related to the axial eigenvalues by

γm =
1

2
+

1

α
− µm

2
. (3.41)

If the trap anisotropy exceeds a critical value αcrit = 2/ (µN − 1), the matrix Bji becomes a non-

positive definite, implying unstable transverse oscillations. (Note: using the definition above, the

transverse eigenvalues are in order of decreasing eigenvalues).

The normal or collective motional modes in direction λ can be expressed by the eigenvectors as

Q(λ)
m (t) =

N∑

i=1

b
(m)
i ξiλ (3.42)

and the motional frequency of the mth mode is defined by

ω(3)
m =

√
µmω3 , ω(1,2)

m =
√

γmω1,2 (3.43)

Figure 3.5 shows the mode vectors for a string of 7 ions and the axial/radial mode frequencies

for two different anisotropic parameters α ≈ 0.004 and α ≈ 0.07. The axial (radial) modes with

higher (lower) motional frequencies will be referred to as shorter spatial wavelength modes. It is

important to note that the axial and radial modes have an opposite ordering, such that the lowest

frequency mode in axial direction is the center of mass (COM) mode, whereas in radial direction

this mode has the highest frequency.
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Some useful rule of thumb relation can be given for the shorter wavelength modes in the axial

direction

ωax
2 =

√
3ωax

COM , ωax
3 ≈

√

24

5
ωax

COM , ωax
4 ≈

√

47

5
ωax

COM, (3.44)

where ωax
2 is often referred to as the stretch or breathing mode. Similarly, for the radial direction

ωrad
2 =

√
(
ωrad

COM

)2 − (ωax
COM)2 , ωrad

3 ≈
√

(
ωrad

COM

)2 − (ωax
2 )2. (3.45)

The mode ωrad
2 is also known as the tilt mode. In Eq. 3.44 and 3.45 the first two terms are exact

expressions independent of system size N , whereas the others yield useful approximations with

decreasing validity for very high N [83].

An interesting behaviour that occurs for all even modes m with odd N is that the middle ion

doesn’t participate in the motion, that is

b
(m)
center = 0 , if N = odd and m = even (3.46)

As a last remark, the Taylor expansion in 3.34 can be extended to higher order terms describing
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Figure 3.5.: a) The eigenvectors b
(m)
i in transverse direction are shown for a string of 7 ions. b) & c)

The axial mode frequencies ω
(3)
m (red) and transverse ω

(1)
m = ω

(2)
m (blue) are calculated for two anisotropic

parameters α ≈ 0.004 and α ≈ 0.07, respectively.

three-mode mixing [86] and higher order cross-coupling. This may lead to additional decoherence of

the motional degree of freedom and provides a possible explanation for the observations presented

later in this thesis, see table 8.1.
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3.2. Laser - ion interaction

This section introduces the theoretical framework of a trapped two-level atom interacting with a

coherent light field (laser). First, the interaction of the electronic degrees of freedom with a laser

is reviewed. In a second step, the same procedure is applied to the motional degrees of freedom.

These two sections are then combined to introduce and derive the Mølmer-Sørensen interaction

(MS). This interaction allows us to generate effective interactions between the internal electronic

states of ions in a string - which would otherwise not couple at all3. It also provides a tool for

entangling gates with the highest observed fidelities [16, 17, 88]. Finally, a different derivation of a

‘detuned’ MS-interaction in the adiabatic limit, which leads to tunable spin-spin interactions, will

be given.

3.2.1. Two level atom - laser interaction

A pseudo-spin (or qubit) is encoded in two long-lived4 electronic levels of the atom. The natural

Hamiltonian of these two levels is given by

HA =
~ω0

2
σz, (3.47)

where σz is the z-Pauli operator with eigenstates |↑〉 = |+〉z and |↓〉 = |−〉z split by an energy ~ω0.

A laser light field with electric field E = E0 cos (ωLt + φL), frequency ωL and phase φL induces a

perturbation described by the Hamiltonian

HL = ~Ωσx cos (ωLt + φL) , (3.48)

where the coupling strength between the two-level atomic transition and the light field is expressed

by the Rabi frequency Ω ∝ E0. Combining the bare atom and perturbation Hamiltonians into

a total Hamiltonian, Htot = HA + HL, and transforming Htot with U = exp(−iHAt/~) into the

interaction picture yields

HInt = ~
Ω

2
[cos (∆t + φL) σx + sin (∆t + φL) σy] . (3.49)

Here, ∆ = ωL − ω0 denotes the detuning of the laser frequency from the bare atomic transition.

In the rotating wave approximation (RWA) all terms rotating at the sum frequency ωL + ω0 are

neglected, as they average out over the time scale set by ∆, leading to equation 3.49. Introducing

the electronic lowering and raising operators σ± = (σx ± iσy) /2, equation 3.49 can be restated as

HInt = ~
Ω

2

[

e−i(∆t+φL)σ+ + ei(∆t+φL)σ−
]

. (3.50)

3There is a tiny dipole-dipole coupling between the internal states which is negligible in our experiments. Never-
theless, these weak couplings were experimentally demonstrated in [87].

4The states live for much longer than the time it takes to manipulate and measure them.
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A laser on resonance, ∆ = 0, induces coherent population exchange between the |↑〉 and |↓〉 states

by applying the unitary time evolution

U = exp

(

−i
HIntt

~

)

=

(

cos Ωt
2 −ieiφL sin Ωt

2

−ieiφL sin Ωt
2 cos Ωt

2

)

(3.51)

where ΩT = θ sets the polar angle on the Bloch sphere. In other words, Ωt determines the proba-

bility to find the state |↑〉/|↓〉 and φL defines the rotation axis (x, y or any other direction on the

equatorial plane).

However, if the excitation is non-resonant, ∆ , 0, the solution of the optical Bloch equations

[89, 90] reveals that the probability to find the state |↑〉

p↑ =
Ω2

Ω2 + ∆2
sin2

(
1

2

√

Ω2 + ∆2t

)

=
Ω2

Ω2
eff

sin2
(

1

2
Ωefft

)

(3.52)

oscillates at a higher frequency Ωeff =
√

Ω2 + ∆2 and is reduced in amplitude by 1/Ωeff . In the

regime of ∆ ≫ Ω, the probability p↑ is largely suppressed. Nevertheless, the present oscillating

field induces energy shifts of the atomic levels due to the ac-Stark effect. In order to see the action

of a far detuned light field, it is convenient to change the interaction picture once again. This gives

the ac-Stark Hamiltonian

HAC = ~
∆

2
σz + ~

Ω

2
σx (3.53)

with new eigenvalues λ± = ±1
2

√
Ω2 + ∆2. The upper (lower) energy level is shifted by Ω2/∆

(-Ω2/∆) giving a total ac-Stark shift of

δAC = 2
Ω2

∆
. (3.54)

From the Hamiltonian HAC it is evident that the second term becomes negligible for ∆ ≫ Ω and

the effective Hamiltonian is consequently proportional to σz. This is equivalent to a rotation around

the z-axis with an angle of rotation φ = ∆t/2.

The situation in a real atom is far more complex as there are additional energy levels which can

off-resonantly couple to the light field and induce ac-Stark shifts. This issue will be discussed in

great detail in section 4.4.2.

3.2.2. Trapped ions - laser Hamiltonian

Combining the previous sections 3.1.2 and 3.2.1 leads to the Hamiltonian describing a bare atom

trapped in a harmonic confinement

H0 = ~
ω0

2
σz + ~ωt

(

a†a +
1

2

)

(3.55)
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where ωt is the ion’s motional frequency (trapping frequency) and ω0 is the unperturbed atomic

transition frequency. The additional oscillating motion of the trapped ion leads to a frequency

modulation of ω0 which generates motional sidebands either side of the atomic transition at ω0 ±ωt.

In order to take these sidebands into account, equation 3.50 has to be modified to

HL = ~
Ω

2
(σ+ + σ−)

[

eiη(a+a†)e−i(∆t+φL) + e−iη(a+a†)ei(∆t+φL)
]

. (3.56)

The Lamb-Dicke parameter η = þk·þeαx0 = 2π
λ

√

~/2mωt cos(θk) relates the ground state expansion x0

to the wave vector þk of the driving field, where þeα is the direction of the ion’s motion in α = {x, y, z}.

As such, it scales the coupling strength of the laser field driving a motional sideband. A unitary

transformation of H = H0 + HL with U = exp(iH0t/~) results in the interaction Hamiltonian

HInt = U †HU = ~
Ω

2

{

e−i(∆t−φL)σ+ exp
[

iη
(

ae−iωtt + a†eiωtt
)]

+ h.c.
}

(3.57)

after application of the rotating wave approximation.

In the Lamb-Dicke regime, η2 (2n̄ + 1) ≪ 15, equation 3.57 can be further simplified by Taylor

expanding

exp
[

iη
(

ae−iωtt + a†eiωtt
)]

= 1 + iη
(

ae−iωtt + a†eiωtt
)

+ O
(

η2
)

(3.58)

and neglecting higher order terms O
(
η2

)
, which correspond to changes in the motional quantum

number by more than ±1. Thus, the trapped ion - laser Hamiltonian simplifies to

HInt = U †HU = ~
Ω

2

{

(e−i(∆t−φL)σ+

[

1 + iη
(

ae−iωtt + a†eiωtt
)]

+ h.c.
}

. (3.59)

In the resolved sideband regime (ωt ≫ Ω) we can identify three resonant transitions:

• ∆ = 0: The laser freqency is in resonance with the bare atomic frequency and the carrier

transition |S, n〉 ↔ |D, n〉 is driven. This can be described by the Hamiltonian

Hcar = ~
Ωn

2

(

σ+eiφL + σ−e−iφL

)

(3.60)

where Ωn = Ω(1 − η2n) takes the reduction in coupling strength, caused by population of

higher Fock states n > 0, into consideration (this is a result of taking higher orders into

account in Eq. 3.58).

• ∆ = ωt: The laser freqency is in resonance with the blue sideband driving the transition

|S, n〉 ↔ |D, n + 1〉. The effective Hamiltonian is given by:

HBSB = ~
Ωn,n+1

2

(

a†σ+eiφL − aσ−e−iφL

)

. (3.61)

The coupling strength Ωn,n+1 = η
√

n + 1Ω depends on the Lamb-Dicke parameter and the

Fock state |n〉.
5Essentially, this ensures the laser does not couple too strongly to the motional state.
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• ∆ = −ωt: The laser freqency is in resonance with the red sideband driving the transition

|S, n〉 ↔ |D, n − 1〉. The effective Hamiltonian is given by:

HRSB = ~
Ωn,n−1

2

(

aσ+eiφL − a†σ−e−iφL

)

(3.62)

and the coupling strength is Ωn,n−1 = η
√

nΩ.

These three resonances allow us to manipulate the ion’s internal and external degrees of freedom.

As we will see in the following section, this allows coupling to the electronic state of different ions

via the motional states, which act as a bus system mediating interactions.

3.3. Entangling Gates and effective spin-spin Hamiltonians

All previously established discussions regarding ion trapping, QHOs, normal modes and laser - ion

interaction will now be combined to introduce, step wise, the main tools for quantum computations

and quantum simulation. After introduction to the notion of a bichromatic laser field consisting of

two fields Bic- and Bic+ with different frequencies, this section is divided into three parts:

firstly, the bichromatic light is ‘symmetrically’ detuned from a single normal mode at ωt by ∆t

as depicted in figure 3.6 a). This will lead to the well known MS-interaction used in chapter

6. Secondly, an ‘asymmetric’ detuning, also called center-line detuning δc, will be introduced

which off-resonantly drives the MS-interaction (see Fig. 3.6 b). By treating the interaction in the

adiabatic limit, the effective transverse field Ising Hamiltonian HIsing and the XY -Hamiltonian

HXY, depending on δc, will be derived. In the last part, the bichromatic light will couple to N -

normal modes leading to tunable spin-spin interaction ranges Jij ∝ 1
|i−j|α with 0 ≤ α ≤ 3. These

three cases are depicted in figure 3.6 c).
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Figure 3.6.: This figure illustrates the interactions described in the following sections. a) The bichromatic
laser field has a ‘symmetric’ detuning ∆t from a single normal mode leading to the MS-interaction. b) By in-
troducing an additional detuning δc ≪ ∆t (known as a centre-line detuning) and treating the MS-interaction
in the adiabatic limit, the transverse field Ising Hamiltonian and the XY -Hamiltonian can be derived. c)
When N -normal modes couple to the bichromat, the spin-spin interaction range decays approximately ac-
cording to a power law with distance Jij ∝ 1

|i−j|α . The interaction range, α, is determined by ∆t and can

have values 0 ≤ α ≤ 3.

3.3.1. Bichromatic light field

A bichromatic light field is generated by superimposing two light fields with different frequencies.

We define the two fields E±(t) = E0 sin [(ω0 ± ∆t) t + φ±] as being detuned by ±∆t from a common
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Figure 3.7.: a) The two parts of a bichromat induce an amplitude modulated oscillation with carrier
frequency ω0 and envelope frequency ∆t. The motional phase φm defines the ‘start’ of the envelope and the
spin phase φs sets the basis of the spin operator σφ = 2 (σx cos(φs) + σy sin(φs)), b) The state-dependent
force pushes the two eigenstates |+〉x and |−〉x (of σx) on a circular trajectory with the same direction of
rotation. Due to this, they pick up a geometric phase Φ with same sign.

frequency ω0. Then, the superposition E(t) = E+ + E− = 2E0 cos (ω0t + φs) cos (∆tt + φm) is an

amplitude modulated oscillation with carrier frequency ω0, an envelope frequency ∆t and two

phases φm = φ++φ−+π
2 and φs = φ+−φ−

2 , as depicted in figure 3.7 a). The spectral power density

of such a bichromatic light field consists of two spectral peaks, Bic+ and Bic-, which are detuned

by ∆t from the motional sideband (see Fig. 3.6).

By setting ∆ = ωt±∆t in equation 3.59 and matching Ωn,n+1 = Ωn,n−1, we derive the bichromatic

Hamiltonian

HBic = H+
Int + H−

Int = ~
ηΩ

2

(

σ+eiφs + σ−e−iφs

) (

aei∆tteiφm + a†e−i∆tte−iφm

)

. (3.63)

The phases φ+ and φ− are independent and thus we can set φm = φs = 0. This simplifies

equation 3.63 to

HBic = ~ηΩσx

(

aei∆tt + a†e−i∆tt
)

. (3.64)

The action of the bichromatic Hamiltonian can be understood in terms of an off-resonantly driven

harmonic oscillator. Instead of linearly displacing the wave function in phase space, such as for a

resonant drive, the atomic wave function performs circular motions under the off-resonant bichro-

matic driving. The wave function periodically overlaps with its origin at times t = 2π/|∆t| and the

‘initial’ trajectory is defined by the motional phase φm, see Fig. 3.7 b).

In contrast to a classical oscillator, in the quantum regime a closed path adds an additional

phase Φ to the wave function. This phase is also known as the geometrical or Berry phase and is

proportional to the enclosed area. The spin operators in equation 3.63 and 3.64 cause the driving

force to be spin-dependent, i.e. it is conditional on the internal state. This becomes particularly

interesting when the bichromatic light acts on more than a single ion, as will be discussed in the

upcoming sections. By adjusting the phase φs one can change the basis of the spin operators by

using the relation

σ+eiφs + σ−e−iφs = 2 (σx cos (φs) + σy sin (φs)) ≕ σφ. (3.65)
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Figure 3.8.: a) Scheme of Mølmer-Sørensen interaction. The states |↑↑〉 ↔ |↓↓〉 are coupled via constructive
interference of the four possible paths created by the bichromatic light. The transient states |n + 1〉 and
|n − 1〉 are only virtually populated and the spin-motion gets disentangled after t = 2π/|∆t|. Similarly
the states |↑↓〉 ↔ |↓↑〉 can be constructively interfered. b) The electronic eigenstates |++〉x and |−−〉x

experience the same state-dependent force pushing them into a circular trajectory in phase space. After
enclosing an area ∝ (ηΩ/∆m)2, these states pick up a geometrical phase Φ (up to a global phase).

It is worth mentioning that the bichromatic light can also be applied resonantly to the motional

mode of a single ion creating macroscopically superposed states also known as cat states [91, 92].

Indeed, I was part of the research project during the time of my thesis which exploited such states

to enhance spectroscopy at the single atom/photon level [92].

3.3.2. Mølmer - Sørensen interaction

The common motion of trapped ions can be used to entangle the ions with high fidelity [16, 17, 88]

by applying the techniques independently proposed by A. Sørensen & K. Mølmer [93, 94], and E.

Solano et al.[95]. In contrast to the ideas of Cirac and Zoller [13] the MS-interaction is insensitive

(to first order) to phonon state preparation [96] and does not require single-ion control with a laser

beam.

Here, I will briefly summarize the derivation published in [97, 98] for the simple case of two

ions coupled via a bichromatic light field to the COM mode. The MS-interaction induces cor-

related spin flips between the states |↑↑〉 ↔ |↓↓〉 and |↑↓〉 ↔ |↓↑〉 by constructively interfering

the paths generated by the bichromatic light as shown in figure 3.8 a). The interaction is de-

scribed by an effective spin-spin Hamiltonian H ∝ σx ⊗ σx, where the unitary time evolution

U(t = π
4 ) = UMS = exp

(
iπ

4 σx ⊗ σx
)

creates fully entangled states6.

We start with the Hamiltonian given in Eq. 3.64, applying it to two ions, and one of their shared

COM vibrational modes

HMS = ~ηΩ
(

aei∆tt + a†e−i∆tt
) (

σ(1)
x + σ(2)

x

)

. (3.66)

The Hamiltonian given above is exactly integrable leading to the unitary time evolution

UMS(t) = D̂ (α(t)Sx) exp
(

iΦ(t)S2
x

)

(3.67)

6When applied to the initial states |↑↑〉, |↑↓〉, |↓↑〉 or |↓↓〉.
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with the spin operator Sx = σ
(1)
x +σ

(2)
x , a displacement operator D̂(α) = eαa†−α∗a with time depen-

dent amplitude α(t) = ηΩ
∆t

(

ei∆tt − 1
)

and a time-dependent phase Φ(t) =
(

ηΩ
∆t

)2
(∆tt − sin(∆tt)).

After a time τgate = 2π/∆t, the displacement operator becomes zero and the wavefunction closes

a full circle in phase space, overlapping with its origin. At this point in time, the spin and motion

are always factorisable or separable, independent of the initial state. However, the wavefunction

picks up a phase

Φ (τgate) = 2π

(
ηΩ

∆t

)2

≕ 2πJ. (3.68)

The propagator given in Eq. 3.67 can be then reduced to U(τgate) = exp
(
iJS2

x

)
and we get an

effective Hamiltonian

Heff = −~Jσx ⊗ σx. (3.69)

Here, we neglected constant terms in the time evolution which only lead to an off-set energy

(global phase). Setting the Rabi frequency to Ω = |∆t|/(4η) creates a maximally entangled state

at interaction time τgate. The derivation can be easily extended to N > 2 ions by redefining the

spin operator SN
x =

∑N
i σi

x
7.

An MS-gate acting on an N ion product state creates GHZ-type states |ΨGHZ〉 = (|↓〉⊗N +

|↑〉⊗N )/
√

2 [21]. In order to achieve other entangled states such as W-states or cluster states,

additional pulses, including single spin rotation and ‘hiding’ pulses, have to be applied - for more

details see chapter 6.

An intuitive approach to the MS-interaction is given in figure 3.8 b). The electronic ground

state |↓〉z can be rewritten in the basis of σx by |↓〉 = (|+〉x + |−〉x) /
√

2. A bichromatic laser

field coupling to the COM mode induces a spin-dependent force, which is only capable of moving

the states |++〉x and |−−〉x. These states pick up a phase Φ, whereas |+−〉x and |−+〉x remain

stationary8 – this is equivalent to a conditional phase gate, which is capable of entangling pairs of

qubits.

3.3.3. Adiabatic elimination and effective transverse field Ising Hamiltonian

Here, I will discuss the case when an additional ‘asymmetric’ detuning δc, called centerline detuning,

is added to the bichromatic light: ωt ± ∆t + δc, with ∆t ≫ δc (see figure 3.6 b)). Similar to the

previous sections, the new Hamiltonian is derived by summing Eq. 3.61 and 3.62 and replacing

∆ = ωt ± ∆t + δc. After applying the rotating wave approximation one finds

HasymBic = ~
ηΩ

2

(

aei∆tt + a†e−i∆tt
) (

S+e−iδct + S−eiδct
)

, (3.70)

7The Hamiltonian contains all spin-spin interactions of all ion pairs. In addition, as the COM-mode is used, all
pairs interact with equal strength, regardless of their physical separation distance in the string.

8Since the net force on these states cancels to zero for the COM mode (note that the exact opposite is true if the
stretch mode is used).
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where S± =
∑N

i σ±
i are the collective operators acting on N ions. The phases φm and φs are set to

zero for simplicity. In order to calculate the time evolution of 3.70 the Magnus expansion is applied

U(t) = T

[

e−i
∫ t

a
dt1H(t1)/~

]

= e−(Ω1+Ω2+Ω3... ) (3.71)

where Ω1(t) = i
~

∫ t
0 dt1H(t1) and Ω2(t) = 1

2~2

∫ t
0 dt1

∫ t1
0 dt2 [H(t1), H(t2)] (a detailed derivation is

given appendix B.1).

A key point in the following discussion is that ηΩ ≪ ∆t - i.e. the resonant coupling strength

on the sideband is much weaker than the detuning from the sideband. In this adiabatic limit or

weak coupling regime, terms rotating at exp{i(∆t ± δc)t} average out in the integral 3.71 and can

therefore be neglected. More intuitively, the circular trajectory in phase space is small enough such

that the wavefunction maintains a high overlap with its original state at all times in the dynamics.

As a direct consequence, the spin motion gets only virtually entangled and the system can be

described by an effective pure spin-spin Hamiltonian at all times in the dynamics, and not only at

τgate as in the MS-interaction. Moreover, time-independent terms in Ω1(t) and Ω2(t) give rise only

to a global phase which can be neglected. After Taylor expanding the remaining terms in Ω2(t)

with respect to δc/∆t and taking the time derivative, the final Hamiltonian can be written as

Hspin−spin =
J

2

N∑

i,j

(

σ+
i σ+

j e−2iδct + σ+
i σ−

j + σ−
i σ+

j + σ−
i σ−

j e2iδct
)

(3.72)

with the effective spin-spin coupling J = Ωη
∆t

. There are three regimes which can be identified:

• δc = 0: This is the simplest case, leading to the same Hamiltonian as in the MS-interaction

HXX =
J

2

N∑

i,j

(

σ+
i σ+

j + σ+
i σ−

j + σ−
i σ−

j + σ−
i σ+

j

)

(3.73)

=
J

2

N∑

i,j

σx
i σx

j .

• δc ≫ J: By applying the RWA on the terms oscillating at e±2iδct the XY -Hamiltonian is

derived:

HXY =
J

2

N∑

i,j

(

σ+
i σ−

j + σ−
i σ−

j

)

. (3.74)

• δc ≈ J: The Hamiltonian 3.72 can be brought into a time-independent form by rewriting it

as Hspin−spin = (Hspin−spin − H0) + H0 and moving to an interaction picture with respect to

H0 = − δc
2

∑

i σz
i

HIsing = U †
0 (Hspin−spin − H0) U0 (3.75)

=
J

2

N∑

i,j

σx
i σx

j + B
∑

i

σz
i .
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Here, the relation ei α
2

σz
σ± ei α

2
σz

= eiασ± was used for the transformation and H0 was chosen

in order to make HIsing time-independent.

The additional parameter δc allows us to tune the interaction into regimes with different effective

Hamiltonians. It corresponds to an effective transverse B-field B = δc
2 .

3.3.4. Tunable interaction range

So far, only the case where the bichromatic light couples to the COM-mode was considered, such

that all ions move with the same amplitude and phase, reflected as a single Lamb-Dicke parameter

η which is equal for all ions in the string. However, all other modes have a mode structure different

from the COM mode resulting in a non-uniform ηi, as described in section 3.1.3. If the bichromatic

beam couples to these modes, their structure will be ‘imprinted’ onto the spin-spin coupling matrix

Jm
ij .

Figure 3.9 shows two different examples of the imprinted Jm
ij for each individual mode m and

their cumulative sum weighted by the detuning ∆m. The coupling matrix Jij approximately follows

a power law decay with spin-spin distance |i − j| [99–102],

Jij ∝ 1

|i − j|α . (3.76)

By changing ∆t, the relative contribution of each mode is modified, which leads to a modification

of the interaction range α. In the limit of coupling only to the COM mode, an infinite range

interaction with α = 0 is achieved. However, if all modes are degenerate, such as is the case for

free particles, the interaction ranges becomes dipolar with α = 39.

Exactly as in the previous section, the Hamiltonian is derived by summing Eq. 3.61 and 3.61.

However, the contributions of additional modes are now included, leading to

HBic =
~

2

N∑

i

2N∑

m

ηi,mΩi

(

amei∆tt + a†
me−i∆mt

) (

σ+
i e−iδct + σ−

j eiδct
)

(3.77)

where ∆m = ∆t + (ωt − ωm). Applying the same steps as in the previous section results in an

effective spin-spin Hamiltonian (Eq. 3.72) with coupling matrix

Jij =
ΩiΩj

2

2N∑

i,j

ηi,mηj,m

∆t + (ωt − ωm)
(3.78)

where the Lamb-Dicke paramater of ion i and mode m is given by

ηi,m =
2π

λ
bi,m

√

~/2mωt cos(θk). (3.79)

9The two limits, α = 3 and α = 0, are extreme cases which are difficult, if not impossible, to achieve in the lab.
For example, to achieve α = 3 the detuning has to be so large that the overall coupling strength will decrease
to zero. Conversely, α = 0 would require the laser frequency to be extremely close to a vibrational mode, and
hence violating the adiabatic condition. A possible solution to implement α = 0 might be to use the axial modes
instead of the radial modes.
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Figure 3.9.: Top row The normalized Jm
ij correlation matrix induced by mode m of a seven ion string.

The trapping frequencies are ωax = 220 kHz, ωx = 2.71 MHz and ωy = 2.68 MHz and the laser is aligned to
couple equally to the two radial directions. Middle row The cumulative sum of Jm

ij weighted by ∆m. The
detuning from the highest mode is ∆t = 10 kHz. This gives an interaction range with α ≈ 0. Bottom row
Identical to the middle row„ however, the detuning from the highest (COM) mode is set to ∆t = 150 kHz
yielding an interaction range α > 2.

Here, the mode eigenvector is represented by bi,m and θk is the angle between the þk-vector10 and the

principal axis of the motional modes. Note that for these tunable spin-spin interactions we consider

only the radial modes due to their closely spaced dispersion relation. Hence, the summation in Eq.

3.78 runs over 2N , since there are 2N transversal modes overlapping with þk.

A more elaborate analysis of the spatial decay of Jij [103] reveals that the decay is not a pure

power law, but closer to a weighted sum of an exponential and a dipolar decay

Jij ∝ Jexpe−|i−j|/ξ +
Jdip

|i − j|3 (3.80)

where the scaling constant ξ and the weights Jexp and Jdip are non-trivial functions of the trapping

frequency ωt and the overall detuning ∆t. However, the authors made a crucial approximation by

treating the ion-ion separation as equidistant, which is clearly not the case for an harmonic trap.

10Note that for a optical transition such as it is the case in this thesis, the þk-vector is in the propagation direction
of the laser field and a single photon sufficient to excite the transition. In the case of Raman transitions, the
þk-vector results from the difference between the two Raman beams and the transition is a two-photon process.
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ion strings

A key topic in this thesis is the coherent manipulation of long strings of ions (with up to 15 ions)1.

In contrast to experiments with either one single ion, or only a few ions, additional experimental

challenges arise when multiple ions (N & 10) are considered, such as the spatial extent or cooling

of many motional modes, to name but a few. This chapter presents techniques for coherently con-

trolling long chains of ions and is divided into four main parts. The first section provides a general

overview of the 40Ca+-qubit and introduces our experimental setup. In the second section, key

experimental challenges and techniques are specifically discussed with regards to multiple trapped

ions. The third section deals with spatially dependent light shifts induced by the entangling beam

and methods for compensating them. The fourth section is dedicated to the radial modes, specif-

ically the mode frequency stabilization and ground state cooling, due to their importance for our

quantum toolbox regarding quantum simulations.

4.1. 40
Ca

+ as a qubit/pseudospin

The following section is a short summary of the 40Ca+-qubit/pseudospin2. Further details can be

found in [104–107]. 40Ca is an alkaline-earth isotope with zero nuclear spin, which for this reason

has no hyperfine structure. In our setup, neutral calcium atoms are evaporated from a calcium

filled steel tube resistively heated by currents of 2.7 − 3A. The thermal atoms are ionized via

an isotope-selective two-step photoionization process [108, 109]. Another loading technique, laser

ablation [110, 111], has been implemented in a neighbouring experiment [112, 113].

The singly charged 40Ca-ion has a simple hydrogen-like electronic energy structure, shown in

figure 4.1. The life times τ , the transition wavelengths λ and the corresponding branching ratios

are taken from [83, 114–117]. In our experiment, a magnetic field of around B ≈ 4.1 G is used to

lift the degeneracy of the ‘S’ and ‘D’ Zeeman sublevels in order to define a quantization axis of the

system. For this field strength, the splittings are ∆S1/2
≈ 11.5 MHz and ∆D5/2

≈ 6.9 MHz. The

qubit is encoded in two Zeeman levels of the |S1/2, mj〉↔ |D5/2, m′
j〉 transition. Given the selection

rules for this quadrupole transition, here are a total of 2×5 possibilities to encode a qubit, see figure

4.1 b). The most relevant encodings used in this theses are |1〉 = |↓〉 =|S1/2, mj = 1/2〉 ↔ |0〉 =

1At the time of writing this thesis, we perform experiments with 20 ions
2The two terms are equivalent, but ‘qubit’ is more common in the context of quantum computation and ‘pseudospin’

is used in quantum simulations.

39
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Figure 4.1.: a) A schematic level scheme showing the relevant levels and transition wavelengths of 40Ca+

with regards to the experiments in this thesis. The fast cycling S1/2 ↔ P1/2 transition serves for Doppler
cooling, optical pumping and state detection. Light at 854 nm and 866 nm pumps out the metastable D-
states. The qubit itself is encoded in two Zeeman sublevels of the S1/2 ↔D5/2 transition and is manipulated
with 729 nm light. b) A magnetic field of a few Gauss lifts the degeneracy of Zeeman manifolds and
defines the quantization axis, giving 2 × 5 possibilities to encode the qubit. In our setup, the qubit state
|1〉 is encoded in |S1/2, mj = 1/2〉, and |0〉 in |D5/2, mj = 3/2〉 or |D5/2, mj = 5/2〉, although any of the
m′

j = [−3/2, . . . , 5/2] can be used. The Clebsch-Gordan coefficients are given for the relevant transitions.

|↑〉 =|D5/2, mj = 3/2〉 and |1〉 = |↓〉 =|S1/2, mj = 1/2〉 ↔ |0〉 = |↑〉 =|D5/2, mj = 5/2〉3.

Detection of the qubit state is done by means of electron shelving [118]. Here, 397 nm laser light

is shone onto the S1/2 ↔ P1/2 transition. If the valence electron is in the S1/2-state, photons are

scattered and collected with a photonmultiplier tube (PMT) and/or a CCD camera, whereas if

the D5/2-state is occupied, no photons are scattered. The binary information bright or dark (|1〉
or |0〉) is interpreted as a projective measurement of the quantum state onto σi

z of each individual

qubit/pseudospin. A thorough analysis of state discrimination and PMT/CCD performances can

be found in C. Hempel’s thesis [119].

Further, Doppler cooling of the ions and optical pumping into the S1/2-state are realized on the

fast-cycling S1/2 ↔ P1/2 transition with the help of 866 nm light for repumping. Additionally, an

854 nm laser is used to quench the metastable D5/2 state in the process of sideband cooling [14, 120,

and section 4.6.3], 729 nm-optical pumping [119, and references therein] and state re-initialization.

4.2. Setup - Overview

The ion trap, vacuum setup and laser system used in this theses are described by my predecessors

in great detail [98, 119, 121, 122]. Here I will give a condensed overview of the current setup to

establish a common terminology and describe new extensions of the setup, which haven’t yet been

described.

The ion trap is a macroscopic linear Paul trap with a blade design based on [23], including modifi-

cations such as a reduced blade-to-blade distance (1.13 mm) and tip electrodes (4.5 mm separation)

3The |D5/2, mj = 3/2〉-level has the advantage of longer coherence times as it is less prone to B-field noise compared
to the |D5/2, mj = 5/2〉-state. However, the |D5/2, mj = 5/2〉-state is a so called stretched state which can be
directly used for sideband cooling as described in section 4.6.3.
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with bore holes (d = 0.5 mm) for direct optical access along the ion string, Fig. 4.2 a). A detailed

trap simulation and characterization is provided in [119]. The operational trapping frequencies

used in this thesis span a wide range depending on the experimental requirements, as discussed in

the appropriate chapters: ωz = ωax ≈ 2π × 0.2 − 1.2 MHz and ωx,y = ωrad ≈ 2π × 1.5 − 3.8 MHz,

where the degeneracy of radial modes can be split by applying a DC-offset to the ground blades

giving ∆split ≈ 2π × 0 − 500 kHz.

Figure 4.2.: Figures taken from C. Hempel’s Thesis [119] and slightly modified. a) A picture and a schematic
drawing of the linear Paul trap showing (A) RF blades and (D) ground blades, (B) tip electrodes and (C)
compensation electrodes. b) Two schematic drawings from top (left) and side (right) view showing the
vacuum vessel with the trap in the middle and the different laser and imaging directions.

Figure 4.2 b) illustrates the optical access points of the vacuum vessel and describes the different

beam paths. The ‘tip’ beam illuminates the ions along the crystal axis allowing for a homogeneous

intensity distribution across the ion string (Rayleigh length zr ≈ 8 mm, beam waist w0 ≈ 43 µm)

and exclusively coupling to the axial motional modes. Due to selection rules only ∆m = 1 tran-

sitions can be driven [123] by the ‘tip’ beam. Since the current sideband cooling scheme requires

the stretched state |D5/2, mj = 5/2〉 for closed cycling [119], this beam cannot be used for ground
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state cooling 4.

The ‘horizontal’ beam is perpendicular with respect to the string of ions, and thus its overlap with

the radial modes is maximal. Therefore, it is used for experiments with variable range spin-spin

couplings see chapters 3.3.3 & 5. According to the quadrupole selection rules, ∆m = 1 or ∆m = 2

transitions provide the largest coupling strength when the appropriate polarization is chosen, see

section 4.5.1 for more details. The major challenge here is the Gaussian intensity distribution

leading to spatially inhomogeneous Rabi frequencies Ωi across the linear ion string. A way around

this is to perform beam shaping, see section 4.4.1.

The ‘addressed’ port is used for single ion addressing by tightly focussing the laser beam close

to the diffraction limit with a beam diameter of d0 < 2 µm. An acousto-optical deflector (AOD)5

is used to steer the beam across the ion string. A detailed description of the single-ion addressing

setup and its characterization is given in the thesis of C. Hempel [119, Chapter 3.5].

The ‘vertical’ beam is an all-purpose beam. It is the only beam able to drive all ∆m transitions

and overlaps with both the axial and the radial modes, allowing for sideband cooling of all motional

modes. However, its rather large beam diameter (300 µm) results in lower coupling strengths

compared to the other beams6.

The setup, as described in the thesis of Hempel, has since been extended in several ways that

will be now described. In summary, a tapered amplifier (TA) and a fiber AOM (FAOM), both for

729 nm were installed to enhance power and performance, as described in the following paragraphs.

Furthermore, a stabilizing circuit for the RF voltage across the blades was installed, this is described

later in section 4.6.2.

Tapered amplifier The tapered amplifier (TA)7 is used to feed the horizontal beam path, as shown

in figure 4.3 a). The TA provides sufficient laser intensity for the driven spin-spin interactions, as

some of the 729 nm light from the TiSa is shared with Lab2 and used for a beat measurement with

the university lab. Since our pulse box contains only two direct digital synthesizers (DDS), one

(DDS1) driving the double-pass AOM 1 (DP AOM 1) and the other (DDS2) driving the addressing

AOD, the only means to drive the DP AOM 2 of the TA path is to split the RF of DDS1. Because

of this, DP AOM 1 & 2 are switched simultaneously. Note that even though the fiber AOM is

turned off when other ports are used, some light is scattered into the fiber, with a suppression of

−47 dB. For most purposes the suppression is strong enough, however for precision spectroscopy,

the scattered light (≈ 500 nW) is enough to cause ac-Stark shifts of several Hz. Figures 4.3 b) &

c) show the measured performance curves of the TA as a function of drive current and seed power,

respectively. It is important that Imax
drive = 1.050 A and P max

seed = 39 mW are not exceeded. Further,

the TA should not be running without being seeded nor should it be seeded without any applied

current, as the amplifier might degrade. In order to perform high fidelity gates it is crucial that

4However, one could implement a bichromatic cooling scheme, where one frequency drives the red sideband transition
for cooling and the other repumps populations trapped in the |S1/2, mj = −1/2〉 state back to the cooling
transition.

5Gooch & Housego: 45070-5-6.5DEG-633
6Tight focusing typically requires regular maintenance and here we wanted a beam which is always aligned, for

instance to measure the clock transitions, for more information on locking the clock see [119, Chapter 4.8.1].
7Toptica Photonics, BoosTA pro, S/N:07011, Imax = 1050 mA, Tset = 20.0 ◦C. NEVER exceed 39 mW injection

power!
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the TA does not introduce additional phase noise to the laser light. A meaningful way to check

this is to measure the coherence decay [124] with a Ramsey type experiment [125] and to compare

it with the coherence decay using laser light directly from the Ti:Sa, without TA amplification.

Figure 4.3 d) shows such a side-by-side comparison, without any significant difference. With a

more elaborate spin echo sequence, one could use the ion as a spectrum analyser to determine the

spectral noise density in a certain range, as shown by [126, 127].
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Figure 4.3.: a) An overview of the current setup of the 729nm ‘qubit’ laser optical path with the additional
TA path. b) The TA output power is measured as a function of the drive current when seeded with 30 mW
(red) and without seed (blue), n.b. the latter leads only to fluorescence light. Do not exceed Imax = 1.05 A
c) The TA output power is measured dependent on the seed power. d) The coherence on the 1/2 ↔ 3/2
transition is measured and compared between the ‘horizontal’ port (red, TA path) and the ‘vertical’ port
(transparent blue), showing no difference between the TA path and the ‘old’ path. Error bars are calculated
from the covariance matrix of the fit.

Fiber AOM In order to drive a Mølmer-Sørensen type interaction, either for entangling gates

or tunable spin-spin couplings, a bichromatic light field with relative phase stability needs to be

applied. A successful way to achieve this is to drive an AOM with two frequencies f1 & f2 simulta-

neously and couple the light into a single mode fiber. This generates two light fields with the same

spatial mode and a relative phase which is determined by the phases of the two RF frequencies.

However, the two light fields generated by f1 & f2 have two different Bragg angles and are therefore

spatially separated. In order to couple both fields into a single mode fiber, the fiber mode is set to

have an equal overlap with both light fields such that their intensities are equal. As a consequence
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neither light field couples with maximum efficiency. This issue becomes more pronounced when

∆ = f1 − f2 becomes larger, as the diffraction angle difference increases correspondingly. Due to

the larger misalignment the coupling efficiency decreases and intensity fluctuations increase. To

a) b) c)

Figure 4.4.: a) The relative efficiency of the fiber AOM (FAOM) is measured as a function of the input
RF power with a peak efficiency at 27.86 dB = 610 mW measured at the center frequency fc = 80 MHz. The
maximum power of 30 dB = 1 W should not be exceeded. b) Efficiency measured as a function of the applied
RF frequency. c) A comparison between the FAOM and the tip AOM (free space and then coupled into a
single mode fiber) bichromatic efficiency when the frequency of the bichromat is changed.

overcome these problems we use a fiber AOM (FAOM)8 where input/output fibers are as close as

possible to the AOM crystal, thereby minimizing the spatial mode separation. Figures 4.4 a) &

b) show the efficiency of the FAOM as a function of the RF power and the frequency applied. A

comparison between the fiber AOM and the AOM of the ‘tip’ port is given in Fig. 4.4 c). At

frequencies relevant for our experiments (f1 = 2.75 kHz = −f2) the FAOM efficiency is > 90%

whereas the efficiency in the tip setup drops to only 50%.

However, there is a major drawback of the FAOM: due to manufacturing it is not possible to

align the two PM-fibers perfectly with respect to each other. This reduces the overall polarization

extinction ratio (PER) from > 30 dB for a single PM-fiber to < 20 dB for the total system. Since

the qubit transitions are polarization sensitive, the low PER will cause polarization fluctuations

which are perceived as variations in coupling. To circumvent this issue, we simply removed the

input fiber restoring a PER of 30 dB. Unfortunately, the coupling into the FAOM is now prone to

beam pointing instabilities9, which induce common mode (both light fields) and relative (between

the two light fields) fluctuations. Common mode fluctuations are less severe as only the overall

Rabi coupling changes. When the relative intensities vary, however, additional ac-Stark shifts will

corrupt the time dynamics and lead to decoherence.

In order to characterize intensity fluctuations due to fluctuations of coupling into the output

fiber, the light power is recorded for 2 min10 at the output of the output fiber, and the fluctuations

are given as one standard deviation normalized by the mean value. Table 4.1 compares fluctuations

for different settings: optimal coupling into a fiber for a single light field (‘Carrier’) driven at the

center frequency of the FAOM/tip AOM, balanced coupling into output fiber for a bichromatic

light field (‘Bic’) and single light fields of the bichromatic beam (‘Bic±’) coupled as in the case of

‘Bic’.

8Gooch & Housego: MM080-1C2V14-5-F2SH-B, (fc = 80 MHz, P max
RF = 30 dBm = 1 W, trise < 50 ns)

9Beam pointing here refers to spatial changes in the laser beam path, for instance caused by temperature changes
in the lab.

10Measured with Newport power meter: 1918-C, head: 918-UV-OD3, S/N 10676.
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1.2 MHz 2.7 MHz
Carrier Bic Bic− Bic+ Bic Bic− Bic+

FAOM 0.32% 0.26% 0.3% 0.32% 0,27% 0,36% 0,41%
Tip AOM 0.11% 0.1% 0.72% 0.5% 0,15% 0,78% 0,79%

Table 4.1.: A comparison of the intensity fluctuations between the FAOM and the AOM setup for different
settings at the end of the output fiber. ‘Carrier’ corresponds to driving the FAOM/AOM at the center
frequency and light mode is optimally aligned with the fiber mode. ‘Bic’ represents the case of a bichromatic
light field driven at two frequencies, 1.2 MHz and 2.7 MHz, respectively, where both light modes are equally
coupled into the output fiber. ‘Bic-’ and ‘Bic+’ are the single frequency components of the ‘Bic’, where the
coupling into the fiber is set as in the case of ‘Bic’, however, the RF-drives of ‘Bic+’ (‘Bic-’) is turned off. The
light power is recorded for 2 min and the fluctuations are expressed as one standard deviation normalized
by the mean value.

The table suggests that the overall fluctuations are bigger in the FAOM. The periscope in this path

induces larger beam pointing fluctuations and additional telescope lenses enlarge these effects. On

the other hand, the fluctuations for a single light field, ‘Bic±’, show that the relative variations are

smaller in the FAOM due to better mode overlap between fiber and laser light. In conclusion there

is some room to improve the FAOM path by getting rid of the periscope and shortening the laser

path lengths. Further, the relative fluctuations in the tip AOM could be improved by reducing the

spot size and thus reducing the number of resolvable spots [119].

An alternative approach would be to use imaging such as 2f − 2f , where the point of divergence

in the AOM crystal is mapped onto the core of a light collection fiber. However, a quick test setup

did not show significant improvements and might need more careful investigations.

4.3. Experimental techniques for long ion strings

The focus of this sections is on the main challenges and issues when trapping and coherently

manipulating long strings of ions in our linear Paul trap.

Linear and zig-zag configuration When trapped ions are sufficiently cold, they will form a Wigner

crystal [128], a remarkable example of self-organized matter. The driving force behind this self-

organization is the interplay between the Coulomb repulsion and the confining trap potential: at

the equilibrium position of the ions these two forces are balanced. In a linear Paul trap with

highly anisotropic trapping potentials, i.e. ωax/ωrad ≪ 1, the ions condense into a one-dimensional

Coulomb crystal at sufficiently low temperatures. Figure 4.5 a) shows such a Coulomb crystal with

30 ions confined in our trap. However, at β = (ωax/ωrad)2 ≈ βcrit, the crystal will undergo a second

order phase transition [129, 130] into a zig-zag configuration (Fig. 4.5 b)). The value of βcrit depends

on the number of ions N . Several theoretical (Schiffer [129]) and theoretical/experimental (Enzer

et. al [131]) analyses reveal a power law scaling with the number of ions βcrit(N) = cN−γ , where

c and γ are constants. While Schiffer and Enzer base their findings on the analysis of the radial

mode spectrum, Dubin [132] follows a different approach by analysing the equilibrium crystalline

configuration, which reveals a different scaling βcrit(N) = c1N−2 ∗ (ln (c2N) + 1). Nevertheless,

Dubin’s scaling matches the power law scaling extremely well for N > 4, as shown in figure 4.5 c).

The interpretation of this phase transition can be given as follows: when β → βcrit(N) the frequency
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of the lowest radial mode ωlowest
rad → 0, beyond this point the radial oscillations become unstable

and so does the linear configuration of the string, for more details see sections 3.1.3 and 4.6.

Recently, the linear to zig-zag phase transition has received much theoretical and experimental

attention. Theoretical studies suggest that the phase transition is driven by quantum fluctuations

at zero temperature, thus being a quantum phase transition [133, 134]. Furthermore, the formation

of defects has been linked to the Kibble-Zurek mechanism [135, 136] and extensively studied both

theoretically [137–139] and experimentally [140–143].
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Figure 4.5.: a) A linear Coulomb crystal of 30 trapped ions, with ωrad = 2π × 3.5 MHz and ωax =
2π × 0.249 MHz. b) The axial confinement is squeezed to ωax = 2π × 0.279 MHz and the ion crystal
undergoes a phase transition into the zig-zag configuration. c) A comparison between the different scaling
laws of βcrit(N) = cNγ , with c = 2.53, 3.23, 2.94 and γ = −1.73, −1.83, −1.8 for Schiffer, Enzer (exp.) resp.
Enzer (theor.). Dubin has a different approach, where βcrit(N) = c1N−2 ∗ (ln (c2N) + 1), with c1 = 1.14
and c2 = 2.22. For N > 4 all four scaling laws match closely and the values for 30 ions are in very good
agreement with our observation, βcrit(30) ≈ 0.0065.

Despite all the interesting physics behind the zig-zag phase transition, the experiments presented

in this thesis were all carried out in a regime where the ion string has a stable, one-dimensional

configuration for the following reasons:

(1) The micromotion cannot be compensated, at least not for the ions being pushed out of the

string axis.

(2) There exist different zig-zag configurations, ‘zig-zag-zig’, ‘zag-zig-zag’, kinked, doubly kinked,

with defects etc. [143] making it difficult to repeatably address single ions, as collisions with back-

ground gas can cause transitions from one configuration to another.

(3) Beyond the phase transition, the ion crystal loses its one-dimensionality and the vibrational

modes cannot be treated as decoupled11, such as in section 3.1.3.

Depending on the number of trapped ions and the experimental procedure, the trapping frequency

can significantly vary. A selection of the most common parameters used for the different experi-

11Regarding spin-spin simulations (Chapter 5) it would be interesting to see what the mode vectors, frequencies
and finally the effective spin-spin couplings would look like. However, it remains unclear how motional coherence
and motional heating rates are influenced, as we have seen unexpected heating rate behaviour close to βcrit (see
Chapter 8).
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ments presented in this thesis are listed here:

Chapter 5: 7 and 15 ions - ωax = 2π × 220 kHz, ωrad ≈ 2π × 2.7 MHz.

Chapter 6: 4 ions - ωax = 2π × 1.23 MHz, ωrad ≈ 2π × 3.5 MHz; 3 & 5 & 7 ions - ωax = 2π × 1 MHz,

ωrad ≈ 2π × 3.5 MHz.

Chapter 7: 2 ions - ωax = 2π × 1.23 MHz, ωrad ≈ 2π × 3.5 MHz.

Restrictions on trapping parameters, and consequentially, limitations on the number of ions which

can be meaningfully trapped, will be discussed in chapter 8.

Coherent Rabi oscillations with long ion strings An indispensable tool when working with long

ion strings is the EMCCD12 camera13. A comparison between the atomic fluorescence measured

with the PMT (photomultiplier tube) and the camera is presented in figure 4.6 a) and b). Here,

resonant Rabi oscillations (‘carrier’) on 5 ions are driven from the ‘horizontal’ port (perpendicular

to the string axis). The signal measured with the PMT in 4.6 a) decays within the first few

oscillation periods, which can be easily confused with ‘extremely hot’14 ions or laser fluctuations15.

However, a revival is observable after 3 oscillations ruling out incoherent processes. Measuring the

Rabi oscillations with the camera, where the fluorescence is detectable for each ion individually,

reveals that the coupling strength varies from ion to ion. This indicates a potential misalignment

of the beam. After centering the beam with respect to the ion string, the oscillations on the PMT

(Fig. 4.6 c)) are comparable to the resolved single-ion oscillations on the camera (Fig. 4.6 d)).

The remaining damping on the PMT signal (no damping observable on the camera) is due to the

Gaussian intensity distribution of the laser beam, for more details on this topic and the resulting

experimental consequences see section 4.4.

Micromotion An ion which is not exactly located on the RF null (RF nodal line) experiences an

extra driven motion, in addition to the secular motion, due to the oscillating electric field gradient

at the RF drive frequency ΩRF. This excess micromotion causes Doppler shifts and can be treated

[144] in the rest frame of the ion as a modulation of the laser’s electric field E(t) = E0e−iωLt:

E(t) = E0e−iωLteiβ sin(Ωrft) (4.1)

= E0e−iωLt
∞∑

n=−∞
Jn(β)einΩrft.

Here, Jn(β) is the nth-order Bessel function and β is the modulation index directly related to the

amplitude of the micromotion. The carrier coupling strength Ωcarrier is proportional to J0(β) and

the coupling strength on the first order micromotional sideband Ωmm is proportional to J1(β). A

12Electron-multiplying charge-coupled device
13Andor iXon “blue” DU-897-DCS-BBB, a detailed description on our camera detection is given in [119, Chapter

3.4].
14A single ion with mean phonon number n̄ > 40 and typical Lamb-Dicke parameter η = 0.06 shows a similar decay.
15A similar decay could be observed on a single, ground state cooled ion with intensity fluctuations > 10%.
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a) b)

c) d)

PMT EMCCD

Figure 4.6.: a) & b) Comparison between Rabi oscillations measured with the PMT (a)) and the CCD-
camera (b)) for a deliberately misaligned beam. While on the PMT the oscillations seem to damp out very
quickly; the camera reveals Rabi oscillations with full amplitude, but different Rabi frequencies, for each
ion due to beam misalignment. Black, red, blue, purple and green represent ions 1 − 5. c) & d) Rabi
oscillations after realigning and centering the beam. The remaining damping seen on the PMT (c)) is due
to the Gaussian beam shape, as the camera (d)) indicates a nearly perfect symmetric coupling distribution
across the string.

Taylor expansion of the Bessel function J0(β) around β = 0 up to second order leads to

Ωeff
carrier ∝ 1 − β2

4
= 1 −

(
Ωmm

Ωcarrier

)2

. (4.2)

This approximation holds as long as β ≪ 1 and can be used to quantify the micromotional amplitude

by measuring the coupling strengths in Eq. 4.2.

Any stray electric field exerts a force on the ions, displacing them out of the RF null and thus

inducing micromotion. These stray electric fields can be compensated by applying DC voltages

to additional electrodes parallel to the RF blades, pushing the ions back onto the RF nodal line.

Nevertheless, an unavoidable micromotion will remain as the secular motion moves the ion back and

forth through the nodal line. In the case of a single ion, the micromotion can be well compensated

to β < 0.01. However, this is no longer necessarily true for long ion strings as the stray field

amplitudes may not be constant over the entire ion crystal.
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Figure 4.7.: The horizontal micromotion of a 20 ion string (ωax = 2π × 220 kHz) is measured using the
relation Eq. 4.2. Due to this low axial confinement / high axial temperature it is not possible to measure
the vertical micromotion. The horizontal micromotion is well compensated, β < 0.03, even though there is
quite some scatter over the chain.

Figure 4.7 shows the ‘horizontal’ micromotion distribution of a 20 ion string 16. In general,

the micromotion can be well compensated to values of β < 0.03 for a multi-ion string (N ≈ 20).

Nevertheless, the micromotion strength shows some scatter with βmax/βmin ≈ 2. This scatter might

cause trouble when the micromotion is not compensated (for details see section 4.5.1).

4.3.1. Spatially dependent qubit transition frequencies

For long strings of ions, inhomogeneities in the magnetic field B and electric field gradients ∇E will

cause the atomic transition frequency to change as a function of the ion position. These frequency

shifts can be in the order of tens of Hz, thus negligible for many experiments. However, for precise

clock experiments, high fidelity entangling gates, and quantum simulations with low spin-spin

couplings, these shifts have a high impact on the performance and fidelity of the experiments. This

section will focus on spatially dependent shifts caused by B-field gradients and inhomogeneous

quadrupole shifts due to electric field gradients. Shifts caused by inhomogeneous ac-stark shifts are

extensively discussed in section 4.4.2.

B-field gradient Since the qubits are encoded into Zeeman sublevels of the S1/2 ↔D5/2 transition,

their frequencies depend linearly on the B-field17. In order to lift the degeneracy of the Zeeman

levels and to define a quantization axis two magnetic field coils are aligned such that the resulting

þB is along the string axis. Each coil has N = 350 windings with an inner radius R = 57.5 mm and

a coil-to-coil distance L = 300 mm. Such an arrangement does not fulfill the Helmholtz criterion

16In order to keep a string of 20 ions linear the axial trapping frequency is set to ωax = 2π × 220 kHz. At this ‘low’
axial confinement, the temperature of the axial modes is very high, n̄ > 250 (see Chapter 8). This prohibits
us from driving Rabi flops on the carrier or micromotional sideband with the ‘vertical’ port due to substantial
þk-vector overlap (30◦) with the hot axial modes. Not a single Rabi oscillation is observable due to immediate
decoherence.

17The higher order contributions are negligible at a B-field of B ≈ 4.1 G.



50 4. Experimental setup and techniques for long ion strings

(L = R), but it is imposed by spatial restrictions given by the vacuum chamber. As a result, the

B-field along the string axis has a quadratic dependency. Figure 4.8 a) shows the calculated B-field

strength along the coil-axis. Any misalignment between the trap center and the center of the two

coils will give rise to a linear (to first order) dependency of the transition frequency shift18. Using

the camera for detection, it is possible to measure the frequency offset of each ion compared to the

laser frequency with a Ramsey type experiment [125]. In contrast to clock experiments we care

only about relative frequency shifts between the qubits. As such, the interrogation time can go

beyond > 100 ms reducing the contrast to zero. The relative phase information is then gained from

two-point correlation functions, e.g. 〈σz
i (t)σz

j (t)〉 [145].

For a string of 20 ions trapped at ωax = 2π × 220 kHz (string size ∼ 105 µm) a frequency

difference of 250 Hz is measured from edge-to-edge (see Fig. 4.8 b)). Given the B-field sensitivity

2.798 MHz G−1 on the |S1/2, mj = 1/2〉 ↔ |D5/2, mj = 5/2〉 transition a gradient of 0.85 µG/µm is

measured. A second pair of coils arranged in a quadrupole configuration generates a linear B-field

gradient (18.89 G/Am) to counteract the frequency shift by applying a current of 45 mA.
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Figure 4.8.: a) The B-field strength is calculated along the axis of the coils for the current arrangement
(blue). A constant offset Boffset = 4.105 G is subtracted for better readability. b) The frequency shifts for
20 ions are measured with a Ramsey experiment revealing ∼ 250 Hz difference from edge-to-edge. Using
the B-field sensitivity of 2.798 MHz G−1 a gradient of 0.85 µG/µm is calculated. Using a second pair of coils
(18.89 G/Am) the gradient is compensated by applying 45 mA.

Quadrupole shifts On top of the magnetic field dependency, the quadrupole moment Q of the D-

states couples to any E-field gradient by H = Q∗∇E, determining the atomic quadrupole transition

frequency. In contrast to spherical Paul traps, the static trapping potential applied to the tips in

linear Paul traps gives rise to an electric field gradient along the z-direction dEz/dz = mω2
ax/e,

where m is the ion’s mass, ωax is the frequency of the axial COM and e is the elementary charge.

Assuming any additional E-field gradients from patch potentials are negligible compared to dEz/dz

of the trap potential, the trap’s rotationally symmetric field gradient shifts the transition frequency

18Other sources for residual B-field gradients could be stray fields, for instance from the getter pump or current
carrying wires.
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S1/2 ↔D5/2 by [146]

∆ω =
1

4

dE

dz
Θ(D, J)

J(J + 1) − 3m2
j

J(2J − 1)

[

3 cos2 (β) − 1

4~

]

. (4.3)

Here, dEz/dz denotes the E-field gradient along the principal trap axis, Θ(D, J) is the quadrupole

moment of the D levels with a total angular momentum J , and β is the angle between the quan-

tization axis and the principal axis of the trap. The quadrupole moment was measured to be

Θ(D, 5/2) = 1.83(1)ea2
0 [147]. As the E-field gradient is constant, all ions experience a uniform

frequency shift of ∆ω ≈ −2π × 0.5 Hz for mj = 5/2 at a trapping frequency ωax = 2π × 200 kHz,

which is negligible for the experiments presented here.

However, in a multi-ion string, each ion generates an additional E-field gradient for its neighbours.

In the simple case of two ions, the E-field gradient is doubled dEz/dz = 2mω2
ax/e [148], since the

inter-ion distance is ∆z =
(
e2/(2πmε0ωax)

)1/3
. For more than two ions, the gradient can only be

calculated numerically. First, the ion positions zi are calculated as described in section 3.1.3. The

E-field gradient at position zi is then given by:

dEi

dz
=

mω2
ax

e
+

N−i∑

j

e

2πε0

1

|zi − zj |3 (4.4)

The first term in Eq. 4.4 is the uniform gradient from the trapping potential, whereas the second

takes the gradient generated by the neighbouring ions into account. Due to the non-equidistant

spacing between the ions and the various number of close neighbours in an open ion chain, each

ion experiences a different E-field gradient.

In Fig. 4.9 a) & b) quadrupole shifts for five ions are calculated and compared for three different

transitions |S1/2, mj = 1/2〉 ↔ |D5/2, mj〉 at two trapping potentials, 220 kHz and 900 kHz. When

the ions are far apart, such as in the shallow potential, the frequency shifts become negligible for

all the transitions. This is no longer true when the ions are squeezed together by ramping up the

trapping potential or by increasing the ion number. Figure 4.9 c) compares the theoretical relative

quadrupole shifts with the relative shifts measured after the linear B-field gradient is compensated.

The shifts are measured with the same Ramsey type experiment as in the previous paragraph.

There is a significant difference between the theoretical and the experimental values, which could

be explained by the quadratic form of the B-field.

There are several ways to circumvent the quadrupole shift, if necessary. If absolute frequency

measurements are the goal, one can average over all possible mj-states, as the sum over all possible

mj in Eq. 4.3 adds to zero [149]. This, however, is not suitable for the experiments presented in

this thesis19. The straightforward approach is to use the |D5/2, mj = 3/2〉 level, as this one is least

prone to the quadrupole shift, with some disadvantages regarding sideband cooling in our setup

(for details see section 4.6.3). A more laborious solution is to make use of the angle dependency

β in equation 4.3. By changing the B-field direction with respect to the traps principal axis, the

quadrupole shifts become zero for β ≈ π/3.3, given there are no spurious E-field gradients from

19We encode the qubit/pseudospin in to a single transition, and thus cannot average over all transitions.
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other directions.
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Figure 4.9.: a) & b) Theoretical calculation of the quadrupole shifts on different |D5/2, mj =
[5/2, 3/2, 1/2]〉transitions for 5 ions trapped at 220 kHz (a)) and 900 kHz (b)). c) A Ramsey experiment with
τwait = 4 ms performed on the |D5/2, mj = 5/2〉-transition (black squares) and compared to the theoretical
values (red dots) shows hardly any difference in transition frequency. The measurements reveal a frequency
difference of 23 Hz between the edge and the middle ion. The theoretical value of the quadrupole shift alone
is 37 Hz.

4.4. Interaction Beam

In order to achieve a high coupling strength on the radial modes, i.e. a strong effective spin-spin

interaction, the driving laser field has to overlap with the direction of motion. Optimally, the þk-

vector is perpendicular to the ion string. For long ion strings, this has some undesired consequences

due to the Gaussian intensity distribution i.e. ions in the center experience a higher coupling than

those closer to the edge.

This section deals with the implications of an inhomogeneous coupling strength distribution and

its experimental consequences.

4.4.1. Beam shaping

Simply expanding the beam size is suboptimal, since light is ‘wasted’, hence, the overall intensity

is decreased. An obvious way to improve the situation is by beam shaping and there are several

ways to influence the Gaussian shape, all with their own advantages and disadvantages.

In this thesis we implemented beam shaping by using cylindrical lenses as depicted in Fig 4.10 a).

By combining two cylindrical lenses oriented orthogonally with respect to each other, it is possible

to independently change the main axis of the elliptical beam, see Fig 4.10 b). Here, we place the two



4.4. Interaction Beam 53

lenses, f = 700 mm20 and f = 500 mm21 on individual translation stages22 and, by separately moving

the focal planes, it allows us to control the ellipticity at the ion crystal plane. The beam is launched

by a fiber coupler23 with a collimated beam diameter specified as D ≈ 22.5 mm. However, the real

diameter depends on the wavelength and the fiber NA and could not be measured appropriately,

since its size exceeds the dimensions of any measurement device at hand.

Given the specified beam diameter D and the focal lengths f, one can estimate the Gaussian

waist diameter, i.e. 1/e2, at the focal plane by using Gaussian beam optics 2 w0 =
(

4λ
π

) (
f
D

)

.

The beam waists are estimated to be wy
0 ≈ 10.3 µm and wz

0 ≈ 14.4 µm. In contrast, the measured

values are wy
0 ≈ 16.5 µm and wz

0 ≈ 22.5 µm, respectively. This discrepancy can be explained by the

unknown diameter D and additional aberrations. By displacing the 700 mm - lens such that its

focal plane does not coincide with the ion crystal plane, an elliptical beam with wy ≈ 16.5 µm and

wz ≈ 190 µm is achieved, see Fig 4.10 c). For a string of 20 ions (108 µm at ωax = 2π × 214 kHz)

this results in a Rabi frequency Ωcenter ≈ 2π × 180 kHz and a variation of ≈ 15% from the center

to the outermost ion, as depicted in Fig. 4.10 d).

The approach described above has a crucial advantage in that it is straightforward to set up and

can be implemented within a day. However, there always remains a trade-off between a flat intensity

distribution and high intensity at the ion crystal plane. The residual intensity inhomogeneity has

some severe consequences, such as a spatially dependent ac-Stark shift, which will be discussed in

detail in the following section. Preferably, the Gaussian intensity distribution is transformed into

a flat distribution with sharp edges, called a top hat function. This can be achieved by customized

diffractive optical elements (DOE). These DOE are special purpose devices, i.e. once specifically

designed for a given setup there is no flexibility in terms of input beam size, working distance,

and spot size. A critical drawback is that a uniform top hat is only achievable at specific working

distance within a very small tolerance (< 50% spot size) with a typical uniformity of only ±5%

[150]. Furthermore, the attainable top hat spot size is, as a rule of thumb, 3 to 5 times larger than

the diffraction limited spot size, i.e. large input beam diameters D and oversize optics are needed

to obtain decent spot sizes.

A more advanced and flexible way for beam shaping is to use spatial light modulators (SLM) as

described in the master thesis of Sebastian Schunke [151].

4.4.2. Spatial dependent ac-Stark shift

As a consequence of the remaining non-uniform, though flattened, intensity distribution one has

to cope with spatially dependent ac-Stark shifts in addition to non-uniform Rabi frequencies. In

an ideal two-level atom system, driven resonantly, there is no ac-Stark shift present. However, real

atoms have many additional energy levels. Even though the qubit is driven resonantly, the light

field couples off-resonantly to other available transitions and thus induces light shifts on the qubit

transition, see Fig 4.11 a). In 40Ca+ the main contributions come from the off-resonant dipole

coupling S1/2 ↔ P1/2, S1/2 ↔ P3/2 and D5/2 ↔ P3/2 as well as from the off-resonant quadrupole

20Thorlabs: LJ1836L1-B
21Thorlabs: LJ1144L2-B
22Thorlabs: LT3
23Schäfter + Kirchhoff: 60FC-L-4-M125-54
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Figure 4.10.: a) A sketch showing the effect of a cylindrical lens transforming a collimated, round Gaussian
beam into a partly collimated ellipse, where the non-transformed axis stays collimated. b) Schematic drawing
of the cylindrical lens setup, consisting of a 60FC-L-4-M125-54 fiber collimator from Schäfter + Kirchhoff,
two cylindrical lenses (f = 700 mm and f = 500 mm, resp.) placed on individual translation stages, a 2” λ/2
wave plate and a 2” mirror mounted on a mirror holder with Newport NSA12 actuators for precise control.
The mirror mount center is roughly 400 mm placed from the trap center. The uncertainty comes from the
nescience of the viewport thickness. c) Intensity distribution of the beam taken with a beam profiler. Here,
the f = 700 mm - lens was moved out of focus to expand the beam to wy ≈ 16.5 µm and wz ≈ 190 µm.
d) Rabi flops on 20 ions with Ωcenter ≈ 2π × 170 kHz and a variation of Ωedge/Ωcenter ≈ 1.15, trapped at
ωax = 2π × 214 kHz.

coupling to the other transitions within the S1/2 ↔ D5/2-Zeeman manifold. The induced ac-Stark

shifts are measured with a Ramsey type experiment on a single ion as described in [152]. First, the

system is prepared in its ground state (|S〉) followed by a π/2 pulse to create an equal superposition

|Ψ〉 = (|S〉 + |D〉) /
√

2, see inset Fig 4.11 b). An off-resonant pulse induces an ac-Stark shift for

a duration τ . The accumulated phase information |Ψ〉 =
(

|S〉 + e−iδacτ |D〉
)

/
√

2 is then mapped

to the population and detected with a projective measurement. For a systematic investigation,

the separation between the two Ramsey pulses is kept constant with an additional waiting time tw

such that τ + tw = const, where τ is the interrogation time. The frequency of the Ramsey pattern

allows us to directly infer the induced ac-Stark shift for a given detuning ∆ from the carrier

transition. By repeating the experiment with different detunings ∆, the summed contributions

from all transitions but the carrier can be extracted. In figure 4.11 b) such measurements are

presented, where
∣
∣
∣S1/2, mj = 1/2

〉

and
∣
∣
∣D5/2, m′

j = 3/2
〉

are chosen as the qubit levels. The Rabi

frequency is set to Ω = 2π × 162.3 kHz (tπ = 6.16 µs). Fitting the data with y = a/∆ + b yields an

ac-Stark shift δac = 2π × 2.07 kHz.

It is a perfectly justified question to ask why the ac-Stark shift should cause any trouble, since
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in general it is taken care of by changing the laser frequency to the shifted transition frequency.

However, as soon as there are several ions illuminated by a non-uniform light field, there will

be a spatially dependent ac-Stark shift (Fig. 4.11 c)), which cannot be compensated by simply

adjusting the laser frequency. To see why this is troublesome, let us do a back-of-the-envelope

calculation: we assume a bichromatic light field, each component inducing a shift δac ≈ 2π × 2 kHz

thus δac ≈ 2π × 4 kHz, and we further assume a coupling distribution of Ωedge/Ωcenter ≈ 1.1.

Following Eq. 3.54 the difference in transition frequency between the center and the edge qubit is

≈ 2π×800 Hz. Comparing this value to a typical effective spin-spin coupling max{Jij} ≈ 2π×50 Hz

(detuning from the sidebands ∆ = 2π ×40 kHz), it is obvious that the spatially dependent ac-Stark

shift will cause unwanted effects (a detailed discussion of these effects in the context of quantum

simulations is presented in chapter 5).
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Figure 4.11.: a) A schematic energy diagram of 40Ca+ when the qubit transition is driven resonantly. Due
to additional dipole and quadrupole (not shown) transitions, other than the qubit transition, coupling to
the light field, the qubit levels experience an ac-Stark shift. b) The ac-Stark shift measured as a function
of the detuning ∆ to the carrier transition

∣
∣S1/2, mj = 1/2

〉
↔

∣
∣D1/2, m′

j = 3/2
〉

with a Rabi frequency
Ω = 2π × 162.3 kHz. Circles: Data, line: Fit (y = a/∆ + b). The resulting ac-Stark shift from all transitions
except the carrier is δac = 2π × 2.07 kHz. c) Due to the Gaussian intensity profile of the light field, qubits
experience a spatially dependent ac-Stark shift, which is of the order of the effective spin-spin coupling.

4.5. Trichromatic light field

Any ac-Stark shift can be nulled by adding a second, off-resonant light field counteracting the light

shift [153]. In our setup the shaped beam is mainly used to drive effective spin-spin interaction, and
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therefore a bichromatic light field is illuminating the ions. Due to the symmetric detuning from the

carrier, these two light fields cancel exactly any ac-Stark shift induced by the carrier itself. However,

the ac-Stark shift due to the additional transitions remains. The standard tricks to compensate for

this shift in the Mølmer-Sørensen gate operation, center-line detuning or bichromatic imbalancing

[98], do not work in this case: the method of center-line detuning, i.e. an additional detuning

δcl of both laser fields ∆b = ∆ + δcl and ∆r = −∆ + δcl, fails due to the spatial dependency of

the qubit transitions. The alternative, bichromatic imbalancing, where the Rabi frequencies of

the blue-detuned Ωb = Ω (1 + ε) and red-detuned component Ωr = Ω (1 − ε) are unequal, is inapt

because of the large detuning ∆ > 2π × 2.7 MHz. In order to compensate for the light shift, the

imbalancing has to be ε ≈ 0.5, which is too large for proper operation of the gate, where ε ≪ 1 has

to hold [154].

It is not very demanding to add a third light field for compensation. All that is needed is an

additional RF-source24 and a splitter/combiner25, as depicted in figure 4.12 a). All three radio

frequencies are sent to a fiber AOM26. It has to be mentioned that the blue/red Rabi frequencies

Ωb and Ωr are influenced by the RF power sent in for the compensation field, i.e. while the coupling

Ωcomp of the compensation field is increased, Ωb and Ωr become weaker, see figure 4.12 b).

Since all light fields are combined within the same fiber, their spatial modes are identical and as

such the compensation field can cancel the spatially dependent light shift. The frequency of the

compensation field is set to a positive detuning, e.g. ∆comp = 2π × 1 MHz, and the power is chosen

such that it exactly nulls the remaining ac Stark shift. Figure 4.12 c) shows from left to right:

Rabi flops on 8 ions with Ωmax = 2π × 221 kHz and Ωmax/Ωmin = 1.113; ac Stark flops induced

with a detuned light field ∆ = 2π × 3 MHz yielding δmax
ac = 2π × 5.1 kHz and δmax

ac /δmin
ac = 1.23;

and finally a fully compensated ac Stark shift using a third light field at ∆comp = 2π × 1 MHz and

Ωcomp = 2π × 92.1 kHz.

There are two main methods to properly set up the compensation. The first one is to off

resonantly drive the carrier transition and to the measure the cumulative ac Stark shift in a Ramsey

like fashion, as described in section 4.4.2. For a given frequency of the compensation field, one has

to tune the RF power of the compensation such that the frequency of the ac-Stark flops becomes

lower. A more convenient way is to use the spin-spin interaction itself to calibrate the compensation.

This method will be described in chapter 5.

4.5.1. Reasons for compensation failure

There are several effects which can corrupt a proper compensation of the induced light shifts. Some

of these effects are severe, others are negligible. Nevertheless, a complete list with the corresponding

explanations will be given in this section. The order in the following list is somewhat according to

their severity on the compensation:

a) Reflections

b) trichromat: higher order beat frequencies

24Rohde & Schwarz: SML01
25Mini-Circuits: ZSC-2-1W
26Gooch & Housego, model MM080 1C2V14 5 F2SH B
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Figure 4.12.: a) Setup to generate a trichromatic light field. The three RF frequencies are individually
produced by separate RF-sources24, combined25 and sent to a fiber AOM26 as depicted above. b) The three
light fields share a common input light field and, as the RF power of one of the components is changed, it
will influence the others. Here, the effect is shown on the individual coupling to the ion, as the RF power of
the compensation component is increased. c) (from left to right) Rabi flops on eight ions, where the coupling
distribution is clearly visible. The resulting cumulative ac-Stark shift, when the bichromatic field is set to
a detuning δ = ±3 MHz from the carrier. The ac-Stark flops are measured with the Ramsey type method
described in the chapter above. In the last plot, the compensation field is set to compensate for the ac-Stark
shifts, resulting in a remaining ac-Stark shift which is hardly measurable.

c) Mode structure and temperature

d) Micromotion

e) Polarization and k-vector gradients

f) Transverse E-field gradient

a) Reflections The strongest effect regarding unwanted ac-Stark shifts is caused by the interaction

beam being reflected off the opposite inverted viewport and the optics behind, such as lenses, wave

plates and the fiber coupler of the addressed beam. In contrast to the spatially dependent qubit

transition caused by the Gaussian beam shape, B-field gradient, and differential quadrupole shift,

the reflections are not stationary and vary over time, as beam pointing variations play a large role.

One might be inclined to think that the reflected pattern of the bichromatic light fields and

the compensation field have the same spatial distribution, hence, the compensation should be

straightforward. However, the compensation fails and the reason for this is not obvious. The

following arguments are rather educated guesses than definitive answers. Small amounts of back
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reflected light can interfere with the strong primary beam, resulting in a standing wave structure

that gives rise to ac-Stark shifts which vary on a sub-micrometer scale 27.

The failure in compensation most likely results from the different couplings of the dipole and the

quadrupole transitions. The ac-Stark shift caused by the dipole transition is proportional to the

light field intensity, δdp
ac ∝ I, whereas the quadrupole ac-Stark shift, and as such the compensation

field, are proportional to the gradient of the light field, δqp
ac ∝ ∇I. Further, it is rather implausible

to assume that all ions sit at similar positions in the standing wave, some might be close to a node

and others to an antinode. While ions in the nodes experience no dipole ac-Stark shift from the

backreflection, the quadrupole ac-Stark shift is the strongest, and ions at the antinodes feel the

strongest δdp
ac and no δqp

ac induced by the backreflection. Hence, depending on the ions’ position,

the compensation field will under or over compensate the ac-Stark shifts.

On top of that, additional effects might play a role. It is quite likely that the back reflections show

aberrations and have no perfect planar wavefront, as the light has to pass many optical elements28,

twice, before reaching the ions. This may result in a spatially dependent k-vector and even in

polarization gradients, leading to different couplings of the dipole and quadrupole ac-Stark shifts.

A more detailed discussion regarding polarization/k-vector is given in the last paragraphs of this

section.

The solution to avoid reflections in our setup is to lift the last mirror in the interaction beam

path by ≈ 2 cm such that the beam comes in at an angle of a few degrees. This is enough to guide

the reflections below the trap blades.

b) Higher order beat frequencies Even though splitters/combiners are used to add up the three

frequency components of the trichromat, due to non-linearities in the combiners additional frequen-

cies can be observed in the RF-Spectrum sent to the AOM, as shown in figure 4.13 a) - c). These

additional, unwanted frequency components correspond to frequencies f = 2f1(2) − f2(1) and are

transduced to the optical spectrum. In figure 4.13 d) - f) optical beat frequencies are presented,

where the light after the fiber AOM is beat with the light before the double pass AOM, giving a

center beat frequency at fbeat ≈ 476 MHz + 80 MHz. In the bichromatic case the number of fre-

quencies is quite manageable (Fig 4.13 b & e), whereas in the trichromatic case it becomes rather

messy (Fig 4.13 c & f). Although the amplitude of the unwanted frequency components is at least

15 dB lower compared to the desired ones, caution is recommended especially when working with

many ions. One of the many unwanted frequency components might lie close to a motional mode

and disturb the time dynamics in the quantum simulation. It is straightforward to calculate the

frequency spectrum and to compare it with the motional spectrum. Should one of the frequencies

be suspiciously close to a motional mode, there are several options to adjust the situation. By

modifying the frequency of the compensation field or the bichromat frequency, it is possible to

shift certain frequency components. Another way is to change the axial or the radial confinement,

although this is less preferable, as usually at this point in the experimental procedure sideband

27Here, we assume that all three frequency components generate standing waves with the same phase φ = 0, given
that they only differ by ∆f ≈ 2 MHz the path length difference required for them to be out of phase φ = 180 is
∆l ≈ 100 m.

28It seems most reflections are caused by the addressing optics outside the vacuum chamber such as the objective,
collimator and the fiber coupler.
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cooling is already set up.
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Figure 4.13.: a)-c) The RF spectrum sent to the fiber AOM and measured with a spectrum analyser for
a) individual frequencies, b) bichromatic light and c) trichromatic light. d)-f) is the corresponding optical
spectrum, where the light before the double pass AOM (fDP = 476 MHz) is beaten with the light after the
fiber AOM. a) & d) The individual sideband frequencies at fr = 77.3 MHz and fb = 82.7 MHz are applied to
the fiber AOM. Higher order frequencies, due to non-linearities, are clearly visible in the RF Spectrum (not
shown in the optical spectrum). b) & e) When both frequencies fb and fr are applied simultaneously, higher
order frequencies appear in their vicinity at f1 = 2fb − fr and f2 = 2fr − fb. In the optical spectrum these
unwanted frequencies are suppressed by 20 dB. b) & e) In addition a third frequency fcomp = 81.2 MHz is
added at −5 dB lower power. The resulting beat frequencies are mainly of the type fbeat = 2f1 − f2 and at
least −15 dB lower.

c) Mode structure and temperature The structure of the motional modes and their temperatures

have two distinct, non-negligible effects altering the ac-Stark compensation. On the one hand, there

is an additional ac-Stark shift coming from the off-resonant driving of the motional sidebands,

imprinting the mode’s spatial structure onto the ions. This cannot be compensated by a simple

Gaussian beam shape. On the other hand, thermally populated motional modes reduce the coupling

strength on the carrier in an inhomogeneous way, i.e. distorting the ac-Stark compensation.

First, we consider the off-resonant coupling to the sidebands by examining a seven-ion string.

Given the operational trapping parameters ωz = 2π × 220 kHz, ωx = 2π × 2.70 MHz and ωy =

2π × 2.35 MHz, the eigenmode matrix bi,m and the eigenfrequencies ωλ
m, we calculate the Lamb-

Dicke parameter ηλ
i,m for each ion i and mode m in the direction λ = {x, y}:

ηλ
i,m = kbi,m

√

~

2mCaωλ
m

cos(θ) (4.5)
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A representative example in the x-direction is given by:

ηx
i,m =


















−0.07 0.26 −0.64 −1.18 −1.67 −1.73 1.12

0.52 −1.24 1.72 1.33 0.09 −1.08 1.12

−1.48 1.72 −0.36 1.14 0.96 −0.52 1.12

2.06 0.00 −1.43 0.00 1.23 0.00 1.12

−1.48 −1.72 −0.36 −1.14 0.96 0.52 1.12

0.25 1.24 1.72 −1.33 0.09 1.08 1.12

−0.07 −0.26 −0.64 1.18 −1.67 1.73 1.12


















× 10−2 (4.6)

Here, the modes are sorted from lowest frequency (left) to highest frequency (right), which in the

case of the radial modes is the COM-mode. From the matrix in Eq. 4.6, it is evident that not

all ions are equally affected. An obvious example is the second highest mode, where the edge ions

have a high amplitude and the middle ion doesn’t participate in the motion. Since the sidebands

are driven off-resonantly for the spin-spin interactions, we need to calculate the ac-Stark effects

resulting from the blue and red sidebands:

δac
i =

∑

m,λ








(

ηλ
i,m

√

nλ
m + 1 Ω

)2

2(∆m + δcl)
+

(

ηλ
i,m

√

nλ
m Ω

)2

2(∆m − δcl)








(4.7)

where the sum goes over all m-modes in both directions λ = {x, y}, nλ
m is the number of phonons for

a given mode, ∆m is the laser detuning from the mth sidebands and δcl is the centerline detuning29.

In the following discussion, we are mainly interested in the difference of the qubit transition

between neighbouring ions and therefore we define:

δac
i,i+1 = |δac

i − δac
i+1| (4.8)

Since the absolute value of δac
i,i+1 depends strongly on ∆m and ωλ

m, it is sensible to normalize it

by the nearest neighbour spin-spin coupling, Ji,i+1, in order to have a fair comparison between

different parameter regimes.

Experimentally, the most interesting case is when all modes are ground state cooled, i.e. nλ
m = 0.

In this case, the coupling on the red sidebands is zero, and Eq. 4.7 simplifies to

δac
i =

∑

m,λ

(

ηλ
i,mΩ

)2

2(∆m + δcl)
. (4.9)

Interestingly, these are exactly the diagonal elements of the Jij-matrix and can be interpreted as a

self-coupling of the spins. In figure 4.14 a) the normalized δac
i,i+1 = δac

i −δac
i+1 are shown for different

numbers of ions, with ∆x
COM = ∆COM = 2π × 40 kHz and δcl = 0. Quite surprisingly, the effects

are rather strong on the edges of the string, where the differences can exceed the nearest neighbour

29Here we neglect the fact that the ‘blue’ (‘red’) part of the bichromatic light field also couples to the red (blue)
sideband. This coupling is far off-resonant, ≈ 5 MHz, and therefore negligible.
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coupling Ji,i+1. This has to be taken into account when running simulations of spin-spin dynamics,

since the time evolution gets slightly distorted depending on the interaction range.

When the detuning from the sidebands changes, also the relative contribution of each mode

changes, as shown in figure 4.14 b). The closer the laser frequency to the center of mass mode,

the smaller δac
i,i+1 becomes, as the COM-mode imprints a homogeneous ac-Stark shift. However, as

∆COM becomes larger the normalized differences, δac
i,i+1/Ji,i+1, approach fixed values, rather than

approaching zero as intuitively expected for ∆COM. In the limit of lim∆COM→∞ δac
i,i+1 = 0, all ωλ

m

become degenerate compared to ∆COM, such that each mode has the same weight in the sum 4.7.

With the constraint
∑

m b2
i,m = 1 30, one would intuitively guess a spatially homogeneous shift.

The only explanation I have for the time being is that the Ji,i+1’s approach fixed values for large

∆COM as well, as simulations indicate.

When dealing with thermally populated modes, for instance after Doppler cooling, each of the

ωλ
m modes is randomly sampled over a thermal distribution with probability pm

n to find n phonons

[89]

pm
n (n̄m) =

1

n̄m + 1

(
n̄m

n̄m + 1

)n

, (4.10)

where n̄m is the mean phonon number of mode m. In the symmetric case, that is δcl = 0, all phonon

number dependent terms in Eq. 4.7 cancel each other. However, this is not the case anymore as

soon as the red and the blue sideband are not equally weighted, i.e. |δcl| , 0. Here, we make the

sensible approximation that all modes have the same mean phonon number after Doppler cooling

n̄m = n̄ 31. In figure 4.14 c) the normalized mean and standard deviation of |δac
i,i+1| are shown as a

function of n̄ for the different pairs of a seven ion string. Interestingly, the mean |δac
i,i+1| of the edge

pair can be reduced by having hotter modes, such that the red sideband can counteract the blue

one. Nevertheless, increasing the temperature is undesirable, since fluctuations of |δac
i,i+1| become

rather large due to the thermal distribution.

These ac-Stark shifts described above, cannot be compensated with the Gaussian third light field.

More elaborate schemes, such as a spatial light modulator, can mimic the spatial distribution of

ac-Stark shifts induced by the motional modes and null the mean shift, but not the fluctuations.

The last part examines the effect of the mode temperatures on the reduction of the carrier coupling

strength in the Lamb-Dicke regime. The ratios between the unperturbed coupling strengths Ωi on

the carrier of ion i, and the thermal ones Ωthermal
i are approximated by [123]:

Ωthermal
i

Ωi
=

∏

m

(

1 − η2
i,mn̄m

)

. (4.11)

As shown in figure 4.14 d), the mean reduction and the associated standard deviation on the edge

and the middle ion (7 ions) are similar because, here, all modes are equally weighted, under the

30What this means is that the sum of all Lamb-Dicke factors over all modes m is the same for all ions, given that
the mode frequencies ωλ

m are the same.
31n̄Doppler = Γ

2ωm
≈ Γ

2ωCOM
, as |ωm − ωCOM| ≪ ωCOM.
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assumption of n̄m = n̄. However, from shot to shot the carrier coupling strengths on different

ions might be significantly different, i.e. affecting the ac-Stark compensation. For n̄ ≈ 2, the

coupling variation from ion to ion can be up to ≈ 2%, resulting in ≈ 4% variation of the ac-Stark

compensation and in such a case |δac
i,i+1| > Ji,i+1.
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Figure 4.14.: All graphs are calculated for the following trapping frequencies: ωax = 2π × 220 kHz and
ωradial = 2π × 2.65 MHz. a) The normalized differential ac-Stark shift δac

i,i+1/Ji,i+1 =
∣
∣δac

i − δac
i+1

∣
∣ /Ji,i+1 is

calculated for a common detuning ∆COM = 2π ×40 kHz, where δac
i is the induced ac-Stark shift on ion i and

Ji,i+1 is the next neighbour spin-spin coupling between ions i and i + 1. This differential ac-Stark shift is
a result of the eigenmode matrix bi,m, the lifted degeneracy of the eigenmode frequencies ωλ

m and the laser
only coupling to the blue sideband due to ground state cooling. The effect is most pronounced at the string
edges and can exceed the spin-spin coupling. b) The normalized differential ac-Stark shift is calculated for 7
ions as a function of the detuning ∆COM. Blue are ions 1 & 2 resp. 6 & 7; green are ions 2 & 3 resp. 5 & 6; and
red 3 & 4 resp. 4 & 5. c) δac

i,i+1/Ji,i+1 is sampled over a thermal distribution with a mean phonon number

n̄ for ∆COM = 2π × 40 kHz and δcl = 3 kHz. Bold lines represent the mean value and the shaded region is
one standard deviation. d) The reduction in the carrier coupling is calculated as a function of n̄, where Ωi

is the unperturbed (n̄ = 0) Rabi frequency of ion i.

d) Micromotion The effect of the micromotion is that it generates sidebands which ‘steal’ coupling

strength from the carrier transition. For a single ion the micromotion can be efficiently compensated

to β < 0.01, as described in section 4.3. However, in long ion strings it is not necessarily true that

the micromotion compensation is perfect on each ion. Such an inhomogeneous compensation will

cause the carrier coupling strength to differ and might corrupt the ac-Stark compensation.
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Ion 1 Ion 2 Ion 3 Ion 4 Ion 5 Ion 6 Ion 7

Ω3/2/Ω5/2 27.5 27.9 27.6 28.5 28.5 29.7 29.7

Ω3/2/Ω1/2 15.8 12.7 12.8 10.0 8.9 6.9 5.7

Table 4.2.: Normalized Rabi frequencies for different ∆m-transitions of a 7 ion string. Ω′
m is a short cut

notation of the Rabi frequency for a given transition
∣
∣S1/2, mj = 1/2

〉
↔

∣
∣D5/2, m′

j

〉
, with m′

j =
{

1
2 , 3

2 , 5
2

}
.

The Rabi frequencies are normalized with respect to the main quadrupole transition Ω3/2 used at that time.
Ω3/2/Ω5/2 shows little variation across the ion string, whereas the variation of Ω3/2/Ω1/2 is more pronounced.

This allows us to conclude that there is a slight þk-vector gradient due to the astigmatic focussing.

The effective carrier coupling is given by

Ωeff
carrier ∝ 1 − β2

4
. (4.12)

The measured modulation index does indeed vary from ion to ion (Fig. 4.7) giving βmax/βmin ≈ 2

in the case of 20 ions. Following eq. 4.12, we find that the maximal coupling strength variation is

of the order of 10−4. Nevertheless, it is advisable to check the micromotion for the different settings

of axial/radial potentials and radial splitting voltages, as the modulation index can easily exceed

β > 0.1.

e) Polarization and k-vector gradients The Rabi frequency on the different carrier Zeeman levels

is not only proportional to the þE-field gradient but also depends on a geometrical factor g∆mj

[83, 123], incorporating the angle φ between the laser beam and the þB-field axis, as well as the

polarization angle γ, shown in Fig. 4.15 a). If a trichromatic beam has a þk-gradient or polarization

gradient along the ion string axis, the compensation of the ac-Stark shifts might be corrupted,

due to different selection rules for dipole and quadrupole transitions. A possible þk-gradient could

arise from a non-planar wavefront being the case for a focussed beam outside the Rayleigh range.

Aberrations also distort the wavefront and imperfect optical elements, such as lenses, mirrors and

view ports, could cause polarization gradients. One way to measure þk- and polarization gradients

is to use the ions as a sensor by driving and comparing different
∣
∣
∣S1/2, mj = 1/2

〉

↔
∣
∣
∣D5/2, m′

j

〉

transitions, where m′
j =

{
1
2 , 3

2 , 5
2

}

.

In figure 4.15 b) the dependency on φ and γ is shown for different ∆m = m′
j − mj . At

the time of these measurements (Nov. 2013), the interaction beam was optimized to drive the
∣
∣
∣S1/2, mj = 1/2

〉

↔
∣
∣
∣D5/2, m′

j = 3/2
〉

transition, i.e. φ ≈ 90◦ and γ ≈ 0◦. Due to slight alignment

imperfections it is possible to feebly drive the other two ∆m-transitions. Table 4.2 shows the cou-

pling strengths of the different transitions ∆ = {0, 2} normalized by the main transition ∆m = 1

for a string of 7 ions. The observed weak couplings strengths on ∆m = 0 can be explained by a

small tilt of the þk-vector by 0.3◦, and to couple to the ∆m = 2 transition it is sufficient to rotate

the polarization by ≈ 1.5◦. From the coupling strength ratios given in the table one can infer that

there is mainly a þk-vector gradient due to the astigmatic focussing, and any polarization gradient

is negligible.

Any coupling to other unwanted quadrupole transitions will ‘steal’ coupling strength from the

compensation. However, these unwanted couplings are well suppressed and the effects are below

10−3 of the overall ac-Stark compensation.
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Figure 4.15.: Figure taken from C. Hempel thesis. The coupling of the quadrupole transitions depend on
a geometrical factor g∆mj

, which takes the þk-vector and the polarization into account. a) The angle φ is

defined by the þB-field quantization axis and the incoming þk-vector, spanning a plane of incidence. Linearly
polarized light can be in plane or rotated out of plane by γ. b) Calculated values of g∆mj

as a function of
φ and γ for different ∆m-transitions.

f) Transverse E-field gradient A spatial þE-field gradient, resulting from the Gaussian beam shape,

can also induce a coupling to the quadrupole transition, where the coupling strength depends on

the ion’s position. This effect is minor, however, it might come into play when the beam is tightly

focussed. In order to estimate the size of this effect we compare the relevant length scales, where

the intensity varies from maximum to zero. Along the þk-vector this length scale is λ/4. In the

transverse direction of the beam profile, this length scale is roughly half the beam waist ω0. For

a beam waist ω0 ≈ 200 µm at a wavelength of λ = 729 nm we can estimate the coupling strength

variation due to the transverse gradient to be smaller than λ/2ω0 ≈ 2 ∗ 10−3. This is sufficiently

low and can therefore be neglected.

4.6. Radial Modes

The motional sidebands are a versatile and important tool in trapped ion experiments since they

are used to mediate the spin-spin coupling between different ions, frequently referred to as the bus

system in ion traps. While axial sidebands are often used for Mølmer-Sørensen entangling gates,

due to their ‘clear’ frequency separation and intrinsic stability, radial/transverse modes hold the

possibility for far more versatile and complex spin-spin interactions. However, due to their closeness

in the spectrum (bunching), all of the modes need to be ground state cooled in to order assure

proper time evolution of the gates. Further, stabilizing the radial frequency is more complex, since



4.6. Radial Modes 65

the RF-voltage across the RF-blades needs to be measured and controlled. Here, these experimental

issues concerning the radial modes will be addressed.

4.6.1. Spectrum

The calculation of the radial spectrum for more than two ions needs to be solved numerically as

described in chapter 3.1.3. However, the spectrum can be easily measured and resolved as shown

in Fig. 4.16 a).

Here, five ions are trapped at ωax = 2π × 220 kHz and the red sideband spectrum is recorded

with a PMT, where 9 out of 10 peaks are resolved (5th
x and 3rd

y modes overlap). Judging solely

from the PMT data, it is not obvious which spectral peak belongs to which mode, since both

x- and y-modes are excited. One can calculate the radial spectrum given the three COM-mode

frequencies and assign the different spectral features accordingly. A neater way is to use the

camera for detection (Fig. 4.16 b)). The camera reveals that not all ions are excited with the same

amplitude, in fact the amplitudes are proportional to the Lamb-Dicke factors ηλ
i,m = bi,mkx0, where

bi,m are the eigenmode vectors in the direction λ = {x, y}. Figure 4.16 c) shows three close-ups

of the spectrum taken with the camera and indeed, the mode structure is directly visible in the

amplitudes of the ions.

a) b)

c)

Figure 4.16.: a) The radial spectrum taken with the PMT for 5 ions trapped at ωax = 2π × 220 kHz &
ωrad = 2π × 2.713 MHz. The dashed lines show the calculated spectrum for the x-modes (blue) and y-modes
(red). b) The same spectrum as before, however, the camera is used for detection. The close up c) reveals
the mode structure in terms of excitation amplitude of each individual ion.
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4.6.2. Motional mode stabilization

In order to use the radial modes for quantum information processing protocols, they need to be

stable in frequency (≪ ∆m) on slow (seconds to hours) and fast (< 20 ms) time scales. The slow

drifts are mainly caused by changes in the RF voltage VRF, due to fluctuations in the amplification

circuit (RF amplifier and helical resonator). In addition, thermal variations of the trap itself [119]

can change the ion-to-blade distance r slightly. This will affect the radial trapping frequency as

ωrad ∝ VRF

r2 ΩRF
. (4.13)

Regarding the frequency stability, fluctuations of the drive frequency ΩRF = 2π × 28.829 MHz can

be ruled out, since the generated frequency is extremely stable (≪ 1 Hz)32. Hence, the following
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s

Figure 4.17.: a) A schematic drawing of the LCR circuit matching the resonator’s resistance R on resonance
to the source impedance Rs of the voltage source Vs. b) An outline design of the helical resonator with
length l = 182 mm, inner diameter d = 38 mm, wire thickness b = 5 mm and n = 0.1 mm−1 windings . The
resonator is inside of a conductive shield with inner diameter D = 80 mm.

discussion will focus on the radio frequency voltage VRF and the amplification circuit used to

generate it.

In our setup, VRF > 1000 V are applied to generate a deep trapping potential, which is desirable

for long trapping times. In order to reach these high voltages the Rf signal is first amplified33 to

5 W−8 W and then coupled into a helical resonator [155–157] amplifying the voltage. The combined

resonator - ion trap circuit can be represented as an effective LCR circuit with the main purpose

of impedance matching between the RF source and the trap [158], see Fig.4.17 a). The resonance

frequency is given by ω0 = 1/
√

LC with the quality factor Q = 1
R

√
L
C . When the capacitance of

the trap dominates the overall capacitance, the voltage across the trap will be approximately equal

to the voltage over the capacitor C. Moreover, at resonance the peak voltage over the capacitor C

32Rohde & Schwarz SML01, SSB phase noise < −122 dBc/Hz (atf = 1 GHz, ∆f = 20 kHz)
33Mini Circuits LZY -22+ (Gain ≈ 44.4 dB, max output = 30 W, noise figure ≈ 8.3 dB)
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is equal to the peak voltage over the inductor L. Thus, the voltage over an inductor is given by

V (t) =
dIpeak

dt
sin (ω0t) = ω0LIpeak cos (ω0t) (4.14)

where Ipeak is the peak current in the resonator. At times τ , where cos (ω0τ) = 1, the peak voltage

over the trap can be written as:

Vpeak ≈ ω0LIpeak (4.15)

Since the resonator circuit is not loss-free, power is dissipated through the resistance R:

P =
1

2
RI2

peak = RI2
rms (4.16)

where Irms = Ipeak/
√

2 is the root mean square current. Combining equations 4.15 & 4.16 with

the definition of Q we can rewrite

Vrms ≈
(

L

C

)1/4 √

PQ . (4.17)

Equation 4.17 shows directly the parameters influencing the RF voltage and thus the trapping

potential. In a helical resonator the inductance L is a function of the dimensions of the resonator,

such as the coil length l, the coil inner diameter d, the turns per unit length n and the shield

diameter D (for details see figure 4.17 b)). Macalpine et al. [156] give an empirical formula for the

case l > d:

L = l × 0.98425n2d2

[

1 −
(

d

D

)2
]

10−6 µH. (4.18)

The quality factor Q depends not only on the parameters described above but also on the resistance

R which in turn depends on material properties such as resistivity ρ. Due to the skin effect ac-

currents do not penetrate the whole bulk material, hence the current density is highest close to the

surface. For copper the skin depth δ is calculated to be ∼ 30 µm at ΩRF = 2π × 30 MHz. This

circumstance makes Q not only dependent on temperature but also on surface chemistry such as

oxidation. Further, the resonator has a self-capacitance which also varies with dimensional changes.

All the issues mentioned above have a non-trivial temperature dependency and lead to a shift of

the radial mode frequency. A passive stabilization of the resonator circuit by stabilizing the tem-

perature turned out to be insufficient. However, following equation 4.17 the radial mode frequency

can be manipulated by varying the RF power. And, if the RF voltage over the trap is measurable,

one can build a feedback loop controlling the RF power. Figure 4.18 shows schematic diagrams of

the final RF stabilization circuit, after many iterations, used in this thesis.

The RF signal is split34 into two paths, one unaffected and the other one attenuated by −20 dB35

and by a voltage variable attenuator (VVA36). The control voltage of the VVA is set by a PID

34Mini Circuits: ZSC-2-1+ (insertion Loss ≈ 3 dB, insulation ≈ 28 dB)
35Mini Circuits: HAT-20+
36Mini Circuits: ZX73-2500-S+ (attenuation ≈ −41 dB (0 V) to −5 dB (10 V))
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Figure 4.18.: a) A schematic drawing of the stabilization circuit used to stabilize the RF voltage VRF over
the trap by controlling the RF power sent to the resonator-trap circuit. b) The RF voltage is measured
with a capacitive divider and the oscillation signal is converted to DC with a half wave rectifier and then
measured with the PID controller.

controller37, thus controlling the RF power. At the end these two RF paths are recombined and

amplified33. With a bi-directional coupler38 the forward and the reflected power can be monitored

if needed.

The voltage over the trap is measured with a capacitive divider picking off a small amount of

voltage (∼ 1 : 133), which is then rectified and measured with the PID controller, see Fig.4.18 b).

In order to keep the trap capacitance C1 = 9 nF39 the dominant one, the capacitors of the divider

C2 = 200 pF & C3 = 1.5 pF are chosen such that

Ctot = C1 +
C2C3

C2 + C3
= 10.5 pF ≈ C1 (4.19)

Here, the self-capacitance of the helical resonator is neglected. The picked-up RF voltage is rectified

over a Germanium diode40, since they possess the lowest forward current. This setup is also known

as a half wave rectifier, as only half of the oscillation period can pass the diode. The additional

capacitances of the diode and the smoothing capacitor C4 = 10 nF hardly modify Ctot. However,

C3 is changed to 2.3 pF giving a new value for the divider (∼ 1 : 87).

The calibration of the total control path is shown in figure 4.19. The voltage divider and the

rectifier read 1.57 mV/kHz and the radial COM-mode frequency moves by 17.8 kHz/V as a function

of the applied control voltage on the VVA.

In figure 4.20 a), the intrinsic radial frequency stability is shown by repeatedly scanning over

the COM-mode frequency and tracking its peak frequency over two hours. The frequency peak

drifts over many kHz within less than an hour. In fact, without stabilization the frequency changes

37SRS: SIM960 (BW = 100 kHz, input impedance = 1 MΩ, input/out range = ±10 V)
38ZFBDC20-61HP-S+ (coupling ≈ 20 dB, directivity coupling ≈ 30 deciB)
39The capacitances are measured with: Iso Tech LCR-821 at 100 kHz
40IN34A, forward voltage drop ≈ 0.3 V, Cdiode ≈ 0.8 pF
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Figure 4.19.: The sensitivity of the divider and rectifier are measured as a function of the COM-mode
frequency (left) as well as the dependency of the COM-mode frequency on the control voltage.

are so large, that spectral scans were the only reasonable method to monitor the frequency drifts.

By implementing the previously described stabilization circuit, it is possible to coherently drive a

blue sideband over a long period of time (hours). With this, it is possible to perform a motional

Ramsey experiment [159] in order to measure the frequency deviation of the COM-mode from the

laser frequency. For this purpose the electronic superposition
(

|S〉 + eiφe |D〉
)

⊗ |0〉 is mapped

onto the motional superposition |D〉 ⊗
(

|0〉 + eiφm |1〉
)

by transferring the ground state population

|S〉 ⊗ |0〉 to |D〉 ⊗ |1〉 with a π-pulse on the blue sideband (BSB). After an interrogation time τwait

the phase φm is mapped back onto the electronic states by reversing the pulse sequence, as shown

in figure 4.20 b). Due to the η-times smaller coupling on the BSB the time for a π-pulse does not

necessarily fulfill the condition τπ
BSB ≪ τwait. In such a case an effective waiting time is given by

τ eff
wait ≈ τwait +4τπ

BSB/π [122]. Performing many sequential Ramsey experiments we can monitor the

COM-mode freqency stability over long times. Not only the frequency deviation can be extracted,

but also Bloch vector lengths which offer information regarding fast noise (> 50 Hz).

Figure 4.20 b) shows such measurements tracking the mode frequency and the Bloch vector

length over the period of one hour. A histogram of all measurements reveals a stability of ∼ 180 Hz

(one standard deviation) with a mean Bloch vector length of 0.72±0.12 for a τ eff
wait ≈ 500 ms. At the

time of writing this thesis, a new stabilization circuit has been developed by Matthias Brandl and

Gerhard Hendl. In this new generation everything is integrated on a single PCB board consisting

of two independent VVA’s, one for very slow drifts and the other for fast noise. Moreover, instead

of using a half wave rectifier, a temperature stabilized RF power meter is being implemented. First

preliminary data show a stability better than ∼ 10 Hz and a mean Bloch vector length > 0.85 for

τ eff
wait ≈ 4000 ms, which looks very promising.

Limitations regarding the frequency stability of motional modes can arise from a few different

sources. The most obvious one is the temperature dependency of the capacitive voltage divider.

However, this can be solved by having a temperature sensor attached to the divider and a carefully

calibrated temperature-capacitance curve. Less obvious are changes in the ion-to-blade distance by

thermal expansion. A rough estimate gives ∼ 1 kHz K−1 for steel blades (length l0 ≈ 1 cm) with a
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Figure 4.20.: a) (left) A few spectral traces of one radial COM-mode taken over the course of 10 min
without any stabilization (right). The spectral traces are fitted and the peak frequency is plotted as a
function of time. Error bars correspond to the FWHM. The radial frequency drifts over many kHz in less
than an hour. b) Here, the stabilization circuit is implemented as previously described. (left) Subsequent
motional Ramsey experiments are performed to measure the frequency deviation and the Bloch vector length.
Since τπ

BSB = 108 µs 3 τwait = 350 µs, an effective interrogation time is given by τ eff
wait = 488 µs. (right) A

histogram of the frequency deviation shows a Gaussian distribution of the frequencies with a standard
deviation = 179 Hz.

thermal expansion coefficient α ≈ 12 × 10−6 K−1, ion-blade distance r = 565 µm and a trapping fre-

quency ω = 2π×3 MHz41. Since only the voltage over the trap is stabilized and not the electric field

amplitude at the ions’ position, the mode frequency will change when the trap temperature changes.

So far, the effects and dependencies of the radial trapping potential are discussed, but when it

comes to more than a single ion, additional effects need to be considered. In a multi-ion string the

shorter wavelength modes experience a dispersive coupling between the axial and the radial modes.

It is a non-linear, non-resonant Kerr-type coupling [160] which arises from the Coulomb interaction

and depends on the phonon states and frequencies of each mode. The intuitive picture for two ions

is as follows: in the radial tilt mode the two ions experience the lowest Coulomb repulsion at the

turning points (distance is maximal) and the highest repulsion when they are crossing the center

(closest distance). When the axial potential is increased and the ions get closer together, the tilt

mode frequency increases due to the higher repulsion. Further, in the axial stretch mode the ions

swing with opposite phase but the same amplitude, where the ion-ion distance changes over one

41ω = A/r2, where A depends on voltage, drive frequency, charge, mass etc. Then, ∆ω =
(
ωr2/(r − ∆l)2

)
− ω,

where ∆l = α∆T l0 and α is the thermal expansion coefficient.
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period. The amplitude depends on the Fock state and scales with ∼ √
n which in turn shifts the

frequency of the radial tilt mode as a function of the axial stretch mode Fock state population and

vice versa. If the modes are thermally occupied, such as the axial modes in our experiment, it will

cause motional decoherence on the radial modes.

In [159] Roos et al. derive the dispersive cross-Kerr coupling χ for a two ion crystal and measure

the frequency shift of the stretch mode per phonon in the tilt mode δωs/δt at different axial

trapping potentials. At ωax = 2π × 1.716 MHz (ωrad = 2π × 4 MHz) the shift was measured to be

δωs/δt = 20.5 Hz/phonon with an empirical power law δωs/δt ∝ ωβ
ax, where β = 3.25. Even though

the coupling becomes negligible for confinements of ωax = 2π × 220 kHz in the case of two ions, it

remains an open question as to how the Kerr coupling is influenced when additional modes (more

ions) participate. Given the high thermal distribution of the axial mode, as shown in section 8, the

shorter wavelength modes might be considerably broadened. Further dedicated experiments are

needed to investigate these limitations of the mode frequency stability.

Additionally, if the trapping anisotropy is beyond a certain threshold, see section 3.1.3 and [86],

resonant three-mode mixing between the axial and radial modes might occur and introduce further

decoherence.

4.6.3. Ground state cooling

In addition to decoherence induced by frequency fluctuations and mode mixing, the thermal dis-

tribution of the radial modes causes fluctuations in coupling strength and in ac-Stark shifts (see

section 4.5.1). These fluctuations can be reduced by ground state cooling each mode. When

performing Mølmer-Sørensen gates on the axial modes, it is usually sufficient to cool the modes

closest in frequency to the bichromatic laser beam detunings, since all other modes are far away

in frequency space. This is quite different, when the radial modes are used, since their frequency

spreading is much smaller. Therefore, all 2N radial modes must be ground state cooled in order to

make the effective spin-spin interaction work.

Sideband cooling (SBC) is a technique to ground state cool [14, 120, 161] the normal modes of

trapped ions. The cooling rate ΓC depends on the coupling strength Ω on the S1/2 ↔D5/2 transition

and the effective decay rate Γ′ of the quenched system (S1/2↔P3/2↔D5/2):

ΓC =
(ηΩ)2

Γ′2 + 2 (ηΩ)2 Γ′ , with Γ′ =
Ω2

aux

Γ2
aux + 4∆2

aux

Γaux (4.20)

Here, Ωaux is the coupling strength on the D5/2 ↔ P3/2 transition, ∆aux is the detuning of the

854 nm quenching light and Γaux is the decay rate of the P3/2-state. The cooling rate can be

influenced by adjusting Ω and Ωaux. Figure 4.21 a) compares the cooling speed42 of the ‘vertical’

and ‘horizontal’ beam with Rabi frequencies Ω ≈ 2π × 35 kHz resp. Ω ≈ 2π × 300 kHz. (Note:

the ‘tip’ beam can’t be used for SBC as the selection rules allow it to only to drive ∆m = ±1

transitions.) In addition to the lower coupling strength of the ‘vertical’ port, its þk is not optimally

42The cooling speed is quantified by a probe pulse on the red-sideband transition with a coupling strength proportional
to

√
n. In order to measure the cooling rate in terms of phonons, one could use the technique described in section

8.
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aligned with the radial modes (60◦), resulting in a lower Lamb-Dicke factor η ≈ 0.053 compared to

η ≈ 0.061 of the ‘horizontal’ beam. The higher cooling speed of the ‘horizontal’ beam leads also to a

wider spectral feature, as shown in Fig. 4.21 b) and 4.21 c). Here, the residual population in n > 0

after SBC is checked with a weak probe pulse on the red sideband as a function of 729 nm-shift

from the |S, n + 1〉 ↔ |D, n〉 transition. In contrast to the narrow spectral feature of the ‘vertical’

port, the large FWHM≈ 260 kHz of the ‘horizontal’ beam allows simultaneous cooling of multiple,

frequency-separated modes. As such, 38 radial modes can be cooled with less than 4 SBC-cycles43,

see figure 4.22. This, however, is impractical to do with the ‘vertical’ port, since it takes too many

individual cooling pulses.

a) c)b)

Figure 4.21.: a) Comparison of the red-sideband excitation between the ‘vertical’ and the ‘horizontal’ beam
as a function of the sideband cooling time. For a cooling time of τcool ≈ 2.2 ms the coupling on the RSB is
reduced to zero, which means the mean phonon number n̄ ≈ 0. In order to achieve the same mean phonon
number with ‘vertical’ cooling, τcool > 8 ms is required. b) & c) The red-sideband excitation is measured
as the laser frequency of the sideband cooling pulse is shifted. Due to the higher Rabi frequency and higher
Lamb-Dicke parameter, the spectral feature of the ‘horizontal’ beam is much wider with a FWHM≈ 260 kHz
compared to a FWHM≈ 7 kHz in the ‘vertical’ beam. The wide spectral feature allows ground state cooling
of many modes simultaneously.

Another method to cool to the motional ground state is electromagnetically induced transparency

(EIT) cooling. Due to the Fano type spectral feature, it has been proposed [162] for ground state

cooling and has been experimentally demonstrated for cooling a single ion [163, 164]. Its broad

spectral width is suited to cool many frequency-separated modes simultaneously [165, 166] with a

considerably larger cooling rate. However, in the current setup, EIT cooling leads to additional

heating of the axial motional modes, impairing the addressing even more (see 8). This might be

related to the already high axial temperature (low confinement) which lifts the axial motion above

the Lamb-Dicke regime leading to additional light scattering [166].

43An SBC-cycle is a collection of different pulses (see [119, Chapter 3.8]) for one setting of the sideband cooling
frequency.
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5. Quantum simulation of spin models

The purpose of a quantum simulator is to study quantum systems that are inaccessible to clas-

sical supercomputers or difficult to study in the laboratory, due to limited experimental access

of parameters, e.g. lattice constants in a solid or interactions between particles to name a few.

The basic concept is to use a highly controllable quantum system that is described by the same

mathematical model as the system of interest. Over the past decade the experimental controlla-

bility over quantum systems has led to a variety of engineered quantum many-body interaction,

implemented into different physical platforms, such as in NMR [167–170], optical lattices [171–175],

photons [176, 177], ions [64, 178–184] and solid-state circuits [185–189]1. Up to now, trapped ions

remain unrivalled in terms of controllability down to the single-particle level. This allows us to

precisely prepare, manipulate and read out the quantum state, fulfilling all basic requirements for

a functional quantum simulator. In fact, trapped ions, along with neutral atoms in optical lattices,

are at the moment the most promising candidates for a full-fledged quantum simulator2.

This chapter presents a trapped ion quantum simulator, specifically for the implementation

of interacting spin models. The first section, 5.1, is concerned with the theoretical background

regarding those spin models, namely the transverse Ising model and the XY -model. It provides the

reader with the necessary understanding for the following sections and offers additional information

for completeness. The second section, 5.2, will briefly summarize the physics of Lieb-Robinson

bounds3, first in general and then specifically for power law decaying interaction, preparing the

reader for the discussion of section 5.5. A central subject in 5.2 is the dispersion relation, which

provides intuitive understanding for the physical behaviour of different power law regimes. The

third section of this chapter, 5.3, is a step-by-step guide on to how to set up and calibrate the

effective spin-spin couplings. In addition, techniques are discussed how the Jij-coupling matrix

can be measured. Furthermore, a method is presented for extracting the power law exponent

α, which relies on the discussion of the dispersion relation in section 5.2. In the fourth section,

5.4, additional experimental details and observations regarding the experiment ‘Spectroscopy of

Interacting Quasiparticles in Trapped Ions’ [28] are presented. This section showcases methods for

spectroscopically probing the engineered interactions by preparing superpositions of eigenstates and

analysing the time evolution of the system. The fifth and last section, 5.5, treats the experiment

published in ‘Quasiparticle engineering and entanglement propagation in a quantum many-body

system’ [26]. Here, the first experimental observation on propagation of entanglement is reported.

1This reference list outlines the rapid progress in the field, and is far from being complete.
2In some sense ions and atoms pursue orthogonal approaches. While the ‘ion-approach’ is more a bottom-up process,

that is from highly controllable single particles to large systems, neutral atoms follow a top-down approach, starting
from large-scale system trying to obtain single-atom control.

3These are the upper bounds to the velocity at which information and correlations can propagate in an interacting
many-body system.
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Moreover, the tunability of the engineered interactions is used to investigate Lieb-Robinson bounds

in different regimes.

5.1. Spin models

The term spin models is a smorgasbord of mathematical models, primarily explaining the physics

behind magnetic phenomena, and includes classical and quantum mechanical descriptions of inter-

actions between particles. This section will briefly introduce two special instances of the so called

n-vector models4: transverse Ising-model with n = 1 and XY -model with n = 2.

5.1.1. Transverse Ising and XY -Model

The Ising model, introduced by Wilhelm Lenz in 1920 and handed down as a problem to his student

Ernst Ising5, is one of the most well-known toy models in physics.

The model consist of a Hamiltonian with two parts :

HIsing = HI + HB = −
N∑

i,j

Jijσx
i σx

j −
N∑

i

Biσ
z
i (5.1)

where HI describes a spin-spin interaction along one axis and HB is an interaction with an external

B-field in a transversal direction. The spin-spin coupling strength is defined by the coupling matrix

Jij and in the simplest form of the model, Jij is homogeneous, time-independent and contains

only nearest-neighbour interactions. The nearest-neighbour case is often denoted by 〈i, j〉 in the

sum ‘
∑

〈i,j〉’
6. In order to distinguish models with a transverse field |Bi| > 0 from those without

(Bi = 0), the former ones are often referred to as transverse Ising models, where in most cases

the external field is assumed to be time-independent and homogeneous over all spins, i.e. Bi = B.

Depending on the sign of Jij and the sign convention given in equation 5.1, the spin-spin interaction

is divided into three classes:

Ferromagnetic (FM) for Jij > 0

Anti-ferromagnetic (AFM) for Jij < 0

Non-interacting for Jij = 0

The Ising model becomes highly non-trivial for spin-spin interactions beyond nearest-neighbours

(NN) couplings. An early extension of the NN-model were the so called ANNNI (axial next-nearest-

neighbour interactions) models [190, 191] describing the interaction of nearest and next-nearest

spins along one of the crystallographic axes of the lattice. Despite their simplicity, these models

4Here, n denotes the dimensionality of the interaction. The case n = 3 is known as the Heisenberg model and n = 4
is a toy model used in the standard model of particle physics.

5Ising solved it for the first time in his PhD thesis. He specifically solved the one-dimensional problem with nearest-
neighbour σx

i σx
j interactions and, without a transverse field, analytically and was able to show that there is no

phase transition in this case. It took more than 20 years until Lars Onsager (1944) solved the model for a 2
dimensional square-lattice showing that in higher dimensions phase transitions can indeed exist.

6Some authors use ‘
∑

i,i+1
’ for one dimensional systems.
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are still capable of explaining some experimental observations in solid-state physics[192]. However,

almost no interactions found in nature have strict zero coupling beyond their close neighbours as

most interactions decay polynomially in strength over distance7. To model such interactions, the

Ising interaction strength can be written as

Jij =
J0

|i − j|α (5.2)

with a power law decay α, J0 = max{Jij} as an overall scaling factor and |i − j| denoting the

distance between spin i and j. With regards to trapped-ion quantum simulators, the decay can be

approximated by Eq. 5.2 with 0 ≤ α ≤ 3 (chapter 3.3.4).

For the remaining discussion only one-dimensional strings of spins will be considered. The ground

state energy and its properties strongly depend on the competing terms HI and HB, and their

relative strengths. In the zero field regime, B = 0, the ground states solely depend on the sign of the

interaction and the interaction range. For an FM-coupling one finds a two-fold degenerate ground

state consisting of a symmetric and an antisymmetric superposition |↑↑ . . . ↑↑〉x ± |↓↓ . . . ↓↓〉x,

independent of the interaction range. In the case of NN-AFM-coupling, the ground state is also

two-fold degenerate, where the spins show a Neel ordering |↑↓↑ . . . ↓↑↓〉x ± |↓↑↓ . . . ↑↓↑〉x, see inset

figure 5.1 a). However, as the AFM-interactions become longer ranged, a phenomenon known

as spin frustration emerges8. The spins try to anti-align with respect to each other, which is

not possible as soon as the interactions are beyond nearest-neighbour couplings. Different spin

orientations compete against each other, as visualized in the inset of figure 5.1 b) that leads to a

highly degenerate ground state compared to the case with short range interactions.

As we implement only AFM-couplings only those will be considered in the forthcoming sections

and discussions of this thesis9.

On the other hand, the ground state in the high B-field regime (|B| ≫ |J0|) is a fully polarized

spin state |↑↑ . . . ↑↑〉z along the B-field axis (z) and shows a paramagnetic ordering along the z-

direction. The energy spectrum splits up into N + 1 subspaces (see Fig. 5.1), where N is the

number of spins. These subspaces can be identified as the number of excited spins l (or spins

anti-aligned with the B-field)10. In fact, the eigenstates can be written as entangled states in the

form of Dicke states (see chapter 2.2) with non-uniform coefficients. For example, eigenstates in

the one-excitation subspace with N = 5 are of the form

|ψ〉 = c1 |↑↓↓↓↓〉 + c2 |↓↑↓↓↓〉 + c3 |↓↓↑↓↓〉 + c4 |↓↓↓↑↓〉 + c5 |↓↓↓↓↑〉 (5.3)

where the exact coefficients depend on the kth-eigenstate and α (see Eq. 5.2) as will be discussed

in section 5.4.

7Coulomb interaction ∼ 1/r2, dipole-dipole interaction ∼ 1/r3, London dispersion ∼ 1/r6. There are also exponen-
tially decaying interactions such as screening. One could count engineered systems such as neutral atoms in an
optical lattice as an example of strict NN-interaction.

8In systems with more than one dimension, spin frustration can also occur with NN-interactions.
9As the FM-couplings only differ by the sign of the coupling matrix, Jij , the Hamiltonian spectrum is an inversion of

the AFM-Hamiltonian spectrum, e.g. the AFM-ground state is the highest excited state in the FM-Hamiltonian.
10For example the ground state has zero excitations, the next subspace has states containing one delocalized excitation

and so on.
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Figure 5.1.: Ising Hamiltonian energy spectra of a five spin system as a function of the transverse B-field
strength for a) nearest-neighbour AFM-coupling (α → ∞) and b) infinite range AFM-interactions (α → 0).
The inset of a) shows the two-fold degenerate ground state at B = 0 and the inset of b) visualizes spin
frustration emerging from the long range coupling, resulting in a highly degenerate ground state at B = 0.
The high field regime B ≫ J can be described by an HXY -Hamiltonian.

When the transverse B-field goes to infinity, B → ∞, the subspaces become completely separate

and uncoupled, since connecting subspaces involves additional spin flips that are energetically

unfavourable. In such a case, the physics of a single subspace can be described by the XY -

Hamiltonian (cf. section 3.3.3)

HXY =
∑

i,j

Jij

(

σx
i σx

j + σy
i σy

j

)

=
∑

i,j

Jij

(

σ+
i σ−

j + σ−
i σ+

j

)

, (5.4)

where σi± = σx
i ± iσy

i are the spin creation and annihilation operators, respectively. The terms

‘σ+
i σ−

j + σ−
i σ+

j ’ are also known as flip-flop operations, destroying a spin excitation at site j and

creating one at site i and vice versa. Hence these operations (and therefore Hxy) are excitation

conserving. Only states with equal spin excitations couple to each other via Jij and, as a result, the

degeneracy of each manifold is lifted into
(N

l

)
-levels which shall be labelled as El

k, where k defines the

eigenstate of manifold l. In the case of α > 1 11, the total splitting of the one-excitation manifold12,

that is the difference between the lowest and the highest eigenstate, is very well approximated by
2
N

∑

i,j Jij and becomes exact in the thermodynamic limit of the NN-coupling.

The high field eigenstates E1
k with one excitation12 take on the form of spin waves as visualized

in figure 5.2 a). An intuitive argument as to why spin waves are formed goes as follows: the

transverse field wants to align all spins along the z-direction, however, the perturbatively weak

spin-spin interaction tries to anti-align the spins in the x-direction. As a consequence the spins will

slightly move out of the z-direction and form standing waves in one plane due to the open boundary

conditions of the spin string13. The state with lowest energy has the shortest wavelength14.

11The case α = 0 is not as relevant in the prospect of this thesis, but shall be briefly mentioned at the end.
12 As well as the l = N − 1 manifold due to symmetry.
13In the case of periodic boundary conditions, the spin wave would have a helical structure.
14This is the closest state to a Neel-ordering; for FM-coupling it is the longest wavelength state.
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Interestingly, even though the exact ci’s depend on the interaction range, the main features

such as the spin wave nodes and anti-nodes remain the same, as long as α > 0. Figure 5.2 b)

compares these coefficients for different α’s, showing that indeed the spin waves retain their wave

like structure, only slightly deformed. The most distinctive modification happens to the longest

wavelength state, where the edges start to flatten out.
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Figure 5.2.: a) A visual example of a spin wave with N = 7 and k = 4. Due to the open boundary condition,
the spins are deflected in a plane. b) Comparison of the exact coefficients for all k-modes for different α.
From left to right α → ∞, α = 3 and α = 0.5. The overall structure doesn’t change, only the amplitudes
differ slightly.

Due to the clear energy separation of these eigenstates, the spin waves can be interpreted as quasi-

particles, collective excitations of an interacting many-body system15 with a dispersion relation. In

fact, the dispersion relation contains all relevant physical informations about a single quasiparticle,

for example its effective mass. More information about dispersion relations and their relevance to

propagation of information and Lieb-Robinson bounds can be found in section 5.2.

Creation and annihilation operators of quasiparticles are a useful method of describing an in-

teracting many-body system, especially with regards to the experiments presented in section 5.4.

The kth-spin wave mode is created from the vacuum state (ground state) by |k〉 = σ+
k |0〉, with

the creation operator σ+
k =

∑

j ck
j σ+

j (σ−
k =

∑

j ck
j σ−

j is the annihilation operator). By means

of these operators, the Hamiltonian describing the single-excitation subspace (containing a single

quasiparticle) can be mapped to H =
∑

k εkσ+
k σ−

k . The dispersion relation εk is then obtained by

diagonalizing the Jij coupling matrix16. As a consequence the dispersion relation depends directly

15Quasiparticles are an emergent phenomenon and they can not exist in free space, however, they show particle-like
properties such as effective mass, energy and momentum. Amongst the long list of quasiparticles, some of the
most prominent ones are Phonons, Excitons, Plasmons and Cooper pairs.

16This doesn’t hold any more for the higher excitation subspaces, except for the second highest subspace, which
contains also l = N energy levels. The diagonalization of a N × N matrix yields maximally N eigenvalues.
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on the interactions and their spatial decay. One can identify three distinct regimes of α where the

dispersion relation shows a qualitatively different behaviour [193] as will be shown in section 5.2.

5.2. Lieb-Robinson bounds

A central question in physics is: “What is cause and what is effect?”, well known under the term

causality.

According to the theory of relativity, the concept of causality is well defined: the speed of light sets

an ultimate upper limit on the speed of how fast information and/or correlations can propagate.

However, none of the five postulates in quantum mechanics ensures causality in non-relativistic

quantum mechanics. In fact, causality emerges due to the locality of interactions, i.e. interactions

act only on a finite spatial extent. In 1972 Lieb and Robinson mathematically proved the existence

of an upper bound, nowadays known as the Lieb-Robinson bound [27]. This bound predicts a finite

velocity, known as Lieb-Robinson velocity, with which correlations/information can propagate in

an interacting system with finite range interactions17. In contrast to relativity, the Lieb-Robinson

velocity is not universal, but depends on the underlying interactions. As an important implication,

distant parts of a physical system can be viewed and treated independently for dynamics shorter

than the time it takes to ‘connect’ those parts, independently on the quantum state. Introduction

and reviews regarding Lieb-Robinson bounds can be found in [194–196].

Consider two operators, OA and OB(t), which at time t = 0 act on two disjoint regions A and

B separated by a distance L. The Lieb-Robinson bound can be expressed as a bound of the

time-dependent commutator [194, 195]

‖ [OA, OB(t)] ‖ ≤ ‖OA‖ ‖OB‖g(L)
vt

L
, (5.5)

where g(L) is an exponentially decaying function with L and v is the Lieb-Robinson velocity, both

depend on the Hamiltonian under consideration. The operator norm ‖O‖ of a hermitian operator

O is defined as the absolute value of the largest eigenvalue of O. In a formal way, an arbitrary

operator norm can be written as

‖O‖ = max
ψ,|ψ|=1

|Oψ|, (5.6)

where the maximum is taken over vectors ψ with norm 1 and |Oψ| denotes the norm of the vector Oψ

[194]. Originally the Lieb-Robinson bounds were formulated for local interactions such as nearest-

neighbour interactions, but were soon after generalized to exponentially decaying interactions [197].

In both case, NN and exponentially decaying interactions, one can define a light cone in the

space time diagram, where all correlations are bound within a causal region and are exponentially

suppressed [198, 199] beyond this light cone18, see figure 5.3 a).

More recently, bounds were formulated for interactions decaying with a power law over distance

[193, 200–202]. However, as the interaction grow in range, the strict light cone picture becomes

17The original proof only considered nearest-neighbour interactions.
18Note: Some authors use here the term sound cone or wavefront. We will make equivalent use of light cone and

wavefront.
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less of a valid description. With decreasing α (Eq. 5.2), the boundary of the causal region starts

to ‘soften’, as the correlations outside the regions become only algebraically suppressed ∼ r−α. In

addition, the light cone ‘deforms’ from exhibiting a linear character in space time to a polynomial

character [201].

Figure 5.3 b) shows numerical simulations of the magnetization, mi(t) = 〈σz
i (t)〉, of a locally

quenched HXY -Hamiltonian for three different values of α [193]. One can qualitatively identify

three distinct regimes of dynamical behaviour, corresponding to three distinct ranges of alpha,

where the bounds exhibit different behaviour. For α > 2 the excitation (quench) is light-cone-like

bound as in NN-range models (as well as for exponentially decaying models). In an intermediate

regime, 2 > α > 1, there is no well-defined light cone, but the excitation needs a finite time to

expand. Finally, for α < 1, the propagation speed of an excitation becomes faster for larger systems,

as it will be discussed later.
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Figure 5.3.: a) A schematic diagram of a light cone. The part within the light cone is known and no
(significant amount) of information can travel faster than the light cone. This means that all correlations
generated between the parts of the system outside the light cone, and the parts inside the light cone are
exponentially suppressed. b) Numerical simulation of a locally quenched HXY Hamiltonian with 100 spins
simulated for 3 different α’s (reprinted from [193], ©APS). The spin on site 50 is excited and the single site
magnetization mi is shown as a color plot for various times in the dynamics. One can identify 3 regimes:
α > 2, where the light cone picture is valid; 2 > α > 1, no light cone, but correlations have a finite velocity
and α < 1, where correlations spread out instantaneously. c) The observed behaviour regarding light cones
can be explained by examining the dispersion relation, here calculated for a system of 500 spins. In the short
range interaction regime and for α > 2, the dispersion shows a cosine like structure and most k-modes have
the same finite group velocity vg = ∂εk/∂k. In the intermediate regime, 2 > α > 1, the dispersion relation
flattens for lower k-modes, but shows a cusp at higher k resulting in a large maximal velocity vmax. For
truly long range interactions, i.e. α < 1, the group velocity is nearly zero for most k-modes except for a few,
where the maximal velocity vmax diverges.
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This behaviour can be intuitively understood by the quasiparticle picture of the single excitation

subspace introduced in section 5.1.1. By examining the dispersion relation one finds again three

qualitatively distinct regimes, as shown in figure 5.3 c). Given the dispersion relation, one can

directly calculate the group velocity vg = ∂εk/∂k of each quasiparticle k-mode19. For short range

regimes, that is ∞ > α > 2, the dispersion relation has a cosine-like shape and the maximal group

velocity barely depends on α. Most of the quasiparticle modes have similar group velocities, except

those towards the ends of the spectrum (min εk, max εk) where vg → 0. Hence a clear wavefront can

be observed in this regime as the wavepaket barely disperses. In the case of α < 2, the dispersion

relation develops a cusp at one end that becomes sharper with decreasing α and at the other

end the curve becomes flatter. This leads to the effect that most modes have a rather low group

velocity and the excitation stays localized for a long time. The maximal group velocity diverges

with the system size N as vmax ∝ (1/N)α−2. Furthermore, the time for the fastest quasiparticle

to reach the boundary scales as tb ∝ N/vmax = Nα−1 and increases for larger systems [193]. As

the interaction range increases further to 0 < α < 1, the maximal group velocity diverges even

stronger, vmax ∝ (1/N)(α−3)/2. In this case, the time to reach the system boundaries decreases

with system size, tb ∝ N (α−1)/2. In the extreme case α = 0, all modes have a group velocity vg = 0

except for one that has vg = ∞. A detailed, theoretical analysis can be found in [193].

The experimental demonstration of how to measure the dispersion relation is the subject of section

5.4.2 and the experimental investigation into the Lieb-Robinson bounds in an engineered quantum

many-body system is presented in section 5.5.

5.3. Setting up and calibrating the interactions

This section briefly summarizes the procedures and experimental tricks for setting up the Ising

and the XY -interactions in the lab. Further, techniques will be discussed on how to characterize

those interactions, specifically how to measure individual elements of the Jij-matrix. In fact, the

very same technique can be used for error diagnostics and debugging the experimental setup.

The next sections will present further methods to directly measure the ground state gaps, the

dispersion relation and the interactions between quasiparticles. These latter methods are published

in ‘Spectroscopy of interacting quasiparticles in trapped ions’ [28].

5.3.1. Setting up the interactions

This section shall serve as a step-by-step guide for setting up the effective spin-spin interactions in

our setup. Clearly there might be different strategies for the individual steps, some of them ‘quick

and dirty’, others more elaborate, but here the most common instructions will be presented. Since

the laser-ion interaction is an MS-interaction (see sections 3.3), except for coupling to many radial

modes, the procedure is quite similar to setting up entangling gates, with a few distinct features

pointed out in this section.

First, the two components of the bichromatic light field have to be balanced, i.e. the FAOM

(section 4.2) needs some tweaking such that both light intensities at the output are as equal as

19If information is carried by a quasiparticle, the group velocity tells how fast the information propagates.
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possible. This is usually done by repeatedly switching between one of the RF-sources being off and

the other running and vice versa. The single-frequency light field intensities are measured with

a photodiode at the end of the optical path and, by adjusting the angle FAOM in the horizontal

plane, the two intensities can be equalized. After this course alignment, a more accurate calibration

is done using the ion. Specifically, the bichromat is detuned such that one of the components drives

the carrier resonantly20, while the other is turned off, and the Rabi frequency is measured. This

step is then repeated with the other component set on resonance and the two Rabi frequencies are

compared. If they are not equal within 0.4 − 0.6%, the individual RF-powers have to be adjusted

accordingly21. As soon as the Rabi frequencies are within the margin, the entire bichromatic light

field is shifted in frequency such that the blue and red part are symmetric around the carrier

frequency and detuned from the radial trapping frequency by ±∆t, respectively.

Important note: The relation ∆t ≫ ηΩ must hold in order to be in the adiabatic limit22, see 3.3.3.

If very long range interactions are desired, α ≈ 0, a better strategy might be to set up the gates

along the principle string axis and drive the axial COM-mode23, as this allows to keep a large

enough ∆t and not to violate the adiabatic condition.

The next step is to reduce the induced ac-Stark shifts by means of a third light field. This

section will make extensive use of the discussion presented in sections 4.4.2 and 4.5. Here, a

technique is presented which directly uses the bichromat to measure the induced light shifts.

When |B| ≫ J0, we operate in the regime of the XY -Hamiltonian. Preparing the ground state

|↓↓ . . . ↓〉 =
∣
∣
∣S1/2S1/2 . . . S1/2

〉
24 and evolving it under HXY won’t change the excitation of the ions,

as this state is well separated in energy to other states. When scanning the centerline detuning

δc ≡ 2 ∗ B, one will finally reach a point where the separation of the ground state and next excited

states is ∼ Jij . At this point, the ground state will couple to other states and one can observe

correlated spin flips, i.e. pairs of spins flip together; past this point the coupling is again suppressed

and all ions stay in S1/2, as shown in figure 5.4 a). The center of the peak reveals the ac-Stark

shift to be compensated and the width is somewhat proportional to Jij
25. The third light field is

then switched on with a certain frequency and RF-power, in order to compensate for the ac-Stark

shifts. Care must be taken when choosing the frequency, as higher order beat frequencies might

(near-)resonantly drive unwanted transitions (section 4.5.1). A common trichromat frequency in

our experiment is 1.2 MHz for ωrad = 2.7 MHz and ωax = 0.22 MHz. After setting δc = 0, the

trichromat RF-power is scanned and the ion excitation is monitored. The RF-power for which a

peak excitation (of correlated spin flips) is observed, is chosen for the final setting. This can be

also rechecked by again scanning the transverse field, i.e. δc, and the peak center should now be at

20In general the bichromat has to be detuned by ±ωrad + ∆t, where ωrad is the radial trapping frequency and ∆t is
the detuning from the sideband. At this point the third light field is turned off and the centerline detuning δc is
set to zero.

21These are typical values which have been used over the years.
22Such that entanglement between spin and motion is negligible.
23Remember, the smaller ∆t the smaller α, see section 3.3.4. How well such axial gates will work depends on the

number of ions, trapping parameter, and SBC and has to be checked first.
24It works equivalently with |↑↑ . . . ↑〉 = |DmDm . . . Dm〉.
25There isn’t an exact relation between the peak width and J0, since it depends as well on α. The smaller α the

more elements in Jij contribute to the width. Further, the width also depends on the differential ac-Stark shift,
which hasn’t been compensated at this point.
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a) b)

Figure 5.4.: A scan of the center-line detuning δc ≡ 2B for a string of five spin when the third compensation
light field is a) switched off and b) switched on with right parameters, that is RF-power and frequency such
that all ac-Stark shifts are compensated. The observed peak positions are proportional to the induced ac-
Stark shifts. As soon as B ≈ Jij correlated spin flips are no longer suppressed resulting in the observed spin
excitation when starting with an initial state |↓↓↓↓↓〉.

δc = 0, see figure 5.4 b). The required RF-power depends on the bichromat Rabi frequencies and

on the chosen trichromat frequency26.

These steps might need some iterations, since changing the RF-power of the third light field

slightly influences the RF-power bichromatic light fields and vice versa. Nevertheless, once the

interactions are setup properly the re-establishment on a follow-up day is straightforward.

Something which hasn’t been mentioned yet is for how long the HXY -interaction is turned on.

This is a tricky question, since the optimum T depends on the bichromat Rabi frequency and the

detuning ∆t, hence on the Jij-matrix. If T is too short, then hardly any excitation is observable.

On the other hand, if T is too long, the dynamics will ‘overflop’ and couple to many other states

producing artificial structures such as asymmetric peaks and multi-peaks. As a rule of thumb, a

reliable duration Topt is the time it takes a quenched spin in the middle, i.e. |↓↓ . . . ↑ . . . ↓↓〉 to be

at 0.5 excitation, see figure 5.5 a).

Finally, an efficient but less quantitative check of how well the interaction is set up, is to com-

pare the time dynamics between experiment and numerical simulation of a local quench, or in lab

jargon ‘single-ion walk’27. Here, the middle spin is flipped with the addressing beam and the system

is evolved under the HXY -Hamiltonian for several ms, depending on Jij-coupling strength. The

single-ion excitation, which corresponds to the single-spin magnetization σz
i

28, is measured with

the camera at different time points in the dynamics, as shown in figure 5.5 a).

Comparing the arrival times and amplitudes of the single-ion excitations (σz
i ) allows us to infer

valuable information. First of all, one can check that the experiment works as expected, that is if

26To a lesser degree on the bichromat frequency, as this influences the coupling into the FOAM and thus the Rabi
frequency. The change in the induced ac-Stark due to frequency change is negligible.

27What sounds like a mere calibration technique that is routinely used, is in fact one of the biggest results achieved
during this PhD work.

28However, with a different normalization, mi = 2 ∗ pi − 1, where mi is the magnetization of spin i and pi is the
measured excitation probability.
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all experimental parameters are properly calibrated, e.g. Rabi frequencies, and if all ac-Stark shifts

are well compensated. However, one important note has to be made: even though the bichromatic

Rabi frequencies can be precisely measured, the values in the numerical simulation differ by a few

percent from the experimentally obtained values - in order to match the simulation to the data.

It is not clear why this is the case and further investigations are needed to clarify the discrepancy

between experimental calibration and simulation. In any case, this Rabi frequency is the only

parameter that requires some adjusting (from measured values) in order to produce the theory

plots throughout this chapter.
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Figure 5.5.: Simulated time evolutions where the middle spin is quenched for three different cases. (top)
Shows individual traces of the single-ion excitation (corresponding to single-spin magnetization σz

i ) and
(bottom) shows the same dynamics but in a different visualization style giving a better overview of the
dynamics. a) Ideal time evolution. Topt indicates the optimal time of the interaction for measuring correlated
spin flips, as described in the text and figure 5.4. b) Time evolution without compensation of differential ac-
Stark shifts which arise from the Gaussian beam profile. c) Time evolution with random but static ac-Stark
shifts imprinting a potential landscape which randomly distorts the evolution.

Due to the qualitative nature of these checks, error syndromes are not unambiguous, nevertheless

two common examples shall be explained. Figures 5.5 b) and c) show time evolutions with the same

settings, Rabi frequencies, detunings etc, except that the ac-Stark shifts are not compensated in

the right way. An overall light shift that is equal on all ions is irrelevant, but frequency differences

between spins can be understood as additional local fields, Bi, modifying the potential landscape.

Since the Bi’s tune the spins out of resonance, the flip-flop terms σ+
i σ−

j + h.c. become attenuated.

In figure 5.5 b), the trichromatic compensatory field is turned off and the Bi’s follow a Gaussian

distribution due to the beam profile. The quench becomes more localized in the middle as it can

be seen by the revivals of the middle spin, but the evolution in general is symmetric with respect

to the quench site.

However, if the trichromat is turned on and additional ac-Stark shifts, arising for example from

reflections of the viewport, act randomly upon the ions the whole time evolution becomes distorted,

as shown in Fig. 5.5 c). A strong indication for reflections of the trichromatic beam is when repeat-

edly taking time evolutions and they change over a few minutes time scale. An comprehensive list of
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various effects which are capable of corrupting the ac-Stark compensation is given in section 4.5.1.

A more elaborate and quantitative method to measure differential light shifts is presented in the

following section.

5.3.2. Measuring the elements of Jij

The time evolution observed in single-site quench experiments allows us to calibrate the Rabi

frequencies in the theoretical simulation. The calibrated theoretical simulation then provides an

Jij-matrix. However, it is possible to directly measure each individual element of the coupling

matrix. This can be done by exploiting the single-ion addressing with the following protocol. First,

the interactions are set up as previously described. Second, to measure the ij-th element of the

matrix all ions except i and j are hidden in a different Zeeman level (for details about hiding

see 6.3.2 and references therein). Next, spins i and j are prepared in a |↑i↓j〉 or |↓i↑j〉 state and

can be coupled by the effective spin-spin Hamiltonian, while ensuring that the effective transverse

B-field is large enough, δc ≫ J0, in order to operate in the HXY -regime. This ensures that only the

transition |↑i↓j〉 ↔ |↓i↑j〉 is driven29 and the Rabi frequency Ω↑↓
ij is exactly the coupling strength

element Jij between those two spins, as shown with experimental data in figure 5.6 a). By repeating

the procedure for all (N2 − N)/2 pairs, one can map out the complete coupling matrix as shown

in figure 5.6 b).

Remarkably, the coherent flopping can be observed beyond 100 ms, which is a direct consequence

of the decoupled subspaces with different spin excitations. Each of these subspaces is a decoherence-

free subspace (DFS) [203, 204] with respect to external B-field and laser frequency fluctuations, as

the energy of each state in such a subspace is influenced in the same way. Despite the DFS, there

is an ultimate limit due to the finite lifetime of the excited D5/2-state (∼ 1 s). As can be seen in

Fig. 5.6 b) the elements J16, J17 and J27 could not be measured as they are of the order of 1 Hz or

less.

Moreover, not only the frequency can be measured but also the amplitude. Similar to an off-

resonantly driven two-level atom, the oscillation changes its frequency and amplitude with the

detuning ∆ from the resonance frequency, as shown in equation 3.52. Hence, the very same proto-

col allows us to measure the transition frequency difference between ion i and j. In fact, only the

absolute value of the difference is directly measurable, nevertheless by combining different spin-

pairs it is possible to infer the signs too. Measuring all combinations of spin-pairs allows one to map

out any residual or uncompensated effects, which inhomogeneously shift the transition frequency

of the ions in the string, as described in chapter 4.3.1 and 4.4.

Although the protocol is tedious for large spin-chains, it is the most accurate experimental

protocol to infer the Jij-matrix. Other protocols indirectly deduce Jij by measuring the energy

spectrum of the Hamiltonian, for example, selectively exciting eigenstates of the Hamiltonian,

as will be shown in the forthcoming section ‘Spectroscopy of quasiparticles’. A slightly different

approach was pursued in [205], where the system is ‘shaken’ in order to excite many eigenstates,

which then can be spectroscopically resolved.

29A large δc pushes the states |↓↓j〉 and |↑↑j〉 out of resonance, since they have different numbers of excitations.
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Figure 5.6.: a) An effective HXY interaction drives the transition |↑i↓j〉 ↔ |↓i↑j〉 for three different spin

pairs. The measured Rabi frequency Ω↑↓
ij (black circles: data, red line: fit) directly correspond to the coupling

element in the matrix Jij . The long coherence times of more than 100 ms are result of the decoherence-free
subspace. b) By measuring all (N2 −N)/2 combinations of spin-pairs, it is possible to map out the complete
coupling matrix. This is an measured example of a Jij-matrix for parameters ωz = 220 kHz, ωx = 2.69 MHz,
ωy = 2.66 MHz and ∆t = 40 kHz. The theoretically calculated Jij-matrix is overlaid with transparent bars.

5.3.3. Determining the power law decay α

The determination of α in equation 5.2 is not trivial, since the power law decay over distance is just

an approximation, see equation 3.80. The actual decay can deviate significantly from a pure power

law depending on the trapping parameters and detunings [103]. Figure 5.7 a) shows simulated

spin-spin coupling strength decays over distance for a few different combinations of parameters. As

shown, none of the calculated values follow a power law decay; the question is how to assign an α

that most accurately approximates the real physical system.

A possible method is to only take the first few interactions into account, such as the nearest

and next-nearest neighbours - since the longer the spin-spin separation, the less the interactions

contribute to the Hamiltonian - and fit a power law to those ‘accountable’ interactions. However,

this doesn’t seem right since it will always neglect exactly those long range interactions of interest.

Another method is to assign an α|i−j| to all pairs of spins starting from spin i = 1 and average over

all
∑N−2

j α|1−j|/(N − 2). However, this approach has its flaws as explained later.

Here, we present a method which indeed tries to capture the relevant physics behind the long-

range interactions. As described in the previous section, the dispersion relation defines many

physical properties of the system, such as its dynamical time scales, and it also strongly depends

on the interaction range. Hence, we use the dispersion relation itself as a measure to find the best

fitting α. The experimental coupling matrix Jij can be easily obtained30 and, by diagonalizing

the matrix, one gets directly the dispersion relation εexp
k

31. The very same can be done with

a theoretical Jij that decays with a power law α yielding εtheor
k (α). By simply minimizing the

distance |εexp
k − εtheor

k (α)| one can find an α that describes the experimental system as close as

30Either by measuring all individual elements or by running the simulation with physical parameters, as we usually
do.

31In order to compare the dispersion relation to other experimental parameters, the Jij matrix is normalized by the
nearest-neighbour couplings J〈i,j〉.
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Figure 5.7.: a) Deviation from a pure power law decay Jij ∝ 1/|i−j|α. The coupling matrix is calculated for
different ∆t, see legend, each with the same trapping frequencies parameters ωax = 219 kHz, ωx = 2.710 MHz
and ωx = 2.68 MHz. The coupling strengths are normalized by the NN-coupling. Dashed red lines show the
power law decays α = 1, 2, 3. b) Comparison between the dispersion relation εexp

k obtained from experimental
parameters and the dispersion relations εtheor

k (α) from a pure power law decay, where α is obtained by 3
different methods: α = 1.13 is obtained by minimizing the distance |εexp

k − εtheor
k (α)|, α = 0.93 results

by comparing NN and NNN-couplings and α = 1.49 by averaging over all decays α|1−j|, see text. The
minimization method seems to be best suited to capture the relevant physical properties, such as the (non-)
diverging behaviour for higher k-modes.

possible.

Figure 5.7 b) compares the experimental dispersion relation with the ones for α obtained by

the three different methods. Although at first glance all dispersion relations seem to fit quite

well, only the one obtained by distance minimization of the dispersion relations describes the long

range behaviour properly and captures the right (non-) diverging behaviour, whereas the other two

methods either over or underestimate the curvature, respectively.

5.4. Spectroscopy of quasiparticles

Spectroscopy in general is one of the most established and reliable techniques to measure energies

of systems across all fields of physics, due to its broad applicability. The core principal is always

the same: a physical system of interest is excited usually by means of electromagnetic waves32 and

the system’s energy-resolved response is observed.

Here, a spectroscopic technique is applied to an engineered quantum many-body system by con-

trollably exciting specific eigenstates of a many-body Hamiltonian, which then yields information

about the energy spectrum of the Hamiltonian. The basic concept of the spectroscopic procedure

is related to Ramsey spectroscopy, where a superposition of two states of interest is created and its

time evolution is investigated. As a consequence of the energy difference between those two states,

a beat note is observable with a frequency proportional to the energy separation. The particularity

of this technique is that the states prepared into a superposition are the many-body ’quasiparticle’

32Not only restricted to em-waves, but acoustic waves, mechanical waves in solids and even particles such as electrons
and neutrons, due to their de Broglie-wavelength, are used for spectroscopy.
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modes of the interacting system. For this, techniques had to be develop to address and excite

individual fundamental modes of the system.

In order to establish a common terminology, Fig. 5.8 sums up the most important subjects. Figure

5.8 a) shows a schematic energy spectrum of a Ising-Hamiltonian in the high B-field regime, de-

picting the relevant energy subspaces. The structure of the corresponding energy eigenstates of the

one-excitation subspace are schematically showcased in figure 5.8 b). The experimental parameters
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Figure 5.8.: a)The energy spectrum of a N = 7-spin HXY -Hamiltonian, where each excitation subspace,
containing exactly l spin excitations, is separated by 2B. Due to the large transverse field B ≫ J0, those
subspaces do not couple to each other. The degeneracy of each subspace is lifted by the spin-spin coupling into
(

N
l

)
-levels. The coloured dots show the different superpositions presented in the three sections: superposition

between the ground state and a one-excitation state (blue) probing the ground state gape and the sign of Jij ,
superposition of two one-excitation states used to measure the dispersion relation (red) and superposition
of two-excitation states probing the quasiparticle interactions (green). b) Calculated coefficients Ak

j of all
k-spin wave modes for a string of 7 spins (orange). The blue spline serves as a guide-to-the-eye to visualize
the spin wave structure of the coefficients.

for all the spectroscopy experiments presented in this section are the same, if not stated otherwise:

• ωax = 2π × 219 kHz, ωx = 2π × 2.7106 MHz and ωx = 2π × 2.68 MHz

• N = 7, Ωbic ≈ 2π × 110 kHz, ∆t = 2π × 20 kHz and δc = 2π × 2 kHz

• J0 ≈ 2π × 50 Hz, B ≈ 2π × 640 Hz, α ≈ 1.08 and HXY -regime (Eq. 5.4)

There are two crucial approximations underpinning the spectroscopic method presented here. The

first one is concerned with the coefficients ck
j of the spin waves (Eq. 5.3), where j denotes the flipped

jth-spin and k is the kth-mode. In order to prepare such a spin wave mode, or superpositions of two,

one must know the coefficients. However, knowing exactly those coefficients would in some way

render the idea of spectroscopy unnecessary, as knowing them implies having already solved the

Hamiltonian. The question is, can the exact coefficients ck
j (α), which depend on α, be approximated

by generic coefficients and how good is the approximation? Since the spin chain has non-cyclic,
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open boundary conditions an educated guess for approximating the exact ck
j is given by generic

one-dimensional standing waves

Ak
j =

√

2

N + 1
sin

(
kjπ

N + 1

)

, (5.7)

where we use Ak
j for the generic coefficients33 to contrast them from the exact ones, ck

j . The

approximation is exact for the NN-coupling case, that is Ak
j = ck

j (α → ∞). In order to check its

validity for longer range interactions, one can calculate the overlap probability (OP) between the

exact eigenvectors for a given Jij , denoted as ψk
c , and the approximated ones denoted as ψk

A. The

overlap probability is then given by |〈ψk′

c |ψk
A〉|2 ≈ δk′k as long as Ak

j ≈ ck
j holds, where δk′k is the

Kronecker-Delta.

Figure 5.9 a) shows |〈ψk′

c |ψk=1
A 〉|2 34 for different k′ as a function of α. As expected, states with

opposite inversion symmetry (spatial anti-/symmetric wavefunction) show zero OP, whereas for

states with the same symmetry a non-zero overlap is observable. However, even for those states the

overlap probability is vanishingly small as long as α > 2 and beyond that regime only states with

a number of ‘nodes’ close to that of the state of interest show a significantly observable overlap.

Nevertheless, for our purposes with an experimental α ≈ 1.08, any such overlap probability is

sufficiently small and can be neglected, as confirmed by numerical simulations35.
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Figure 5.9.: a) As the generic spin wave coefficients Ak
j = ck

j (α → ∞) are only an approximation to the exact

coefficients ck
j (α < ∞), one might expect to excite additional eigenstates. Here, the overlap probabilities

|〈ψk′

c |ψk=1
A 〉|2 are calculated to find eigenstates other than k′ = 1 as a function of α. The generic coefficients

only deviate significantly from the exact ones for α < 2. Even for the extreme case α = 0 the probability
of finding the state k = 1 is p1 ∼ 0.9% and only the state k = 3 gets excited with p3 ∼ 0.1. Hence, the
approximation seems to be reasonable. b) The probability to project into different excitation subspaces as
a function of the parameter γ, since we prepare product states as described in the text.

The other approximation is concerned with the experimental preparation of such spin waves. As

mentioned earlier, the spin wave states are closely related to entangled W-states and the creation

of such W-states [206] is costly in terms of experimental resources (laser pulses). Moreover, in

33If we had cyclic boundary conditions, such as in a closed, circular chain, the k-modes would be planar waves with
Ak

j = 1/
√

N exp (ikjπ/(N + 1)).
34It basically tells us, if we prepared a generic spin wave k = 1-mode, what is the probability to excite other states

due to the approximation.
35Any additional state with sufficiently large probability will be in a superposition with the desired state, which will

create a beat note in the time evolution.
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contrast to W-states, spin waves have non-uniform coefficients Ak
j making the preparation even

more challenging. Instead of preparing entangled states with a vast number of laser pulses and

thus, possibly lower fidelities, one can prepare product states that are easily achievable with our

quantum toolbox. By rotating each spin j into the state

|θj〉 = cos (θj) |↓j〉 + sin (θj) |↑j〉 , (5.8)

where the angle of rotation is θj = arctan
(

γAk
j

)

, the resulting state can be written as a product

state

|ψk〉 ∝
N⊗

j=1

(

|↓j〉 + γAk
j |↑j〉

)

= |0〉 + γ |k〉 + O
(

γ2
)

. (5.9)

Here, the parameter γ is an overall excitation and determines the probability to find the desired

spin wave state |k〉. In figure 5.9 b), various probabilities to project into a state with zero, one,

two and more excitations are shown. Depending on the desired experimental protocol, as will be

explained in the forthcoming sections, γ is chosen accordingly to fit the situation.

5.4.1. Spectroscopy of ground state gaps

In order to measure the energy Ek between the ground state |0〉 and a spin wave mode |k〉, we

prepare a superposed product state |ψk〉 as described by equations 5.8 and 5.9. By exploiting the

single ion addressability, each of the spins can be rotated individually by the right amount θj .

First all ions are rotated by π/2 around the x-axis of the Bloch-sphere, then the addressing beam

sequentially imposes an ac-Stark shift resulting in individual rotations around the z-axis. A final

−π/2 pulse around x brings the spins into the state |ψk〉. However, since the rotation angle θ might

be positive or negative depending on the sign of Ak
j and the ac-Stark rotation direction is fixed, we

apply the following procedure: instead of ‘over-rotating’ all negative angles by 2π − θj around z,

we rotate all spins by θ̃j = θ + δθ, where δθ = min θj is the most negative rotational angle. After

the final −π/2 pulse around x, the spin wave is slightly ‘tilted’ and an additional pulse around the

y-axis with angle −δθ creates the desired state ψk. Figure 5.10 a) shows schematically the pulse

sequence just described.

The overall excitation γ = 0.4 is chosen such that most of the population is in the ground state

(probability p0 = 0.74) and in the desired k-mode of the one excitation subspace (p1 = 0.24) 36.

The prepared state |ψk〉 is evolved under the XY -Hamiltonian to |ψ(t)〉 = exp (−iHXY t/~) |ψk〉
and the magnetization of each spin is measured in the xy-plane of the Bloch-sphere by performing

a resonant π/2-pulse around x or y, respectively. This corresponds to measurements of σ
x(y)
j in the

reference frame of the Mølmer-Sørensen Hamiltonian and has to be transformed accordingly into

the rotating frame of the HXY -Hamiltonian37. After the transformation, the resulting new bases

are σx̃ = cos(2B)σx − sin(2B)σy and σỹ = sin(2B)σx + cos(2B)σy. Then, the time-dependent

36This ensures that the strongest Fourier component in the beat note is related to εk, as will be explained later.
37σβ̃ = eiBtσz

σβe−iBtσz

, with β = {x, y, z} and B = δc

2
, see also appendix B.1.4.
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Figure 5.10.: a) Schematic of the pulse sequence for preparing a spin wave mode. b) - c) Spectroscopic
signal and its analysis for initial states |0〉 + |k = 1〉 and e) - f) |0〉 + |k = 7〉. b) & e) Time evolution of

the single-spin magnetization 〈σx̃(ỹ)
j (t)〉. c) & f) The single-spin signals summed Mx̃(ỹ) in order to increase

the signal to noise ratio. d) & g) A Fourier transformation of the signal Mx̃(ỹ) yields the energy splitting
between the ground state and the k-mode.

expectation value is given by

〈

σ
x̃(ỹ)
j (t)

〉

=
〈

ψ(t)
∣
∣
∣σ

x̃(ỹ)
j

∣
∣
∣ ψ(t)

〉

= 2γ Re

(

e−i
εkt

~

〈

0
∣
∣
∣σ

x̃(ỹ)
j

∣
∣
∣ k

〉)

+ O
(

γ3
)

, (5.10)

where εk = Ek − 2B is the energy shift of the kth-mode caused by the spin-spin interactions. From

equation 5.10 it is evident that the expectation values will oscillate at a frequency proportional to

εk as shown in figure 5.10 b) & e) for the two spin wave modes k = 7 and k = 1, respectively and a

Fourier transform directly yields εk. In order to minimize transformation artefacts, the signals are

mirrored to negative times and the signal-to-noise ratio is increased by summing the single-spin

values to

Mx̃(ỹ) (t) =
N∑

j

Ak
j

〈

σ
x̃(ỹ)
j (t)

〉

. (5.11)

In figure 5.10 c) & f), Mx̃(ỹ) is shown for k = 7 and k = 1, respectively. Finally the signal

M(t) = Mx̃ + iMỹ is Fourier transformed yielding a distinct peak presented in 5.10 d) & g). In the

case of k = 7 a Gaussian fit reveals a peak position at ε7/h = −249 Hz ± 77 Hz38 and for k = 1 the

peak is centred at ε1/h = 213 Hz ± 53 Hz.

The first thing we can learn from the two peaks is the sign of the spin-spin coupling Jij . As the

shortest wavelength mode k = 7 is shifted to lower energies and the longest wavelength mode to

38The error is defined as the FWHM.
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higher ones, one can imply that the spin-spin coupling must be anti-ferromagnetic. Unfortunately,

as the superposition |0〉+|k〉 is outside the decoherence-free subspace the signal M(t) decays rapidly

within a few oscillation periods due to ambient magnetic field fluctuations and laser frequency

noise limits the resolution of this approach. The signal decay leads also to artefacts in the Fourier

transform, such as the peak at 90 Hz visible in figure 5.10 g).

Despite these limitations, the method discloses valuable information regarding the spin-spin

coupling and, in addition, the approximations prove to be valid as there are hardly any spurious

frequency components in the transformed signal.

5.4.2. Spectroscopy of dispersion relations

In a similar fashion as before, a superposition of two k-modes separated by ∆Ekk′ = Ek − Ek′ can

be created. The advantage now is that both spin waves are in the same subspace, decoupled from

other subspaces, and as a result the relative phase between the two states |k〉 and |k′〉 is insensitive

to ambient magnetic field noise or laser frequency fluctuations.

Here, the initial state is prepared by individually rotating each spin j by

θj = arctan
[

γ
(

Ak
j + Ak′

j

)]

(5.12)

resulting in

|ψkk′〉 = |0〉 + γ
(
|k〉 +

∣
∣k′〉)

+ O
(

γ2
)

. (5.13)

We choose the overall rotation to be γ = 0.7 resulting in a much higher probability to project

into the one-excitation subspace p1 = 0.42 (p0 = 0.43). The state is time-evolved under HXY and

the signal is measured in the z-basis. Since the measurement of σz
j commutes with HXY , it is

permissible to post-select the signal by retaining only data with a single excitation. In this way,

only |k〉 + |k′〉 contributes to the time-dependent magnetization signal

M1(t) =
N∑

j

κj

〈

σz
j (t)

〉

= cos

(
∆Ekk′t

~

) N∑

j

κj

〈

k
∣
∣
∣σz

j

∣
∣
∣ k

〉

, (5.14)

where κj = sign
(

Ak
j Ak′

j

)

ensures a constructive summation. A Fourier transform of M1(t) yields

the energy difference between the spin wave modes |k〉 and |k′〉.
Figure 5.11 a) - c) shows spectroscopic signals of a superposition |k = 1〉 + |k′ = 7〉, specifically

the time-dependent spin-resolved magnetization 〈σz
j (t)〉, the summed signal M1(t) and its Fourier

transformation. The first observation standing out is the extraordinarily long coherence time

compared to the measurements presented before, allowing us to record many oscillation periods

and hence increase the resolution substantially. The Fourier transformed peak in Fig. 5.11 c) is

at 383 Hz ± 13 Hz, at least a factor of five narrower than in the previous method. The achievable

resolution allows us to now superpose various states and measure their relative energy splitting,

thus resolving small energy differences such as in the dispersion relation. Figure 5.11 c) shows the

dispersion relation measured relative to |k = 1〉 and the observed peaks coincide very well with the

theoretically calculated dispersion relation. Moreover, the measurements reproduce the divergent
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Figure 5.11.: a) - c) Spectroscopic signals of the superposition |k = 1〉 + |k′ = 7〉, where a) is the single-
spin resolved magnetization 〈σz

j (t)〉, b) is the summed signal M1(t) mirrored to negative times in order to
minimize transformation artefacts and c) is the Fourier transformation of M1(t) yielding a single peak at
383 Hz with FWHM of 13 Hz d) Spectroscopically measuring different initial superposition states |k = 1〉+|k′〉
with k′ = 2 . . . 7 (blue traces) allows to reconstruct the dispersion relation. The blue circles are a projection
onto the plane and mark the position which closely matches the theory curve (red line).

group velocity vg = ∂Ek/∂k at k = 1 for long range interactions α < 2, as discussed in section 5.2.

Using the method described in section 5.3.3 we get a power law exponent α ≈ 1.08.

A closer look at the Fourier transformed signals reveals a single dominant peak affirming the

validity of our approximation of generic coefficients, even for long range interactions.

5.4.3. Spectroscopy of interacting quasiparticles

In the previous sections only single excitations, that is single quasiparticles dynamics, were probed.

What will happen if two quasiparticles are excited in the system, do they interact and if so, is

there an observable signature of these interactions? In order to investigate this, we follow the same

procedure as for measuring the dispersion relation, however, the overall excitation is increased to

γ = 1.4 resulting in a probability p2 = 0.41 of finding two excitations in the system (p0 = 0.08 and

p1 = 0.33). The initial state |ψkk′〉 is of the same form as in equation 5.13 with the next order

contribution
∣
∣
∣ψ

(2)
kk′

〉

= γ2





N∑

j

(

Ak
j + Ak′

j

)

σ+
j





2

≡ γ2 (
|kk〉 + 2

∣
∣k′k

〉
+

∣
∣k′k′〉)

(5.15)

becoming relevant. The initial state is time-evolved under the same Hamiltonian as before and

the expectation values 〈σz
j (t)〉 are measured. In contrast to before, the measurements with two

excitations are post-selected instead of one and the observable

Pz
ij =

1

4

〈

(1 + σz
i ) +

(

1 + σz
j

)〉

(5.16)
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is computed. Once again the signal is summed to

M2a(b)(t) =
∑

i,j

κ
a(b)
ij Pz

ij(t) (5.17)

in order to increase the signal-to-noise ratio. The weighting factors κa
ij and κb

ij enhance and suppress

different parts of the signal, as shown later (a detailed derivation can be found in appendix C), and

are given by:

κa
ij = sign

(

Ak
j Ak

i Ak′

j Ak′

i

)

κb
ij = sign

(

Ak
j Ak′

i

)

+ sign
(

Ak′

j Ak
i

)

. (5.18)

In addition, single-excitation outcomes are post-selected in order to obtain the energy splitting

|∆Ekk′ |/h as a reference.

If the interaction between quasiparticles was zero, all the higher excitation states would be a

simple combination of the single-quasiparticle states. For instance, the higher order contribution
∣
∣
∣ψ

(2)
kk′

〉

would generate two beat notes proportional to 2∆Ekk′ and ∆Ekk′ , respectively39.

On the other hand, if the quasiparticles are interacting, the energy levels would experience an

interaction shift and, as a consequence, one would observe three beat notes, depicted as hνa,

hνb and hνc in figure 5.12 a). Indeed, the measured frequency spectrum of
∣
∣
∣ψ2

k=1,k′=7

〉

shows a

peak at 665 Hz ± 14 Hz which is significantly lower than 765 Hz ± 28 Hz = 2|∆Ekk′ |/h (dark green

line), expected for non-interacting bosonic (NIB) quasiparticles, as shown in figure 5.12 b). Here,

the observable Pz
ij is summed with the weighting factors κa

ij which results in enhancing hνc and

suppressing hνa & hνb. If the quasiparticles, on the other hand, were non-interacting fermions

(NIF) one would expect a beat note at |Ek=7 + Ek=6 − Ek=1 − Ek=2|/h = 585 Hz ± 21 Hz (light

green line), due to the Pauli-exclusion principle. From these observations it is already possible to

infer that the quasiparticles of the underlying system cannot be described by free, non-interacting

particles. A NIF-description would be only accurate for α → ∞, that is for strictly nearest-

neighbour interactions [207].

In figure 5.12 c) the Fourier transformed signal of M2b(t) is shown where the weighting factors

κb
ij are used. This allows us to enhance peaks proportional to hνa and hνb, but suppresses the beat

note due to hνc. The observed peaks are located at 304 Hz ± 14 Hz and 368 Hz ± 15 Hz.

A qualitative understanding of the two-quasiparticle spectra can be gained from a perturbation

theory approach, where a detailed derivation can be found in Appendix C.2.2. First, the spin cre-

ation (annihilation) operators σ+
i (σ−

i ) are mapped to hardcore bosonic creation (annihilation) op-

erators σ+
i → b†

j (σ−
i → bj) via the Holstein-Primakoff transformation40 [208]. A quasiparticle mode

|k〉 is then created from the vacuum state by |k〉 = b†
k |0〉 =

∑

j Ak
j b†

j |0〉 and the two-quasiparticle

subspace can be excited by |kk′〉 = b†
kb†

k′ |0〉41, see the schematic energy diagram in figure 5.12 a).

39(|kk〉 + |k′k′〉) would beat at |2∆Ekk′ |/h, (|kk〉 + |k′k〉) and (|k′k〉 + |k′k′〉) at |∆Ekk′ |/h.
40The transformation preserves the bosonic commutation relation

[
σ+

i , σ−
j

]
= 0 for i , j, but introduces the hardcore

constraint σ+
j σ+

j = 0, which is a consequence of the spin-1/2 system, that is per lattice site (spin position)
maximally a spin-1/2 can be excited.

41Note: the two-quasiparticle state |kk′〉 = b†
kb†

k′ |0〉, where k(k′) = 1 . . . N , is not exactly an eigenstate of the l = 2-
subspace, since there should be N(N + 1)/2 different kk′-modes. However, the l = 2-subspace in our system
counts only N(N − 1)/2 eigenstates due to the hardcore constraint. Nevertheless, for small perturbations, i.e.
N ≫ l = 2, there should be significant overlap between |kk′〉 and the proper eigenstates.
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Figure 5.12.: a) Schematic energy diagram for non-interacting quasiparticles (left side) and for interacting
quasiparticles (right side). b) Fourier transformation of M2a where κa

ij ’s are used as weighting factors. In this
way the beat note due to νc is enhanced and beat notes due to νa and νb are suppressed. If the quasiparticles
were non-interacting bosons (NIB) the beat note coincides with the dark green line and for non-interacting
fermions (NIF) it would be the light green line. The blue line shows the position of the peak predicted by
first order perturbation theory. c) Fourier transformation of M2b with κb

ij as the weighting factors, which
enhance νa and νb and suppress νc. d) Fourier transformation of the single-excitation subspace signal M1(t)
as a reference.

Secondly, a first order perturbation theory predicts interaction shifts Vkk′ of the states |kk′〉. As a

consequence, there are three beat notes to be expected, one at νa = |∆Ekk′ + Vkk − Vkk′ |/h, one at

νb = |∆Ekk′ − Vk′k′ + Vkk′ |/h and another on at νc = νa + νb, shown as blue lines in figure 5.12 b)

and c), respectively. In terms of number of peaks and signs of the interaction shift, the predictions

resulting from a perturbative approach prove to be qualitatively correct. However, in comparison

to the measured data, perturbation theory overestimates the effects. In addition, perturbation

theory fails to predict the peak observed at 33 Hz ± 20 Hz, which can be explained by studying the

exact eigenstates of this manifold. Indeed, one finds that the initial state has substantial overlap

with a fourth eigenstate generating additional beat notes not predicted by first order perturbation

theory. This discrepancy can be explained by considering the magnitude of the perturbation, that

is the quasiparticle density l/N = 2/7, which is not sufficiently low in order to treat the hardcore

interaction as a small perturbation. However, with increasing system size the density l/N → 0 is

sufficiently small such that the perturbation theory eventuality provides quantitatively valid results,

as the states |k′k〉 come closer to the true eigenstates of the two-excitation manifold.

As these results show, the developed spectroscopy method allows us to obtain information about

the generated Hamiltonian, including its quasiparticle spectrum and quasiparticle interactions.

Such techniques will be indispensable for characterizing and validating engineered Hamiltonians in

quantum simulation. The method is applicable to Hamiltonians, where isolated eigenstates and

superpositions of such states can be prepared in a controllable manner.
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5.5. Quasiparticle engineering and entanglement propagation

In the light of quantum information processing, a fundamental question is how fast does informa-

tion propagate in an interacting many-body system42. As introduced in section 5.2 the spread of

correlations is bound by a light cone for short range interacting systems, where any correlations

outside the causal region are suppressed by the Lieb-Robinson bound, see Eq. 5.5. An important

question is whether the two opposite sides of the wavefront (for a 1D system) are correlated and

whether those correlations are classical or quantum. Theoretically it is expected that an excited,

interacting quantum many-body system will generate entanglement which spreads out bound by

the wavefront [209]. However, experimental evidences for Lieb-Robinson bounds in general have

not been shown until 2012, when the group of I. Bloch observed them for the first time an one-

dimensional quantum gas in an optical lattice with NN-interactions [173]. By quenching the system,

they reveal the time evolution of correlations in their system and show that the propagations of

correlations is bound to a light cone for NN-interactions. Despite these ground-breaking results,

due to their spin encoding43 it is only possible to measure two-point correlation functions in a single

basis. This enabled them to measure correlations between the two sides of the wavefront, however,

lacking the ability to perform measurements in different bases it is impossible to make statements

regarding the quantumness of those correlations.

The section here presents work published in ‘Quasiparticle engineering and entanglement prop-

agation in a quantum many-body system’ [26]. A major result is the experimental observation of

entanglement propagating along the wavefront. In addition, it is shown that the light-cone-like

picture becomes less and less valid as the spatial interaction range is increased. A simultaneously

published, but independent, investigation of Lieb-Robinson bounds in a trapped ion quantum sim-

ulator is presented in [210].

5.5.1. Propagation of entanglement

As described in the previous sections an HXY -Hamiltonian, that is B ≫ J0, is set up for a chosen

α. Then, the spins are optically pumped into the ground state |↓↓ . . . ↓↓〉 and, by making use of

the single-ion addressing, a single spin is quenched (excited) giving the initial state

|ψi〉 = |↓↓ . . . ↑ . . . ↓↓〉 . (5.19)

For most of the experiments the center spin of the spin chain is flipped, if not stated otherwise.

Such a single-spin quenched system can be pictured as an equal superposition of spin wave modes

with positive and negative momentum ±k. If such an initial state is time-evolved, the initially

localized excitation will disperse and distribute entanglement through the system, where group

velocities are determined by the dispersion relation. This spread of information from the quenched

side can be spatially and temporarily observed by measuring the resolved single-spin magnetization

42The term information here is used in a very wide context, ranging from desired (quantum) correlations down to
unwanted noise introducing decoherence in the system.

43They encode a two level system into doublons (excess particle) and holons (holes), that are two atoms on the same
site of the optical lattice and lack of atoms in a site, respectively.
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〈σz
j (t)〉, as shown in figure 5.13 a) for a N = 7 spin system44. It is clearly visible that spin wave
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Figure 5.13.: a) Measured time-evolution of the single-spin magnetization for a locally quenched system.
b) Single-spin von Neumann entropy Tr(ρ log(ρ))/log(2) reconstructed from single-qubit state tomographies.
High entropy states indicate high correlation with the rest of the system. c) Time-evolution of the pairwise
concurrence (measure of two-qubit entanglement) between pairs 3 & 5 (blue), 2 & 6 (red) and 1 & 7 (black).
Dashed lines show theoretical predictions and dots are experimental data reconstructed from two-qubit state
tomographies. Error bars are calculated from Monte Carlo simulation of quantum projection noise [211].
Inset An exemplary reconstructed density matrix ρ9 ms

3,5 between spins 3 & 5 at time τ = 9 ms. The measured
fidelity with the theoretical state |ψideal〉 is F = 0.975 ± 0.005.

packets radiate away from the quench site and eventually reach the boundaries of the system where

they get reflected from. In order to investigate correlations distributed in the system single-qubit

and two-qubit state tomographies were measured. From the reconstructed single-qubit states it

is possible to calculate the single-spin von Neumann entropy, see figure 5.13 b). High entropy

values indicate that the spin under investigation is highly quantum correlated with the rest of the

system, however, no statement can be made with which part of the system. The two-qubit state

tomographies are taken between spin pairs symmetrically located with respect to the quench site,

where each basis configuration is measured 400 times to gain enough statistics. In order to speed

up the experimental procedure, the tomography measurements are performed ‘bundle-wise’, that is

spins 1, 2, 3, 4 and spins 5, 6, 7 are grouped together. By doing so, not only the measurement time

is decreased but additional information is available, i.e. one can extract all two-qubit combinations

between ‘left’ and ‘right’ spins. As we are mainly interested in the correlations carried by the

wavefront, spin pairs 3 & 5, 2 & 6 and 1 & 7 are analysed. The density matrices are reconstructed

44ωax = 219 kHz, ωradx = 2.6545 MHz, ωrady = 2.6195 MHz, ∆t = 120 kHz → α ≈ 1.75, δc = 3 kHz, Ωbic =
2π × 102.46 kHz → J0 ≈ 2π × 8 Hz.
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via maximum-likelihood estimation [211] and the entanglement is quantified by the concurrence

[212]

C(ρ) ≡ max(0, λ1 − λ2 − λ3 − λ4) (5.20)

where λi are the eigenvalues of the Hermitian matrix

R ≡
√ √

ρ (σy
1 ⊗ σy

2) ρ∗ (σy
1 ⊗ σy

2)
√

ρ. (5.21)

Figure 5.13 c) shows the time evolution of the reconstructed concurrence C(ρ)(t) compared to the

theoretical prediction. It is immediately visible that the quasiparticles spreading from the quench

site first entangle the spins closest to the perturbation, then the next spin pair becomes entangled,

whereas the former disentangles and so on. This is the first time clear evidence of the wavefront

carrying entanglement around the system is observed.

The error bars given in Fig. 5.13 c) are computed from Monte Carlo simulations of quantum

projection noise and represent a quantile of 15, 85%. Regarding the discrepancy between theoretical

prediction and our data, it has to be mentioned that the concurrence is a very tight measure

of entanglement and any noise process or misscalibration in the tomography pulse sequence will

strongly affect the reconstructed value. Further, the observation that the concurrence C(ρ)(τ) > 0

at time τ = 0 ms is non-zero, despite the fact the initial state is a product state, is also attributed

to noise in the reconstruction. Here, a separability measure instead of an entanglement measure

might be better suited [213, 214].

5.5.2. Tuning the interaction range and Lieb-Robinson bounds

Having the ability to tune the interaction range α, it is possible to investigate the propagation of

entanglement and the Lieb-Robinson bounds for different regimes of α. As entanglement distributed

in the system coincides with the wavefront observable in the magnetization, we settle for measuring

only the time-dependent magnetizations 〈σz
i (t)〉, however, for a larger system size N = 15 in order

to decrease finite-size effects. Figure 5.14 a) shows the time-evolution of the resolved magnetization

for three different values of α ≈ 1.4145 α ≈ 1.0746 and α ≈ 0.7547 and compares it with numerical

simulations for the exact Jij coupling matrix using experimental parameters (Fig. 5.14 b)) and

with numerical simulations (Fig. 5.14 c)) where Jij has a proper power law decay ∼ 1/|i − j|α and

α is estimated by exploiting the method described in section 5.3.3. It is remarkable how good the

experimental time evolution fits the numerical simulations even with regards to the interference

fringes resulting from the reflections of the system boundaries. Interestingly, the comparison to a

pure power law decay shows only marginal deviations.

As the interaction range becomes larger, that is α decreases, the fitted arrival times (red dashed

line, for more details regarding the fit see figure 5.15) of the wave packet become shorter and

45ωax = 150 kHz, ωradx = −2.658 MHz, ωrady = 2.617 MHz, ∆t = 120 kHz → α ≈ 1.41, δc = 3 kHz, Ωbic =
2π × 230.94 kHz → J0 ≈ 2π × 12 Hz.

46ωax = 219 kHz, ωradx = 2.655 MHz, ωrady = 2.621 MHz, ∆t = 40 kHz → α ≈ 1.07, δc = 3 kHz, Ωbic = 2π ×
212.77 kHz → J0 ≈ 2π × 31 Hz.

47ωax = 150 kHz, ωradx = 2.71 MHz, ωrady = 2.68 MHz, ∆t = 15 kHz → α ≈ 0.75, δc = −1 kHz, Ωbic = 2π ×
123.92 kHz → J0 ≈ 2π × 22 Hz.
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Figure 5.14.: Time evolution of a locally quenched system with N = 15 spins for different interaction
ranges α ≈ 1.41, α ≈ 1.07 and α ≈ 0.75. a) Experimentally measured time-evolution of resolved single-spin
magnetization 〈σz

j (t)〉. Red dashed lines are fits to the arrival times of the wave packet (see text and Fig.
5.15) and grey dashed lines are the theoretical light cones for NN-interactions. b) Numerical simulation with
experimental parameters and the exact Jij coupling matrix. c) Numerical simulation for a system with pure
power law decay. α is estimated as described in section 5.3.3.

thus the propagation velocity increases as expected. Moreover, with decreasing α the wavefront

becomes fainter and the light-cone-like bounds become less and less distinct. In fact, for the long

range case, α ≈ 0.75, the magnetization dynamics is not entirely within the nearest-neighbour

Lieb-Robinson bounds, that is at early times the magnetization is almost instantly increased even

for large distances, whereas for the short range case, α ≈ 0.75, basically all measured points are

within the calculated bounds as shown in figure 5.16 a) and b), respectively. Our observations

confirm that for long range interactions, correlations can spread immediately to distant neighbours

and the findings are consistent with generalized Lieb-Robinson bounds for power law decays. In

fact, for α < 1 the bounds are trivial, that is there is no restriction on the velocity of information

spreading [194, 195]. A derivation of the exact form of nearest-neighbour Lieb-Robinson bounds in

our system can be found in [26, Supplementary material].

The observed behaviour can be further understood by qualitatively analysing the data, i.e. esti-

mating the maximal group velocity vmax
g from the wave packet arrival times at different spin sites

as shown in figure 5.15 a)- c). Here, the magnetization 〈σz
i (t)〉 of spin i is fitted with a Gaussian

and the different Gaussian maxima are plotted as a function of the distance from the quench site.
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A linear fit reveals an estimate for the maximal group velocities and shows that the long range case

is more than an order of magnitude faster than the short range one.
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Figure 5.16.: a) & b) Magnetization of spin 6 (dark blue) and spin 13 (light blue) fitted with a Gaussian
for two α’s. The shaded areas represent the part outside the causal region given by NN-interaction Lieb-
Robinson bounds. For the short range case (α ≈ 1.41) all of the dynamics are within the bounds, whereas for
long range interactions (α ≈ 0.75) the magnetization spreads immediately at early times. c) The estimated
maximal group velocities vmax

g plotted against α. The short range case is close to the NN-interaction group
velocity (grey dashed line), while vmax

g diverges for long range interaction as predicted.

By plotting the estimated group velocities against α, figure 5.16 c) (red circles), one can see that

vmax
g for α ≈ 1.41 is close to the theoretical value given for nearest-neighbour interactions (grey

dashed line). As the interaction range is increased, the maximal group velocity starts to diverge as

predicted by [193]. However, there is an ultimate bound on the speed of propagation given by the

underlying physical system and that is the speed of sound in the ion chain [215]. Even the infinite

range interactions are mediated by the motional modes and thus are limited by the phonon speed.

Interestingly, despite the fast ejection of quasiparticles for long range interactions, the initial

local perturbation stays more localized during the time evolution in that case. This observation is

consistent with the dispersion relation as discussed in section 5.2. For long range interactions only

a small fraction of the spin wave modes have a divergent group velocity, resulting in a fast ejection

from the quench site, whereas the majority of the k-modes are in the flat region of the dispersion
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relation with small group velocities.

5.6. Discussion and Outlook

This chapter presented a trapped ion based analogue quantum simulator48, specifically built to

implement models of interacting spins, such as the transverse field Ising model or the XY -model.

Its versatility arises from the high degree of ability to independently and fully control many exper-

imental parameters, allowing us to explore and answer interesting, non-trivial physics’ questions.

Moreover, the high controllability is further reflected in the extremely good overlap between exper-

imental data and numerical simulations, where in fact no free parameters are used49.

A major part of this thesis was to implement such a quantum simulator in an existing trapped

ion experiment, ranging from stabilization of radial modes to beam shaping of the laser light field

inducing the effective spin-spin interactions and ac-Stark compensations. As with every experiment,

techniques have to be developed in order to calibrate the system and to have means of assuring a

proper functioning of the experiment. In the light of quantum simulation, there is an additional

philosophical, more specifically an epistemological, question: “If a quantum simulator is designed to

solve problems intractable by classical means, how can we trust the outcomes of a simulator which

is always subject to experimental noise and errors?” [216]. This problem is directly related to the

Hilbert space size yielding a follow-up question: “If the Hilbert space is too big to compute, how

can we efficiently measure and extract information of a simulated quantum state, since methods

such as full state tomography are non-scalable and destined to fail for large system sizes?” The

obvious strategy is to take one step after the other, starting from a small system, trivially solvable,

and advancing to larger and more complex system. On this path, it is important to develop new

tools, procedures and protocols to unlock the black box of a quantum simulator.

In this thesis a method, based on a spectroscopic protocol, is presented in order to qualitatively

measure the energy spectrum of an emulated Hamiltonian. The spectroscopic procedure not only

provides means to calibrate the simulator and to increase the trust in its outcomes, but also

demonstrates the high degree of control to deliberately manipulate its constituents. By individually

controlling and preparing superpositions of the system’s eigenstates, it allows us to probe important

quantities such as the dispersion relation of the quasiparticles and, even more, it provides means

to observe and quantitatively describe interactions between those quasiparticles.

Apart from answering questions related solely to the quantum simulator, one can start to tackle

wider physics questions. In the view of quantum information, a fundamental question is related

to the maximal speed with which information or correlations can be transported in an interacting

many-body system. In this thesis we investigate this question from two sides. First, experimental

evidence is provided that correlations spreading in a locally excited system are indeed quantum

correlations, specifically entanglement. Secondly, by tuning the spin-spin interaction from short

range to long range, we could observe that correlations in the short range case are bound by so

called Lieb-Robinson bounds, whereas in the longer range case those bounds become less stringent

48Some authors refer to it as an emulator, since a physical system is used to emulate a system of interest that is
otherwise experimentally or theoretically inaccessible.

49Except for an overall scaling of the Rabi frequency which is always less than 5%.
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and correlations can exist outside.

Despite the astonishingly good agreement between experiment and numerical simulations, there

are a few limits as to the size of the spin string and the maximal coupling strength. An elaborate

list of experimental issues setting ‘soft’ limitations on the number of spins is given in chapter

4.3. Fortunately, none of these limitations seem to be fundamentally insurmountable and can be

overcome with clever engineering, as well as redesigning certain parts of the experimental setup as

described in the aforementioned chapter. In light of the simulations presented here, major sources

of decoherence are laser intensity fluctuations and heating of motional modes. Laser intensity

fluctuations cause the spin-spin coupling strength to fluctuate which results in fluctuations of the

Hamiltonian energy levels broadening the spectroscopic signal and, to a lesser degree, smearing out

the time dynamics in the quench experiments. At the time of writing this thesis, this problem has

been tackled by implementing a ‘sample and hold’ stabilization loop50 that significantly improves

the stability. A less obvious limitation is caused by heating of the motional modes which increases

proportionally with the number of ions (at least for the COM-mode). The main effect is that

during the time evolution some populations leave the protected subspace, such as in the case of the

single-spin quench experiments. After some time, due to heating, one will find the neighbouring

subspaces, i.e. zero and two-excitation, to be populated. As a consequence, these populations cause

the system to be subject to ambient magnetic field noise and therefore an additional decoherence

channel is opened. There seems no obvious fix to this problem, as to my best knowledge, there

isn’t even a widely accepted consensus among the professional world with regards to the detailed

mechanisms of heating51.

Another limitation is the rather small spin-spin coupling strength on the order of a few tens of

Hertz, or even less depending on the detuning ∆t. For the experiments presented here, the low

coupling strength is less critical, since all time evolutions are performed in the decoherence-free

subspace. However, measuring for instance very tiny coupling elements of the Jij-matrix requires

to evolve the system for more than 100 ms and, at these times, the limited life time of the D5/2-state

kicks in as almost 10% of the populations decay to the ground state S1/2. This limitation will be of

greater importance as soon as quantum simulations of HIsing are performed, where the subspaces

are not uncoupled any more.

The spin-spin coupling strength will also further decrease with increasing ion number, as it scales

with the ion string mass m ∼ 1/m ∝ ηiηj , see equation 3.78. An obvious way to solve this problem

is to increase the laser intensity if more intensity is available52. Another approach is to encode

the qubit in the two Zeeman sub-levels of the S1/2-state and to couple these states via a Raman

transition53 (between the two P-states). This has some very desirable advantages: first, due to the

50At the beginning of every experimental sequence (cycle), a 729 nm ‘calibration pulse’ with a predefined length
(few ms) is turned on during the Doppler-cooling sequence and, during this time, the intensity is sampled and
stabilized by a PID-loop controlling the RF-power of the AOM. After the sampling time, the calibration pulse is
turned off, and the stabilized RF-power value is held for the rest of the sequence. This is then repeated for every
single experimental cycle.

51A larger trap, that is larger blade-to-ion distance, and cryogenic temperatures seem to help. Also replacing Macor
with sapphire improves the heating rates. It is also reported in the literature that surface cleaning of the blades
by an Argon ion beam can change the heating rate.

52We have a new TiSa-laser system from MSquared which is able to produce > 4.5 W of 729 nm light, but it has yet
to be stabilized to an ultra-high finesse cavity.

53The MSquared TiSa has an additional external doubling cavity which can produce up to 2 W of 395 nm-light.
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shorter wavelength (395 nm) the Lamb-Dicke parameter is almost doubled resulting in almost four

times higher spin-spin coupling strength. Moreover, it is a two-photon process, thus gaining two

momentum kicks for driving the motional sidebands yielding a doubling of the spin-spin coupling.

Secondly, there exist so called ‘magic wavelengths’ where all induced ac-Stark shifts due to dipole-

coupling are cancelled, making the third compensation light field obsolete. A third advantage is

that the laser doesn’t have to be locked to an ultra-high finesse cavity simplifying the everyday

operation significantly. However, there is no free lunch, and therefore one must pay also attention to

possible obstacles. Despite lacking the necessity for an absolute freqency stabilization, the two light

fields of the Raman beams have to be phase stable relative to each other. This is a non-trivial task,

since the two light fields have to come in with different þk-vectors and hence the optical setup on

the table has to be interferometrically stable. In addition, stray light of the high power UV-beams

(395 nm) will eventually create charges on the trap blades and tips, resulting in additional electric

field noise54. As we will install Raman gates in the near future, these issues will be investigated

and eventually solved.

In terms of experimental projects there is a wide-open range of interesting questions and here

we hold an amazing physicist’s play ground for exploring and addressing many of these. There are

too many possibilities to list them all, but to name just a few quantum phenomena of high current

interest and fundamental relevance, we could investigate: transport [217, 218], thermalisation [219],

many-body localization [220], entanglement growth [221] and dynamical phase transitions [222].

54This could influence the heating rate, the micromotion and even the single-ion addressing as the additional field
might push the ions away to a new position.



6. Measurement-based quantum computation

The fact that there is not a unique model of quantum computation, but many conceptually very

different models, as mentioned in chapter 2, highlights the importance of investigating these models

and their physical implementations and feasibilities. This chapter will introduce and focus on

one specific model; the measurement-based computation approach (MBQC) implemented in ionic

qubits. In contrast to the most well-known model — the quantum circuit model — in the MBQC

approach a paradigm shift occurred in the sense that sequences of adaptive measurements drive the

quantum computation, rather than sequences of quantum gates. There are two prominent examples

of MBQC, the ‘teleportation-based approach’ [59, 61] and the ‘one-way quantum computer’ [29, 58].

While the former requires joint measurements, that is Bell-measurements to create entanglement,

the latter consists only of single-qubit measurements on large entangled resource states, known as

graph or cluster states1. Nowadays, the ‘one-way quantum computer’ is the most studied MBQC-

model, theoretically and experimentally, and it is often synonymously set with MBQC, as it will

be throughout this text unless stated otherwise.

In the last decade, key elements of MBQC have been demonstrated in photonic systems [225–228],

neutral atoms in optical lattices [229]2 and trapped ions [30, 230].

This chapter will provide an introduction to the MBQC framework by first defining the resource

states and then giving tutorial examples on the basic operation blocks, i.e. how single-qubit mea-

surements can provide arbitrary single-qubit rotations and two-qubit entangling-gates (a universal

set of logic gates with which any algorithm can be implemented). The experimental part will focus

on the publication ’Measurement-Based Quantum Computation with Trapped Ions’ [30], discussing

its results and providing additional, experimentally relevant information.

6.1. Graph and cluster states

Graph and cluster states3 provide the main quantum resources in the MBQC-scheme [29, 56, 58].

These states find applications in quantum error correction (QEC) schemes as code words [231] and

serve as a theoretical framework for studying multipartite entanglement [57, 232] and multipartite

Bell inequalities [233, 234]. This section will introduce these states mathematically and their main

properties will be discussed. However, the focus will be set upon an introduction and summary: for

detailed derivations and extended discussions, the reader should refer to [235], whereas an extensive

1There are other, less well-known, resource states such as the 2D Affleck-Kennedy-Lieb-Tasaki (AKLT) states
[223, 224].

2With this system, only the generation of cluster states was shown, and not the basic operations of MBQC, due to
a lack of single-atom control.

3Cluster states are a subclass of graph states, see paragraph 6.1.1. However, some authors make equivalent use of
both terms.
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tutorial introduction can be found in [236].

6.1.1. Definitions

First, the mathematical notion of graphs will be introduced. Second, this notion will be expanded

onto physical qubits, and thus graph states will be defined. Two different, but equivalent descrip-

tions of such states will be presented, in particular the interaction pattern formalism and stabilizer

formalism. The former formalism is concerned with the generation of graph states and the latter

is especially useful in the context of QEC, where graph states are proposed as code words. A final

part introduces cluster states as a special instance of graph states.

Graphs Mathematically, graphs are a collection of vertices (V ) and their connections, called edges

(E) [237]. Each graph can be represented in a graphical diagram, where vertices are drawn as

points in space and edges are arcs connecting these vertices (Fig. 6.1 a). In general, vertices can be

‘self-connected’ by an edge (loops) or vertices can be connected by multiple edges, however, these

possibilities are discarded here. This pictorial visualization allows for the representation of many

concepts concerning graphs in a clear way.

Formally, a graph is a pair

G = (V, E) (6.1)

of a finite set V = {1 . . . N} and a set E ⊂ [V ]2, the elements of which are subsets of V with

two elements each [237]. Two vertices a, b ∈ V connected by an edge, i.e. being the endpoints

of an edge, are called adjacent. The relationship of which vertex is adjacent with another one is

represented by an adjacency matrix Γ, where the elements of this symmetric N × N -matrix are

given by

Γab =







1 , if {a, b} ∈ E

0 , otherwise
(6.2)

An important concept is the neighbourhood of a given vertex a ∈ V . The neighbourhood Na ⊂ V is

defined as the set of vertices b for which {a, b} ∈ E. This means the neighbourhood are all vertices

adjacent to a given vertex. A vertex without a neighbourhood is called isolated.

If there exists a path {a, b}, i.e. an ordered list of vertices a = a1, a2, . . . , an−1, an=b, such that ai

and ai+1 are adjacent for all i, a graph is called connected and otherwise disconnected. The deletion

of vertices a′ ∈ V ′ and all edges incident with a, where V ′ ⊂ V is a subset of all vertices in the

graph G = (V, E), yields a new graph often denoted by G − V ′. The same is true when edges are

deleted.

Since there are 2(N
2 ) different possible graphs for N vertices, the major goal in graph theory is

to find relationships between these graphs and under which permutations they are isomorphic.

Graph states The physical, quantum mechanical implementation of graphs are graph states, which

are pure states in a Hilbert space HV =
(
C2

)⊗V
. Here, each vertex is associated with a physical
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Figure 6.1.: a) An example of a simple graph G = (V, E). The vertices a ∈ V are represented by points in
the plane and the arcs are called edges. b) A visual presentation of a graph state |G〉 shown in the interaction
pattern formalism. The qubits are represented by vertices and the edges are controlled phase gates UCZ

ab ,
see text. c) The same state as before, however shown in the stabilizer formalism. The correlation operators
Ka uniquely define the graph state.

qubit in state

|Ψ〉 =
|0〉z + |1〉z√

2
= |+〉x ≕ |+〉 (6.3)

and each edge {a, b} ∈ E represents an interaction between two adjacent vertices of the type

Hab =

(
Ia − σa

z

2

)

⊗
(

Ib − σb
z

2

)

=
1

4

(

Iab − σa
z − σb

z + HI
ab

)

, (6.4)

where σa
z is the z-Pauli operator acting on the Hilbert space of qubit a and HI

ab is an Ising-type

qubit-qubit interaction. The time evolution of 6.44

Uab(ϕ) = e−i ϕ
4 ei ϕ

4
σa

z ei ϕ
4

σb
z U I

ab(ϕ) (6.5)

periodically creates maximally entangled states at times ϕ = π, 3π, . . . (2k +1)∗π with k ∈ Z when

applied to the initial state of all qubits being in |+〉. In other words, the unitary transformation

Uab(π) ≔ UCZ
ab is a controlled phase- or c-phase-gate (up to a global phase and single qubit rotations)

UCZ
ab =










1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1










. (6.6)

Applying UCZ
ab to the state |ψ〉ab = |+〉a |+〉b leads to UCZ

ab |ψ〉ab =
(

|0〉a |+〉b + |1〉a |−〉b
)

/
√

2, a

maximally entangled Bell state (up to local unitary transformations).

A graph state is generated by preparing all qubits in a product state |+〉⊗V , an empty graph,

and by applying the c-phase gate UCZ
ab to all adjacent vertices in G. This formalism is also known

as interaction pattern formalism.

In a mathematically more formal way, each graph G = (V, E) corresponds to a graph state |G〉

4Note: All terms in Eq. 6.4 commute resulting in a straight forward time-evolution, where the order of terms does
not matter.
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with a pure state vector

|G〉 =
∏

{a,b}∈E

UCZ
ab |+〉⊗V . (6.7)

For many tasks in quantum information theory, such as in QEC, the stabilizer formalism is more

convenient [238]. It is also a powerful tool box to develop the description of local unitary (LU)

equivalence [235], that is the equivalence of two graph states |G〉 and |G′〉 up to local unitary

transformation.

Given the Pauli group PN on N qubits, an N -fold tensor product of all Pauli operators including

the phase factors5 ±1 and ±i, the stabilizer S ⊂ PN is a commutative subset of PN which does

not contain {−I, ±i}. An N -qubit stabilizer state |ΨN 〉 is then defined as the +1 eigenstate of N

independent operators Sn

Sn |ΨN 〉 = |ΨN 〉 . (6.8)

As a consequence, any graph state can be uniquely defined by its stabilizers [235]. A graph state

|G〉 is then the common eigenvector to the set of commuting observables:

Ka = σa
x

∏

b∈Na

σb
z = σa

x

∏

b∈V

(

σb
z

)Γab
(6.9)

such that

Ka |G〉 = +1 |G〉 (6.10)

for all a ∈ V , where Na is the neighbourhood of a and Γab is the adjacency matrix as defined above.

The difference of the two definitions is depicted in figure 6.1 (b & c). In a less formal way, the

interaction pattern formalism defines a graph state via the ‘recipe’ used to create such graph state,

whereas the stabilizer formalism defines the same graph state via the created correlations between

the qubits.

Cluster states Cluster states |C〉 are a special subset of graph states |G〉, with the limitation that

the neighbourhood Na and thus the adjacency matrix Γab are not arbitrary [239]. Specifically, the

vertices are laid out on a d-dimensional square lattice and only nearest-neighbours are adjacent, as

shown in figure 6.2.

A rigorous mathematical definition goes as follows: let each lattice site be specified by a d-tuple

of integers þr ∈ Zd, where each lattice site l(þr) has 2d neighbouring sites. A cluster C ⊂ A is then

defined as a subset of A, where A is the set specifying all occupied sites, such that any two sites

c, c′ ∈ C are connected (see 6.1.1) and any sites c ∈ C and a ∈ A \ C are not connected.

Defining the cluster adjacency matrix Γd
〈a,b〉, for d = 2, 3

Γ
(2)
〈a,b〉 =

(

1 0

0 1

)

and Γ
(3)
〈a,b〉 =







1 0 0

0 1 0

0 0 1







(6.11)

5For example, the group P1 is given by P1 = ±I, ±iI, ±X, ±iX, ±Y, ±iY, ±Z, ±iZ.
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it is possible to express the pure cluster state vector in the known form as

|C〉 =
∏

a,b∈C|b−a∈Γd
〈a,b〉

Ua,b |+〉 . (6.12)

This is the formal (and complicated) way to express that all occupied lattice sides interact via

a nearest-neighbour c-phase gate UCZ
〈a,b〉. Figure 6.2 shows two examples of a d = 2 and d = 3

dimensional cluster state.

Figure 6.2.: An example of a two dimensional (left) and a three dimensional (right) cluster state. The
vertices are laid-out on a d-dimensional square lattice and only nearest-neighbour vertices are adjacent.

An important finding in the MBQC-framework is that 2D-cluster states provide a class of universal

resource states [240, 241], that is: any possible quantum state can be generated from a sufficiently

large cluster state by local operations and classical communication (LOCC). With regards to quan-

tum computation, any algorithm can be performed on a 2D-cluster state by performing single qubit

measurements, as will be demonstrated in the following section. Furthermore, three dimensional

cluster states have been theoretically proposed for fault-tolerant quantum computation [242, 243].

6.2. Computing via measurement and feedfoward

The theory of measurement in quantum physics is a whole topic on its own. There are different

kinds of quantum measurements including projective measurements (von-Neumann measurement),

positive operator-valued measurements (POVM) [12], weak measurements [244] and even philo-

sophical discussions on what measurements really are and how they disturb the measured state.

However, for the purpose of this thesis, this section will solely focus on projective measurements and

on the question of how such measurements can be applied to cluster states to carry out quantum

computations. In MBQC, projective measurements and feedfoward play the roles of logic gates in

the circuit model, and in the following it will be shown how the MBQC and the gate model are

equivalent.

Let’s consider two qubits, one qubit being in an unknown state |Ψ〉 = α |0〉 + β |1〉 and the other

one in |+〉 = (|0〉 + |1〉) /
√

2. A controlled-phase gate (CZ) acting on these two qubits will generate

an entangled pair of the form
1√
2

(α |0〉 |+〉 + β |1〉 |−〉) . (6.13)
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a) b)

Figure 6.3.: a) A qubit in the Bloch-sphere representation, where an arbitrary pure state |Ψ〉 can be
described by the angles θ and φ. b) An illustration of a measurement pattern performing a quantum
algorithm on a cluster state by single qubit measurements (reprinted from [29] ©APS, 2001). Since each
measurement has a random outcome modifying the upcoming measurement bases, the information flows in
a time-ordered fashion from left to right.

If we define B(φ) as the measurement basis with eigenvectors {|+φ〉 , |−φ〉} in the x−y plane where

|±φ〉 =
1√
2

(

|0〉 ± eiφ |1〉
)

, (6.14)

and φ is an angle as depicted in figure 6.3 a), then a projective measurement on the first qubit will

give two outcomes for the second qubit depending on the measurement result of qubit one. The

two outcomes for qubit two are

α |+〉 + eiφβ |−〉 , if + 1 eigenvalue

α |+〉 − eiφβ |−〉 , if − 1 eigenvalue (6.15)

depending on the measured eigenvalue. In either case, the initial state of qubit two has now been

rotated by an unitary U(φ, θ), where θ is a function of α and β. A more compact representation

of the final state of qubit two is achieved by introducing a binary digit m ∈ {0, 1}, where (−1)m is

the measurement outcome eigenvalue of qubit one. The final state of qubit two is then given by:

σm
x HUz(φ) |Ψ〉 , (6.16)

where σm
x is the Pauli matrix in x and H is a Hadamard operation.

The result above can be interpreted in a different way. The act of the measurement has trans-

ferred the unknown state |Ψ〉 of the first qubit to the second qubit - up to a unitary Uz(φ) rotation

around the z-axis and a Hadamard transformation H (i.e. a Bell measurement), where the angle θ

is set by the chosen measurement basis. In addition, a Pauli x-transformation is applied depending

on the measurement outcome. This is a key feature of the MBQC approach. Since the measurement

outcomes of qubit one are random, the unitary transformation of qubit two is non-deterministic.

However, the two possible final states of qubit two only differ by a Pauli-operator. A feedforward of

the measurement outcomes, as well as applying the Pauli-correction based upon the outcomes, al-
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lows one to implement a deterministic, unitary operation6. These Pauli-operators are a by-product

of the randomness of the quantum measurement and are therefore called by-product operators [29].

6.2.1. Arbitrary single qubit rotations

According to Euler’s theorem of rotations, any arbitrary rotation U(ϑ) can be decomposed into

a product of three successive rotations Uz(γ)Ux(β)Uz(α), involving rotations around only two dif-

ferent axes. Hence, extending the 2-qubit example above to a 4-qubit linear cluster, see figure

6.4 a), allows one to implement any desired single qubit rotation, up to additional Hadamards and

random, but known (from the measurement outcomes), Pauli-operators.

In order to have a better understanding of these by-product operators from each measurement,

let’s have a closer look. We assign mj to every binary outcome of the measurement of qubit j and,

by using the identity σxH = Hσz, an arbitrary unitary can be written as

U = Hσm3
z Uz(φ3)Hσm2

z Uz(φ2)Hσm1
z Uz(φ1), (6.17)

where the unitary U is achieved by sequentially measuring qubits 1 to 3 in the measurement basis

{|+φj〉 , |−φj〉}, see equations 6.14 and 6.16. The unitary given in equation 6.17 is applied to the

state encoded in the read-out qubit, in this case qubit 4 (of Fig. 6.4 a)), and can be rewritten into

U = σm3
x σm2

z σm1
x HUz {(−1)m2 (φ3)} Ux {(−1)m1 (φ2)} Uz(φ1) (6.18)

by applying the following identities: HσzH = σx, HUz(φ)H = Ux(φ), σxUz(φ) = Uz(−φ)σx and

σzUx(φ) = Ux(−φ)σz.

In the same way as in section 6.2, the operation U is split into two parts: by-product operators and

unitary transformations. These unitaries are non-deterministic and depend on the measurement

outcome of the previous qubit. However, by measuring the qubits sequentially and adjusting the

upcoming measurements bases by feedforward, such that φ1 = α, φ2 = (−1)m1 β and φ3 = (−1)m2 γ

the unitary U becomes deterministic. This requirement of sequential measurements defines a time-

order and determines the direction of information-flow across the cluster state, as shown in figure

6.3 b). The remaining Pauli by-product operators don’t need to be implemented physically, as they

can always be taken into account in classical post-processing by reinterpreting the final result.

6.2.2. Two qubit gates and Clifford gates

In order to build a universal quantum computer, not only arbitrary single qubit rotations are

needed, but also two-qubit entangling gates e.g. the controlled phase (CZ) gate. Within the

MBQC framework, implementing the equivalence of a CZ-gate (in the circuit model) is straight

forward as the edges between two vertices represent CZ-interactions. By measuring qubits 1 &

4 (Fig. 6.4 b), top) an equivalent circuit (Fig. 6.4 b), bottom) can be implemented where the

quantum information is stored in qubits 2 & 3.

6Note in this simple example the Pauli-correction doesn’t have to be implemented physically as the final state can
be simply reinterpreted.
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Figure 6.4.: a) Measuring the qubits of a linear cluster state from 1 to 3 sequentially and forwarding the
measurement outcomes, allows for implementation of an arbitrary single qubit rotation with an additional
Hadamard gate. The equivalent circuit is shown at the bottom. b) Measuring qubits 1 & 4 allows for
implementing the equivalent circuit shown at the bottom, where the outcome is stored in qubits 2 & 3 (top).

The Clifford group is an important class of gates playing a crucial role in many quantum algorithms,

error correction codes and entanglement purification protocols. The group itself is generated by

the CZ-gate, the 1-qubit Hadamard-gate and the Uz(π/4)-rotation. In the MBQC framework the

Clifford group operations have a special meaning, since they can be solely achieved by implementing

Pauli-measurements alone7. This means there is no need for feedforward, as only by-product

operators are left, which can be taken into account in the reinterpretation of the final result8.

6.3. Experimental implementation of cluster and graph states

The first time cluster states have been experimentally generated in trapped ion systems is published

in ’Measurement-Based Quantum Computation with Trapped Ions’ [30] and is the core of this

section. In contrast to photonic systems and neutral atoms in optical lattices, the creation of

clusters with ions is conceptually quite different. Compared to clusters created with photons

[225, 226], the cluster states in our work are generated deterministically instead of probabilistically,

which is advantageous with regards to scalability. In the case of optical lattices, where cluster states

can emerge quite naturally due to the nearest-neighbour interaction on a square optical lattice, ions

in our experiment are trapped in a linear fashion and the entangling interaction between the ions

is of infinite range (MS gate). Due to this fact, in our system a few important tricks, such as

refocussing and hiding, are needed to implement a desired cluster state. These techniques will be

explained with the help of two examples, specifically the box cluster and the linear cluster. The

linear cluster is used to show arbitrary single qubit rotations and a two-qubit entangling gate, which

both together form a universal set of gates for quantum computation. Fidelities of states produced

by these gates are measured in the case of perfect feedforward, which is done by post-processing as

explained later. In the last step, graph states of different sizes (3, 5 & 7) are used as code words

7Measurements in the eigenbases of the operators σx, σy and σz.
8Note that the Clifford group of gates is not universal for quantum computation.
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for error correction, and their persistency is tested against different phase-flip error probabilities.

6.3.1. Box cluster

The box cluster is a unit-building-block for larger cluster states consisting of four qubits on a

square lattice with only nearest neighbours being adjacent, see figure 6.5 a). Instead of generating

the edges via CZ-gates, we generated the edges in our graph states via the MS-gate, see section

3.3.2. This gate corresponds to a σxσx interaction, which is equivalent to the CZ-gate up to local

transformations9. However, the way we implement the MS-gate, all pairs of ionic qubits interact

with equal strength resulting in a fully connected graph state where all vertices are adjacent.

This long range character of the MS-gate requires us to apply additional pulses to undo undesired

interactions (i.e. remove certain edges). In order to understand this, let’s start off with a chain of

4 qubits in the state |0〉⊗4 and apply a full entangling MS-gate UMS = exp
(

−i1
4

∑

j,i σi
xσj

x

)

. The

resulting state is a 4-qubit Green-Horn-Zeilinger state (GHZ):

|GHZ−4〉 =
1√
2

(

|0〉⊗4 + |1〉⊗4
)

=
1√
2

(|0000〉 + |1111〉) . (6.19)

In the graph framework, a GHZ state10 can be drawn as a fully connected graph11, where each

vertex is adjacent with each other, as shown in figure 6.5 b). The question is now, how to remove

undesired edges or to prevent them from being generated in the first place. There are two strategies,

one of them being the technique of refocussing and the other one is hiding.

The basic idea behind refocussing [245] is to split the entangling operations into pieces, and insert

single qubit operations carefully between the pieces. This allows interactions between certain qubit

pairs to be refocussed to the identity operation. The key feature is to use half entangling gates,

that is

UMS/2 = exp



−i
1

8

∑

j,i

σi
xσj

x



 . (6.20)

Such a gate is set up in the very same way as a full entangling gate, with the only difference that

the Rabi-frequency is set to

ΩMS/2 =
1√
2

|∆t|
4η

, (6.21)

which is a factor 1/
√

2 smaller than for a full entangling gate, as described in section 3.3.2. Here,

∆t is the laser detuning from the motional mode and η is the Lamb-Dicke parameter. A more

figurative way of understanding a half entangling gate is to use the phase-space picture. While

in the MS-interaction the wave-function closes a single loop with an area such that the picked up

phase is enough to generate fully entangled states, in the MS/2-interaction the enclosed area is half

the size, hence half the picked up phase.

9These local transformations do not play a role in the generation of cluster states, but they have to be dealt with
when it comes to interpreting the single-qubit measurements as described in section 6.3.3.

10Up to local unitary transformations.
11Note there is a locally equivalent graph state where a center vertex is adjacent to the 3 other vertices, however

these 3 vertices are not adjacent with each other
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Figure 6.5.: a) A four qubit box cluster state. The qubits (vertices) are depicted by red dots and the

CZ-interactions (edges) are drawn as black lines. b) Starting from 4 qubits in the state |0〉⊗4
and applying

a full entangling MS-gate UMS = exp
(

−i 1
4

∑

j,i σi
xσj

x

)

leads to a four qubit GHZ-state, which is a fully

connected graph. c) The pulse sequence to generate a box cluster (panel a)) is shown. At the bottom, each

pulse is examined in the graph formalism: An MS/2-gate applied on four qubits in |0〉⊗4
will generate half

edges between all vertices (red) depicted as grey dashed lines with a positive sign ‘+’ (the sign corresponds to
the sign of the interaction used to generate the edge, i.e. ±σi

xσj
x). Two single-qubit rotations Uz(π) on qubit

1 & 4 add an additional π-phase to vertices 1 & 4 changing their color (blue). Every additional MS/2 will
add a half edge according to the color rule of qubit pairs: Same colors ‘+’; different colors ‘−’. Two opposite
‘+−’ or ‘−+’ annihilate each other, i.e. first creating a half edge then removing it, U(MS/2)U(−MS/2) = I.
Two operations with the same signs, U(MS/2)U(MS/2) = U(−MS/2)U(−MS/2) = U(MS), correspond
to a full entangling gate which creates a full edge. The generation of two full edges, that is ‘+ + ++’ =
‘− − −−’ = U(MS)2 = I, is the identity operations (up to LU). Note the resulting experimental box cluster
will be denoted as |eBC〉 and is equivalent to a box cluster generated by CZ gates up to local unitary
transformations.

The pulse sequence that we used to generate a box cluster is given in figure 6.5 c) with a detailed

explanation of every pulse and its action upon the quantum state given in the caption. Starting

from an initial state with all qubits in |0〉 and applying an MS/2-gate, U(MS/2), will create half

edges between all pairs of qubits. By using single qubit rotations (refocussing) on ions 1 & 4, these

qubits are rotated around the z-axis by π, which corresponds to a unitary rotation Uz(π). These

refocussing pulses add an extra π-phase shift between qubits 1 & 2, 2 & 3, 3 & 4 and 1 & 4, which

effectively reverses the entangling interaction of the second U(MS/2)-pulse between those qubit

pairs.

A useful interpretation is that the additional π-phase shift inverts the sign of the second MS/2-
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interaction, U(−MS/2) = exp
(

i1
8

∑

j,i σi
xσj

x

)

= U(−), which can be regarded as a time-inverted

MS/2-interaction. From U(±) = U(∓)†, it follows that U(±)U(∓) = U(±)U(±)† = I. In other

words, U(+) and U(−) annihilate each other. When two MS/2-gates are applied with the same

sign between two vertices, a full edge (black line) is generated, as in the case of a single MS-gate.

By applying four times the MS/2-interaction on a pair of qubits, the qubits become disentangled

again, which effectively removes an edge (U(+)4 = U(−)4 = I, up to local unitary transformations).

The final state is a box cluster, which is a building block of the 2D cluster state.

Experimental details In order to perform the experiment, 4 ions are trapped at ωax ≈ 2π ×
1.22 MHz and ωrad ≈ 2π × 3.4 MHz forming a linear Coulomb crystal. The ions are optically

pumped into the |S1/2, mj = 1/2〉= |1〉 state and the 729 nm-laser frequency is set to drive the

excited level |D5/2, mj = 3/2〉= |0〉. Following 3 ms of standard Doppler cooling, 4.5 ms of ground

state cooling is applied to the axial COM and stretch mode. The MS-gate is set up on the axial

COM with a detuning ∆t ≈ |10 kHz|, yielding a full U(MS) gate time of τMS ≈ 100 ms. A detailed

description on setting up MS-gates can be found in [98, Chapter 6]. However, there are two main

differences: first, the Rabi-frequency is set to realise an MS/2 gate in 100 µs, this corresponds to

Ω ≈ 2 ∗ π × 35 kHz in our experiment (see equation 6.21). Secondly, the ac-Stark shifts induced

on the qubit transition by the laser beam are compensated by centerline detuning δc in contrast to

bichromatic power imbalancing as given in [98, Section 6.1.2]. An advantage of centerline detuning

is the ease of setting it up in the lab: as the detuning is scanned, one can directly monitor the

excitation of the unwanted populations (odd number of excited qubits), thus allowing immediate

feedback when minimising them via the centre-frequency detuning. For a description of ac-Stark

shift compensation regarding MS-gates, see [98, Section 3.5.1]. The value used in the experiment

for the given parameters is δc ≈ +700 Hz. However, the challenge with centerline detuning is to

keep track of all relevant phases between the laser-pulses involved in creating and measuring the

cluster state.

In order to verify the experimentally-generated state is indeed a box cluster, a full-state tomogra-

phy12 [12, 246] is performed and the state is reconstructed via the maximum-likelihood reconstruc-

tion method [247]. The real and imaginary parts of the reconstructed density matrices are shown

in appendix figure D.1 and compared to the ideal matrices, yielding a fidelity of F = 0.847 ± 0.008.

The errors given in this section are estimated by Monte Carlo simulations of projection noise around

the experimentally estimated expectation values [211], for a detailed discussion on quantum pro-

jection noise due to a finite number of measurements see Section 7.2. These simulations produce a

distribution of density matrices according to the projection noise, from which the error bars of the

derived properties are estimated. The measured state has a purity P (ρ) = 0.75 ± 0.013.

There is an important distinction to make between the experimentally generated box cluster

state |eBC〉 and the theoretical box cluster |BC〉 according to the definition given in section 6.1.

While |BC〉 is generated by CZ-gates acting on the input state |+〉⊗4, here |eBC〉 is created with

MS-gates acting on |0〉⊗4. These two clusters, |eBC〉 and |BC〉, are locally equivalent as they can

be transformed into each other by the local unitaries given in table 6.1.

12For 4 qubits, this corresponds to measuring in 34 = 81 combinations of Pauli-basis, that is σα
1 σβ

2 σγ
3 σδ

4, where
α, β, γ, δ = x, y, z. Here, we measured each basis 200 times to gain enough statistics.
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Qubit 1 Hσxσz

Qubit 2 Hσx

Qubit 3 Hσx

Qubit 4 Hσxσz

Table 6.1.: These are the unitary transformations which have to be applied to each qubit in order to
transform |eBC〉 into |BC〉.

6.3.2. Linear cluster

Even though the linear cluster might seem less complex than the box cluster, since there are less

edges to be created, experimentally it is quite the opposite. As mentioned above, due to the

long range interactions that we exploit to generate cluster states in ions, additional tricks need to

be applied to prevent edges from being generated. In addition to refocussing, for linear cluster

states (figure 6.4) hiding and unhiding [206, 248] pulses are employed. The key concept behind

hiding/unhiding is to prevent certain qubits to interact with the laser field by ‘parking’ them into

other Zeeman levels. Since the Zeeman states are several MHz (∼ 7 MHz at ∼ 4.11 Gauss) apart,

hidden qubits do not interact resonantly with the MS-interaction13.

However, the hidden qubits are subject to light-shifts imprinting additional phases, which have

to be taken care of. Luckily, in the pulse sequence which generates the cluster state (Fig. 6.6) these

additional phases turn out to be global phases, since the qubits to be hidden and unhidden are not

in a superposed state but the ground state |0〉. The light-shift induced phase shifts can therefore

be disregarded. The experimental generation of the 4-qubit linear cluster |eLC〉 is divided into two

4

3

2

1

1 2

3 4 ++ ++
+

+

+

+

+ +

++ +
+

+

+

+

+

++ +

+

+

+ +

+

-

- --
+

+

++

Hide 1 & 4

Entangle 2 & 3
Entangle 1 & 2, 

3 & 4

Unhide 1 & 4

Figure 6.6.: The pulse sequence to generate a linear cluster consists of two parts. The first part entangles
qubits 2 & 3 by hiding ions 1 & 4 and the second part uses refocussing to entangle ions 1 & 2 and 3 & 4.

parts. First, the qubits 1 & 4 are hidden in a different Zeeman level, |D5/2, mj = 5/2〉, such that

the MS-gate acts only on qubits 2 & 3, creating a full edge between them. A short sequence of

13A detailed description of hiding/unhiding can be found in [98, Section 7.2 and A.2]. Details of our current single
ion addressing are given in [119, Section 3.5].
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pulses unhides ions 1 & 4 and brings them back into the computational subspace |D5/2, mj = 3/2〉.
In the second part, refocussing is used to create entanglement between qubits 1 & 2 and 3 &

4. The resulting state is a linear cluster with a fidelity of F = 0.841 ± 0.007 and a purity of

P (ρ) = 0.816 ± 0.012. The fidelities of both states, the experimental box cluster |eBC〉 and the

linear cluster |eLC〉, are well above the threshold of Fthres = 0.5 to detect genuine multipartite

entanglement [249].

The experimental linear cluster |eLC〉 can be transformed into the commonly defined linear

cluster |LC〉 by applying the local transformations given in table 6.2.

Qubit 1 Hσze−i π
4

σx

Qubit 2 Hσxσx

Qubit 3 Hσx

Qubit 4 He−i π
4

σx

Table 6.2.: In order to transform |eLC〉 into |LC〉, the unitary transformations given above have to be
applied to each qubit.

6.3.3. Realization of MBQC with a 4-qubit linear cluster state

The linear cluster state can be used to implement both arbitrary single-qubit rotations and two-

qubit gates (Fig. 6.4), i.e. a universal set of gates, by measuring specific qubits in the right order and

feedforwarding their outcomes. However, experimental realizations of single-qubit measurements14

(in contrast to single-qubit readout) and fast feedforward are quite demanding techniques, and their

experimental demonstrations have already been shown in trapped ion systems [250, 251]. Here, for

the proof of principle experiment, a different approach is chosen. Instead of implementing active

feedforward, the states are fully characterized by an over-complete set of measurements and the

action of feedforward is simulated via post-processing, i.e. by reinterpreting certain expectation

values. This method of post-processing can be interpreted as a perfect feedforward and gives an

upper bound to achievable fidelities.

The first part of this section will give a detailed explanation of the data processing and, in the

second part, the results based on the linear cluster will be presented and discussed.

Data processing In order to compare our experimental results with the general description of

cluster states, i.e. by using the same language, the unitary transformations ULC in table 6.2 are

applied in order to reinterpret the measurement bases. For example: if the qubits 1 − 4 of |LC〉
were to be measured in σz, σz, σx, σx, respectively, this would correspond to measuring the qubits of

|eLC〉 in the same order, but different bases σy, σx, σz, σz. (Note: from |LC〉 = ULC |eLC〉 follows

ÂeLC = U †
LCÂLCULC .) The unitary transformation, and thus reinterpretation of measurements, is

the very first step in data processing. The next step is to simulate feedforward: there are two kinds

of feedforward actions to be simulated.

The first kind of feedforward can be commuted all the way through a measurement-based protocol

and acts only on the output state. These by-product operators depend on previous measurements,

but they do not change the basis of succeeding measurements in the measurement-based protocol.

14Measuring a single qubit out of many without affecting the others
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The two-qubit gate (and error correction, see section 6.3.4) demonstrated here requires only this

kind of feedforward and the analysis procedure is the following: in a (p+q)-qubit graph state, with

q output qubits and p qubits which are involved in the measurement procedure of the MBQC, there

are 2p possible outcomes for a given measurement configuration of the p qubits. As a consequence

there are 2p output states of the q-qubits, which are all related by the by-product operators in the

ideal case. We perform full state-tomography on all p + q = 4 qubits and this allows us to fully

characterise each of the 2p different q-qubit output states. Specifically, we estimate the probabilities

of observing all 2q eigenstates of all 3q observables built from combinations of products of Pauli

operators and each probability is associated with an eigenstate. The by-product operators are then

implemented by reassigning this association, that is changing the eigenstates. Finally, a single set

of 2q × 3q probabilities is established by summing up all 2p instances (one for each output state),

and the output density matrix is reconstructed via maximum-likelihood tomography.

The second kind of feedforward is that the measurement basis of subsequent measurements is

changed. This type of feedforward is relevant for the single-qubit rotations demonstrated with

the 4-qubit linear state. As described in section 6.2.1, an arbitrary single qubit rotation can be

implemented by sequentially measuring the p-qubits 1-3 (Fig. 6.4 a)) and feedforwarding the mea-

surement outcomes in order to adjust the succeeding measurement bases. The angles of rotations

are defined as φ1, φ2 and φ3, see equation 6.17. Measurements in the basis B(φ1) project qubit 1

onto the state |±φ1〉 = 1√
2

(

|0〉 ± eiφ1 |1〉
)

. The measurement outcome determines the sign of the

following measurement basis of qubits 2 and 3, i.e. B(±φ2) and B(±φ3). The final state is then

stored in qubit 4 (q-qubit) to which the by-product operators are applied in the same way as for the

first kind of feedforward. There are four possible measurement basis combinations, each with 23

possible outcomes (eigenvalues). We again perform a full state-tomography on all 4 qubits, which

gives us an over-complete set of expectation values, required to characterise a one-qubit state, for

all 4 × 23 outcomes. The by-product operators of each set are included as described in the first

part of this section. This results in a single set of expectation values that is used to reconstruct

the one-qubit output state (qubit 4). Examples of the reconstructed output states represented on

the Bloch sphere are shown in figure 6.8. As an important note, this whole process is simplified by

choosing φ1 and φ2 from the set {0, ±π/2}, such that B(±φ1) and B(±φ2) are the same observables

up to a global phase. In order to perform rotations with angles different than {0, ±π/2}, additional

measurements (other than the ones for full state-tomography) are taken in the appropriate basis.

Results Depending on the measurement order on a 4-qubit linear cluster, see figure 6.4, either a

two-qubit gate (plus local unitaries) or arbitrary single qubit rotations can be implemented. When

measuring the input qubits 1 & 4 (Fig. 6.7 a), output qubits 2 & 3 become either entangled or

not, depending in which bases the former qubits are measured. If they are measured in the bases

B(α) and B(β) with α = π/2 and β = −π/2, respectively, the output qubits become entangled. A

reconstruction of the output state (Fig. 6.7 b)) allows quantifying the entanglement by the tangle

τ [252], yielding a strong entanglement of τ = 0.59 ± 0.05. The fidelity with the theoretical state is

measured to be F = 0.88 ± 0.02, where the errors are estimated by Monte Carlo simulations. On

the other hand, if the input qubits are measured in α = 0 and β = 0, the resulting state should be
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a separable pure state. We observe τ = 0.02 ± 0.01 and a fidelity F = 0.83 ± 0.01 with the ideal

state, see figure 6.7 c).
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Figure 6.7.: a) Measurements of qubits 1 & 4 projects the qubits 2 & 3 into either an entangled state or a
product state, depending on the measurement basis B(α) and B(β) of 1 & 4. For α = π/2 and β = −π/2 (b),
the output state is entangled and for α = 0 and β = 0 (c) it is separable. b) Reconstructed density matrix
of the output state yielding a tangle of τ = 0.59 ± 0.05 and a fidelity with the ideal state F = 0.88 ± 0.02.
c) Reconstructed density matrix of the output state yielding a tangle of τ = 0.02 ± 0.01 and a fidelity with
the ideal state F = 0.83 ± 0.01.

Projecting the qubits 1, 2 & 3 into the bases, B(α), B(β) and B(γ), respectively, implements

a rotation (plus Hadamard) on the fourth qubit. The measurements and feedforward actions are

implemented as previously described for a variety of basis combinations (for details see figure

caption 6.8), demonstrating a range of different single-qubit rotations of the encoded qubit. The

final output state of qubit 4 is characterized by full-state tomography and maximum likelihood

reconstruction, yielding an average fidelity over all implemented instances of F = 0.92 ± 0.01.

6.3.4. Error correction

Since qubits can’t be completely decoupled from their environments in an experimental setup, they

will always be subject to noise and decoherence. Similar to classical bits, where error correction is

used to yield the accurate results, there is the quantum mechanical counterpart known as quantum
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Figure 6.8.: Single qubit rotations Uz(α)Ux(β)Uz(γ)H implemented by measuring qubits 1, 2 & 3 in
the bases B(α), B(β) and B(γ), respectively, showing the experimental output state a) and the ideal
output state b). The measurements are performed for different combinations of bases denoted by the color:
red {α, β, γ} = {π/2, 0, 0}, green {0, 0, −π/2}, blue {π/2, −π/2, 0}, cyan {π/2, 0, −π/2} and yellow
{π/4, 0, 0}.

error correction (QEC) [12, 238, 253–255]. The principals of QEC in the framework of the circuit

model have been experimentally demonstrated in e.g. NMR [256, 257], trapped ions [18, 19, 258],

linear optics [259] and solid-state qubits [260].

QEC has also been developed for the MBQC-model [231] by using graph states as code words15.

Moreover, the MBQC framework allows a very compact way of implementation, since the oper-

ations for encoding/decoding and syndrome measurements only involve Clifford gates and Pauli

measurements, see [261]. The general form of a graph state |ECn〉 suited for phase-flip error cor-

rection consists of (n+2)-qubits, where qubits A and B are read-in (encode) and read-out (decode)

qubits, respectively, and the code word is made of n qubits denoted by Cn as shown in figure 6.9 a).

We generate such graph states by the first part of the laser pulse sequence given in Fig. 6.9 b).

This creates the experimental state |eECn〉, which in turn is transformed into |ECn〉 by applying the

local unitaries given in table 6.3. Graph states |eECn〉 of increasing code word length n = 1, 3, 5

(corresponding to 3,5 and 7 physical qubits) are implemented. For n = 1, 3, the fidelities are

measured to be F1 = 0.92 ± 0.005 and F3 = 0.843 ± 0.005, respectively, see appendix D.3 and

D.416.

The experimentally generated states |eECn〉 are given by

2 |eECn〉 =
(

−i |−〉A |0〉⊗n + |+〉A |1〉⊗n
)

|−〉B +
(

|−〉A |1〉⊗n + i |+〉A |0〉⊗n
)

|+〉B (6.22)

and can be transformed into |ECn〉

2 |ECn〉 =
(

|0〉A |+〉⊗n + |1〉A |−〉⊗n
)

|0〉B +
(

|0〉A |−〉⊗n + |1〉A |+〉⊗n
)

|1〉B (6.23)

15In fact, graph states can also be used as code words in the circuit model.
16For |eEC5〉 we did not measure full-state tomography as this would require to measure 37 = 2187 different combi-

nation of Pauli-operators. This is not completely impossible, but experimentally inconvenient.
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Figure 6.9.: a) Three different graph states suited for error correction (phase error) with increasing code
word length Cn. An input state is encoded by measuring the read-in qubit A and decoded by qubit B.
b) The experimental pulse sequence is divided into two parts. The first part is the generation of the error
correction cluster states (see box cluster states 6.3.1). The second part implements a phase-flip error on
qubits Cn (either on a subset or on all, see text) by single-qubit rotations Uz(φ/2) = exp(−iφ/2σz) with
an error probability given by p = sin2(φ/2). The angle φ is determined by the Rabi-frequency and the
pulse-length.

by the local unitary transformations given in table 6.3.

The state |ECn〉17 is capable of correcting full phase-flips (σz) on up to (n − 1) /2 code word

qubits. Measurements of the code word qubits Cn in the σx-basis, where the temporal order is not

relevant, yield 2n outcomes each revealing an error syndrome. By applying the recovery operators

to the output qubit B, an example for n = 3 is given in table 6.4, restores the initial state encoded

in qubit A. A very useful interpretation of the MBQC error correction is to think of teleporting a

state from A to B through a noisy channel affecting the qubits Cn.

Qubit A Hσze−i π
4

σx

Qubits Cn H

Qubit B Hσze−i π
4

σx

Table 6.3.: In order to transform |eEC〉 into |EC〉, the unitary transformations given above have to be
applied to each qubit.

In our work, the persistency of these error correction codes is investigated against increasing

(phase-flip) error probability and their performance is tested for increasing code word lengths. The

experimental protocol is the following:

1) Preparation of a graph state |eECn〉.
17This state, |ECn〉, is related to the stabilizer repetition code (with code words |0L〉 = |000〉 and |1L〉 = |111〉 [238]).
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Qubit C1 + + + + - - - -

Qubit C2 + + - - + + - -

Qubit C3 + - + - + - + -

Recovery operator I I I σz I σz σz σz

Table 6.4.: Recovery operators have to be applied on qubit B depending on the measurement outcomes on
the code word qubits Cn. This here is an example for the n = 3 error correction graph state |EC3〉.

2) A measurement of qubit A in the appropriate basis encodes a 1-qubit state |Ψ〉 into the graph

state, or the orthogonal state, depending on the measurement outcome. The measurement basis

for A is chosen such that the states to be encoded are the measurement eigenstates. We choose to

encode the four eigenstates of the σx and σy Pauli-operators, since they are affected the most by

phase-flip errors.

3) To implement phase-flip errors, a controlled unitary phase rotation Uz(φ
2 ) = exp(−iφ

2 σz) is

applied by means of single qubit addressing to all, or a subset of, Cn (see second part of the pulse

sequence shown in figure 6.9 b)). The individual, incoherent error probability of each qubit Cn is

given by p = sin2(φ
2 ) and the angle φ is set by the laser pulse length and the Rabi-frequency.

4) Measuring the code word qubits Cn in the σx Pauli-basis simultaneously discretizes the error

probability into a definite number of phase-flip errors.

5) Applying the recovery operators to B, which depend on the 2n possible outcomes from step

4), restores the initially encoded state. These recovery operators, see table 6.4 for example, are

implemented in post-processing.
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Figure 6.10.: a) Error correction graph states |ECn〉 of increasing code word size n = 1, 3, 5 are tested
against different phase-flip error probabilities on a subset of (b) or on all (c) qubits Cn (blue). b) Performance
of error correction against increasing phase-flip error probability p on C1 for n = 1 experimental data (blue
diamonds) and ideal case (sold blue line); n = 3 (red); n = 5 (black). In the case of |EC5〉 the phase flip
error is also applied onto two qubits (grey). The error with probability p is induced by single qubit rotations
Uz(φ/2), where the probability is proportional to the rotation angle p = sin2(φ/2). The persistency of the
codes is quantified by the average teleportation fidelity (see text) and the initial drop in fidelity is due to
imperfect state preparation. c) The phase flip rotation is applied to all qubits simultaneously with the same
error probability p and the ideal case (left) is compared with experimental data (right) for n = 1 (blue),
n = 3 (red) and n = 5 (black). Despite the higher experimental complexity in generating larger graph states,
there is a region where quantum information is better protected by larger code word sizes.

In a first experiment, errors are applied to a subset of the code word qubits, see figure 6.10 a). We

quantify the persistency, or quality, of the code by the average teleportation fidelity (ATF), i.e. how
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well an input state at site A is recovered at site B after measuring the error syndrome and applying

the recovery operators accordingly. The fidelities with the ideal encoded states in A, |+〉, |−〉,
|i+〉 and |i−〉, are gained by state-tomography/maximum-likelihood reconstruction of the density

matrix of B. The ATF is then the average fidelity over those four input states. As expected, the

shortest code word n = 1 is not capable of protecting against errors, as the fidelity drops linearly

with the error probability p (Fig. 6.10 b), blue). However, the longer code words n = 3 and n = 5

show no loss of fidelity as the error probability is increased even up to p = 1. Moreover, |eEC5〉 is

also tested against an error on 2 qubits simultaneously (grey), showing no significant reduction in

fidelity and thus proving the persistancy of this code against single and two-qubit phase-flips. The

initial drop in fidelity at p = 0 is due to imperfect state generation which has several reasons, as

discussed in section 6.4.

A more realistic scenario is that all code word qubits are subject to noise. This is modelled

by introducing the same error probability on all qubits (equal phase-flip rotation applied to all)

and measuring the ATF. Figure 6.10 c) shows the side-by-side comparison between the ideal case

(left) and the experimental data (right) for different code word lengths n = 1 (blue), 3 (red) and 5

(black). In the ideal case, as n becomes larger, the error code tends towards perfect correction for

the whole range up to p < 0.5. Quite outstandingly, there is a region of experimental states with

larger n, where the input state is better protected against errors, despite the increasing complexity

in generating these larger graph states in the lab. To our knowledge, this is the first experimental

demonstration that quantum information can be better protected by larger code words even with

increasing experimental overhead.

6.4. Conclusion

The measurement-based framework has led to new and conceptually different insights into quan-

tum information theory and processing. From the theoretical side, new tools have been developed

to understand quantum many-body correlations and entanglement, not to mention the theoretical

horizon on how quantum information might be processed has been drastically extended. On the

other hand, many experimental investigations were triggered showing proof-of-principal demonstra-

tions, with one being presented in this thesis.

We present the deterministic generation of different cluster states with trapped ions, such as the

box and the linear cluster. The linear cluster is also used to demonstrate the principal implementa-

tion of 1 and 2-qubit gates, that is a universal set of gates. The required feedforward operations are

‘simulated’ by post-processing the measured data. In addition, graph states are generated which

are especially suited for error correction in the MBQC-framework. These error codes are tested

against increasing error probability with impressive results: for the first time it could be shown

that larger error codes are able to better protect quantum information against a certain type of

error (phase-flip errors) despite the larger complexity in their experimental creation.

In order to exceed the proof-of-principal stage, further steps need to be taken. One of them

is to implement active feedforward, as has already been shown in our group [250]. This would

require additional hiding/unhiding — in order to measure single ionic qubits without affecting the
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others in the crystal — fast data processing and decision logic, additional single qubit rotations

and ‘recooling’ to the ground-state within the pulse sequence.

The main limitations in creating ideal states in our experiment are laser intensity fluctuations

and fluctuating electric fields that lead to motional heating. Since the MS-gates are based on

motional modes, such heating will introduce decoherence in the state generation. Nevertheless,

the measured fidelities of all states implemented, including the error correction graph states, are

quite outstanding. This has been achieved by constant improvement of the experimental setup by

many people over the years. Despite the ongoing technological progress and the high gate fidelities,

scaling up to large cluster states18 to perform arbitrary algorithms is out of reach in our current

experimental setup for the moment (for a detailed discussion on limitations see Chapter 8). The

complexity of pulse-sequences to generate large clusters is steadily increasing and, in addition to

that, there are experimental challenges with long ion chains (N > 20) in our setup, see Chapter 8.

Here, other systems might be more suitable, such as neutral atoms in optical lattices, where the

naturally present interactions might allow implementation of huge 2D and even 3D cluster states.

However, the lack of proper single qubit controllability confronts the optical lattice approach with

technological challenges. In contrast, systems based on photons suffer far less decoherence and

single qubit measurements are easier to achieve (although feedforward has to be ultrafast on the

time-scale of ns) but the key disadvantage is the heralded entanglement generation. This leads to

an exponential overhead as the cluster state size is increased, which is less dramatic for trapped

ion systems.

As is often the case in the science of quantum information, there is not ‘the’ perfect system (yet) for

quantum computations, moreover, there isn’t even ‘the-one-and-only’ way of quantum computing,

leaving the scientific endeavour with an open end full of excitement.

18Large is a very vague statement, however depending on the algorithm, and if error correction is included or not,
estimates range from N = 103 to N = 107 qubits for a ‘useful’ computation [262–264, and many others]. For
MBQC I could not find such an estimate on the ‘useful’ size of the cluster-state, but there is a procedure to
translate gate-based algorithms into the language of MBQC [265].
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In quantum information theory, quantum discord is known as a measure of non-classical correlations

between two systems and it is often also referred as the quantumness of correlations.

Triggered from the theoretical observation that certain highly mixed states, even without ‘much

entanglement’ can be used for quantum information processing [33], H. Olliver and W.H. Zurek

[31], and independently L. Henderson and V. Vedral [32], introduced the notion of quantum discord

as a measure for quantum correlations beyond entanglement in early 2000. Over the past decade,

significant progress has been made in understanding quantum discord, with focus on its character-

ization and application. In fact, it was soon realized that discord carries properties identifiable as

a resource for quantum computation [34, 266]. Moreover, quantum correlations also play a crucial

role at the quantum phase transition in models of spin chains [267, 268] and many other quantum-

many body effects, as discussed in chapter 5. In the last few years a vast amount of theoretical

studies on the topic of discord has been published, in the year 2015 alone, over 200 articles related

to the topic are found based on a ‘web of science’-search, showing the importance in understanding

quantum discord as a principal concept in quantum mechanics similar to entanglement.

On the experimental side, improved control of quantum systems in the laboratory has allowed

the creation and observation of discordant quantum states in photonic systems [269–271, to name a

few] and trapped ion systems [230, 272]. At the core of this chapter is our publication ‘Experimental

Generation of Quantum Discord via Noisy Processes’ [230]. Here, we generate different discordant

states via two methods, amplitude damping and correlated dephasing. These states are analysed

and quantified by the measure discord D and the correlation rank R. In this chapter, experimental

methods, data analysis and results will be presented and discussed in detail.

7.1. Theoretical framework

In order to understand the findings published [230], quantum discord shall be introduced to the

reader via its most common definition: the difference between two definitions of mutual information.

Furthermore, important properties of discord will be presented and the concept of correlation

ranks will be introduced. A detailed review on quantum discord can be found in [48]. Since the

main focus is to generate discord by noisy a process, the second part will focus on the theoretical

description of non-unitary quantum operations and noise, such as amplitude damping, dephasing

and depolarization.

125
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7.1.1. Quantum discord

In classical information theory [273, 274], the mutual information I(A : B), which quantifies the

correlation between two random variables of systems A and B, is given by

I(A : B) = H(A) + H(B) − H(A, B), (7.1)

where H(A) is the Shannon entropy H(A) = − ∑

a pa log pa with probability pa to find that a is the

realisation of the random variable A (same holds for B). The joint entropy of A and B is defined

as H(A, B) = − ∑

a,b pa,b log pa,b, where pa,b is the joint probability to find a and b being realized

by A and B, respectively. By applying Bayes’ rule of conditional probabilities, equation 7.1 can be

re-expressed as

J (A : B) = H(A) − H(A|B), (7.2)

where H(A|B) = − ∑

a|b pa|b log pa|b is the conditional Shannon entropy and pa|b is the conditional

probability to find a given that b is the realisation of B. Classical correlations between systems

A and B can be interpreted as an information gain about system A by measuring system B (and

vice versa). Classically, the two expressions of mutual information, Eq. 7.1 & Eq. 7.2, are strictly

equivalent. However, in quantum mechanical systems, where the Shannon entropy is exchanged

with the von Neumann entropy, the expressions 7.1 and 7.2 are generally not equivalent, since

measuring a quantum system disturbs the quantum states. This discrepancy leads to the definition

of the quantum discord [31, 32].

Definition The following paragraph follows the discussion of [48, 275]. Consider a composite

quantum system HAB = HA ⊗ HB, with dimension dA and dB of each subsystem and dAB = dAdB

of the composite system. The mutual information (7.1) is then expressed as

I(ρ) = H(ρA) + H(ρB) − H(ρAB), (7.3)

where H(ρi) = −Tr(ρi log ρi) is the von Neumann entropy, ρAB is the density matrix of the

composite system and ρA = TrB(ρ) (ρB = TrA(ρ)) is the reduced density matrix obtained by the

partial trace TrB (TrA) over the basis of system B (A). The quantum analogon of the conditional

entropy is H(ρA|B), where

ρA|k = TrB(Ek ⊗ IBρ)/Tr(Ek ⊗ IBρ) (7.4)

is the state of A conditioned on outcome k in B, and {Ek} represents the set of positive operator

valued measure elements [275]. An optimization over all possible measurements in B leads to a

re-expression of Eq. 7.5 into

JB(ρ) = H(ρA) − min
{Ek}

∑

k

pkH(ρA|k) (7.5)
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In general, I(ρ) and JB(ρ) are not equal and the discrepancy between these two mutual informa-

tions defines the quantum discord as

DB(ρ) ≔ I(ρ) − JB(ρ) (7.6)

and equivalently for DA(ρ). Here, the label DA(ρ) = DA (DB(ρ) = DB) denotes the discord when

considering measurements on system A (B).

The optimization process in equation 7.2 might be heavy in terms of numerical calculations and

other measures for discord have been found which are better suited for certain instances (for an

extended review see [48] and references therein).

Properties The most important properties of quantum discord can be summarized to:

• DA(ρ) , DB(ρ) Discord is in general non-symmetric due to the asymmetry of the

conditional entropy H(ρA|B). However, one can find cases with

DA(ρ) = DB(ρ).

• DA(ρ) ≥ 0 Discord is a strictly positive measure, which is a consequence of the

concavity of conditional entropy 1 [48, 276].

• DA(ρ) = DB(ρ) = 0 Discord vanishes only for completely classically correlated states.

Consequently, any entangled state has non-zero discord [277].

• DA(ρ) = DA(UρU†) Discord is invariant under local unitary transformations U = UA⊗UB.

• DA(ρ) ≤ H(ρA) Discord has an upper bound.

A quantum state ρAB consisting of two subsystems A and B has zero discord DA(ρAB) = 0 if and

only if there is a von Neumann measurement
{

ΠA
k =

∣
∣
∣ΨA

k

〉 〈

ΨA
k

∣
∣
∣

}

such that [40]

∑

k

(

ΠA
k ⊗ IB

)

ρAB

(

ΠA
k ⊗ IA

)

= ρAB, (7.7)

where
{∣

∣
∣ΨA

k

〉}

is an arbitrary set of orthonormal basis, such that
〈

ΨA
k |ΨA

l

〉

= δkl. The statement

above can be re-expressed as

ρAB =
∑

k

pk

∣
∣
∣ΨA

k

〉 〈

ΨA
k

∣
∣
∣ ⊗ ρB

k , (7.8)

where ρB
k are the states of B occurring with probability pk,

∑

k pk = 1. Any quantum state which

can be written in the form given in Eq. 7.8 has zero discord. As an example of such a state is the

state prepared in the amplitude damping process (see section 7.2) and it is given by

ρAB =
1

2

(

A |+〉 〈+|A ⊗ B |+〉 〈+|B + A |−〉 〈−|A ⊗ B |−〉 〈−|B
)

(7.9)

1For a density matrix ρ = λ1ρ1 + λ2ρ2, where λ1, λ2 ≥ 0 and λ1 + λ2 = 1, concavity states that the inequality
S(ρ) ≥ λ1S(ρ1) + λ2S(ρ2) holds [276].
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Contrariwise, one can find discordant2 states which are mixed and separable3, as long as there

is no such set of orthonormal bases
{∣

∣
∣ΨA

k

〉}

. An example of a mixed, separable state with no

entanglement but with non-vanishing discord4 is given by

ρAB =
1

4

(

A |0〉 〈0|A ⊗ B |+〉 〈+|B + A |1〉 〈1|A ⊗ B |−〉 〈−|B

+ A |+〉 〈+|A ⊗ B |1〉 〈1|B + A |−〉 〈−|A ⊗ B |0〉 〈0|B
)

. (7.10)

Correlation matrix rank The measure of quantum discord given in equation 7.6 does not necessar-

ily determine the amount of quantum correlation but rather the quantumness of these correlations

[278]. There are different kinds of discordant states with various amounts of ‘usefulness’ in terms of

a resource for quantum information processing. By studying the necessary and sufficient conditions

under which quantum states have zero discord, the authors of [275] introduced a new measure based

on the rank R of the correlation matrix M (of a quantum state). It turns out, quantum discord is

a necessary but not sufficient condition to show that correlations are non-classical, which becomes

clear in the analysis of R [278]. The correlation rank can be used to study and quantify discordant

states with respect to quantum information protocols, such as quantum state transmission [279].

Consider a set of local Hermitian operators {An} and {Bm} with n = 1, . . . d2
A and m = 1, . . . d2

B.

(For a two-qubit system dA = dB = 2 and {An} = {Bm} = {I, σx, σy, σz}). A quantum state ρAB

can be decomposed into

ρAB =
∑

nm

rnmAn ⊗ Bm, (7.11)

where the coefficients rnm define a d2
A × d2

B matrix M , also known as the correlation matrix. One

can find the singular value decomposition (SVD) of M , that is UMW T = diag [c1, c2, . . . ], where

U and W are orthogonal, unitary matrices with dimensions d2
A × d2

B. The SVD defines a new set of

local bases Sn =
∑

n′ Unn′An′ and Fm =
∑

m′ Wmm′Bm′ , such that the state ρAB can be rewritten

in the new bases

ρAB =
R∑

n

cnSn ⊗ Fn. (7.12)

Here, R is the rank of the correlation matrix M defined as the number of non-zero eigenvalues

cn. In other words R determines the minimum number of bipartite product operators needed to

represent ρAB, which allows us to gain information regarding the total amount of correlations [278].

Some of the most important properties of R are:

• Rmax ≤ d2
min The maximal achievable rank is bound by d2

min = min{d2
A, d2

B}. In the case

of two-qubit states Rmax = 4, since dA = dB = 2.

• R = 1 A completely uncorrelated state.

• R = 2 A state containing classical correlations, may or may not contain discord.

2States containing discord.
3Consequently, such states have zero entanglement, as they are separable.
4This state has disord DA(ρ) = DB(ρ) = 0.311 but no entanglement, i.e. concurrence C(ρ) = 0. Its purity is

P (ρ) = 0.375.
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• R > 2 A non-zero discordant state.

• R ≥ 3 A state which can be used for QI transmission protocols of pure and mixed

states, similar to teleportation [280].

7.1.2. Quantum operations and noise

Any physical system has some coupling to its environment and thus is prone to random fluctuations,

i.e. noise introduced by the environment. Such noise typically leads to loss of information encoded

into the physical system (or a quantum system), where the information is irretrievably dissipated

into the environment. A common description of these non-unitary quantum operations is given by

the operator-sum representation [12]

ρout = ε(ρin) =
∑

i

EiρinE†
i , (7.13)

where a quantum operation ε acts on an input state ρin yielding the final state ρout. The operators

{Ei} are known as the operation elements of ε or Kraus operators. Even though the operator-sum

representation is not unique in the sense that the same process can be decomposed into different

sets of operators {Ei}, a unique description can be derived from the χij-matrix [281] of a quantum

process for a fixed set of orthogonal operators, e.g. the Pauli-operators. However, equation 7.13 is

sufficient for the purpose of this chapter.

A prominent example of a non-unitary quantum operation is amplitude damping describing the

information loss due to energy dissipation. Consider a qubit in a superposition state |ψ〉 = α |0〉 +

β |1〉, where |0〉 is the ground state of a two-level system and |1〉 is a meta-stable state, such as in

optical atomic qubits. The excited state will eventually decay due to spontaneous emission and the

final state will be mapped to |0〉, such that all information about α and β is eventually lost. The

action of amplitude damping can be described by a map εad(ρin) with two Kraus-operators

E0 =

[

1 0

0
√

1 − p

]

E1 =

[

0
√

p

0 0

]

(7.14)

where the damping parameter p is related to the decay rate of the excited state. A visual repre-

sentation of this process on a single qubit is given in figure 7.1 a).

Another important process is phase damping describing random phase-fluctuations, for instance

caused by an external noisy B-field coupling to a qubit with a magnetic-field sensitive energy

gap between its ground and excited state. Consider such a qubit, e.g. an ion qubit, being in a

superposition state |ψ〉 = α |0〉+β |1〉. Any fluctuating B-field induces rotations Rz(θ) = exp(− θ
2σz)

with random angle θ. For markovian noise processes it is reasonable to model these random phase

kicks with a Gaussian distribution around a mean value 0 and a variance λ. The output state is

then given by

εpd(ρin) =
1√
2πλ

∫ ∞

−∞
Rz(θ)ρinR†

z(θ)e−θ2/2λdθ =

[

|α|2 αβ⋆e−λ/2

α⋆βe−λ/2 |β|2

]

. (7.15)
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Figure 7.1.: The different quantum operations illustrated on the Bloch-sphere for a single qubit. a) Am-
plitude damping describes the spontaneous decay of an excited state used to encode quantum information.
The Bloch sphere contracts towards the ground-state. b) Dephasing describes, for instance, magnetic field
fluctuations (in our ionic qubit), where the phase information is lost. The Bloch sphere narrows towards
the z-axis. c) Depolarization is interpreted as exchanging a pure state with some probability by a complete
mixture. The Bloch sphere contracts towards the center.

The random phase kicks will cause the off-diagonal elements in the density matrix to decay expo-

nentially with λ. Due to the non-uniqueness of the operator-sum representations, an equivalent

description of phase damping [12] is given by the Kraus operators

E0 =
√

p

[

1 0

0 1

]

E1 =
√

1 − p

[

1 0

0 −1

]

(7.16)

which is also known as the phase flip channel with probability p. The action of phase damping on a

single qubit is shown in figure 7.1 b). With respect to generating discord via correlated dephasing,

it is useful to extend equation 7.15 to N qubits and an arbitrary dephasing axis þn

εþn
cpd(ρin) =

1√
2π

∫ 2π

0
Kþn(θ)ρinK†

þn(θ)dθ. (7.17)

For correlated noise, the rotations Kþn(θ) are simple tensor products of Rþn(θ)⊗N = [exp(−iθþn · þσ/2)]⊗N

acting an all qubits equally, where þn is the normalized dephasing axis vector and þσ = (σx, σy, σz).

Note that the integral in Eq. 7.17 goes from 0 to 2π, describing the effect of complete dephasing;

for an extended derivation see E.2.1 and [282]. An analytical analysis regarding more general con-

ditions, e.g. considering time-dependent dynamic and arbitrary noise distributions, can be found

in [283].

For the sake of completeness, depolarizing shall be mentioned, as shown in figure 7.1 c). It is a

homogenous ‘shrinking’ of the Bloch sphere towards a completely mixed state I/2. Depolarizing

can be expressed as

εdpol(ρin) = p
I

2
+ (1 − p)ρin. (7.18)

By substituting I/2 =
ρ+σxρσx+σyρσy+σzρσz

4 , equation 7.18 can be rewritten in the operator-sum

form

εdpol(ρ) =

(

1 − 3p

4

)

ρ +
p

4
(σxρσx + σyρσy + σzρσz) , (7.19)

where p denotes the error probability.
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7.2. Discord via local damping

As the first part of the studies presented in our paper [230], we investigated how local quantum

operations [284, 285], in this case amplitude damping of one qubit out of two, can generate discord

between them. Starting from a classically correlated, separable two-qubit mixed state ρ1, one of

the qubits is exposed to controlled amplitude damping induced by a sequence of coherent pulses

and optical pumping. The discord is then quantified by state-tomography and maximum-likelihood

reconstruction for a variety of amplitude damping probabilities. This section here is divided into 3

parts: state preparation, discussion of measurement results and effects of quantum projection noise

due to a finite number of measurements.

State preparation Intuitively, one might guess that preparing classically correlated states should

be much easier than preparing states which carry entanglement or any other kinds quantum cor-

relation. However, rather surprisingly the opposite is the case in our experimental setup, where

classical correlations are generated by first establishing quantum correlations and then removing

the quantumness by irreversibly deleting the phase information between both qubits.

In order to prepare the desired initial state ρ1

ρ1 =
1

2

(

A |+〉 〈+|A ⊗ B |+〉 〈+|B + A |−〉 〈−|A ⊗ B |−〉 〈−|B
)

(7.20)

two ions are trapped at ωax = 1.22 MHz and ωrad ≈ 3.5 MHz and the qubit states |0〉 and |1〉 are

encoded into |S1/2, mj = 1/2〉 and |D5/2, mj = 3/2〉, respectively (Fig. 7.2 a)). After optically pump-

ing into the ground state |0〉, Doppler cooling and side-band cooling to the motional ground-state

of the axial COM mode and the axial stretch mode, a full-entangling MS-gate on the COM-mode

with ∆t = 20 kHz and τMS = 50 µs creates a Bell pair (|00〉 − i |11〉) /
√

2. A series of additional

coherent, global 729 nm-pulses create a superposition of the two ancilla-levels (|dd〉 − i |aa〉) /
√

2,

see figure 7.2 a). By coupling the |d〉-state to the short-lived P3/2-state with the help of an 854 nm

laser pulse, the |d〉-state can only spontaneously decay into |0〉, due to selection rules. This creates

a mixed state (|aa〉 〈aa| + |00〉 〈00|)/
√

2. Finally, a π-pulse on the |a〉 ↔ |1〉-transition followed by

a π/2-pulse on the |0〉 ↔ |1〉-transition prepares the desired state ρ1.

The procedure for implementing a controlled amplitude damping with probability p is the fol-

lowing. Using single-ion addressing, a fraction of the population |1〉 of qubit B is transferred to |a〉,
this allows us to precisely control p by adjusting the pulse-length. Next, a 397 nm laser pulse with

circular polarization incoherently transfers all the population from |a〉 to |0〉. This implements

amplitude damping of qubit B, by the fraction of the component of its excited state that was

transferred to the ancillary state. The total experimental time is roughly 500 µs, of which 460 µs

correspond to preparing the state ρ1 and the remaining time is used for the amplitude damping

process. In order to check the influence of the 397 nm optical pumping on the remaining superpo-

sition of the qubit states |1〉 and |0〉, Ramsey experiments were performed showing no significant

effect.
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Figure 7.2.: a) The relevant Zeeman levels used in order to prepare the classically correlated state ρ1 by
a sequence of coherent 729 nm-pulses and spontaneous decay with the help of 854 nm-light. The amplitude
damping is implemented by means of 397 nm optical pumping from |a〉 to |0〉, for a detailed description see
text. b) The ideal trajectories of τ+

B (orange line) and τ−
B (green line) in the X −Z plane of the Bloch sphere

for different amplitude damping probabilities. Experimental results (symbols) are derived from reconstructed
density matrices after tracing out qubit A.

During the amplitude damping process, the state ρ1 undergoes a mapping

εad(ρ1) =
1

2

(

A |+〉 〈+|A ⊗ τ+
B + A |−〉 〈−|A ⊗ τ−

B

)

, (7.21)

where τ±
B = εab (B |±〉 〈±|B) are the amplitude damped (with probability p) density matrices of

qubit B. Due to the damping, τ±
B become non-orthogonal and, as such, less distinguishable as they

move towards |0〉, see figure 7.2 b). Consequently, there is no von Neumann measurement on qubit

B, such that εad(ρ1) is unaffected (see Eq. 7.7) and the discord DB is non-zero.

Results After measuring two-qubit state-tomographies (at least n = 1000 measurements per ba-

sis5, the effect of projection noise is going to be discussed in the following paragraph) for a wide

range of p, the experimental density matrix is reconstructed via the maximum-likelihood (MLH)

method [211]. The quantum discord is then derived from the reconstructed density matrix via

numerical optimization over all possible single qubit measurements, see Eq. 7.5 and [31, 269].

In figure 7.3 a) the amplitude damping results are presented for increasing damping probability

p. The quantum discord DB shows a statistically significant increase before it drops almost to zero

for a completely amplitude damped quantum system. On the other hand, DA is expected to be

exactly zero throughout the process and the data show that it remains constant and zero within

error bars. Due to the strict positivity D ≥ 0, any noise, such as quantum projection noise can

lead to a non-vanishing discord, as discussed in the upcoming paragraph. All the measured states

are separable, containing less than 0.001 tangle [252].

In order to estimate the error bars, Monte Carlo simulations (MCS) of projection noise (around the

measured expectation values) are performed. The MCSs produce a distribution of noisy density

matrices, from which we can calculate quantities of interest. If the values of a certain quantity

derived from the noisy matrices follow a Gaussian distribution, it is a sensible approach to present

5There are 32 = 9 bases to be measured for a 2-qubit state.
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Figure 7.3.: a) The results of the amplitude damped εad(ρ1) for different damping probabilities p (see text
for details). The discord DB (green) is compared between theory (solid line) and data (triangles), as well as
discord DA (blue) between theory (dashed line) and data (squares). The experimental discord is quantified
from the experimentally reconstructed density matrices by using the definition of discord given in Eq. 7.5
& 7.6. b) The total correlation I (Eq. 7.3) calculated for the ideal case (line) and extracted from the
experimental data (squares).

the mean value with one standard deviation as the error bar of the given quantity. However, it

is not guaranteed that the distribution is [35, and references therein], especially if the quantity of

interest is close to a lower or upper boundary, leading to a skewed distribution. Since quantum dis-

cord has a lower boundary D ≥ 0 and the derived values for D are close to it, we perform the MCS

analysis in a slightly different way. Instead of presenting the mean value, we present the median

of the MCS distribution as the estimate for the desired property. The upper (lower) error bar is

then defined as a point in the distribution, where the cumulative probability between the median

and this point is equal to 0.341. In this way, if the distribution becomes Gaussian, the median will

be equal to the mean and the error bars become symmetric and equivalent to one standard deviation.

Even though the qubits A and B become more and more quantum correlated throughout the

one-qubit amplitude damping process, the mutual information I, see Eq. 7.3, shows that the total

amount of correlations is not increased by local quantum operations. In fact, the mutual infor-

mation I decreases with higher amplitude damping probability, see figure 7.3 b). The correct

interpretation is that the generation of quantum correlations, i.e. discord, is coming directly at the

expense (reduction) of classical correlations. During the process, the classical correlations in the

initial state are converted to quantum correlations. However, the loss of classical correlations is

higher than the gain in quantum correlations, resulting in a reduction of I. As a consequence, if

the initial state is completely uncorrelated, then DA = DB = 0 for all p.

These findings are supported by analysing the correlation rank derived from the experimentally

reconstructed density matrix, as shown in figure 7.4. The ideal initial state ρ1 (Eq. 7.20) has a

correlation rank R = 2 and the correlation rank can not be increased throughout the process of

amplitude damping. Moreover, for total damping p = 1, the correlation rank is decreased to R = 1

yielding a completely uncorrelated state εac(ρ1). Our results show that local quantum operations

can generate discord at the expense of the total amount of correlations. Indeed, there is only a very

restricted class of discordant states, which are achievable via local operations, and the measure of
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this set is zero in the total set6 [278].

a) b) c)

Figure 7.4.: Reprinted from our paper [230]. The reconstructed density matrices of εad(ρ1) (upper part)
and the singular values of the corresponding correlation matrix (lower part) are shown for various amplitude
damping probabilities a) p = 0.00, b) p = 0.79, and b) p = 1.00. The rank R corresponds to the number
of non-zero values and the error bars (red ‘dot’) are derived from MCS, see text. The fidelities of all
experimental states are greater than 0.98.

Effects of quantum projection noise The set of non-discordant two-qubit states is of zero measure

in the total set of all possible states [286, 287]. In other words, there is an ‘infinitely larger’ amount

of states containing discord than without it. Consequently, any white noise, for instance quantum

projection noise (QPN), is likely to generate discordant states in the reconstruction process. The

question here to be asked is “can the deviation from DA = 0 truly be due to QPN, or are state

preparation/measurement infidelities and maybe other unknown noise sources to blame?”

In quantum mechanics, an observable has to be measured an infinite number of times to find

its expectation value exactly. This is obviously impractical and experimentally we estimate the

expectation value after a finite number n of measurements on (repeatedly made) copies of the

state. Finding ni instances of a measurement outcome i, a probability pi = ni/n is assigned. A

von Neumann quantum measurement is like a coin-flip between the two eigenvalues and follows a

binomial distribution - to each probability pi an uncertainty is assigned by one standard deviation
√

pi(1 − pi)/n.

The effects of QPN are quantified by Monte Carlo simulations of the ideal state ρ1 (Eq. 7.20),

which has zero discord (DA = DB = 0), zero tangle and a correlation rank R = 2 (correlation

matrix singular values are [CM1, CM2, CM3, CM4] = [1, 1, 0, 0]). The distribution width of each

observable7 is set by n. In this way 70 ‘noisy’ copies of the density matrix are produced (using

Matlab) and the values of interest are calculated for each copy leading to a distribution of these

values. Figure 7.5 shows the mean value and one standard deviation for discord, tangle and

the singular values as a function of n. Even for a perfectly separable, non-discordant state ρ1,

6Less formally, this means that there is an ‘infinitely larger’ number of discordant states, which can not be generated
by local operations.

732 combinations of Pauli-measurements, i.e. σα
1 σα

2 with α = x, y, z, are used in the maximum-likelihood recon-
struction.
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QPN (via the MLH-reconstruction) will ‘generate’ significant amounts of discord and tangle in the

reconstructed state (Fig. 7.5 a)). The simulation shows that at least n = 1000 measurements are

required to yield zero discord and tangle within one standard deviation. A similar observation is

made regarding the singular values of the correlation matrix (Fig. 7.5 b) - c)). However, these seem

to be even more sensitive resulting in a full rank R = 4 state beyond one standard deviation even

after n = 1000.

These simulations imply that our observed results presented in figure 7.3 are consistent with the

effects of a finite number of measurements.
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Figure 7.5.: Reprinted from our paper [230] a) Monte Carlo simulations of tangle and discord as function
of measurements n showing the effects of quantum projection noise, by sampling over 70 ‘noisy’ copies of
the density matrix. Ideally, tangle and discord are zero for ρ1. b) Monte Carlo simulations of the singular
values of ρ1. Without projection noise, the ideal singular values are [CM1, CM2, CM3, CM4] = [1, 1, 0, 0].
c) A close-up of b).

7.3. Discord via correlated noise

As a second part of the studies presented in [230] we investigated the effects of correlated noise

with regards to discord and especially the correlation matrix rank R. The type of noise channel

used here is correlated dephasing, which can be modelled by equation 7.17. Since the qubit is

encoded into Zeeman-levels (Fig. 7.2 a) any B-field fluctuations will cause dephasing in the z-basis,

i.e. þn · þσ = þez · þσ = σz, with an angle θ proportional to the B-field strength. Due to the close

proximity of two ions (≈ 5 µm at ωax = 1.2 MHz), the B-field is identical for both qubits and so are

B-field fluctuations, hence correlated dephasing. The coherence time of the S1/2↔D3/2-transition is
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on the order of a few ms in the µ-metal shielding, see Section 4.2, figure 4.3 d). In order to achieve

complete dephasing, the qubits are exposed to a noisy B-field environment for 10 ms. This could

have been sped up by applying white noise to the quantization B-field coils and thus increasing the

noise amplitude, however, exposure to the naturally occurring fluctuations was experimentally less

demanding and faster to implement.

The general procedure is the following: 1) state preparation, 2) wait time of 10 ms8 to allow

for correlated dephasing to naturally occur and 3) full-state tomography. We investigate a variety

of different initial states being subject to this kind of noise. The first state under investigation

is ρ1 (Eq. 7.20) as described in the former section, and the results for εþn
cpd(ρ1) with þn = þez are

presented in figure 7.6 a). In the ideal case (theory), correlated dephasing can raise the rank of

ρ1 from R = 2 to R = 3 for εþn
cpd(ρ1). The results ρ1 (Fig. 7.4 a)) and εþn

cpd(ρ1) (Fig. 7.6 a)) are

consistent with the theoretical values. Further, the symmetric discord, that is DA = DB = D is

increased from D = 0.010+0.014
−0.005 to D = 0.19+0.03

−0.03. A comparison between the density matrices of ρ1

(Fig. 7.4 a), top) and ε þez
cpd(ρ1) (Fig. 7.6 a), top) shows that the coherences elements |00〉 〈11| in the

latter state completely vanish due to the dephasing, whereas the matrix elements |01〉 〈01| stay un-

affected, since they are part of a decoherence-free subspace, with respect to the noise applied [145].

a) b) c)

Figure 7.6.: The reconstructed real part of the density matrix and the singular values of the corresponding
correlation matrix shown for a) ε þez

cpd(ρ1) with D = 0.19+0.03
−0.03 and R = 3, b) ρ2 (definition see text) with

D = 0.01+0.01
−0.01 and R = 2 c) ε þez

cpd(ρ2) with D = 0.19+0.02
−0.03 and R = 4. The measured tangle is less than 0.003

for all states and the imaginary components are ≤ 0.003.

The question “How much can the correlation rank be increased by correlation noise?” can be

answered by considering a simple geometric picture, developed by our collaborator M. Gessner

[288]. The picture relates the dephasing axis þn and two real valued vectors þv and þw, which effec-

tively describe the ‘correlations direction’ between qubit A and B (a detailed derivation can be

found in appendix E.2). A completely mixed, classically correlated state ρ (e.g. ρ1) can always be

brought into a form

ρ =
1

4
(I⊗ I+ d þv · þσ ⊗ þw · þσ) , (7.22)

8This is much longer than the experimental time in the amplitude damping procedure, where correlated B-field
fluctuations can be neglected.
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where d is the only non-zero singular value of the SVD9. The final rank R is then related by the

overlap between þn and the vectors þv and þw. In the case of ρ1 the vectors þv and þw are þv = þw = þex,

since qubit A and B are correlated in x-direction. With a dephasing around z, i.e. þn = þez, it

follows þn · þv = þn · þw = 0 and a final rank R = 3 is generated, see table E.1.

However, if the dephasing axis is neither equal nor orthogonal to the ‘correlation axes’, that is

0 < þn · þv < 1 and 0 < þn · þw < 1, the maximal rank R = 4 for two qubits is achievable. Since we

can not easily change the direction of dephasing, we use coherent pulses to rotate the qubit states

with respect to the dephasing axis. By transforming the state ρ1 into

ρ2 ≔ Uy(π/8)ρ1U †
y(π/8), (7.23)

where Uy(π/8) = exp(−iπσy/16)⊗2 is a local unitary rotation on both qubits, and exposing the

state again to our correlated noisy B-field environment, its rank is consistent with the increase from

R = 2 (ρ2) to R = 4 (ε þez
cpd(ρ2)), as shown in figures 7.6 b) and 7.6 c), respectively. The measured

discords D
(

ε þez
cpd(ρ1)

)

= 0.19+0.03
−0.03 and D

(

ε þez
cpd(ρ2)

)

0.19+0.02
−0.03 are the same, however, the ranks are

different. This shows that it is not enough to describe non-classical correlations only by the measure

D(ρ), since states with the same D(ρ), can have completely different kinds of correlations.

Up to now we have only considered states with pre-existing classical correlations in order to

generate discord. What about completely uncorrelated states such as product states ρ = ρa ⊗ ρB

with rank R = 1? Any such product state can be written in terms of the reduced Bloch-vectors þrA

and þrB as

ρ =
1

2
(I+ þrA · þσ) ⊗ 1

2
(I+ þrB · þσ) , (7.24)

for more information see Appendix E.2.2. The final rank, after correlated dephasing, is again

related by a geometrical picture. If the dephasing axis þn is equal to either þrA or þrB, then the rank

is unchanged and remains R = 1. However if þn differs from both reduced Bloch-vectors, then the

final rank can be converted to R = 3. In order to experimentally demonstrate this we prepare the

state

ρ3 ≔ A |+〉 〈+|A ⊗ B |+〉 〈+|B (7.25)

with |+〉 = (|0〉 + |1〉) /
√

2 and þrA = þrB = þex. Figure 7.7 a) shows the reconstructed density

matrix of ρ3 and the corresponding singular values which are consistent with a rank R = 1, up

to projection noise. After dephasing in þn = þez, i.e. þn · þrA = þn · þrB = 0, the rank is converted to

R = 3 and the discord D(ρ3) = 0.012+0.004
−0.005 is increased to D

(

ε þez
cpd(ρ3)

)

= 0.23+0.02
−0.02, as shown in

figure 7.7 b)10.

The rank can be even further increased to a full ranked state R = 4 by first preparing ε þez
cpd(ρ2),

as described above. This state is then transformed by unitary rotations into

ρ4 ≔ Uy(π/2)ε þez
cpd(ρ3)U †

y(π/2), (7.26)

9This is not the same SVD as discussed in Eq. 7.12, since here the identity is treated separately. Hence, there are
two non-zero singular values and in this representation the rank is R′ = 1 + R, see Eq. E.8.

10Note that DA = DB is symmetric in both cases, since we start from a product state and apply correlated dephasing
to both qubits.
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and is subject to a second dephasing around z resulting in the full ranked state ε þez
cpd(ρ4) with R = 4

and D
(

ε þez
cpd(ρ3)

)

= 0.12+0.03
−0.04, see figure 7.7 c). This shows that even completely uncorrelated

product states can be converted to highly quantum correlated, full ranked states by exposing them

to correlated experimental noise in two orthogonal directions.

a) b) c)

Figure 7.7.: The reconstructed real part of the density matrix and the singular values of the corresponding
correlation matrix shown for a) ε þez

cpd(ρ1) with D = 0.19+0.03
−0.03 and R = 3, b) ρ2 (definition see text) with

D = 0.01+0.01
−0.01 and R = 2, c) ε þez

cpd(ρ2) with D = 0.19+0.02
−0.03 and R = 4. The measured tangle is less than 0.003

for all states and the imaginary components are ≤ 0.003.

7.4. Conclusion

The notion of quantum discord [31, 32] extended our knowledge about the boundary between our

classical everyday world and the one described by quantum mechanics. It gave us a new tool to

investigate the question of what quantum correlations beyond entanglement are, and to classify

quantum correlations in general. Here in this thesis, the first study of discordant states in atomic

qubits is reported, based on the publication [230]. We experimentally demonstrate how local

quantum operations, such as amplitude damping on a subsystem, can convert classical correlations

into quantum correlations between two qubits. A measure to quantify these correlations is the afore

mentioned quantum discord.

However, as it was shown [275, 278], the measure of discord is not enough to capture the whole

picture, since discord describes rather the quantumness of correlation than its total amount. Hence,

another measure, based on the rank of the correlation matrix, is used to quantify discordant states.

By using the rank as a measure, we show that local quantum operations cannot increase the rank,

rather they convert pre-existing classical correlations to generate discord. Nevertheless, there are

processes, such as correlated classical noise on both qubits, which can increase the rank even to

the maximum of R = 4 for qubit systems. We investigate different input states, ranging from

classically correlated mixed states to completely uncorrelated product states, under which condi-

tions correlated B-field noise affects the rank of these states. A simple geometric picture is used

to infer the relation between the dephasing axis and the ‘correlation axes’ of the subsystems under

investigation (see appendix E). We create states of rank R = 3 and R = 4 even for a completely

uncorrelated input state. This is especially interesting, as product states are simple to prepare



7.4. Conclusion 139

in the lab and letting them evolve under naturally occurring noise sources yields states which are

useful in terms of resource states for quantum information processing, specifically deterministic QI

transmission protocols [279].

In contrast to entanglement, quantum discord seems to be more robust against certain noisy pro-

cesses as these processes can generate the latter one. However, recent studies show that dissipative

processes can lead to steady-states containing entanglement [289–292].

Our results find relevance in a wide range of different experimental setup, since the generation

of discord via noise is not limited to atomic systems, but can be applied to any other qubit system

interacting with a noisy environment. Moreover, the notion of discord is not only restricted to two-

qubit systems but can be expanded beyond qubits (qutrit and higher dimensions) with multiple

particles.





8. Limitations of the current setup and open

questions

Knowing and understanding the limitations is the first step towards improvement.

The ultimate goal in quantum information processing is to build a device capable of solving ar-

bitrary large scale problems, which a classical machine cannot do. Over the last 30 years, a

remarkable progress has been made towards a quantum computer or/and a quantum simulator,

and the principal building blocks have been demonstrated in different physical platforms.

Trapped ions have proven to be a leading platform in terms of quantum control, such as initial-

ization, single/two-qubit gates and read-out. However, a remaining challenge towards a full-scale

quantum computer is the size of the systems or, more precisely, the number of qubits. At the time

of writing this thesis, the largest system size in our setup is N = 20. In order to increase the

number of qubits, first the limitations and unsolved questions have to be identified and addressed.

The last chapter of this thesis is devoted to this discussion by addressing issues encountered with

long ion strings and, if possible, providing answers and solutions to the problems.

Limits on trapping As mentioned in Chapter 4.3, for experiments regarding quantum information

processing with ions trapped in a linear Paul trap, any zig-zag configurations must be avoided.

By relaxing the axial and/or increasing the radial confinement, it is possible to avoid the zig-

zag crossing and keep the crystal linear. However, there are practical limits to the confinement

achievable. Radially, we are limited by the amount of RF power that can be generated and efficiently

sent to the trap. As we send in more RF power, more power is dissipated (for instance in the

Macor®1 holder, for more information see [119, Chapter 3.1]), heating the trap. In [119], our trap

temperature is estimated to have ≈ 100 ◦C at a standard RF power of about ≈ 4 − 5W. It is

advisable to keep the trap temperature low, as the different materials (blades and holder) have

different thermal expansion coefficients which could lead to stress. We also have to lower the radial

confinement, in order to recrystallize the ion string after a collision with residual back ground gas,

which changes the trap temperature. By doing so, we see the ions moving on the CCD camera after

changing the RF power from PRF = 5 W to PRF = 2 W (after micromotion compensation), due

to the thermal expansion. Such temperature changes are expected to be larger for a ‘hotter’ trap.

Further, it has been reported in [119, Chapter 4.7] that the axial heating rate strongly depends

on the RF confinement. Lastly, the higher the radial confinement the harder it is to couple the

bichromatic light into the fiber due to the larger frequency separation of the two light fields, as

mentioned in section 4.2.

1Macor has a rather high loss tangent: ≈ 10−3 at RT.

141
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On the other hand, lowering the axial confinement introduces other issues. The most obvious one

is that the size of the ion string increases which makes the homogeneous illumination, imaging and

single-ion addressing towards the edges more challenging, as discussed in the following paragraphs.

Less obvious is that at a low axial potential, < 30 V, the ion string’s position is changing in time,

likely due to local charging and discharging of the trap2. We frequently observe that the change

in position is enough to affect the camera read out which is based on the ion-positions (see [119,

Chapter 3.4]). In this case we repeatedly calibrate the camera images and fit the ion positions every

≈ 10 min. Further, we observe that the axial mode temperature exceeds the Doppler-temperature

by a factor of 5 − 6 which introduces many new issues, as discussed in the following paragraphs.

In our current setup we perform experiments with 15 − 20 ions on a regular basis and we could

increase the number by a few more ions without substantial changes to the setup, depending on

the experimental procedure. However, going beyond N = 50 ions, new conceptual approaches are

needed. The discussion regarding the scalability of ion traps has a long tradition starting from the

early 2000s. Without going into details, I will just mention a few of the conceptual milestones:

anharmonic potentials within segmented traps [293], quantum charge-coupled device architectures

with a large numbers of interconnected ion traps [294], quantum ion-photon networks where ion

traps are interconnected with fibers [295], and 2D-arrays of traps [296, 297].

Axial temperature Most of the experiments during this thesis, where more than 10 ions are

trapped, are performed at an axial confinement of ωax ≈ 2π × 220 kHz. For the given harmonic

potential we can calculate the mean phonon number at the Doppler limit. Using the relation

n̄ = Γ/2ωax, where Γ = 2π × 22.4 MHz is the linewidth of the cooling transition, we would expect

n̄ ≈ 50. In order to check the single ion temperature after Doppler cooling, we take a spectrum of
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Figure 8.1.: a) (blue) The motional red sideband spectrum of a single Doppler cooled ion at low axial
confinement ωax ≈ 2π×220 kHz and (red) multi-Lorentzian fits of the spectrum. Due to this low confinement
and high temperature, the 11th motional sideband is visible. b) (blue) The fitted area beneath each order
of the axial sideband and (red) a Gaussian fit of all areas. From the standard deviation σ we can estimate
the mean phonon number n̄ ≈ 280.

the vibrational modes. Figure 8.1 a) shows such a spectrum of the red sidebands, where a single ion

is excited along the trap axis. Here, we see sidebands up to the 11th order, indicating a very high

thermal population. The peaks are fitted with a Lorentzian and the area beneath each spectral

2We haven’t done any elaborate investigation on charging, but this is our best guess as the cause. Charges could be
generated by stray-light of the photoionizations laser (375 nm and 422 nm), or the Doppler-cooling beam (397 nm).
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peak is plotted against the sideband-order index, Fig. 8.1 b). We model the distribution of the

plotted areas with a Maxwell-Boltzmann distribution, where the standard deviation σ is directly

related to the mean phonon number n̄ = σ2

η2 (for more details see appendix B.2). According to

the measured spectrum and the fits in Fig. 8.1, we get n̄ ≈ 280 which is significantly higher than

the Doppler limit. The reason for this discrepancy remains unclear and further investigations are

needed.

Despite the high axial temperatures, experiments can still be performed with the ‘horizontal’

beam. This beam has negligible overlap with the axial modes, i.e. the axial temperature has no

influence on the Rabi frequency to the first order. Furthermore, second order Doppler effects can

be neglected, since the most probable speed in the distribution is given by vp =
√

2kBT/m =
√

2n̄~ωax/m ≈ 1 m s−1.

Limitation on coherent Rabi oscillations Currently, there are two main limitations for single

qubit operations on long ion strings:

1) Laser power and beam shaping of the 729 nm and 397 nm beams.

2) Imaging optics.

For global single qubit operations and entangling gates it is necessary to have a homogeneous

coupling strength distribution, which is not given for a Gaussian light-field. In figure 8.2 a) Rabi

oscillations on a string of 52 ions are shown. The ions are trapped at ωax = 2π × 135 kHz with

a string size of 240 µm (Fig. 8.2 b) and are driven from the ‘horizontal’ port with an elliptically

shaped beam 33 µm × 380 µm. Nevertheless, a distribution of the different Rabi frequencies is

clearly visible. Section 4.4 discussed the issues of a specially inhomogeneous coupling strength and

limitations of beam shaping in detail.

The edge of the chain exposes another issue: the ions become fainter the further away they are

from the center. This is partly due to the elliptical spot size (≈ 460 µm×110 µm) of the 397 nm not

illuminating all ions equally. However, it does not explain why ions 1 − 3 and 49 − 52 are hardly

visible, as even these ions should be within ∼ 60% of the peak intensity.

Another limitation is set by the imaging optics3. Zemax simulations show spherical aberrations of

the divergent point source (ion) on the imaging plane (camera) as show in figure 8.2 c). In addition

to the spherical aberrations, ions further away from the optical axis experience an astigmatism,

which becomes apparent in the elliptical image of the outer ions. Due to these aberrations the edge

of the chain appears dimmer.

The optical imaging system in our setup was never designed for a large field of view such as

for > 50 ions. Since designing and manufacturing new objectives is very time-consuming and

expensive, a more pragmatic approach to solve this problem could be via software. One idea is

to divide the chain into separate regions of interest (ROI) on the camera with individual signal

integration times. This allows for balancing the different intensities.

3Silloptics, Germany: a five-lens custom-made objective with anti-reflection coating for 397 nm and 729 nm. The
focal length is f ≈ 50 mm, the clear aperture Dobj = 38 mm and NA > 0.25. Spherical aberrations induced by
the fused silica view-port should be corrected by the lens-design.
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Figure 8.2.: a) Coherent Rabi flops on 52 ions driven from the ‘horizontal’ port with trapping frequency
ωax = 2π × 135 kHz. The intensity distribution of the elliptically shaped beam (see 4.4.1) is clearly visible.
b) Due to limitations in the imaging (and partly due to limited 397 nm spot size) the ions 1 − 3 and 49 − 52
are very faint and can not be discriminated properly. A closer look on these edge ions shows an astigmatism,
whereas the middle ions project a coma, indicating spherical aberrations. c) Zemax simulation of the image
of two ions 150 µm apart. (left) The blue ray traces belong to the ion on the optical axis and green for
the other one. Both ray traces show spherical aberrations due to the divergent point sources (ions) and the
limited aperture of the objective. Additionally, the image of the ion 150 µm away from the optical axis shows
astigmatism. (right) A cut through the x-y plane.

Single ion addressing The imaging system is not only used to collect fluorescence and image

the ions onto the camera, but also to focus 729 nm light onto a single ion. For this purpose the

beam is enlarged with a Galilean beam expander to D ≈ 25 mm which gives a theoretical 1/e2-spot

diameter of 2w0 = (4λ/π)(f/D) ≈ 1.8 µm at the diffraction limit. In order to address different

ions, the 729 nm beam is steered with an AOD which displaces the expanded beam with respect to

the objective. In addition to the aberrations mentioned above, the clear aperture of the objective,

Dobj = 38 mm, and the size of the expanded beam, D, set a limit on the number of addressable

ions.

Figure 8.3 a) shows an AOD frequency scan where the focused beam is swept over 20 ions

(108 µm) with a constant pulse length4. The excitation of each ion is proportional to the intensity

of the beam as we perform a composite pulse sequence, π
2 carrier

− tAC−stark − π
2 carrier

, in order to

reduce addressing errors. As the expanded beam gets displaced by changing the AOD frequency,

the objective will eventually clip the 729 nm beam. (Note: the frequency bandwidth of the AOD5

is larger than the scanning range and cannot explain the reduction in intensity.)

In addition to the limits set by the optics, there is another interesting effect related to the expansion

of the wavefunction along the axial direction. Due to the low axial potential we use for trapping

multiple ions, the ground state wave-expansion for a single ion is x0 =
√

~/mω ≈ 30 nm. This is

considerably smaller than the focussed spot size. However, the large axial temperature, n̄ ≈ 250,

4The pulse length is such that the ion with the strongest coupling performs a π-rotation.
5AOD: fcenter = 70 MHz, BW= 15 MHz at 90%-efficiency
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Figure 8.3.: a) A frequency scan of the AOD sweeps the focused laser beam across the ion string. Due to
the displacement of the expanded beam with respect to the objective, the objective clips the beam when the
outer ions are addressed. b) The ground state wave-function expansion and the expansion of a higher Fock
state (n = 500) are compared to the intensity distribution of the focused beam size (FWHM = 4 µm). Due to
the smaller overlap of the higher Fock states with the Gaussian beam, the coupling frequency Ω is reduced.
The thermal distribution of the Fock states leads to coupling strength fluctuations. c) Addressed Rabi
oscillations are compared for a single ion trapped at 220 kHz (red) and 1.2 MHz (blue). The pulse length is
normalized by the mean coupling frequency Ωn̄. Experimental data (dots) and theoretical calculations (line)
are in very good agreement. d) A theoretical calculation of the coupling strength variation as a function of
the thermal distribution n̄.

populates very high Fock states Ψn(x) with nmax ≈ 10 ∗ n̄ ≈ 25006. As the wavefunction’s size

scales with
√

n, its size becomes macroscopic for very high Fock states. Figure 8.3 b) compares

the size of the ground state and the Fock state n = 500 with the intensity profile I(x) of a focussed

beam with FWHM = 4 µm. The expansion of the higher Fock state is half the beam size with a

significantly reduced overlap function

Sn =

∫ ∞

−∞
|Ψn(x)|2I(x)dx. (8.1)

This overlap function is directly proportional to the coupling strength Ωn and the thermal distri-

bution causes the coupling strength to fluctuate.

When the trapping potential is stiff (1.2 MHz, n̄ ≈ 4 after Doppler cooling) no damping of the ad-

dressed Rabi flops can be observed, see Fig. 8.3 c)(blue). However, in the shallow trap (220 kHz),

6A rule of thumb for the highest population in a thermal distribution.
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the oscillation damps rapidly (red). The measured values (dots) are in superb agreement with

numerical simulation (lines). The model used to calculate the damping oscillations has no free

parameters and can be found in appendix B.3. Figure 8.3 d) shows the coupling strength variation

(one standard deviation σ divided by the mean coupling Ωn̄) as a function of the thermal distribu-

tion n̄.

These coupling strength fluctuations become less extensive when more ions are loaded, as shown in

figure 8.4. Here, 9 ions are trapped at 220 kHz and the middle ion is addressed. Compared to the

oscillations of a single ion trapped in the same trapping potential, there is no damping observable.

The reasons for this are the additional axial modes, which contribute in two different ways.

The first one is purely statistical. For the sake of argument, we assume all L axial modes have

the same frequency ωl
ax = ωax, with l ∈ L and n̄l = n̄. Then, the fluctuations will be reduced by

∼
√

1/L as they average out over all modes. A similar argument has been given in [78, Section:

4.4.5]. This, however overestimates the fluctuations. In addition to this statistical averaging, the

higher frequency modes have smaller amplitudes xl
0 and lower thermal distributions n̄l, which both

scale with ∼
√

1/ωl.

10 12 14

Pulse length (2π/Ωn)

0

0.2

0.4

0.6

0.8

1

E
x

ci
ta

it
o

n

86420

Figure 8.4.: Addressed Rabi flops of the middle ion in a 9 ion string trapped at 220 kHz. Compared to
the Rabi oscillation on a single trapped ion, there is no damping observable. The reason for this are the
additional axial modes, as described in the main text.

Micromotion An interesting observation is shown in figure 8.5. Here, Rabi oscillations of the

‘vertical’ and the ‘horizontal’ micromotional sidebands are presented (5 out of 9 ions). The axial

confinement is increased to ωax = 2π×700 kHz, in order to be able to drive the ‘vertical’ micromotion

(the ‘vertical’ beam has substantial overlap with the axial modes). This is ∼ 50 kHz away from

the zig-zag transition. When the oscillation of each ion is examined individually, one observes that

ions close to the middle damp faster compared to the edge ions. The argument that the string is

too close to the zig-zag transition is insufficient, since β ≪ 1 for all ions (remember, in the zig-zag

configuration not all ions can be on the RF nodal line). If the excess micromotion is completely

compensated, electric field noise can kick the ion randomly through the RF null introducing a
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dephasing of the motion. This might explain the observations made in the ‘horizontal’ case, where

the middle ion seems to have the lowest excess micromotion and decoheres faster than the other

ones. However, it does not explain the ‘vertical’ oscillation. Here, all ions show the same coupling

strength on the micromotional sideband, but again the middle ions damp faster. It is not yet clear

why the Rabi oscillations of the micromotional sideband damp at all. Moreover, in the 20 ion case,

the damping is significantly less pronounced.

Horizontal micromotion Vertical micromotion

5

Figure 8.5.: The ‘horizontal’ and the ‘vertical’ micromotional sideband of a 9 ion string trapped at ωax =
2π × 700 kHz are driven. Only one half of the chain, ions 1 - 5 , are shown for better visibility. It is not clear
yet why ions close to the middle (ion 5) decohere faster than ions at the edge.

Heating rates Heating of the motional modes is yet another source of decoherence in our MS-gates

and spin-spin interactions. The random kicks in phase-space lead to a dephasing during the time-

evolutions. There is quite some extended literature, to name just a few [298–301], regarding the

origins and the microscopic mechanism of motional heating. A general consensus is that external

electric field noise couples to the ion’s charge and exerts randomly fluctuating forces, which heat

the ion’s motion.

However, most of the literature treats the heating of a single ion. For long ion strings the

mechanism becomes more complex due to the spatial extension of the string and the additional

modes. In addition to the spectral density of the external field noise, the coupling of the modes

depends also on the spatial correlation length of the noise compared to the mode-wavelength. In

the limit of perfectly correlated noise, such that the noise has the same amplitude and phase at

each ion’s position, the heating rate of the COM mode is ΓCOM
H = NΓH , where ΓH is the single

ion heating rate [301, Section II.C.3]. All other modes do not couple to the noise, i.e. Γm
H = 0. If

the noise correlation length gets close to the wavelength of mode m, this mode will experience the

strongest coupling. In the case of completely uncorrelated noise, the heating rate does not depend

on the ion number N , but only on the mode frequency, Γm
H ≃ (ωCOM/ωm) ΓH .

Considering the trap and the ion string size, it is valid to assume that most of the noise is correlated

across whole string. By relaxing the axial confinement, the string expands and one might expect

to see changes in the heating rates of the other modes as well. Table 8.1 compares the heating
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200 kHz 700 kHz
ωm/2π (MHz) Γm

H (n̄s−1) ωm/2π (MHz) Γm
H (n̄s−1)

COM, m = 1 3.324 27.17 ± 1.84 3.324 30.35 ± 2.98
’Tilt’, m = 2 3.317 0.24 ± 0.04 3.249 2.04 ± 0.34
’Rock’, m = 3 3.306 0.14 ± 0.07 3.141 2.38 ± 0.32

m = 9 3.193 1.561 27.4 ± 3.58

Table 8.1.: Comparison of heating rates of a 9 ion crystal at two trapping confinements.

rates of the different modes in a string of 9 ions trapped at two confinements, 220 kHz ∼ 65 µm and

700 kHz ∼ 30 µm.

The observations are very surprising and completely opposite to what we expected. As the

confinement is increased, the heating rates of the lower radial modes increase, even though the

string size shrinks. Quite outstanding is the lowest mode (m = 9); its heating rate is as big as the

heating rate of the COM mode. One might be inclined to think that in the high trapping potential,

the string undergoes a phase-transition to a zig-zag configuration, despite being 50 kHz off from

the phase-transition. However, measurements presented in 4.3 suggest no zig-zag configuration

at all. A possible explanation might be resonant three mode coupling [86] between the axial

and radial modes. If the anisotropic parameter α = (ωax/ωrad)2 ≈ 0.0479 is higher than αres =

4αcrit/ (αcrit + 6) ≈ 0.0374, where αcrit is the critical point of the zig-zag transition, three mode

mixing cannot be excluded. More elaborate experiments need to be performed to investigate this

hypothesis.



9. Summary and outlook

The work presented in this thesis can be divided into three main topics regarding quantum infor-

mation science: quantum simulations of many-body interacting systems, proof of principle demon-

stration of a measurement-based quantum computer and investigation of quantum correlations,

specifically discord, under the influence of noise. All of the discussed experiments are performed

with 40Ca+ ions trapped in a linear, macroscopic Paul trap. The ions are first Doppler cooled

and then sideband cooled to the ground state of the trapping potential [14]. Further, the qubit is

encoded in two Zeeman levels of the S1/2 ground state and the D5/2 meta-stable state of the valence

electron. For the coherent qubit manipulation, such as arbitrary single qubit rotations, entangling

gates and engineered spin-spin interactions, a narrow-linewidth 729 nm laser is used.

There are two experiments presented in this work with regards to quantum simulation. Both

implement a transverse Ising Hamiltonian with tunable spin-spin couplings Jij . The interactions

are engineered with a Mølmer-Sørensen type interaction [93, 99], where a bichromatic 729 nm light

field couples off-resonantly to the radial motional modes. By changing the detuning of the bichro-

matic light field with respect to the modes, the interaction range, which falls off by a power law

decay over distance, can be tuned from infinite range to dipole-dipole coupling. In addition, an

effective transverse B-field, B, can be applied by off-resonantly driving the Mølmer-Sørensen type

interaction, where magnitude is proportional to the detuning. In both experiments we operated in

the high field regime, i.e. max(Jij) ≪ B, which allows for taking advantage of decoherence-free

subspaces (DFS). Further, in this regime the transverse Ising Hamiltonian can be mapped onto an

XY-Hamiltonian with hopping terms preserving the number of excitations in the system.

The first experiment demonstrates a newly developed spectroscopic method for investigating

the low-lying energy states based on superpositions of approximate eigenstates of the Hxy, which

allows for probing the energy splittings between those eigenstates. We applied this method to a

string of seven ions, first by preparing a superposition of the ground state and one low-lying energy

level, then evolving the system under the given Hamiltonian. A Fourier transformation of the

oscillating signal reveals the energy splitting between both states. However, as the ground state

and the excited state do not belong to the same DFS, the time dynamics is limited by decoherence

allowing measurement of only one or two oscillation periods, which limits the resolution. Despite

this, valuable information can still be retrieved such as the sign of the coupling matrix Jij , that is,

determining if it is ferromagnetic or anti-ferromagnetic coupling.

In a similar fashion, superpositions between two excited states of the same subspace were created

and the time dynamics is Fourier analysed. This provides means to fully and accurately measure

the dispersion relation of the quasiparticles of the underlying many-body interaction system. More-

over, by cleverly post-selecting the data with two excitations, it is possible to measure quasiparticle
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interactions and energy shifts due to these interactions. A perturbation theory treatment qualita-

tively explains the experimental observations, however overestimates the effects as for a seven spin

system two excitation are no longer a small perturbation.

The second experiment reports for the first time on the direct observation of entanglement prop-

agation. A system of seven spins, initially prepared in the ground state, is locally quenched: that

is, locally excited by flipping a single spin, and the time evolution is measured. By exploiting the

single-ion addressability, it is possible to measure state tomographies at different times and hence

reconstruct the time-evolved quantum state. This allows for quantifying two-spin entanglement as

a function of time, and indeed the entanglement propagates away from the quench side towards the

boundaries of the system. The tunability of the interaction range α allows for further investigation

of Lieb-Robinson bounds for short-range and long-range interactions. As predicted by theory, we

observe the vanishing of a clear light cone as the interaction range is increased, up to the point

where the light cone picture becomes an invalid description of the system.

There are many ideas for possible quantum simulation experiments with the current setup. A

project being wrapped up at the time of writing this thesis uses the entanglement spreading to gen-

erate large entangled states of up to 20 spins. The main objective of this project is to demonstrate

new techniques for reconstructing the quantum state based on matrix product state reconstruction,

rather than full-state tomography, as this becomes impractical for system sizes beyond 7-8 ions.

Another project which has been started is to observe so called dynamical quantum phase transi-

tions, which correspond to non-analyticities in the time dynamics of certain observables. Other

ideas are concerned with many-body localization, where a random potential landscape is imprinted

onto the spins. This could be achieved by applying more than a single frequency to the AOD

resulting in many tightly focussed, individually controllable laser beams. In this way, each spin

gets a local B-field Bi that can be controlled. Further, if the Bi(t) are time-dependent on the

scale of the spin-spin coupling, one could study fluctuation- or decoherence-enhanced tunnelling, a

phenomenon found in biological systems. There are too many possibilities to list them all, much

less to describe them in detail.

A limitation with regards to the quantum simulation experiments is the rather tiny spin-spin

coupling of about max Jij ≈ 2π×20 Hz−100 Hz, depending on the experimental parameters such as

detuning and Rabi frequency. This should significantly improve with the new laser system that will

be mentioned later. Laser frequency fluctuations and B-field noise hardly play a role in the regime

of max(Jij) ≪ B, by taking advantage of the decoherence-free subspace. However, motional heat-

ing is an issue which could lead to leaking out of the protected subspace, and it is not yet exactly

clear how big these effects are. Moreover, there is no immediate solution as it most likely requires

new trap designs, potentially with other materials such as sapphire instead of Macor, for the blade

holders. For future experiments which are not performed in the decoherence-free subspace, laser

frequency and B-field noise will be relevant, and their exact influence on the quantum simulations

has to be first investigated.

The second main topic presented in this thesis showcases the results of our proof of principle exper-

iment regarding measurement-based quantum computation. A first main result is the deterministic
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generation of linear and box cluster states, the basic building blocks of larger clusters used as a

resource in the MBQC-model. Both states are generated with high fidelities of F = 0.846 ± 0.005

for the box cluster and F = 0.841 ± 0.005 for the linear cluster. As the MBQC-approach requires

feedforward, i.e. subsequent measurement bases have to be adjusted according to the previous

measurement outcomes, we simulate a perfect feedforward by post-selection. In this way, the ba-

sic single and two-qubit operations are demonstrated and their performance is quantified, given a

perfect feedforward.

In addition, certain cluster states of different sizes, used as code words in QEC, are prepared

and their persistence against phase flip errors is investigated. Despite requiring more experimental

resources in generating larger states, usually resulting in lower fidelities, we present evidence that

larger states indeed protect quantum information better against errors. To the best of our knowl-

edge, this is the first experimental demonstration that larger code words provide better protection.

A next step towards MBQC would be to implement fast feedforward, as it has already been

demonstrated by our group a few years previously. However, even though the fidelities achieved

in our setup for creating small cluster states are still unrivalled, there seem to be better suited

physical systems to implement an MBQ-computer. Appropriate platforms are, for instance, optical

lattices where the intrinsic interaction and the lattice structure naturally lead to large cluster states

- however, with the disadvantage of less controllability for the time being.

The last experiment presented here is dedicated to quantum correlations, specifically quantum

discord in a two-qubit system with the results being published in [230]. The experimental results

can be divided into two main parts, both reporting on the generation of quantum discord via noisy

processes, however, with two different types of noise. In the first part, quantum discord is anal-

ysed as a function of amplitude damping in one of the qubits of a classically correlated, mixed

two-qubit state and is quantified by the measure discord D. As the amplitude damping probability

is increased, the measured D increases at the expense of classical correlations, demonstrating that

local noise can only convert correlations, not create them. Quantum discord decreases towards a

fully damped qubit, where all quantum information of this particular qubit is lost.

The second part examines quantum discord under correlated B-field fluctuations acting on both

qubits. Here, it is demonstrated that correlated noise can create highly correlated two-qubit states,

quantified by the rank R, even if the initial state has no (classical) correlations at all. Depending

on the basis the noise acts in, different states are created. These states range from low rank states

R = 2, which might contain discord, up to fully ranked states R = 4, which can be useful in certain

quantum information protocols, such as probabilistic quantum teleportation protocols.

A near-future improvement to the system will be the installation of a new TiSa-laser system

providing almost an order of magnitude more intensity of 729 nm-light. Alternatively, the 729 nm-

light can be frequency-doubled to 395 nm endowing the possibility of Raman gates - increasing the
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effective spin-spin coupling as well by at least an order of magnitude1. Further, beam shaping

could be improved by diffractive optics or spatial light modulators, however, some careful thought

must be put into redesigning the existing optical setup, such that everything fits inside the µ-metal

shielding. At the time of writing this thesis, a new generation of RF-power stabilization circuit

has been built in, further improving the frequency stability of the radial modes down to ∼ 10 Hz.

Additionally, a sample-and-hold PID circuit has been setup for intensity stabilization of the 729 nm

single-ion addressing pulses. The same circuit will be implemented to other 729 nm-light paths,

allowing increased intensity stability. With respect to B-field stability, permanent magnets such as

Sm2Co17
2 promise an increase of coherence time by a factor of ten as reported in [302].

1Due to the shorter wavelength the Lamb-Dicke factor increases by a factor of two, which is a factor of four for the
effective spin-spin coupling. Moreover, the Raman process is a two-photon process yielding another factor of two.
The remaining question is what Rabi frequencies can effectively be achieved.

2Sm2Co17 magnets are know to have a very low dependency of remanence on temperature of about −0.03%/K.
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B. Extended derivations

B.1. Derivation of the effective spin-spin Hamiltonian

We start with the Hamiltonian HInt describing the interaction of trapped ions with an external

coherent light field with frequency ωL and phase ΦL (as given in equation 3.59):

HInt = ~
Ω

2

[

e−i(∆t−ΦL)σ+
(

1 + iη(ae−iωtt + a†)eiωtt
)

+ h.c.
]

. (B.1)

Here, we take a few assumptions:

• We are in the Lamb-Dicke regime: η << 1

• We consider a single mode, i.e. COM: → ηi,m = η

• All ions have an equal coupling strength: Ωi = Ω

• σ+ =
∑

i σ+
i , σ±

i = σx
i ± iσy

i

• ∆ = ωL − ω0 is the detuning of the laser frequency from the atomic transition

• ωt is the trapping frequency, i.e. the COM-mode frequency

• ∆t is the detuning from ωt, see Eq. B.2 and B.3

• δc is the center line detuning, see Eq. B.2 and B.3
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B.1.1. Blue/Red Side Band

We set ΦL = Φb and ∆ = ωt + ∆t + δc

Hb = ~
Ω

2

[

e−i((ωt+∆t+δc)t−Φb)σ+
(
1 + iη(ae−iωtt + a†)eiωtt

)
+ h.c.

]

= ~
Ω

2





✘

✘
✘

✘
✘
✘

✘
✘

✘
✘✘✿

RWA

σ+e−i((ωt+∆t+δc)t−iΦb) + iη





✘

✘
✘

✘
✘
✘

✘
✘
✘

✘
✘✿

RWA

σ+ae−i(2ωt+∆t+δc)t+iΦb

+ σ+a†e−i(∆t+δc)teiΦb

)

+ h.c.
]

= ~
Ω

2
iη

[

σ+a†e−i(∆t+δc)teiΦb − σ−aei(∆t+δc)te−iΦb

]

(B.2)

and similarly for the red sideband: ΦL = Φr and ∆ = −ωt − ∆t + δc

Hr = ~
Ω

2

[

e+i((ωt+∆t−δc)t+Φr)σ+
(
1 + iη(ae−iωtt + a†)eiωtt

)
+ h.c.

]

= ~
Ω

2





✘

✘
✘
✘

✘
✘
✘

✘
✘
✘✿

RWA

σ+ei((ωt+∆t−δc)t+iΦr) + iη
(

σ+aei(∆t−δc)t+iΦr

+
✘
✘

✘
✘
✘

✘
✘

✘
✘

✘✘✿
RWA

σ+a † ei(2ωt∆t−δc)teiΦr




 + h.c.






= ~
Ω

2
iη

[

σ+aei(∆t−δc)teiΦr − σ−a†e−i(∆t−δc)te−iΦr

]

. (B.3)

The Hamiltonian describing a bichromatic light field is a sum of

Hbic = Hr + Hb

= iη
~Ω

2

[(

σ+aei(∆t−δc)teiΦr − σ−a†e−i(∆t−δc)te−iΦr

)

+
(

σ+a†e−i(∆t+δc)teiΦb − σ−aei(∆t+δc)te−iΦb

)]

= iη
~Ω

2

[

a
(

σ+ei(∆t−δc)teiΦr − σ−ei(∆t+δc)te−iΦb

)

+ a†
(

σ+e−i(∆t+δc)teiΦb − σ−e−i(∆t−δc)te−iΦr

)]

= iη
~Ω

2

[

aei∆tte−i
Φr−Φb

2 e−i π
2

(

σ+e−iδctei
Φr+Φb

2 ei π
2 + σ−eiδcte−i

Φr+Φb
2 e−i π

2

)

+ . . .
]

= iη
~Ω

2

[
aei∆tte−iΦM (−i)

(
σ+e−iδcteiΦS + σ−eiδcte−iΦS

)
+ . . .

]
, (B.4)

where the phases ΦM = Φr−Φb
2 and ΦS = Φr+Φb+π

2 . Since Φb and Φr can be chosen independently,

we set them to Φb = Φr = −π
2 , such that ΦM = ΦS = 0. This simplifies equation B.4 to:

Hbic = η
~Ω

2

[

aei∆tt + a†e−i∆tt
] [

σ+e−iδct + σ−eiδct
]

(B.5)
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B.1.2. Time Evolution - Magnus Expansion

In order to calculate the time-evolution of Hbic the Magnus-expansion is applied up to the second

order:

U(t) = T

[

e−i
∫ t

a
dt1H(t1)/~

]

= e−(Ω1+Ω2+Ω3... ) ,

where T is the time-ordering parameter. The first order is given by:

Ω1(t) =
i

~

∫ t

0
dt1H(t1) = iη

Ω

2

∫ t

0
dt1

[

aei∆tt1 + a†e−i∆tt1

] [

σ+e−iδct1 + σ−eiδct1

]

= a



σ+

(

ei(∆t−δc)t − 1
)

δc − ∆t
− σ−

(

ei(δc+∆t)t − 1
)

δc + ∆t





+ a†



σ+

(

e−i(δc+∆t)t − 1
)

δc + ∆t
− σ−

(

ei(δc−∆t)t − 1
)

δc − ∆t



 .

(B.6)

Equation B.6 consists of two types of terms, constant, time-independent terms and a rotating

one. The time-independent parts only introduce a global phase (constant energy off-set) and can

therefore be neglected. Further, the experiments regarding quantum simulations are carried out

in the regime where ∆t ≫ ηΩ. This means that terms oscillating at e±i(∆t±δc)t will average out

over the time scale set by 1/ηΩ. Hence, we can adiabatically eliminate these terms and completely

ignore the first order. A more intuitive reason why we can ignore these terms is that the wave-

packet trajectory in phase-space is small enough3, such that its overlap with the origin is ≈ 1 at

any time of the evolution.

3For small excitations of Fock states.
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B.1.3. Second Order

Now let’s take a look at the second order:

Ω2(t) =
1

2~2

∫ t

0
dt1

∫ t1

0
dt2 [H(t1), H(t2)] . (B.7)

Before continuing the commutator of [HBIC(t1), HBIC(t2)] has to be calculated first:

= −
(
~Ωη

2

)2
[

∑

i

(
aei∆tt1 + a†e−i∆tt1

) (
σ+

i e−iδct1 + σ−
i eiδct1

)
,

∑

j

(
aei∆tt2 + a†e−i∆tt2

) (
σ+

j e−iδct2 + σ−
j eiδct2

)

]

= −
(
~Ωη

2

)2
{

(
a + a†

)
[

∑

i

σ+
i e−iδct1 +

∑

i

σ−
i eiδct1 ,

∑

j

σ+
j e−iδct2 +

∑

j

σ−
j eiδct2

]
(
a + a†

)

+
∑

i

∑

j

(

σ+
i + σ−

i

)[

aei∆tt1 + a†e−i∆tt1 , aei∆tt2 + a†e−i∆tt2

](

σ+
j + σ−

j

)
}

= −
(
~Ωη

2

)2
{

∑

i

(
aei∆tt1 + a†e−i∆tt1

) (
aei∆tt2 + a†e−i∆tt2

) (

σz
i e−iδc(t1−t2) − σz

i eiδc(t1−t2)
)

+
∑

i,j

(
σ+

i e−iδct1 + σ−
i eiδct1

) (
σ+

j e−iδct2 + σ−
j eiδct2

) (

ei∆t(t1−t2) − e−i∆t(t1−t2)
)

}

= −2i

(
~Ωη

2

)2
{(

aaei∆t(t1+t2) + (Nph + 1)ei∆t(t1−t2)

+
∑

i

Nphe−i∆t(t1−t2) + a†a†e−i∆t(t1+t2)

)

σz
i sin

(
δc(t2 − t1)

)

+
∑

i,j

(

σ+
i σ+

j e−iδc(t1+t2) + σ+
i σ−

j e−iδc(t1−t2)

+ σ−
i σ+

j eiδc(t1−t2) + σ−
i σ−

j ei∆t(t1+t2)

)

sin
(
∆t(t1 − t2)

)

}

. (B.8)

Here,are a few useful relationships used in the derivation above:

• [AB, CD] = A[B, CD] + [A, CD]B = A[B, C]D + AC[B, D] + [A, C]DB + C[A, D]B

• eiα − e−iα = 2i sin(α)

• [σ+
i , σ−

j ] = σz
i δij

• [a, a†] = 1

• a†a = Nph, where Nph is the number operator

There are 8 different terms in Eq. B.8, where four of them carry the spin-spin coupling operators.

By inserting Eq. B.8 into Eq. B.7 the second order can be calculated. An adiabatic elimination
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(AE) of the fast rotating terms containing ∆t and ∆t ± δc yields.

Ω2(t) = −i

(
Ωη

2

)2
{

(aa)
✘

✘
✘

✘
✘
✘✿AE

ei∆tt
(

. . .
)

+
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i

(Nph + 1) σz
i
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− δ3
c t

(δ2
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t )2
+

δc∆
2
t t

(δ2
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t )2
+

✘
✘

✘
✘

✘
✘✿AE

ei∆tt
(

. . .
)

)

+
∑

i

Nph σz
i

(

− δ3
c t

(δ2
c − ∆2

t )2
+

δc∆
2
t t

(δ2
c − ∆2

t )2
+

✘
✘

✘
✘
✘
✘✿AE

ei∆tt
(

. . .
)

)

+ (a†a†)
✘

✘
✘

✘
✘
✘✿AE

ei∆tt
(

. . .
)

+
∑

i,j

σ+
i σ+

j

(

∆te
−iδct sin(δct)

δ3
c − δc∆2

t

+
✘
✘

✘
✘

✘
✘
✘✘✿

AE
sin(∆tt)

(

. . .
)

)

+
∑

i,j

σ+
i σ−

j

(

− δ2
c ∆tt

(δ2
c − ∆2

t )2
+

∆3
t t

(δ2
c − ∆2

t )2
+

✘
✘
✘

✘
✘
✘

✘✘✿
AE

sin(∆tt)
(

. . .
)

)

+
∑

i,j

σ−
i σ+

j

(

− δ2
c ∆tt

(δ2
c − ∆2

t )2
+

∆3
t t

(δ2
c − ∆2

t )2
+

✘
✘
✘

✘
✘
✘

✘✘✿
AE

sin(∆tt)
(

. . .
)

)

+
∑

i,j

σ−
i σ−

j

(

∆te
iδct sin(δct)

δ3
c − δc∆2

t

+
✘
✘

✘
✘
✘

✘
✘✘✿

AE
sin(∆tt)

(

. . .
)

) }

.

A simple rearrangement results in

Ω2(t) = −i

(
Ωη

2

)2
{

∑

i

(2Nph + 1) σz
i

(

− δ3
c t

(δ2
c − ∆2

t )2
+

δc∆
2
t t

(δ2
c − ∆2

t )2

)

+
∑

i,j

(

σ+
i σ+

j e−iδct + σ−
i σ−

j eiδct
) (

∆t sin(δct)

δ3
c − δc∆2

t

)

+
∑

i,j

(

σ+
i σ−

j + σ−
i σ+

j

)
(

− δ2
c ∆tt

(δ2
c − ∆2

t )2
+

∆3
t t

(δ2
c − ∆2

t )2

) }

. (B.9)

The equation B.9 can be further simplified by using a Taylor expansion with respect to δc
∆t

to second

order. This leads to the following Ω2(t):

Ω2(t) = −i

(
Ωη

2

)2
{

∑

i

(2Nph + 1)
δc

∆2
t

σz
i t

+
∑

i,j

sin(δct)
(

σ+
i σ+

j e−iδct + σ−
i σ−

j eiδct
) (

1

δc∆t
+

δc

∆3
t

)

+
∑

i,j

(

σ+
i σ−

j + σ−
i σ+

j

)
(

1

∆t
+

δ2
c

∆3
t

)

t

}

. (B.10)
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B.1.4. Effective Hamiltonian

The effective time evolution of the system is Ueff(t) = e−Ω2(t) = e− i
~

∫ t

0
dtHeff . In order to get Heff

the derivative of Ω2(t) with respect to t has to be taken.

Heff =

(
Ωη

2

)2
{

∑

i

(2Nph + 1)
δc

∆2
t

σz
i

+
∑

i,j

δc

(
1

δc∆t
+

δc

∆3
t

) (

σ+
i σ+

j e−iδct + σ−
i σ−

j eiδct
)

cos(δct)

+
∑

i,j

δc

(
1

δc∆t
+

δc

∆3
t

) (

−σ+
i σ+

j e−iδct + σ−
i σ−

j eiδct
)

i sin(δct)

+
∑

i,j

(

σ+
i σ−

j + σ−
i σ+

j

) (
1

∆t
+

δc

∆3
t

) }

=

(
Ωη

2

)2
{

∑

i

(2Nph + 1)
δc

∆2
t

σz
i

+
∑

i,j

(

1

∆t
+

δ2
c

∆3
t

)
(

σ+
i σ+

j e−2iδct + σ+
i σ−

j + σ−
i σ+

j + σ−
i σ−

j e2iδct
)

}

. (B.11)

Equation B.11 reveals that there are terms depending on the number of phonons in the motional

mode for δc , 0. This asymmetrical detuning leads to slightly different coupling strengths in the

red and blue sidebands, from where the phonon number dependency arises.

By comparing ∆t and δc there are three different regimes of Heff to be identified:

1. ∆t ≫ δc ≫ J This is the regime where Heff = HXY

2. ∆t ≫ J ≫ δc ≈ 0

3. ∆t ≫ δc ≈ J , but δct3 1

Here, we define J =
(

Ωη
2

√
∆t

)2
as the spin-spin coupling strength.

Regime 1 In this case it is admissible to apply the adiabatic elimination to terms rotating at

e2iδct and ignoring terms ∝ 1
∆3

t
. This gives

Heff = J
∑

i,j

(

σ+
i σ−

j + σ−
i σ+

j

)

+ J
δc(2Nph + 1)

∆t

∑

i

σz
i = HXY. (B.12)

Interestingly, a small transverse field, which scales with J
δc(2Nph+1)

∆t
is still left. If we plug in typical

numbers: ∆t = 80 kHz, δc = 5 kHz and J = 0.5 kHz we get a transverse field strength of ≈ 30

Hz for a ground-state cooled mode. This may not be much, at the first glance, since it is an order

of magnitude smaller than J . However, if sideband cooling fails to work, there are easily tens of

phonons populating the mode after Doppler cooling. And all modes, except for the COM mode,

have a non-uniform distribution of the mode-vector amplitudes across the string. This will imprint
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a differential AC-shift onto the ions, which will fluctuate randomly with a thermal distribution and

could be of the same order of magnitude as J . To prevent this problem, one needs to cool the

modes to the ground state, to keep this term as small as possible and the thermal distribution as

narrow as possible. However, there are heating processes during the time-evolution. Even though

the modes might be perfectly ground state cooled, they will eventually heat up. Luckily, the mode

with the highest heating rate, the COM, has uniform mode-vector amplitudes causing all ions to

get the same AC-stark shift at any time.

Regime 2. This is the easiest case where δc → 0 (note: σ± = σx ± iσy):

Heff = J
∑

i,j

(

σ+
i σ+

j + σ+
i σ−

j + σ−
i σ+

j + σ−
i σ−

j

)

= J
∑

i,j

((

σ+
i + σ−

i

) (

σ+
j + σ−

j

))

= J
∑

i,j

σx
i σx

j = HXX. (B.13)

Regime 3 This is the trickiest case, since the rotating term must not be eliminated and we have

to change into a rotating frame to derive the transverse field HIsing. For the sake of simplicity we

go the other way around and show that transforming HIsing gives Heff . We use the transformation

H ′ = U †HU − i~U †U̇ with U = e−iH0t/~, such that

H ′ = eiH0t/~H0e−iH0t/~ + eiH0t/~H1e−iH0t/~ − i~eiH0t/~(−i)H0e−iH0t/~

= eiH0t/~H1e−iH0t/~ .

We will apply the transformation to the Ising Hamiltonian

HIsing = −~δc

2

∑

i

σz
i

︸           ︷︷           ︸

H0

+ J
∑

i,j

(

σ+
i σ+

j + σ+
i σ−

j + h.c.
)

+ J
δc (2Nph + 1)

∆t

∑

i,j

σz
i

︸                                                                     ︷︷                                                                     ︸

H1

. (B.14)

Let’s start with the easy term (note:
[
e−iσz

i , σz
i

]
= 0)

H ′
1,3 = eiH0t/~ J

δc (2Nph + 1)

∆t
σz

i e−iH0t/~

= J
δc (2Nph + 1)

∆t

∑

i

σz
i .

For the next two terms we use the following relation: ei α
2

σz
σ± ei α

2
σz

= eiασ±:

H ′
1,1 = eiH0t/~ J

∑

i,j

(

σ+
i σ+

j + σ−
i σ−

j

)

e−iH0t/~

= J
∑

i,j

(

σ+
i σ+

j e−2iδct + σ−
i σ−

j e2iδct
)
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and

H ′
1,2 = eiH0t/~ J

∑

i,j

(

σ+
i σ−

j + σ−
i σ+

j

)

e−iH0t/~

= J
∑

i,j

(

σ+
i σ−

j + σ−
i σ+

j

)

.

So finally we get:

Heff = J
∑

i, j
(

σ+
i σ+

j e−2iδct + σ+
i σ−

j + σ−
i σ+

j + σ−
i σ−

j e2iδct
)

+
δc (2Nph + 1)

∆t

∑

i

σz
i

= U †HIsingU − i~U †U̇ . (B.15)

B.2. Temperature estimate from sideband-order index distribution

Here I will give a detailed derivation of the relations n̄ = σ2

2η2 used in section 8 to estimate the axial

temperature of single, Doppler cooled ion. The sideband can be construed as a Doppler-shift

∆ω =
v

c
ω, (B.16)

where v is the velocity of the particle along the þk-vector of the light-field, c is the speed of light

and ω is the frequency of the atomic transition. For high temperatures we can model the velocity

distribution with the Maxwell-Boltzmann distribution

p(v) = Ce
− mv2

2kBT = Ce− v2

2σ2 . (B.17)

Here, p(v) is the probability density function, m is the mass of a single particle, σ =
√

kBT/m is the

standard deviation of the distribution and C is a normalization factor, such that
∫ ∞

−∞ p(v)dv = 1.

Using the relation kBT = ~ωn̄ and equation B.16 we get

p(v) ∝ exp

[

−mc2

~ωn̄

(
∆ω

ω

)2
]

= exp

[

− 1

2σ2

(
∆ω

ω

)2
]

(B.18)

with ∆ω
ω as the sideband-order index. From Eq. B.18 we get

σ2 =
~ωn̄

2mc2
=
~k

2mc
n̄ (B.19)

=
~

2mω
k2n̄ = k2x0n̄

= η2n̄
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B.3. Coupling strength fluctuations on an addressed ion due to hot

axial modes

Due to the high phonon population (n̄ ≈ 200) in the axial mode at shallow trapping potentials

(220 kHz), the wave-function of a single ion expands into macroscopic regimes. The spread of the

zero-point wavefunction is given by:

x0 =

√

~

2mω
. (B.20)

This results in x ≈ 30 nm for the ground state. Since the ion is confined in a harmonic potential,

the wave-function increases with
√

n. We define the size of the wave-function as the distance

between the two points of highest probability amplitude (classically these are the reversal points

of an oscillator). A Fock-state of n = 500 has an expansion on the order of 750 nm

Ψn(x) =
1√
2nn!

(
mω

π~

)1/4

Hn

( √
mω

~
x

)

e
mω
2~

x2
. (B.21)

Here, Hn is the nth Hermite polynomial which can be calculated with the following recurrence

relation

H0(x) = 1 (B.22)

H1(x) = 2x (B.23)

Hn+1(x) = 2xHn(x) − H ′
n(x) (B.24)

= 2xHn(x) − 2nHn−1(x). (B.25)

The last step is valid because the Hermite polynomials constitute an Appell sequence, i.e. they

satisfy the relation: d
dxpn(x) = 2npn−1(x). In order to calculate the coupling strength for a Fock

state Ψn(x) with a given intensity distribution of a laser-beam I(x) ∼ exp(−x2/2σ2), we compute

the overlap integral:

Sn =

∫ ∞

−∞
|Ψn(x)|2I(x)dx. (B.26)

Then, the normalized coupling strength is given by:

Ω̃n = Sn/S0. (B.27)

Note: The way we define Ω̃n it is proportional to the intensity I. The decay of the addressed

Rabi-oscillation is then computed by drawing the Ω̃n from a thermal distribution n̄.





C. Derivation of spectroscopic signals

These derivations are take from [28, Supplemental Material] and provide additional and detailed

information regarding the analysis of the spectroscopic signals presented in section 5.4.

C.1. Spectroscopic signals for single quasiparticle states

We perform spectroscopy of a trapped-ion system modelled by the XY Hamiltonian, Eq. (5.4),

of N coupled spins. As discussed in Fig. 5.8 in section 5.4, the spectrum of HXY splits into

uncoupled subspaces with integer total excitation number (number of up-pointing spins), allowing

us to study each subspace individually or to compare the energy of states within one subspace

against the energy of a reference state in another subspace. In the single-excitation subspace, one

can calculate the eigenenergies (Ek) and eigenmodes (|k〉 = σ+
k |0〉, with σ+

k =
∑

j Ãk
j σz

j from the

model Hamiltonian simply by diagonalizing the N × N matrix Jij .

To spectroscopically measure the energies Ek, we aim to create a superposition of the ground

state |0〉 with the eigenstate |k〉. This superposition can be approximated by an initial product

state

|ψθ〉 =
N⊗

j=1

[

cos(θj) |↓〉j + sin(θj) |↑〉j

]

(C.1a)

= C

[

1 +
∑

j

tan(θj)σ+
j +

∑

i,j

tan(θi) tan(θj)σ+
i σ+

j

+O(tan(θ)3)

]

|0〉 .

Here, C ≡ ∏N
j=1 cos(θj) provides the overall normalization of the wave function. The angles θj

are chosen such that tan θj = γAk
j where Ak

j =
√

2
N+1 sin

(
kjπ

N+1

)

are the coefficients of a generic

standing wave. For this choice, the initial state is given by

|ψk〉 = C



|0〉 + γ
∑

j

Ak
j σ+

j |0〉 + O(γ2)



 (C.2)

≈ C
[

|0〉 + γ |k〉 + O(γ2)
]

. (C.3)

The variable γ determines the probabilities pn of generating n spin excitations. In particular, we

165
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(a) (b)

Figure C.1.: Two schematic examples of spinwaves where each spin j is rotated by the angle θj . (a) is an
example for the highest spinwave mode |k = 1〉 and (b) for the lowest spinwave mode |k = 7〉.

have

p0 = |〈ψk|0〉|2 = C2 =
∏

j

1

1 + (γAk
j )2

, (C.4)

p1 = C2
∑

j

tan2θj = γ2p0

∑

j

(Ak
j )2 , (C.5)

p2 = C2
∑

i<j

tan2θi tan2θj = γ4p0

∑

i<j

(Ak
i Ak

j )2 . (C.6)

Similarly, for the measurement of energy differences Ek − E′
k, we would like to create superposition

states |k〉 + |k′〉. In this case we choose tan θj = γ(Ak
j + Ak′

j ) in order to create

|ψkk′〉 ≈ C
[

|0〉 + γ(|k〉 +
∣
∣k′〉) + O(γ2)

]

. (C.7)

For the calculation of the probabilities in this case, one has to replace Ak
j by Ak

j +Ak′

j in Eqs. (C.4–

C.6).

In our experiment, the product states |ψθ〉 are generated by a series of laser pulses rotating

each spin by the desired angle θj . A particularity of the states of type |ψθ〉 is that all spins lie

in a single plane of the Bloch sphere spanned by the y and z axes. Figure C.1 shows schematic

examples of two spin waves and their corresponding Ak
j . To create the states, the system is first

prepared into the ground state |↓〉⊗N = |0〉 by optical pumping. Then, a global resonant laser pulse

rotates all spin simultaneously around the y-axis into the equatorial plane of the Bloch sphere such

that they are aligned with the x-axis. Next, a steerable, tightly focussed off-resonant laser beam

induces a rotation on individual ions around the z-axis via an ac-Stark shift induced mostly by

dipole transitions connecting the spin states to other electronic states. By controlling the pulse

length we control the rotation angle of each ion j. However, the sense of the rotation cannot be

changed which slightly complicates the creation of states with both positive and negative rotation

angles θj . Replacing rotations with negative angles θj by 2π +θj could result in unnecessarily large

rotation angles if θj ≪ 1. Instead, we rotate each spin by θj + |min{θi}|. This over-rotation allows

us to reach negative values θj by applying a second global, resonant pulse reversing the very first

rotation around the y-axis followed by a final rotation around the x-axis which corrects for the

over-rotation of |min{θi}| yielding |ψθ〉 with the right amplitudes and phases. With a slightly more

complicated pulse sequence it would also be possible to generate any product state of spins.
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C.1.1. Absolute quasiparticle energies

For the spectroscopy of absolute energy values Ek, we choose tan(θj) = γAk
j to generate the initial

state |ψk〉. The time-evolved state is then |ψ(t)〉 = e−iHXYt |ψk〉. If this state is measured directly

in the x-basis, with respect to the frame of Eqn. (5.4), the signal would read:

〈ψ(t)| σx
i |ψ(t)〉 = 〈ψk| eiHXYt σx

i e−iHXYt |ψk〉 (C.8a)

= C2γ
(

e−iEkt/~ 〈0| σx
i σ+

k |0〉 + c.c.
)

+ O(γ3)

= C2γ
(

e−iEkt/~Ak
i + c.c.

)

+ O(γ3)

This observable contains a strong oscillation at the quasiparticle energy Ek. The contributions from

individual spins (ions) can be constructively summed to
∑

i Ak
i 〈ψ(t)| σx

i |ψ(t)〉 = 〈0| σ−
k (t)σ+

k |0〉 +

c.c. + O(γ3), with σ−
k (t) = eiHXYt σ−

k e−iHXYt. Note, to leading order this is equivalent to the

single-particle Greens function [303].

However, we do not measure directly in the x-basis (or y-basis) of Eq. (5.4), as assumed in

Eq. (C.8). Measurements of the magnetization in the x-y plane of the Bloch sphere are carried

out by first performing π/2 pulses with a laser resonant with the pseudo-spin transition followed

by a fluorescence measurement projecting the spin onto either |↑〉 or |↓〉. This corresponds to

measurement of 〈σx〉 or 〈σy〉 in the reference frame of the Hamiltonian (B.1). When changing into

the reference frame of the Hamiltonians (5.1) or (5.4), these single-spin measurements correspond

to measurements of

σx̃ = ei δ
2

tσz
σxe−i δ

2
tσz

= cos(δt)σx − sin(δt)σy (C.9)

σỹ = ei δ
2

tσz
σye−i δ

2
tσz

= sin(δt)σx + cos(δt)σy (C.10)

σz̃ = ei δ
2

tσz
σze−i δ

2
tσz

= σz . (C.11)

Note that measurements in the logical (z-basis) are unaffected by this frame change. The con-

sequence of measuring in a rotated frame in the x or y basis is simply that we observe oscillations

due to energy gaps ǫk = Ek − 2B, as presented in Fig. 5.10.

C.1.2. Relative quasiparticle energies

To observe beatnotes between different eigenenergies within the single-excitation subspace, we

prepare approximate superpositions of two eigenfunctions, tan θj = γ
(

Ak1
j + Ak2

j

)

, yielding the

initial state |ψkk′〉. When measuring the observable σz
i for spin i in the time evolved state |ψ(t)〉 =
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e−iHXYt|ψkk′〉, the observed signal is

〈ψ(t)| σz
i |ψ(t)〉 = 〈ψkk′ | eiHXYt σz

i e−iHXYt |ψkk′〉 =

C2
[

〈0| σz
i |0〉

+ γ2 〈0|
(

σ−
k1

eiEk1
t/~ + σ−

k2
eiEk2

t/~
)

σz
i

(

σ+
k1

e−iEk1
t/~ + σ+

k2
e−iEk2

t/~
)

|0〉

+ γ4 〈0|
(

σ−
k1

+ σ−
k2

)2
eiHXYt σz

i e−iHXYt
(

σ+
k1

+ σ+
k2

)2
|0〉

+ O(γ6)

]

. (C.12a)

When measuring σz
i , post-selecting measurement outcomes with a fixed number of total spin-up

excitations (n) allows the dynamics (and therefore energy gaps) in different subspaces to be studied

independently. We define projection operators, Πn, which denotes the projector onto the subspace

with excitation number n. To study the single excitation subspace we extract the observable

〈ψ(t)| Π1 σz
i Π1 |ψ(t)〉 = C2γ2

[

〈k1| σz
i |k1〉 (C.13)

+ 〈k2| σz
i |k2〉

+2ℜ
(

ei(Ek1
−Ek2

)t/~ 〈k1| σz
i |k2〉

)]

,

Here, the signal oscillates with a frequency given by the energy difference of the eigenmodes. For

the initial state where tan(θj) = γ
(

Ak1
j + Ak2

j

)

, the oscillations have amplitude proportional to

2Ak1
j Ak2

j (for k1 , k2). The average signal from various spins is therefore maximized by Fourier-

transforming the weighted sum

M1(t) =
∑

j

sign
(

Ak1
j Ak2

j

)

〈Π1σz
j Π1〉. (C.14a)

C.2. Spectroscopic signals for two quasiparticle states

The dynamics in higher excitation subspaces becomes more complicated because the quasiparticle

modes that diagonalize HXY in the single-excitation subspace are subject to the hard-core con-

straint σ+
j σ+

j = 0. In a dilute system, i.e., when there are few excitations,
∑

j σ+
j σ−

j /N ≪ 1,

the excitations become approximately independent. We can then construct a perturbation theory

around the non-interacting eigenmodes without any hard-core constraint.

C.2.1. Mapping spin operators to bosonic operators

A formal way to construct a perturbation theory around the non-interacting eigenmodes is by

applying the Holstein–Primakoff transformation [208] to obtain bosonic creation and annihilation
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operators b̃†
i and b̃i,

σ−
j →

√
2S

√

1 −
b̃†

j b̃j

2S
b̃j , (C.15a)

σ+
j →

√
2Sb̃†

j

√

1 −
b̃†

j b̃j

2S
, (C.15b)

σz
j → −S + b̃†

j b̃j , (C.15c)

where S = 1
2 is the length of the spin (we keep the factor 2S as it provides a convenient way to

distinguish different perturbative contributions). The Holstein–Primakoff transformation conserves

the bosonic commutation relations between spins on different sites [σ−
i , σ+

j ] = 0, i , j, and the

onsite hard-core constraint σ+
j σ+

j = 0. In linear spin-wave theory (LSWT) [304], one expands the

spin Hamiltonian to leading order in the bosonic occupations, which amounts to neglecting the

constraint by setting

√

1 − b̃†
j b̃j

2S → 1. The result is the approximation

HXY ≈ HLSWT = 2S
∑

i<j

Jij

(

b̃†
i b̃j + h.c.

)

, (C.16)

It is straightforward to diagonalize the linear spin-wave Hamiltonian HLSWT to find its eigenenergies

Ek and eigenmodes b†
k =

∑

j Ak
j b̃†

j (the spin waves), which reproduce the exact physics in the single-

excitation subspace. If there was no hard-core constraint, combinations of spin waves would also

define the eigenstates in higher occupation subspaces. For low spin-wave densities, one can expect

this constraint to only play a perturbative role, motivating the use of Hamiltonian HLSWT as

starting point for a perturbative expansion in the spin-wave interactions.

C.2.2. Perturbative treatment of spin-wave interactions

One can obtain leading corrections due to hard-core interactions by expanding the square roots to

next order in the spin-wave density 〈b̃†
j b̃j |/|2S〉, yielding

HXY ≈ HLSWT + V̂ , (C.17)

with V̂ = −1
2

∑

i,j Jij

(

b̃†
j b̃†

j b̃j b̃i + b̃†
j b̃†

i b̃ib̃i

)

. The eigenstates of the unperturbed system are given

by |k1, k2〉SW = b†
k1

b†
k2

|0〉 /
√

1 + δk1,k2 , where |0〉 = |↓〉⊗N is the spin-wave vacuum and the δk1,k2

takes care of correct normalisation. The perturbative shifts of the corresponding energies are in

first order

Vk1,k2 ≡ 〈k1, k2| V̂ |k1, k2〉SW = −
2(Ek1 + Ek2)Mk1k2

k1k2

1 + δk1k2

. (C.18)

The strength of the interactions is determined by the geometrical overlap between different spin-

wave modes,

Mk3,k4

k1,k2
=

∑

j

Ak1
j Ak2

j Ak3
j Ak4

j , (C.19)
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and can be visualised as a contact interaction vertex between two incoming and two outgoing

waves. In this picture, the factor 1/2 in the case k1 = k2 can be understood from the fact that for

indistinguishable waves there is only one outgoing channel, whereas there are two for distinguishable

waves.

C.2.3. Expected signal

We can use these approximate energies to evaluate the expected signal in the two-excitation man-

ifold. To this end, we approximate the time evolution as

e−iHXYt/~ |k1, k2〉 ≈ e−i(HLSWT+V̂)t/~(|k1, k2〉SW + |δψ(k1, k2)〉) . (C.20)

If we are interested only in the strongest frequencies, we can neglect corrections |δψ(k1, k2)〉 to

the states |k1, k2〉 = σ+
k1

σ+
k2

|0〉, which correspond to scattering into other spin-wave modes, and

approximate

e−iHXYt/~ |k1, k2〉 ≈ e−i(Ek1
+Ek2

+Vk1,k2
)t/~ |k1, k2〉 . (C.21)

We now define ∆Ek1,k2 = Ek1 − Ek2 . For any observable Oz that is diagonal in the σz Pauli

matrices, the observed signal in the two-excitation subspace is

〈ψ(t)| Π2 Oz Π2 |ψ(t)〉 ≈
C2γ4 [〈k1k1| Oz |k1k1〉 + 〈k2k2| Oz |k2k2〉 + 4 〈k1k2| Oz |k1k2〉

+2 cos

(
2∆Ek1,k2 + Vk1,k1 − Vk2,k2

~
t

)

〈k1k1| Oz |k2k2〉

+4 cos

(
∆Ek1,k2 + Vk1,k1 − Vk1,k2

~
t

)

〈k1k1| Oz |k1k2〉

+4 cos

(
∆Ek1,k2 + Vk1,k2 − Vk2,k2

~
t

)

〈k1k2| Oz |k2k2〉

+ corrections from other states ] . (C.22)

This formula neglects all higher-order contributions in V̂ , including scatterings into other than

the initially prepared modes k1, k2. As long as perturbation theory is a good description of the two-

excitation subspace, we thus expect predominantly three frequencies in the time-evolution of the

magnetization signal, which lie at hνa = |∆Ek1,k2 +Vk1,k1 −Vk1,k2 |, hνb = |∆Ek1,k2 +Vk1,k2 −Vk2,k2 |,
and hνc = |2∆Ek1,k2 + Vk1,k1 − Vk2,k2 |. Indeed, this three-peak structure with νa + νb = νc is what

we observe in the data for {k1 = 1, k2 = 7}, as presented in Fig. 5.12.

To derive simple quantitative estimates, we use sine-wave amplitudes for the eigenfunctions,

Ak
j =

√
2

N+1 sin(k · j π
N+1), yielding the interaction-shifted frequencies νa = (1 − 0.113)∆Ek1,k2/h,

νb = (1 − 0.262)∆Ek1,k2/h, and νc = (2 − 0.375)∆Ek1,k2/h for {k1 = 1, k2 = 7}.

C.2.4. Summation of spin-spin correlation measurements

In the two-particle subspace, we study weighted sums of two-spin projectors Pz
ij = 1

4 (σz
i + 1)

(

σz
j + 1

)

,

i.e., the probability that both ions i and j are in the state |↑〉. The corresponding expectation values
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are

1

4
〈k1k2|

(

σz
i σz

j + σz
i + σz

j + 1
)

|k3k4〉 =
(

Ak1
i Ak2

j + Ak2
i Ak1

j

) (

Ak3
i Ak4

j + Ak4
i Ak3

j

)

. (C.23)

For the component with oscillation frequency νc, we have 1
4 〈k1k1|

(

σz
i σz

j + σz
i + σz

j + 1
)

|k2k2〉 =

4Ak1
j Ak1

i Ak2
i Ak2

j , so that the signal is maximised by

M2a(t) =
∑

l<m

sign
(

Ak1
j Ak1

i Ak2
j Ak2

i

)

〈Pz
ij〉 . (C.24)

For {k1, k2} = {1, 7}, this choice simultaneously suppresses the expectation values associated to

the other two oscillation frequencies, so that it allows one to cleanly extract a single one of the

three expected Fourier components.

Similarly, the component oscillating with νa has an amplitude 2|Ak1
i |2Ak1

j Ak2
i + 2|Ak1

j |2Ak1
i Ak2

j .

If we use

M2b(t) =
∑

i<j

(

sign
(

Ak
i Ak′

j

)

+ sign
(

Ak
i Ak′

j

))

〈Pz
ij〉 , (C.25)

the signals due to this component and the one at νb are maximized while the one at νc gets

suppressed.

C.2.5. Validity of first-order perturbation theory: additional experimental data

The quality of the first-order perturbation theory for given eigenstates can be estimated by con-

sidering how well a state |k1k2〉 remains localized in the two-excitation state space when taking

the hard-core constraint into account. This amounts to acting on the vacuum |0〉 with b†
k1

b†
k2

and

computing the overlap of the resulting state to the exact eigenstates. The state |k1 = 1, k2 = 7〉,
constructed from single-particle states at the edge of the spectrum, for example, remains well local-

ized in few exact eigenstates, and therefore qualitative predictions of simple first-order perturbation

theory in the spin-wave interaction work quite well. Other combinations, on the other hand, such as

|k1 = 1, k2 = 4〉 (Fig. C.2) show many other spectral features deviating from the three-peak struc-

ture predicted by the perturbation theory. This comes from a considerable overlap with many of the

true eigenstates in the two-excitation subspace, resulting in a diminished reliability of perturbation

theory.

Since the spin-wave scattering is proportional to the overlaps Mk3,k4

k1,k2
, which decrease with reduced

excitation density, estimates from perturbation theory will improve with increasing system size (if

the excitation number is kept fixed). For the small system considered, the overlaps are quite large,

lying in the range Mk3,k4

k1,k2
≈ 0.1 − 0.25, which explains the lack of quantitative reliability of non-

linear spin-wave theory. For N → ∞, however, corrections such as Mk3,k4

k1,k2
go to 0 as 1/N , and

the states |k1k2〉SW provide accurate approximations to the true eigenstates of the two-excitation

subspace of HXY .
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Figure C.2.: Spectroscopy of quasiparticle interactions. (a,b) Fourier spectra of the two-quasiparticle state
∣
∣
∣ψ

(2)
k,k′=1,4

〉

, obtained from summed signals (red curves), with M2a(t) to enhance νc = νa + νb (panel a) and

M2a(t) to increase signals at νa,b (panel b). The measured peak positions compare well with those of a
simulated evolution with longer times, yielding a narrower bandwidth (grey curves). However due to strong
quasiparticle scattering a large number of frequencies components becomes apparent. The weakly interacting
single-particle eigenmodes no longer provide a good basis for describing the system.



D. Reconstructed density matrices for MBQC

a)

b)

Figure D.1.: Box cluster a) The reconstructed density matrix of a box cluster state |eBC〉 using maximum
likelihood reconstruction. The real ℜ and the imaginary ℑ are shown separately. b) The theoretical density
matrix |BC〉 is plotted for comparison. The fidelity is calculated to be F = 0.846 ± 0.005 and the errors are
estimated with Monte Carlo simulations.
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a)

b)

Figure D.2.: Linear cluster a) The real ℜ and the imaginary ℑ of the reconstructed experimental linear
cluster |eLC〉. b) The theoretical density matrix |LC〉 is plotted for comparison. The fidelity is calculated
to be F = 0.841 ± 0.005.

a)

c)

Figure D.3.: Error correction cluster EC1 a) The real ℜ and the imaginary ℑ of the reconstructed
experimental linear cluster |eEC1〉. b) The theoretical density matrix |EC1〉 is plotted for comparison. The
fidelity is calculated to be F = 0.920 ± 0.005.
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a)

c)

Figure D.4.: Error correction cluster EC3 a) The real ℜ and the imaginary ℑ of the reconstructed
experimental linear cluster |eEC3〉. b) The theoretical density matrix |EC3〉 is plotted for comparison. The
fidelity is calculated to be F = 0.843 ± 0.005.





E. Correlated dephasing on two qubits

This appendix is taken from and is identical to the supplementary material of [230]. A more general

analysis with regards to time-dependent dynamics and arbitrary noise distributions can be found

in [283].

E.1. Separable operations can increase the correlation rank

In this section we show that applying a separable operation to a bipartite density matrix can

increase the rank of the correlation matrix [252], henceforth called the correlation rank. We consider

a bipartite Hilbert space H = HA⊗HB and sets of arbitrary quantum operations {ǫA
i }, {ǫB

i } working

on the subspaces HA and HB, respectively. We call an operation ǫsep on H separable if it can be

put into the form ǫsep =
∑P

i=1 piǫ
A
i ⊗ ǫB

i , with probabilities pi and P denotes the number of terms

in the sum. In order to introduce the notation which we will use in the following, we first review

the definition of the correlation matrix. First, we represent the initial state ρ in terms of arbitrary,

fixed bases of Hermitian operators {Ai} and {Bi} on HA and HB, respectively:

ρ =

d2
A∑

i=1

d2
B∑

j=1

rijAi ⊗ Bj , (E.1)

where dA and dB denote the dimensions of HA and HB. The correlation matrix M = (rij)

can be decomposed into its singular value decomposition, using orthogonal matrices U and V :

M = Udiag(c1, . . . , cL, 0, . . . )V T . Here, ci represent the nonzero singular values and R defines the

correlation rank. Introducing Si =
∑

j ujiAj and Fi =
∑

i vjiBj , where U = (uij) and V = (vij),

we can rewrite ρ as [252]

ρ =
R∑

i=1

ciSi ⊗ Fi. (E.2)

In Ref. [275] it was shown that unilocal operations, defined as operations of the form ǫA ⊗I, cannot

increase the correlation rank. First of all, we assure that this also holds for a bilocal operation

ǫA ⊗ ǫB, which requires access to both subsystems. We find

ρ′ = (ǫA ⊗ ǫB)ρ =
R∑

i=1

d2
A∑

k=1

d2
B∑

j=1

cidikeijAk ⊗ Bj , (E.3)

with ǫA(Si) =
∑

k dikBk and ǫB(Fi) =
∑

j eijBj . The rank of ρ′ is now given by the rank of the

matrix F = (fkj), with fkj =
∑R

i=1 cidikeij which is still limited by the minimum of the rank of
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the three matrices C = diag(c1, . . . , cL, 0, . . . ), D = (dik), and E = (eij), hence, by R. Hence, even

bilocal operations cannot increase the correlation rank. However, if we allow for arbitrary separable

maps the correlation rank can be increased:

ρ′ =
P∑

i=1

pi(ǫ
A
i ⊗ ǫB

i )ρ =
P∑

i=1

R∑

j=1

d2
A∑

k=1

d2
B∑

l=1

picjdi
jkei

jlAk ⊗ Bl. (E.4)

We have introduced ǫA
i (Sj) =

∑d2
A

k=1 di
jkAk and ǫB

i (Fj) =
∑d2

B
l=1 ei

jlBl. Now, the rank of the correla-

tion matrix fkl =
∑P

i=1

∑R
j=1 picjdi

jkei
jl can in principle go up to min{P · R, d2

A, d2
B}.

E.2. Correlated dephasing on two qubits

We assume a state of two qubits with reduced Bloch vectors þrA and þrB, expressing the reduced

density matrices of subsystems HA and HB as

ρA,B =
1

2

(

I+ þrA,B · þσ
)

. (E.5)

Here þσ denotes the vector of Pauli-matrices þσ = (σx, σy, σz)T . The correlations between the qubits

is contained in a real-valued matrix β = (βij), such that the total state can be represented in terms

of Pauli matrices and the identity in its Fano-Form (see, e.g., [305]):

ρ =
1

4



I⊗ I+
3∑

i=1

rA
i σi ⊗ I+

3∑

i=1

rB
i I⊗ σi +

3∑

i=1

3∑

j=1

βijσi ⊗ σj



 . (E.6)

The correlation matrix is given by

M =
1

4




1

(

þrB
)T

þrA β



 , (E.7)

where þrT denotes the 1 × 3 matrix þrT = (rx, ry, rz). The rank R of the correlation matrix M is

given by [306]

R = 1 + rk(β − þrA ⊗ þrB). (E.8)

Here þrA ⊗ þrB denotes the outer product: (þrA ⊗ þrB)ij = rA
i rB

j . In general, the matrix β can be

decomposed into singular values, βij =
∑3

k=1 vikdkwjk, with orthogonal matrices V = (vij) and

W = (wij). Introducing two sets of orthonormal vectors (þvk)i = vik and (þwk)j = wjk as the

columns of V and W , we rewrite the state ρ as

ρ =
1

4

(

I⊗ I+ þrA · þσ ⊗ I+ I⊗ þrB · þσ +
3∑

k=1

dkþvk · þσ ⊗ þwk · þσ

)

. (E.9)
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E.2.1. Dephasing by fluctuating rotations

Single-qubit rotations of a Bloch vector þr around an axis determined by the normalized vector þn

are described by the operator Rþn(θ) = e−iθþn·þσ/2. Using the relation

(þn · þσ)(þr · þσ) = (þn · þr)I+ i(þn × þr) · þσ, (E.10)

we obtain

(þn · þσ)(þr · þσ)(þn · þσ) = (þn · þr)(þn · þσ) − (þn × þr × þn) · þσ

= 2(þn · þr)(þn · þσ) − (þr · þσ). (E.11)

In combination with e−iθþn·þσ/2 = cos(θ/2)I+ i sin(θ/2)þn · þσ, this allows us to describe an arbitrary

rotation of a Bloch vector þr around þn by

e−iθþn·þσ/2þr · þσeiθþn·þσ/2 =

[

cos2
(

θ

2

)

− sin2
(

θ

2

)]

þr · þσ − 2i sin

(
θ

2

)

cos

(
θ

2

)

(þr × þn) · þσ

+ 2 sin2
(

θ

2

)

(þn · þr)þn · þσ. (E.12)

Averaging uniformly over the angle θ generates a dephasing effect. The new Bloch vector points

into the direction þn of the rotation:

1

2π

∫ 2π

0
dθe−iθþn·þσ/2þr · þσeiθþn·þσ/2 = (þn · þr)þn · þσ. (E.13)

Correlated dephasing

A separable map describing correlated dephasing in both subsystems is generated by

ǫþn
cd(þv · þσ ⊗ þw · þσ) =

1

2π

∫ 2π

0
dθRþn(θ)þv · þσR†

þn(θ) ⊗ Rþn(θ)þw · þσR†
þn(θ)

=
1

2π

∫ 2π

0
dθe−iθþn·þσ/2þv · þσeiθþn·þσ/2 ⊗ e−iθþn·þσ/2 þw · þσeiθþn·þσ/2

=
1

2
þv · þσ ⊗ þw · þσ − 1

2
þv · þσ ⊗ (þn · þw)þn · þσ − 1

2
(þn · þv)þn · þσ ⊗ þw · þσ

− 1

2
(þv × þn) · þσ ⊗ (þw × þn) · þσ +

3

2
(þn · þv)þn · þσ ⊗ (þn · þw)þn · þσ. (E.14)

Kraus representation

Correlated dephasing can be given in form of a Kraus representation:

ǫþn
cd(ρ) =

1

2
K1ρK1 +

1

4
K2ρK2 +

1

4
K3ρK3, (E.15)
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with the self-adjoint Kraus operators

K1 =
1√
2

(−I⊗ I+ þn · þσ ⊗ þn · þσ)

K2 =
1√
2

(I⊗ I+ þn · þσ ⊗ þn · þσ)

K3 =
1√
2

(−I⊗ þn · þσ + þn · þσ ⊗ I) . (E.16)

E.2.2. Initial rank-1 states

We show that R = 1 if and only if ρ = ρA ⊗ ρB: First, if ρ is a product state then obviously R = 1,

as ρA and ρB can be seen as elements of operator bases of HA and HB, respectively. Conversely,

assume that R = 1, then, according to Eq. (E.7), we find that (1, þrB) = c1(rA
1 , þβ1) = c2(rA

2 , þβ2) =

c3(rA
3 , þβ3) ∈ R4 with β = (þβ1, þβ2, þβ3). From this we conclude that ci = 1/rA

i and þβi = rA
i þrB.

Inserting this into Eq. (E.6) yields

ρ =
1

4

(

I⊗ I+ þrA · þσ ⊗ I+ I⊗ þrB · þσ + þrA · þσ ⊗ þrB · þσ
)

=
1

2
(I+ þrA · þσ) ⊗ 1

2
(I+ þrB · þσ). (E.17)

This concludes the proof and implies that rk(β) ≤ 1 for product states. Moreover, if rk(β) = 1

then the left- and right-singular vectors of β are given by the reduced Bloch vectors þrA and þrB,

respectively and β = þrA ⊗ þrB, in agreement with Eq. (E.8). We now determine the rank of the

product state after being subject to correlated dephasing along þn. The correlation matrix of the

state after application of the map is given by

ǫþn
cd(M) =

1

4




1 (þrB · þn)þnT

(þrA · þn)þn ǫþn
cd(þrA ⊗ þrB)



 , (E.18)

with the rank

rk(ǫþn
cd(M)) = 1 + rk

(

ǫþn
cd(þrA ⊗ þrB) − (þrB · þn)(þrB · þn)þn ⊗ þn

)

= 1 + rk

(
1

2

(

þrA ⊗ þrB − þrA ⊗ (þrB · þn)þn − (þrA · þn)þn ⊗ þrB − (þrA × þn) ⊗ (þrB × þn)

+(þrB · þn)(þrB · þn)þn ⊗ þn
))

= 1 + rk

(
1

2

(

(þrA − (þrA · þn)þn) ⊗ (þrB − (þrB · þn)þn) − (þrA × þn) ⊗ (þrB × þn)
))

. (E.19)

We obtain rk(ǫþn
cd(M)) = 1 if and only if þn = þrA/rA or þn = þrB/rB, with rA =

√
þrA · þrA and

rB =
√

þrB · þrB. Otherwise, the final rank is 3.

E.2.3. Initial rank-2 states

We consider states with maximally mixed reduced density matrices, i.e., þrA = þrB = þ0. The rank of

the correlation matrix is then given by R = rk(β)+1. Hence, classical states with maximally mixed
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marginals have rk(β) ≤ 1 and β = 0 corresponds to the overall maximally mixed state, which has

R = 1. Let’s assume we have R = 2, hence, only one singular value of β is non-zero. Such a state

has always zero discord as it can be written as

ρ0 =
1

4
(I⊗ I+ dþv · þσ ⊗ þw · þσ) . (E.20)

The matrix β is given by the outer product β = dþv ⊗ þw.

We will use the following relation:

rk

(
3∑

k=1

þvk ⊗ þwk

)

= rk(V W T ) ≤ min{rkV, rkW}, (E.21)

where the rank of the matrices V and W is determined by the number of linear independent

vectors þvk and þwk, respectively. If one of the two sets is linearly independent, the rank is given

by the number of linear independent vectors of the other set. Using this it is possible to specify a

combination of conditions which guarantee the conversion of a classical rank-2 state with maximally

mixed marginals into a fully correlated rank-4 state by correlated dephasing. Correlated dephasing

on (E.20) yields the state

ǫþn
cd(ρ0) =

1

4

(

I⊗ I+
d

2
[þv · þσ ⊗ (þw − (þn · þw)þn) · þσ + (þn · þv)þn · þσ ⊗ (3(þn · þw)þn − þw) · þσ

−(þv × þn) · þσ ⊗ (þw × þn) · þσ]) . (E.22)

The set {þv, (þn · þv)þn, −þv × þn} is linearly independent if and only if þn is neither equal nor orthogonal

to þv (or put equivalently 0 < þn ·þv < 1, since both þv and þn are normalized to one). The latter implies

that þn should be different from all the left-singular vectors of β, even those with singular value zero.

According to Eq. (E.21), the rank of β after the correlated dephasing is now given by the number

of linearly independent vectors in the set {þw − (þn · þw)þn, 3(þn · þw)þn − þw, þw × þn}. Again, all three

vectors are linearly independent if and only if 0 < þn · þw < 1. A rank-2 state with maximally mixed

marginals is therefore converted into a rank-4 state if and only if 0 < þn · þv < 1 and 0 < þn · þw < 1.

For states which are symmetric under permutation of the two qubits (þv = þw), this can be expressed

directly in terms of β as the condition

0 < þnT βþn/d < 1, (E.23)

where the Hilbert Schmidt norm of β is given by d = ‖β‖ =
√

TrβT β.

The above analysis tells us how to create rank-4 states. When do we obtain a state of rank 1, 2

or 3? If þn = þv we get

ǫþn
cd(ρ0) =

1

4
(I⊗ I− d(þv · þw)þv · þσ ⊗ þv · þσ) , (E.24)

which has rank 2 if þv · þw > 0, otherwise rank 1. The same holds for þn = þw. For þn · þv = 0 the final
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þn = þw þn · þw = 0 0 < þn · þw < 1

þn = þv 2 1 2
þn · þv = 0 1 3 3
0 < þn · þv < 1 2 3 4

Table E.1.: Rank of the correlation matrix after application of correlated dephasing to a rank-2 state with
maximally mixed marginals.

state

ǫþn
cd(ρ0) =

1

4

(

I⊗ I+
d

2
[þv · þσ ⊗ (þw − (þn · þw)þn) · þσ − (þv × þn) · þσ ⊗ (þw × þn) · þσ]

)

(E.25)

has rank 3 as long as þn · þw < 1 (equivalent to þn , þw), which is also the case for þn · þw = 0 if þn ·þv < 1.

E.2.4. Summary

For initial rank-1 states ρ = ρA ⊗ ρB, with nonzero reduced Bloch vectors þrA and þrB, correlated

dephasing around þn yields a state of

R=1 if þn is equal to either þrA or þrB,

R=3 if þn differs from both þrA and þrB.

For initial rank-2 states with maximally mixed reduced density matrices (þrA = þrB = 0), correlated

dephasing around þn yields a state of

R=1 if þn = þv (þn = þw) and þn ⊥ þw (þn ⊥ þv),

R=2 if þn = þv (þn = þw) and þn Ó⊥ þw (þn Ó⊥ þv),

R=3 if þn , þw (þn , þv) and þn ⊥ þv (þn ⊥ þw),

R=4 if þn is neither equal nor orthogonal to and þv and þw,

where þv and þw denote the left- and right-singular vectors of the matrix β = dþv ⊗ þw in Eq. (E.6).

These results are summarized in Tab. E.1. For the special case of þv = þw, we obtain R = 4 if and

only if

0 <
þnT βþn

√

TrβT β
< 1. (E.26)

The present analysis can be extended beyond qubit-systems based on the definitions of the Fano

form, rotations and generalized Bloch vectors for higher dimensions [305].
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bei der gesamten Blatt-Gruppe für die vielen Diskussionen, sowie den Ideen- und Wissensaustausch

bedanken. Es war ein ganz besonderes Umfeld von dem ich äusserst profitieren konnte.
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istration des IQOQI’s dafür danken, dass wir uns nicht mit den ganzen bürokratischen Hürden
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